
J)

Europaisches Patentamt

European Patent Office

Office europeen des brevets

0 3 2 5 4 2 1

A 2
(fl) Publication number:

EUROPEAN PATENT APPLICATION

© Int.CI.4: G 06 F 1 2 / 0 8 (3) Application number: 89300434.1

@ Date of filing: 18.01.89

® Applicant: ADVANCED MICRO DEVICES, INC.
901 Thompson Place P.O. Box 3453
Sunnyvale, CA 94088 (US)

@ Inventor: Baror, Gigy
6909-A Deep Circle
Austin Texas 78744 (US)

@ Representative: Wright, Hugh Ronald et al
Brookes & Martin 52/54 High Holborn
London WC1V6SE (GB)

Priority: 20.01.88 US 146076

Date of publication of application :
26.07.89 Bulletin 89/30

Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

@ Organization of an integrated cache unit for flexible usage in supporting multiprocessor operations.

(57) Methods and apparatus are disclosed for realizing an
integrated cache unit which may be used to flexibly implement a
plurality of multiprocessor support schemes. The preferred
embodiment of the invention comprises both a cache memory
and a cache controller on a single chip and is programmable.
The flexible implementation of the support schemes is
achieved, according to the preferred embodiment of the
invention, by providing for the setting of internal ICU option bits
in on-chip special registers. The setting of these bits translates
into the selection of a desired support scheme. The bits may be
set under software control and allows a high performance
multiprocessor cache system to be designed with few parts, at
low cost and with the ability to perform with high efficiency.

3

CM
CO

Q.
LU

Bundesdruckerei Berlin

EP 0 325 421 A2

Description

ORGANIZATION OF AN INTEGRATED CACHE UNIT FOR FLEXIBLE USAGE IN SUPPORTING MULTIPROCESSOR
OPERATIONS

flexibly implement a plurality of multiprocessor
support schemes. The preferred embodiment of the
invention comprises both a cache memory and a
cache controller on a single chip, is programmable
and includes the other aforementioned desirable
features.

The flexible implementation of a plurality of
multiprocessor support schemes in the cache
system is achieved, according to the preferred
embodiment of the invention, via methods and
apparatus which allow the user to specify a desired
multiprocessor support scheme through the setting
of appropriate option bits in on-chip special regis-
ters. This can be performed under software control
and allows a high performance multiprocessor
cache system to be designed with few parts, at low
cost and with the ability to perform with high
efficiency.

The preferred embodiment of the invention is
described in the context of an integrated cache unit
(ICU) which includes 8k bytes of data, 512-20 bit
words of tags, and the necessary control to fully
implement cache functions in both RISC and
non-RISC environments. The preferred embodiment
of the ICU has two buses, one for the processor
interface and the other for a memory interface. An
exemplary processor and high speed interface
supported by the ICU is described in copending
application serial no. 012,226 filed February 9, 1987,
assigned to the same assignee as the instant
invention, hereby incorporated by reference.

For the purposes of this disclosure, the processor
bus is a non-multiplexed 32 bit address and data
bus. The processor bus supports burst and pipeline
accesses as taught in the copending application.
Additionally, for the purposes of this disclosure, the
memory bus provides the interface to main memory
and accommodates multiprocessor organizations.

According to the preferred embodiment of the
invention, the ICU is capable of operating at
frequencies in excess of 25 megahertz, achieving
processor access times of two cycles for the first
access in a sequence, and one cycle for burst-mode
or pipelined accesses. It can be used as either an
instruciton cache or data cache with flexible internal
cache organization. A RISC processor and two ICUs
(for instruction cache and data cache) implements a
very high performance processor with 16k bytes of
cache. Larger caches can be designed by using
additonal ICUs.

We will describe an apparatus for realizing a
programmable cache unit which has enough inher-
ent flexibility to support a wide variety of user
specified multiprocessor support schemes, while
imposing only minimal restrictions on the multipro-
cessor system organization.

We will describe an ICU architecture including
means for choosing from a plurality of multiproces-
sor support schemes to assure cache data consist-
ency.

1 . Field of the Invention 5
The invention relates generally to methods and

apparatus for organizing cache units and more
particularly relates to methods and apparatus for
organizing an integrated cache unit which may be
used to implement a variety of multiprocessor 10
support schemes in a flexible manner. The resulting
cache unit is programmable, can be operated in both
single and multiprocessor modes, and achieves
cache data consistency in multiprocessor mode by
allowing a plurality of user selectable multiprocessor 15
support schemes to be implemented and tailored to
cache system application. The novel system sup-
ports high speed instruction and data processing in
a Reduced Instruction Set Computer (RISC) envi-
ronment and is capable of supporting all of the 20
aforesaid functions with an architecture suitable for
integration on a single chip.

2. Description of the Related Art
Cache memories and controllers for cache 25

memories are well known. Devices integrating both
the memory and control features on a single chip are
also known. These include the commercially avail-
able 43608 manufactured by NEC. Such devices are
hereinafter referred to as "Integrated Cache Units 30
(ICUs).

Prior art ICU devices utilize predetermined algo-
rithms for caching data and instructions i.e., the
devices are not programmable. Heretofore, integrat-
ing cache memory, a cache controller and program- 35
mability features on a single chip has not been
achieved due in part to circuit density and data path
requirement. In addition to not being programmable,
no known ICU architecture has overcome the circuit
density and data path requirement problems associ- 40
ated with supporting high speed RISC systems
having multiprocessor capabilities.

A programmable integrated cache unit would be
desirable since it would have the inherent flexibility
to permit the selection and/or modification of 45
caching algorithms. Additionally, a programmable
ICU which incorporates a plurality of user selectable
multiprocessor support schemes would allow cache
data consistency to be assured in a flexible manner.

A single chip ICU architecture with the aforemen- 50
tioned features would also be desirable to minimize
space and unit power requirements. Still further, it
would be desirable to be able to use such an
integrated cache unit to support high speed pro-
cessing operations in both single and multiproces- 55
sor modes, for both RISC and non-RISC environ-
ments.

SUMMARY OF THE INVENTION

Methods and apparatus are disclosed for realizing
an integrated cache unit which may be used to

60

EP 0 325 421 A2

We will describe methods and apparatus for
realizing a programmable integrated cache unit
suitable for supporting high speed data and instruc-
tion processing applications, in a multiprocessing
system, in both RISC and non-RISC architecture
environments.

We will describe a cache architecture which can
be integrated on a single chip.

The disclosed ICU can be used as either a data
cache or instruction cache.

Further features include flexible and extensive
multiprocessor support hardware, modularity, low
power requirements, etc. A combination of bus
watching, ownership schemes, software control and
hardware control are also used to achieve cache
consistency.

These and other features of the present invention
will become apparent to those skilled in the art upon
consideration of the following detailed description
and the accompanying Drawing, in which like
reference designations represent like features
throughout the figures.

herein and will be shown as supported by the novel
ICU.

FIG. 1 goes on to show the processor bus
comprised of Address Bus 120 and Data Bus 121.

5 Instructions in Instruction ROM 150 and the instruc-
tion cache, ICU 101 , are addressed by processor 110
via Address Bus 120. Instructions fetched are shown
transmitted to processor 110 via bus 125.

The data cache, ICU 102, is also addressed via
10 Address Bus 120. Bidirectional data flow is shown

possible between processor 110 and ICU 102 via
Data Bus 121.

Memory Bus 175 is shown as the bus coupling
main memory 190 with ICU 101 and ICU 102. For the

15 sake of completeness, arithmetic accelerator 195,
which would be part of a typical RISC system
configuration, is shown coupled to buses 120 and
121. Also, Data Transfer Controllers (DTCs) shown
as DTC 198, may be used as part of a typical system

20 configuration to, for example, allow commercially
available peripheral devices having speeds much
lower then the high speed processor, to be attached
to the system without limiting the performance of the
processor, cache units, etc.

25 The DTC is described in detail in eopending
application serial number , filed and assigned to
the same assignee as the instant invention. A typical
arithmetic accelerator is described in eopending
application 771,385, filed August 30, 1985, also

30 assigned to the same assignee as the instant
invention.

Before proceeding with the detailed description,
the novel integrated cache architecture is described
hereinafter using general cache terms and multipro-

35 cessor cache terms which themselves need to be
defined first for the sake of clarity. The general cache
terms used herein are defined as follows:

Block - A cache block is a group of sequential
words associated with a tag. A cache block is

40 allocated and replaced as a group whenever re-
quired. In the preferred embodiment of the ICU the
block size is four words (one tag per four words).

Block status - Status bits which are associated
with a cache block. According to the preferred

45 embodiment of the ICU, there are two status bits per
block. They specify the modified and shared status
of a block.

Block status array -An on chip random access
memory array that contains the block status bits.

50 Copy-back - A write policy in which a write access
is performed only in the cache, for the case of hit.
The block which includes the written data is marked
as modified. The data is written (copied back) to the
main memory only when the modified block is

55 replaced.
Data cache - A cache which is used for caching

frequently used processor data variables.
Direct-mapped - This is an alternate term for a

one-way set-associative organization. A specific
60 address can be cached only in one specific location

(directly mapped by the address) in the cache.
Hit - The word specified by the access address is

present in the cache memory array. An . address
match is found in the tag array, and the correspond-

65 ing valid bit is set.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 depicts, in block diagram form, a
computing system that includes two of the
novel ICUs.

FIG. 2 depicts the pin package and the
various inputs and outputs, to/from the novel
ICU.

FIG. 3 is a data flow diagram depicting data
flow between the processor bus unit and
memory bus unit of FIG. 1 , via the novel ICU.

FIG. 4 depicts a simplified shared bus
multiprocessor system with two ICUs per
processor, one used as an instruction cache,
the other used as a data cache.

DETAILED DESCRIPTION

FIG. 1 depicts a typical computing system con-
figuration that would include the novel ICU.

For the sake of illustration only, the invention will
be described in the context of a RISC processing
system having both single and multiprocessor
modes of operation. It will be clear to those skilled in
the art that the ICU, to be described in detail
hereinafter, may be used in non-RISC environments
as well.

FIG. 1 depicts two of the new ICUs. ICU 101 is
shown being used as an instruction cache, while ICU
102 is shown being used as a data cache.

An example of the depicted, and suitable, high
speed interface coupling the RISC streamlined
instruction processor (SIP) to the caches is de-
scribed in detail in the eopending application serial
no. 012,226 previously incorporated herein by ref-
erence.

The incorporated application also teaches the
various operating modes of the SIP, processor
inputs and outputs, etc. which will be referenced

EP 0 325 421 A2

Reload - The operation that is performed in the
case of cache miss for fetching the required data or
instructions from the main memory.

Replacement algorithm - The algorithm that deter-
5 mines the block to be replaced when a new block is

allocated in the cache. One block from the set that
contains the required new address is chosen.

Scope - This term is used in the context of cache
instruction to define the scope of the instruction

10 effect. The instruction can affect one specific ICU,
multiple instruction caches, multiple data caches, or
multiple instruction and data caches.

Set - A group of tags and the associated cache
blocks, which are read and compared concurrently

15 to the requested address. A match can be found to
any of the set's tags. The set is specified according
to some of the address bits. The number of tags in
the set is equal to the number of "ways", (to be
defined hereinafter), in the cache organization.

20 Set-associative - A cache organization which
allows caching of a specific address in a number of
possible locations in the cache. This number is
referred to as the degree of associativity. It specifies
the number of "ways" in the cache organization and

25 the number of tags which are read and compared
concurrently. The disclosed ICU supports two-way
and one-way set-associative organizations.

Sub-block - A group of one or more words which
are fetched from main memory together with the

30 required word for the reload operation. The sub-
block size defines the maximum number of words
that are fetched. The sub-block size is lower or equal
to the block size.

Tag - The tag identifies the address of the data or
35 instruction which is currently present in the cache. A

cache tag is associated with each cache block, and it
is stored in the tag array. In the preferred embodi-
ment of the ICU each tag corresponds to a four-word
block.

40 Tag array - On chip random access memory array
that contains the address tags for the cached data
or instructions.

Update memory -An operation that causes the
update of the main memory from the cache. A

45 modified block is written by the cache to the main
memory so that the memory is updated with the
most current version of the data.

Valid array -On chip random access memory
array that contains the valid bits.

50 Valid bit - A bit that indicates the validity of the
cached data. In the preferred embodiment of the ICU
a valid bit is associated with each cached word.

Way - A group of tags associated with a tag array
module. Only one tag specified by the module's

55 address decoder is read and compared from each
way. In the preferred embodiment of the ICU there
are two ways, each containing 256 tags.

Write-allocate - In case of cache miss for write
operation, a cache block is allocated for the block

60 that contains the written address. A reload operation
is performed for the required block. For non-write-al-
locate, a cache block is not allocated, and the write
is performed only in the memory.

Write buffer - A buffer which holds write accesses
65 information (address, data, and control) until the

Invalidate - An operation that removes valid data
from the cache. One or more valid bits are reset, so
that the corresponding words become invalid.

Instruction cache - A cache which is used for
caching frequently used processor instructions.

Least recently used (LRU) - A replacement algo-
rithm in which the block to be replaced in chosen
according to the history of its usage. The least
recently used block is replaced.

Lock in cache - Data variables or instructions can
be locked in the cache. They will not be replaced
even if they are chosen by the replacement
algorithm. Note that the *LOCK input to the ICU, to
be described hereinafter, specifies interlock oper-
ations, and it is not used for lock in cache
operations. A lock bit is associated with each block
to facilitate locking the block.

Memory array - On chip random access memory
array that contains the cached data or instructions.

Memory bus - The bus that connects the cache to
the main memory.

Miss - The word specified by the access address
is not present in the cache memory array.

Modified block -A block is marked as modified
when it is written in a copy-back write policy. This
indicates that the block is modified relative to the
main memory, and contains the more recent version
of the data.

Non-cacheable - An instruction or data variable
which cannot be cached. A non-cacheable operation
is transferred by the ICU to the memory bus. The
cache is not searched for it, and no cache block is
allocated.

Prefetch - The operation of fetching data variables
or instructions into the cache before they are
requested.

Prefetch buffer - A buffer which holds prefetched
data variables or instructions read from the memory
bus, before they are written into the cache. In the
ICU the read buffer is used for the function of a
prefetch buffer.

Preload - A special prefetch operation that loads
the cache with specific data variables or instruc-
tions. The addresses for the preload operation are
specified by the user as opposed to other prefetch
operations in which the prefetched addresses are
determined by the cache.

Processor bus - The bus that connects the cache
to the processor.

Random replacement - A replacement algorithm
in which the block to be replaced is chosen
randomly.

Read buffer - A buffer which holds data variables
or instructions read from the memory bus, before
they are written into the cache. In the preferred
embodiment of the ICU the read buffer is four words
deep, and it is also used for the function of a
prefetch buffer.

Read-through - In the case of cache miss, the
required data or instruction is transferred to the
processor as soon as it is accepted from the
memory. The reload operation is completed in
parallel. In a cache with no read-through, the reload
operation is completed before the required data or
instruction is transferred to the processor.

EP 0 325 421 A2

Shared - Indicates that a variable or a cache block
is shared by more than one processor. A shared

@ variable can be present in more than one cache. In
the preferred embodiment of the ICU a HIGH in the
shared block status bit indicates a shared block. The
block can be either shared non-modified or shared
modified.

Shared modified - A block status in the ICU which
indicates that a cache block is shared and modified.
It also indicates that the block is owned by the
cache, and that it is the most current value of the
block in the system.

Slave cache - A cache which is not the master of
the memory bus. A slave cache can monitor the
memory bus for data consistency purposes.

Snooping - A different term which is used instead
of bus watching. Bus snooping or snooping cache
are also equivalent.

Having defined the terms to be used herein, a
detailed description of the preferred embodiment of
the novel ICU will be set out immediately hereinafter
in terms of its pin description and functional
organization.

With respect to the pin description it should be
noted that the term "three state" is used to describe
signals which may be placed in the high impedance
state during normal operation. All outputs (except
MSERR, which will be described hereinafter) may be
placed in the high impedance state by the *TEST
input (also to be described hereinafter).

The preferred embodiment of the novel ICU is a
CMOS; 169 Pin Grid Array package as shown in
FIG. 2.

The processor bus interface will first be described
and includes the following:
The Address Bus, pins A0-A31 of FIG. 2, is an ICU
input, is synchronous, and transfers the byte
address for the cache access on the processor bus.
The Access Status Control signals, shown as ASTCO
and ASTC1 in FIG. 2, are synchronous inputs which
specify the status control associated with an access.
They are encoded, according to the preferred
embodiment of the invention, as follows:

write access is performed on the memory bus. The
preferred embodiment of the ICU includes a four
deep write buffer that can hold up to four write
accesses.

Write-through - A write policy in which every write 5
access is performed into the main memory. In the
case of cache hit, the data is also written into the
cache.

The multiprocessor cache terms used herein are
defined as follows: 10

Bus watching - The memory bus is monitored
(watched) by the slave caches. They compare the
transferred address to tag buffer addresses. A
special operation can be performed in the case that
a match is found. The terms bus snooping or 15
snooping cache are equivalent.

Cache consistency - This is a different term used
to describe data consistency in a multiprocessor
cache systems.

Data consistency -This is the main problem in 20
multiprocessor cache systems. If a variable is shared
by multiple processors it can be cached in multiple
caches. The most up-to-date version of the variable
should be supplied whenever the variable is ac-
cessed. This insures the consistency of the data 25
variables throughout the system.

Data intervention - An operation that can be
performed by a slave cache when a match is found in
the case of memory-bus read access. If the slave
cache contains modified data (the most current 30
version of the data), it intervenes in the access and
supplies the data. In this case the main memory
should not supply the data.

Exclusive - Indicates that a variable or a cache
block is present exclusively in one cache. It can be 35
used exclusively by one processor, or used by more
processors but exists only in one cache. In the
preferred embodiment of the ICU a LOW in the
shared block status bit indicates an exclusive block.
The block can be either exclusive non-modified or 40
exclusive modified..

Interlock - Interlock operations are used for tem-
porarily locking a variable (interlock variable) for
exclusive usage of one processor. No other proces-
sors or caches are allowed to use the variable while 45
it is interlocked. The *LOCK input to the ICU, to be
described hereinafter, indicates an interlock oper-
ation.

Master cache - A cache which is a master of the
memory bus. It issues the request and expects a 50
response.

Match - The address of the memory bus access
matches one of the addresses which is present in
the tag buffer, and the corresponding word is valid.
This term is used for the memory bus address 55
compare, and it is equivalent to the term hit which is
used for the processor bus.

Ownership - This is a scheme to guarantee data
consistency. The most current value of a variable is
owned by one cache or the main memory. It is the 60
responsibility of the owner to maintain the consist-
ency of the variable. There are several ownership
schemes which differ in the number of states that
are attributed to a variable and the algorithms for
ownership and state transitions. 65

Meaning ASTCO ASTC1

0 0 Exclusive
write-through

0 1 Exclusive
copy-back

1 0 Shared
1 1 Non-Ca-

cheable

These inputs are normally connected to processor
110's MPGM0-MPGM1 outputs as described in the
incorporated application describing processor out-
puts.*BINV, Bus Invalid, is a synchronous ICU input,
active LOW, indicating that the address bus and
related controls are invalid. It defines an idle cycle on
Processor Bus 120.
*CBACK, Cache Burst Acknowledge, is an ICU
output, synchronous, and active LOW. This output is
asserted whenever a burst-mode cache access has
been established on Processor Bus 120,

EP 0 325 421 A2 10

*CBREQ, Cache Burst Request, is an ICU input,
synchronous, and active LOW. This input is used to
establish a burst-mode cache access on the
processor bus and to request the next transfer
during a burst-mode cache access. This signal can
become valid late in the cycle compared to *DREQ
or *IREQ, to be described hereinafter.
*CERR, Cache Error, is an ICU output, synchronous,
and active LOW. This output indicates that an error
occurred during the current cache access.
*CRDY, Cache Ready, ia an ICU output, synchron-
ous, and active LOW. For processor bus cache
reads this output indicates that valid data is on the
Cache Bus. For cache writes it indicates that data
need no longer be driven on the Cache Bus.
CREQT0-CREQT1, Cache Request Type, is a syn-
chronous input. This signals specify the address
space for the cache access on the processor bus as
follows:

on the *CSM input selects the ICU for memory
accesses. It can be used for cache extensions and
cache address space selection. The *CSM input can
be enabled via the Chip Select Mapping Register.

5 When *CSM is enabled, The ICU responds to
memory accesses only if the *CSM is asserted and
the address matches corresponding enabled bits in
the preselected field of the Chip Select Mapping
Register (to be described in detail hereinafter).

10 CB0-CB31, the Cache Bus, is bidirectional, syn-
chronous and three state. The Cache Bus transfers
instructions or data to and from the ICU on the
processor bus.
*DREQ, Data Request, is a synchronous ICU input,

15 active LOW. This input requests a data access on
the processor bus. When it is active, the address for
the access appears on the Address Bus. For
instruction cache usage of the ICU, *DREQ is used
for processor-bus cache instruction transfers.

20 *IREQ, Instruction Request, is a synchronous ICU
input, active LOW. This input requests an instruction
cache access on the processor bus. When it is
active the address for the access appears on the
Address Bus. This input has a special function

25 during reset operation of the ICU. It is sampled by
the rising edge of SYSCLK, when RESET (to be
described hereinafter) is active. The last sampled
value determines the ICU operation as a data cache
(*IREQ LOW), or as an instruction cache (*IREQ

30 HIGH). For data cache operation, *IREQ should be
tied LOW (it is ignored during normal operation). For
instruction cache operation, it should be connected
to the processor *IREQ output, which is deasserted
during RESET. Note that if the processor is placed in

35 Test Mode during RESET, external logic should drive
the IREQ HIGH (the processor described in the
copending application regarding the high perfor-
mance interface does not drive IREQ HIGH in its
Test Mode).

40 *LOCK, Lock, is an ICU input, synchronous and
active LOW. This input indicates that the processor
cache access is to an interlocked variable. The ICU
handles this access in a special way to be described
with reference to the interlock facility set forth in

45 detail hereinafter.
MSERR, Master/Slave Error, is a synchronous, ICU
output, active HIGH. This output shows the result of
the comparison of the ICU outputs with the signals
provided internally to the off-chip drivers. If there is a

50 difference for any enabled driver, this signal is
asserted.
OPT0-OPT2, Option Control, is a synchronous ICU
input. These signals reflect the option control bits
associated with a cache access. They are used for

55 specifying the data length as well as special access
information. The interpretation of these signals is
dependent on the usage of the ICU as data or
instruction cache. The encoding and interpretation
of these inputs, according to the preferred embodi-

60 ment of the invention, is as follows:

65

Data Cache Usage

CREQT1 CREQTO Meaning
0 0 Memory

access
0 1 Input/Output

access
1 x Coprocessor

transfer
(ignored by the
ICU)

Instruction Cache Usage

Meaning CREQT1 CREQTO

0 Memory
access

1 Instruction
read-only
memory
access

For instruction cache usage CREQT1 has a special
function. It is sampled during RESET, and if the
sampled value is HIGH, the ICU responds to
instruction ROM accesses. If the sampled value is
LOW, the ICU doesn not respond to instruction
ROM accesses. After RESET the CREQT1 input is
ignored for instruction cache usage.*CSEL, Chip
Select, is a synchronous input, active LOW. An
active level on the *CSEL input selects the ICU for
processor-bus cache instruction accesses. It is not
used in normal memory accesses. The *CSEL input
can be disabled via the Chip Select Mapping
Register, a portion of the ICU to be described
hereinafter. When *CSEL is enabled and not as-
serted the ICU does not respond to processor-bus
cache instruction accesses.
*CSM, Chip Select for Memory access, is a
synchronous ICU input, active LOW. An active level

EP 0 325 421 A2 12 11

determined by WREP: WREP LOW forces way 0 to
be replaced, WREP HIGH forces way 1 to be
replaced.

Next, the memory bus interface will be described,
making continued reference to FIG. 2. The memory
bus may be seen to include:
BSTC0-BSTC1, Block Status Control, which is
bi-directional, synchronous and three state. These
signals are used to inspect and update the cache
block status information. When required by a
memory bus instruction, the ICU uses them to
indicate the block status bits associated with the
supplied address. These signals are also used for
supplying the block status from the memory bus for
a Write Block Status instruction. The encoding of
this signal for both of the above functions is as
follows:

OPT2-0 value Meaning (Data Meaning
Cache) (Instruction

Cache)

000 32-bit access no access
001 8-bit access no access
010 16-bit access no access
011 no access no access
100 instruction no access

memory
access (as
data)

101 cache operand cache operand
transfer transfer

1-10 debug module no access
access

111 reserved reserved

10

15

Meaning BSTC1 BSTC0
The OPT inputs are ignored if DREQT1 is HIGH
(treated as no access). Codes 100, 101 are treated
as no access if DREQT0 is HIGH. Code 100 is used
for reading the instruction ROM as data. A data
cache responds to this code only if the ROM Enable
bit in Moda Register, to be defined hereinafter, is
HIGH. In this case the request is treated as a non
cacheable access. Code 101 indicates an operand
transfer for the ICU processor-bus cache instruc-
tions. According to the preferred embodiment of the
invention, code 110 is used for a special debug
module access. A data cache responds with *CRDY
HIGH for four cycles, and then *CRDY is asserted
for one cycle. *PCA, Pipelined Cache Access, is a
synchronous ICU input, active LOW. If *DREQ for
data cache or *IREQ for instruction cache is not
active, this input indicates that the cache access is
pipelined with another, in-progress, cache access.
The pipelined access cannot complete until the first
access is complete. The completion of the first
access is signalled by the assertion of *DREQ for
data cache and *IREQ for instruction cache.
* RESET, Reset, is an asynchronous input, active
LOW. This input resets the ICU.
R/*W, Read/Write, is a synchronous input. This
input indicates whether the cache access is a
transfer from the ICU to the processor (R/*W High),
or from the processor to the ICU (R/*W Low).
SUP/*US, Supervisor/User Mode, is a synchronous
input. This input indicates the program mode of the
illustrative processor (Supervisor mode or User
mode) during the access. The ICU internal registers
and the execution of cache instructions are pro-
tected from User mode accesses.
SYSCLK, System Clock is an external clock input, at
the operating frequency of the ICU.
*TEST, Test Mode, is an asynchronous input, active
LOW. When this input is active the ICU is in the Test
mode. All outputs and bi-directional lines, except
MSERR, are forced to the high-impedance state.
WREP, Way for Replacement, is a synchronous
input. This input forces the way number for replace-
ment in a case of a cache miss. It is sampled during
the first cycle of a valid cache access. A miss in a
two-way set associative organization (if the replace-
ment mode is external), causes replacement as

0 0 Exclusive non
modified

0 1 Exclusive
modified

1 0 Shared non
modified

1 1 Shared
modified

20

25

*DI, Data Intervention is a synchronous output, three
state and active LOW. This output is used for the
indication of a data intervention operation on the
memory bus. The data intervention operation is used
in some multiprocessor configurations, to supply
the most updated version of the variable from the
appropriate cache (as opposed to memory). The ICU
master precharges the *DI signal during the address
cycle of a memory bus read access. It then places it
in three state mode. The ICUs which are not the bus
masters, discharge the *DI signal if they respond
with data intervention. *GRT, Memory Bus Grant, is
a synchronous input, active LOW. This input signals
that the memory bus is granted for the ICU use.
*HIT, Hit, is bidirectional, synchronous, three state
and acitve LOW. This signal can be programmed to
be either an output only or an input/output signal. As
an output it is used for hit indication. It is asserted
when a hit is detected in the tag buffer for the
address presented on the memory bus. It is also
used in some of the memory bus instruction, to
indicate the validity of a word or a block.
When programmed to be an input/output signal it
can be used, in addition to the above output
functions, as a signal for the detection of hit in any
other cache. The ICU master precharges the *HIT
signal during the address cycle and then places it in
input three state mode. The ICUs which are not the
bus masters discharge the *HIT signal only when a
hit is detected in their tag buffer.
*MASTB, Memory Address Strobe, is bidirectional,
synchronous, three state and active LOW. When the
ICU is the Memory Bus master, this signal is
asserted by the ICU to indicate that a byte address is
present on the memory bus. When the ICU is not a
master, this signal indicates that a byte address from

30

35

40

45

50

55

60

65

EP 0 325 421 A2 14 13

active LOW. This input indicates that an error
occurred during the current memory access. The
ICU also uses this signal for data consistency
operations.
*MLOCK, Memory Lock, is bidriectional, synchron-
ous, three state and active LOW. This signal
indicates that the memory access is an interlocked
access. The ICU master asserts this output when an
interlocked access is presented on the memory bus.
When the ICU is not the bus master, this signal is
used as an input. If a match is found for a write
access with *MLOCK asserted, the associated word
is invalidated. This feature is used for schemes that
enable caching of interlock variables.
*MRDY, Memory Ready, is bidirectional, synchron-
ous and active LOW. When the ICU is the bus
master, this signal is used as an input. For memory
bus reads, this input indicates that valid data is
present on the memory bus. For memory bus writes,
it indicates that the data need no longer be driven on
the memory bus. When the ICU is not the bus
master, this signal is used as an input for data
consistency operations. It is used as an output for
data intervention and memory bus special oper-
ations. The ICU asserts *MRDY to indicate that valid
data is present on the memory bus.
MREQT0-MREQT1, Memory Request Type, is bidi-
rectional, synchronous and three state. These
signals specify the address space for the access on
the memory bus. When the ICU is the bus master, it
uses these signals as outputs. When it is not the bus
master, the MREQT signals are used as inputs for
data consistency operations. The encoding, accord-
ing to the preferred embodiment of the invention, is
as follows:

another bus master is present on the memory bus.
Note that if both instruction cache and data cache
are present in the system, two *MASTB signals are
available. The two signals can be used to distinguish
between instruction and data accesses.
*MBACK, Memory Burst Acknowledge, is a syn-
chronous input, active LOW. This input is active
whenever a burst-mode cache access has been
established on the memory bus.
MBP0-MBP3, Memory Byte Parity, is bidirectional,
synchronous and three state. This is the byte parity
bus for transfers on the memory bus. Even or odd
parity can be specified. MBPO is the byte parity for
MEMAD0-MEMAD7, MBP1 is the byte parity for
MEMAD8-MEMAD15, and so on. For transfers from
the ICU to the memory, the ICU generates parity. For
transfers to the ICU, it checks the byte parity.
If a parity error is detected, and data is to be
transferred on the processor bus, the *CERR signal
is asserted. If the data need not be transferred to the
processor (e.g. block reload), an error bit is set in
the Status Register (to be described hereinafter)
and the data is ignored. The parity generation and
checking can be disabled. Memory bus data timing
are relaxed if parity generation and verification is
disabled.
*MBREQ, Memory Burst Request, is bidirectional,
synchronous, three state and active LOW. This
signal is used to establish a burst-mode access on
the memory bus and to request the next transfer
during the burst-mode access. When the ICU is the
bus master, this signal is an output. When the ICU is
not a master, it is an input, used by the ICU for data
consistency operations.
MDLN0-MDLN1, Memory Data Length, is bidirec-
tional, synchronous, and three state. These signals
reflect the data length for the memory bus data
accesses. They are ignored for instruction ac-
cesses. For data cache usage the ICU supports 8,
16, and 32 bit transfers. The encoding of these
signals are, according to the preferred embodiment
of the invention, are as follows:

10

15

20

25

30

35

MREQTO MREQT1

0 0 Data memory
access

0 1 Data
input/output
access

1 0 Instruction
memory
access

1 1 Instruction
Rom access

40

Meaning MDLNO MDLN1
45

0 0 32-bit access
0 1 8-bit access
1 0 16-bit access
1 1 Invalid

When the ICU is not a bus master the MREQT
signals are also used (together with the MRW
signals) for specifying a memory bus cache instruc-
tion for the ICU.MRW0-MRW1, Memory Read Write,
is bidirectional synchronous and three state. These
signals are used to specify the type of read and write
operations on the memory bus. When the ICU is the
bus master, it uses these signals to indicate the
required operation. When the ICU is not the bus
master these signals are inputs, used for data
consistency operations. The encoding of these
signals, according to the preferred embodiment of
the invention, is as follows:

50
It should be noted that MDLNO and MDLN1
encoding corresponds to OPT0 and OPT1 for the
processor used with the illustrative embodiment of
the invention.MEMAD0-MEMAD31, Memory Ad-
dress/Data Bus, is bidirectional, synchronous, and
three state. The Memory bus is a multiplexed
Address/Data bus used for the memory interface.
When *MASTB is asserted, this bus holds the byte
address of the Memory Bus access. When the ICU is
the bus master, it outputs the address. When the
ICU is not the bus master the bus is an input and the
address is latched by the ICU for its internal use.
When MASTB is not asserted, the memory bus is
used to transfer data to and from the ICU.
*MERR, Memory Error, is asynchronous ICU input,

55

60

65

EP 0 325 421 A2 15 16

invention is described in such a way as to support
this architecture. Those skilled in the art will readily
appreciate that modifications may be made to the
preferred embodiment of the novel ICU, without

5 departing from the scope of spirit of the invention, to
support, for example, non-RISC processors. The
description to follow is, accordingly, set forth for the
purpose of illustration only.

The core of the preferred embodiment of the ICU
10 is an 8k byte memory array with the associated tag

and valid arrays. The arrays are organized as a
two-way set-associative cache with 4 words per tag
(block size = 4 words) and a valid bit per word. This
basic organization also supports direct mapped

15 cache, variable block and sub-block size as well as a
flexible reload scheme. A block status array and
LRU array are also incorporated. They are used for
cache replacement, locking data in cache, and data
consistency policies. The ICU contains all the

20 control logic for the different cache policies, algo-
rithms and instructions. Special registers are im-
plemented for programmable option selection,
cache instructions implementation and status re-
port.

25 Cache policies can be selected by using pro-
grammable options. The cache write policy can be
programmed as write-through, copy-back or flexible
on a per access basis. A write allocate or nonwrite
allocate option can be selected. A four word write

30 buffer is incorporated for efficient implementation of
write accesses. The write buffer can be enabled or
disabled. The replacement algorithm can be pro-
grammed as LRU, random or external. A flexible
prefetch policy can be selected. Read through

35 option can be enabled. A four word read buffer is
incorporated to support efficient prefetching and
read operations.

The multiprocessor support policy can be tailored
to the system. The level of multiprocessor support

40 can vary from a simple software controlled organiza-
tion through an extensive ownership scheme. A bus
watch capability can be enabled or disabled. The
ownership algorithm can be controlled to support
the required scheme. Caching interlock variables

45 can be enabled or disabled.
Two chip select inputs and a chip select mapping

register allows easy cache extensions as well as
multi cache organizations. The reload function can
be tailored to the system by selecting the appropri-

50 ate access control options such as reload size,
starting and stopping addresses, burst and wrap
around.

Again, the preferred embodiment of the ICU
operates at the same frequency of the RISC

55 processor in the illustrative example being set forth,
i.e., at a 25MHZ. nominal frequency with possible
higher frequencies. It achieves access times of two
cycles for the first hit access and one cycle for the
next burst-mode or pipeline hit accesses.

60 A three IC configuration, one containing the RISC
processor and two for ICUs (one for an instruction
cache and one for a data cache) is a very high
performance cache system with 16k bytes of cache.

As indicated hereinbefore with reference to
65 FIG. 1, the ICU has two interface busses; the

MRW1 Meaning MR WO
0 0 Write
0 1 Read
1 0 Write

broadcast
1 1 Read for

modify

The read and write operations referred to hereina-
bove are relative to the ICU, e.g. read is from the
memory to the ICU.When the ICU is not a bus master
the MRW signals are also used (together with the
MREQT signals) for specifying the memory bus
cache instruction for the ICU. A detailed description
of a memory bus instruction set suitable for use with
the ICU being described herein, will be set forth in
detail hereinafter.
MS/*MU, Memory Supervisor/User Mode, is a
synchronous ICU output and is three state. This
output indicates the program mode of the processor
(Supervisor mode or User mode) during the memory
access. The ICU transfers the SUP/* US value
presented on the processor bus to the MS/*MU
value on the memory bus, for the appropriate
transactions.
*REQ, Memory Bus Request, is a synchronous ICU
output, active LOW. This output is used by the ICU to
request the memory bus.
*VSI, Valid Status or Instruction, is a synchronous,
ICU input, active LOW. When the ICU is the bus
slave, an asserted *VSI indicates a memory bus
cache instruction access. When the ICU is the bus
master and it issues a read request for a reload
operation, the assertion of *VSI indicates that a
special Write Block Status instruction should be
executed. A detailed description of a suitable
memory bus cache instruction set and the use of
*VSI will be set forth hereinafter.

Having described the various inputs and outputs
to and from the novel ICU with reference to the
pinout diagram of FIG. 2, a complete understanding
of the novel methods and apparatus may be had with
reference to the detailed description of the ICU's
functional organization. This description will be set
forth in several parts. First, an overview of how the
ICU fits into a computing system, particularly the
exemplary RISC system being used to demonstrate
the utility and operability of the invention, will be
described. Second, the data flow through the ICU
will be described in detail. Third, a register level
description of a register set suitable for implement-
ing the invention will be set forth. A suitable cache
instruction set, a description of data formats and
handling, cache accesses and prefetch operations
will also be set forth.

Further details on the use of an ICU write buffer,
initialization and reset operation will be described
hereinafter as well.

Finally, multiprocessor support by the ICU and the
special ICU interlock facility will be described to
complete the detailed description of the invention.

As indicated hereinbefore, the novel ICU is
described in the context of a RISC architecture
including a SIP. The preferred embodiment of the

EP 0 325 421 A2 18 17

Bus Control, each to be described immediately
hereinafter.

The Wrtie Buffer (WB) used in the preferred
embodiment of the invention, includes two four word

5 first-in, first-out (FIFO) buffers (one for address and
one for data). The WB can buffer all ICU write
operations. For write through operations it buffers
up to 4 byte, half word or word writes. For copy-back
operations it buffers a 4 word block. The WB is

10 shown in FIG. 3 as unit 304.
The Memory Address Logic (MAL) includes two

address incrementers. The first latches and incre-
ments the memory bus addresses for operations
from the bus to the ICU. The second latches and

15 increments the addresses for read operations
initiated by the ICU. The MAL is shown in FIG. 3 as
unit 305.

The Memory Read Buffer (MRB) is a four word
data buffer. It buffers the data from the memory bus,

20 until the cache is available for update operation. The
MRB is used as a prefetch buffer when prefetching
is enabled. The MRB is shown in FIG. 3 as unit 306.

Finally, the Memory Bus Control (MBC), which
controls memory bus operaions, is shown in FIG. 3

25 as unit 307.
The cache unit performs all the cache functions. It

incorporates the Memory array, Tag array, Valid
array, Block Status array, LRU array, Special Regis-
ters, and Cache Control, each to be described

30 immediately hereinafter.
The Memory array is a 64 k bits storage array for

cached instructions or data. It is organized as two
ways of 1024 words. For read operations the two
ways are accessed simultaneously, according to the

35 preferred embodiment of the invention, using bits
11-2 of the address. The appropriate word is
selected according to the hit signals from the Tag
array. For write operations the correct word in the
array is written after the Tag access is completed

40 and the hit signals generated. The Memory array is
shown in FIG. 3 as unit 310.

The Tag array stores cache tags in a two way set
associative organization. Each way is organized as
256 x 20 bits. Each tag corresponds to a block of 4

45 consecutive cached words. For each cache access,
two tags are accessed simultaneously using bits
11-4 of the address. The tags are compared to bits
31-12 (in one embodiment of the invention) of the
address. The hit signals are generated from the

50 comparison results and configuration bits. The Tag
array is written whenever a miss occurs and a cache
block is allocated. The tag is selected according to
bits 11-4 of the address and the replacement
algorithm. Address bits 31-12 are written to the Tag

55 array. The Tag array is shown in FIG. 3 as unit 311.
The Valid array, unit 312 of FIG. 3, is a 2 k bit array

that stores a valid bit for each cached word. It is
organized as two 1024 x 1 arrays. A valid bit is set for
each word as it is written into the cache. The valid bit

60 is selected by address bits 11-2 (as is the memory
array), and the matching way. Two valid bits
corresponding to the two ways are checked on
every cache access. A hit signal is generated only if
the appropriate valid bit is set.

65 The Block Status array, unit 313 of FIG. 3, is a 1536

Processor Bus and the Memory Bus. It can be
connected directly to the RISC processor without
any interface logic. The ICU cache bus is connected
to the processor's data or instruction bus, for data
or instruction cache respectively. Pipelined and
burst-mode accesses are supported for maximum
utilization of the processor channel. The Memory
Bus is a separate interface to the memory, other
processors, and the system bus. It is a multiplexed
address and data bus with support for burst-mode
accesses. It also incorporates multiprocessor sup-
port functions. In shared memory multiprocessor
environments the memory bus can be used effec-
tively as a shared multiprocessor bus. For single
processor systems it can be used as the system bus
or as a local bus.

The preferred embodiment of the ICU contains
special hardware for fault tolerance support. It
supports master/slave checking and byte parity
generation and checking on the memory bus. For
master/slave checking two or more ICUs are
connected in parallel with one or more caches (the
slaves) checking the outputs of the master. The byte
parity generation and checking can be used on the
memory bus for reliable bus transfers.

The preferred embodiment of the invention is, as
indicated hereinbefore, fabricated in CMOS technol-
ogy and has a maximum power dissipation of 1 .5 W.

The ICU internal dataflow organization is shown in
FIG. 3. The following description refers to the
functional components on this data flow diagram.
The ICU is partitioned into three main functional
units: Processor Bus Unit, Memory Bus Unit and
Cache Unit, each depicted in FIG. 3. The description
to follow will from time to time make reference to
specific bit locations and fields of various words
being used for any number of purposes. One skilled
in the art will readily appreciate that these specific
references are not intended to be limiting and can be
modified to suit a desired application. The specific
references are made for the sake of clarity only in
setting out a workable, illustrative, preferred em-
bodiment of the invention.

The Processor Bus Unit controls all the Processor
Bus activity. It supports all RISC/SIP channel
protocols; single, burst and pipelined. It incorpor-
ates the Address Incrementer, the Data Shifter and
the Processor Bus Control, each to be described
immediately hereinafter.

The Address Incrementer (Al) latches the address
bus input. It can be incremented on every cycle. The
Al output is the address for a cache access. The Al is
shown in FIG. 3 as unit 301.

The Data Shifter (DSH) is used for data alignment.
It shifts bytes and halfwords and holds the data for
cache write accesses. It is also used for the
appropriate byte and half-word shift operation in the
case of byte and half-word reads. The DSH is shown
in FIG. 3 as unit 302.

The Processor Bus Control (PBC) controls the
different Processor Bus operations. The PBC is
shown in FIG. 3 as unit 303.

The Memory Bus Unit controls Memory Bus
activity. It incorporates the Write Buffer, the Memory
Address logic, the Memory Read Buffer and Memory

10

EP 0 325 421 A2 20 19

bit array that incorporates 3 block status bits per
each cache block. It is organized as two 256 x 3
arrays (this corresponds to the Tag array organiza-
tion). The three bits are: Modified, Shared and
Locked. The Modified bit indicates that the block is
modified and should be written back to memory
before replacement. It is used for copy-back
operations and data consistency operations. The
Shared bit indicates that the block is shared. It is
used for data consistency operations. The Locked
bit indicates that the block is locked and cannot be
replaced. It is used for locking important data or
instructions in the cache.

The LRU array, unit 314 of FIG. 3, is a 256 bit array
which stores the LRU bits. It is organized as a 256
x 1 array. Each LRU bit corresponds to a set of two
tags. The LRU array is used if the Least Recently
Used replacement algorithm is selected. The appro-
priate LRU bit is updated to reflect the least recently
used block of the two blocks in a set. When
required, the LRU bit determines which block is
replaced from the set.

The Special Registers block, shown as unit 315 of
FIG. 3, incorporates all the special registers of the
ICU. They are used for programming the ICU
options, controlling special operations, and holding
status information.

Finally, the Cache Control block, unit 316 of FIG. 3,
includes control logic for the cache operations.

Having set forth and described data flow through
the novel ICU with reference to FIG. 3, attention will
now be turned to a register structure to support the
data flow and control of the ICU.

The preferred embodiment of the ICU contains 8
special registers. These registers select programm-
able options, support cache control operations, and
indicate cache status information. Each register can
be read or written by the processor via the
processor bus or the memory bus. A read register or
write register cache instruction is transferred to the
ICU using the appropriate cache instructions proto-
col on one of the buses. For the processor-bus
instructions, the register number is specified by the
three least significant bits of the opcode. The
instruction transfer protocol and the ICU response
are controlled by the Read Registers Control and
Instruction Transfer Protocol Control in the Modb
Register respectively. For the memory-bus instruc-
tion the register number is specified by the three
least significant bits of the address. A detailed
description of the these illustrative protocols and
responses will be set forth hereinafter.

For processor-bus accesses, all ICU special
registers are protected. They can be accessed only
if the SUP/*US input is HIGH. User mode accesses
are not executed. A *CERR response signals an
invalid User mode access. The registers are not
protected for the memory bus cache instruction.

According to the preferred embodiment of the
invention, each register is assigned a number as
follows:

reg# reg name
0 Chip Select Mapping
1 Instruction
2 Address Operand
3 Count
4 Error Address
5 Status
6 Moda
7 Modb 10

Only the general function of each register will be
described hereinafter since one skilled in the art will

15 appreciate that specific bit assignments may be
made for application dependent purposes.

The Chip Select Mapping Register is special
register 0. It specifies the address and the condi-
tions for the ICU chip select functions. The ICU has

20 two independent chip-select functions: for normal
cache accesses and for cache instruction accesses.

For normal cache accesses, the chip-select
function can be used for cache extensions, cache
address space assignments, and multiple-cache

25 configurations. In the preferred embodiment of the
invention, up to 32 ICUs (16 instruction caches and
16 data caches) can be used without external
chip-select hardware. Memory access (MA) selec-
tion is also affected by the *CSM input and a

30 Memory Bit Enable field of the Moda Register. If the
*CSM input is enabled, it must be asserted to enable
a memory access. If the *CSM input is disabled, it is
ignored. The Memory Bit Enable Field can selectively
enable the comparison of an appropriate address bit

35 to a corresponding (MA) field bit in the chip-select
memory register. When a bit is disabled for
comparison, it is ignored. If all the bits are disabled,
a match is forced. Note that when the *CSM is
enabled, it should be asserted and the MA field

40 comparison match, for a memory access to be
serviced.

For cache instruction accesses, the chip-select
function is used for selecting the appropriate ICU for
the access. A cache instruction access is enabled

45 when *CSEL is asserted and enabled, or when the
address inputs A31-A14 and CREQTO match Cache
Instructions Address and Cache Instruction Ad-
dress Space fields in the Chip Select Mapping
Register. In the second case, all the caches with a

50 match are selected. If the instruction scope is
multiple caches, all the selected caches respond. If
the instruction scope is one cache, only the cache
where the address inputs A13-A8 match a Specific
Cache Number field of the Chip Select Mapping

55 Register, responds.
During initialization the *CSEL input is used to

program the Chip Select Mapping Registers of a
given ICU. In a typical configuration, a different
address bit can be connected to the *CSEL of

60 different ICUs. When *CSEL is asserted and en-
abled, the ICU treats data accesses as cache
instruction accesses. After the Chip Select Mapping
Register is programmed, the *CSEL input can be
disabled, and the mapping specified by the Chip

65 Select Mapping Register applies.

11

EP 0 325 421 A2 22 21

using Read Register or Write Register instructions.
The Count Register is special register 3. It

specifies the number of words to be operated on by
certain ICU instructions. The Count Register is not

5 affected by the instruction execution.
The Exception Address Register is special regis-

ter 4. It is used for reporting the address associated
with some exceptions. The Exception Address
register is loaded with the exception address. The

10 exception type can be found in the Status Register.
The Status Register is special register 5. It is used

for reporting the status of the ICU, and for
information transfer between the ICU and the
processor in the Read Tag and Write Tag cache

15 instructions (to be explained hereinafter). Bits are
reserved for reporting the tag value for the Read Tag
instruction and for transferring the tag for the Write
Tag instruction; for the reporting of the WAY for
cached data; for reporting the valid bits for a block

20 and for transferring the valid bits for the Write Tag
instruction; for reporting the locked bit for the block
and for transferring the locked bit for the Write Tag
instruction; for reporting the shared bit for the block
and for transferring the shared bit for the Write Tag

25 instruction; for reporting the modified bit for the
block and for transferring the modified bit for the
Write Tag instruction; for indicating if a hit is found in
the cache; and for indicating protection violations;
illegal instructions; memory errors and parity error.

30 The Moda Register is special register 6. It is used
for selecting various ICU options. The Moda register
is reset during initialization.

Fields are set aside to: control global cache
operation; to lock all cache locations; to disable the

35 write buffer; and to disable the read through option.
A ROM enable bit is included in this register which

has different functions for instruction cache and
data cache usage ("ROME" bit).

For instruction cache usage when this bit is set,
40 the ICU responds to ROM accesses and caches

them. When it is 0, ROM accesses are ignored.
For data cache usage, when this bit is set, the

data cache is enabled for instruction memory
accesses (as data). When the OPT inputs indicate an

45 instruction memory access, the ICU treats it as a
non-cacheable transaction. The specified address is
read on the memory bus and transferred to the
processor, without loading it into the cache. When
the ROME bit is 0, the ICU ignores this type of

50 transaction.
Further fields are provided in the register to

enable the prefetch option for single accesses; to
disable an address wrap around option; to control
the ICU operation on a single access miss; to

55 control the ICU operation when a burst mode read
request is terminated by the processor; to enable
the prefetch option for burst accesses; and to select
sub-block size (SBS).

It should be understood that the sub-block size is
60 used in the control of cache reload operations. The

number of words to be reloaded into the cache for a
single cache miss is defined by the defined
sub-block size and the information stored in the field
controlling ICU operation for an access miss (for

65 example, control information such as start and stop

The Instruction Register is special register 1 . It is
used for specifying an instruction to the ICU. The
Instruction Register can be read or written as any
other special register, however, it is also loaded
automatically for a valid cache instruction. A valid
cache instruction is detected when the *CSEL input
is asserted and enabled or when the address inputs
A31-A14 and CREQTO match the Cache Instructions
Address and Cache Instructions Address Space
fields in the Chip Select Mapping Register. In these
cases, the instruction is copied from the address
inputs A7-A0.

The Instruction Register can be accessed as a
special register for saving and restoring the ICU
state in the case of a processor interrupt during the
instruction transfer protocol, or if a multiple cache
instruction is interrupted. When it is accessed as a
special register, a Read or Write Register cache
instruction is transferred to the ICU. Shadow
registers are incorporated in order to be able to
latch the Read Register instruction and optional
operand, without destroying the required old con-
tents of the Instruction and Operand Register. The
shadow Instruction Register is first loaded with an
instruction. For all the instructions except the Read
Register and the Write Register instructions, the
Instruction Register is updated when the instruction
execution is started. For the Read Register and
Write Register instructions the Instruction Register
is updated only if there is no other valid instruction in
the Instruction Register. If a valid instruction is
present in the Instruction Register, the Read
Register instruction is executed without affecting
the Instruction and Operand registers. This feature
is also used for checking the status of the ICU
without affecting the execution of a cache instruc-
tion.

An instruction is executed by the ICU whenever all
the required operands are valid. A detailed descrip-
tion of exemplary instructions, required operands,
and cache-instructions accesses will be set forth
hereinafter.

The Operand Register is special register 2. It
specifies an operand for certain ICU instructions.
The register contains a bit (OV bit) to indicate the
validity of the Operand Register value. A shadow
Operand Register is incorporated in the ICU for
correct execution of Read Register and Write
Register instructions. The shadow Operand Regis-
ter is first loaded with an operand. For all the
instructions, except Read Register and Write Regis-
ter instructions, the Operand Register is updated if
the validity bit is reset. If the OV bit is set, the ICU
delays the *CRDY response until the OV bit is reset
(the previous instruction completion), and then
loads the register. For Read Register or Write
Register instructions the Operand Register is
updated only if there is no other valid instruction in
the Instruction Register. If a valid instruction is
present in the Instruction Register, the Read
Register and Write Register instructions are ex-
ecuted without affecting the Instruction and Oper-
and registers. This enables saving and restoring the
Operand Register, when required. When required,
the Operand Register can be read or written by

12

EP 0 325 421 A2 24 23

controlling the ICU for Input/Output data accesses
on the processor bus (it is ignored in instruction
cache usage); a bit which specifies the mode of
reading the ICU registers; a bit which specifies the

5 protocol for cache instruction transfer on the
processor bus ; and a bit which controls the byte and
half-word ordering within a word, for the relevant ICU
operations.

The multiprocessor oriented information in the
10 Modb Register includes: a Cache Interlocked En-

able bit; a Read Bus Watch Enable bit; a Write Bus
Watch Enable; afield which controls the operation of
the ICU in the case of a match on memory bus read
by another master; a field which controls the

15 operation on match for memory bus write operation
by another master; a Write Miss Memory Access
Control which controls the memory bus operation of
the ICU for a copy-back write miss with write-allo-
cate; a Write Shared Hit Control field which controls

20 the operation on a write hit to a shared block; a
Processor Shared Bit Control which causes the
block status share bit to be modified for every
processor access when set; and an External Shared
Bit Control which controls the assignment of the

25 shared block stauts by external control. For external
shared control, the *HIT signal is used as an input for
memory bus read and/or write accesses. If it is
asserted, then the data is also present in other
caches, and the block is assigned a shared status. If

30 the *HIT input is not asserted, the variable is not
present in any cache and the block is assigned an
exclusive status. Detailed description of this feature
is set forth hereinafter with reference to ICU
multiprocessor support.

35 Turning to the ICU instruction set.
The preferred embodiment of the ICU implements

20 processor bus cache instructions, and 9 memory
bus cache instructions. The processor bus instruc-
tions are issued by the processor for special register

40 accesses and for special cache operation requests.
The memory bus instructions are issued by special
logic on the memory bus for special cache operation
requests. This section sets forth examples of
different instruction transfer protocols and sets

45 forth an example of a typical processor bus
instruction and a memory bus instruction set, in
detail.

The processor bus cache instructions and oper-
ands are transferred to the ICU from the processor

50 by a special sequence of processor bus transac-
tions. The instruction is executed whenever all the
required operands are transferred to the ICU.

Some processor bus cache instructions have four
optional scopes of operation. The instruction scope

55 specifies the number of ICUs which are affected by a
cache instruction. The scope is designated by (s) in
the instruction table. The instructions without the (s)
indication can operate only on one specific ICU. The
instruction scope can be designated as follows:

60

on a sub-block boundry). The SBS field is also used,
together with the burst mode control information, in
the burst end control. The inherent block size of the
ICU is 4 words, one tag is associated with four data
words. The sub-block size is either 1, 2 or 4 words.

Still further, the Moda Register contains fields for
controlling the extension of memory bus address
transfers; for indicating whether a write allocate
option is on; and for selecting the write policy
options on a global basis.

According to the preferred embodiment of the
invention, the write policies are: flexible, write-
through or copy-back.

When a write-through policy is selected, every
processor write to the ICU is also written to the
memory. When a copy-back is selected, every
processor write hit is written in the cache and the
modified bit set. The block is copies back to memory
only when the block is replaced. When the flexible
policy is selected, a write-through or copy-back
operation can be selected on an access by access
basis. The write policy for an access, is also affected
by the ASTC inputs, the block status shared
information, and the Write Shared Hit Control and
the Processor Status Bit Control fields of the Modb
Register (to be explained hereinafter).

The Moda Register also contains a field used to
select the block replacement policy. The selection is
not used for direct-mapped organization. In a
two-way set-associative organization, if one of the
blocks is not valid, it is chosen for the new block.
The replacement policy options, according to the
preferred embodiment of the invention, are: Least
Recently Used (LRU), random, or external.

When the LRU policy is selected, the LRU array is
used for the selection of the block to be replaced.
The LRU array is updated on each cache access.
One bit is associated with each set. It points to the
least recently used block from the two blocks in a
set.

When the random policy is selected, a pseudo
random logic selects the block to be replaced. The
logic is a simple flip flop which change state every
clock cycle, and used for all the sets.

When the external policy is selected, the WREP
input is latched with the processor address. The
latched value forces the replaced block selection.
This option may be used for cache testing and
multi-level cache organizations.

Finally, the Moda Register contains fields for
selecting the cache organization (two-way set-asso-
ciative or direct-mapped); for selecting the cache
operation as Instruction Cache or Data Cache; for
controlling parity generation and checking options
and memory bit enable information for enabling the
corresponding MA bits in the Chip Select Mapping
Register for address comparison on Memory ac-
cesses.

The Modb Register is special register 7. It is used
for the selection of various ICU options. One field of
the Modb Register is assoicated with multiproces-
sor organizations. A detailed description of multipro-
cessor organizations and the usage of this field will
be described hereinafter.

The Modb Register also contains a bit for 65

13

EP 0 325 421 A2 26 25

Select Mapping Register.
When no operand is required for the instruction

execution, the transfer is completed in one cycle. In
this case the value on the cache bus is irrelevant and

5 the instruction execution starts immediately.
If operands are required, there are two optional

transfer protocols which are supported by the ICU.
The protocol is selected according to the Instruction
Transfer Protocol Control bit of the Modb Register.

10 When ITPC is 1, the cache bus is used for the
operand transfer. The processor uses a normal write
operation, and the processor address and data
buses are both used. The ICU latches the operand
value from the cache bus. For ICU used as an

15 instruction cache, external transceivers are required
for transferring the data from the ICU data bus to the
cache bus. This option is the natural selection for
ICU used as a data cache. A more efficient protocol
is also achieved for ICU used as an instruction cache

20 in the expense of external transceivers.
When ITPC is 0, the cache bus in not used.

Operands are transferred on the processor address
bus. A special two cycle protocol is required for
instruction and operand transfer. After a valid

25 instruction is latched, the ICU expects a special data
transaction on the processor bus. The CREQT
inputs should specify a memory data transaction,
the option inputs should specify a cache operand
transfer, and the address bus contains the operand.

30 This special write transaction is detected by the ICU
and the operand on the address bus latched. Note
that the above transaction should be ignored by all
other elements connected to the processor bus.
This option is less efficient than the other, but is

35 does not require transceivers for ICU used as an
instruction cache.

Both options can be selected independently for
ICU used as a data cache or an instruction cache.
However, from system programming point of view, it

40 might be desirable to access both caches in a similar
way. If this is the case, both caches can be
programmed to respond to the same protocol.

If a count operand is required for the instruction
execution, a Write Register Instruction should be

45 executed for writing it to the Count Register before
the instruction execution starts. The instruction is
executed by the ICU whenever the instruction and all
the required operands are valid.

Processor interrupts can happen during the
50 cache instruction transfer protocol. The preferred

embodiment of the ICU includes logic to recover
from such cases. The Instruction Register, Operand
Register, and Count Register can be read for saving
their content without affecting it, using the Write

55 Register instruction. The Instruction Valid, Operand
Valid, and Count Valid bits indicate the validity of the
corresponding register. The save and restore oper-
ations enable the instruction transfer protocol to
continue from the point of interruption.

60 A set of Processor bus cache instructions found
useful in one embodiment of the invention, in terms
of Mnemonic, description and brief explanation of
purpose, are set forth immediately hereinafter in
tabular form:

65

specified (s) Opcode 2
significant bits

00

01

One specific
ICU affected
All instruction
caches
affected
All data caches
affected
All caches
affected

D

A

10

11

This flexibility allows a system designer to issue
cache instructions which operate on the desired
addresses in the appropriate caches. In a multiple
ICU environment, it is more efficient to issue one
instruction that will operate on all the caches
simultaneously. For example, the Invalidate Block
instruction with (s) = A (INVBA), invalidates the
specified block in all the ICUs (where the block is
valid) in parallel.

Most instructions are executed in two cycles.
However, there may be exceptions as will be indicate
hereinafter. During processor bus cache instruction
execution, the ICU can accept other processor
transactions, (including new instruction transfers)
but in most cases (unless otherwise specified in the
instruction description) they are serviced only after
the processor bus cache instruction completes.
Memory bus transactions are serviced during the
processor bus cache instruction execution. How-
ever, since they are not synchronized to instruction
execution, the ICU operation reflects the current
state of the cache.

All processor bus cache instructions are privi-
leged. If the SUP/* US input is LOW, when the
processor bus cache instruction access is per-
formed, it is ignored and the *CERR asserted as a
response. The Status Register is updated with
status information for the relevant instructions. In
case of an exception the Exception Address
Register and the Status Register are updated with
the exception information.

There are several options for the communication
between the ICU and the processor during cache
instruction execution. The protocol is defined ac-
cording to the Instruction Transfer Protocol Control
(ITPC) and Read Register Control (RRC) bits of the
Modb Register as well as the cache instruction type
and scope. All instructions, except Read Register,
are transferred by using a write operation. The Read
Registers instruction is transferred by using a read
or write operation as defined by the Read Register
Control bit of the Modb Register. A description of
these options can be found in Read Register
instruction description set forth hereinafter.

The first part of each instruction is the detection of
a processor bus cache instruction request. A
processor bus cache instruction request can be
either a read or write processor bus access. It is
detected by the ICU in two cases: 1) The *CSEL is
asserted and enabled or 2) the address inputs and
CREQT0 match the Cache Instruction Address and
Cache Instruction Address Space fields in the Chip

14

EP 0 325 421 A2 28 27

Register should contain the number of four word
blocks in a page (page size in bytes divided by 16).

Invalidate All (INVAO, INVAI, INVAD, INVAA) -this
instruction invalidates all words in the cache. All valid

5 bits are reset.
Send Word if Modified (SWMO, SWMI, SWMD,

SWMA) -if the word specified by the address
operand is present in the cache and the modified bit
for the block is set, it is written to the corresponding

10 address in memory.
Send Block if Modified (SBMO, SBMI, SBMD,

SBMA) -if the four word block specified by the
address operand is modified, all the valid words are
written to the corresponding addresses in the

15 memory.
Upadate Memory and Invalidate (UPMIO, UPMII,

UPMID, UPMIA) - if the four word block specified by
the address operand is modified, all the valid words
are written to the corresponding addresses in the

20 memory. Then, all the valid bits are reset. The write
operation is performed by using a burst mode or
single memory bus write access (depending on the
number of valid words), after the memory bus is
granted to the ICU.

25 Update Memory and Invalidate Multiple (UPIMO,
UPIMI, UPIMD, UPIMA) - multiple sequential Update
Memory and Invalidate operations are executed by
the ICU. Every single operation is similar to the
Update Memory and Invalidate instruction. The

30 instruction is executed in multiple cycles (two cycles
for initialization plus one cycle and optional memory
bus four word write access per four word block). For
this instruction, the Count Register must contain a
valid count. The Count Register is loaded by using

35 the WRR instruction. The Count Valid bit remains set
after the instruction execution. To guarantee correct
execution, the Count Register should either be
loaded before the UPIM instruction is requested or
should contain the correct value from a previous

40 operation. This instruction can be used inorder to
update memory and invalidate a page frame. The
Count Register should contain the number of blocks
in a page (page size in bytes divided by 16).

Lock block (LCKO, LCKI, LCKD, LCKA) - if the
45 four word block (or part of it) specified by the

address operand is present in the cache, the
corresponding block status Lock bit is set.

Unlock block (ULCKO, ULCKI, ULCKD,
ULCKA) - if the four word block (or part of it)

50 specified by the address operand is present in the
cache, the corresponding block status lock bit is
reset.

Read Block Status (RBSTO, RBSTI, RBSTD,
RBSTA) -the specified word address is checked for

55 presence in the cache and the status register is
updated accordingly.

Write Block Status (WBSTO, WBSTI, WBSTD,
WBSTA) -the block which includes the specified
word address is checked for presence in the cache.

60 If the block is present in the cache then the block
status bits are updated based on the value of the
bits in the status register.

Send Word if Hit (SWH) - if the word specified by
the address operand is present in the cache, it is

65 written to the corresponding address in the memory.

Mnemonic Description

NOP No Operation
INVW(s) Invalidate word
INVB(s) Invalidate block
INVM(s) Invalidate multiple
INVA(s) Invalidate all
SWM(s) Send word if modified
SBM(s) Send block if modified
UPMI(s) Update memory and

invalidate
UPIM(s) Update memory and

invalidate multiple
LCK(s) Lock block
ULCK(s) Unlock block
RBST(s) Read block status
WBST(s) Write block status
SWH Send word if hit
RTAG Read tag
WTAQ Write tag
PRLD Preload cache
RST Reset
RDR(i) Read register
WRR(i) Write register

It should be noted that the (s) symbol in the
instruction mnemonic indicates the instruction
scope as previously defined herein and the (i)
symbol in the RDR and WRR instructions indicates
the register number which is specified by the 3 least
significant bits of the opcode.

It should also be noted that specific operands
(although not discussed herein) are specified ac-
cording to instruction requirements. If more than
one operand is to be specified, a WRR instruction is
required for loading the second specified operand.

On a functional level, the execution of the
instructions result in the following actions:

No Operation (NOP), no operation is executed by
the ICU for this instruction.

Invalidate Word (INVWO, INVWI, INVWD, INVWA)
(note different scopes) - the word specified by an
address operand is invalidated (the corresponding
valid bit is reset).

Invalidate Block (INVBO, INVBI, INVBD, INVBA)
-the four word block specified by the address
operand is invalidated (all the corresponding valid
bits are reset).

Invalidate Multiple (INVMO, INVMI, INVMD,
INVMA) -multiple sequential four word blocks are
invalidated by the ICU. Every single operation is
similar to the INVB instruction. The instruction is
executed in multiple cycles (two cycles for initializa-
tion + one cycle per four word block). For this
instruction, the Count Register must contain a valid
count. The Count Register is loaded by using the
Write Register instruction. The Count Valid bit
remains set after the instruction execution. To
guarantee correct execution, the Count Register
should either be loaded before the INVM instruction
is requested or should contain the correct value
from a previous operation. This instruction can be
used in order to invalidate a page frame. The Count

15

EP 0 325 421 A2 30 29

response. The other cache or caches can be
programmed to preload the variables or instructions
which are required for the next program (or
procedure). Before the execution of the next

5 program starts, the appropriate cache (which in-
cludes the preloaded data) is enabled, and the other
caches disabled.

The implementation of this scheme is fully sup-
ported by the ICU. All the necessary support is

10 implemented on the single chip. An individual ICU
can be disabled or enabled by programming a mode
register. The preload instruction is implemented so
that this scheme is supported. Specifically the ICU
can perform the preload instruction, even if it is

15 disabled for normal cache operations. Two or more
ICUs can be placed in parallel and only one can be
enabled for normal cache operations, while the other
performs preload operations (no glue logic is
required).

20 This configuration can have a significant perfor-
mance advantage, since the preload operations are
performed with minimal impact on the current
program execution.

Reset (RST) - the Reset instruction performs the
25 same function as performed by asserting the

*RESET input. The ICU is initialized. The RST
instruction is executed immediately as it is ac-
cepted. A multiple instruction (INVM, UPIM, PRLD)
execution is terminated.

30 Read Register (RDR) - the Read Register instruc-
tion is used for reading the special registers of the
ICU. The special register number is specified by the
opcode. The ICU responds in different ways to this
instruction depending on the state of a Read

35 Register Control (RRC) bit in the Modb Register.
When RRC is 1, a read transaction with the
instruction on the address bus initiates the instruc-
tion. When RRC is 0, the main memory is used in
order to read the registers.

40 Write Register (WRR) - the Write Register instruc-
tion is used for writing the special registers of the
ICU. The special register number is specified by the
opcode. The data is specified as the instruction
operand. The WRR instruction is executed immedi-

45 ately as it is accepted. If valid instruction and
operand are present in the Instruction and Operand
registers, it is executed without affecting their
content. This feature can be used for restoring the
ICU registers.

50 As indicated hereinbefore, the memory bus cache
instructions are issued by special logic on the
memory bus. This logic should be able to direct the
instruction to the appropriate ICU. All the ICUs in the
system which recognize a valid instruction on their

55 inputs execute it. There are no equivalent concepts
to the processor bus instruction scope and privi-
leged instructions on the memory bus.

All the memory bus cache instructions can be
transferred to the ICU, when it is the bus slave, by

60 using one cache instruction transfer memory bus
transaction. The Write Block Status instruction can
be also transferred when the ICU is the bus master,
by asserting the *VSI input. The instruction is
executed whenever the required cache resources

65 are available, after the instruction and the operands

Read Tag (RTAG) - this instruction is used for
reading a specific tag in the cache.

Write Tag (WTAG) - this instruction is used for
writing a specific tag in the cache.

Preload (PRLD) - preload is a special operation
that can be performed in order to load a cache with
specific data variables or instructions before they
are needed. The operation is done under software
control. The addresses of the required variables or
instructions are supplied by the user. Note that the
preload operation is different from simple prefetch
operations. Prefetch is usually done under hardware
control, and the prefetched addresses are in the
close neighborhood of the address for the original
memory request.

User and compiler knowledge of the program
should be used in order to predict the most valuable
instructions or data variables. The appropriate
addresses are preloaded into the instruction and
data caches before the program execution is
started. The operation can be done under the cache
control without the processor interference. This
allows better utilization of the cache and higher
overall performance.

The preload operation, novel unto itself, is
described in the context of the incorporated
RISC/SIP architecture. It can be used in other cache
systems as well.

The instruction is initiated by the processor, by
transferring the opcode and the operands to the
appropriate cache unit. Two operands are required:
an address operand and a count operand. Multiple
sequential words are loaded to the cache, using
memory bus read burst transaction, under the ICU
control. The address operand specifies the starting
word address. The Count Register specifies the
number of four word blocks. When the highest
possible address is reached, a wrap around is
performed.

The instruction is executed in multiple cycles (two
cycles for initialization plus one memory bus burst
read access per word). For this instruction, the
Count Register must also contain a valid count. The
preload instruction can be used in various methods.
Two basic options are as follows:

A simple method of using the preload instruction
does not require special cache configuration and
can be used with any cache system. In this method,
the preload instruction is issued under software
control before the program execution. The instruc-
tion can be issued as part of the context switch
procedure. Since the caches are preloaded the cold
start effect is minimized. The main disadvantage of
this method is that the preload operation can
interfere with other cache operations which are
required by the processor.

A more complex cache configuration can over-
come the above limitation. This configuration
(referred to as switchable caches) require more than
one cache per each processor, and a method to
switch between the caches. The switchable caches
configuration allows the operation of multiple
caches on the same address space. Two or more
caches are placed in parallel, but only one of the
caches is enabled for processor memory accesses

16

EP 0 325 421 A2 32 31

are accepted. All the instruction are executed
internally in two cycles. In the case that a memory
bus operation is required for the instruction execu-
tion, the number of cycle for the bus operation
should be added.

The memory bus cache instructions are executed
independently of other ICU operations on the
processor bus (including the processor bus cache
instructions). The memory bus instructions and the
processor bus operations are executed according
to the order in which they are received. The result of
the memory bus instruction reflects the current
state of the cache. If a memory bus cache
instruction is accepted during the execution of a
multiple processor bus cache instruction, it is
executed without affecting the multiple instruction
execution.

All the memory bus cache instruction, except
Write Word in Cache, has an equivalent processor
bus cache instruction with a similar name. These
instructions have a similar effect on the internal
cache, however, the processor bus and memory bus
operations are different.

All the memory bus cache instructions are
transferred using one cache instruction transfer
memory bus transaction. When the ICU is not the
bus master, the assertion of *VSI causes a cache
instruction transaction on the memory bus. During
the first cycle of the transaction, the MRW, MREQT,
BSTC signals, and the address are latched. The
MRW and MREQT signals specify the instruction.
The BSTC signals specify the block status for the
relevant instructions. The address is used as the
address operand for the relevant instruction. If the
instruction requires data operand, the data is
latched during the second cycle.

When the ICU is the bus master, and it issues a
read request for reload operation, the *VSI input has
a special function. If it is asserted before the
transaction is completed (the last *MRDY has not
been accepted), then the BSTC signals are latched,
and a Write Block Status instruction is executed.
The address operand is the block address which
correspond to the address that was transferred by
the ICU for the reload operation.

A set of memory bus cache instructions found
useful in one embodiment of the invention, in terms
of Mnemonic, description and brief explanation of
purpose, are set forth immediately hereinafter in
tabular form:

MRW MREQT Mnemonic description
00 00 NOP No operation
00 01 SWH Send word if

hit
00 10 SWM Send word if

modified
00 11 SBM Send block if

modified
01 00 INVW Invalidate word
01 01 INVB Invalidate

block
01 10 WBST Write block

status
01 11 WRR Write register
10 00 UPMI Update

memory and
invalidate

10 01 RBST Read block
status

10 10 RDR Read register
11 00 WRW Write word in

cache

10

15

20

25
It should be noted that the instruction codes are

arranged so that MRWO is consistent with other
memory bus operations. For MRWO LOW, the
direction is from the ICU to the memory bus and for
MRWO HIGH, the direction is from the memory bus
to the ICU.

On the functional level, the execution of the
instructions result in the following actions:

No Operation (NOP) - this instruction has no
affect on the ICU. The memory bus cache instruction
transaction protocol is performed as for any instruc-
tion.

Send Word if Hit (SWH) - if the word specified by
the address operand is present in the cache, the
*HIT signal is asserted. The word is driven on the
memory address bus, the block status shared and
modified bits are driven on the BSTC signals, and the
*MRDY is asserted.

Send Word if Modified (SWM) - if the word
specified by the address operand is present in the
cache and the modified bit for the block is set, the
*HIT and the *MRDY signals are asserted, and the
block status shared and modified bits are driven on
the BSTC signals. Then, the word is written to the
corresponding address in the memory.

Send Block if Modified (SBM) - if the four word
block specified by the address operand is modified,
the *HIT and the *MRDY signals are asserted, and
the block status shared and modified bits are driven
on the BSTC signals. Then, all the valid words are
written to the corresponding addresses in the
memory.

Invalidate Word (INVW) - the word specified by
the address operand is invalidated (the correspond-
ing valid bit is reset). The *HIT signal is driven
according to the hit or miss conditions and the
*MRDY asserted after the instruction execution is
completed.

Invalidate Block (INVB) - the four word block
specified by the address operand is invalidated (all

30

35

40

45

50

55

60

65

17

EP 0 325 421 A2 34 33

As indicated hereinbefore, a word is defined as 32
bits of data. A half word consists of 16 bits. A byte
consists of 8 bits. The ICU has direct support for
word, half word and byte accesses. On the proces-

5 sor bus, the access length is determined according
to the OPT inputs. The access length is effective only
for single data memory accesses. It is ignored and a
word length is assumed, in all other processor bus
accesses (including burst mode memory accesses).

10 On the memory bus, the access length is deter-
mined according to the MDLN signals.

The numbering conventions for data units within a
word for the preferred embodiment of the invention,
are consistent with the RISC/SIP definitions set

15 forth in the incorporated application describing a
RISC processor. Bits are numbered in increasing
order from right to left. Bytes and half words can be
ordered either from right-to-left or from left-to-right,
as controlled by the Byte Order bit of the Modb

20 Register.
The preferred embodiment of the ICU contains the

necessary hardware to fully support byte, half word
and word accesses. The different data types should
be aligned on their natural address boundaries.

25 Accesses which are not on their natural boundary
are reported on the Error and Status registers; but
the access is serviced as if it was correctly aligned
(i.e. the appropriate address bits are ignored).

For memory byte read operations on the proces-
30 sor bus, alignment hardware shifts the byte to the

low order (rightmost) location within a word.
For memory half word read operations on the

processor bus, alignment hardware shifts the half
word to the low order (rightmost) location within a

35 word.
In case of a miss on memory read operation, the

ICU uses word accesses on the memory bus for the
reload operation. Byte and half word accesses are
used for non-cacheable read accesses. The byte or

40 the half word are aligned before they are sent to the
processor. The access length is transferred from the
processor bus (OPT inputs) to the memory bus
(MDLN signals).

For memory write operations the ICU writes bytes
45 and half words in the appropriate cache locations.

For a byte write, the byte is duplicated from the low
order byte location to all other byte locations within a
word. The appropriate byte write enable is activated
in order to write the correct byte in the cache. For

50 half word write, the half word is duplicated from the
low order to the high order half word. Then, it is
written into the cache by activating the appropriate
byte enables.

For write-through and non-cacheable write ac-
55 cesses, the access length is transferred from the

processor bus (OPT inputs) to the memory bus
(MDLN signals). The duplicated bytes or half words
are placed on the memory bus. The memory
controller decodes the address and length, and

60 activates the correct write enable signals.
It should be noted that although the ICU supports

byte and half word accesses, the user can decide if
the system will support them. If the decision is to
support only word accesses, the OPT and MDLN

65 inputs should always specify word accesses.

the corresponding valid bits are reset). The *HIT
signal is driven according to the hit or miss
conditions and the *MRDY asserted after the
instruction execution is completed.

Write Block Status (WBST) - this instruction can
be executed either when the ICU is the bus slave or
the bus master. When the ICU is the slave the
address operand is specified by the memory bus
transaction. In this case, the block which includes
the specified word address is checked for presence
in the cache. If the block is present then the *HIT and
*MRDY signals are asserted, and the block status
bits are copied from the BSTC signals. If the block is
not present in the cache then the *HIT signal is
deasserted and the *MRDY asserted. The Hit and
Valid bits of the Status Register are reset.

When the ICU is the bus master and it issues a
read request for a reload operation the *VSI input
has a special function. If it is asserted before the
transaction is completed (the last *MRDY has not
been accepted), then the BSTC signals are latched,
and the Write Block Status instruction is executed.
The address operand is the address that was
transferred by the ICU for the reload operation. In
this case, the block which includes the specified
word address is always present in the cache (since it
is being reloaded). The block status bits of this block
are copied from the BSTC signals. The Status
Register is not affected.

Write Register (WRR)- the Write Register instruc-
tion is used for writing the special registers of the
ICU.

Update Memory and Invalidate (UPMI)-if the four
word block specified by the address operand is
modified, the *HIT and the *MRDY signals are
asserted and the block status shared and modified
bits are driven on the BSTC signals. Then, all the
valid words are written to the corresponding
addresses in the memory, and then the valid bits are
reset.

Read Block Status (RBST) - the specified word
address is checked for presence in the cache. The
block status bits are driven on the BSTC signals. The
*HIT and *MRDY are also driven accordingly.

Read Register (RDR) - the Read Register instruc-
tion is used for reading the special registers of the
ICU.

Write Word in Cache (WRW) - if the word speci-
fied by the address operand is present in the cache,
the *HlT signal is asserted and the supplied data is
written into the cache. The two least significant bits
of the address are ignored. Note that the address
cycle is specified by the *VSI input and not by the
*MASTB signal. The data is specified by the value on
the memory bus during the cycle following the
address cycle. If the word is not present in the cache
the *HlT signal is deasserted and the Hit and Valid
bits of the Status Register are reset. The *MRDY
signal is asserted when the ICU latches the data
from the memory bus.

Having completed the description of a suitable
and useful instruction set for use with the preferred
embodiment of the invention, a brief description of
data formats and data manipulation mechanisms
supported by the novel ICU will now be set forth.

18

EP 0 325 421 A2 36 35

mode access, a predetermined burst miss handling
procedure is initiated.

During the memory bus burst mode access, the
next word address (current word address plus 1) is

5 checked in the cache. If a hit is found during the
memory bus burst mode operation, the memory bus
access is terminated and the data transfer continues
from the cache. The misses and hits cases and the
transfers from one to the other are transparent to

10 the processor (only the access time is affected) .
A burst mode read access can be terminated by

the processor at any point of time by deasserting
*BREQ. One more word is serviced as defined for
the incorporated RISC processor's burst mode

15 protocol.
A single memory write access is used for writing

data variables to the cache. The address and the
data are latched by the ICU in the first cycle of the
access, and the *CRDY signal is asserted during

20 this cycle (single cycle writes). Note that the *CRDY
signal is asserted independently of the hit or miss
conditions.

In the case of cache hit, the data is written in the
cache in the second cycle. The write policy is

25 determined according to the ASTC inputs, the Write
Policy field of the Moda Register, the Write Shared
Hit Control and Processor Shared Bit Control fields
in the Modb Register, and the block status shared
bit. There are three possible write policies: exclusive

30 write-through, exclusive copy-back and shared.
For an exclusive write-through write access, the

data is also written to the memory. If the write buffer
is enabled, the data is written into the write buffer.
When it is disabled, the write operation is not

35 buffered as will be explained hereinafter with
reference to the description of the write buffer. In
both cases, the memory bus access is started when
there are no other memory bus operations that
should be performed earlier, and when the memory

40 bus is available.
For an exclusive copy-back write access, the data

is written only in the cache and the modified bit set.
The data is written to the memory when the block is
replaced.

45 For the case of a shared write access, a
write-through or write-broadcast access is always
performed on the memory bus. In this case, the
Write Shared Hit Control field of the Modb Register
and not the Write Policy field of the Moda Register

50 controls the ICU operation.
In case of a cache miss, the ICU operation is

determined according to Write Allocate bit of the
Moda Register. If write allocate is eanbled, a cache
block is allocated for the missed block, and a miss

55 procedure is initiated. The miss procedure is similar
to the memory read miss procedure. After the miss
procedure is completed, the cache operation con-
tinues as previously described for the write hit case.

If write allocate is disabled, a block is not allocated
60 in the cache. The data is written only in the memory

as described for the write-through operation. Note
that for this case a copy-back write is treated as a
write-through access.

The shared block status bit is updated on every
65 miss. It can be also updated for cache hit, if the

The portion of the detailed description to follow
immediately hereinafter describes the ICU operation
for the different cases of cache accesses on the
processor and memory buses.

The processor bus accesses are either single,
pipelined and burst mode accesses.

All the accesses on the processor bus are
initiated by the processor. The ICU supports the
three access protocols as defined in the copending
applications previously incorporated herein by ref-
erence.

Single accesses are used for single data read and
write accesses as well as special instruction ac-
cesses.

Pipelined accesses are supported by the ICU. The
ICU latches the address (*PEN should be driven by
external logic). The processor can use the address
bus for starting another ICU access. The address of
a pipelined access is used by the ICU for the tag
compare function, in pipeline with the previous
access. In case of a cache hit, one cycle is required
for the pipelined access to complete, after the
primary access completes. In case of a cache miss,
the memory bus access starts one cycle earlier.

Burst mode accesses are used for instruction
accesses and multiple data accesses. In these
accesses the address for the first word is trans-
ferred, and then sequential addresses are assumed
for the following words. Burst mode read and write
accesses are fully supported by the ICU. The
maximum rate of one word per cycle is achieved for
cache hits.

A single memory read access is used for reading
data variables from a data cache. (The incorporated
RISC processor performs all instruction reads using
burst mode protocol.) The address is used for
searching the cache for the required word. If the
word is found (hit), the data is transferred to the
processor and the *CRDY output asserted. Align-
ment is performed for byte and half word accesses.
For single memory read accesses, the ICU responds
in two cycles.

If the required word is not found in the cache
(miss), the ICU initiates a predetermined miss
handling procedure. The shared block status bit is
updated on every miss. Also, the LRU bit associated
with the set is updated on every access to reflect the
least recently used block.

A burst mode memory read access is treated by
the ICU as a series of sequential memory read
accesses. In the first cycle of a burst mode read
access, the address for the first word is transferred
by the processor. When a burst mode read access is
detected by the ICU, it latches the address and
asserts the *CBACK signal. The address is com-
pared and automatically incremented for every word
in the burst. In the case of cache hit, the ICU
responds with the first word in two cycles. An
address can be incremented and compared in a
maximum rate of once per cycle. This allows a reate
of one cycle per word to be achieved in the case of
cache hits. Note that the one cycle access is
maintained also in the case of block boundary
crossing.

If a miss is found at any point during the burst

19

EP 0 325 421 A2 38 37

accesses. For this access, the cache is not
searched for the required data. A memory access is
started for reading or writing the data in memory. No
block is allocated in the cache for this data.

5 Instruction ROM accesses may be optionally
supported. These accesses are serviced by an
instruction cache as a regular memory read access.
In case of a miss the memory bus access is
designated as a ROM access. The lCU can be

10 programmed to ignore ROM accesses.
Input/Output accesses may be optionally sup-

ported and treated by a data cache as non-ca-
cheable accesses. The ICU transfers the access to
the memory bus with the I/O indication. The ICU can

15 be programmed to ignore Input/Output accesses.
Coprocessor transfers are ignored by the data

cache.
Also supported is a memory access which can be

specified as an interlock access. This is done by
20 setting the 'LOCK input. An interlock access can be

used to access semaphores and other synchronized
shared variables. Interlock accesses are controlled
by the Modb Register.

An Instruction memory access as Data is sup-
25 ported. This is a special data access used for

reading and writing the contents of an instruction
memory. It is indicated by a special code on the OPT
inputs.

A Debug Module Access is also supported. This is
30 a special data access used for accessing the

RISC/SIP debug module. It is indicated by a special
code on the OPT inputs. The ICU drives the *CRDY
signal for this access. *CRDY is driven HIGH for four
cycles, and then asserted for one cycle. This is done

35 in order to enable the insertion of the debug module
in the cache system, without affecting the proces-
sor's *RDY logic.

In addition to all the above, a Cache Instruction
access is supported. This access is used for

40 transferring processor bus cache instructions to the
ICU.

Turning to Memory Bus accesses, it should be
understood that the memory bus is used by both the
ICU master cache and slave caches. The memory is

45 accessed by an ICU bus master, by issuing a
memory bus access. The ICU gets the bus master-
ship by asserting the *MBUSR (bus request) output
and waiting for *MBGRT (bus grant). A ICU bus
slave can monitor the memory bus accesses for

50 cache consistency purposes. Cache instructions
can be activated by special accesses on the memory
bus.

Read accesses, write accesses and read for
modify accesses will now be described as sup-

55 ported by the ICU.
A memory bus read access is initiated by a cache

master for reload operation and for non-cacheable
accesses. All reload operations use access length of
words. For non-cacheable accesses, the access

60 type and appropriate length are transferred from the
processor bus to the MDLN, MREQT and *MLOCK
memory bus signals. A burst mode access is used
for the reload operation if more than one word is
required. A single access is used in all other cases.

65 The reload operation is dependent on the original

appropriate bit of the Modb Register is set.
The LRU bit associated with the set is updated on

every access to reflect the least recently used block.
A burst mode memory write access is treated by

the JCU as a series of sequential memory write
accesses. In the first cycle of a burst mode write
access, the address and data for the first word are
transferred by the processor. When a burst mode
write access is detected by the ICU, it latches the
address and the data and asserts the *CRDY and
the *CBACK signals. The address is compared and
automatically incremented for every word in the
burst.

In the case of cache hit, the ICU writes the first
word into the cache during the second cycle. An
address can be incremented and compared in a
maximum rate of once per cycle. This allows a rate of
one cycle per word to be achieved in the case of
cache hits. Note that the one cycle access is
maintained also in the case of block boundary
crossing. A memory bus write operation may be
started as well, in the same conditions as for single
memory writes. If the write buffer is enabled it is
used to buffer up to four writes. The memory bus
access is burst mode write. The conditions for the
memory bus operation are checked for every word in
the burst, and the memory bus operation is affected
accordingly.

If a miss is found at any point during the burst
mode access, the ICU operation is determined
according to the Write Allocate bit of the Moda
Register. If write allocate is enabled, a cache block is
allocated for the missed block and a miss handling
procedure is initiated. The memory bus access is
either read or read for modify depending if the Write
Miss Memory access Control bit of the Modb
Register is HIGH or LOW respectively. After the miss
procedure is completed, the cache operation con-
tinues as described for the hit case. Note that in this
case, each missed sub-block is first read into the
cache and then written. The memory bus operation
is not a continuous burst.

If write allocate is disabled, a block is not allocated
in the cache. The data is written only in the memory
using a burst mode write operation. The conditions
for the memory bus operation are checked for every
word in the burst, and the memory bus operation is
affected accordingly.

The next word address (current word address
plus 1) is checked in the cache for every word write.
If a hit is found after one or more misses, the ICU
continues as described for the case of hit. The
misses and hits cases and the transfers from one to
the other are transparent to the processor (only the
access time is affected).

A burst mode write access can be terminated by
the processor at any point of time by deasserting
*BREQ. The ICU services the last word write and
terminates the memory bus burst mode access, if
necessary.

Next, a variety of other access procedures
supported by the preferred embodiment of the
invention, will be described.

A non-cacheable memory access is supported. It
is used for bypassing the cache for special variable

20

EP 0 325 421 A2 39 40

processor bus operation. It is different for the cases
of single accesses and burst mode accesses.

For the case of cache miss on a processor bus
single memory read operation, the starting and
ending addresses, as well as address wrap around
or no wrap around, are controlled by the Single Miss
Control (SMC) and Sub-block Size (SBS) fields of
the Moda Register.

For the case of a cache miss on a processor bus
burst mode read access, a burst mode access is
started on the memory bus, for the reload operation.
The reload starting address is always the one of the
missed word. The burst end address is controlled by
the Moda Register.

When the ICU is the bus master, and it issues a
read request for reload operation, the *VSI input has
a special function. If it is asserted before the
transaction is completed (the last *MRDY has not
been accepted), then the BSTC signals are latched,
and a special Write Block Status instruction is
executed.

The operation of a slave cache for memory bus
read accesses is described with reference to ICU
multiprocessor support, to be set forth hereinafter.

Turning to write accesses. A write operation is
initiated by the cache master for write-through and
non-cacheable write accesses, modified block
copy-back to memory, and shared block write hit
operations. A burst mode access is initiated for the
modified block copy-back operation, and for burst
mode write accesses on the processor bus. A single
access is initiated in all the other cases. For single
accesses, the access type and length are trans-
ferred from the processor bus to the MDLN, MREQT
and *MLOCK memory bus signals.

A burst mode write access on the memory bus
starts at the required initial word address and
stopped at the last word which is required to be
written to the memory. It is not affected by the Moda
options as in the case of burst mode read accesses.

In the case of a hit to a shared block, a
write-through operation is initiated under control of
the Modb register depending on the value of the
register's write shared hit control field.

The operation of a salve cache for memory bus
write accesses is also described hereinafter with
reference to ICU multiprocessor support.

A read for modify is a special read operation. It is
used by the ICU in the case of a miss on a copy-back
write operation, under control of the Modb register.
The master cache indicates that the block is going to
be modified after the read is completed. In all other
respects the master operation is similar to the read
access.

When the ICU is the bus master, and it issues a
read for modify request for reload operation, the
*VSI input has a special function. If it is asserted
before the transaction is completed (the last *MRDY
has not been accepted), then the BSTC signals are
latched, and a special Write Block Status instruction
is executed.

The operation of a slave cache for memory bus
read for modify accesses is also described herein-
after with reference to ICU multiprocessor support.

Two more operations are supported by the

preferred embodiment of the ICU, a Write Broadcast
operation and a Memory Bus Cache Instruction
access.

A write broadcast operation is initiated by the ICU
5 only in the case of a write hit to a shared block,

under Modb Register control. The difference bet-
ween a write broadcast and a regular write is that in
write broadcast the memory is not updated. In all
other respects the operation is similar to the write

10 access.
A memory bus cache instruction access may be

initiated on the memory bus by external logic. When
the ICU is not the bus master, the assertion of *VSI
causes a cache instruction transaction on the

15 memory bus. During the first cycle of the transac-
tion, the MWR, MREQT, BSTC signals, and the
address are latched. The MWR and MREQT signals
specify the instruction. The BSTC signals specify the
block status for the relevant instructions. The

20 address is used as the address operand for the
relevant instruction. If the instruction requires data
operand, the data is latched during the second
cycle.

The preferred embodiment of the ICU follows the
25 following priority rules with respect to the different

cache accesses:
1 . All accesses are serviced on a first come

first serve basis.
2. A second access may be started in

30 pipeline while the first completes. The tag and
memory arrays can service a different access
every cycle.

3. If two accesses, one on the processor bus
and one on the memory bus, requires a tag

35 array access at the same time, the processor
bus access has the priority only if it is a primary
(not pipelined or continued burst) memory
access. The memory bus access has the
priority in all other cases.

40 4. The responses to the processor bus
accesses are always in the order that they were
received. If a pipelined or burst continuation
access hit in the cache, the response is delayed
until the primary access completes. Note that

45 the pipelined or burst continuation can com-
plete after the response of the primary access
has been sent but before it was fully completed.
This happens for primary write accesses before
the write is executed on the memory bus, for

50 reload operation after the required data has
been sent to the processor and in some of the
special instructions execution.

It should now be clear to those skilled in the art
that the ICU's special registers can accommodate

55 programmable option selection and status repor-
ting. Cache policies can be selected by using
programmable options. The cache write policy can
be programmed as write-through, copy-back or
flexible on a per access basis. A write allocate or

60 non-write allocate option can be selected. The
replacement algorithm can be programmed as LRU,
random or external. A flexible prefetch policy can be
selected. Read through option can be enabled. A
four word read buffer is incorporated to support

65 efficient prefetching and read operations.

21

EP 0 325 421 A2 42 41

the case of a miss, if a modified block is chosen for
replacement, it is placed in the write buffer. The read
for the missed sub-block is started before the write.
This feature enables the ICU to respond faster to the

5 processor request.
When the write-buffer is full, the ICU can still

service one more cache access as long as the
memory bus is not required (read hit or copy back
write hit). If the memory bus is required for another

10 write operation, the cache holds until there is one
available space in the write buffer for the write. All
other requests are serviced only after the write
buffer is empty. This is required in order to
guarantee correct sequencing of requests, i.e. a

15 miss on memory read waits until all the writes are
executed, in order to read an updated memory.

When the write buffer is disabled no write
accesses are buffered. The write operation on the
memory bus is started as soon as the bus is

20 available. The ICU can still service one more cache
access as long as the memory bus is not required
(read hit or copy back write hit). If the memory bus is
required, the cache holds until the previous write
operation is completed.

25 As for initialization, the ICU must be initialized
when power is first applied. It can be also initialized
at some later point in time, when required.

There are two methods to initialize the ICU, assert
the *RESET input or issue a Reset instruction. The

30 two methods have exactly the same effect on the
ICU. A special initialization sequence is performed,
according to the preferred embodiment of the
invention, as follows:

1 . Any, in progress, cache operation or cache
35 instruction is suspended.

2. Any memory bus operation is suspended.
3. Chip Select disable and chip select for

memory access enable bits, stored in the Chip
Select Mapping Register, are reset.

40 4. Bits indicating instruction and operand
validity, stored in the Instruction Register, are
reset.

5. A bit indicating instruction count validity,
stored in the Count Register, is reset.

45 6. The parity error, memory error, illegal
instruction and protection violation bits of the
Status Register are reset.

7. All the Moda register bits except for Read
Only Memory Enable (ROME) and the bit

50 indicating whether the cache is an instruction or
data cache (ID bit) are reset.

8. All the Modb register bits are reset.
9. All the valid bits are reset.

The following conditions should be kept for a
55 proper reset operation :

1. The *IREQ input of all ICU data caches in
the system should be connected to LOW level.
The *IREQ of all instruction caches should be
connected to the *IREQ output of the proces-

60 sor.
2. The DREQT1 of only one instruction cache

should be connected to High level, if the Reset
ROM is placed on the memory bus. All DREQT1
should be connected to LOW level if the Reset

65 ROM is placed on the processor bus.

The option bits, as indicated hereinbefore, are
defined for options selection and stored in the Moda
register.

As previously indicated, by comparison with the
preload instruction, a prefetch operation is defined
as the fetching of a variable or an instruction before
it is required. The ICU includes the hardware to
support several programmable prefetch options. It
also includes a memory read buffer which is used as
a prefetch buffer. Prefetched words can be saved in
the prefetch buffer if the cache array is not available
for the update. Each of the following prefetch
options can be used independently or in any
combination.

The simplest form of prefetching can be achieved
by using a sub-blcok size larger than one word. The
ICU reloads the sub-block in the case of a miss. The
words in the same sub-block of the required word
are prefetched.

The Moda Register controls the operation of the
ICU for single access miss.

The Moda register also controls the ICU operation
for a miss on a burst mode access. If the burst is
suspended by the processor, the cache can pre-
fetch more words before stopping the memory bus
burst. In this case the prefetch can proceed up to
the end of the same sub-block or the next
sub-block.

The Moda register also enables the prefetch
option for single access cache hits and burst access
cache hits.

In addition to prefetch, a reload operation is
defined and under the control of the programmable
Moda register.

The reload operation is dependent on the original
processor bus operation. It is different for the cases
of single accesses and burst mode accesses.

For the case of cache miss on a processor bus
single memory read operation, the starting and
ending addresses as well as address wrap around or
no wrap around are controlled by the Moda register.

For the case of a cache miss on a processor bus
burst mode read access, a burst mode access is
started on the memory bus, for the reload operation.
The reload starting address is always the one of the
missed word. The burst end address is also
controlled by the Moda register.

Next, before turning to the detailed description of
how the ICU supports multiprocessor operations,
the ICU write buffer and ICU initialization and reset
criteria will be set forth.

The ICU incorporates a 4 location write buffer. It
can buffer up to four write accesses (address,
control and data). The write buffer can be disabled
by setting a bit in the Moda register.

When enabled, the write buffer is used for
buffering write accesses on the memory bus. For
write-through and write broadcast accesses, four
individual write accesses can be buffered. The writes
wait in the write buffer until the bus is available. This
can improve the performance significantly for a
write-through cache, or if there are many write
broadcast operations.

The write buffer is also used for buffering a
modified block before it is written to the memory. In

22

EP 0 325 421 A2 44 43

diagram are possible without departing from the
scope or spirit of the invention.

It should be recalled that, according to the
preferred embodiment of the invention, two block

5 status bits and four valid bits are associated with
each cache block. The valid bits indicate the validity
of the words in the block. Each valid bit corresponds
to one word. If at least one valid bit is set then the
block is valid and the block status bits indicate a

10 valid status. If all the valid bits are reset, the block is
in a non-valid status, and the block status bits are
irrelevant. The block status bits are named shared
and modified bits. The shared bit indicates if the
block is shared by more than one processor, or

15 present in more than one cache. The modified bit
indicates if the block is modified relative to the main
memory. The two bits are independent and a valid
block can be assigned with the following statuses:

3. The Chip Select Mapping Register of
different ICUs should be programmed to re-
spond to different addresses for memory
accesses and cache instruction accesses. This
can be done by using the *CSEL input. A simple
configuration that does not require external
hardware is possible. The *CSEL input of
different caches can be connected to different
address bits and use the appropriate ad-
dresses. After the initial register programming
is completed, the *CSEL input can be disabled.

4. The programming of the ICU registers
should be the first sequence of operations after
Reset. No memory (except from instruction
ROM accesses), I/O or coprocessor accesses
should be performed before the ICUs are
configured according to the specific system.

5. If a data transfer controller (DTC) as
described in the incorporated copending appli-
cation related to the DTC, is present in the
system, the Modb register should be pro-
grammed before any DTC access is performed.
If the DTC is placed on the processor bus, it
should be programmed to respond to I/O
addresses (the ICUs should be programmed to
ignore I/O accesses).

Turning now to the multiprocessor support fea-
tures of the ICU.

The main problem, from a cache point of view, of
multiprocessor organizations is the data consist-
ency problem. This problem occurs if more than one
cache contain a copy of the same memory location,
and it is modified in one of the caches by its
processor. The other caches then contain staled
(not updated) copy of the data. The novel ICU
architecture addresses these problems. It will be
recognized by those skilled in the art that the
multiprocessor support constructs incorporated in
the novel ICU can be applied in other multiprocessor
cache environments as well.

The basic philosophy behind ICU multiprocessor
support is to include extensive features in order to
enable a high performance and high efficiency
multiprocessor cache system. The features include
enough flexibility so that the ICU imposes minimal
restrictions on the multiprocessor system organiza-
tion. The selection of the appropriate way to use the
multiprocessor support features is simple. It is done
under software control by programming option bits
in the on chip special registers.

Reference should now be made to FIG. 4.
A typical simplified shared bus multiprocessor

system diagram is shown in FIG. 4. Two or more
processor clusters can share the same memory bus
(two are shown in the figure). Each processor
cluster consists of one processor and two ICUs.
One ICU is used for instruction cache and the other
for data cache. The processor address bus (A) is
shown connected to the address bus of the two
ICUs (A). The processor instruction bus (I) is
connected to the cache bus (CB) of the instruction
cache. The processor data bus (D) is connected to
the cache bus (CB) of the data cache. The memory
bus (MEMAD) of the ICUs are both connected to the
shared memory bus. Many variations of this basic

Block status bits value Meaning
(shared, modified)

20

00 Exclusive non modified
01 Exclusive modified
10 Shared non modified
11 Sahred modified

25

It should also be recalled that non-cacheable data
is a data variable which is not cached. A non-ca-

30 cheable processor bus access is indicated to the
ICU, ASTC inputs. For this access, the cache is not
searched for the required data. A memory access is
started for reading or writing the data in memory. No
block is allocated in the cache for this data.

35 Non-cacheable data can be assigned on an access
by access basis. Usually, the ASTC inputs are
connected to the MMU programmable (MPGM)
outputs of the processor. In this case, the non-ca-
cheable data is assigned on a MMU page basis. The

40 non-cacheable data should be placed in a location
assigned by the system as non-cacheable. One way
to solve the data consistency problem is to assign
shared variables as non-cacheable.

A processor bus memory access can also be
45 specified as an interlock access. This is done by

setting the ICU *LOCK input. Interlock accesses are
controlled by the Modb Register and can be
designated as cacaheable or non-cacheable ac-
cesses.

50 In a multiprocessor environment, interlock vari-
ables can be used for synchronization, and syn-
chronized communication. These variables are ac-
cessed in a synchronized way. They can be written
by only one processor at any given time. A detailed

55 description of the ICU support for interlock ac-
cesses will be set forth hereinafter.

The ICU supports flexible write-through and
copy-back write policies. These write policies can be
assigned either globally or on an access by access

60 basis. The Moda Register controls the global write
policy. It can specify the flexible write-through or
copy-back policy. The ASTC inputs define the write
policy on an access by access basis. The access can
be assigned as an exclusive write-through, exclusive

65 copy-back, or shared. In the case of a cache hit, if

23

EP 0 325 421 A2 46 45

slave caches. In all other respects the slave cache
operation is similar to the case of a match on regular
read access.

For memory bus burst mode accesses the initial
5 address is latched. The address is incremented and

checked in the slave cache for every single transfer.
The slave cache operation in case of a match is
similar to the single access match.

The bus watching for read is essential in the
10 support of the data consistency ownership schemes

to be described in detail hereinafter.
The data intervention option is required by some

of the ownership schemes. For those schemes, the
memory should be designed to support it. The *DI

15 signal is pre-charged by the master cache during the
first cycle of the access. An external pull-up resistor
should be placed on the *DI signal in order to hold
the precharged HIGH value. The *DI signal is
discharged by the slave caches if data intervention

20 operation is performed. In this case, the data should
not be supplied by the memory, and the read access
should be cancelled in the memory. Note that the
*DI output is valid two cycles after the address is
presented on the memory bus. The memory cannot

25 respond during these cycles.
In the case of a match on a memory bus write or

write broadcast, the *HIT signal is asserted.
For burst mode write accesses the initial address

is latched. The address is incremented and checked
30 in the slave cache for every single data transfer. The

slave cache operation in case of a match is similar to
the single access match.

The bus watching for write is essential in the
support of most of the data consistency schemes.

35 A description of how block status shared bits are
assigned will now be set forth.

The block status shared bit can be assigned by
either software or hardware control. For software
control, the processor can assign the shared bit by

40 using the ASTC inputs. These inputs define the
shared bit assignment on an access by access
basis. The access can be assigned as an exclusive
write-through, exclusive copy-back, or shared.
Usually the ASTC inputs are connected to the

45 processor MPGM signals, which are driven accord-
ing to the MMU user programmable bits. The shared
and exclusive variables are placed in shared or
exclusive pages, and the user programmable bits for
the pages are assigned accordingly. Depending on

50 the state of the PSBC bit of the Modb register
(referred to hereinbefore), the shared bit can be
modified for every processor access (PSBC = 1), or
only for the case of cache miss (PSBC=0).

For hardware control the shared bit can be
55 assigned by using the *HIT signal, or by using

special purpose logic on the memory bus and the
Write Block Status memory bus cache instruction.
The *HIT signal usage in read and write accesses is
controlled by an External Shared Bit Control (ESBC)

60 field of the Modb Register.
In the case that a master cache uses the *HIT

signal, it precharges it during the first cycle of the
memory bus access. Then, the *HIT signal is placed
in three state. An External pull-up resistor should be

65 placed on the *HIT signal, in order to hold the

there is a conflict between the ASTC inputs shared
bit assignment and the block status shared bit in the
cache, the write operation is controlled by the value
on a Processor Shared Bit Control (PSBC) in the
Modb Register. If PSBC is 0, the block status shared
bit is not affected and the write policy is determined
according to the block status. If PSBC is 1 , the block
status shared bit is assigned according to the ASTC
inputs and the write policy is determined accord-
ingly.

For the case of a shared write access, a
write-through or write-broadcast access is always
performed on the memory bus. In this case, a Write
Shared Hit Control (WSHC) field in the Modb
Register, and not the write policy field, controls the
ICU operation.

In a multiprocessor cache environment, the
write-through policy has less problems than the
copy-back policy. If write-through is used, the
memory always contains an updated version of the
data. The write-through access can be also used by
other caches to invalidate their own copy.

The processor bus cache instructions can be
used by the system for controlling the cache in a
multiprocessor environment. Invalidate instructions
can be used to invalidate stale data. Other instruc-
tions can be used in more complex software
controlled multiprocessor caches for reading and
writing block status, memory updates, and sending
cached data on the memory bus.

A further multiprocessor support feature of the
ICU is "bus watching". The novel ICU is capable of
watching the memory bus addresses, and checking
if they match an address in the tag array. This is done
transparently to the processor bus cache accesses.
The Read Bus Watch Enable information in the Modb
register, controls (enables or disables) the bus
watching capability for memory bus read accesses.
The Write Bus Watch Enable information in the Modb
register does the same thing for memory bus write
accesses. When enabled, the bus is watched only
when the ICU is the bus slave. In the case of an
address match, the ICU performs operations as
controlled by the Read Match Control and Write
Match Control information in the Modb register.

In the case of a match on memory bus read, the
*HIT signal is asserted by the ICU. The shared block
status bit is set since the block is potentially fetched
by another cache. The Modb Register controls the
data intervention operation and the block status
modified bit assignment. The options are no data
intervention, data intervention (modified bit un-
changed) and data intervention (modified bit reset).

When data intervention is disabled, in the case of
a match on memory bus read by another master, the
ICU asserts the *HIT signal, but does not drive the
data. The block status modified information is not
changed. When data intervention is enabled, if a
match is found for a memory bus read by another
master and the block is modified, then the ICU
asserts the *DI output and supplies the required
data on the memory bus. The block status modified
bit is either not changed or reset.

In the case of a match on a read-for-modify
access, the corresponding word is invalidated by the

24

EP 0 325 421 A2 48 47

precharged HIGH value. The slave caches dischar-
ges it if they find a match in their tag buffer. The *HIT
signal is latched by the master cache when *MRDY
is asserted or two cycles after the memory bus
address cycle, whichever is later. If the *HIT is
asserted, then, the variable is also present in other
caches, and the block is assigned with a shared
status. If the *HIT input is not asserted, the variable
is not present in any cache, and the block is
assigned with an exclusive status.

This method is used in some of the ownership
schemes. It guarantees that the shared status
reflects the exact state of the variable. It is shared
only if it is present in another cache. Note that there
is a performance price associated with the use of the
*HIT signal. The ICU has to wait for two cycles until
all other caches respond. A special internal cache
array access is also required if the shared bit must
be modified. This should be considered against the
advantages, before choosing this option.

The Write Block Status memory bus cache
instruction, described hereinbefore, can be used for
writing a specific status to the block status shared
bit. This instruction can be used by external logic for
a flexible control of the shared bit.

In the case of a conflict on the shared block
assignment between the above three methods, the
operation will be performed, in the preferred
embodiment of the invention, according to the
following priority:

1 . Write Block Status instruction.
2. *HIT input control.
3. ASTC inputs control.

For example, if the block is assigned as exclusive
by the ASTC inputs, but a memory bus access is
required. The "HIT input usage is enabled and it
indicates that the block is exclusive. The Write Block
Status instruction is also used during the memory
access and assign a shared status. The block ends
up in the shared status.

The different methods of shared block assign-
ments, and their combinations, are used for the
implementation of all the multiprocessor cache
systems supported by the novel ICU.

Next, ICU operation when a write hit occurs to a
shared block will be described.

When a write access is directed to a shared block
and it hits in the cache, a special operation should be
performed on the memory bus. The other caches in
the system should be aware of the fact that a shared
data variable has been modified. Their copy should
be either invalidated or updated to reflect the
current version of the shared variable. The main
memory can be either written or not. The block
status of the master cache is affected accordingly.
The ICU operation on a write hit to a shared block is
controlled by a Write Shared Hit Control (WSHC)
field in the Modb register. One encoding scheme is
as follows:

Slave New block Master Slave
cache cache

operation operation

WSHC
value status

00 Write invalidate exclusive
through unmodi-

fied
01 Write invalidate exclusive

broadcast modified
10 Write update shared

through unmodi-
fied

11 Write update shared
broadcast modified

10

15
When WSHC = 00, the ICU writes through any

write hit to a shared block. The memory is updated
and other caches are invlidated. The block is
assigned with the exclusive unmodified status.

20 Since the block becomes exclusive, further writes to
the same block can be written only in the cache. This
scheme is effective if a shared variable is written
many times by one processor before needed by
other processors.

25 When WSHC = 01, the ICU uses a write borad-
cast transaction on the memory bus. The memory is
not updated and other caches are invalidated. The
block is assigned with the exclusive modified status.
Since the block becomes exclusive, further writes to

30 the same block can be written only in the cache.
Since the memory is not updated the modified bit is
set. The data intervention option should be enabled
in order to supply the most current value, when
another master tries to read this block.

35 When WSHC = 10, the ICU writes through any
write hit to a shared block. The memory is updated
and other caches are also updated. If the ESBC is
not enabled for write accesses, the block is
assigned the shared unmodified status. If the ESBC

40 is enabled for write accesses, the block is assigned
the exclusive unmodified or shared unmodified
status, according to the *HIT input. In this scheme all
the caches are kept synchronized, in the expense of
memory bus write transaction for each write to a

45 shared block. It is effective if a shared variable is not
written many times by one processor before needed
by other processors.

When WSHC =11, the ICU broadcast writes any
write hit to a shared block. The memory is not

50 updated and other caches are updated. If the ESBC
is not enabled for write accesses, the block is
assigned the shared modified status. If the ESBC is
enabled for write accesses, the block is assigned
the exclusive modified or shared modified status,

55 according to the *HIT input. In this scheme all the
caches are kept synchronized, in the expense of
memory bus write transaction for each write to a
shared block. It is effective if a shared variable is not
written many times by one processor before needed

60 by other processors. Since the memory is not
updated the modified bit is set. The data intervention
option should be enabled in order to supply the most
current value, when another master tries to read this
block.

65 The WSHC options are used for the different

25

EP 0 325 421 A2 50 49

and the use of cache instructions (e.g., invalidate).
Shared variables can be either assigned as non-ca-
cheable or invalidated from the appropriate caches
when they can be modified by another processor.

5 Interlock operations are used for synchronization.
Shared buffers, or mailboxes are used for communi-
cation.

This is a very flexible scheme with no special
hardware requirements or restrictions. It can be

10 used successfully in systems with small amounts of
sharing. However, if the amount of sharing is high,
the system performance can be severely degraded
in this scheme. Many variable cannot be cached, or
big overhead is imposed on cache consistency

15 maintenance. Another disadvantage of this scheme
is that the cache is not transparent to the software,
and the information about which variables are
shared must be known. Software control can be
used in combination with any of the other multipro-

20 cessor schemes.
There are no special programmable options

requirements for this configuration. The Modb
register can be programmed to 0.

For write-through caches, the processors share
25 the same bus and memory, and all the caches use

the write-through policy. A master cache transfers
every processor write operation to the memory bus.
The cache consistency is maintained by using bus
watching for writes. Every write operation on the

30 shared memory bus is checked in all the slave
caches. If a match is found the corresponding
address is invalidated. This is a simple data
consistency scheme. Its main disadvantage is that
every write cause a memory bus operation. The

35 performance can be severely degraded because of
it. The memory bus utilization can be much higher so
that only a small number of processors can be
placed in the system. The write buffer can help to
reduce these bad effects.

40 For this option, all the blocks should be assigned
as exclusive write-through, the write policy should
be programmed as write-through, bus watching
should be enabled for write accesses, and the Modb
register should specify invalidate word.

45 For copy-back caches with write-through shared
variables, the processors share the same bus and
memory, and the caches use a flexible write policy.
The exclusive variables use a copy-back option
(placed in a page assigned as exclusive copy-back).

50 It is the system responsibility, to insure that only the
variables that are used exclusively by one processor
are assigned as exclusive copy-back. Note that if
process migration is permitted, an exclusive variable
must be invalidated in the old processor's cache.

55 The shared variables use a write-through option
(placed in a page assigned as exclusive write-
throug). It is the system responsibility to assign this
status to any variable that might be shared (includ-
ing sharing with I/O, or porcessors with no cache).

60 Some variables, like I/O, must still be assigned as
non-cacheable. A bus watching for writes scheme
(similar to the one for the write-through caches) is
used for maintaining data consistency. Slave caches
invalidate their copy in the case of match. A possible

65 variation with a better performance is that the slave

ownership schemes. They can be also used for other
multiprocessor cache systems.

The ICU memory bus operation for a copy-back
write miss with write allocate is controlled by a Write
Miss Memory access Control (WMMC) bit on the
Modb register. It has no effect on write-through
accesses or copy-back accesses with no write
allocate. When WMMC = 1, the ICU uses a read
access en the memory bus for fetching the required
sub-block, followed by cache write access. This
access is treated as a separate cache write
operation. It always hits and is written into the cache.
If the block is shared, a memory bus operation is
performed according to the WSHC field of the Modb
register. When WMMC = 0, the Read for Modify
transaction is used on the memory bus for fetching
the required sub-block. Slave caches invalidate their
copy of the block, in case of a match. The write is
perfomed in the cache without any memory bus
operation.

The WMMC options are used for the different
ownership schemes. They can be also used for other
multiprocessor cache systems.

The memory bus cache instructions are issued by
special logic on the memory bus. They allow flexible
control of the cache. Cached data can be invali-
dated, read, and written. The block status can be
read and written. A detailed description of the
memory bus cache instructions has been set forth
hereinbefore.

In the multiprocessor environment, the special
control logic should be able to direct the instruction
to the appropriate ICU. The logic can be designed
for any required multiprocessor system. Specifically,
it is required to use this method, for systems without
one shared bus (cross-bar switch or multi-bus
configurations). In these systems the bus watching
facility is not effective, and special logic should
monitor the memory accesses and issue commands
to the different ICUs in the system accordingly. The
control logic can be also designed to implement a
specific multiprocessor scheme which is not directly
supported by the ICU.

There are many possibilities for multiprocessor
cache organizations. The ICU is designed to support
various shared memory multiprocessor cache or-
ganizations. The ICU can be also used in a
non-shared-memory organization, but it does not
include special hardware support for these systems.
The detailed description to follow sets forth the main
shared-memory organizations which are supported
by the ICU. Variations, combinations and different
systems than the described systems are also
possible.

The main shared-memory organizations sup-
ported are: software controlled caches, write-
through caches, copy-back caches with write-
through shared variables, ownership schemes and
shared memory with non-shared bus organizations.

For software controlled caches, all the multipro-
cessor communications and synchronizations are
done under software control. The cache consistency
is maintained by software. This can be done by using
a combination of non-cacheable variables, interlock
operations (to be described in detail hereinafter),

26

EP 0 325 421 A2 52 51

completeness and to facilitate the explanation of
how these schemes are supported by the ICU.

The ICU directly supports all the above ownership
schemes, and possibly other schemes that may

5 evolve. This is achieved by selecting the required
programmable options. In all the ownership
schemes the write policy is programmed as flexible.
Most of the write accesses can use a copy-back
policy. Bus watching is enabled for both read and

10 write. The Modb register with the various control
fields defined hereinbefore, may be used to imple-
ment the various ownership schemes.

In the Write Once scheme, only the exclusive
unmodified, exclusive modified, shared unmodified,

15 and invalid states are defined. The shared modified
state is not used. The basic principle of this scheme
is that every write which hits in the cache the first
time (write to a shared page) causes a write-through
operation. Then, the block is assigned as exclusive

20 modified, and further writes can be performed only
in the cache. The slave caches invalidate their own
copy of the block. A copy-back write to an exclusive
block sets the modified bit. An exclusive modified
block is owned by the cache, and data intervention is

25 used in the case that another cache tries to read it
(the memory is also updated and the block is then
assigned as shared unmodified). For this scheme, all
processor accesses should be assigned as shared.
Note that an exlcusive block status overrides the

30 shared indication by the ASTC inputs.
In the Berkeley scheme, only the exclusive

modified, shared unmodified, shared modified, and
invalid states are defined. The exclusive unmodified
state is not used. A cache that contains the

35 exclusive modified or shared modified block is its
owner. In the case of a miss on read, the block is
assigned as shared unmodified. In the case of write
hit to a shared block a write broadcast operation is
performed and the block is assigned as exclusive

40 modified. Other caches invalidate their own copy of
the block. Data intervention is performed by the
owner in the case of read match. For this scheme, all
processor accesses should be assigned as shared.

In the Illinois scheme, only the exclusive unmodi-
45 fied, exclusive modified, shared unmodified, and

invalid states are defined. The shared modified state
is not used. A cache that contains the exclusive
modified block is its owner. In the case of a miss on
read, the block is assigned as shared unmodified or

50 exclusive unmodified depending on the *HIT input.
In the case of write hit to a shared block a write
broadcast operation is performed and the block is
assigned as exclusive modified. Other caches
invalidate their own copy of the block. Data

55 intervention is perfomed by the owner in the case of
read match. Note that the data intervention oper-
ation is different from the original Illinois scheme
definition, however the end results are the same. In
the original definition, all caches that contain a copy

60 of the required data try to intervene. In our case,
data intervention is performed only if the block is
modified. If the block is shared unmodified the data
is supplied from the memory. For this scheme,
processor accesses shared bit assignment is irrele-

65 vant, since the *HIT signal is used for this purpose.

caches update their copy instead of invalidating it.
This scheme is based on the assumption that all

the shared variables are known and placed in a
write-through or shared pages. If this is the case, a
better performance compared to the write-through
scheme can be achieved. However, if the amount of
sharing is high, the disadvantages of the write-
through operations of the shared data become more
significant, and the performance degrades.

Except from the shared and exclusive variable
assignments, bus watching should be enabled for
write accesses and the Modb register should
specify invalidate word. If the slave cache update
variation is desired the Modb register should be
programmed accordingly.

Turning to ownership schemes. These schemes
are based on shared memory and shared bus
organizations with bus watching for maintaining data
consistency. The basic principle of the ownership
schemes is that a variable is owned by only one
cache. The owning cache contains the most up to
date version of the variable, and it is responsible for
maintaining its consistency. If a variable is not
owned by any cache, then, the memory contains an
updated value. In all the ownership schemes, a
varaible can be in one of several (maximum 5) states
in a cache. The five possible states (blcok statuses)
supported by the preferred embodiment of the ICU
are:

1. Exclusive write-through
2. Exclusive copy-back
3. Shared unmodified
4. Shared modified
5. Not valid

Each ownership scheme is supported by a
hardware implemented state machine which con-
trols the state transitions. The different ownership
schemes require different operations in the cases of
read match, write match, write hit, and write miss.
Different amounts of hardware support in the caches
and in the system in general are required accord-
ingly.

None of the ownership schemes require software
control of the cache. They allow higher performance
at the expense of more complicated hardware
requirements.

There are six onwership schemes well known to
those skilled in the art. They are :

1 . Write Once
2. Berkeley
3. Illinois
4. Firefly
5. Dragon
6. Futurebus

One more scheme, known as the Synapse
scheme, is very similar to the Write Once scheme,
but it relies on a single bit tag which is included in the
main memory for each cache block. This scheme is
not directly supported by the ICU, however it can be
implemented by using the Write Once options and
some external logic..

Although the details of the various ownership
schemes are well known and taught in printed
publications, a short description of the main features
of each scheme will be set forth for the sake of

27

EP 0 325421 A2 54 53

better performance.
The basic support for these organizations are the

memory bus cache instructions. A detailed descrip-
tion of the memory bus cache instructions has been

5 set forth hereinbefore. External control logic is
required for monitoring memory accesses and
issuing the cache instructions to the appropriate
ICU. This logic may be designed according to the
specific system organization. It should be capable of

10 monitoring all main memory accesses (this function
can be placed in the memory controller). Then,
according to global information, a memory bus
cache instruction can be directed to the appropriate
cache. The details of such an implementation are

15 system dependent, not a part of the invention, and
many variations are possible. In order to illustrate
the ICU support for these organizations some basic
functions will now be described.

When one cache tries to read a block from the
20 memory, the control logic can use the Write Block

Status instruction in order to designate the block as
shared or exclusive. If the updated version of the
required variable is not present in the memory but in
one of the caches, the Send Word, Send Word If

25 Modified, or Send Block if Modified can be used in
order to receive the updated version.

When a shared variable which is present in some
of the caches is written by one of the processors,
the ICU can be programmed to either write-through

30 or write-broadcast the write information. An Invali-
date Word, Invalidate Block, or Write In Cache
instruction can be used in order to invalidate or
update the copy of the other caches.

The block status of any cache block can be read
35 or written whenever necessary by using the Read

Block Status and Write Block Status instruction. This
can be done by the control logic, in order to gather
information on caches contents or specify block
statuses.

40 Some of the programmable options can be also
used for these organizations, in order to specify the
ICU operation in the cases of shared hit, read and
write miss. The bus watching can be used if the
special logic is designed to issue read and write

45 operations on the ICU memory bus, instead of
memory bus cache instructions.

In a multi-bus organization, a combination of the
bus watching and the memory bus cache instruction
can be used. Bus watching can cover the data

50 consistency of the caches that share the same bus.
Special logic is required to transfer the relevant
accesses or issue memory bus instruction to the
appropriate caches, for inter bus data consistency,
i.e., an operation on one bus which affect data in a

55 cache placed on another bus. The design of the
special logic is well within the capability of those
skilled in the art and outside the scope of the instant
invention.

In order to complete the description of the novel
60 ICU, its interlock facility will be described in detail.

First, however, more generally then in the ICU
context, one skilled in the art will appreciate that
interlock variables are used for semaphores and
other synchronization variables in a multiprocessor

65 or multitasking environment. Synchronization vari-

In the Firefly scheme, only the exclusive unmodi-
fied, exclusive modified, shared unmodified, and
invalid states are defined. The shared modified state
is not used. A cache that contains the exclusive
modified block is its owner. In the case of a miss on
read, the block is assigned as shared unmodified or
exclusive unmodified depending on the *HIT input.
In the case of write hit to a shared block a
write-through operation is performed and the block
is assigned as shared unmodified or exclusive
unmodified according to the *HIT input. Other
caches update their own data in the memory array.
Data intervention is performed by the owner in the
case of read match. Note that the data intervention
operation is different from the original Firefly
scheme definition, however the end results are the
same. In the original definition, all caches that
contain a copy of the required data try to intervene.
In our case, data intervention is performed only if the
block is modified. If the block is shared unmodified
the data is supplied from the memory. For this
scheme, processor accesses shared bit assignment
is irrelevant, since the *HIT signal is used for this
purpose.

In the Dragon scheme, all the five block statuses
are used. A cache that contains the exclusive
modified or shared modified block is its owner. In the
case of a miss on read, the block is assigned as
shared unmodified or exclusive unmodified depend-
ing on the *HIT input. In the case of write hit to a
shared block a write-broadcast operation is per-
formed (the memory is not updated) and the block is
assigned as shared unmodified or exclusive unmodi-
fied according to the "HIT input. Other caches
update their own copy of the data. Data intervention
is performed by the owner in the case of read match.
For this scheme, processor accesses shared bit
assignement is irrelevant, since the *HIT signal is
used for this purpose.

In the Futurebus scheme, all the five block
statuses are used. This scheme is a flexible scheme
that allows the implementation of all the other
ownership schemes (with some slight modificaions).
The cache operation for the cases of read and write
matches as well as write hit and read and write miss,
are defined with enough flexibility for the different
ownership schemes implementations. The use of
the *HlT signal is also optional. The Futurebus
scheme is fully supported by the ICU's flexibility. The
ICU includes more flexibility than required by the
Futurebus scheme so that some of the limitations,
like memory update on data intervention and write
broadcast support, are removed. For this scheme,
processor accesses shared bit assignement can be
performed either by software assignements or using
the *HIT signal.

Turning, finally, to shared memory with no shared
bus organizations. First, it should be noted that the
bus watching capability is useful only in a shared bus
multiprocessor organization. Other shared memory
organizations which include multiple buses or a
cross-bar switch, are also supported by the ICU.
These organizations are required when the shared
bus becomes a bottleneck in the system. In this
case, they enable a larger number of processors and

28

EP 0 325 421 A2 55 56

handling of interlock variables. It is compatible with
the processor and takes advantage of the proces-
sor's different interlock basic operations.

The interlocked read and write operations (*LOCK
5 is asserted) are treated in a special way. An

interlocked read (generated by the processor for the
LOADL and LOADSET instructions), is treated as a
miss, unless it hits in a shared block. A reload
oepration is started on the memory address bus with

10 *MLOCK asserted. The read data is stored in the
cache and the block assigned as shared. For a
shared block hit, the data is supplied by the cache
with no memory address bus access.

An interlocked write operation is treated differ-
15 ently for the processor STOREL than the write of the

LOADSET instructions. The ICU can distinguish
between the two types of interlock writes according
to the state of the 'LOCK input in the cycle
preceding the write access. If the *LOCK bit was set,

20 it means that the interlock write is the write of a
LOADSET instruction. If it was not set, then this is a
write of STOREL.

For the STOREL write interlocked, the ICU
initiates a write-through operation to the memory. In

25 case of a cache hit the block is invalidated.
For the LOADSET write interlocked, the data is

written into the cache. The data is written also to the
memory only if the read access of the LOADSET
instruction generated a miss. This guarantees that

30 the memory will be written only for the first time that
the interlocked variable is read.

For both cases, the *MLOCK output is asserted
during the memory write operation. All other caches
invalidate their own copy, when a write with *MLOCK

35 asserted is performed by another master.
There is a special way in which the processor

should access interlock variables if the interlock
facility is enabled (variations might be possible). The
LOADSET instruction is used in order to test and set

40 an interlock variable. If the variable value is 0, it is not
busy and can be used by the processor (or the
process). Note that as a result of LOADSET
instruction a sub-block is loaded into the cache. This
sub-block includes the interlock variable (word) and

45 possibly some other words if the sub-block size is
greater then one. The user can take advantage of
this fact and place related infromation in the same
sub-block of the interlocked variable.

If the variable value is 1 , it is busy and it (or the
50 area that it protects) cannot be used. The program

can either use a busy wait scheme and continue the
testing until the varialbe is free, or do other
operation (or tasks) and check the variable later. The
testing of the variable is done by using the LOADSET

55 instruction.
The master ICU uses the memory address bus

only for the first LOADSET instruction. The variable
is read from memory and placed in the cache with
the shared block status. The first write of the

60 LOADSET is also written to the memory. The next
LOADSET instructions hit in the cache (in most
cases) and do not use the memory address bus.
Other caches invalidate their own copy in case of a
match on a write with *MLOCK asserted.

65 The STOREL instruction is used for the release of

ables can be also used as a protection key for a
shared memory area. The accesses to the interlock
variables should be synchronized. Only one proces-
sor should be allowed to access interlock variables
at any given time. Any read of an interlock variable
should return the most up-to-date value of the
variable.

In order to support interlock variable accesses,
the processor should include some type of atomic
read-modify-write operation. This allows checking
and affecting a variable by a processor in an atomic
way, while no other processor can interfere. In a
system which includes cache memories, the inter-
lock variables create a special problem, since their
access should be synchronized independently of the
cache.

A simple solution to this problem is to assign all
the interlock variables as non-cacheable. In this
case, the interlock variables are not allowed to be
cached, and all interlock accesses are directed to
the memory. This method is used in most of the
known cache systems. The main disadvantage is the
lower performance, and the higher bus utilization,
caused by the interlock variables accesses to the
memory. As the number of interlock accesses
grows, the impact on the performance can become
severe.

The novel ICU and indeed the interlock facility to
be described hereinafter which is novel in its own
right, allows for the caching of interlock variables.
This allows a better performance and lower bus
utilization to be achieved. Most of the interlock
variable accesses are faster and do not appear on
the memory bus, since the access is done only in the
cache. The scheme is simple and can be im-
plemented on the single chip ICU.

There are several ways to guarantee the syn-
chronization associated with interlock variables. The
processor associated with the illustrative embodi-
ment of the invention includes the basic operations
required for efficient interlocking. These are de-
scribed in detail in the incorporated, processor
related copending application, and specifically are
the LOADSET, LOADL and STOREL instructions,
the LK bit in the Current Processor Status Register,
and the *LOCK output. The ICU implements two
schemes for handling interlock variables. The
desired scheme can be selected by programming
the Cache Interlock Enable (CILE) bit of the Modb
register.

When the CILE bit is LOW, caching interlock
variables is disabled. Interlock accesses (*LOCK bit
asserted) are treated as non-cacheable accesses.
The cache is not searched for a hit and the access is
transferred with the lock indication (*MLOCK as-
serted) to the memory bus. In this option the
interlock variable handling is under the memory
control. The memory should disable any access to
the interlock variable while the *MLOCK signal is
asserted. A LOADSET instruction can be used for
testing and setting the interlock variable in the
memory.

When the CILE bit is HIGH, the facility for caching
interlocked variables is enabled. This is a special
facility, built into the ICU to enable more efficient

29

EP 0 325 421 A2 58 57

an interlocked variable. As a result of the STOREL
instruction a write access with *MLOCK asserted is
intitiated on the memory address bus by the master Claims
cache, and the variable is invalidated in all the other
caches. If the variable is still in the master cache, it is 5 1
also invalidated. This is done to guarantee that the tur<
next access to this variable by the processor will be plu
a miss. The variable will be read from the meory in alo
order to get the most up-to-date value. Note that fun
during the usage of an interlock variable by the 10 sys
master cache, if another processor is trying to test uni
the same variable at the first time (using LOADSET), fac
the write of the LOADSET is issued on the memory the
address bus and variable invalidated in all other fac
caches (including the master cache). 15 an<

AH the other processors that have been waiting
for the variable have to access the memory when
they next test it. Only the one cache that wins in the
bus arbitration gets the free interlocked variable.

The main advantage of using the interlock facility 20
is better performance and lower memory bus
utilization. In a multiprocessor system with many
interlock variable accesses a significant perfor-
mance improvement can be achieved by using it.
Another advantage is that the memory controller can 25
treat interlock accesses as regular accesses.

It should also be noted that the interlock facility
can be impelmented with other then the RISC/SIP
processor defined in the relevant copending appli-
cation referred to herein. 30

What has been described herein include the novel
ICU per se, along with the novel organization of the 2
ICU for flexible cache system design, a novel cache wh
interlock facility, a novel and flexible multiprocessor as:
support scheme and a preload scheme for inte- 35 a
grated cache memories. The details of the above prc
have been set forth in terms of the novel ICU's se<
function, its internal registers, inputs and outputs, prc
sample instruction sets, data formats, programma- '@>
bility, types of systems supported, etc. In view of this 40 wh
presentation, those skilled in the art will readily cai
appreciate that the objectives of the invention, set ore
forth hereinbefore, have been met. co

The foregoing description of a preferred embodi- cai
ment and illustrative examples of the novel methods 45
and apparatus has been presented for the purposes wr
of illustration and description only. It is not intended po
to be exhaustive or to limit the invention to the
precise form disclosed, and obviously many modifi- wr
cations and variations are possible in light of the 50 co
above teaching.

The embodiment and examples set forth herein
were presented in order to best explain the
principles of the instant invention and its practical
application to thereby enable others skilled in the art 55
to best utilize the instant invention in various
embodiments and with various modifications as are
suited to the particular use contemplated.

It is intended that the scope of the instant
invention be defined by the claims appended hereto. 60

65

1. An integrated cache unit ("ICU") architec-
ture that supports the implementation of a
plurality of multiprocessor support schemes
along with the implementation of other cache
functions, in a computing system, wherein said
system includes at least one central processing
unit ("CPU"), processor bus means which
facilitate communication between said CPU and
the ICU, memory and memory bus means which
facilitate communication between said memory
and the ICU, comprising:

(a) a processor bus unit, coupled to said
processor bus means, for controlling an
ICU/processorbus interface;

(b) a memory bus unit, coupled to said
memory bus means, for controlling an
ICU/memory bus interface; and

(c) a programmable cache unit, coupled
to both said processor bus unit, and said
memory bus unit, for performing cache
functions, wherein said programmable
cache unit includes a set of special
registers which may be used for selecting
a particular multiprocessor support
scheme from said plurality of multiproces-
sor support schemes whenever said ICU is
to be operated in a multiprocessor mode.

2. An ICU architecture as set forth in claim 1
wherein said programmable cache unit is
associated with memory array means which, in
a first configuration is located within said
programmable cache means and which, in a
second configuration, is located outside said
programmable cache means.

3. An ICU architecture as set forth in claim 2
wherein said memory array means stores
cached data and instruction signals and is
organized as a set of blocks, each block
corresponding to a predetermined number of
cached words.

4. An ICU architecture as set forth in claim 3
wherein said programmable cache unit sup-
ports variable block and sub-block sizing.

5. An ICU architecture as set forth in claim 3
wherein said programmable cache unit further
comprises:

(a) a cache unit address bus, coupled to
said processor bus unit and said memory
bus unit, for carrying address signals;

(b) a cache unit data bus, coupled to
said processor bus unit and said memory
bus unit, for carrying data signals;

(c) block status array means coupled to
said cache data bus, for storing an indica-
tion of the modified, shared and locked
status of each block; and

(d) cache unit control means, coupled to
said processor bus control means and said
memory bus control means, for synchro-
nizing and controlling operations of said
programmable cache unit, said processor

30

EP 0 325 421 A2 59 60

bus unit and said memory bus unit.
6. An ICU architecture as set forth in claim 5

wherein said cache control means is further
operative to generate hit signals for valid cache
accesses and maintains and updates data 5
stored in said set of special registers and said
block status array.

7. An ICU architecture as set forth in claim 6
wherein said set of special registers includes at
least one programmable register having at least 10
one bit for selecting a 2n way set associative
cache organization where n is an integer
greater than or equal to zero.

8. An ICU architecture as set forth in claim 7
further wherein said plurality of multiprocessor 15
support schemes include at least one scheme
involving bus watching and further wherein said
ICU architecture comprises means for imple-
menting bus watching capabilities in a manner
that is transparent to processor bus cache 20
accesses.

9. An ICU architecture as set forth in claim 8
wherein said set of multiprocessor support .
schemes include ownership schemes and fur-
ther wherein said ICU architecture comprises 25
means for supporting at least one ownership
scheme based on a shared memory organiza-
tion that utilizes bus watching for maintaining
cache data consistency.

10. An ICU architecture as set forth in claim 8 30
further comprising means for enabling and
disabling bus watching for both memory bus
read and memory bus write accesses.
11. An ICU architecture as set forth in claim 10

further comprising means for selectively enab- 35
ling a data intervention option to be used in
conjunction with bus watching.

12. An ICU architecture as set forth in claim 1 1
further comprising means for assuring cache
data consistency via the use of said bus 40
watching capabilities.

13. An ICU architecture as set forth in claim 6
further comprising means for implementing a
set of cache instructions which allow flexible
control of the ICU including the ability to 45
invalidate read and write cached data.

14. An ICU architecture as set forth in claim 6
that supports both multiprocessor shared
memory and non-shared memory organization.
15. An ICU architecture as set forth in claim 14 50

further comprising means via which all multipro-
cessor communication and synchronization,
together with cache data consistency, is per-
formed via software control.

16. An ICU architecture as set forth in claim 15 55
wherein a shared memory organization is
controlled via programmable interlock oper-
ations and an internal ICU instruction set.

17. An ICU architecture as set forth in claim 6
further comprising means to implement write- 60
through caches.

18. An ICU architecture as set forth in claim 6
further comprisng means to implement copy- .
back caches with write-through shared vari-
ables. 65

19. A method for flexibly implementing a
plurality of multiprocessor support schemes in
an integrated cache unit ("ICU") architecture
that supports other cache functions in a
computing system, wherein said system in-
cludes at least one central processing unit
("CPU"), processor bus means which facilitate
communication between said CPU and the ICU,
memory and memory bus means which facili-
tate communication between said memory and
the ICU, comprising the steps of:

(a) controlling an ICU/processor bus
interface from within said ICU utilizing a
processor bus unit coupled to said pro-
cessor means;

(b) controlling an ICU/memory bus inter-
face from within said ICU utilizing a
memory bus unit coupled to said memory
bus means; and

(c) performing cache functions from
within said ICU utilizing a programmable
cache unit coupled to both said processor
bus unit and said memory bus unit,
wherein said programmable cache unit
includes at least one special register which
may be used to select a multiprocessor
support scheme, from said plurality of
multiprocessor support schemes, when-
ever said ICU is to be operated in a
multiprocessor mode.

20. A method as set forth in claim 19 further
comprising the step of enabling multiprocessor
support options by setting bits in said special
register.
21 . A method as set forth in claim 20 wherein

said step of performing cache functions utiliz-
ing a programmable cache unit further com-
prises the steps of:

(a) carrying address signals within said
ICU on an internal cache unit address bus
coupled to said processor bus unit and
said memory bus unit;

(b) carrying data signals within said ICU
on an internal cache unit data bus coupled
to said processor bus unit and said
memory bus unit;

(c) storing an indication of the modified,
shared and locked status of each block in
block status array means coupled to said
cache data bus; and

(d) synchronizing and controlling oper-
ations of said programmable cache unit,
said processor bus and said memory bus
unit via cache unit control means.

22. A method as set forth in claim 21 further
comprising the steps of generating hit signals
for valid cache accesses and maintaining and
updating data stored in said set of special
registers and said block status array, via said
cache control means.
23. A method as set forth in claim 22 further

comprising the step of locking variables to be
exclusively used by a specified processor in a
multiprocessor environment.
24. A method as set forth in claim 19 further

31

EP 0 325 421 A2 62 61

operation is not enabled.
27. An ICU architecture as set forth in claim 10

further comprising means for selectively enab-
ling write-through and invalidate operations,
write-broadcast and invalidate operations,
write-through and update operations, and
write-broadcast and update operations.

28. An ICU architecture as set forth in claim 5
further comprising means for flexible assign-
ment of the shared block status information
stored in said block status array means.

comprising the step of bus watching, in a
manner that is transparent to processor bus
cache accesses, as a step towards assuring
cache data consistency.
25. A method as set forth in claim 24 further

comprising the step of enabling a data interven-
tion option to be used in conjunction with bus
watching as a further step for assuring cache
data consistency.
26. An ICU architecture as set forth in claim 10

further comprising means for selectively enab-
ling an invalidate operation and for enabling an
update operation whenever said invalidate

10

15

20

25

30

35

40

45

50

55

60

65

32

EP 0 325 421 A2

r

3 2
-vt-> A O - A 3 I , 2

2 &6.TCQ - B S T £ i - / —
~4-+ A 5 T 6 O - A 6 T C I

* & I N V - "* P r

~~— ~ " At/" R.T — —
TJcC&PiEQ

" " * " "
I 6 U

* H ' T ~

* C R t 7 Y • J " ° ^
^ M A S T B

£ f - C R E Q T O - C R E Q T I ^ M B A C K

* C 5 E I _ M B P 0 - M B F 3

— @/- C B O - CB3»

- * O R E Q M P L N O - M D L N I - / ^ -

M E M A P O - M E M A P 3 I - / - -
* L O C K

M 6 E R R
- ^ - O P T O - O P T 2 * M L . O C K

^jrPCA ^ M R P Y

* RESET # M R E a T O - ^ M F * E Q T | _ ^

s u p / * u s M 5 / ^ M U —

* T E 5 T ^ B E Q
V / R E P

^ : V 5 X

F I G . 2

EP 0 325 421 A2

9
tQ

i
o

£
d

l - H

C m

u)
EC
<
X

1
4 — »

z

V <
DC C* ' '

vft J
LU < — E — »

a s ui
^ -

S
T

S
«

^
.

	bibliography
	description
	claims
	drawings

