12) PATENT

19 NO 11 314679 13) B1
o) Int C17 H 04 N 7/30, G 06 K 9/36, G 01 V 1/28
NORGE
Patentstyret
(21) Soknadsnr 19995448 (86) Int. inng. dag og
(22) Inng. dag 1999.11.05 seknadsnummer 1998.05.06, PCT/US98/09290
(24) Lopedag 1998.05.06 (85) Videreforingsdag 1999.11.05
(41) Alm. tilgj. 1999.12.28 (30) Prioritet 1997.05.07, US, 45915
(45) Meddelt dato 2003.04.28
(71) Patenthaver Landmark Graphics Corp, 15150 Memorial Drive, Houston, TX 77079-4304, US
(72) Opﬁ)finner Ira D Hale, Englewood, CO 80112, US
(74) Fullmektig Dag Thrane - ABC-Patent, Siving Rolf Chr B Larsen AS, 0602 Oslo
(54) Benevnelse Fremgangsmate for datakompresjon

(56) Anferte publikasjoner Ingen
(57) Sammendrag

Den utbredte JPEG-standardalgoritme for to-dimensjonal bildekompresjon kan tilpasses
kompresjon av grupper av enhver dimensjon og datatype, spesielt for grupper med seismiske
data. Fordi JPEG-algoritmen behandler, mer eller mindre uavhengig, sma delsett (8 x 8
blokker) av sterre bilder eller datagrupper, er slike tilpasninger spesielt nyttige ved
anvendelser som ikke kan opprettholde en stor, ukomprimert, flerdimensjonal gruppe 1
datalageret. JPEG-lignende fremgangsmater muliggjer kompresjon og dekompresjon av
store grupper ved iterasjon over delgrupper som er sma nok til & kunne befinne seg 1 lageret.
Disse algoritmene forer til konseptet med et komprimert virtuelt lager. Spesielle hensyn ma
tas 1 den JPEG- lignende algoritme for & unngé blokk- artifakter, som er diskontinuiteter
mellom blokker med data som er komprimert og dekomprimert uavhengig.
Beregningsmessig effektive fremgangsmater for undertrykkelse av disse artifaktene er
heldigvis kjent. Av disse fremgangsmatene har man anvendt den som gjer den mulig &
gjenbruke meget av JPEG-fremgangsméten. Den JPEG- lignende fremgangsmaéte ifolge
oppfinnelsen benytter JPEG-fremgangsmaitene til diskret cosinus-transformasjon (selv om
fremover- transformasjonen og den inverse transformasjon er reversert), og for Huffman-
koding av de kvantifiserte transformasjonskoeffisienter. Fremgangsméten skiller seg fra
JPEG hovedsakelig ved ytterligere trinn som foretas for & unnga blokkartifakter, og ved
kvantifiseringen av trans- formasjonskoeffisientene.
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Oppfinnelsen vedrerer generelt en fremgangsmate for
komprimering av data, sarlig for komprimering av en en-
dimensjonal gruppe med sampler som er representative for
karakteristikker i undergrunnen, og spesielt en forbedring av
JPEG-metoden for bildekompresjon slik den blir anvendt pa
seismiske data.

JPEG-standardalgoritmen for bildekompresjon (Pennebaker
og Mitchell, 1993) bestdr av feslgende tre trinn, utfert for
hver 8 x 8 blokk med piksler (bildepunkt eller bildeelement)
i en todimensjonal gruppe:

1. Transformere 8 x 8 blokken med piksler med bruk av en
diskret cosinus-transformasjon.

2. Kvantisere {(skalere og avrunde) transformasjonskoeffisi-
enten til smd heltall.

3. Kode bitene ved & bruke fa bits til & representere de
hyppigste heltall.

Dekompresjonsalgoritmen inverterer hvert av disse trinn i

motsatt rekkefelge. Begge algoritmer kan lett utvides til &

komprimere og dekomprimere grupper av enhver dimensjon.

Fig. 1 viser en to-dimensjonal gruppe med seismiske data
som ikke er blitt komprimert. Den to-dimensjonale gruppen pa
32 bits med tall med flytende komma pa fig. 1 er et tidskon-
stant utsnitt trukket ut fra en tre-dimensjonal seismisk
undersokelse. Fig. 2 viser et forstorret delsett av den samme
gruppe.

Fig. 3 viser det samme forsterrede delsett etter kompre-
sjon og dekompresjon av hele den to-dimensjonale gruppe ved
bruk ‘av en JPEG-lignende algoritme. Kompresjonsforholdet for
hele gruppen er omkring 103:1, noe som betyr at den opprinne-
lige gruppe med 32 bits tall med flytende komma inneholdt
omkring 103 ganger s& mange bits som den komprimerte gruppe.

For slike store kompresjonsforhold frembringer denne
JPEG-lignende algoritmen de blokkartifakter som er synlige pé
fig. 3. Ved lavere kompresjonsforhold blir disse diskonti-

nuiteter mellom blockker mindre synlige, men de kan fremdeles
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vere betydelige, spesielt ndr ytterligere behandling eller
tolkning blir utfert etter kompresjon.

Artifaktene pa fig. 3 er resultatet av at hver blokk pa
8 X 8 sampler blir komprimert og dekomprimert uavhengig, uten
noe forsett pd & opprettholde kontinuiteten mellom blokkene.

Til tross for disse artifaktene er evnen til a kompri-
mere og dekomprimere slike smd delsett med data uavhengig, en
enskelig egenskap. Spesielt muliggjer det tilgang til en
liten del av en stor komprimert gruppe uten & dekomprimere
hele gruppen. Det gjer ogséd kompresjonsalgoritmen i stand til
4 tilpasse seg romlige variasjoner i dataamplitude og spek-
trum. Disse egenskapene mangler i kompresjonsmetoder basert
pa smabelge-transformasjoner (f.eks. Bradley m.fl., 1993;
Wickerhauser, 1994). Det problem som tas opp i denne beskriv-
elsen, er & oppna disse egenskapene uten blokkartifaktene.

En lssning pa dette problemet er a komprimere data ved
bruk av overlappende blokker, slik at dekomprimerte sampel-
verdier kan beregnes uten referanse til verdier for tilstet-
ende blokkgrenser. Denne lesningen ble brukt av Yeo og Liu
(1995) i deres tilpasning av JPEG-algoritmen til volumgjen-
givelse av tre-dimensjonale medisinske bilder. Bruken av
overlappende blokker @ker dessverre antallet blokker som ma
komprimeres, noe som sker beregningstider og minsker kompre-

sjonsforholdene.

Henvisninger til tidligere arbeider sitert i denne beskriv-

elsen.

Bradley, J.N., C.M., and Hopper, T., 1993, The FBI wavelet/
scalar quantization standard for gray-scale fingerprint image
compression: Visual Information Processing II, SPIE Proceed-
ings, pp. 293-304. (ftp://ftp.c3.lanl.gov/pub/WSQ).

Jawerth, B., and Sweldens, W., 1995, Biorthogonal smooth
local trigonometric bases: J. Fourier Anal. Appl., 2;

http://cm.bell-labs.com/who/wim/papers/papers_html,.



10

15

20

25

30

35

3

Jawerth, B., Liu, Y., and Sweldens, W., 1996, Signal compres-
sion with smooth local trigonometric bases:

http://cm.bell-labs.com/who/wim/papers/papers.html.

Malvar, H.S., and Staelin, D.H., 1989, The LOT-transform
coding without blocking effects: IEEE Transactions of Acous-

tic, Speech and Signal Processing, 37, no. 4, 553-559.

Malwar, H.S., 1990, Lapped transform for efficient trans-
form/subband coding; IEEE Transactions on Accustic, Speech

and Signal Processing, 38, no. 6, 969-978.

Pennebaker, W.B., and Mitchell, J.L., 1993, JPEG still image

data compression standard: Van Nostrand Reinhold.

Princen, J.P., and Bradley, A.B., 1956, BRnalysis/synthesis
filter bank design based on time domain aliasing cancel-
lation: IEEE Transaction on Acoustics, Speech and Signal
Processing, 34, no. 5, 1153-1161.

Wickerhauser, M.V., 1994, Adapted wavelet analysis from

theory to software: A.K. Peters.

Yeo, B., and Liu, B., 1995, Volume rendering of DCT-based
compressed 3D scalar data: IEEE Transactions on Visualization

and Computer Graphics, 1, no. 1, 29-43.

Det er et hovedformil med oppfinnelsen & tilveiebringe
en forbedret JPEG-algoritme for datakompresjon.

Et viktig formal med oppfinnelsen er a tilveiebringe en
forbedret JPEG-datakompresjonsalgoritme som kan brukes til &
komprimere sm& delsett med data uten blokkartifakter.

Oppfinnelsen angar en fremgangsmate for datakompresjon
som benytter JPEG-fremgangsmdter til diskret cosinus-
transformasjon og til Huffman-koding av de kvantiserte

transformasjonskoeffisienter. Fremgangsmadten er en forbedring
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i forhold til standard JPEG-fremgangsmater, hovedsakelig i

tilleggstrinnene for a unngd blokkartifakter, og i kvantiser-

ingen av transformasjonskoeffisienter.

Dette oppnas ved & benytte en fremgangsmidte i henhold

til de nedenfor fremsatte patentkrav.

Det vises til de vedfeyde tegninger, hvor:

Fig. 1
fig. 2
fig. 3
fig. 4
fig. 5
fig. 6
fig. 7

representerer et tidskonstant utsnitt trukket ut
fra en tre-dimensjonal seismisk undersgkelse, hvor
fremvisningen er en to-dimensjonal gruppe med 32
bits tall med flytende komma som ikke er blitt
komprimert;

er et forsterret delsett av den to-dimensjonale
gruppe pa fig. 1;

viser data pa fig. 2 etter kompresjon og dekompre-
sjon via en enkel tilpasning av JPEG-algoritmen,
som viser blokkartifaktene, diskontinuitetene
mellom 8 x 8 sampelblokkene som ble komprimert
uavhengig;

viser data pd fig. 2 etter kompresjon og dekompre-
sjon via en JPEG-lignende algoritme som er blitt
utformet for a undertrykke blokkartifakter;

viser en matrise Cry;' som svarer til en invers DCT-
ITITI med lengde 32 hvor sorte piksler svarer til
positive verdier; hvite piksler svarer til negative
verdier;

viser en matrise som svarer til en blokkformet DCT-
ITI med blokklengde 8;

viser kolonner 11 og 19 fra den inverse blokk-
formede DCT-III matrisen pa fig. 6, hvor blokk-
artifaktene i JPEG-kompresjonen er fordrsaket av
diskontinuiteter, slik som dem som er vist mellom
samplene 15 og 16, og det ferste sampel i hver
cosinus ligger i avstand fra den plottede kurve og
i denne figuren pd grunn av diskontinuiteten i

funksjonen b{(j) definert ved ligning (lc) nedenfor;
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fig. 8 viser glatt konusformede cosinuser oppnadd ved
utfolding av de avkortede cosinuser som er vist pa
fig. 7, som er kolonnene 11 og 19 i den inverse
foldede DCT-III-matrisen p& fig. 9:

fig. 9 viser en matrise svarende til en invers foldet DCT-
III hvor kolonnene i denne matrisen overlapper
hverandre fra blokk til blokk, med verdier som
glatt skrar til null slik at en veid sum av disse
kolonnene ikke vil oppviser blokkartifakter;

fig. 10 viser en matrise svarende til den operasjon som
brukes for & utfolde den inverse blokkformede DCT-
III, hvor matrisen pa fig. 9 er 1lik produktet av
den matrisen og den som er vist pd fig. 6;

fig. 11 viser en utfoldingsoperasjon som er en parvis
kombinasjon og erstatning av sampelverdier over
DCT~blokkgrenser, og hvor folding er det inverse av
denne operasjonen; og

fig. 12 illustrerer trinnene for & dekomprimere det utpekte
sampel i blokk A, som krever at man ferst dekoder,
dekvantiserer og inverterer DCT-III-blokkene A, B,
C og D, og sa folder ut de fire utpekte samplene
hvor foldings—- og utfoldingsoperasjonene er en
parvis blanding av sampler over DCT-blokkgrensene.

Oppfinnelsen angdr en forbedret fremgangsmdte til data-

kompresjon basert pa sammenblanding av data i tilstetende

blokker under kompresjon med en JPEG-lignende algoritme.

JPEG~-lignende datakompresjon er blitt beskrevet i forskijel-

lige former av mange forfattere (f.eks. Princen og Bradley,

1986; Malvar og Staelin, 1989; Malvar, 199%90; Wickerhauser,

1994, Jawerth m.fl., 1995}). Fordelen med JPEG-lignende data-

kompresjon er at den tenderer til & gke kompresjonsforhold,

0og bare svakt gker beregningstidene.

Fig. 4 viser det samme delsett fra den to-dimensijonale
gruppe pa fig. 1, etter kompresjon og dekompresjon ved bruk
av en annen JPEG-lignende algoritme basert pa fremgangsmaten

ifelge oppfinnelsen som er beskrevet nedenfor. Kompresjons-
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forholdet for hele gruppen er omkring 112:1. Blokkartifakter
i disse dekomprimerte data er fravarende.

Forskjellen mellom den tidligere JPEG-lignende algorit-
men og den nye JPEG-lignende algoritmen i henheold til opp-
finnelsen ligger i en modifikasjon av den diskrete blokk-
cosinus-transformasjon som er spesifisert i JPEG-standarden.
Denne modifikasjonen i algoritmen ifslge oppfinnelsen demper
blokkartifakter, mens de snskede egenskaper ved den tidligere
kjente JPEG-lignende algoritmen beholdes.

Den transformasjon som er brukt ved tidligere kjente
JPEG-kompresjon er en diskret cosinus-transformasjon, kalt
DCT-II. I henhold til oppfinnelsen blir det brukt en annen
diskret cosinus-transformasjon kalt DCT-III. (For nummerering
av diskrete cosinus-transformasjoner, se Wickerhauser, 1994,
side 84).

Fremover DCT-III er definert ved

o= 309009 e con| "L |

M {1a)
k=01,..M-1
og den tilsvarende inverse transformasjon er
n(2k+1)j
)= z(k)bm\f [ ] (1)
j=0.1,.
hvor
—, j=0
bG)= J_ (1c)
1, ellers

Fremover-transformasjonen og den inverse transformasijon kan
representeres som matrisemultiplikasjoner, som i z = Cirzy ©g

y=Crir 'z, hvor matrisen Cr;; har elementer



10

15

20

25

30

o b ji n(2k+1)j
Cutk J) bﬁ)J;COS [——ZM :l (2)

Den inverse transformasjonsmatrise Cerr ! er illustrert pa
fig. 5, M=32. Enhver vektor med 32 reelle tall kan represen-
teres som en veid sum av kolonnene i denne matrisen.

I en en-dimensjonal kompresjonsalgoritme kan en vektor y
med sampelverdier tilnarmes med bare noen f£f& kolonner fra
matrisen Crr;”'. Vektene for hver kolonne vil vare gitt av
transformasjonskoeffisienter i vektoren z. Hoye kompresjons-
forhold krever at mange av koeffisientene i z kan overses,
ner null. Slike smd koeffisienter wvil bli kvantifisert til
nuller som effektivit kan kodes ved bruk av fa bits.

JPEG-standarden beskriver kompresjon av to-dimensjonale
bilder, ikke en-dimensjonale vektorer. Den tidligere DCT-II
som brukes i JPEG-kompresjon er en to-dimensjonal transforma-
sjon. Fordi den diskrete coninus-transformasjon av fler-
dimensjonale data kan utfores som en kaskade av en-dimensjo-
nale transformasjoner langs hver datadimensjon, blir imidler-
tid bare den en-dimensjonale transformasjon beskrevet for
enkelhets skyld.

For lange datavektorer, slik som seismiske traser, er
det lite sannsynlig at én enkelt diskret cosinus-transforma-
sjon av hele vektoren vil gi mange transformasjonskoeffisi-
enter som er neglisjerbare. I likhet med JPEG blir det derfor
brukt en blokkoppdelt DCT med transformasjonslengde M=8, og
fylldatavektorer blir satt til null, etter behov, til en
lengde N som er en multippel av 8. Matrisen som svarer til en
invers blokk-DCT-III er vist pa fig. 6, for N=32 og M=8.
Foruten & vere mer passende for kompresjon, er blokktrans-
formasjonen ogsad mer effektiv med en beregningskostnad som
bare vokser line=rt med lengden N av datavektorene.

I likhet med tidligere kjente DCT-II som brukes i JPEG-
kompresijon, har DCT-III flere nyttige egenskaper. For det
ferste transformerer en DCT-III reelle tall til reelle tall,

slik at ingen kompleks aritmetikk er nedvendig. I likhet med
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den tidligere kjente DCT-II, er ogsd DCT-III en enhetstrans-
formasjon: Crrr} = Crrit. [Denne egenskapen er gitt ved
ligningene (1) ovenfor]. Fremover blokk-DCT-III-matrisen som
svarer til fig. 6, er ganske enkelt den transponerte av den
inverse blokk-DCT-III som er vist her.

En annen nyttig egenskap er at en invers DCT-III er
ekvivalent med en fremover DCT-II: CnI'1 = Cry. Dette
forholdet mellom DCT-III og DCT-II og et valg av en transfor-
masjonslengde M=8, muliggjer bruk av de heyt optimaliserte
DCT-II-algoritmer som brukes i JPEG-kompresjon, ved enkel
ombytting av fremover algoritmene og de inverse algoritmer.

Alle de ovenfor nevnte egenskaper er nyttige, men hvor-
for ikke ganske enkelt bruke den tidligere kjente DCT-II i
JPEG? Svaret ligger i en modifikasjon i henhold til oppfin-
nelsen av DCT-III for & unngd blokkartifaktene som fordrsakes
av JPEG-kompresjon.

Blokkartifakter opptrer nar bare et delsett av kolonnene
i matrisen som er vist pd fig. 6, blir brukt i en tilnermelse
til en vektor. Anta f.eks. at en slik vektor er sterkt
komprimert ved bruk av bare to kolonner med indekser k=11 og
k=19. Som vist p& fig. 7 gir enhver ikke-triviell kombinasjon
av disse to kolonnene en diskontinuitet mellom sampelindeks-
ene j=15 og j=16 i tilnermelsen. Slike diskontinuiteter
skaper blokkartifaktene som er synlige i bilder som er blitt
komprimert ved bruk av JPEG-algoritmen,

For & unngd de artifakter som er forarsaket av bruk av
en blokk~DCT-III ved kompresjon, blir blokk-cosinusene som er
illustrert pa fig. 7, erstattet med de glatt avskradde cosi-
nuser som er vist pa fig. 8. Sammenlign den fullstendige
inverse transformasjonsmatrise som er vist p&d fig. 9 med den
inverse blokk-DCT-III-matrise som er vist pad fig. 6. Antallet
sampler i hver cosinus har ket til 16 (bortsett fra ved
endene} slik at cosinuser i tilstetende blokker nd& overlapper
hverandre, og at hver cosinus glatt avskras til null. En veid
sum av disse cosinusene vil ikke frembringe den diskontinui-

tet som er vist pa fig. 7.
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Transformasjonene som svarer til disse avskradde cosi-
nuser, blir ofte kalt lokale cosinus-transformasjoner eller
overlappede ortogonale transformasjoner {(Wickerhauser, 1994,
side 370; det er en likhet mellom fig. B8 og Wickerhausers
fig. 11.5). Her blir disse transformasjonene kalt foldede
cosinus-transformasjoner for & avspeile den mé&te de beregnes
pa. Den transformasjon som brukes i kompresjonsalgoritmen i
henhold til oppfinnelsen er spesielt en foldet DCT-III. Den
inverse transformasjon som svarer til den matrise som er vist
pd fig. 9, kalles en invers foldet DCT-III.

Folding er en mdte til & oppnd glatte, avskrddde, 16-
samplers cosinuser ved bruk av meget optimaliserte, blokk-
formede, M=8 DCT-algoritmer. Wickerhauser (1994, side 103)
beskriver denne fremgangsmaten som “en bemerkelsesverdig
observasjon gjort uavhengig av flere individer”, og fort-
setter med & diskutere dens anvendelse i forbindelse med
kompresjon. Foldingsoperasjonen som brukes ved kompresjon i
denne oppfinnélse er én av mange som er beskrevet av Wicker-
hauser, men ble inspirert av arbeidene til Jawerth og
Sweldens (1995) og Jawerth m.fl. (1996). De sistnevnte
forfattere diskuterer aspekter ved folding som er spesielt
relevante for kompresjon.

Smartheten og effektiviteten ved folding ligger i det
faktum at den inverse foldede DCT-III-matrise som er vist pé
fig. 9, er produktet av en utfoldingsmatrise, vist pa fig.
10, og den inverse blokk-DCT-III-matrise som er vist pa fig.
6. Fordi hver rad og koleonne i utfoldingsmatrisen ikke inne-
holder mer enn to elementer forskjellig fra null, er bereg-
ningskostnadene ved utfolding et nesten ubetydelig tillegg
til kostnadene ved den inverse blokk-DCT-III.

I praksis er de matriser som er vist pa fig. 6, 9 eller
10 aldri konstruert i virkeligheten. I stedet blir operasjon-
er utfert pd sampelverdier som har den samme virkning som
multiplikasjon ved hjelp av disse matrisene. For den inverse
blokk=DCT-III~matrisen pa fig. 6, er denne operasjonen den

meget effektive fremover blokk-DCT-II-algoritmen som brukes i
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JPEG-kompresjon. For utfoldingsmatrisen pa fig. 10 er denne
operasjonen en parvis blanding av sampelverdier over blokk-
grensene ved indeksene j=8, 16,..., som vist pad fig. 11.
Foldingsoperasjonen er ganske enkelt det inverse av
utfoldingsoperasjonen, en annen parvis blanding av de samme
sampelverdier. Fordi folding og utfolding er sentrert omkring
blokkgrenser, er disse operasjonene mest konsist spesifisert

uttrykt ved forskjevede sampelverdier, som er definert ved

vi(j)ey(IM+j). Symbolet 1 er en blokkindeks og j er et sampel
inne i en blokkindeks.

Folding blir s& utfert via

v = f0) x:6) + f5) x: D).

=) = fG) x1(F) - f) xiG),
I=12,.., N|M-1, (3a)
j=12., M |2-1,
»,0)=xG) ellers,

og utfolding blir utfert via

xG)= 10) .G} - 5 y,(3).

x()= 0 y,(D+ ) y,0).
[=12.,N|M-1, (3b)
j=12,..M|2-1,
x()=y0). ellers,

hvor foldingsfunksjonen f(j) er definert ved

fmssin[ﬂ. (30)

De glatt avskradde cosinuser pd fig. 8 og matrisen til
disse cosinusene pa fig. 9 ble beregnet ved anvendelse av
ligningene (3b) pa kolonnene i den matrise som er vist pa
fig. 6.

Den fremover foldede DCT-III av samplede verdier x(j)

blir bestemt ved ferst a beregne y|(j) via ligningene (3a), og
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sd for hver blokk pd atte sampler, beregning av z(k) via
ligning (la). Likeledes blir den inverse foldede DCT-IXX
bestemt ved ferst & beregne y{j) via ligning (1b) for hver
blokk, og sa beregne x(j) via ligningene (3b).

Som diskutert av Wickerhauser (1994, side 105), Jawerth
og Sweldens (1995) og Jawerth m.fl. (1996), er mange alterna-
tive, men lignende foldingsoperasjoner mulige. Den foldings-
operasjonen som er definert ved ligningene (3), er valgt av
to grunner.

For det ferste er foldingsoperasjonen enhetlig. Utfold-
ingsmatrisen som er vist pa fig. 10 er den transponerte av
den tilsvarende foldingsmatrise (ikke vist). For a verifisere
denne egenskapen, kan det legges merke til at foldingsfunk-
sjonen i ligning (3c¢c) tilfredsstiller f2(j) + f?(-j) =1, og
uttrykker sa foldings- og utfoldingsoperasjonene i ligningene
(3a) og (3b) som multiplikasjoner av 2 x 2 matriser. Inverter
analytisk 2 x 2 foldingsmatrisen for a se at dens inverse er
lik dens transponerte, som er lik 2 x 2 utfoldingsmatrisen.
Hele foldingsoperasjonen er derfor enhetlig, fordi den bestar
av disse 2 % 2 blandingene av éampelverdier over blokk-
grenser.

For det annet sikrer foldingsoperasjonen i henhold til
oppfinnelsen at en konstant funksjon, slik som x(j)=1, gir
transformasjonskoeffisienter z;(k) i hver blokk som er for-
skjellig fra null for bare k=0, noe som forsterker kompre-
sjonen av konstante {eller svakt varierende) data. Ifelge
terminclogien til Jawerth m.f1l. (1996), oppnadr den fremover
foldede DCT-III “opplesning av konstantene”.

For & verifisere denne annen egenskap ved den foldede
DCT-III, anvend analytisk foldingsoperasjonene i ligningene
{(3a) pa konstante sampelverdier x;(j)=1, og verifiser at
resultatet er yi(j)= WMCrrr(03), hvor Crrtk,3) er definert i
ligning (2). Foldingsfunksjonen blir med andre ord valgt slik
at konstante sampelverdier blir foldet for negyaktig a passe
til (innenfor en skalafaktor JE} den ferste (k=0) cosinus i

DCT-III. Fordi denne cosinus er ortogonal til alle andre
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cosinuser i transformasjonen, vil bare transformasjonskoeffi-
sienten k=0 i hver blokk vare forskjellig fra null etter den

fremover foldede DCT-III. Verdien av hver koeffisient som er

forskjellig fra null, vil veare zl(O)=ﬁg.

Mer neyaktig gjelder denne egenskapen for alle unntatt
den ferste og den siste blokken. Selv om opplegsning av kon-
stantene for de ferste og siste blokker kan oppnas ved &
modifisere foldings- og utfoldingsmatrisene slik at de ikke
er enhetlige i sine hjerner, blir mindre kompresjon akseptert
i disse blokkene og en strengt enhetlig foldings- og utfold-
ingsoperasjon blir opprettholdt.

Den fremover DCT-II som brukes i JPEG-kompresjon, oppnir
opplesning av konstantene uten folding, fordi den ferste
cosinus i DCT-II (f.eks. den fgrste rad i matrisen pd fig. 5)
er konstant. Denne egenskapen er i virkeligheten grunne til
at DCT-II, ikke DCT-III, er spesifisert i JPEG-kompresjons-
standarden. Bruk av foldingstrikket med DCT-II kan tenkes,
fordi folding fer JPEG-kompresion og utfolding etter JPEG-
dekompresjon kan utferes uten 4 modifisere JPEG-standard-
algoritmen.

Foldings- og utfoldingsoperasjonene i ligningene (3) er
dessverre ikke riktige for DCT-IT. Spesielt ville ligningene
(3b) ikke gi glatt avskrddde cosinuser lik de som er vist pa
fig. 8.

Jawerth m.fl. (1995} beskriver alternative foldings- og
utfoldingsoperasjoner som er anvendbare for DCT-II, og som
opprettholder opplesning av konstantene. Disse operasjonene
er imidlertid ikke enhetlige. De er i virkeligheten dérlig
tilpasset og har en tendens til & forsterke diskontinuiteter
i sampelverdier som inntreffer ner blokkgrenser, og reduserer
dermed effektiviteten av kompresjonen,

Folding- og utfoldingsoperasjonene ifglge ligningene (3}
er derimot enhetlige i likhet med den fremover DCT-III og den
inverse DCT-III i fwlge ligningene (l). Hvis F betegner
foldingsmatrisen, s& kan den fremover foldede DCT-III uttryk-

kes som z=C;;;Fx og legg merke til at
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To— T T T
z2=x F CuCmFx

=x" F'Cw-1CmFx

=x"x (4)
N-1 N
$209="5 ()

Summen av kvadrerte sampelverdier etter foldet DCT-III er med
andre ord lik summen fer den foldede DCT-III. Denne egenskap-
en kan brukes til & ansld forvrengningen i de dekomprimerte
data fordrsaket ved kvantisering av transformasjonskoeffisi-
entene.

Som beskrevet ovenfor er den transformasjon som brukes i
kompresjonsalgoritmen ifelge oppfinnelsen nettopp det inverse
av den som brukes i JPEG-kompresijon, men med folding innbe-
fattet for & redusere blokkartifakter. Kvantifiserings- og
kodingsmetoder som benyttes, er ogsd tilpasset fra de som
brukes ved JPEG-kompresjon. Forskjellene mellom JPEG-frem-
gangsmatene og oppfinnelsen er beskrevet nedenfor.

Fordi JPEG-kompresjon er ment for bilder, er data fer
kompresjon enten 8 bits eller 12 bits verdier. (Fargebilder
er representert ved red-grenn-bla-tripletter av slike samp-
ler). Etter en to-dimensjonal transformasjon via DCT-II, kan
8 bits data kreve opptil 11 bits pr. sampel fordi den sterste
sampelverdi etter to-dimensjonal DCT-II er opptil 8 ganger
sterre enn fer transformasjonen. Generelt er den storste
sampelverdi etter DCT-II opp til MP/2 ganger den sterste verdi
fer transformasjonen, hvor D er antallet transformerte

dimensjoner. Med andre ord

| 2} s SM | X o (5)

Denne @vre grense blir oppnaddd nir data nsyaktig tilsvarer én
av de cosinuser som brukes i DCT-II, slik som den ferste

konstante cosinus Ci;(k=0,7).
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Den samme faktor M™? gjelder ogsd den foldede DCT-III
som brukes i kompresjonsalgoritmen ifelge oppfinnelsen. Etter
transformering av 8 bits heltallsdata med en foldet DCT-III,
kvantiserer og koder derfor fremgangsmdten ifelge oppfin-
nelsen 11 bits heltall i to-dimensjonal kompresjon, og 13
bits heltall i tre-dimensjonal kompresjon.

Kvantiseringstrinnet i bade JPEG-kompresjonsalgoritmen
og fremgangsmaten ifelge oppfinnelsen er en skaleringsopera-
sjon utformet for & redusere antallet bits som skal kodes, og
det er denne reduksjonen av antallet bits som er ansvarlig
for den forvrengning i data som er komprimert og sa dekompri-
mert. I slike tapsbringende kompresjonsmetoder blir denne
forvrengningen akseptert i bytte med heye kompresjonsforhold.

Ved JPEG-kompresjon blir transformasjonskoeffisientene i
hver blokk kvantisert forskjellig, med hesye belgetall (rom-
frekvenser) representert med farre bits enn lave beglgetall.
Denne belgetall-avhengige skalering i JPEG-kompresjon blir
vanligvis optimalisert med hensyn pa menneskelig visuell
oppfattelse.

Ved kompresjonsmetoden ifglge oppfinnelsen blir bgslge-
tall alle kvantisert likt. Feil blir ikke innfert som er
belgetall-avhengige. En grunn til dette er at for seismiske
data, er det ofte stor interesse for hesye bglgetall. F.eks.
svarer undergrunnsforkastninger avbildet med seismiske data
til heye belgetall. En annen grunn er at seismiske data ofte
blir analysert ved hjelp av datamaskinalgoritmer som er
uavhengige av det menneskelige visuelle system,.

Ved komprimering av 8 bits bildedata ligger sampelverdi-
er mellom -128 og +127; og det kan antas at lavamplitude-
blokker med data er ubetydelige og trygt kan kvantiseres til
null under kompresjon. JPEG-standarden gjer spesielt denne
antagelsen, for den tillater bare ett sett med kvantiserings-
skala-faktorer for et helt bilde. Som diskutert ovenfor kan
disse skalafaktorene variere for forskjellige koeffisienter

(forskjellige beslgetall) innenfor en blokk, men det samme
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sett blir brukt for hver blokk. I denne betydning er JPEG-
kvantisering global.

Ved komprimering av 32 bits data med flytende komma blir
det foretrukket & utfere en lokal kvantisering, med skala-
faktorer som kan variere fra blokk til blokk. Fgr komprime-
ring av slike data er eventuelt den maksimale sampelamplitude
| X|mex ikke kjent, og avlesning av hvert sampel for kompresjon
for & bestemme dens verdi, kan vare kostbar. Lave amplituder
kan videre ikke med rette antas & vare ubetydelige; spesielt
seismiske data krever ofte betydelig behandling fer denne
antagelsen er gyldig. Selv om en enkelt skalafaktor blir
brukt til & kvantisere alle transformasjonskoceffisienter
innenfor en blokk, kan derfor en skalafaktor tillates &
variere fra blokk til blokk. Spesielt i ligning (5) ovenfor
betegner |z|pax maksimumskceffisienten innenfor hver trans-
formert blokk, og en forskjellig skalafaktor s blir beregnet
for hver blokk.

Lokalt kvantisering gir lavere kompresjonsforhold (frem-
bringer flere bits pr. sampel) enn glcbal kvantisering. En
opplagt grunn er at ytterligere bits er nedvendig for & lagre
kvantiseringsskala-faktorene for hver komprimert blokk. En
mindre opplagt grunn er at lokal kvantifisering kan kvanti-
fisere ferre sampler til null enn global kvantifisering. Et
valg mellom enten lokal eller global kvantifisering er derfor
tillatt i kompresjonsalgoritmen ifelge oppfinnelsen.

Den lokale kvantifisering h&ndterer ikke et stort dyna-
misk omrdde innenfor en enkelt blokk. F.eks. kan refleksjoner
med lav amplitude i ubehandlede seismiske data vere gjemt
under overflatebelger med hey amplitude. Innenfor blokker som
er forurenset med stey med hey amplitude, kan kompresjons-
algoritmen ifslge oppfinnelsen, selv med lokal kvantifiser-
ing, kvantifisere signaler med lav amplitude til null, slik
at signalet ikke kan gjenfinnes ved behandling etter dekom-
primering. Steoy med hey amplitude ber derfor dempes fer

kompresjon.
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Et virtuelt lager representerer illusjonen om et lager
som er sterre enn det som er fysisk tilgjengelig. Denne
illusjonen er mest effektiv for anvendelser som har tendens
til & aksessere data anbragt n®r andre data som nylig ble
aksessert. Slike anvendelser har god referanseposisjon.

Anvendelser som arbeider med to-dimensjonale eller tre-
dimensjonale grupper oppviser ofte god referanseposisjon. En
seismisk tolkningsanvendelse kan f.eks. fremvise pafelgende
to~dimensjonale utsnitt av data fra en tre-dimensjonal
gruppe. Med en tilstrekkelig hurtig, lokal dekompresjons-
algoritme, kan blokker dekomprimeres som inneholder samplene
for slike utsnitt etter behov, uten & dekomprimere hele den
tre-dimensjonale gruppe. Kompresjonsalgoritmen ifslge opp-
finnelsen er spesielt nyttig i slike anvendelser.

Nekkelen til slike anvendelser er evnen til & komprimere
eller dekomprimere et delsett i en sterre gruppe uten a
komprimere eller dekomprimere hele gruppen. For kompresjon
basert pd en blokk-DCT-II, lik den som brukes i JPEG-kompre-
sjon, kommer denne egenskapen lett. For & dekomprimere et
enkelt sampel er det spesielt bare nedvendig & dekode, de-
kvantifisere og invertere den DCT-II-blokken som inneholder
vedkommende sampel. Straks dekompresjon for et sampel er
utfert, blir dekompresjon av alle samplene i dens blokk
utfert. Hvis det antas referanseposisjon, s& kan beregnings-
kostnadene ved dekomprimering av de andre samplene i blokken
ikke vere bortkastet.

For kompresjonsalgoritmen ifslge oppfinnelsen, basert pa
en foldet DCT-III, er det nedvendig med noe ytterligere
arbeid. Betrakt to-dimensjonal kompresjon og de fire blokkene
med 8 x 8 sampler som er illustrert pd fig. 12. For & de-
komprimere det sampel som svarer til den fylte sirkel i blokk
A, er det nedvendig (1) & dekode, dekvantifisere og invertere
alle fire DCT-III-blokkene {A,B,C og D), og (2) & utfolde de
fire samplene som svarer til de fylte sirklene. Utfolding
over blokkgrenser er akkurat som illustrert pd fig. 11 og som

beskrevet ved ligning (3b}, utfert ferst for én dimensjon og
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sd for den annen. Selv om fire blokker er nedvendig, er
straks dekomprimeringen av sampelet i blokk A er utfert,
mesteparten av det arbeid som er nedvendig for & dekomprimere
nabosampler, blitt utfert. Hvis det igjen antas referanse-
posisjon vil denne ytterligere beregning ikke vare bort-
kastet.

En annen forskjell mellom kvantifiseringstrinnet ifelge
oppfinnelsen og JPEG stammer fra vart behov for & kvantifi-
sere 32 bits data med flytende komma, som har et meget hoyere
dynamisk omrdde enn 8 bits eller 12 bits bildedata. For &
kvantifisere en verdi z med flytende komma til et heltall i
med B+l bits (innbefattende en fortegnsbit}, blir felgende

algoritme brukt

{&xs+l&% z20

[zxs-172], z>0

hvor s er kvantifiseringsskala-faktoren.
For & unngd overflyt er |i|<2® nedvendig. Denne restriksjonen

og ligning (6) ferer til felgende ligning for skalafaktoren:

o (2-102)(1-¢)

E{.

(7)

hvor ¢ er flyt-epsilon, det minste positive tall som kan
subtraheres fra 1 ved bruk av aritmetikk med flytende komma,
for & oppnd et tall forskjelliqg fra 1.

JPEG-kompresjonsstandarden tillater to fremgangsmiter
til koding av heltallene som er frembragt ved kvantifisering,
Huffman-koding og aritmetisk koding, og mange andre kodings-
metoder er mulige. Huffman-koding i JPEG blir brukt i kocmpre-
sjonsalgoritmen ifelge oppfinnelsen, fordi den er beregnings-
messig hurtig, er enkel & implementere og er fritt tilgjenge-
lig.
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Med et unntak felger Huffman-kodings- og dekodings-
algoritmer JPEG-spesifikasjonen. JPEG-standarden spesifiserer
spesiell koding av DC-transformasjonskoeffisienter (k=0).
JPEG-kompresjon utnytter det faktum at disse DC-koeffisient-
ene ofte er heyt korrelert blant naboblckker. Denne spesielle
behandling blir ikke brukt ifelge fremgangsmaten i henhold
til oppfinnelsen av to grunner: (1) den innfgrer uavhengighet
fra blokk til blokk som kompliserer kompresjon og dekompre-
sjon av enkeltblokker, og (2) seismiske data har typisk '
forholdsvis smd DC-koeffisienter. (Selv om de er smé&, er DC-
koeffisientene sjelden neglisjerbare pd grunn av den korte
M=8 transformasjon som brukes). DC-koeffisienten blir derfor
kodet akkurat som de andre (AC) koeffisientene blir kodet.

Hovedfordelen ved den JPEG-lignende algoritme er at
endel av en fler-dimensjonal gruppe kan komprimeres eller
brukes uten behandling av hele gruppen. Kompresjonsalgoritmer
basert p& smabslge-transformasjoner (f.eks. Bradley m.fl.,
1833; Wickerhauser, 1994) mangler derimot denne egenskapen.
Mens JPEG-standarden ikke eksplisitt understetter denne
egenskapen, gjer den blokk-DCT-II som brukes i JPEG-kompre-
sjon det mulig. Denne evnen blir utnyttet i kompresjonsalgo-
ritmen ifelge oppfinnelsen basert pad en foldet DCT-III.

Hver datablokk i en gruppe kan tenkes p&d som analog med
en side i et virtuelt lager. For to-dimensjonal kompresjon
vil hver side inneholde 64 = 8 x 8 sampler; for tre-dimen-
sjonal kompresjon ville hver side inneholde 512 = 8 x 8 x 8
sampler. Sampler blir dekomprimert etter hvert som de blir
bladd inn, og bglgenummer komprimert etter hvert som de blir
bladd ut etter belgenummer. Et arbeidssett med ukomprimerte
sider blir beholdt i lageret, mens mesteparten av sidene
forblir komprimert og lagret enten i1 lageret eller pd en
plate. (Hvis de lagres pa plate, kan sidene kombineres for a
forbedre I/O-effektiviteten). Hvis arbeidssettet er stort
nok, og hvis foreliggende oppfinnelse har god posisjons-

referanse, vil beregningskostnadene ved komprimering og/eller
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dekomprimering av hver side bli amortisert over tilgangen til
flesteparten av prevene innenfor disse sidene.

Tilpasningen av JPEG-kompresjonsalgoritmen i henhold til
oppfinnelsen, gjer det mulig 4 gjenbruke meget av algoritmen.
JPEG-metodene blir gjenbrukt for lange 8 DCTer, ved ganske
enkelt & bytte om fremover-transformasjonene og de inverse
transformasjonene. JPEG-kvantifiseringsmetoden er modifisert
for & unnga referansebehandling av lave bglgetall, og for &
handtere variasjoner fra blokk til blokk i dataamplituder.
Sampelverdier blir ogsd foldet over blokkgrenser feor en
fremover DCT, og slike verdier blir utfoldet etter en invers
DCT. Denne foldingen og utfoldingen undertrykker blokk-
artifaktene som er synlige i bilder som er blitt komprimert
med JPEG-algoritmen.

For & sammenligne ytelsen til fremgangsmdten ifslge
oppfinnelsen med andre algoritmer, er to nyttige mal pa
ytelse beregningstid og forvrengning for et spesifisert
kompresjonsforhold. Forelgpige fikspunkter med en tidlig
implementering av algoritmen ifglge oppfinnelsen er opp-
muntrende. Beregningstidene er omkring halvparten og for-
vrengningene er nesten identiske med de som gjelder for en
smabslgebasert algoritme over et bredt omrade med kompre-
sjonsforhold (Diller 1997, personlig kommunikasjon). Bereg-
ningstidene antas & vare lavere for fremgangsmdten ifglge
oppfinnelsen enn for smdbglgebaserte fremgangsmiter (pd grunn
av ferre multiplikasjoner og addisjoner og mer lokal lager-
bruk).
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Patentkrarvw

1. Fremgangsmate for komprimering av en en-dimensjonal
gruppe x med N sampler som er representative for karakteri-
stikker i undergrunnen,
karakterisert v e d:
a) 4 inndele gruppen x i blokker med M sampler, hvor M<N,
b) &4 folde samplene x;{j)=x(/M+j) over hver blokkgrense I,
i henhold til

Yi(-J)=£(3)xa(F)+£(-F)x2(-3),

Vi(-3)=£(j)x1(-F)-£(-F)x1(3),

1=1,2,...,N/M-1,

j=1,2,...,M/2-1,

vi(j)=x1(j), ellers,

hvor
N 1 2f
=sin| —| /+—
w=in {13
c) & transformere de foldede sampler i hver blokk i

gruppen y i henhold til

o |2 w2k + 1)j
9= 3, Yb6) Ecos[%M—”]
k=0,1,...,M-1,
hvor
1 ,
bi)={v2> 7~
1, ellers
d) a kvantifisere de transformerte sampler i hver blokk i

gruppen z for & frembringe heltall, og

e) a kode heltallene til en strem av bits som representerer

den komprimerte gruppe.
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2. Fremgangsmate ifwelge krav 1, anvendt pd en flerdimen-

sjonal gruppe,

karakterisert ved at a) blokkoppdelings-,
b} foldings- og ¢) transformeringstrinnene blir anvendt som

en kaskade av operasjoner langs hver gruppedimensjon.

3. Fremgangsmidte ifelge krav 2,
karakterisert v ed at et delsett av den

flerdimensjonale gruppe blir komprimert.

5. Fremgangsmite ifglge krav 3,
karakterisert ved at den flerdimensjonale

gruppe representerer seismiske signaler.

5. Fremgangsmate ifslge krav 1,
karakterisert ved 4 dekomprimere den
komprimerte gruppe ved & invertere trinnene a) til e) i
motsatt rekkefslge.

6. Fremgangsmate ifslge krav 5, anvendt pd en flerdimen-
sjonal gruppe,

karakterisert v ed at det inverse av a)
blokkoppdelings~, b} foldings- og c) transformeringstrinnene
blir anvendt som en kaskade av operasjoner langs hver

gruppedimensjon.

7. Fremgangsmate ifwelge krav 6,
karakterisert ved at et delsett av den

flerdimensjonale gruppe blir dekomprimert.

8. Fremgangsmate ifelge krav 7,
karakterisert ved at den flerdimensjonale

gruppe representerer seismiske signaler.
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