发明名称
光栅正膜及其制造方法和照射方法和视角扩
大的显示装置

摘要
本发明公开了一种光栅正膜及其制造方法，利
用其的照射方法和具有扩大的视角的显示装置。具有
第二折射率，形成在第二透光膜上凸起的一部分
与具有第一折射率的第一透光膜局部地结合。因
此，在第一和第二透光膜互相重叠的部分，光前进
的方向与第一和第二透光膜没有相互重叠部分光的
前进方向不同，因此防止了反光反转现象，改善了
显示属性，扩大了视角。
1. 一种光区正负膜，包括：
形成在基片(310)上的第一透光件(217)，所述第一透光件(217)具有凹槽
部分(217a)并由具有第一折射率的材料构成，光在穿过基片(310)后穿过第一
透光件(217)；以及
具有局部与所述第一透光件(217)的凹槽部分(217a)结合的凸起部分
(216)的第二透光件(210)，所述第二透光件(210)由具有与第一折射率基本上
相同的第二折射率的材料构成。
其中在所述第一和第二透光件之间存在一介质，该介质具有不同于第
一和第二折射率的折射率，
没有与凹槽部分(217a)相结合的凸起部分的高度与所述凸起部分(216)
的总高度的比值处于 0.05 到 0.7 的范围内，并且
光按第一方向前进，在该方向上凸起部分(216)与凹槽部分(217a)局部接
触，光还按第二方向前进，第二方向与第一方向不同的是在第二透光件(210)
的凸起部分(216)而不是凸起与凹槽部分(217a)重叠的部分。
2. 根据权利要求 1 所述的膜，其特征在于，第一透光件(217)由不定形
的流体材料、有条件凝固材料或具有流体材料和有条件凝固材料两种属性的
材料构成，且第二透光件(210)是有硬度的膜，从而保持膜的形状。
3. 根据权利要求 1 所述的膜，其特征在于，凸起部分(216)是棱锥柱形的，
形为具有第一倾斜表面(212)和第二倾斜表面(214)的纵向长条，第二倾
斜表面(214)与第一倾斜表面(212)的一侧接触，多个凸起部分(216)依次排
列。
4. 根据权利要求 3 所述的膜，其特征在于，第一和第二倾斜表面具有
如下关系：
\[\alpha + \beta < 180^\circ \]
其中 \(\alpha \) 是水平面和第一倾斜表面(212)间的角，\(\beta \) 是水平面和第二倾斜
表面(214)间的角，且角 \(\alpha \) 和角 \(\beta \) 分别在约 10° 至 90° 的范围内。
5. 根据权利要求 3 所述的膜，其特征在于，介于凸起部分(216)间的角
部分是倒圆的。
6. 根据权利要求 1 所述的膜，其特征在于，凸起部分(216)的外形是多
圆锥构型或多棱锥构型，每个凸起部分(216)至少有三个侧表面，凸起按矩阵构型排列。

7. 根据权利要求1所述的膜，其特征在于，基片(310)是极化板。
8. 根据权利要求1所述的膜，其特征在于，第一折射率和第二折射率间的差异小于0.1。
9. 一种制造光校正膜的方法，该方法包括如下步骤：
 i) 在基片(310)上形成具有第一折射率的第一透光件(217);
 ii) 将具有多个凸起部分(216)和基本上与第一透光件(217)的第一折射率相同的第二折射率的第二透光件(210)与第一透光件(217)对齐；
 iii) 将第二透光件(210)的凸起部分(216)局部地与第一透光件(217)结合，使得没有与第一透光件(217)相结合的凸起部分的高度与所述凸起部分(216)的总高度的比值处于0.05到0.7的范围内，并且在第一和第二透光件之间存在一介质，该介质具有不同于第一和第二折射率的第三折射率；和
 iv) 凝固第一透光件(217)。
10. 根据权利要求9所述的方法，其特征在于，在预定的压力下，通过给第二透光件(210)和基片(310)中的至少一个加压来执行步骤iii)。
11. 根据权利要求10所述的方法，其特征在于，压力从第二透光件(210)和基片(310)两者的一端部分开始施加。
12. 根据权利要求9所述的方法，其特征在于，在步骤iv)中，第一透光件(217)由在暴露到紫外线中可凝固的UV凝固剂构成，在凸起部分(216)结合到第一透光件(217)上之后，紫外线整体地扫描第一透光件(217)。
13. 根据权利要求9所述的方法，其特征在于，在步骤iv)中，第一透光件(217)由在暴露到紫外线中可凝固的UV凝固剂构成，凸起部分(216)一结合到第一透光件(217)上，紫外线就顺序地扫描第一透光件(217)。
14. 一种在显示装置中的照射方法，包括如下步骤：
 处理由光源产生的光为显示图像的显示光，显示光按第一方向提供；
 允许显示光的一部分从包括具有基本相同折射率的两个介质的第一位置穿过，以便显示光的这部分按第一方向前进并入射进用户的眼睛，允许显示光的剩余部分从由具有不同折射率的两个介质构成的第二位置穿过，以便显示光的剩余部分按与第一方向不同的第二方向前进并入射进用户的眼睛。
15. 根据权利要求 14 所述的方法，其特征在于，显示光的一部分按第一折射率然后第二折射率的顺序穿过第一位置，其中第二折射率基本上与第一折射率相同，显示光的剩余部分按第一折射率、第二折射率和第三折射率的顺序穿过第二位置，其中第三折射率基本上与第一折射率不同。

16. 根据权利要求 15 所述的方法，其特征在于，基本上相同的第一折射率和第二折射率间的差别是 0.1 或更小，基本上不相同的第一或第二折射率与第三折射率间的差别是大于 0.1。

17. 一种 LCD，包括：

具有 LCD 面板(360)的 LCD 面板组件(300)，其中液晶层(330)置于两个透光片(350,310)之间，在透光片的微小表面区域单元中可控制电场，其中液晶层的透射率依电场强度而变；

具有设置在 LCD 面板上的第一透光件(217)的光径改变膜，形成在基片(310)上带有凹槽的第一透光件(217)，所述第一透光件(217)具有第一折射率，光在穿过基片(310)后穿过第一透光件(217); 具有与所述第一透光件(217)的凹槽部分局部结合的凸起部分(216)的第二透光件(210)，所述第二透光件(210)具有与第一折射率基本上相同的第二折射率；且

给液晶提供光的背光组件(700)，

其中在所述第一和第二透光件之间存在一介质，该介质具有不同于第一和第二折射率的第三折射率，

没有与凹槽部分相结合的凸起部分的高度与所述凸起部分(216)的总高度的比值处于 0.05 到 0.7 的范围内，并且

光在凸起部分(216)与凹槽部分重叠的那部分按第一方向前进，在第二透光件(210)的凸起部分(216)而不是凸起部分(216)与凹槽部分重叠的那部分按与第一方向不同的第二方向前进。
光校正膜及其制造方法和照射方法
和视角扩大的显示装置

技术领域

本发明涉及一种光校正膜及其制造方法，利用其的照射方法和具有扩
大的视角的显示装置，更具体的是，涉及一种消除了灰度反转现象以扩
视角并提高显示质量的光校正膜及其制造方法，以及利用其的照射方法和
具有扩大的视角的显示装置。

背景技术

一般地，显示装置用作一种媒体，用户通过它可识别由数据处理单元
产生的电信号形式的结果数据。

根据驱动方式可将显示装置分为数字显示装置和模拟显示装置。
LCD(液晶显示器)是典型的数字显示装置。这种 LCD 有能够实现大尺
寸屏幕、高解析度和尺寸小、重量轻等优点。
同时，CRT(阴极射线管)型显示装置是典型的模拟显示装置。
这种 CRT 型显示装置的优点是以低成本就容易地的实现大尺寸屏幕和
高解析度。然而，相同屏幕尺寸的条件下，CRT 型显示装置与 LCD 相比缺点
是体积更大、重量更重。

因此，LCD 持续发展，最近 LCD 代替 CRT 型显示装置广泛的使用。
关于 LCD 的研究最近集中在技术研发或驱动方法的改进及其结构的改进。
因此，随着驱动方法的改进，LCD 已逐步实现高显示质量。而且，通过改
进其结构，LCD 可实现尺寸和重量的减少。

然而，尽管 LCD 技术快速发展，LCD 仍有许多问题，尤其是在驱动方
法或其结构方面。

下边将描述 TN(扭转向列)LCD 的问题。其中一个问题是灰度反转现象。
灰度反转现象表示在图像中灰度反转。一般地，在 LCD 中，驱动信号
的密度越大，它的亮度就越高。可是，尽管驱动信号的密度大，但在 LCD 的特定部分亮度相对较低。这种经常发生在 LCD 中的现象称为灰度反转现象。一般灰度反转现象在实现高显示质量方面是个阻碍因素。

而且，灰度反转现象造成亮度降低。这对将对比度系数限定为 10:1 或更大的视角产生不良影响。因此，使视角变窄。

此处，视角变窄的事实表示如果在用户眼睛和 LCD 表面之间形成的角度是小的，而 LCD 上就会有某部分使用户不能识别显示信息的内容。这在实现高显示质量方面也是个阻碍因素。

总之，灰度反转现象一般不会影响 LCD 的显示操作，但却会使视角变窄，因此大大地降低 LCD 的显示属性。

近来，为了解决由灰度反转现象造成的视角减小的问题，提供了一种光校正膜。然而，光校正膜能有效地将视角扩大到一定范围，但它没有解决灰度反转现象的问题，这是视角变窄的主要因素。

另外，这种膜应用到具有改进的两区的 TN LCD 中时，两区中的一个被校正，而另一区未被校正。因此，存在灰度反转现象和视角具有适应的关系的问题。

发明内容

因此，本发明的第一目的是提供一种光校正膜，该膜应用到显示装置以便防止灰度反转现象的产生，由此来扩大视角。

本发明的第二目的是提供一种制造该膜的方法，该膜能防止灰度反转现象的产生并使视角扩大。

本发明的第三目的是提供一种在使用该膜的显示装置中照射的方法，该方法能防止灰度反转现象的产生并使视角扩大。

本发明的第四目的是提供一种显示装置，在其中防止了灰度反转现象的产生并使视角扩大，因此改进了显示质量。

为实现本发明的第一目的，提供了一种光校正膜。在该光校正膜中，第一透光件形成在基片上。第一透光件有凹槽部分和第一折射率。穿过基片的光穿过第一透光件，第二透光件具有局部地与凹槽部分结合的凸起部分。第二透光件具有基本上与第一折射率相同的第二折射率。在第一和第
二透光件之间存在一介质，该介质具有不同于第一和第二折射率的第三折射率。没有与凹槽部分相结合的凸起部分的高度与凸起部分的总高度的比值处于 0.05 到 0.7 的范围内。当第一方向在一部分前进，在该部分第二透光件的凸起部分与第一透光件的凹槽部分局部接触，按与第一方向不同的第二方向在第二透光件凸起部分中的一部分前进，而不是凸起部分和凹槽部分的重叠部分。

而且，为了实现本发明的第二目的，提供了一种制造光校正膜的方法。在上述方法中，具有第一折射率的第一透光件形成在基片上。第二透光件与第一透光件对齐，第二透光件具有多个凸起部分和第二折射率，第二折射率基本上与第一透光件的第一折射率相同。第二透光件的凸起部分与第一透光件局部地结合，使得没有与第一透光件相结合的凸起部分的高度与凸起部分的总高度的比值处于 0.05 到 0.7 的范围内，并且在第一和第二透光件之间存在一介质，该介质具有不同于第一和第二折射率的第三折射率。第一透光件被固化。

而且，为了实现本发明的第三目的，提供了一种在显示装置中的照射方法。从光源产生的光处理成显示图像的显示光，然后按第一方向发出。此时，显示光的一部分穿过具有与介质基本上相同折射率的第一位置，继续按第一方向发出，然后入射到用户的眼中，显示光的剩余部分穿过具有与介质不同的折射率的第二位置，继续按与第一方向不同的第二方向发出，然后传入用户的眼中。

为了实现本发明的第四目的，提供一种 LCD。在上述的 LCD 中，LCD 面板组件具有 LCD 面板，LCD 面板中液晶层夹在两个透光基片中，这允许在微小表面区域的单元中控制电场。液晶层的透射度依电场的强度变化。光径变化膜有第一透光膜和第二透光件。带凹槽的第一透光件装在 LCD 面板上。第一透光件具有第一折射率，已穿过基底的光穿过第一透光件。第二透光件具有与第一透光件的凹槽部分局部地结合的凸起部分。第二透光件具有与第一透射率基本上相同的第二折射率。背光组件给液晶提供光。在第一和第二透光件之间存在一介质，该介质具有不同于第一和第二折射率的第三折射率，没有与凹槽部分相结合的凸起部分的高度与凸起部分的总高度的比值处于 0.05 到 0.7 的范围内。光按第一方向在凸起部分与凹槽部分重叠的区域前进，并按与第一方向不同的第二方向在第二透光件凸起
部分中的一部分前进，而不是凸起部分和凹槽部分重叠的部分。

根据本发明，用光校正膜显著的扩大了视角，解决了灰度反转现象，因此改进了显示属性。而且，改进了制造所述膜的方法，于是可用简单的方法为校正光属性制造精良的膜。

附图说明

结合附图，通过详细描述各优选实施例，本发明的上述目的和其他优
点将更清楚，其中：

图 1 是根据本发明一个实施例的光校正膜结构的横截面图；
图 2 是根据本发明一个实施例的第二透光膜的整体形状的透视图；
图 3 是根据本发明另一实施例的第二透光膜的横截面图；
图 4 是根据本发明另一实施例的第二透光膜的透视图；
图 5 是截面图，示出了第一透光膜形成在基片上的情况，说明制造根据本发明一个实施例的光校正膜的方法；
图 6 是截面图，示出了第一和第二透光膜被压的情况，说明制造根据本发明一个实施例的光校正膜的方法；
图 7 是截面图，示出了紫外线扫描第一透光膜的情况，说明制造根据本发明一个实施例的光校正膜的方法；
图 8 是横截面图，示出了光校正膜应用到根据本发明的显示装置中的情况；
图 9 是图 8 中的显示装置的透视图；
图 10 是示出显示装置中照射过程的示意图，其中根据本发明的光校正膜应用到显示装置中；
图 11 是图 10 中 A 部分的放大图；
图 12A 至 12C 示出表 1 中第一比较例的模拟结果；
图 13A 至 13C 示出表 1 中第二比较例的模拟结果；
图 14A 至 14C 示出表 1 中第一实施例的模拟结果；
图 15A 至 15C 示出表 1 中第二实施例的模拟结果。

具体实施方式

下面将结合附图详细描述本发明的优选实施例。
图 1 示出了校正光属性的膜 200 的实施例。
参见图 1，附图标记 310 表示基片。根据本发明，基片 310 传输光或在光传输时允许改变光的光属性。此处，光属性的变化还包括基片 310 具有光的极化功能这一事实。
校正光属性的膜 200 设置在基片 310 的上表面。在下文中，校正光属性的膜 200 称作“光校正膜”。优选地，光校正膜 200 由第一透光膜 217 和
第二透光膜 210 组成。

作为一个示例，第一透光膜 217 的功能是将第二透光膜 210 固定在基片 310 上，并改变光径。

特别地，为了使第一透光膜 217 能固定第二透光膜 210 和改变光径，具有预设形状的凹槽部分 217a 形成在第一透光膜 217 的表面上。

在此，凹槽部分 217a 会有多种形状。举例来说，凹槽部分 217a 可刻成 V 形轮廓，依次按条形对齐，或者凹槽部分 217a 可以是三棱锥形、四棱锥形、五棱锥形或圆锥形。

第二透光膜 210 局部地与具有凹槽部分 217a 的第一透光膜 217 的上表面结合。

在此，第二透光膜 210 有与凹槽部分 217a 相应的凸起 216，从而凸显 216 与凹槽部分 217a 部分的结合。

举例来说，如图 1 所示，在凹槽部分 217a 是按条形依次对齐的 V 形槽的情况下，第二透光膜 210 的凸起 216 具有相应于凹槽部分 217a 的 V 形轮廓的三棱镜柱，如图 2 所示。

如上所述，第一透光膜 217 有预定轮廓或结构的凹槽部分 217a。第二透光膜 210 的凸起 216 也有相应于凹槽部分 217a 的轮廓或结构的预定形状。在下文中，将详细描述第一透光膜 217 和第二透光膜 210 的光属性和物理属性。

光校正膜 200 的第一透光膜 217 具有第一折射率，第二透光膜 210 具有第二折射率。此处第一折射率与第二折射率基本上相同。

这就表示，若光在第一透光膜 217 和第二透光膜 210 重叠部分穿过，则改变的光径的角度变化在预定的范围内。此处，第一透光膜 217 和第二透光膜 210 的第一和第二折射率的数值并不重要，重要的是第一和第二折射率间的差异。

根据本发明的一个实施例，第一和第二折射率间的差异优选的是 0.1 或更小。此差异最好为零。

同时，形成在第一透光膜 217 上的凹槽部分 217a 和形成在第二透光膜上的凸起 216 或如图 4 所示的凸起 218 之间的重叠深度也很重要，这是因为由于重叠深度改善或恶化了灰度反转现象和视角。

因此有时候，有必要控制凸起 216 和凹槽部分 217a 之间的重叠深度。
根据本发明的一个实施例，第一透光膜 217 由具有流动性和粘性的材料制成，随后第一透光膜 217 与第二透光膜 210 结合，从而第一透光膜 217 与第二透光膜 210 的凸起 216 重叠。

特别地，第一透光膜 217 由不定形状的流体材料构成，更特别地，该流体材料具有粘性和第一折射率。随着时间的消逝而凝固(即，有条件凝固)的透光粘液可用来制造第一透光膜 217。

在本发明另一实施例中，第一透光膜 217 具有流动性和第一折射率。在特殊条件下凝固，例如暴露在紫外线下的 UV(紫外线)凝固剂(或硬化剂)可用来制造第一透光膜 217。

同时，第二透光膜 210 可以是坚硬的固体膜。此时，形成在第二透光膜 210 上的凸起 216 的轮廓如何并不重要。可是凸起的横截面积优选的是向着第二透光膜 210 逐渐增大。

在本发明的一个实施例中，第二透光膜 210 的凸起 216 具有三棱锥形轮廓。因此，如图 1 所示，第二透光膜 210 的凸起 216 具有两个倾斜面 212 和 214。

在这个实施例中，两个倾斜面中的一个定义为第一倾斜面 212，另一个一侧与第一倾斜面 212 的一侧接触的倾斜面定义为第二倾斜面 214。

此时，在第一倾斜面 212 和水平面间形成一特定角，第二倾斜面 214 和水平面间形成另一特定角。如图 1 所示，α 是第一倾斜面 212 和水平面间的角，β 是第二倾斜面 214 和水平面间的角。

角 α 和角 β 间的关系为(α + β) < 180°。角 α 和角 β 中的每一个大约在 10° 至 90° 的范围内。而且角 α 和 β 可以相同，也可以互不相同。

在这里，随着角 α 和 β 的不同，视角的左右和视角的上下范围扩大或减小。因此，在设计 LCD 时，要仔细考虑角 α 和 β 以便得到想要的视角。

同时，第二透光膜 210 可以有变化。举例来讲，如图 3 所示，相应于凸起 216a 和 216b 的边界部分 216c 被磨成光滑曲线，以便不产生阶梯部分。因此，光稳定连续地前进，于是可以避免具有阶梯轮廓的光轮廓。

同时，图 4 显示了第二透光膜 210 的另一实施例。第二透光膜 210 的凸起 218 是在第二透光膜 210 的表面以点状的形式凸起的。当然，凸起 218 的横截面积向着第二透光膜 210 逐渐增大。

如图 4 所示，按预定高凸出的凸起 218 可以是至少有 3 个或更多个侧
面的多棱锥形。优选地在一个实施例中，凸起 218 可以是圆锥形(有若干个侧面)。如图 4 所示，若凸起 218 是圆锥形，视角扩大超过了 360° 角，而且也限制了灰度反转现象。

第一和第二透光膜 217 和 210 设置在基片 310 上以便执行预定功能。

在下文中将更加详细描述第一和第二透光膜 217、210 结合在一起的方法。

参见图 1，形成在基片 310 上的第一透光膜 217 按预定厚度制造。如图 2 至图 4 所示，第二透光膜 210 的一个重叠在第一透光膜 217 上。优选实施例是图 2 中所示的第二透光膜 210 设置在第一透光膜 217 上。此时，第二透光膜 210 的整个凸起 216 没有完全与第一透光膜 217 重叠。

第二透光膜 210 的整个凸起 216 没有完全与第一透光膜 217 重叠的原因是，如上述所述的这种结构解决了视角和灰度反转现象的问题。

此时，插入到透光膜 210 中凸起 216 的深度十分重要。

如图 1 所示，凸起 216 的整个高度定义为 H，当第二凸起部的凸起部分与第一透光膜的凹槽部分局部地接触时，第二透光膜的凸起部分中的没有与第一透光膜结合的部分的高度定义为 h。凸起 216 插入到第一透光膜 210 的比值 L 如下所示：

公式 1

\[L = \frac{h}{H} \]

在公式 1 中，假设第二透光膜 210 的凸起 216 的整个高度 H 为 1，高 h 为 0.4，凸起 216 插入到第一透光膜 210 的比值 L 是 0.4/1，即 0.4。换句话说，其表示凸起 216 的 60% 的高度插入到第一透光膜 210 中。

在下文中将描述由第二透光膜 210 的凸起 216 插入到第一透光膜 210 的比值对光径造成的影响。

参见图 11，从基片 310 发出的一部分光穿过第二透光膜 210 重叠的凸起，该部分凸起插入到第一透光膜 217 中。在这个区域，光以最小的角度折射，因为第一透光膜 217 的折射率与第二透光膜 210 的折射率基本上相同。在下文中，这束光定义为直光 515i。

同时，从基片 310 发出的剩余光穿过第一透光膜 217 入射进空气，空气是与第一透光膜 217 不同的介质。

然后，该光继续前进到达第二透光膜 210 的没有插入到第一透光膜 217 中的凸起表面，然后入射进第一透光膜 217 中。
当光入射到第二透光膜 210 的凸起 216 中时，由于空气和第二透光膜 210 的折射率间的差异，使得光 515h 和 515j 的光径剧烈地改变。在下文中，改变光径的光定义为第一折射光 515h 和第二折射光 515j。

此时，直光 515i 和第一、第二折射光 515h 和 515j 的光量互为反比。

举例来讲，如果凸起 216 插入到第一透光膜 210 的比值 L 最小，则直光 515i 的光量增加，而第一折射光 515h 和第二折射光 515j 的光量减少。在这种情况下，视角变窄，还会产生灰度反转现象。

因此，根据本发明的一个实施例，凸起 216 插入到第一透光膜 210 的比值 L 必须至少为 0.05 或者更大。

同时，如果凸起 216 插入到第一透光膜 210 的比值 L 最大，则直光 515i 的光量最小。而第一和第二折射光 515h、515j 的光量最大。在这种情况下，在前面部分的视角大大地减小，因此降低了前视的显示属性。

因此，根据本发明其它实施例，凸起 216 插入到第一透光膜 210 的比值 L 至多为 0.7 或者更小。

因此，凸起 216 插入到第一透光膜 210 的比值 L 根据设计条件适当控制在 0.05 至 0.7 的范围内。

在下文中将参考图 5 至 7 描述校正光属性的膜 200 的制造过程，该膜有上述的结构和属性。

参见图 5，在基片 310 的上表面形成有厚度均匀的第一透光膜 217，第一透光膜有第一折射率和流动性，其由透光粘结剂或 UV 凝固剂(或硬化剂)构成。

然后，如图 6 所示，在图 1 至 4 显示的有凸起 216 的第二透光膜 210 对齐地重叠在第一透光膜 217 的上表面上。

在第一和第二透光膜 217、210 简单重叠的情况下，第一压辊 810 放在第二透光膜 210 上表面的一侧，给第二透光膜 210 施加预定的压力。

另外，第二压辊 820 和第一压辊 810 都放在基片 310 和第二透光膜 210 上，以便同时按预定的压力 P1、P2 给第二透光膜 210 和基片 310 施压。

此时必须精确控制由第一和第二压辊 810、820 施加的压力，因为凸起 216 插入到第一透光膜 210 的比值 L 由施加在第一和第二透光膜 217、210 上的压力决定。

随后如图 7 所示，在第一和第二压辊 810、820 精确地给第一和第二透
光膜 217、210 施压时，第一透光膜 217 被凝固。

根据本发明，提供了固化第一透光膜 217 的两种方法。

如图 7 所示在第一实施例中，紫外线沿着第一和第二压辊 810、820 精确地给第一和第二透光膜 217、210 施压的路径扫描。

根据第一实施例，当第二透光膜 210 凝固在第一透光膜 217 上，第二透光膜 210 的位置变化最小。

在第二实施例中，在第一和第二压辊 810、820 完全加压第一和第二透光膜 217、210 的整个表面区域之后，紫外线扫描第一透光膜 217 的整个表面区域来凝固第一透光膜 217。

用上述方法制造的校正光属性的膜 200 可应用到任何一种具有所需结构的显示装置上，其目的是防止灰度反转现象并扩大视角。

在下文中将描述应用有校正光属性的膜 200 的显示装置和显示装置中的照射方法。

图 8 和 9 示出了应用有校正属性的膜 200 的显示装置 800。

参见图 8，根据本发明的一个实施例，显示装置 800 是精确控制液晶并显示信息的液晶显示装置 (LCD)，在下文中，附图标记 800 也表示 LCD。

LCD 800 包括校正光属性的膜 200、LCD 组件面板 300 和背光组件 700。

LCD 800 的背光组件 700 是执行显示操作的元件，以使 LCD 800 无需外部光源就能显示图像。因此，在用外部光源执行显示操作的 LCD 中，背光组件 700 不是必须的单元。

参见图 8 和 9，LCD 800 的 LCD 面板组件 300 由 LCD 面板 360 和驱动组件 370 组成。

LCD 面板 360 具有 TFT 基片 340、滤色基片 320、液晶 330、第二极化板 350 和第二极片板 310。

特别地，TFT 基片 340 控制施加到每个区域的电流强度，区域是由大的表面区域分成分的多个小表面区域中的一个。与 TFT 基片 340 相对的滤色基片 320 提供标准电源。第一极化板 350 形成在 TFT 基片 340 的底面，液晶 330 注入 TFT 基片 340 和滤色基片 320 之间。第二极化板 310 形成在滤色基片 320 的上面，附图标记 325 代表普通电极。

同时，图 9 中的驱动组件 370 与 TFT 基片 240 连接，给 TFT 基片 340 提供驱动信号。
可是目前地方，LCD 面板组件 300 不能执行显示操作。这是由作为 LCD 800 构成元件的液晶 330 的属性造成的，因为液晶 330 控制光的传输但不能产生光。

所以根据液晶 330 的这一属性，背光组件 700 设置在 LCD 面板组件 300 上。

背光组件 700 将线光源或点光源产生的光转变为具有平面光分布（即，均匀亮度分布）的面光源。

因此如图 9 所示，背光组件 700 包括：灯组件 520、光导引板 530、光平板组 400、反射板 600 和安装容器 650。

特别地，灯组件 520 包括灯 515 和灯罩 510。此时，灯 515 产生各个方向的光。灯罩 510 罩住灯 515，并按预定的方向反射产生的光。

外形为平行六面体的光导引板 530 与灯组件 520 结合。光导引板 530 使得从灯组件 520 中产生的光成为平面光源分布，也起改变光的方向的功能。

同时，从光导引板 530 中输出的光是平面光源分布，但光的亮度均匀性低。因此，在光导引板 530 的上表面设置有发散光的散光板 420。在散光板 420 的上表面，设置有校正发散光的方向的棱锥平板 410。

如上所述，作为 LCD 面板组件 300 中的元件与背光组件 700 结合的第二极化板 310，在其表面上设置有校正光属性的膜 200，从而防止显示在 LCD 面板组件 300 上的光的灰度反转现象，同时大大的提高了视角属性。

参见图 10 或图 11，下面将描述从背光组件 700 发出，到 LCD 面板组件 300 和校正光属性的膜 200 的光的照射方法。

参见图 10，从灯组件 520 中产生的光入射进光导引板 530，光转变成平面光源分布。在下文中，从光导引板 530 中输出的光定义为第一光 515a。

此时，第一光 515a 的亮度分布非常不均匀，在入射进散光板 420 后，第一光 515a 发散并转变为具有均匀亮度分布的第二光 515c。附图标记 515b 表示被反射板反射的光。

与第一光 515a 相比，第二光 515c 的亮度分布均匀。可是，在光变转为亮度分布均匀的光的传输过程中，向着 LCD 面板 360 的第一光 515a 的光量降低，因此亮度也降低。为了防止亮度的降低，在穿过形成在散光板 420 上表面的棱锥平板 410 后，第二光 515c 几乎全部朝向 LCD 面板 360。在下
文中，方向被棱镜平板 410 校正的光定义为第三光 515d。

随后，有着充足亮度和亮度均匀性的第三光 515d 入射进 LCD 面板 360。第三光中有 S 波长的光和 P 波长的光。在一个实施例中，LCD 面板 360 的第一极化板 350 过滤了 S 波长的光。因此，只有 P 波长的光穿过了第一极化板 350。穿过第一极化板 350 仅有 P 波长的光定义为第四光 515e。

第四光 515e 穿过夹在 TFT 基片 340 和色彩过滤基片 320 的液晶 330。因此，第四光 515e 的透射率改变。第四光 515e 穿过色彩过滤基片 320 的 RGB 象素从而过滤，透射率改变的过滤后的光定义为第五光 515f。

接着，第五光 515f 穿过第二极化板 310，转变为第六光 515g。

如果第六光 515g 入射进用户的眼睛，用户可以清楚地识别图像。因此，第六光 515g 再次定义为第一显示光。附图标记 515g 也表示第一显示光。

然后第一显示光 515g 入射进校正光属性的膜 200 的第一透光膜 217。此时，第一显示光 515g 通过两条路径入射进用户的眼睛。

在第一路径，入射进第一透光膜 217 的第一显示光 515g，通过与第一透光膜 217 结合的第二透光膜 210 入射进用户的眼睛。

此处，当第一显示光 515g 按顺序穿过的第一和第二透光膜 217 和 210，光径没有改变。这是因为如上所述，第二透光膜 210 的折射率基本上与第一透光膜 217 的折射率相同。在下文中，穿过所述第一路径的第一显示光 515g 定义为第二显示光 515i。

在第二路径，入射进第一透光膜 217 的第一显示光，穿过第二透光膜的 210 没有与第一透光膜 217 结合的部分入射进用户的眼睛。此时，第一显示光 515g 从第一透光膜 217 射出，进入到空气中，然后到达第二透光膜 210。当第一显示光 515g 从空气中入射进第二透光膜 210，第一显示光 515g 发生折射。在下文中，通过第二条路径的第一显示光 515g 定义为第三显示光 515h、515j。

换句话说，第一显示光 515g 转变为第二显示光 515i 或第三显示光 515h、515j，随后第二显示光 515i 或第三显示光 515h、515j 入射进用户的眼睛。第三显示光 515h、515j 的作用是改善视角属性并显著减少灰度反转现象。

在下文中，参考模拟结果将描述如上所述的校正光属性的膜的基本实用效果。
表 1 显示了模拟校正光属性的膜的基本功能的比较和示例的条件，其中膜显著地减小了灰度反转现象，改善了视角属性。

表 1

<table>
<thead>
<tr>
<th>比较例 1</th>
<th>第一透光膜的折射率</th>
<th>第二透光膜的折射率</th>
<th>(α、β) (°)</th>
<th>h/H (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例 2</td>
<td>未用 300/30μm</td>
<td>1.49</td>
<td>45, 45</td>
<td>100%</td>
</tr>
<tr>
<td>示例 1</td>
<td>使用 300/30μm</td>
<td>1.49</td>
<td>45, 45</td>
<td>30%</td>
</tr>
<tr>
<td>示例 2</td>
<td>使用 300/30μm</td>
<td>1.49</td>
<td>45, 30</td>
<td>30%</td>
</tr>
</tbody>
</table>

图 12A 至 12C 显示了在表 1 中比较例 1 的条件下 LCD 的视角和灰度反转现象，即，LCD 800 中没有使用校正光属性的膜 200 的情况。

在此图 12A 显示了高、低方向上视角的分布。图 12C 显示了左右方向上的视角分布，图 12B 是图 12A 左部分的局部放大图。

图 12B 显示了在分别使用从 1.7V 至 5.0V 范围中选出的 7 个灰度电压值(1.7V、1.9V、2.2V、2.5V、2.8V、3.3V、5.0V)时的 7 条曲线，这 7 条曲线显示了视角和灰度反转现象。

参见图 12B，在 LCD 800 没有使用校正光属性的膜 200 的情况下，虽然使用了较高的灰度电压值，还是发生了灰度反转现象，其中在-20 至-60 的范围内亮度较低。

图 13A 至 13C 显示了表 1 中比较例 2 条件下的视角和灰度现象曲线，即，LCD 800 中没有使用第一透光膜 217，仅使用第二透光膜 210 的情况，或 h/H 为 100% 的情况。

在此图 13A 显示了高、低方向上视角的分布。图 13C 显示了左右方向上的视角分布，图 13B 是图 13A 左部分的局部放大图。在此也提供了 7 个灰度电压。

参见图 13A 和 13B，正前视角几乎没有，这表示在 LCD 800 的前方向不能执行显示操作。在显示装置中这是致命的缺点。如图 13C 所示，视角属性在左右方向也很低。但是，与图 12A 至 12C 的示例相比，灰度反转现象的问题有所改善。总之，仅使用第二透光膜 210 不能得到高质量的显示。

图 14A 至 14C 显示表 1 中示例 1 条件下的视角和灰度现象曲线，即，在 LCD 800 的上面使用校正光属性的膜 200 的情况，其中 h/H 是 30%。
参见图 14A 和 14B，与图 13A 和图 13B 显示的相比，前视角得到显著改善。特别是如图 14B 所示，灰度反转现象几乎不发生。这表示显示质量得到显著改善。

图 15A 至 15C 显示在表 1 的第二实施例的条件下测定视角和灰度现象的曲线，即，在 LCD 800 的上面使用校正光属性的膜 200 的情况，其中 b/H 是 30%，角 α 和 β 互不相同。

亮度方面，示例 1 和 2 之间几乎没有差别。但在与示例 1 显示的相比，示例 1 的前视角和高、低视角整体显著地得到改善。而且几乎解决了灰度反转现象的问题。

根据本发明，使用光校正膜显著地扩大了视角，解决了灰度反转现象，因此改善了显示质量。而且，由于改进了制造膜的方法，所以用简单的方法就可以制造精良的校正光属性的膜。

尽管详细地描述了本发明，应当理解的是关于本发明做出的各种改变、替换和变换在由如下权利要求书限定的本发明的精神和范围内。
图 1
图 3
图 8
图 10
图 11
图 15B