PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/36509
GOG6F 9/54 A2

(43) International Publication Date: 22 June 2000 (22.06.00)

(21) International Application Number: PCT/US99/30437 | (74) Agents: STARR, Mark, T. et al; Unisys Corporation, Town-

(22) International Filing Date: 17 December 1999 (17.12.99)

(30) Priority Data:

09/215,424 18 December 1998 (18.12.98) US

(71) Applicant: UNISYS CORPORATION [US/US]; Township
Line and Union Meeting Roads, P.O. Box 500, Blue Bell,
PA 19424-0001 (US).

(72) Inventors: GULICK, Robert, C.; 331 Fairview Road, Glen-
moore, PA 19343 (US). MORRISSEY, Douglas, E.; 3923
Short Hill Drive, Allentown, PA 18104 (US). CALDAR-
ALE, Charles, Raymond; 2843 Brighton Avenue NE, Min-
neapolis, MN 55418 (US). VESSEY, Bruce, Alan; 916
Noble Drive, Downingtown, PA 19335 (US). RUSS, Craig,
F.; 30 Robins Lane, Berwyn, PA 19312 (US). TROXELL,
Eugene, W.; 273 Candlebrook Road, King of Prussia, PA
19406-1808 (US). MIKKELSEN, Hans, Christian; 14661
Afton Blvd. South, Afton, MN 55001 (US). MAUER,
Sharon, M.; 1064 Westwood Drive, West Chester, PA 19382
(US). CONNELL, Maureen, P.; 2124 Hemlock Road, Nor-
ristown, PA 19403 (US). HUNTER, James, R.; 461 East
Radnor Ct., Downingtown, PA 19335-1734 (US).

ship Line and Union Meeting Roads, P.O. Box 500, Blue
Bell, PA 19424-0001 (US).

(81) Designated States: BR, CA, JP, European patent (AT, BE, CH,
CY, DE, DK, ES, F], FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title:

COMPUTER SYSTEM AND METHOD FOR OPERATING MULTIPLE OPERATING SYSTEMS IN DIFFERENT PARTI-

TIONS OF THE COMPUTER SYSTEM AND FOR ALLOWING THE DIFFERENT PARTITIONS TO COMMUNICATE
WITH ONE ANOTHER THROUGH SHARED MEMORY

100
110 112 114
PROCESSOR(S) | | PROCESSOR(S) .. | Processons) | 12
/ / o
170 172 174
1
SYSTEM INTERCONNECTION «E
/
130
o
MAIN MEMORY 124
i
/
160

(57) Abstract

A computer system comprises a plurality of processing modules that can be configured into different partitions within the computer
system, and a main memory. Each partition operates under the control of a separate operating system. At least one shared memory window
is defined within the main memory to which multipie partitions have shared access, and each partition may also be assigned and exclusive
memory window. Program code executing on different partitions enables those partitions to communicate with each other through the shared
memory window. Means are also provided for mapping the physical address space of the processors in each partition to the respective
exclusive memory windows assigned to each partition, so that the exclusive memory windows assigned to each partition appear to the
respective operating systems executing on those partitions as if they all start at the same base address.

AL
AM
AT
AU
AZ
BA
BB

BF
BG

BR
BY
CA
CF
CG
CH
CI

CcM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

KR
KZ

LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
T
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

5

10

15

20

25

30

WO 00/36509 PCT/US99/30437

COMPUTER SYSTEM AND METHOD FOR OPERATING
MULTIPLE OPERATING SYSTEMS IN DIFFERENT
PARTITIONS OF THE COMPUTER SYSTEM AND FOR
ALLOWING THE DIFFERENT PARTITIONS TO
COMMUNICATE WITH ONE ANOTHER THROUGH SHARED
MEMORY

Copyright and Trademark Notices

A portion of the disclosure of this patent document contains material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure as it appears in
the United States Patent & Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Unix is a registered trademark of The Open Group. SCO and Unixware are
registered trademarks of The Santa Cruz Operation, Inc. Microsoft, Window, Window
NT and/or other Microsoft products referenced herein are either trademarks or
registered trademarks of Microsoft Corporation. Intel, Pentium, Pentium II Xeon,
Merced and/or other Intel products referenced herein are either trademarks or registered

trademarks of Intel Corporation.

Background of the Invention

Field of the Invention

The present invention relates generally to computer systems and, more particularly,
to a computer system that operates multiple operating systems in different partitions on the
computer system and that allows the different partitions to communicate with one another

through shared memory.

Related Art
A computer system typically includes a processor, main memory, and I/O devices

(e.g., printers, network interfaces, graphic display interfaces). The computer system uses an

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-2-

addressing scheme to designate the source or destination of an item of data. Memory
management functions, including the accessing of data, as well as other management
functions, are controlled via an operating system. There are a variety of operating systems
on the market, each having their own unique characteristics and abilities. Conventional

computer systems typically employ a single operating system.

As modern computer systems grow, and the demands of the user increases, the
necessity of employing a plurality of operating systems increases. Unfortunately, a
plurality of operating systems substantially increases the complexity of operating the

computer system.

What is needed is a computer system and method for allowing multiple operating
systems, including different operating systems, to operate in different partitions on the
computer system, and for allowing the different partitions, including the operating systems
and other clients running in the different partitions, to communicate with one another

through a shared memory.

Summary of the Invention

The present invention is directed to a computer system and methods for allowing
multiple operating systems to operate in different partitions within a single computer
architecture and for allowing the different partitions to communicate with one another

through shared memory.

According to a first aspect of the present invention, the computer system
comprises a plurality of processing modules and a main memory to which each
processing module is connected such that processor-to-memory latency is the same for
each processing module across all of the main memory. Groups of one or more
processing modules are configured as separate partitions within the computer system,

and each partition operates under the control of a separate operating system. Further

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-3

according to this first aspect of the present invention, the main memory has defined
therein at least one shared memory window to which at least two different partitions
have shared access. Program code executing on different partitions enables those
different partitions to communicate with each other through the shared memory

window.

For each different partition configured within the computer system, the main
memory may further have defined therein an exclusive memory window to which only
that partition has access and in which the operating system of that partition executes.
The separate operating systems on two different partitions may be different operating

systems, or may be different instances of a same operating system.

In one embodiment, the program code that enables inter-partition
communication (by managing the shared memory window resources) implements a
process by which a sending partition generates an inter-processor interrupt on a
receiving partition to signal the receiving partition that information is being transferred
to it through the shared memory window. According to this embodiment, the shared
memory window comprises a set of input queues associated with each partition, each
input queue of the set associated with a given partition corresponding to another
partition and storing entries representing communications from that other partition. In
order for one partition (a sending partition) to communicate with another partition (a
receiving partition), the program code on the sending partition (i) causes an entry to be
created in the input queue of the receiving partition that corresponds to the sending
partition; and then (ii) causes an inter-processor interrupt to be generated on the
receiving partition to signal the receiving partition that the entry has been created in

that input queue.

Assuming an embodiment in which each partition is assigned only a single
interrupt vector for receipt of shared memory inter-processor interrupts from other
partitions, when the inter-processor interrupt is detected on the receiving partition, the

program code on the receiving partition (i) causes each of its input queues to be

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-4-

examined to determine which of the input queues contain entries representing
communications from other partitions; and (ii) causes any such entries to be extracted
from the input queues that contain them. Preferably, each input queue contains a count

of the number of entries in the queue.

Alternatively, in an embodiment in which each partition assigns a separate
interrupt vector for each other partition from which it may receive an inter-processor
interrupt, and wherein the sending partition specifies the interrupt vector assigned to it
when sending an inter-processor interrupt to the receiving partition, the receiving
partition can use the specified interrupt vector to identify the input queue associated
with the sending partition and process it directly, without having to cycle through all of
its input queues (as is the case where each partition assigns only a single interrupt

vector for shared memory inter-processor interrupts).

Further in accordance with this first embodiment, the shared memory window
further comprises a plurality of pages of memory that can be allocated to the partitions,
as needed, to facilitate communication of information between them. An input queue
entry representing a communication between a sending partition and a receiving
partition may comprise a handle to one or more allocated pages of the shared memory
window. A sending partition can use one or more allocated pages to store data

representing a message to be communicated to a receiving partition.

Still further according to this first embodiment, each input queue is capable of
storing a pre-defined number of entries and contains an overflow flag that is caused to
be set whenever the input queue is full. A sending partition causes the overflow flag of
an input queue to be set if the creation of an entry in that input queue causes the input
queue to become full On the receiving side, if a receiving partition encounters an input
queue in which the overflow flag is set, it empties the queue and then resets the
overflow flag. The receiving partition may then send a communication back to the
sending partition to alert the sending partition that the input queue is no longer full. If

an attempt is made to send a communication via an input queue that is full, the sending

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-5-

partition can return an error, or alternatively, each partition can maintain a location in
its exclusive memory window for storing input queue entries that could not be placed in
a designated input queue because the overflow flag of that input queue was set
previously. The entries stored in the exclusive memory window location can remain
there until the overflow flag of the designated input queue is reset by the receiving

partition.

Yet further according to the preferred embodiment, the shared memory window
further comprises a table indicating, for each allocable page of the shared memory
window, whether the page is in-use or is available for allocation. The pages that are
available for allocation are preferably linked together to form a linked-list of available
pages. Ownership of a page by one or more partitions, is preferably indicated, for at
least some types of pages by information contained in a header within the page itself.
Ownership of other types of pages can be indicated by information in the table that also

specifies the availability of each page.

The header of each page may further comprise a lock field by which one
partition may acquire exclusive access to a page in order to, for example, update
ownership information in the header of the page. This field is part of a broader lock
mechanism of the present invention that allows different partitions to lock access to the
various structures, pages, and tables of the shared memory window, as needed, and in a
consistent manner, to ensure that only one partition is capable of modifying any given
structure, page, or table at a time (i.e., to synchronize access to these structures). In
accordance with one important feature of the lock mechanism of the present invention,
when a memory page is first allocated, the allocating partition must acquire a system
wide lock in order to lock access to the page during allocation. However, when
ownership of one or more allocated pages is extended or transferred to other partitions,
only a lock to the pages involved must be acquired. The lock field in these pages is
used for this purpose. This facilitates greater throughput of communications between

partitions, since contention for the system wide lock is eliminated.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-6-

According to a second embodiment, the program code on each partition
implements a polling process by which each partition polls an area within the shared
memory window to determine whether any communications intended for it have been
placed in the shared memory window by another partition. In this embodiment, the
area that is polled by each partition comprises a plurality of output queues, one for
each partition. The output queue for a given partition indicates whether that partition
has placed in the shared memory window any communications intended for any of the
other partitions. Each partition polls the output queues of the other partitions to
determine whether those other partitions have placed any communications intended for
it in the shared memory window. Each partition is allocated a separate pool of
message buffers in which it may place communications intended for other partitions.
When a sending partition places a communication intended for a receiving partition in
one of its allocated buffers, it then specifies the location of that buffer in its output

queue.

In greater detail, the output queue of a given partition comprises one or more
node-to-node queues, one associated with each other partition to which it may pass
communications. Each node-to-node queue indicates whether communications
intended for the partition with which it is associated have been placed in the shared
memory window. Thus, each partition polls the node-to-node queues associated with it
in the output queues of each other partition to determine whether any of those other
partitions have placed any communications intended for it in the shared memory
window. For message data that has been placed in a buffer by a sending partition, the
node-to-node queue associated with the receiving partition will specify the location of

the buffer so that the receiving partition can retrieve the message data.

According to a second aspect of the present invention, the computer system may
also comprise means for mapping the physical address space of the processors in each
partition to the respective exclusive memory window assigned to the partition.
Specifically, the means for mapping comprises means for relocating a reference to a

location within the physical address space of the processors on a given partition to the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-7-

corresponding location within the exclusive memory window assigned to that partition.
In this manner, the exclusive memory windows of each partition, which are physically
located in different areas of the main memory, can be made to appear to their respective
operating systems as having a same base physical address in the main memory (e.g.,
base address zero). This is necessary in order to run certain off-the-shelf operating
systems (e.g., Unix, Windows NT, etc.) in different partitions, because these operating
systems assume that main memory starts at address zero. By mapping the processor
address space in each partition to its exclusive memory window, the operating systems
can continue to reference memory as they normally would in the physical address space
of the processors on which they are executing. Thus, no modification of the operating

systems is required.

In a preferred embodiment, the means for relocating comprises a register that
holds an offset (R,) from the base physical address of main memory to the start of the
exclusive memory window assigned to a given partition, and an adder for adding the
offset (R, %) to each reference by a processor in that partition to a location within its
physical address space. As a result, those reference are relocated to their corresponding

locations within the exclusive memory window of the partition.

According to another feature of this aspect of the present invention, in cases
where the physical address space of the processors of a given partition contains a range
of addresses unavailable for memory storage (e.g., a range dedicated to memory-
mapped I/0), thus defining a memory hole, the computer system may further comprise
means for reclaiming for other uses that portion of the exclusive memory window of
the partition that would otherwise correspond to the memory hole. More specifically,
the computer system recognizes the memory hole and defines addresses above the
memory hole as a high memory range and addresses below the memory hole as a low
memory range. In addition to the offset (R, °®) from the base physical address of main
memory to the start of the exclusive memory window assigned to a given partition, a
value (R.2°) is also stored that specifies the size of the memory hole. Relocation and

reclamation are then achieved by (i) adding the offset (R, %) to each reference by a

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-8-

processor in the given partition to a location within the low memory range of its
physical address space (thereby relocating those references to their corresponding
locations within the exclusive memory window), and (ii) adding the offset minus the
value representing the size of the memory hole (R, - R.%%) to each reference by a
processor in the given partition to a location within the high memory range of its
physical address space (thereby relocating those references to their corresponding
locations within the exclusive memory window and at the same time reclaiming that
portion of the exclusive memory window that would otherwise have corresponded to

the memory hole).

According to still another feature of this aspect of the present invention, shared
memory windows can also be taken into account. Specifically, as mentioned above, a
shared memory window can be defined in addition to the exclusive memory windows
for each partition. In order to share access to that window, each partition designates a
portion of the physical address space of its processors as corresponding to the shared
memory window within the main memory. Then, according to the present invention,
the designated portion of the physical address space of the processors on each partition
is mapped to the same shared memory window in main memory. In a preferred
embodiment, this is achieved in each partition by (i) storing an offset (Sg,q:"°) from the
base address of the physical address space of the processors on the partition to the start
of the portion of that physical address space designated as corresponding to the shared
memory window, (ii) storing another offset (Sg,s) from the base address of the
main memory to the start of the shared memory window within the main memory, and

MSU _Spase’’) to each reference by a

(iii) adding the difference between the offsets (Sgaqe
processor in the partition to a location within its designated portion, thereby relocating
those references to their corresponding locations within the shared memory window of

the main memory.

Methods of the present invention are reflected in the various operations of the

computer system.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-9.-

Further features and advantages of the computer system and methods of the present
invention, as well as the structure and operation of various embodiments of the present

invention, are described in detail below with reference to the accompanying drawings.

Brief Description of the Figures

The invention is best understood by reference to the figures wherein references with
like reference numbers indicate identical or functionally similar elements. In addition, the
leftmost digits refer to the figure in which the reference first appears in the accompanying

drawings in which:

FIG. 1 is a block diagram of an environment suitable for implementation of a

preferred embodiment of the present invention;

FIG. 2 is a block diagram of a computer system in accordance with a preferred

embodiment of the present invention;

FIG. 3 illustrates a view of memory in an example with four partitions, each having

an exclusive memory window and access to two shared windows;

FIG. 4 illustrates a view of memory in an example with two partitions each having

an exclusive memory window;

FIG. § illustrates a view of memory in an example with three partitions, each

having an exclusive memory window and access to one shared window;

FIG. 6 illustrates an example memory configuration that is used to demonstrate the

present invention in operation;

FIG. 7 illustrates the result of applying the present invention to the memory

configuration shown in FIG. 6;

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-10 -

FIG. 8 is a flowchart illustrating a forward windowing algorithm;

FIG. 9 is a flowchart illustrating a forward translation algorithm,;

FIG. 10 illustrates an embodiment in which the memory system includes a single

shared window, in accordance with the present invention;

FIG. 11 and FIG. 12 illustrate applications of the present invention.

FIG. 13 illustrates a process flowchart for an exemplary initialization process, in

accordance with the present invention;

FIG. 14 illustrates data structures that can be used for sharing memory, in
accordance with a first embodiment of a shared memory management method of the

present invention;

FIG. 15 illustrates an exemplary embodiment of a message queue area, in

accordance with the first embodiment;

FIG. 16A illustrates exemplary information that can be included in a node output

queue data structure, in accordance with the first embodiment;

FIG. 16B illustrates exemplary information that can be included in a node output

queue data structure, in accordance with the first embodiment;

FIG. 17 illustrates an exemplary message data structure, in accordance with the first

embodiment;

FIG. 18 illustrates an exemplary use of computer system and methods of the

present invention for communicating between partitions through shared memory;

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-11-

FIG. 19 illustrates the layout of a shared memory window in accordance with an

alternate embodiment of a shared memory management method of the present invention;

FIG. 20 illustrates the contents of a control structure header in accordance with the

alternate embodiment;

FIG. 21 illustrates the contents of an allocation structure in accordance with the

alternate embodiment;

FIG. 22 illustrates a block diagram of another exemplary use of the computer
system and methods of the present system in which software utilizing the present invention
permits operating systems to communicate with shared memory while maintaining an

appearance of communication by wire;

FIG. 23 illustrates further details of the software illustrated in FIG. 22;

FIG. 24 illustrates further details of the software illustrated in FIG.22, wherein the

software is designed to execute in a Windows NT environment;

FIG. 25 is a process flowchart illustrating still further details of the software
illustrated in FIG.22, wherein the software is designed to execute in a Windows NT

environment;

FIG. 26 is a process flowchart that illustrates still further details of the software
illustrated in FIG.22, wherein the software is designed to execute in a 2200 operating

system environment;

FIG. 27 is a process flowchart that illustrates still further details of the software
illustrated in FIG.22, including details of a co-operative processing communications

(CPCOMM) software program,;

WO 00/36509 PCT/US99/30437

-12-

FIG. 28 illustrates further details of the computer system illustrated in FIG. 2;

FIG. 29 illustrates the contents of an Input Queue Header in accordance with the

5 alternate embodiment illustrated in FIG. 19;

FIG. 30 illustrates the contents of an Input Queue in accordance with the alternate

embodiment;

10 FIGS. 31A and 31B comprise a flow diagram further illustrating the operation of

the computer system in accordance with the alternate embodiment;

FIG. 32A illustrates the contents of a header of a Type 1 shared memory page in
accordance with the alternate embodiment; and
15
FIG. 32B illustrates the contents of a header of a Type 2 shared memory page in

accordance with the alternate embodiment.

FIG. 33 is ablock diagram of apparatus for carrying out the address relocation and
20 reclamation methods of the present invention, in accordance with a preferred embodiment

thereof.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 13-

Detailed Description of the Preferred Embodiments
Table of Contents

I. Overview

II. Computer System Platform

A. Memory Windows (Relocation and Reclamation)
B. Interleaving and Stacking of Memory (Translation)

C. Initialization at Boot Time

III. Methods for Managing the Global Shared Memory (Inter-Partition
Communications)

A. Polling For Inter-Partition Communications

B. Interrupt-Driven Shared Memory Communications
Shared Memory Layout

Free Page List

Client Directory Table

Shared Memory Page Types

Control Structure Header

Allocation Structure

Signals

Input Queues and Input Queue Header
9. Inter-Processor Interrupt Mechanism
10. The Core Services API

11. Interfaces Supplied by Clients

12. Exemplary Operation

13. Other Functions

X NN AR =

IV. Exemplary Uses of the Computer System and Methods of the Present
Invention to Facilitate Communications Between Partitions

A. A Shared Memory Device Driver

B. Maintaining an Appearance of Communications by Wire

V. Conclusions

5

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-14 -

l. Overview

The present invention is directed to a multi-processor computer system, having one
or more processor modules and a main memory having one or more memory storage units,
that allows a plurality of operating systems to concurrently execute in different partitions
within the computer system and allows the different partitions to communicate with one
another through shared memory. The main memory is divided into a plurality of memory
storage units (referred to as MSU’s). The main memory is allocated among the different

partitions. Data coherency and consistency are maintained among the partitions.

According to one inventive aspect of the computer system, an address mapping
function, f,,, is provided between an address request generated from one of the processors
of a processor module and a corresponding address within a window of the main memory.
The address mapping function, f,, can be conceptually thought of as having three distinct

parts: windowing, reclamation and translation.

The main memory has a contiguous address space. According to the present
invention, each partition (and its associated operating system) is assigned an exclusive
memory window within the address space of the main memory. A shared memory
window may also be defined within the main memory to which multiple partitions may
have shared access. The windowing function maps the physical address space of the
processors in each partition to the respective exclusive memory windows assigned to those
partitions. In this manner, the exclusive memory windows of each partition are made to
appear to their respective operating systems as having a same base physical address (e.g.,
address zero) in the main memory. The windowing function is needed to run off-the-shelf
operating systems in different partitions on the computer systems, because off-the-shelf
operating system (e.g., Unix, Windows NT, etc.) typically expect physical memory to

begin at address zero.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-15-

Reclamation reclaims main memory which is located behind memory-mapped I/O
address space occupied by, for example, Peripheral Component Interface (PCI), Advanced
Programmable Interrupt Controller (APIC) and basic system memory mapped and 1/O
devices (e.g., floppy controller, serial ports, parallel ports, etc.), which would be unusable
by the computer system if not relocated. That is, memory addresses that are allocated to
IO devices by each operating system are reclaimed so that the operating system appears to

have additional memory space within main memory.

Translation maps a memory reference to a specified memory storage unit. System
memory addresses can be interleaved or stacked between memory storage units, as dictated

by how the computer system is populated with memory storage units.

In an exemplary embodiment, the computer system includes a plurality of
processing modules. A processing module may be a Pod or a sub-Pod. A Pod comprises
two sub-Pods. In a preferred embodiment, a maximum configuration of the computer
system includes four Pods, i.e., eight sub-Pods. According to the present invention, the
computer system can be partitioned on both Pod and sub-Pod boundaries. Thus, in the
preferred embodiment, wherein a maximum configuration consists of eight sub-Pods, the
computer system can be partitioned into a maximum of eight partitions, each defined by a
separate sub-Pod. Further according to the present invention, each partition operates under
the control of its own operating system. The operating systems executing on different ones
of the partitions may be different operating systems, or different instances of a same

operating system.

The invention further provides a global shared memory approach to sharing data
between partitions on the computer system. In one embodiment, the global shared memory
approach provides an exclusive memory window within the main memory for each
partition, plus a shared memory window that multiple partitions can access. The
partitions, including their operating systems and/or other clients running within the

partitions, can communicate with one another through the shared memory window.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 16 -

Communications between partitions through shared memory can be managed by
any of a variety of methods. In one embodiment, inter-partition communications through
shared memory are managed in accordance with an interrupt-driven technique. In another

embodiment, a polling technique is used to manage the shared memory communications.

As used herein, the term "computer system" refers to hardware, including electronic
and mechanical components, and to software, including application programs and
operating systems. Generally, operating systems include instructions and data that a
computer manipulates in order to perform its tasks. The hardware provides the basic
computing resources. The software defines the ways in which these resources are used to

solve the computing problems of users.

As used herein, the term "operating system" refers to the program code that
controls and coordinates the use of the hardware among the various application programs
for various users. The operating system is the first program code loaded into the main
memory of a computer system after the computer system is turned on. The central core of
the operating system resides in the memory space at all times. As used herein, the term
"operating system address" means the physical address space (memory and I/O) of a
processor of a computer system and is the address space of a conventional computer
system as viewed from the perspective of an operating system executing on that computer

system.

As used herein, the term "computer architecture" refers to the structure and
behavior of a computer, as viewed by a user. It concerns the specifications of the various
functional modules, such as processors and memories, and structuring them together into a

computer system. The computer architecture is implemented utilizing hardware.

As used herein, the term "memory storage unit" refers to a memory space capable
of storing information. Each memory storage unit includes a plurality of memory storage

units, sometimes referred to as banks of DRAM (Dynamic Random Access Memory). As

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-17-

used herein, the term "memory storage unit address" refers to an address location as

viewed from the perspective of the computer system.

As used herein, the term “partition” refers to one or more processing module(s) that
are under the control of a single instance of an operating system. The term “partition” is
used herein to refer, in whole or in part, to the processing modules(s) of the partition, the
operating system executing on the partition, any exclusive memory window assigned to the
partition, other clients or application programs executing on the partition, or any

combination thereof.

As used herein, the term “processing module” means a plurality of processors
operating cooperatively. As exemplified in the preferred embodiment described below,
Pods and sub-Pods are both examples of processing modules. One or more Pods or sub-
Pods (i.e., one or more processing modules) may be defined as a partition within the

computer system.

As used herein, the term “program code” means a set of instructions that, when
executed by a machine, such as a computer system or processor, causes the computer
system or processor to perform some operation. Recognizing, however, that some
operations or functionality in a computer system may be hard-coded, in the form of
circuitry that performs the operation or function, or may be performed by a combination of
executable instructions and circuitry, the term “program code” also includes such circuitry

or combination of executable instructions and circuitry.

. Computer System Platform
Figure 1 illustrates a multi-processor system that includes processor moduies 110,

112, and 114. Processor modules 110, 112 and 114 are of comparable compatibility.
However, the present invention further contemplates that heterogeneous processors and/or
operating systems will co-exist. Each processor module 110, 112 and 114 is

self-contained. The processor modules 110, 112 and 114 can each include a plurality of

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-18 -

processors. Two or more of processor modules 110, 112 and 114 share access to main (or
global) memory 160 and/or to I/O devices 120, 122, and 124, typically through a system
interconnection mechanism, such as system interconnection 130. Processor modules 110,
112, and 114 can communicate with each other through main memory 160 (by messages

and status information left in common data areas).

According to the present invention, one or more processor modules may be
configured as a separate partition within the computer system, such that multiple partitions
may exist within the computer system, each partition operating under the control of a
separate operating system. For example, each processor module 110, 112 and 114 of
Figure 1 can be defined as a separate partition controlled via a separate operating system
170, 172 and 174. Each operating system 170, 172 and 174 views main memory

separately as though each is the only entity accessing main memory 160.

A distinction should be made between multi-processor systems and multi-computer
systems. A multi-computer system is a system in which computers are interconnected with
each other via communication lines to form a computer network. The computers are
autonomous and may or may not communicate with each other. Communication among
the computers is either via fixed paths or via some message-switching mechanism. On the
other hand, a conventional multi-processor system is controlled by one operating system
that provides interaction between processors and all the components of the system

cooperate in finding a solution to a problem.

Figure 2 is a detailed illustration of a preferred embodiment of a computer system
200, in accordance with the present invention. Computer system 200 includes a main
memory, illustrated here as main memory 160, and a plurality of processing modules 240
connected to the main memory via respective third level cache modules 230 and crossbar
interconnects 290. In this embodiment, the processing modules and the main memory are
arranged in a symmetrical multiprocessing architecture, i.e., processor-to-memory latency

is the same for each processing module across all of the main memory.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-19-

In the present embodiment, main memory 160 is a directory-based memory
system and is capable of supporting various memory consistency models such as, for
example, memory consistency models employed on UNIX/NT systems. Main memory
160 includes a plurality of memory storage units (MSUs) 220, such as memory storage
units 220A, 220B, 220C, and 220D. Preferably, each memory storage unit 220A, 220B,
220C, and 220D includes at least eight gigabytes of memory. Preferably, each memory
storage unit 220A, 220B, 220C, and 220D includes sixteen semi-independent banks that

share four double-wide data busses and eight unidirectional address busses.

The plurality of third level cache modules 230, such as third level cache modules
230A through 230D, include a plurality of third level cache application specific integrated
circuits (or TCTs), such as TCTs 270A through 270H. In the present embodiment, pairs of
processors (e.g., 240A and 240B) share a common bus (e.g., 280A) with a single TCT
(e.g., 270A) within a given TLC (e.g., 230A). Each TCT 270 performs address relocation,
reclamation, and translation for memory addresses issued by the processors to which it is

connected, as described more fully below.

Each third level cache module 230A through 230D is connected to a respective
plurality of processors (MPs) 240A through 240S. Specifically, in the present
embodiment, each TLC 230 is connected to four processors. Each TLC 230 and its
respective four processors define a sub-Pod. Further according to the present embodiment,
two sub-Pods are connected via a crossbar interconnect (e.g., crossbar interconnect 290A
or 290B) to form a Pod. Thus, in the embodiment illustrated in Figure 2, there are four
sub-Pods connected via crossbar interconnects 290A and 290B, respectively, to form two

Pods.

Crossbar interconnects 290 interface processors 240, through third level caches
230, with memory storage units 220. Crossbar interconnects 290 employ a crossbar
memory approach, whereby a plurality of cross points are placed at intersections between
the processors 240 and memory storage units 220. Within the cross point is a switch that

determines the path from a processor bus 280 to a memory storage unit 220. Each switch

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-20 -

point has control logic to set up the transfer path between a processor 240 and main
memory 160. The control logic examines the address that is placed on processor bus 280
to determine whether its particular memory storage unit 220 is being addressed. The
control logic also resolves multiple requests for access to the same memory storage unit
220 on a predetermined priority basis. Each crossbar interconnect 290 further comprises a
pair of Third-Level-Cache Memory Interface application specific integrated circuits
(TCMs) 285, which perform address relocation, reclamation, and translation for memory

requests from I/O devices, as described more fully below.

Computer system 200 further includes I/O buses 210A through 210D and a
plurality of peripheral component interconnects (PCIs), such as PCIs 260A through 260D
that are connected via direct I/O bridges, such as direct I/O bridges (DIB) 250A through
250D.

In operation, memory storage units 220 bi-directionally communicate with third
level cache modules 230, through crossbar interconnects 290. Crossbar interconnects 290
bi-directionally communicate with direct I/O bridges 250 via I/O buses 210, and with
processors 240 through TCTs 270. Direct I/O bridges 250 bi-directionally communicate

with peripheral component interconnects 260.

In the present embodiment, the processors (MPs) 240 may comprise Intel
processors (e.g., Pentium Pro, Pentium II Xeon, Merced), Unisys E-mode style processors
(used in Unisys A Series and Clearpath HMP NX enterprise servers), or Unisys 2200 style
processors (used in Unisys 2200 and Clearpath HMP IX enterprise servers. Preferably, a
given sub-Pod employs four processors of the same type. However, the present invention
contemplates that different sub-Pods may employ different types of processors. For
example, one sub-Pod may employ four Intel processors, while another sub-Pod may
employ four Unisys E-mode style processors. In such a configuration, the sub-Pod that
employs Intel processors may be defined as one partition and may run under the control of
an Intel-compatible operating system, such as a version of Unix or Windows NT, while the

sub-Pod that employs Unisys E-mode style processors may be defined as another partition

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-21-

and may run under the control of the Unisys MCP operating system. As yet another
alternative, the sub-Podsin two different partitions may both employ Intel processors, but
one partition may run under the control of an Intel compatible operating system (e.g.,
Windows NT), while the other partition may run under the control of the Unisys MCP
operating system through emulation of the Unisys A Series computer architecture on the

Intel processors in that partition.

Additional details of the architecture of the preferred embodiment of the computer
system 200 of Figure 2 are provided in the foregoing co-pending, commonly assigned
applications listed in the section entitled Cross-Reference to Other Applications, each of

which is incorporated by reference herein in its entirety.

As mentioned above, in accordance with the present invention, computer system

200 is partitionable on Pod and sub-Pod boundaries. In figure 28, a portion 2801 of
computer system 200 is illustrated including Pod and sub-Pod boundaries. A Pod 2802
includes crossbar interconnect 290A, a first sub-Pod 2804 A, and a second sub-Pod 2804B.
Sub-Pods 2804 A and 2804B are substantially similar to one another. Sub-Pod 2804A, for
example, includes third level cache 230A, which includes TCTs 270A and 270B. Sub-Pod
2804 further includes processors 240A-240D. Pod 2802 thus includes two TLCs 230, four

TCTs 270, eight processors 240 and a crossbar interconnect 290.

In the present embodiment, a maximum configuration of the computer system 200
includes four Pods 2802, each Pod 2802 including two sub-Pods 2804, as described above.
Thus, in the maximum configuration, computer system 200 includes (4 Pods) * (8
processors per Pod) = 32 processors. Computer system 200 can be partitioned on any
combination of Pod or sub-Pod boundaries. It is understood, however, that the present
invention contemplates other multiprocessing environments and configurations. For
example, computer system 200 could be expanded by plugging in more memory storage

units 220 and more Pods or sub-Pods.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-22.

In an embodiment, Pod 2802 is defined to include direct I/O bridges 250A and
250B. In an embodiment, sub-Pods 2804 and 2806 are defined to include direct I/O
bridges 250A and 250B, respectively.

Further according to the present invention, multiple partitions within the computer
system, each of which may comprise one or more Pods or sub-Pods, each operates under
the control of a separate operating system. The operating systems executing on the
different partitions may be the same or different. For example, the present invention
contemplates an environment wherein at least two of the operating systems are different

and one operating system does not control or manage the second operating system.

Figure 5 illustrates an exemplary memory configuration that can be generated on
the computer system of Figure 2, in accordance with the partitionability feature of the
present invention. In this example, each of three operating systems (OS) has its own
address space 502 (i.e., the physical address spaces of the respective processing modules
on which those operating system execute). The main memory 160 has an address space
504. According to the present invention, three exclusive memory windows 540A, 540B
and 540C, one for each operating system (i.e., partition), and one shared memory window
537, which is accessible by all three operating systems 540A, 540B and 540C (i.e.,

partitions), are defined within the address space 504 of the main memory 160.

For example, OS#1 includes within its address space a low memory window, such
as low memory window 511, a low memory hole, such as low memory hole 512, a high
memory window, such as high memory window 513, a portion defined as a shared memory
window, such as shared memory window 514, and a high memory hole, such as high
memory hole 515. Low memory window 511, low memory hole 512, high memory
window 513, and high memory hole 515 are exclusive to operating system OS#1. The
portion of the address space defined as the shared memory window 514 is intended to be

shared.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-23 -

As used herein, a "high memory hole" refers to memory space in a memory storage
unit high address range that is unavailable for storage of data or instructions because the
associated address has been assigned to an I/O device. As used herein, a "low memory
hole" refers to memory space in a memory storage unit low address range that is
unavailable for storage of data or instructions because the associated address has been
assigned to an I/O device. As used herein, a "window" is an address range that has an
upper limit and a lower limit. Visibility of and access to a window is governed by
ownership rights. As used herein, a "shared window" refers to an address range that at least
two operating systems own jointly. That is, more than one operating system has visibility
and access to a shared window. As used herein, the term "exclusive window" refers to an
address range which only one operating system owns. That is, only one operating system
may view or access an exclusive window. Data coherency and consistency is maintained

among operating systems nonetheless.

The address space of OS#2 and OS#3 have a similar structure as operating system

OS#1. For the sake of brevity, these address spaces will not be described in detail.

The address space of many processors consists of both main memory and memory-
mapped Input/Output (I/O) addresses. Main memory transactions are directed to the main
storage units. I/O transactions are forwarded to the I/0 subsystem. Since the I/O addresses
access additional memory outside of the main storage, the system could end up with a
processor address that references two memory locations. For consistency, one of these
memory locations will have to be disabled. Disabling these main storage locations creates a
hole in the main memory addressing, and results in memory being left unused. Ifthe I/O
memory address space is large, then a significant block of memory is left unusable. If
multiple OS partitions are added to the system, then mﬁltiple I/O holes are created,
resulting in potentially numerous holes scattered across the main memory address space.
According to the present invention, as illustrated in Figure 5, low memory holes, such as
low memory holes 511, 541, and 571, and high memory holes such as high memory holes

515, 545, and 575, are reclaimed and re-mapped to a contiguous address space, such as is

10

15

20

25

30

WO 00/36509 PCT/US99/30437

=24 -

depicted for MSU memory space 504. MSU memory space 504 is a conceptual view of

main memory 160. Reclamation is described below in greater detail.

For example, the contiguous address space of MSU address space 504 includes
low memory, such as low memory 531, 533, and 535, high memory, such as high memory
532, 534, and 536, and shared memory, such as shared memory 537. Low memory 531
and high memory 532 comprise an exclusive window exclusive to operating system OS#1.
Low memory 533 and high memory 534 comprise an exclusive window exclusive to
operating system OS#2. Low memory 535 and high memory 536 comprise an exclusive
window exclusive to operating system OS#3. There are no memory addressing holes
within main memory 160. The contiguous address space of main memory 160 is
maintained independent of memory expansion, type of reference translation (described in

detail below), or shared memory environment.

A. Memory Windows (Relocation and Reclamation)

A window is an address range bounded by upper and lower (address) limits.
Access to and visibility of this space is limited by ownership rights. The present invention

provides two types of windows: exclusive and shared.

Exclusive windows are owned by a single partition/operating system. Every
instance of an operating system must operate within the limits of its own window. The
address space of this window is not visible, nor accessible to other partitions/operating
systems. In a preferred embodiment, all windows begin on a mod 32MB address
boundary. However, other boundaries are contemplated by the present invention. From an
operating systems point of view, particularly off-the-shelf operating systems such as Unix
and Windows NT, its address space (i.e., the physical address space of the processor(s) on
which it executes) always begins at address zero (i.e., its lower limit is zero), as illustrated
in the left hand portion of Figure 5. From the perspective of main memory 160, the

address range begins at a relocation (R,) value. The R, value is described in detail below.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-25.-

In a preferred embodiment, the upper limit of an exclusive window is set to a base address

of a shared window, Sg, .5

A shared window is an address range bounded by upper and lower limits, where
this space is visible and accessible by more than one operating system (i.e., partition),
while each is running within its own exclusive window. The shared window is a common
area through which different partitions, including, for example, their operating systems,
can communicate and share data. This area also begins on a mod 32MB address boundary
in a preferred embodiment. The shared window can be Nx32MB in size. There are two
configuration parameters associated with a shared window. One contains the base address
for the portion defined as the shared window within the operating system’s address space,
Sease” (i.e., the base addresses of the portions 514, 544, and 574 for OS#1, OS#2, and
OS#3, respectively) . The other holds the base address for the corresponding shared area,
Sease Y, within the address space 504 of main memory 160. In a preferred embodiment,
the upper limit for each operating system’s shared area is the "top of memory" value for
that operating system. The lower limit, Sy, :“°, must be on a mod 32MB address
boundary. If exclusive areas are enabled, the location of shared memory 537 within MSU
memory space 504 should be above the respective exclusive windows of all the operating
systems that share this area. This last requirement is enforced as a hardware design
tradeoff. The shared area is bounded by an upper limit, T%, which is an operating
system’s top of memory reference from within the operating system's addressing
viewpoint. An address above T is trapped and never passed to main memory 160. Thus,

shared memory 537 is completely bounded.

In other configurations contemplated herein, each operating system can coexist
with the other operating systems in a totally shared space. An example of this is when an
entire MSU block is set to shared. In this case, each operating system can be configured to
be able to view the other operating system’s address space. When configured in this
fashion, the burden of maintaining access rights to individual pages of memory is placed
upon the cooperating operating systems. The hardware no longer restricts accesses and

visibility to individual operating systems. The operating systems must control memory

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-26 -

page access rights by processor page control or some other means in order to prevent a
process from corrupting memory. This method of operating is used by cooperative
operating systems. An operating system can directly read from another operating system’s
memory page. Also, one operating system instance can load data destined for another
operating system directly into the other operating system’s data area, by-passing any
temporary buffering. Figure 10 illustrates an example of this type of configuration.
Referring to Figure 10, each operating system is configured in such a fashion that their
shared area provides a view of the entire MSU memory, including a copy of its’ own
operating system instance. This aliased address is referred to henceforth as a shadow
address. The address range residing below the shared area within each operating system's

view is referred to as a local address.

In the present embodiment, the present invention limits the association of an
exclusive window with a maximum of one shared window. However, in other
embodiments, an exclusive window could be associated with more than one shared
window. In such a case, there would be separate S, """ and Sg,:"° values for each such

shared window.

According to the present invention, the physical address space of the processing
module(s) of each partition (i.e., the address space as viewed by the operating system on
that partition) is mapped, or relocated, to the corresponding exclusive memory window
assigned to that partition within the address space 504 of the main memory 160. The
address space of main memory 160 should be viewed as a single memory block for
purposes of discussion. However, the present invention further contemplates a translation
function (described below) in which addresses are additionally mapped to an individual
memory storage unit 220 in order to produce address interleaving across memory storage

units 220.

By way of further example, Figure 4 illustrates a simple system containing two
operating systems OS0 and OS1, each occupying 2GB of memory space within main

memory 160. Each operating system address space has its own memory-mapped I/O space

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-27-

415 and 435. In this example, the holes associated with the memory-mapped I/0O do not
overlay the DRAM memory area.

At this point, the terms Relocation (R;) and Reclamation R. can be further
described. Relocation is the assignment of a base address to an exclusive memory
window. This base address is the starting address (i.e., offset from address zero) for this
window in the address space of main memory 160 and must be on a mod 32MB address
boundary. Referring to Figure 4, the R, value for operating system window 430 (OS0) is
zero since the window starts at the bottom of main memory 160. Operating System
window 410 (OS1) has aR, value of 2GB, because its physical address zero location has

been relocated into the address space of main memory 160 starting at 2GB.

Reclamation is the re-mapping of the address space within a window in order to
reclaim the memory locations that fall behind a memory-mapped I/O address space. If
reclamation is not active and a window has memory-mapped I/O assigned where the I/O
range falls below the top of memory, a hole is generated in the windows memory address
space. Inthe example of Figure 4, reclamation is not needed, because the holes associated
with the memory-mapped I/O do not overlay the DRAM memory area. However, referring
to Figure 5, reclamation can be performed for low memory holes 512, 542 and 572 (i.e.,
where the 32 bit memory-mapped 1/O devices are mapped). Reclamation can be viewed as
increasing the available memory address space above the hole equal to the size of the hole.

In a preferred embodiment, reclamation is only performed if the hole size is 128MB or
larger. This is a hardware tradeoff. Also, because of design tradeoffs, only one address
hole is reclaimed per operating system instance. The present invention, however,
contemplates that a computer system can be implemented without enforcing these two

design tradeoffs. Reclamation is discussed in more detail below.

Referring again to Figure 5, all three operating system address spaces OS#1, OS#2
and OS#3 contain memory-mapped I/O overlaying the memory address space. However,
the low memory hole 512 of operating system address space OS#1 is smaller than the

minimum 128MB block size, so reclamation is not performed. The low memory hole is

10

15

20

25

WO 00/36509 PCT/US99/30437

-28 -

reclaimed for the other two operating systems, however, in their exclusive windows 540A

and 540B, respectively.

Figure 3 illustrates another possible configuration containing four operating system
windows (or instances). Here OS#1 and OS#4 share a common area, while OS#2 and
OS#3 share another. Note that the placement of the individual windows into the address
space of main memory 160 is controlled by the R, variable. Figure 3 depicts only one of

the many possible mappings of these windows into MSU memory space 350.

According to the present embodiment, each operating system window has
associated therewith a configuration register that provides a set of configuration

SU

parameters: R, %, Rc%, Sy, and Sy, Different window mappings are easily

generated simply by changing the operating system windows’ configuration parameters.

TABLE A illustrates the configuration register values for each the operating system
windows shown in Figure 5. Reclamation of a memory hole depends on the contents of
the configuration register. TABLE A includes a row for each operating system of interest.
Relocation field, R, %, stores the base (or starting) address for the operating system
window of interest as relocated in the memory storage unit 220. Reclamation field, R,
stores an address range corresponding to the size of the low memory hole in the operating
system window of interest. Shared base OS field, Sy, stores the base address for the
portion of the operating system address space designated as the shared portion. Shared base
MSU field, Sy, stores the base address for the shared window 537 within the address

space of the memory storage unit memory 220.

10

15

WO 00/36509 PCT/US99/30437

=29 .
TABLE A
The Configuration Register Values for the Window Mapping Shown in Figure 5.
Relocation Reclamation Shared BaseOS Shared BaseMSU
Ry 08 RcOS SBASEQS SgASgMSU
0SOS | 0.0000.0000 0.0000.0000y 1.4000.0000y 4.5000.000011
#1 (0GB) (0GB) (5.000GB) (17.250GB)
0sOS | 1.4000.0000 0.1000.0000g 1.7000.00005; 4.5000.0000g
#2 (5.000GB) (0.250GB) (5.750GB) (17.250GB)
0SOS | 2.A000.0000g4 0.0800.0000y 1.B800.0000y 4.5000.00001y
#3 (10.500GB) (0.125GB) (6.87GB) (17.250GB)

In the present embodiment, the TCT 270 for each pair of processors 240 contains
the Configuration Register and other registers and logic for performing relocation,
reclamation, and translation, as described herein, for addresses issued by the processors
interfaced to that TCT. These registers and logic are also replicated in the TCMs 285 of
the crossbar interconnects 290, because the TCMs 285 must perform the same relocation,
reclamation, and translation on memory requests received from an I/O processor (e.g., PCI

card) via a respective DIB 250.

Within the physical address space of the processors of each partition, the TCTs 270
of that partition determine an address range for low memory, high memory, low memory
holes, high memory holes, and shared memory. For example, in the address space of
operating system OS#3, low memory window 571 begins at address location 0.000, and
includes 3.875 gigabytes of memory space. High memory window 573 begins at address
location 1.5000.000, and includes 5.250gigabytes of memory space. Low memory hole
572 includes 125 megabytes of unused memory space to be reclaimed. High memory hole

575 includes 250 megabytes of unused memory to be reclaimed.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-30-

In performing its windowing function, each TCT 270 of the present invention
further assigns its partition an exclusive memory window within the address space 504 of
the main memory160. Within each exclusive memory window, there is an address range
for low memory and for high memory. For example, in exclusive window 540B, low
memory window 533 begins at address location 1.4000.0000, and includes 5.000
gigabytes of memory space. High memory window 534 begins at address location
2.8000.000H and includes 10.000 gigabytes for a total of 10.500 gigabytes of memory
space in exclusive window 540B. In exclusive window 540A, low memory window 535
begins at address location 2.A000.0000, and includes 5.125 gigabytes of memory space.
High memory window 534 begins at address location 3.E800.000, and includes 1.625

gigabytes of memory space.

When one of the processors of a processing module of a given partition issues an address
on its address lines (“the referenced address” or “processor address™), the TCT 270 for that
processor adjusts the address for any relocation, reclamation, or shared windowing, as
required, to produce the address of the corresponding location in the main memory 160.
The values in the various fields of the configuration register (TABLE A) are used during
this process. Specifically, if the referenced address is within the portion of the operating
system address space designated as the shared window, then the referenced address is
offset by the values contained in shared base OS field and shared base MSU fields of the
configuration register. If the referenced address is within the high memory window of the
operating system’s address space, then the referenced address is offset by the values
contained in the relocation and reclamation fields of the configuration register. If the
referenced address is within the low memory window of the operating system’s address
space, then the referenced address is offset by the value contained in the relocation field of
the configuration register. As described herein, therefore, the TCTs 270 provide a means
for mapping the physical address space of the processors in each partition to the respective
exclusive memory windows assigned to each partition, and, more specifically, a means for
relocating a reference to a location within the physical address space of the processors on a
respective partition to the corresponding location within the exclusive memory window

assigned to that partition. As mentioned above, in a similar manner, the TCMs 285

10

15

20

WO 00/36509 PCT/US99/30437

-31-

perform any relocation or reclamation required for memory addresses received from an I/O
processor (e.g., PCI card) communicating via a DIB and TCM to main memory.
TABLE B illustrates pseudo-code for implementing relocation and reclamation of
operating system address spaces (i.e., the physical address spaces of the processors of the
different partitions) to their corresponding exclusive memory windows within main
memory. Generally, memory-mapped 1/O addresses are filtered out by the TCT 270,
leaving only references to main memory 160. The remaining addresses are then passed
through the algorithm shown in TABLE B, as described in detail below. Finally, the

relocated memory reference is passed to main memory 160.

TABLE B
if OS%br € RANGE siisrepmerony
then MSU apr - OS5or + [Stise - Soase]
elseif OS9or € RANGE rigrvemory
then MSU upr ~ OSape*+ [RY* - RE]
else / * OS%R € RANGE rowmemory ¥/

MSU ipr - OS%or + [R]
endif;

Figure 8 illustrates a flow chart of the address windowing algorithm. Reference is
also made to TABLE A. Asshown in step 810, a check is performed to determine whether
areference address (i.e., an address issued by one of the processors of a processing module
within a given partition executing a given operating system), OS ,pz, is within the portion
of the operating system’s address space designated as the shared memory window. If so,
the referenced address is relocated to an address based on the formula: OS g + [Sgase° -
Spase "], as shown in step 815. This is referred to as the relocated address, which in turn is

used to access main memory 160. The relocated address is the address of the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-32-

corresponding location in the shared memory window defined within the main memory

160.

Otherwise, a check is performed to determine whether the referenced address is
within the high memory portion of the operating system address space (e.g., high memory
513, 543 or 573). This is shown in step 820. If so, the referenced address is relocated to
an address based on the formula: OS,p; + [R,% - R.%], as shown in step 825. The
relocated address identifies the corresponding location in the exclusive memory window

for the partition.

Otherwise, the algorithm assumes that the referenced address falls within the low
memory portion of the operating system address space (e.g., low memory 511, 541 or 571),
as shown in step 830. In this case, the referenced address is relocated to an address based
on the formula: OS,p; + [R, °*]. Thus, address references within the physical address space
of a processor within a partition (i.e., the address space viewed by the operating system)
are relocated to their corresponding locations within either the exclusive memory window
defined for that partition within main memory or the shared memory window defined

within main memory.

Figure 33 is a block diagram illustrating apparatus, in the form of registers and
logic, for performing the relocation and reclamation functions described above, in
accordance with the preferred embodiment. This logic is provided in each TCT 270 to
perform the relocation and reclamation functions of the present invention for memory
addresses issued by the processors (MP) 240 interfaced to the TCT 270. As mentioned,
this logic is also replicated in each TCM 285 in order to perform relocation and

reclamation for memory addresses issued by an I/O processor via a respective DIB 250.

According to the preferred embodiment, as illustrated in Figure 33, a memory
address issued on the address lines of a given processor 240 (or by an I/O processor via a
respective DIB 250) is captured in a Processor Address register 3310. In the preferred

embodiment, main memory is addressable in words of 8 bytes bits (1 word = 8 bytes = 64

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-33-

bits), and therefore, the least significant 3 bits of the processor address are not needed for
generating an adjusted address. Thus, as shown, only bits [35:3] are captured in the
Processor Address register 3310. Furthermore, in the preferred embodiment, main
memory is cached in blocks of eight (8) words (8 words = 64 bytes), and thus bits [35:6]
represent the effective cache block address. As shown, these bits are captured in a

subsequent Cache_Block Address register 3312.

As further described above, in the preferred embodiment, all memory windows,
whether “exclusive” or “shared,” must begin on a mod 32MB address boundary.
Consequently, in relocating a processor address to a particular exclusive memory window
or shared memory window, only bits [35:25] of the processor address are needed for the

calculation. Accordingly, as shown, these bits are captured to a temporary register 3314.

The values Spage ", Spase > R.%, and R.%° are stored in respective register
locations 3318, 3320, 3330, and 3340. Collectively, these register locations comprise the
Configuration Register described above. In practice, these register locations can comprise
separate fields of a single, larger register, or they can be implemented as four separate
registers. For the case of a processor address that falls within the portion of the processor’s
address space designated as a shared memory window, a subtractor 3405 subtracts the
Spase’” value in register location 3320 from the Sp,q; " value in register location 3318 and
stores the resulting offset value in register 3350. For the case of a processor address that
falls within the high memory portion of the exclusive memory window assigned to the
partition to which the processor belongs, a subtractor 3410 subtracts the R.** value in
register 3340 from the R, °® value in register 3330 and stores the resulting offset value in
register 3370. As further shown, the five bits of the R.*® value are padded (using an
append function 3400) with two logic zero bits in the least significant bit positions and four
logic zero bits in the most significant bit positions to properly align the bits for subtraction
from the bits of the R, value. Recall from above that in the present embodiment,
reclamation can only be performed in increments of 128 MB. For the case of a processor

address that falls within the low memory portion of the processor’s exclusive memory

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-34 -

window, the R, ® value in register 3330 is the required offset, and thus, that value is stored

directly in register 3360.

Address Range Compare Logic 3390 performs the steps described above of
determining whether the address issued by the processor falls within the portion of the
processor’s address space designated as a shared memory window, or whether the address
falls within either the low memory or high memory portions of the exclusive memory
window assigned to the partition to which the processor belongs. Based on this
comparison, the appropriate offset from one of the registers 3350, 3360, or 3370 is selected
via a 3:1 Selector 3380. An adder 3420 then adds the selected offset value to the bits
[35:25] of the processor address stored in register 3314, and the result is stored in register
3430. The bits in register 3430 are then prepended to bits [24:6] of the cache block address
to form the adjusted address, which is stored in an Adjusted_Partition_Address register
3316. The adjusted address in register 3316 is then used to access main memory (after
further translation in accordance with the interleaving mechanism of the present invention

described below).

Referring again to Figure 5, and as already discussed above, addresses that have
been assigned to memory-mapped I/O can be reclaimed. These addresses are referred to as
low memory holes, such as low memory hole 512. In a preferred embodiment, the low
memory holes always begin immediately below 4GB and extend downward in the address
space of the associated operating system equal to the size of the hole. Obviously the
placement of the low memory hole is a design choice. Memory reclamation is to be used
only when the top of memory addresses, for the installed memory amount, is greater than
the bottom of the memory overlap region (i.e., 4GB minus the overlap hole size). In other
words, reclamation should not be used in systems where there is no overlap between the

PCI APIC range and installed DRAM memory.

All overlaid memory, and any memory immediately above it, can be perceived as
sliding up in the processor/operating system address space. Therefore, the memory that

lies behind and starting at the bottom of the hole now begins at address 4GB and extends

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-35-

upward from this point. Memory addressing remains contiguous from the 4GB starting
address and extends to the new top of memory, i.e., the original top of memory plus the

hole size.

Figure 11 illustrates how an address range is mapped using a specific example. For
systems with 4GB or less of memory and where there is a partial memory overlay with the
PCI APIC Range, reclamation can be used. In these systems, the overlapped memory is
mapped to start at 4GB. Figure 12 illustrates this point. The sub-Pod takes a processor’s
adjusted memory request address, and after determining that it lies above the 4GB
boundary, it subtracts a fixed value from it. This memory address reflects the insertion of
the PCI APIC Range into the system address space. Therefore, the adjustment offset is
equal to the PCI APIC Range hole size, fixed in increments of 128MB blocks as described

above.

Provided below are a few more examples of relocation and reclamation in
accordance with the present invention. Reference is made to Figure 5 and TABLE A. The
first example deals with an address reference within an exclusive window. The second

example references a shared window.

As shown in Figure 5, operating system address space OS#3 has been relocated
(R)) to main memory address 10.5 GB. Reclamation is set to recover the 128MB
(0.125GB) memory behind the low memory hole 572. Using OS ,p; = 1.5000.0000,, as the
memory reference, TCT 270 performs the function OS,; + [R, - R¢] to generate an
address in MSU memory space 504. The values for R, and Rc are provided in TABLE A.
Thus, OS,z + [R, - R¢] becomes 1.5000.0000, + [2.A000.0000,, - 0.0800.0000,]. This
becomes 1.5000.0000, +2.9800.0000,;, which becomes 3.E800.0000, (15.625 GB). This
address corresponds to a location within exclusive window 540A, which is associated with
operating system OS#3. A simple calculation shows the address is offset 1.25GB from
high memory area base address of 4GB. The address calculated above is also offset

1.25GB from the relocated high memory base address (14.375GB) of OS #3.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-36 -

If a processor in the partition in which OS#2 is executing issues the same address,
1.5000.0000,, the relocated address will instead fall within the exclusive memory window
assigned to that partition (i.e., window 540B). Thus OS,z + [R. - R.] becomes
1.5000.0000,, + [1.4000.0000, - 0.1000.0000,]. This becomes 1.5000.0000, -+
1.3000.0000,;, which becomes 2.8000.0000, (10.00GB). This address clearly falls in high
memory area 534 of main memory 160, which is part of the exclusive memory window
(540B) assigned to the partition executing OS#2. This example demonstrates that the
operating systems in two different partitions will each view their address spaces as if
starting at the same base address (i.e., address zero), but address references within those
address spaces will be properly relocated to their corresponding locations within the
exclusive memory windows assigned to each partition within main memory. Of course,
the relocation feature of the present invention can be used to map any two overlapping
physical address spaces on different partitions (not just those that both start at address zero)

to the respective exclusive memory windows in main memory.

The second example uses memory references to shared window 575 associated with
OS#3. For this example, assume OS#3 tries to reference address 1.B900.0000,, (6.890GB).
TCT 270 determines that this address falls within the range of shared memory. As such,
the present invention applies the function mapping OS pr + [Spass - - Spase_] t0 generate
an appropriate address to access MSU memory space 504. Thus the mapping function
becomes 1.89000.0000,, + [4.5000.0000, -1.B8000.0000,]. This becomes 1.B9000.0000,
+2.98000.0000,, which becomes 4.5100.0000, (17.2656GB). This address falls within the
range of shared memory window 537 of MSU memory space 504.

Using the same address offset, 0.0156GB, and applying it to operating system
OS#2's shared base address, the equivalent address can be calculated for OS#2. OS,px
equals 5.750GB + 0.0156GB, which equals 5.7656GB (1.7100.0000,;). Applying the
mapping function, OSpr + [Spase ° - Spase_ 1, we get 1.7100.0000y, + [4.5000.0000; -
1.7000.0000,]. Thus the mapping function generates a memory address of 4.5100.0000,
(17.2656GB). Thus, a memory reference by operating system OS#3 of 1.B900.0000,,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-37-

(6.8906GB) and a memory reference by operating system OS#2 of 1.7100.00004
(5.7656GB) both access main memory 160 at address 4.5100.0000, (17.2656GB).

B. Interleaving and Stacking of Memory (Translation)

Translation is the process by which a memory reference (after relocation and, if
appropriate, reclamation) is mapped to a specific memory storage unit within main
memory 160. Referring to Figure 2, main memory 160 is conceptually divided into a
plurality of MSU pairs 222 and 224 (referred to as MSU_PAIRs). Individual MSU’s 220
within a MSU_Pair are not uniquely connected. Only two MSU_PAIRs 222, 224 are
shown in Figure 2 for illustration purposes only. The present invention contemplates more

than two MSU_PAIRs.

Computer system 200 utilizes the adjusted address (or memory reference) that was
generated during relocation and, if applicable, reclamation as described above, and then
interleaves or stacks the adjusted memory reference between memory storage unit pairs
222, 224. The goal of the present invention is to distribute each of the main memory
requests associated with each processor 240 over the global address space of main memory
160 (i.e., total DRAM address space) such that sequential memory accesses are distributed
over different memory storage units 220 in order to minimize contention for memory
resources. In the event interleaving cannot be performed, memory addresses are directed

to memory storage unit pairs in a sequential order, referred to herein has stacking.

In an exemplary embodiment, there are four memory storage units, i.e., two pairs of
memory storage units, such as memory storage unit pair 222 and memory storage unit pair
224, Each memory storage unit pair (hereinafter MSU_Pair) includes two memory storage
units, such as memory storage units 220A and 220B. Interleaving is accomplished across
memory storage unit pair 222 and 224. Then, interleaving is accomplished across the
memory storage units 220 within the memory storage unit pairs 222 and 224, respectively.

There effective result is four-way interleaving.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-38-

For example, suppose there are two memory storage units, such as memory storage
unit 220A and memory storage unit 220B. Optimally, references to memory would be
ping-ponged between memory storage unit 220A and memory storage unit 220B. That is,
the first reference to memory accesses memory storage unit 220A, while the second
accesses memory storage unit 220B. If memory storage unit 220A has only one bank
populated, while memory storage unit 220B has eight banks populated, ping-ponging
between memory storage unit 220A and memory storage unit 220B, then at some point
memory storage unit 220A will run out of memory space. In that case, the remaining
memory in memory storage unit 220B will be stacked, 1.e., resort to sequential addressing

(or referencing) of memory storage unit 220B.

One characteristic of memory storage units is that there may be one memory
storage unit present or a plurality of memory storage units present in a particular memory
storage unit "pair." Moreover, memory storage units can be populated at different rates.
That is, one memory storage unit can have one bank of DRAM populated, while another

memory storage unit may have eight banks of DRAM populated.

In accordance with the present invention, the translation process involves
interleaving and stacking of memory references between memory storage unit pair 222 and
memory storage unit pair 224, and among MSUs 220. For a memory request issued from a
processor (MP) 240, this process is performed by the respective TCT 270. For memory
requests issued from an I/O processor (e.g., PCI card) via a DIB, this process is performed

by the respective TCM 285.

Considering the operation of a TCT 270, a mechanism is provided for specifying at
initialization time which MSU_Pair or which MSU 220 should receive the first cacheline
address (i.e., an address from the TCT 270). The TCT 270 takes a processor’s memory
read/write address (after any relocation and/or reclamation) and passes it through an
address translation function. In a preferred embodiment, memory storage unit 220 receives

a twenty-eight bit cache line address (or memory reference) and an 8 byte container

10

WO 00/36509

-39

PCT/US99/30437

address from a multi-cycle signal representing 16 gigabytes of memory space. Based on

the settings of the address translation options, which are described below, the translation

function generates a MSU number that is associated with the memory storage unit that will

receive the request, along with the upper ten 10 bits of the 28 bit MSU mapped address.

The TCT 270 also provides the MSU’s lower 18 bits of the mapped address; however,

these bits are not altered by the translation function.

A TCT 270 allows for various combinations of interleaving and stacking of

memory accesses on both a MSU_Pair basis and between each individual MSU 220.

Listed in TABLE C are the eight combinations for interleaving/stacking memory between

MSU PAIRs and their individual MSU’s 220.

TABLE C
Option Between MSU Pair0 MSU Pairl
MSU _Pair0 & MSU _Pairl Between Between
MSUO & MSU1 | MSU2 &
MSU3

ISS Interleaved Stacked Stacked

ISI Interleaved Stacked Interleaved
IR Interleaved Interleaved Stacked

11 Interleaved Interleaved Interleaved
SSS Stacked Stacked Stacked

SSI Stacked Stacked Interleaved
SIS Stacked Interleaved Stacked

SII Stacked Interleaved Interleaved

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 40 -

Referring to TABLE C, in the III mode, the algorithm distributes every other cache
line to alternating MSU_PAIRS (e.g., cache line address 0 forwarded to MSU _PAIR 222).
The algorithm further distributes every other cache line directed to an MSU_PAIR to
alternating MSUs 220 in MSU_PAIR 222, 224 (e.g., cache line address 0 is directed to the
lower numbered MSU 220).

In ISI, ISS or IIS mode, the algorithm distributes every other cache line to
alternating MSU_PAIRS 222, 224 (e.g., cache line address 0 is forwarded to MSU PAIR
222). For MSUs 220 within a MSU PAIR 222, 224 that are stacked in accordance with
the present invention, the algorithm further directs sequentially addressed accesses to the
lower numbered MSU 220 of the selected MSU_PAIR 222, 224 until it is full before
sequentially filling the other MSU 220. For MSUs 220 withinaMSU_PAIR 222, 224 that
are interleaved in accordance with the present invention, the algorithm further distributes
every other cache line directed to a MSU_PAIR 222, 224 to alternating MSUs 220 (i.e.,
cache line address 0 is directed to the lower numbered MSU 220 within MSU_PAIR 222,
224).

In SSS mode, the present invention sequentially fills the lower numbered
MSU_PAIR 222, 224 (determined by a configuration register) until it is full before
sequentially filling the other MSU_PAIR 222, 224. The algorithm further directs accesses
sequentially to the lower numbered MSU 220 within the selected MSU PAIR 222, 224
until it is full before sequentially filling the other MSU 220 of that MSU PAIR 222, 224,

In SSI, SII or SIS mode, the algorithm sequentially fills the lower numbered
MSU PAIR 222, 224 until it is full before sequentially filling the other MSU_PAIR 222,
224. For MSUs 220 withina MSU PAIR 222, 224 that are stacked, the present invention
then sequentially addresses the low MSU 220 of the selected MSU_PAIR 222,224 until it
is full before sequentially filling the other MSU PAIR 222,224, For MSUs 220 within a
MSU_PAIR 222, 224 that are interleaved, the present invention distributes every other
cache line in a MSU_PAIR 222, 224 to alternating MSUs 220. Cache line address 0 is
directed to the lower numbered MSU 220 within that MSU_PAIR 222, 224.

10

15

20

WO 00/36509 PCT/US99/30437

-4]1 -

For example, following the ISS option, interleaving is accomplished every other
cache line to alternating memory storage unit pairs. That is, a first cache line address is
forwarded to memory storage unit pair 222 and the next cache line address is forwarded to
memory storage unit pair 224. The present invention sequentially stacks memory
references in memory storage unit 220A until memory storage unit 220A is full. When
memory storage unit 220A is full, the present invention then sequentially stacks memory
references in memory storage unit 220B until it is full. Similarly, when memory storage
unit 220C is full, the present invention then sequentially stacks memory references in
memory storage unit 220D until it is full.

TABLE D defines a translation and reclamation register. The table includes a row
for each address bit of interest within the translation and reclamation register. Each row
includes a function field and a default value field. Function field indicates the function of
the address bit of interest. Default value field is the value that the address bit defaults to
upon initialization. The status of the bits in memory address translation and reclamation
register determine whether memory address space reclamation is enabled and whether
address translation is enabled. It also indicates which memory storage unit pair to select

and which memory storage unit to select for the translation process.

TABLE D
Bits Function Default Value
[15] | Address Translation Enable 0 (Default)

[14] | Memory Address Space Reclamation Enable 0

[13] | PAIR_MODE 0
[12] | PAIR_SEL 0
[11:10] | Reserved 00
[9.0] | Smallest Pair Size[9:0] 000H (Default)

10

15

WO 00/36509 PCT/US99/30437

-4) -

It is the responsibility of a memory controller (not shown) to interleave between

banks of an MSU PAIRs 222, 224 and MSUs 220.

Whether computer system 200 implements interleaving depends on the settings in a
plurality of registers. For example, TABLES E and F illustrate the contents upon
initialization of a memory address translation register corresponding to a first memory
storage unit pair and a second memory storage unit pair, respectively. Memory address
translation register includes a row for each bit of interest. Each row includes a function
field and a default value field. Function field includes the function of the address bit of

interest. Default value field is the value that the address bit defaults to upon initialization.

TABLE E

Bits Function Default Value
[15] | Pair#0 Address Translation Enable 0 (Default)
[14] Reserved 0

[13] Pair0_Mode 0

[12] | Pair0_Sel 0

[11:10] | Reserved 00
[9:0] | Pair0_Smallest MSU_Size[9:0] 000H (Default)

10

WO 00/36509 PCT/US99/30437
-43 .
TABLE F

Bits Function Default Value

[15] Pair#1 Address Translation Enable 0 (Default)

[14] | Reserved 0

[13] | Pairl Mode 0

[12] | Pairl Sel 0

[11:10] Reserved 00
[9:0]1 | Pairl Smallest MSU Size[9:0] 000H (Default)

The status of the bits in memory address translation registers shown in TABLE E

and F determine whether interleaving for a particular pair of memory storage units is

enabled or whether stacking is enabled. The status of the bits in memory address

translation registers further indicate the smaller of the two memory storage units in a

memory storage unit pair.

TABLE G shows Configuration Information required at initialization for forward

and reverse address translation. TABLE G relates to Figure 2 as follows: MSU_Pair0 is
MSU _Pair 222, MSU_Pairl is MSU_Pair 224, MSU#0 is MSU 220A, MSU#1 is MSU

220B, MSU#2 is MSU 220C and MSU#3 is MSU 220D.

TABLE G

Name

Definition

MSU_Pair0/Pairl Configuration Registers: used to control accesses to a specific MSU_Pair

PAIR_MODE

When

This 1 bit register controls whether address interleaving between
MSU_PAIRs is selected. Address interleaving should only be
enabled when both MSU_PAIRs are present.

WO 00/36509 PCT/US99/30437

-44 -

Name Definition

= 0 then Interleave between MSU_PAIRs
= | then Stack between MSU_PAIRs (Pair0 first, overflow into
Pairl)

SMALLEST PAIR SZ This register' holds one of two memory size values? depending on
whether address interleaving between MSU_PAIRs is enabled.
if PAIR MODE = 0 (interleaving then)
= the smaller of the two memory size values between
MSU_Pair0 (MSU#0 + MUS#1) and MSU_Pairl
(MSU#2 + MSU#3).
else PAIR MODE = | (stacking)
= the memory size of the MSU pairs selected by the
PAIR_SEL register

PAIR SEL This 1 bit register specifies which one of the two MSU_PAIRs is to
be addressed first. The value depending on whether address
interleaving is being performed. For interleaving, the MSU_Pair
with the largest installed memory must be selected. For stacking,
either MSU_Pair can be selected.
if PAIR._ MODE = 0 (interleaving) then

= 0 if pairQ has more storage then pairl

= if 1 if pairl has more storage then pairQ
else PAIR_MODE = 1 (stacking)

= Pair which gets the memory "address0" (0 - Pair0; 1 - Pairl)

MSU_Pair(Configuration Registers: used to control accesses to a specific MSU within pair(

PAIRO MODE This 1 bid register controls whether address interleaving between
MSUs within an MSU_ Pair is selected. Address interleaving should
only be enabled when both MSUs are present in MSU_Pair0.

= 0 Interleave between MSUs of pair0 (MSU#0 and MSU#1)

=] Stack the MSUs of pair0

PAIRO SMALLEST MSU_SZ | This register' holds one of two memory size? values depending on
whether address interleaving within this MSU_Pair is enabled.
= the smaller of the two memory size values between MSU#0

and MSU#1 of MSU_Pair0.

WO 00/36509 PCT/US99/30437

- 45 -

Name Definition

else (PAIRO_MODEQ = 1:stacking)
= the memory size of the MSU selected by the PAIRO_SEL

register

PAIRO_SEL This 1 bid register specifies one of the two MSUs within a
MSU_Pair is to be addressed first. The value depending on whether
address interleaving is being performed. For interleaving, the MSU
with the largest installed memory must be selected. For stacking,
either MSU can be selected.
if PAIRO_MODE = 0 (interleaving) then

= 0 if MSU#0 of pair0Q has more storage then MSU#1 of pair0

= 1 if MSU#1 of pair0 has more storage then MSU#0 of pair0
else PAIRO MODE = 1 (stacking)

= MSU of pairQ which gets the memory "address 0"

(0 - MSU#0; 1 - MSU#1)

MSU_Pairl Configuration Registers: used to control access to a specific MSU within pairl

PAIR1 MODE This 1 bit register controls whether address interleaving between
MSUs within an MSU_Pair is selected. Address interleaving should
only be enabled when both MSUs are present in MSU_Pairl.
When

= 0 Interleave between MSUs of paifl (MSU#2 and MSU#3)

=1 then Stack the MSUs of pairl

PAIR1_SMALLEST MSU SZ | This register' holds one of two memory size values? depending on
whether address interleaving within this MSU_Pair is enabled.
if PAIRI_MODE = 0 (interleaving) then
= the smaller of the two memory size values between MSU#2
and MSU#3 of MSU _Pairl.
else PAIR1 MODE = 1 (stacking)
= the memory size of the MSU selected by the PAIR1_SEL

register

PAIR1_SEL This 1 bit register specifies one of the two MSUs within a
MSU Pair is to be addressed first. The value depending on whether

address interleaving is being performed. For interleaving, the MSU

5

10

15

20

WO 00/36509 PCT/US99/30437

- 46 -

Name Definition

with the largest installed memory must be selected. For stacking,
either MSU can be selected.
if PAIR1 MODE = 0 (interleaving) then

=0 if MSU#2 of pairl has more storage then MSU#3 of pairl

=1 if MSU#3 of pair]l has more storage then MSU#2 of pairl
else PAIR1' MODE = 1 (stacking)

= MSU of pairl which gets the memory "address 0"

(0 - MSU#2; 1 - MSU#3)

'Note; The size of this register is not specified in this table. It is implementation specific, and is not

necessary for the understanding of the translation algorithm.

’Note: The memory size is equal to the maximum memory address + 1. For example, a single 128MB
bank has an address range from 000_0000, - 700_0000,, but the size is 800_0000,. Expanding
this size to 36 bits [35:0] yields 0_800 _0000,. Using the 9 most significant bits [35:27] for the
size, the size register for this example is loaded with 000000001, or 001,,.

As mentioned, logic and registers to implement the forward address translation
function reside in both the TCMs 285 (for memory requests from an I/O processor via a
respective DIB) and the TCTs 270 (for memory requests from a processor 240). The
algorithm is performed in two steps. The first step determines which MSU_PAIR should
be selected and the second step determines which MSU of the selected pair should be
selected to send the address to. Illustrated in Appendix A is simplified pseudo-code of the
forward address translation algorithm. The pseudo-code does not include checks verifying
criteria such as the number of MSU_PAIRS, or the number of MSUs per MSU_PAIR, etc.

These checks, which should be readily apparent to one skilled in the art, were intentionally

left out of the pseudo-code allowing for easier understanding of the translation process.

The forward address translation algorithm takes as an input TEMP_ADDR and
uses registers PAIR MODE, SMALLEST PAIR SZ and PAIR_SEL. The algorithm
produces as an output TEMP_ADDR, which is the address after any required adjustments,
and RCVING_PAIR, which indicates which MSU PAIR has been selected. Initially,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-47 -

TEMP_ADDR [29:0] is the address after any address relocation has been performed.
TEMP_ADDR [29:0] equals ADDR_IN [35:6]. TOP_OF INTRLV_ RANGE is the
address value where there is no more memory left for interleaving. That is, this is the
address where stacking of memory addresses begins. TOP_OF _INTRLV_RANGE equals
two times SMALLEST PAIR_SZ.

Figure 9 illustrates a flowchart of the forward address translation algorithm. The
selection of an MSU Pair is shown in stage 900. Step 902 determines whether
interleaving between pairs is enabled. If so, the algorithm first checks whether the address
is within the interleaved memory range, as shown in step 904. If the cache line address is
above the interleave range, then the present invention stacks on the larger MSU_PAIR, as
shown in step 910. Otherwise, flow continues to step 906 where it is determined which
MSU _PAIR should be selected between the plurality of MSU_PAIRs. In a preferred
embodiment, the low order cache line address bit, TEMP_ADDR [0] is used to select the
MSU_PAIR.

If interleaving between pairs is not enabled, then the present invention stacks cache
line addresses. In apreferred embodiment, the present invention begins stacking the cache
line addresses into MSU_PAIR0. Once MSU_PAIRO (i.e., MSU_Pair 222) is full, then
stacking proceeds to MSU PAIR1 (i.e., MSU_Pair 224). Stacking continues until the
highest MSU_PAIR is full. This is shown generally at step 912.

Flow then continues to step 908 (from either block 906, 910 and 912) where the
cache line address is readjusted. The adjustment depends upon whether the interleaving or
stacking is chosen. In the case of interleaving, the cache line address (TEMP_ADDR) is
readjusted by shifting the address to the right by one location and zero-filling the most
significant address bit. In the case of stacking, the cache line address either remains the
same or is set equal to TEMP_ADDR - SMALLEST PAIR_SZ, as evident by a review of

the pseudo-code.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-48 -

Once an MSU_PAIR is selected for stacking, the present invention proceeds to
stage 920. This stage of the algorithm has an input TEMP_ADDR, which may have been
adjusted by step 908. Stage 920 uses the following registers: PAIRO MODE,
PAIRO SMALLEST MSU _SZ, PAIRO SEL. The outputs from stage 920 are
TEMP_ADDR, which is the cache line address after any required adjustments, and
RCVING MSU, which indicates which MSU will receive the cache line address. At
initialization, PAIRO TOP_OF INTLV_ RANGE is the address value where no more
memory is left for interleaving between MSUs of MSU PAIRO.
PAIR1 TOP_OF INTLV_RANGE is the address value where no more memory is left for
interleaving between MSUs of MSU_PAIRI.

If Stage 900 selected MSU Pair0, then stage 920 determines whether
RCVING PAIR equals MSUO or MSUI. Similarly, if stage 900 selected MSU _Pairl,
then stage 920 determines whether RCVING PAIR equals MSU2 or MSU3. For the sake
of brevity, only a selection between MSUO and MSU1 will be described.

Step 924 determines whether interleaving between the multiple MSUs of an
MSU PAIR is enabled. If interleaving is enabled, the algorithm first checks whether the
cache line address is within the interleaved memory range, as shown in step 926. If the
cache line address is within the interleaved memory range, the low order cache line address
bit is used to select the appropriate MSU, as shown in step 928. Next, the cache line
address is readjusted by shifting the cache line address bits to the right by one location and

zero-filling the most significant address bit, as shown in step 930.

If, on the other hand, the cache line address is above the interleave memory range,
then the algorithm stacks onto the larger MSU, as shown in step 932. Flow then proceeds
to the step 930 where the address is adjusted for stacking by setting TEMP_ADDR to
TEMP_ADDR - PAIRO SMALLEST MSU_SZ.

If interleaving between MSUs of the MSU_PAIRO is not enabled, the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-49 -

present invention stacks MSUO first and then stacks the remainder into MSU1, as shown in
step 934. Once again, the address is adjusted in step 930 based on whether the low or high
MSU is used first. When the low MSU is used first, TEMP_ADDR remains unchanged.
When the high MSU is used first, TEMP ADDR is set to TEMP ADDR -
PAIRO SMALLEST MSU SZ.

As stated above, a similar procedure is followed for selecting between MSU2 and

MSU3 in MSU_PAIR1.

Finally, as shown in step 940, MSU ADDR [29:0] is assigned to the adjusted
TEMP_ADDR [29:0] and the RCVING_PAIR is concatenated with the RCVING MSU
indicators to form MSU_SEL [1:0]. This completes the forward address translation
algorithm.

Shown in Appendix B is pseudo-code for the reversed translation algorithm. The

reverse address translation function resides only in the MSU controller (not shown).

Reference to Figure 6 will be made to demonstrate an example of the forward
address translation algorithm. Figure 6 illustrates a main memory 600 having two
MSU_PAIRs 610, 640. MSU_Pair 610 has two MSUs 620, 630, whereas MSU_Pair 640
has a single MSU 650. MSU 620 has one 128 megabyte memory bank 1020, MSU 630
has two 128 megabyte banks 1030 (or 256 megabytes of memory space), and MSU 650
has four 128 megabyte banks 1040 (or 512 megabytes of memory space). The top of MSU
620 is 80.0000,,. This means that 80.0000, is the address location where there is no more
memory left for interleaving. The top of MSU 630 is 100.0000,,. Thus, MSU_Pair 610
has a pair size of 180.0000,. The top of MSU 650 is 200.0000,,. Thus, MSU_Pair 610 has
a pair size of 200.0000,.. Note that MSU_Pair 640 is treated conceptually as a pair of
MSUs even though it includes only a single MSU 650.

Suppose there are four cache line addresses 0.0000.0000,, 0.0000.0040,,
0.0000.0080,;, and 0.0000.00C0y, respectively representing four memory references from

WO 00/36509

-50-

PCT/US99/30437

four operating systems following any address relocation performed. For this example,

main memory is configured as shown in Figure 6. Note that this is not the most efficient

memory configuration for this number of memory banks.

5 The register setup for this example is as follows: PAIR_ MODE equals 0
(Interleave), PAIRO_MODE equals 0 (Interleave), PAIR1 MODE equals 1 (Stack),
SMALLEST PAIR_SZ equals 003, PAIRO_SMALLEST MSU SZ equals 001,
PAIR1 SMALLEST MSU_SZ equals 004, PAIR_SEL equals 1, PAIRO SEL equals 1,

PAIR SEL equals 0. The above setup represents the IIS option of translation.

10

Using these register settings and presenting the first address to the algorithm yields

the following results:

Initialization for both phases:

PROCESSOR_ADDR([35:0] =
TEMP_ADDR[29:0] =
TOP_OF_INTRLV_RANGE =
PAIRO TOP_OF INTLV_RANGE =

PAIR1 TOP OF INTLV_RANGE =

15 the MSU_Pair selection phase:

In
TEMP_ADDR[29:0] =
Results:

RCVING MSU =

TEMP_ADDR[29:0] =

the MSU# selection phase:

000000000,
00000000,
003,

002,

004,,

00000000,

0 (MSU_PAIRO)

00000000,

WO 00/36509

-51 -

In

TEMP_ADDR[29:0] =

Results:

RCVING MSU =

TEMP_ADDR[29:0] =

the final results:
MSU_ADDR[29:0] =

MSU SEL[1:0] =

Processing the second address

Initialization:

PROCESSOR_ADDR[35:
0]=

TEMP_ADDRJ[29:0] =
RCVING PAIR =
TEMP_ADDR[29:0] =
RCVING MSU =

TEMP_ADDR[29:0] =

the final results:
MSU ADDR[29:0} =

MSU_SEL[1:0] =

10

00000000y,

0 (MSU#0)

00000000y

000000000,

00 (MSU#0 of MSU_PAIR0)

000000040,

00000001,
1 (MSU_PAIR1)
00000000,

0 (MSU#2)

00000000,

00000000,

10 (MSU#2 OF
MSU_PAIR1)

PCT/US99/30437

WO 00/36509

-52-

The third address yields:

Initialization:
PROCESSOR_ADDR[35:
0]=

TEMP_ADDR[29:0] =
RVCING PAIR =
TEMP_ADDR[29:0] =
RCVING MSU =

TEMP_ADDR[29:0] =

Final results:
MSU_ADDR[29:0] =

MSU_SEL[1:0] =

PCT/US99/30437

000000080,

00000002,

1 (MSU_PAIR1)

00000001,

0 (MSU#2)

00000000,

00000000y,

01(MSU#1 OF
MSU_PAIRO0)

While the fourth address yields the final results:

Initialization:

PROCESSOR_ADDR([35:
0]=

TEMP_ADDR[29:0] =
RVCING PAIR =
TEMP_ADDR[29:0] =
RCVING MSU =

TEMP_ADDR[29:0] =

0000000CO0,,

00000003,

1 (MSU_PAIR1)
00000001,
0 (MSU#2)

00000000,

10

15

20

25

WO 00/36509 PCT/US99/30437

-53-

Final results:

MSU_ADDR[29:0] = 00000000,

MSU_SEL[1:0] = 01(MSU#2 OF
MSU PAIRI)

Figure 7 shows the result of this example.

It should be understood that embodiments of the present invention can be
implemented in hardware, software or a combination thereof. In such embodiments, the
various components and steps may be implemented in hardware and/or software to perform
the functions of the present invention. Any presently available or future developed
computer software language and/or hardware components can be employed in such
embodiments of the present invention. In particular, the pseudo-code discussed and
provided above and in the appendixes below can be especially useful for creating the

software embodiments.

C. Initialization at Boot Time

In an exemplary embodiment, partitioning of the computer system 200, including
the processing modules and the memory 160, in accordance with the present invention, is
performed at boot time. Exemplary processes for partitioning, mapping memory and
setting up interleaving, are described below. These initialization operations can be
performed by a Basic Input/Output System (BIOS) and a Management Interface Processor
(MIP) at boot time via an MIP high-speed scan interface. The MIP is a hardware interface
portion of a management application platform (MAP) for performing initialization and
error recovery for the computer system 200. In an exemplary embodiment, the MIP high-

speed scan interface complies with IEEE TAP Linker Specification 1149.1.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-54 -

As used herein, the term "partition" is sometimes used in place of window. As
used herein, these two terms are synonymous, and indicate a part of the system that is

controlled by one instance of an operating system.

The manner in which the partitioning will be accomplished at boot time can be pre-
determined by a system administrator and entered into a database that resides on MAP.
Partitioning information identifies system resources which are to be allocated to a
particular window, which type of operating system will be loaded within the window, and
whether and how two partitions will communicate via shared memory. In the exemplary
embodiment of Figure 2, partitioning preferably occurs on sub-Pod and direct I/O bridge

(DIB) boundaries.

Generally each operating system has certain hardware requirements. For example,
off-the-shelf, open architecture operating systems, such as Windows NT and Unixware
(available from The Santa Cruz Operation, Inc.), require a disk controller (SCSI fiber
channel, etc), VGA controller, compatibility PCI board, and compatibility peripherals (CD-
ROM, tape, and disk). The appropriate hardware should be resident on the system, and the
system should be partitioned in a manner that ensures these requirements are met. This
should be taken into account when entering the partitioning information into the database

on the MAP.

Referring to Figure 13, a process flowchart is provided to illustrate an exemplary

initialization process:
Processing begins at step 1310, where the MIP loads the BIOS into main memory.

In step 1312, the MIP loads the BIOS configuration data area in main memory.

This information partially reflects what was stored in the configuration database.

In step 1314, the MIP releases each sub-Pod from reset one at a time. Preferably,

the sub-Pods arbitrate and one sub-Pod becomes the BIOS sub-Pod (BSP). Within the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

=55 -

BSP, one processor becomes the master, and this processor executes the BIOS code.
Throughout the remainder of this specification, the processor that runs the BIOS can be

referred to as the BSP. The BSP performs a number of functions, as described below.

In step 1316, the BSP initializes each PCI Bus. The BSP gains access to each PCI
Bus in the system through a path that extends from the Crossbar Interconnect in the BSP’s
sub-Pod, to the MSU, through another Crossbar Interconnect on another sub-Pod, and
finally through an interface to the DIBs. The BSP can access the DIBs associated with its

own sub-Pod without accessing the MSU.

In step 1318, the BSP reads configuration data, which was loaded into main
memory in step 1312, above, to determine which DIBs are in which partition. The BSP
writes a Partition ID (PID) to a "DIBs in the Partition Register" in each Compatibility DIB
by using the path described above. The PID is used when a message is received by a DIB
during normal system operations. The message is only processed if the DIB has the same
PID as the message. The PID allows all units in a partition running under the same
operating system to talk to one another, and is also used to send messages through shared

memory.

In optional step 1320, the BSP calculates the size of the high memory hole and low
memory hole by reading PCI registers in each of the PCI cards to determine I/O and
memory requirements for each PCI cards. Overlaying I/O space with main memory is
required by the Intel Multi-Processor Specification, and by the fact that some off-the-shelf

PCI cards can not recognize addresses above 64 gigabytes.

In step 1322, the BIOS informs the MIP of the amount of memory-mapped I/O
space that is required by each PCI card. This is done via a BIOS-to-MIP interrupt and
associated mailbox. The MIP already is aware of the size of main memory, and the
amount of memory that is to be shared between operating systems, because this

information is included in the configuration database associated with the MIP. Therefore,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 56 -

after the MIP is informed as to the amount of I/O space required, the MIP can calculate the

following information using Tcl scripts:

a. Location of the high and low memory holes
b. Location of reclamation area
C. Location of shared memory

Tecl is an industry-standard simulation language that is used by the hardware
designers to write simulation scripts. The simulation scripts are also ported to the MIP to

accomplish hardware initialization.

In step 1324, the MIP uses the memory addresses calculated above along with data
located in the configuration database to set up registers in the sub-Pods (TCT), crossbar
interconnect (TCM), and memory storage unit (MSU). Initialization of the TCM sets up
the partitioning and address translation for the DIBs and memory address translation
registers for the DIB. These constants can be used for interleave functions and memory

reclamation.

In an exemplary embodiment, there are at least two sets of registers in each TCM,

one for each DIB. These include range registers and broadcast registers.

Range registérs for the DIB contain the legal memory range for each DIB,
according to the partition definition. Interfaces within the TCM are enabled/disabled

according to partition definitions.

A TCT Info Register is initialized with, among other things, the Partition ID, which
identifies the partition. This is used to determine if a particular sub-Pod should operate on

messages. Messages having the same Partition ID as in this register will be received.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-57-

Broadcast registers contain the Partition ID, and are used for broadcast messages
throughout a partition. A broadcast message is tagged with the Partition ID as identified in

this register.

Agent tables are loaded with the Partition ID, and are used to validate interrupts to

the processors of a particular window.

In the DIB, range registers for the PCI Cards contain address ranges for memory-
mapped spaces for each PCI bus. A Partition ID register contains the Partition ID so that

only messages for that DIB are received.

In the MSU, MSU_PairA/PairB configuration registers set up interleave between
banks of MSU. The MIP initializes the Memory Address Translation Registers (see Tables
E and F above) to set up interleave operations. These interleave operations are specified by

the user prior to initialization.

The MIP uses the length of the memory-mapped I/O space as received from the
BIOS to calculate the locations of the memory-mapped 1/0 space, the shared memory start
address, the reclamation start address, and new top of memory. The MIP communicates
these start addresses back to the BIOS using the MIP-to-BIOS interrupt and associated
mailbox in main memory. The MIP further uses this information in conjunction with user-
specified configuration data to initialize the Configuration Register (Table A, above), and
the Translation and Reclamation Register (Table D, above). The initialization data stored
in these registers and the Memory Address Translation Registers (Tables E and F, above) is
required by the address translation logic to perform the windowing, reclamation, and
address translation functions. As discussed above, copies of these registers and the
associated logic are located in each of the TCTs 270 (for memory requests from a
processor 240), and are also located in each of the TCMs 285 (for memory requests from
an I/O processor via a DIB). The MIP further initializes range registers for the processors
with valid address ranges for the memory-mapped space for each DIB, I/O port, APIC

memory-mapped space, and memory address space.

10

15

20

25

30

WO 00/36509 ‘ PCT/US99/30437

-58-

The BIOS uses this information to set up a configuration table in memory for each
partition/operating system. This information communicates the location of shared memory
to each partition. The configuration table could be of any user-defined format. In an
exemplary embodiment, an MP Configuration Table, as defined in a MultiProcessor
Specification available from the Intel Corporation, is used. The field called "OEM Table
Pointer" within the MP Configuration Table is used to point to a user-defined area that will
include the location and length of the shared memory area. Unixware and NT drivers use

this information for memory allocation purposes, and to determined queue locations.

The BIOS further sets up registers in selected ones of the processors. The BIOS sets
up these registers because the MIP does not have access to them. In an exemplary
embodiment, this is just done for Intel processors, and involves writing registers within
each of the processors to indicate, for example, a top of memory register (TOMR) in each
processor that communicates to an operating systems where the top of memory is. The

operating system is not allowed to attempt to access memory above the TOMR value.

Registers can also include memory type range registers (MTRR) that communicate
to processors which type of memory exists within the various memory ranges (e.g.,
mapped 1/0, APIC interrupt space, main memory, etc.). MTRRs are used to tell processors
how to handle memory accesses. For example, processor read operations to a memory
range that is designated as memory-mapped /O space are not cached in the processor’s
cache. Processors running an instance of operating system should have the same value

loaded into their respective MTRR.

In step 1326, after performing any additional initialization functions, the BIOS
reads the boot sector for each operating system into the appropriate location in memory as

determined by information in the configuration database.

In step 1328, the BIOS issues an interrupt to one of the processors in each partition,

and those processors begin loading the associated operating system from a designated I/O

10

15

20

25

WO 00/36509 PCT/US99/30437

-59-

device. When this is completed, the operating system assumes control of the resources in

its window. This completes the BIOS to operating system transition and processing.

lll. Methods for Managing the Global Shared Memory (Inter-
Partition Communications)

The global shared memory approach described above can provide a private memory
space for each partition, plus a shared memory area that all of partitions can access. The
shared memory area can include one or more read-only areas. Partitions, including their
operating systems and other clients running on the partitions, can communicate with one

another through the shared memory.

The shared memory area can be managed by, for example, a portion of the
operating system running on a partition, or by other software and/or hardware that may
reside on a partition. The shared memory area can be managed by different operating
systems, including, but not limited to, Windows NT, commercially available from
Microsoft Corp., UNIXWARE, commercially available from The Santa Cruz Operation,
Inc. (SCO), Master Control Program (MCP), which is an operating system adapted for
UNISYS Clearpath HMP NX computer systems, which supercede the A-Series family of
computer systems, both of which are commercially available from Unisys Corp., or OS
2200, which is an operating system adapted for UNISYS Clearpath HMP IX computer

systems.

Alternative embodiments are described below for managing a shared memory area
in accordance with the present invention. The embodiments are described herein for
purposes of illustration, and not limitation. Other embodiments (including equivalents,
extensions, variations, deviations, et cetera, of the embodiments described herein) will be
apparent to persons skilled in the relevant art(s) based on the teachings contained herein.

The invention is intended and adapted to include such alternate embodiments.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 60 -

A. Polling For Inter-Partition Communications

In one embodiment, each operating system executing in its own partition (e.g., one
or more Pods or sub-Pods) on the computer system is associated with, or allocated, a
portion of shared memory 160. Operating systems can write to, and read from, their
associated portions of shared memory but cannot write to portions of memory associated
with other operating systems. All operat'ing systems can, however, read from the entire

shared memory.

Preferably, each partition or operating system is assigned an exclusive memory
window (sometimes hereinafter also referred to as its “local memory space”) dedicated to
the partition or operating system. When an operating system or an application associated
with the operating system sends a message to another operating system, or to an
application associated with the operating system, the sending entity builds the message ina
buffer in its local memory space in the same manner as would occur if the message were
being built to be transferred via a network. The sending entity then copies part, or all, of

the message, into its allocated part of shared memory 160.

The target partition/operating system, which can read from, but which cannot write
to, the sending operating systems' associated portion of shared main memory 160, detects
that a new message is available, and copies the message from shared main memory into its

own local memory (i.e., its exclusive memory window).

In an exemplary embodiment, code and most data structures for an operating
system reside in the local memory space for the operating system. Certain new data

structures preferably reside within the shared memory 160.

In an exemplary embodiment, two types of data structures are used to facilitate
communication between partitions or operating systems. The first type includes message
storage structures that store the message data, and which are built in output message

buffers. The second type includes queue structures that are stored within a message queue

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-61 -

area and which contain pointers to message data stored in an associated output message
buffer. Preferably, these two types of data structures are stored in shared main memory
160 while other code and data constructs utilized by the various operating systems and
associated application programs reside in associated local memory spaces. This protects

system integrity.

Figure 14 illustrates a portion of shared memory 160, including an output message
buffer pool area 1402 and a message queue area 1414. Generally, an output message
buffer pool area 1402 is associated with each partition. Buffers 1410 are allocated for a
message and pointed to by a queue entity, or multiple queue entities, when a message is

broadcast

Generally, all partitions have read access to all output message buffer pool areas
1402. But each partition has write access only to buffers 1410 in its associated output

message buffer pool area 1402.

Message queue area 1414 is divided into # node output queues 1412, each of which
is dedicated to a different partition. Although all partitions have read access to the entire
message queue area 1414, a partition can only modify its associated node output queue
1412. This access control, which can be enforced within hardware, renders hardware locks

unnecessary, thereby simplifying recovery and checkout operations.

Figure 15A illustrates an exemplary embodiment of message queue area 1414 is
illustrated with eight node output queues 1412. Node output queue 1412a is illustrated
including a node-to-node queue 1510 for each partition. As used herein, the term “node” is

equivalent to the term “partition.”

Figures 16A and 16B illustrate exemplary information contained in a node output
queue 1412. The first sixteen words of an exemplary node output queue 1412 includes

control information for the associated node including node operating system type

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-62 -

(Node_OS_ID) 1610, node media access control (MAC) address 1612, and various reset
flags (e.g., Reset OK) used during recovery, as is discussed below.

The control information further includes eight Dequeued offset fields, each of
which stores an offset into a respective different node's node output queue, and indicates
which is the next message to receive from that respective different node, as will be

explained below.

In the exemplary embodiment of Figures 16A and 16B, node-to-node queues 1510
follow the first sixteen words of control information. Each node-to-node queue 1510 is
used by the associated operating system to send messages to the named different node. For
example, node 0 to node 1 queue 1510a is used by node 0 to send messages to node 1. For
simplicity, a node-to-node queue 1510 can be provided for each node to send a message to

itself.

In Figures 16A and 16B, the first word in each node-to-node queues 1510 includes
control information including a "Need Reset" flag and an "Enqueue offset". The
Need Reset is used in conjunction with a selected one of the Reset OK flags when a
sending node wants to reset one of the node-to-node queues. The "Enqueue_ offset"
contains a number between 1 and 511, for example, and is used to point to the next
available entry in the respective node-to-node queue 1510. The use of this field is
explained further below. Each of the remaining words (e.g., 511 words) of the node-to-
node queue 1510 includes an offset pointer that points to an associated message data

structure 1416 in an associated output message buffer 1410

In a preferred embodiment, the offset is the number of 64-bit words from the start
of the respective node's output message buffer 1410. The pointer should be an offset from
some base address, not a real or virtual address. The pointer should not be based on a
virtual address because, when the nodes are heterogeneous nodes, they may not have a
common virtual address translation. The pointer should not be based on a real address
because, as a result of the address translation scheme described above, real addresses used

by one node generally do not coincide with real address used by another node.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-63 -

In an exemplary embodiment, pointers are offsets from an address that each node or
operating system can calculate from information received from the Management

Application Platform (MAP), described above, during node initialization.

Each of the eight node-to-node queues 1510 within a node output queue 1412 can
be, for example, 512 words long, as illustrated in Figures 16A and 16B, so that each node

output queue 1412 is 16 + 8(512) words long.

This queue depth helps to ensure that an associated queue will not be full when a
message is available to be transferred to shared memory. The queue depth may be
specified by the manager application platform (MAP) during initialization. As mentioned
above, the MAP is a support system for performing initialization and error recovery on the

computer system 200.

To add flexibility, the MAP can be designed to indicate the queue capacity at
initialization time. This data may be added as an entry into each of the configuration
tables, which are data structures provided by MAP for each operating system instance in
the system to inform the respective operating system of necessary system parameters such

as the location of shared main memory.

Figure 17 illustrates an exemplary embodiment of a message data structure 1416.
Each message data structure 1416 is preferably located at an offset of 0 within an
associated output message buffer 1410 and includes a header area 1710 and a message data
area 1712. The header area 1710 is illustrated as occupying words 0-n, and includes the
buffer length, header length, and count information. The count information is preferably
included for writing messages by a 2200 operating system (i.e., an operating system
adapted for a 2200 style processor commercially available from Unisys Corporation)
because messages written to memory by the 2200 operating system will not occupy
contiguous memory locations. When nodes running the 2200 operating system record

message data in shared memory, each 64-bit main memory word will store, at most, 32 bits

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 64 -

of data which will be located in the least significant bits of each 64-bit main memory word.

Some words may store fewer bits if messages do not start or end on a word boundary.
Therefore, the first Byte Skip Count indicates the number of bytes that should be skipped
between a protocol header and the message data. The Byte Transfer Count indicates the
byte length of an associated valid message field. The sum of the Byte Skip Counts and
Byte Transfer Counts should be less than or equal to (length of the buffer - length of the
header) * 4.

In an Ethernet environment, the maximum message segment size is 1500 bytes or
375 64-bit words for the message. In an embodiment, the present invention includes a
network input/output processing architecture (NIOP), which is a message handler
developed by Unisys Corporation, as described in U.S. Patent Number 5,659,794, assigned
to Unisys, which allows for 50 separate data streams to be combined into one message
segment to be sent over anetwork. Therefore, an output message buffer size of 427 words
would allow a 2200 operating system to continue to perform in the shared memory
environment of the present invention as it does for an Ethernet LAN environment. Given a
queue depth of 511 and a buffer size of 427 words, a node buffer pool size of
(511*427%8)//4096=1,748,992 words. The total shared memory needed per shared
memory environment is then (65,536 + 1,748,992*8)//4096=14,057,472 words.

The use of these data structures can be explained by example. Assume that a first
operating system OS1 wants to send a message to a second operating system OS2. Further
assuming that the OS1 to OS2 node output queue 1412 is not full, OS1 obtains an available
message data structure (i.e., buffer) 1416a within the OS1 output message buffer area
1410a. The buffer 1410a is preferably identified by an address offset pointer as discussed
above. OS1 builds a protocol header 1710 for the message, transfers the header 1710 and
messagel712 from the local main storage of OS2 into this available message buffer 1416a.

OS1 then increments the contents of an Enqueued offset within the OS1 to OS2 queue
1510a to point to the next available entry in the OS1 to OS2 queue 1510a. OS1 copies the

offset pointer which points to the message data structure (i.e., buffer) 1416a into this next

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-65 -

available entry. In a preferred embodiment, the Enqueued offset maintained as a circular

queue.

OS2 polls to determine if a message is available from OS1. This is done by
comparing the contents of an appropriate Dequeued offset for OS2, stored in the control
area of OS2's node output queue 1412a, to the appropriate Enqueued_offset stored in the
0OS1 to OS2 output queue of OS1's node output queue 1412b. In a preferred embodiment,

the Dequeued offset is maintained as a circular queue.

Each of the eight Dequeued _offsets (in the exemplary embodiment) stores a value
between 1 and 511 which points to an entry within a corresponding sending one of the
node's node output queues 1412. For example, the Dequeued offset stored within word 8
of OS2's output queue stores an offset value which points into the "Node 0 to Node 1
Queue" within OS1's node output queue 1412a. Similarly, the Dequeued offset stored
within word 15 of OS2's node output queue 1412 stores an offset value which points into
the "Node 7 to Node 1 Queue". As noted above, the data structures include a node output
queue 1412 and associated Dequeued_offset which allows each node or operating system

to send a message to itself, e.g., OS1 to OS1 node output queue.

In the current example, the Dequeued offset field within word 8 of the OS2 node
output queue 1412 is compared to the Enqueued_offset field within the OS1 to OS2 queue.
If the two offset entries are the same, the queue is empty. When the Enqueued_offset is

different than the Dequeued_offset, one or more entries exist on the OS1 to OS2 queue.

After OS1 determines a message is available, it uses the contents of the
Dequeued offset to retrieve the message and then increments the Dequeued offset. The
message offset pointer is used to retrieve the message, which is copied into local storage.

A sending node or operating system can use a mechanism similar to the above-
described polling mechanism to determine whether a queue is full prior to adding an entry
to the appropriate queue. That is, the Dequeued offset within the recipient's queue is

compared to the appropriate Enqueued_offset within the sending node's output queue. If

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 66 -

the contents of the Enqueued_offset is the same as the contents of the Dequeued offset, the
queue is full and no message may be added at that time. Enqueued offsets and
Dequeued offsets conforms to the assumption that all operating systems may read all other
operating systems' queue areas, but an operating system may only modify its own queue

arca.

In a virtual memory system, code and/or data structures can be transferred, or
"paged", out of main memory to mass storage under the direction of an operating system to
make additional room within the main memory. In an exemplary embodiment of the
present invention, paging out is allowed for code and/or data structures stored within a
local memory area, but is not allowed for data structures residing in shared memory 160.
This restriction ensures that operating systems that use shared memory space 160, can
make assumptions about the location and content of the data structures stored within the

shared memory space 160.

In an exemplary embodiment, 2200 operating system applications communicate
with Intel-based applications (e.g., applications written for Windows NT on an Intel
platform) wherein the only substantial operating system involvement is managing the
shared memory (e.g., requesting initialization of the message queues). In this exemplary
embodiment, the 2200 operating system does not request services or perform services for
the Intel nodes. Instead, services are performed through application-to-application
requests. One skilled in the relevant art(s) will recognize that the 2200 operating system

could, alternatively, be altered to directly request services of the Intel node.

In an exemplary embodiment, the global shared memory mechanism allows
communication to occur between 2200 operating system application programs and NT
and/or Unix application programs. It can also be used to facilitate communication between
applications running under the MCP operating system and applications running under aNT
and/or Unix operating system, and can be used for communication between operating
systems. Similarly, it can be used to facilitate communications between applications

running under an associated different instance of an NT operating system and for

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-67 -

communications between applications running under an associated different instance of a
Unix operating system. The shared memory mechanism can be used to facilitate

communication between 2200 and MCP operating systems.

In an exemplary embodiment, messages written to shared main memory are
typically ASCII characters, but can also include positive integers such as one, two or four-
byte positive integers, and bit information. 2200 operating systems, which operate on 36-
bit words, represent ASCII characters as 8 bits within a 9-bit byte. Intel platforms, which
use IA 32 or IA 64 architecture and operate on 32-bit or 64-bit words, respectively,
represent ASCII characters as 8 bits within an 8-bit byte. Therefore, data written to, or
read from, shared memory should undergo a conversion process. This conversion can be
performed by 2200 operating system hardware instructions. A 2200 style processor uses a
Block Transfer Pack (BTP) instruction to pack ASCII data from 9-bit to 8-bit bytes, and to

zero fill the most significant 32 bits within the 64-bit words of the main memory.

Typically, applications running on Intel platforms expect that message data is
included within contiguous bytes. Since the 2200 operating system Block Transfer Pack
(BTP) instruction does not enter the message data in contiguous bytes within the shared
main memory (four bytes within a word are usually unused), device drivers operating on
Intel platforms must move the message data into contiguous bytes within local main
memory before the message can be processed. Similarly, when a 2200 style processor
receives a message, it uses a Block Transfer Unpack (BTU) instruction to unpack ASCII
data from shared main memory and move it to associated local memory. The Block
Transfer Pack and Block Transfer Unpack instructions also perform big-endian/ little-
endian conversion. Examples of data movement into and out of shared memory 414 for a
2200 to Intel message, an Intel to 2200 message, and an Intel to Intel message are provided

below.

Preferably, the global shared memory communication mechanism is as transparent
as possible to the software running on the system so that software changes are minimized

and so that the system is as compatible as possible with various open-system standards.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 68 -

For example, in accordance with an aspect of the present invention, the system can be
made to appear from the upper layers of the software as though communication-by-wire
has been maintained (see Section IV.B. below). In an exemplary embodiment, the system
employs an Ethernet protocol. One skilled in the relevant art(s) will recognize that other

protocols, such as an ATM protocol can be used.

For NT/UNIX nodes, a Shared Memory interface is preferably visible within a NIC
device driver, which exists at the LLC/MAC level of the Open Standards Interconnection
(OSI) communications model. LLC/MAC are 2 sub-layers of the OSI level 2
communications model. LLC can be an interface between layers 2 and 3. MAC is an
IEEE sub-layer that deals with various LANs such as Ethernet, Token Ring, Token Bus,

etc.

In 2200 operating system nodes, this visibility also occurs at the LLC/MAC level.
This design choice also makes it easy to allow some partitions to communicate through
shared memory while other partitions maintain communication via a wire. The two types

of communication are viewed as the same from the upper layers of the software.

Since the Ethernet protocol imposes a limit of 1500 bytes per transmission, a large
message may have to be divided into segments and transferred during multiple message

transfer operations.

Ethernet has a 1500 byte limit on the amount of data in one transmission. Thus,
where an Ethernet connection is replaced with shared memory, 1500 bytes becomes the
limit on how much data can be placed in a buffer that is queued for output to another node.
As with all communications protocols, any size message can be sent, but it may have to be

sent in a number of separate transmissions (buffers).

A 2200 style processor can transfer message data into shared memory using the

Block Transfer Pack instruction discussed above.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-69 -
B. Interrupt-Driven Shared Memory Communications

An interrupt-driven shared memory management implementation is now
described, as an alternate embodiment, including a description of how the shared
memory area, or region, is to be accessed and managed in accordance with this alternate
embodiment. In this embodiment, management of the shared memory window is
performed by program code embodied in Core Services software that resides on each
partition. The Core Services software on each partition provides an application
programming interface (APT) that a client running in that partition can call to request
certain shared memory services, such as, for example, communicating with a client on
another partition via the shared memory window. As used herein and in the claims, a
“client” can be the operating system, a device driver, an application program, or any
other software or program code executing on a partition that requires the use of the
shared memory window. Also as used herein and in the claims, the term “a
communication” may mean a Signal (described hereinafter), a message in the form of
data (which may or may not be stored in an allocated buffer within the shared memory
window), or any other form of information or data to be communicated between
partitions for any purpose. Unlike in the previous embodiment, in which a polling
technique is employed to determine whether a communication is to be transferred
between partitions, this embodiment employs an inter-processor interrupt mechanism to

communicate between partitions, as described more fully below.

As with the previous embodiment, this embodiment can be used to facilitate
communications between partitions running under the control of different operating
systems (e.g. Unisys MCP, Unisys OS 2200, Windows NT, Unix, etc.) or partitions

running under the control of different instances of a same operating system.

1. Shared Memory Layout
Figure 19 illustrates the layout of the shared memory window in accordance

with this alternate embodiment. As shown, a control structure 1900 resides at the base

of the shared memory window, followed by the remainder of the shared memory

10

15

20

25

30

WO 00/36509 PCT/US99/30437

=70 -

window, 1916 which is broken into separate pages. In the present embodiment, each
page comprises 4K bytes, however, the size may be different in other embodiments.
Each page can be in-use, available, or out-of-use. As described hereinafter, a client can
request that a portion of the shared memory window be allocated to it, for example, to
define a buffer, and the Core Services software then allocates the required number of
pages to satisfy that request.

The shared memory control structure 1900 comprises a header 1910, an
allocation structure 1912, and a plurality of partition input queues with an associated
header 1914. Information in the control structure is private. Direct access to this
information is not provided to clients of the Core Services software. Instead, the Core
Services software API provides calls that return client-related information to a client via
procedural parameters. In the present embodiment, words in the control structure
include 64 bits, where the upper 32 bits are 0's to allow for the different size words used

by different processor architectures.

2. Free Page List
In the present embodiment, in order to keep track of available shared memory

pages, i.e., those that are not already in-use, the available pages are linked through
pointers in the first word of each page to form a linked-list of available pages. The
linked-list of available pages is referred to herein as the Free Page List. The control
structure 1900 provides a pointer to the first page of the linked list (i.e., the start of the
Free Page List).

3. Client Directory Table
The Core Services software allocates one or more pages of the shared memory

window to store a Client Directory Table (not shown). The Client Directory Table is a
registry of the clients on each partition that are using the shared memory window.
More specifically, in the present embodiment, each client of the Core Services software
on a given partition must register with the Core Services software as a member of a

Client Group. Two clients on the same partition cannot be members of the same Client

10

15

20

25

WO 00/36509 PCT/US99/30437

-71 -

Group; if there are multiple clients of the Core Services software on a partition, each
must register as a member of a different Client Group. Each Client Group has an
associated name (Client Group Name) and identifier (Client Group ID). The Client
Directory Table contains an entry for each Client Group that specifies the Client Group
Name and lists each partition that has a client registered as a member of that group.
When a client registers with the Core Services software as a member of a particular
Client Group, the Core Services software returns the Client Group ID to the client. The
Client Group ID is used to identify the sending and receiving clients when messages are

passed via the shared memory window, as described hereinafter.

4. Shared Memory Page Types
The Core Services software may allocate one or more pages of the shared

memory, either for its own use or on behalf of a client request to allocate some portion

of shared memory. In the present embodiment, four different page types are defined.

a. Type 1 Memory Pages

Type 1 memory pages, in the present embodiment, can only be allocated for use
by the Core Services software on a partition; there are no interfaces to allow a client to
request allocation of a Type | page. As one example, the Client Directory Table
described above is stored in one or more Type 1 pages allocated by the Core Services
software. When the Core Services software allocates a Type 1 memory page, a Core
Services header is created at the beginning of the page. Figure 32A illustrates the
contents of the Core Services header for Type 1 pages, in accordance with the present
embodiment.

The first field (Partition Ownership Mask) is used to store an indication of
which partitions have access rights to the page. Specifically, the Partition Ownership
Mask contains eight bits, one for each possible partition in the computer system. Each
partition that has ownership rights to the page will have its corresponding bit in the

Partition Ownership Mask set. In the case of the Client Directory Table, for example,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-72 -

each partition that requires access to the table will have its bit of the Partition
Ownership Mask set in each page containing all or part of the table.

Although in the present embodiment, there are no interfaces to allow a client to
request allocation of Type 1 pages, to accommodate future embodiments in which it
may be desirable to allow clients to request allocation of Type 1 pages, the Core
Services header in a Type 1 page further contains a Client Group ID field. This field
would be used to contain the Client Group ID of the clients that have ownership rights
to the page. In the present embodiment, however, this field is not used.

The DeallocationLock field is used to coordinate changes in the ownership of
the page. This field is part of a broader lock mechanism of the present invention,
implemented throughout the Core Services software, that allows different partitions to
lock access to the various structures, pages, and tables of the shared memory window,
as needed, and in a consistent manner, to ensure that only one partition is capable of
modifying any given structure, page, or table at a time (i.e., to synchronize access to

these structures).

The DeallocationLock field, as well as all other lock fields described
hereinafter, consists of two 64-bit words, designated Word 0 and Word 1. Word 0
defines a Lock Status Word, and Word 1 defines an Owner Word. The low order bit of
Word 0 defines an “in use” bit. Setting this bit indicates a locked status. Word 1 is
used to store the Partition ID of the partition that acquires the lock, enabling the owner

of the lock to be determined.

Most operating systems and the processors on which they execute, provide a
method by which the operating system and clients executing under those operating
systems can acquire a lock to a given data structure. The lock field format used herein
is compatible with a number of operating systems, including, for example, Windows
NT, UnixWare, and the Unisys MCP. The Core Services on a given partition must be

tailored to the operating system and processor architecture of that partition.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-3 -

In accordance with an important feature of the lock mechanism of the present
invention, when a Type 1 memory page is first allocated, the allocating partition must
acquire a system wide lock (a field of the Allocation Structure described hereinafter) in
order to lock access to the page during allocation. However, when ownership of one or
more allocated pages is extended or transferred to other partitions, only a lock to the
pages involved must be acquired. The DeallocationLock field in these pages is used for
this purpose. This facilitates greater throughput of communications between partitions,

since contention for the system wide lock is avoided.

b. Type 2 Memory Pages

Allocation of this type of memory page can be requested by a client, for
example, to define a buffer for passing message data to a client on another partition. As
with Type 1 pages, when a Type 2 memory page is allocated to a given client, a Core
Services header is created at the beginning of the page. Figure 32B illustrates the
contents of the Core Services header for Type 2 pages, in accordance with the present
embodiment.

The Partition Ownership Mask and Client Group ID fields are identical to the
corresponding fields in the header for Type 1 pages. That is, the Partition Ownership
Mask indicates which partition(s) have ownership rights to the page, and the Client
Group ID field contains the Client Group ID of the clients that have ownership rights to
the page. When the page is first allocated, this field will contain the Client Group ID of
the client that requested the allocation.

The DeallocationLock field, like the corresponding field in the header of Type 1
pages, is used to coordinate changes in the ownership of the page. Any partition
intending to effect a change in ownership of a page must first acquire the lock to that
page via the DeallocationLock field.

The Type 3 Page Count and Type 3 Page Reference fields relate to an additional
feature of the present invention, whereby as part of a request to allocate a Type 2
memory page, zero or more Type 3 pages may be allocated in conjunction with the
Type 2 request in order to satisfy the buffer size in the allocation request. The Type 3

Page Count field specifies the total number of Type 3 memory pages associated with

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-74 -

the Type 2 page, and the Type 3 Page Reference field specifies a location within the

Type 2 page that contains references (i.e., pointers) to the associated Type 3 pages.

c. Type 3 Memory Pages
As mentioned above, this type of memory page is used in conjunction with a
Type 2 memory page. A Type 3 page contains client data and is owned by a Client
Group; however, the Type 3 page does not contain explicit Client Group information.
Rather, the Client Group ownership of a Type 3 page is governed by the ownership of
its associated Type 2 memory page, as specified in the Client Group ID field of the
Core Services header of that Type 2 page. The ownership of a Type 3 page is implicitly

changed whenever the ownership of its associated Type 2 page is changed.

d. Type 4 Memory Pages
This type of memory page is for static ownership by one or more Partitions.
Unlike Type 1, 2, and 3 memory pages, ownership of Type 4 memory pages is
specified in an Allocation Table, described hereinafter. Consequently, all changes to

ownership of Type 4 pages require acquisition of the system-wide lock.

5. Control Structure Header
Figure 20 illustrates the contents of the control structure header 1910, in

accordance with the present embodiment. A Version ID field is used to identify the
particular release, or version, of the Core Services software running on the computer
system. A Shared Memory Status field indicates the status of the shared memory (e.g.,
“uninitialized,” “initializing,” “initialized,” and “cleanup”). A Partition ID Of Master
Partition field identifies which partition is designated as the “Master” of the shared
memory window; the Master partition has added responsibilities for managing the
shared memory window, as described more fully below. A Shared Memory Partition
Check-In Interval field specifies the time interval at which a partition is required to
update certain status information to indicate to other partitions that it is active. A Client

Directory Table Header field contains a pointer to the start of the Client Directory Table

10

15

20

25

30

WO 00/36509 PCT/US99/30437

=75 -

and a lock field that is used to coordinate access to the table in accordance with the lock

mechanism of the present invention.

The control structure header 1910 ends with information about each of the
partitions within the computer system, including the type of operating system executing
on the partition (e.g., NT, UnixWare, MCP, etc.) and information needed to issue inter-

processor interrupts to the partition.

6. Allocation Structure
According to the present embodiment, administration of the shared memory

pages is facilitated through an Allocation Table (not shown). Each allocable page in
the shared memory window is represented by an entry in the Allocation Table. Each
entry indicates whether the corresponding page is “in-use,” “available,” or references
memory that is out-of-use, and may also specify page type. For a Type 4 memory page,
the entry further specifies, in the form of a Partition Ownership Mask like that found
within the headers of Type 1 and Type 2 memory pages, which partition(s) have
ownership rights in the page. Thus, in this respect, ownership of Type 4 pages is
maintained differently than for Type 1, Type 2, and Type 3 pages (where ownership
information resides in the Core Services header of the page itself). The Allocation
Table, like the Client Directory Table, itself occupies one or more pages of the shared
memory window.

The Allocation Structure 1912 at the base of the shared memory window
controls certain parameters associated with the Allocation Table and other structures.
Figure 21 illustrates the contents of the Allocation Structure, in accordance with the
present embodiment. A lock field (Allocation Lock) is used to control access to the
Allocation Table. This is the system-wide lock referred to above (as opposed to the
individual page locks in the headers of Type 1 and Type 2 pages). Partitions must
acquire this lock for any initial allocation of pages. This lock must also be required for
any subsequent change in ownership of a Type 4 page, since ownership of Type 4 pages

is maintained in their respective Allocation Table entries. As mentioned above,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-76 -

however, for subsequent changes in ownership of Type 1 and Type 2 pages, only the
individual page locks within the headers of the pages themselves must be acquired.
This ability to lock individual pages (Types 1 and 2) facilitates greater throughput
between partitions, since contention for the system-wide lock (Allocation Lock) is
eliminated.

A Length of Shared Memory Area field specifies the number of allocable pages
in the shared memory window. A Shared Memory Page Pointer field provides a
pointer to the start of the allocable pages. A Free Page List Header provides a pointer
to the start of the Free Page List, and an Allocation Table Header provides the pointer
to the start of the Allocation Table.

7. Signals
The fundamental unit of communication in this embodiment is a Signal. In the

present embodiment, there are two major categories of Signals: (1) inter-Partition Core
Services-to-Core Services Signals and (2) inter-Partition Client-to-Client Signals. Core
Services-to-Core Services Signals are those that are sent between the Core Services
software executing on different partitions. Client-to-Client Signals are those that are
sent between clients on different partitions. Each category of Signal has one or more
signal sub-types. Each Signal comprises a Core Services Information Section and a
Client Information Section. Each of these sections comprises a number of words, the
definition of which depends on its type.

For the Core Services-to-Core Services Signal sub-types, the Client Information
Section is not defined. All information is contained in the Core Services Information
Section. The following Core Services-to-Core Services Signal sub-types are defined in
the present embodiment:

(1) Membership Change Signal: whenever a client registers or unregisters with
the Core Services software on a partition, the Core Services software must send this
Signal to the Core Services software on each other partition that has a client registered
to the same Client Group to notify them that its client is registering/unregistering. The

Core Services Information Section of the Signal will contain the Client Group ID of the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-77 -

Client Group to which the client is registering/unregistering with the Group.

(2) Resume Sending Signal: this Signal is used by a receiving partition to alert
the Core Services software on a sending partition that it can resume sending Signals to
it (the use of this Signal is further described below in conjunction with the description
of the overflow flag of each Input Queue).

(3) You Have Been Marked Dead Signal: this Signal is sent by the Core
Services software on the Master partition to a partition that the Master has determined

is not functioning;

With Client-to-Client Signal sub-types, both the Core Services Information
Section and the Client Information Section are defined. In the present embodiment,
only the following Client-to-Client Signal sub-type has been defined: Signal Delivery
Signal. As described in greater detail below, when a client on one partition wishes to
send a Signal (and perhaps pass a buffer of message data) to a client on another
partition, the client calls a Send Signal interface of the Core Services APL. In response,
the Core Services software sends the Signal Delivery Signal to the partition on which
the receiving client is running. The Core Services Information Section of the Signal
Delivery Signal contains the Client Group ID of the sending and receiving clients and
may also contain a handle (i.e., reference) to one or more pages of shared memory that
have been allocated to the client to define, for example, a buffer that contains a shared
memory object intended for the receiving partition. Examples of shared memory
objects are client messages, client data streams, client events, and Core Services events.

The Client Information Section is opaque to the Core Services software, but can be
used by the sending and receiving clients for any desired purpose. For example, the
Client Information Section could be used to communicate short messages between
clients. In the present embodiment, the Client Information Section comprises a

maximum of five (5) words.

8. Input Queues and Input Queue Header
An input queue mechanism, in combination with the inter-processor interrupt

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-78 -

mechanism described below, is used to signal a recipient partition that data is available.
Each partition has a separate input queue for each other possible partition in the
computer system. In the present embodiment, each partition also has an input queue for
itself, to be used, for example, in the event that the Core Services software on the
partition needs to send a Signal to a client on that same partition. Thus, in the present
embodiment, wherein the computer system can be configured into a maximum of eight
separate partitions (i.e., each of the eight sub-PODs defining a separate partition), each
partition has eight separate input queues (one for each of the other seven partitions and
one for itself), for a total of sixty-four (64) input queues. These input queues reside in
the portion 1914 of the shared memory control structure 1900, along with a header.
Signals will be generated by the Core Services software on one partition and delivered
to the Core Services software on another partition via the corresponding input queue
between them.

Figure 29 illustrates the contents of the input queue header, in accordance with
the present embodiment. An Input Queues Pointer field holds a pointer to the start of
the actual input queues. A Number of Input Queues field specifies the number of input
queues in the input queue area 1914 (sixty-four in the present embodiment). An Input
Queue Length field specifies the length (in words) of each Input Queue. In the present
embodiment, the length is specified as 2048 words. An Input Queue Signal Size field
specifies the total length of each Signal (Core Services Information Section + Client
Information Section). The total size of each Signal is the same and is fixed. Finally, a
Number of Signals in Input Queue field specifies the total number of possible Signals
that each Input Queue can accommodate at one time.

Figure 30 illustrates the contents of each input queue, in accordance with the
present embodiment. As shown, each input queue has a Lock field 3010 which is used
by the Core Services software to lock access to the input queue while updating
information in the queue, a Count field 3012 that specifies the current number of
Signals in the queue, and an Overflow flag 3014 that is used to indicate that the queue
has reached capacity but that there are additional Signals to be transferred onto the
queue as soon as room becomes available. These fields are followed by space 3016 for

a fixed number of Signals (as specified in the Number of Signals in Input Queue field

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-79 .

of the Input Queue Header, see Fig. 29).

In the present embodiment, the sixty-four Input Queues are grouped
contiguously in the Input Queue area 1914 of the control structure 1900. That is, the
first eight Input Queues in the structure belong to the first partition, with successive

groups of eight Input Queues belonging to successive ones of the other seven partitions.

a. Preferred Operation

In operation, whenever the Core Services software gets a request from a client
to send a Signal to another partition, it builds the Signal based on information supplied
by the client and attempts to place the Signal into an available entry in the appropriate
Input Queue for the receiving partition. If no entries are available, then the Overflow
flag 3014 of the Input Queue is set to alert the receiving partition that there are Signals
waiting to be transferred that could not be transferred because the Input Queue was full,
and an error is returned to the client. In such a case, when the receiving partition
subsequently empties the Input Queue, it clears the Overflow flag 3014 and sends a
Resume Sending Signal back to the sending partition, to alert the sending partition that
it may now transfer any subsequent Signals issued by its clients onto the Input Queue
for communication to the receiving partition.

On the receiving side, when the Core Services software on the receiving
partition receives an inter-processor interrupt from a sending partition, it examines the
count fields in each of its associated Input Queues to determine which Input Queues
have available Signals. When the Core Services software finds an Input Queue with
available Signals, it transfers them to a local processing buffer in its exclusive memory
window and resets the count in the Input Queue. Each received Signal extracted from a
given Input Queue is then passed to the appropriate client (based on the Client Group
ID in the Signal) via a Receive Signal callback interface that all clients are required to

implement.

b. Alternative Operation
In an alternative embodiment, in order to provide more efficient movement of

client Signals into the various input queues in response to send requests, the Core

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 80 -

Services software on each partition may set up a partition Send Queue (i.e., buffer) (not
shown) in its exclusive memory window for each possible destination partition. In this
alternative embodiment, whenever the Core Services software on a partition encounters
a full Input Queue that prevents it from placing additional Signals on the Input Queue,
it sets the overflow flag in the Input Queue and then queues those Signal requests to the
appropriate local Send Queue until entries again become available in the Input Queue.
Additionally, on the receiving side, the Core Services software on each partition
may also set up local Client Signal Tank Queues in its exclusive memory window - one
for each client that has identified itself to the Core Services software. Each received
Signal extracted from a given Input Queue of a receiving partition is transferred into the
Client Signal Tank Queue that corresponds to the intended recipient client (again based
on the Client Group ID in the Signal). Each Signal in a Tank Queue is eventually
passed to the intended recipient client via a call to the client’s Receive Signal interface.
The local Send Queues and Tank Queues in this alternate embodiment, in
combination with the use of the Overflow flag as described above, are intended to
provide efficient and equitable use of the shared memory resources to all of the clients
of the Core Services software. Because each client’s Signals are queued locally, the
Input Queues in the shared memory window are kept open for communication in an
efficient manner. No Signals are lost when an Input Queue reaches capacity, and the
Input Queues are emptied quickly to minimize the time that Signals wait on a given

Send Queue.

9. Inter-Processor Interrupt Mechanism
As mentioned above, an inter-processor interrupt mechanism is employed to

alert a receiving partition that Signals have been placed in one of its Input Queues by a
sending partition. Specifically, in the present embodiment, each partition establishes a
single interrupt vector that all other partitions use to send inter-processor interrupts to
it. Whenever a sending partition places a Signal in the Input Queue for a given
receiving partition that causes the Input Queue to go from an empty state (Count = 0) to

a non-empty state (Count > 0), the Core Services software on the sending partition

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-81 -

generates an inter-processor interrupt to one of the processors of the receiving partition.
The processor of the receiving partition responds to the interrupt by calling an interrupt
service routine (not shown) of the Core Services software on that partition. Because
each partition assigns only a single interrupt vector for receipt of interrupts from the
other partitions, the Core Services software on the receiving partition does not know
which other partition issued the inter-processor interrupt. Consequently, the Core
Services software on the receiving partition must check the Count field 3012 in each of
its Input Queues to determine whether any Signals are available in any of those queues.
If an Input Queue has available Signals, the Core Services software transfers
those Signals to a local processing buffer in the receiving partition’s exclusive memory
window and resets the Count field 3012 in the Input Queue. If the Overflow flag 3014
of a particular Input Queue was also set, the Core Services software resets the Overflow
flag and sends a Resume Sending Signal back to the sending partition, as explained
above. The Core Services software then traverses the local processing buffer,
extracting each received Signal, determining the destination client from the Client
Group ID in the Signal, and then delivering the Signal to the destination client via the
client’s Receive Signal callback interface. The Core Services then repeats these steps

for each other Input Queue that also has Signals available (i.e., count > 0).

a. Exemplary Intel/Windows NT Implementation

At the processor and operating system levels, inter-processor interrupt
mechanisms are both processor and operating system dependent. As one example, the
following is a description of how inter-processor interrupts are generated and serviced
in accordance with the present embodiment in the case of partitions that employ Intel
Pentium-family microprocessors and that execute the Microsoft Windows NT operating
system.

In accordance with the present embodiment, the Hardware Abstraction Layer
(HAL) of the Microsoft Windows NT operating system is modified so that during
initialization of the HAL on a given partition, the HAL will first select an inter-
processor interrupt vector for receipt of shared memory inter-processor interrupts by

that partition. An interrupt vector is a number that is assigned to an incoming interrupt

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-82 -

hardware signal by the HAL of the Windows NT operating system. For example,
interrupt vectors are typically assigned by the HAL to the various device I/O hardware
interrupt signals on a system. An inter-processor interrupt is a specialized type of
hardware interrupt signal that is sent from one processor to another (as opposed to from
an I/O device to a processor). As with general I/O interrupts, the HAL must also assign
vectors to any inter-processor interrupt signals (from the same number space that the
I/0 interrupt vectors are chosen). Thus, in the present embodiment, the modified HAL
assigns an interrupt vector for the inter-processor interrupts that will be received by the
local Core Services software on that partition to alert the software that one or more
Signals are available in at least one of its Input Queues.

In the case of an Intel microprocessor, inter-processor interrupts are actually
generated and received by an advanced programmed interrupt controller (APIC)
associated with the processor. The APIC associated with the sending processor
generates a hardware signal to the APIC associated with the receiving processor. If
more than one processor is to receive the interrupt, then the APIC of the sending
processor will generate a hardware signal to the APIC of each intended recipient. The
APIC of each receiving processor receives the hardware signal and delivers the
corresponding interrupt vector to the processor for handling.

Further according to the present embodiment, in addition to assigning an
interrupt vector for the receipt of inter-processor interrupts from other partitions, the
modified HAL will also designate one or more processors in its partition to handle such
interrupts. In the present embodiment, in the case of a partition that comprises more
than one sub-POD, the designated processors must be members of a single one of those
sub-PODs (this is a limitation imposed by the present embodiment of the computer
system platform and may not be a limitation in other embodiments). When more than
one processor on a sub-POD has been designated, an incoming interrupt will be
received in the local APICs of each of those processors. The APICs will then arbitrate
to determine which one of the processors will handle the interrupt. Further details
concerning this arbitration process are provided in the Pentium Pro Family Developer's
Guide: Volume 3, available from Intel Corporation. Additional information concerning

APICs can be found in the Intel MultiProcessor Specification, version 1.4, also

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-83 -

available from Intel.

Still further according to the present embodiment, when the Core Services
software is initialized on a partition, the Core Services software queries the HAL of the
NT operating system on that partition through a custom interface to obtain the interrupt
vector and the information concerning the processors designated by the HAL to handle
shared memory inter-processor interrupts incoming to that partition. The Core Services
software then stores this information in the Partition Information section of the Control
Structure Header 1910 (see Fig. 20). This makes the information accessible to the Core
Services software on other partitions. The Core Services software will then supply the
HAL, through another interface, a reference to an interrupt service routine that is part of
the Core Services software. If a designated processor on that partition receives an inter-
processor interrupt with the designated interrupt vector, it will execute the interrupt
service routine, allowing the Core Services software to respond to the interrupt.

In operation, in order to generate an inter-processor interrupt to notify a
receiving partition that a Signal has been placed in one of its Input Queues, the Core
Services software on the sending partition looks up the inter-processor interrupt
information of the intended recipient partition in the Control Structure Header 1910.
The Core Services software then calls another custom interface to the HAL on its
partition, supplying the HAL with the inter-processor interrupt information for the
receiving partition. With this information, the HAL on the sending partition
manipulates the registers on the APIC of one of its processors to cause an inter-
processor interrupt signal to be generated from its APIC to the APICs of each processor
designated by the HAL on the receiving partition to receive such inter-processor
interrupts. Those APICs on the receiving partition will then arbitrate to handle the
interrupt, and the processor that wins the arbitration will invoke the interrupt service

routine of the Core Services software on the receiving partition.

b. Alternative Embodiment - Multiple Interrupt Vectors
In the embodiment described above, each partition is assigned a single interrupt
vector for receipt of shared memory inter-processor interrupts from any of the other

partitions. Because of this, a receiving partition does not know which other partition

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-84 -

generated the received interrupt. Consequently, the receiving partition must examine
each of its Input Queues, inturn, to ensure that it receives the Signal(s) from the
sending partition that generated the interrupt.

As an alternative embodiment, each partition may assign a separate interrupt
vector for receipt of shared memory inter-processor interrupts from each other partition.
A sending partition would then generate an inter-processor interrupt to a receiving
partition using the corresponding interrupt vector assigned to it by the receiving
partition. An advantage of this embodiment is that a receiving partition would know
from the interrupt vector which other partition generated the incoming interrupt. The
Core Services software on the receiving partition could then access the appropriate
Input Queue to retrieve the incoming Signal(s), without having to cycle through all of

the Input Queues as in the embodiment described above.

10. The Core Services API

In order to provide the functionality described above to clients of the Core
Services software, the Core Services software has a defined application programming
interface (API) that provides interfaces (i.e., callable methods) that a client can call to
invoke the services of the Core Services software. The following is a list of interfaces
provided as part of the Core Services API to perform the functions described above:

Initialize Client Software - this interface is used by a client to identify itself to
the Core Services software. The Core Services software returns a Client Reference
identifier to the Client.

Uninitialize Client Software - this interface is used by a client to inform the
Core Services software that it will no longer participate as a user of shared memory.

Register Client - this interface is used by a client to register with the Core
Services software as a member of a given Client Group. Each client must register
before it is allowed to request that any shared memory be allocated to it. The client
supplies the desired Client Group Name and its Client Reference identifier as part of
the call. The Core Services software will then make the appropriate changes to the

Client Directory Table to reflect the addition of this client to the desired Client Group.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-85-

The interface then returns the Client Group ID to the client.

Unregister Client - this interface is used by a client to unregister from a
particular Client Group.

Allocate Shared Memory - this interface is used by a client to request allocation
of one or more pages of the shared memory window. The client supplies its Client
Group ID and the buffer size (in bytes) that it is requesting. The Core Services
software locks the Allocation Table, determines whether enough pages to satisfy the
request are available in the Free Page List, and then removes those pages from the Free
Page List. The Allocation Table entries for each allocated page are updated to reflect
that the pages are “in use.” For Type 1 and Type 2 pages, a Core Services header is
created in the page which, as explained above, indicates ownership of the page by
partition and client. Any Type 3 pages associated with a Type 2 page are referenced in
the header of the Type 2 page. For Type 4 pages, partition ownership is reflected in the
corresponding Allocation Table entries. The Core Services software then returns a
handle to the client that the client subsequently uses to reference the pages that
comprise the allocated buffer.

Deallocate Shared Memory - this interface is used by a client to request that all
pages associated with a given handle be deallocated. If the requesting partition is the
only owner of the pages to be deallocated, then the pages are returned to the Free Page
List (the system-wide lock must be acquired in order to do this). If not, then only the
ownership information (in the Core Services header of Type 1 and Type 2 pages, or in
the Allocation Table entries for Type 4 pages) is updated .

Send Signal - this is the interface that clients use to have a Signal inserted into
the Input Queue of a receiving partition. The client calling this interface provides (i)
the Client Group ID of the Client Group of which it and the receiving client(s) are
members, (ii) an indication of which partitions have a client that will receive the Signal
(because only one client on a given partition can be a member of a particular Client
Group, this indication and the Client Group ID are the only pieces of information
needed to identify the receiving client on each partition), (iii) the actual information to
be supplied with the Signal in the Client Information Section, (iv) a flag indicating

whether this is a point-to-point or multicast Signal (point-to-point has only one

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 86 -

receiving partition, whereas multicast has multiple receiving partitions), and (v) an
optional handle to a shared memory object, such as, a buffer (one or more shared
memory pages) containing a client message. In response to a Send Signal call, the Core
Services software will (i) build the Core Services Information and Client Information
Sections of the Signal, (ii) check the status of shared memory, (iii) insert the Signal in
the appropriate Input Queue, and if the Signal was placed in an empty Input Queue, (iv)
generate an inter-processor interrupt on the receiving partition. If an Input Queue of an
intended recipient partition is full, or the intended recipient partition is down,

appropriate error indications will be returned.

11.Interfaces Supplied by Clients
In addition to the foregoing interfaces supplied by the Core Services software,

any client of the Core Services software must implement certain callback interfaces that
the Core Services software can invoke to notify the clients of certain events. In the
present embodiment, these caliback interfaces include interfaces for (i) notifying the
client that a Signal has been received (“the Receive Signal interface™); (ii) notifying the
client that there has been a membership change in its Client Group; (iii) notifying the
client that shared memory is “up” or “down,” (iv) notifying the client that the Core
Services software is shutting down, and (v) notifying the client that one or more shared

memory pages has a memory €rror.

12. Exemplary Operation
To further illustrate the operation of the interrupt-driven shared memory

mechanism described above, Figures 31A and 31B comprise a flow chart that illustrates
the steps performed by the clients and Core Services software on two partitions in order
to communicate a message from one client to the other.

Figure 31A illustrates the steps that are performed on the sending partition. At
step 3110, the client calls the Allocate Shared Memory interface of the Core Services
API, requesting a buffer that will be used to transfer the message to the client on the

receiving partition. In this example, the client requests that a Type 2 page be allocated.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-87-

The client provides the required buffer size with the request. In response, at step 3112,
the Core Services software determines the number of shared memory pages that will be
required to satisfy the buffer request (i.e., whether any additional Type 3 pages will
allocated with the Type 2 page). At step 3114, the Core Services software (i) acquires
the system wide Allocation Lock, (ii) determines from the Free Page List whether the
required number of pages are available and, assuming that they are, (iii) allocates the
pages to the client. The Core Services software updates the Allocation Table to
indicate that the pages are “in use,” and then indicates ownership of the pages in the
Core Services header of the Type 2 page. At step 3116, the Core Services software
returns a handle to the allocated pages to the client and releases the Allocation Lock.

Next, at step 3118, the client fills the allocated buffer with the message data.
Then, at step 3120, the client calls the Send Signal interface of the Core Services API,
providing (i) the Client Group ID and receiving partition (which together identify the
receiving client), (ii) any information to be provided in the Client Information Section
of the Signal, (iii) the handle to the allocated buffer, and (iv) a flag indicating that this
is a point-to-point request, as opposed to a multicast request. Recall from above that
the client has the option to send a Signal to multiple partitions using the multicast
feature of the present invention.

In response to the Send Signal request, at step 3122, the Core Services software
identifies the appropriate Input Queue based on the designated receiving partition. The
Core Services software then locks the Input Queue (step 3124), increments the Count
field (step 3126), and builds the Signal in the Input Queue (step 3128) as an entry in
that queue. Next, if the Input Queue was previously empty (i.e., the Count has gone
from zero to one) (step 3130), then the Core Services software generates an inter-
processor interrupt on the receiving partition (step 3123). If the Count field of the Input
Queue was already non-zero, the Core Services software does not need to generate an
interrupt. The Core Services software then releases the lock on the Input Queue (step
3131 or step 3133).

Referring now to Figure 31B, the steps performed on the receiving partition are
shown. At step 3134, one of the APICs on the pre-designated sub-POD of that partition

arbitrates for, and delivers to its processor, the inter-processor interrupt generated by

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 88 -

the sending partition. In response, the processor calls an interrupt service routine (not
shown) of the Core Services software. As part of the interrupt service routine, the Core
Services software begins examining, at step 3136, the first of its Input Queues (in the
present embodiment, there are eight Input Queues for each partition). At step 3138, the
Core Services software examines the Count field of the Input Queue. If the Count is
zero, then no Signals have been sent from the sending partition that corresponds to that
Input Queue, and the Core Services softWare proceeds to the next Input Queue.

If, however, the Count of a given Input Queue is greater than zero, then Signals
are present and control passes to step 3140. At step 3140, the Core Services software
copies each Signal in the Input Queue to a local processing buffer, and then at step
3142, resets the Count to zero. Next, at step 3143, the Core Services software
determines whether the Overflow flag in the Input Queue is set. If the Overflow flag is
set, the Core Services software resets the Overflow flag and then sends a Resume
Sending Signal to the sending partition, thus alerting the sending partition that the Input
Queue is no longer full.

Next, steps 3144 and 3146 are performed for each Signal copied into the local
processing buffer. Specifically, at step 3144, the Core Services software extracts a
Signal from the local processing buffer. At step 3146, the Core Services software calls
the Receive Signal interface of the recipient client (as identified by the Client Group ID
in the Signal), passing the Client Information Section and the handle to the allocated
buffer associated with the Signal (if there is one). At step 3148, the client processes the
Signal, including, for example, using the handle to access message data in the
referenced buffer. Steps 3144 and 3146 are repeated for each Signal in the local
processing buffer. When this is done, the Core Services software repeats steps 3136
through 3146 for each of its other Input Queues. Although not illustrated in Figure
31B, in the present embodiment, the Core Services software on the receiving partition
continues to cycle through its Input Queues until it has made a complete pass through
all of the Input Queues without finding any waiting Signals (i.e., none with a count >
0). Input Queue processing then stops until another inter-processor interrupt is
received.

An additional aspect (not shown) of the sending and receiving processes is the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-89 -

deallocation of the allocated shared memory pages. When a sending client that has
requested allocation of a buffer (i.e., one or more shared memory pages) transfers the
buffer to a receiving partition by passing its handle to the receiving partition via a
Signal, the sending partition has the option of either (i) extending ownership rights to
the pages of the buffer to the receiving client (in which case both clients will have
ownership rights), or (it) transferring ownership rights to the receiving partition (in
which case the sending client relinquishes ownership). Regardless of which option is
chosen, at some point, a client may wish to deallocate the allocated pages. This is done
using the Deallocate Shared Memory interface. Specifically, a client calls the
Deallocate Shared Memory interface, passing the handle to the pages to be deallocated.
If no other clients are owners of those pages, then the pages are returned to the Free
Page List and their corresponding Allocation Table entries are updated to reflect their
availability. If, however, other clients also have ownership rights to those pages, then
the pages cannot yet be returned to the Free Page List. Rather, the Core Services
software locks down the pages and updates the ownership information in the Core

Services header of the Type 2 page.

13. Other Functions
In addition to the foregoing, the following additional functions of the interrupt-

driven shared memory management mechanism are provided:

a. Initialization and Shut Down

When Core Services software begins execution on a partition, it first confirms
the availability and status of the shared memory window, and then invokes appropriate
platform interfaces to get the following information: the physical address and size of
the shared memory window, the partition identifier (each partition has an associated
identifier), the information needed by other partitions to generate inter-processor
interrupts to this partition, and the host operating system type and version running on
the partition. The Core Services software stores a copy of this information in the

exclusive memory window of its partition and in the various fields of the shared

10

15

20

25

WO 00/36509 PCT/US99/30437

-90 -

memory control structure 1900, such as, for example, the Partition Information field of
the control structure header 1910 and the Length of Shared Memory Area field of the
Allocation Structure 1912.

In order for a partition to join other partitions in accessing and using the shared
memory window, the partition must make itself known to the other partitions using the
shared memory window. If there is no cﬁrrent Master partition, then they must arbitrate
among themselves to elect a Master partition. For this purpose, Core Services has a
'Check In' mechanism. The 'Check In' mechanism enables each partition to determine
the validity of the Shared Memory Status field in the Control Structure Header without

using a lock, and to dynamically elect a new Master when there is no active Master.

It is also the responsibility of the Core Services software to exit the shared
memory window cleanly whenever a partition voluntarily leaves the shared memory
window. This is true for both the Master partition and the non-Master partitions. The
common responsibilities of any departing partition are: (i) to notify its local clients that
the shared memory window is going away by calling the appropriate client callback
interface, (ii) to unlock any data structures that it has locked (e.g., Allocation Table,
Input Queue, etc.), (iii) to clean up its Input Queues, (iv) to deallocate any shared
memory pages that it owns, (v) to return any local memory that it owns, and (vi) to

change its status in the Control Structure Header 1910 to "Uninitialized".

If the departing Partition is the Master partition and there are no other alive
partitions, then it shuts down the shared memory window with a notification sent to the
MIP. If the departing partition is the Master partition and there is at least one other
partition still communicating with the shared memory window, then a new Master

partition is chosen by the remaining active partitions.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-91 -

b. Master Partition Duties

The Master Partition has specific responsibilities when shared memory is
initialized, when a non-Master partition dies, and when shared memory shuts down.
The following duties are reserved for the Master Partition:

(1) initialize shared memory structures, including the Control Structure Header,
the Allocation Structure, the Allocation Table, the Free Page List, the Input Queue
Header, the Input Queues, the Client Directory Table Header, and the Client Directory
Table;

(2) perform house cleaning operations on shared memory structures and in-use
shared memory pages when a partitions dies; and

(3) perform house cleaning operations on shared memory structures when

shared memory shuts down.

c. Duties of Non-Master Partitions

All the partitions, including the Master partition, have the following duties:

(1) monitor the status of the other partitions at the predefined Shared Memory
Partition Check In Interval;

(2) determine if a new Master partition needs to be chosen;

(3) update the appropriate areas in the shared memory structures and deallocate
any shared memory pages it owns if it chooses to leave the shared memory window;
and,

(4) deallocates any shared memory pages owned by a client, if the client

withdraws its participation in the shared memory window or the client fails.

As described herein, the program code that implements the interrupt-driven
shared memory communication mechanism of this alternative embodiment is
implemented as a combination of both operating system code (e.g., the modification to
the HAL) and a separate computer program (e.g., the Core Services software). It is
understood, however, that in other embodiments, the program code could be
implemented either entirely as operating system code or entirely as a separate computer

program without deviating from the spirit and scope of the present invention as defined

10

15

20

25

30

WO 00/36509 PCT/US99/30437

92 -

by the appended claims. Moreover, the program code can also be implemented in hard-
wired circuitry or a combination of both hard-wired circuitry and software code. As
mentioned above, the term “program code” is intended to encompass all such

possibilities.

IV. Exemplary Uses of the Computer System and Methods of
the Present Invention to Facilitate Communications Between
Partitions

Exemplary uses of the computer system described above, including its shared
memory management features, to facilitate communication between operating systems
and/or applications running under the operating systems, are described below. Exemplary
embodiments of these uses are described below for purposes of illustration, and not
limitation. Alternate embodiments (including equivalents, extensions, variations,
deviations, et cetera, of the embodiments described herein) will be apparent to persons
skilled in the relevant art(s) based on the teachings contained herein. The invention is

intended and adapted to include such alternate embodiments.

A. A Shared Memory Device Driver

A shared memory network driver interface specification (NDIS) device driver, as
described below, can be implemented to allow standard off-the-shelf applications to
operate on the multi-partition system described above. The shared memory NDIS device
driver provides standard networking and/or clustering interfaces with faster bandpass and
with lower latency than on an analogous LAN configuration, for example. This shared
memory NDIS device driver is built upon, and takes advantage of, the Core Services
software of the interrupt-driven shared memory management mechanism described above

in Section III.B.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-93.-

Figure 18 illustrates the exemplary shared memory NDIS device driver 1802. The
unshaded boxes represent standard Windows NT components. The shaded boxes

represent components that can be implemented as part of the invention.

The shared memory NDIS device driver 1802 supports an upper-edge interface and
a lower-edge interface. On the upper-edge interface, the shared memory NDIS device
driver 1802 supports standard NDIS inteffacing to standard network protocol drivers. The
shared memory NDIS device driver 1802 functions as an NDIS layered driver. More
specifically the shared memory NDIS device driver 1802 conforms to NDIS Miniport
interfaces and supports any network protocol using the NDIS interfaces to communicate
over NDIS device drivers. For example, TCP/IP and SPX/IPX protocols can be

implemented.

The lower-edge interface for the shared memory NDIS device driver 1802 is a
private interface to the Core Services software described in Section III.B., which directly
supports the global shared memory capabilities. The interface includes a hybrid of normal
layered IO driver interfaces (IRPs) and tightly coupled IO driver interfaces (direct
procedure call). The IRPs are used for asynchronous functions. The tightly coupled IO

driver interfaces are used for synchronous functions.

The main function of the shared memory NDIS device driver 1802 is to map the
NDIS interface onto the Core Services API. Local system buffers containing networking
packets (NDIS packets) are passed through the NDIS interface to the shared memory NDIS
device driver 1802. The shared memory NDIS device driver 1802 copies the network
packet from the local system buffer (in a partitions exclusive memory window) into a
shared memory buffer. A reference to the shared memory buffer is queued to the
appropriate shared memory NDIS device driver in another partition as selected by the
destination MAC address in the network packet. Packets with a broadcast or multicast
MAC address are copied into as many shared memory buffers as necessary to send directly
to each partition supporting a device driver in shared memory NDIS device driver 1802's

shared memory group, thus simulating a broadcast/multicast. Buffers received from shared

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-94 -

memory will be repackaged into NDIS packets and presented to the NDIS interface where
they are processed by network protocol drivers. The NDIS packets are returned to shared

memory NDIS device driver 1802.

The shared memory NDIS device driver 1802 maintains a list of shared memory
buffers for each partition, called a SendList, to reduce the overhead of allocating and
deallocating shared memory buffers via the Core Services software. Shared memory
buffers are selected from the SendList for sending network packet information to another
partition. The receiving partition will have a RcvList of handles corresponding to the
originating partitions SendList. When the receiving partition is finished with the message
processing, it sends a message indicating that the buffer should be returned to the available
state in the SendList. When the number of buffers in the SendList drops below a minimum
value, additional buffers are allocated from the Core Services software. When the number
of buffers in the SendList is at a maximum, and not all in use, buffers are deallocated back
to the Core Services software. The minimum and maximum SendList sizes have pre-

determined default values in the code, but can be overridden by setting specific keys in a

registry.

The shared memory NDIS device driver 1802 uses the Core Services software on
its partition 1804 to simulate a FDDI LAN between all the partitions that are running
copies of the shared memory NDIS device driver 1802. The shared memory NDIS device
driver 1802 supports the basic semantics of an FDDI LAN. This includes point to point

messaging, broadcast messaging, multi-cast messaging and 4491 byte message sizes.

B. Maintaining an Appearance of Communications by Wire

In another exemplary application of the computer system and its global shared
memory management, sharing of memory between partitions (i.e., Pods, sub-Pods or
operating systems) is achieved while maintaining an appearance of communications by

wire. This permits conventional applications programs, conventional application program

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-05 .

interfaces (APIs), and conventional communications hardware and software to be used to
send data to shared memory. This application is built upon the mechanism described
above in Section IILLA., in which inter-partition communications are managed in

accordance with a polling technique.

Figure 22 is an exemplary conﬁguration of the computer system 200 of the present
invention, including additional software components needed to achieve the appearance of
communications by wire between partitions or operating systems. In figure 22, two
partitions 2202a and 2202n are shown, each of which may, for example, include a single
sub-Pod. Each sub-Pod 2202 operates under control of a separate operating system 2206.
Operating systems 2206 can be separate instances of the same operating system or they can
be different operating systems. One or more application programs 2208 can run on each

partition 2202 under the operating system 2206 that operates on that partition.

One or more application program interface (API) modules 2210 can be associated
with one or more application programs 2208, for sending messages. For example, on sub-
Pod 2202a, application program 2208a can initiate a message send operation using API

2208a. API 2208a prepares the message for input to a network communications interface

module 2212,

Network interface communications interface module 2212 can be a conventional
system that interfaces partitions with one another, such as through a network. Network
interface communications module 2212 formats messages for transmittal to other partitions
2202 through a network driver 2216 and over a conventional network-type wire 2214. In
an exemplary embodiment, network interface communications module 2212 outputs
messages on lines 2220a and 2220b as if they were destined for a conventional network-
type wire transmittal system 2214. Thus, up to this point, sending of messages from

partitions 2202a is performed in a conventional manner.

Instead of sending all messages on lines 2220a and 2220b from network

communications interface module 2212 to a conventional network driver 2216, messages

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 96 -

intended for shared memory 160 are handled through a shared memory driver 2218. Inan
exemplary embodiment, a destination address is associated with each message. If an
address corresponds to a computer or other destination that is coupled to wire 2214, then
the message is sent to wire 2214 through network driver 2216. If, however, the address
corresponds to an address in shared memory 160, the message is directed to shared

memory driver 2218.

Shared memory driver 2218 receives and reformats messages for transmittal to, and
storage in, shared memory 160. Reformatting can include, for example, reformatting
messages into a standard format that can be recognized by application programs 2208
running on other partitions 2202. Reformatting can also include, for example, reformatting

in accordance with specifications associated with shared memory 160.

Referring to Figure 23, further details of system 2200 are illustrated. In this
exemplary embodiment, operating system 2206a on partition 2202a is illustrated as a 2200
operating system, commercially available from Unisys Corporation, and operating system

2206n on partition 2202n is illustrated as a Windows NT or a UNIX operating system.

In the exemplary embodiment of Figure 23, network communication interface
modules 2212 include one or more software modules 2310 that implement a conventional
transport layer (i.e., layer 4) of an Open Systems Interconnection (OSI) seven-layer
communications model. The OSI seven-layer communications model is well known to
persons skilled in the relevant art(s). The transport layer can be implemented using a
number of different protocols, including a Transmission Control Protocol (TCP), and a
User Datagram Protocol (UDP). The selected protocol will determine the reliability of,
and the potential for duplication during, the subsequent communication operation. In an

exemplary embodiment, TCP can be utilized to provide reliable unduplicated data delivery.

The software module that implements the transport layer 2310, interfaces with a
software module that implements a network layer 2312, which is layer 3 of the seven-layer

OSI protocol. This can be performed using the industry-recognized Internet Protocol (IP)

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-97-

and Internet Control Message Protocol (ICMP), for example. IP dictates the protocol used
for data transmission. ICMP defines the manner in which error handling and analysis is

performed.

The software module(s) that implements layer 3 2312 interfaces with a
communications handler 2314. Communications handler 2314 formats message data into
packets. A format can comply with a selected one of a number of communications
protocols. These protocols can include, for example, Ethernet, Token Ring, Fiber
Distributed Data Interface (FDDI), Asynchronous Transfer Mode (ATM), etc. In an
exemplary embodiment, an Ethernet Handler, which implements an Ethernet protocol, is

used.

After amessage is formatted within local memory, communications handler 2314
calls a device driver. During a "normal" communication scenario, an I/O Driver is called
to perform communications via a network. In an exemplary embodiment, this is a network
input/output device driver (NIOP) 2316, commercially available from Unisys Corporation.

NIOP 2316 implements layers 2 and 1 of the OSI model, which are the data link and

physical layers of the model, respectively.

When communication is to be performed via shared memory 160 instead of over a
network, a shared memory driver 2218 is called. For example, on partition 2202a, when
communication is to be performed via shared memory 160 instead of over a network,
communications handler 2314 can call a HMP Shared Memory Driver 2318 instead of
NIOP Driver 2316. Communications handler 2314 does not need to distinguish between a
call to NIOP Driver 2316 and a call to HMP Shared Memory Driver 2318. From
communications handler 2314's point of view, all messages are transferred over a network.

The operating system decides which of the two types of calls is to be made, as will be
discussed further below. The functionality included within the HMP Shared Memory

Driver is described below.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-98 -

The functionality included in the 2200 operating system software modules on
partition 2202a is included in similar modules residing in the NT or Unix operating system
of partition 2202n. In Figure 23, these modules can include an API 2210n (shown as
Winsock/Sockets), and network communications interface modules 2212 (shown as
TCP/UDP/IPS 2310n, IP/ICMP 2312n, and Ethernet Handler 2314n). Communications
with memory 160 is through HMP Shared Memory NIC device driver 2320. As with the
2200 operating system software moduleé, the layers of the software that interface to the
Applications Program, including the API and the communications software, do not
distinguish between network or shared-memory communications. These software

components view all communications operations as occurring over a network.

Figure 24 provides further details of the HMP Shared Memory Driver 2320 as
implemented in a Windows NT environment in accordance with an exemplary embodiment
of the invention. In Figure 24, a NT User Application 2410 interfaces to a dynamic link
library 2412. Dynamic link library 2412 interfaces with a Windows Socket 2414.
Windows Socket 2414 interfaces with a Transport Driver Interface (TDI) 2416, which isa
Microsoft-defined API for NT systems. API 2416 interfaces to a TCP/IP module 2418
which performs layers three and four of the OSI communications model. TCP/IP module
2418 can interface with a device driver via an API 2420 designed according to a Network
Driver Interface Specification (NDIS) developed by the Microsoft and 3Com Corporations.

The device driver can be, for example, an off-the-shelf driver, such as a COTS Ethernet
Device Driver 2422, which performs message transmission over an Ethernet network, or
may be HMP Shared Memory NIC Device Driver 2320. When the API 2420 makes a call
to a device driver, API 2420 does not distinguish between the two types of calls, and all

communications appear to be performed via a network.

HMP shared memory NIC device driver 2320 can include, for example, VLAN
2424, CONTROL 2426, SHM 2428, and BIOS 2430 modules. Operation and functionality

of these modules is described below.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-99 .

Figure 25 is a process flowchart illustrating further details of the operation of the
software component illustrated in figures 22-24, in accordance with the present invention.
The process begins at step 2510 where an application program builds a message and

associated header information in local memory.

In step 2511, the application program calls an associated API. The program passes
the API the length of the message, the IP address of the target host, and one or more
pointers to the message data. Ifthe message is to be passed over a network, the IP address
specifies a device driver such as the NIOP (on the 2200 operating system side) or an
Ethernet LAN NIC Device Driver (on the NT or UNIX side). If the message is to be
passed via shared memory, the IP address indicates that an associated HMP Shared

memory driver is to be used.

In step 2512, software modules which perform layers 3 and 4 of the OSI model add
various headers to the message and format the message data to conform with the
requirements of the selected communications protocol. For example, the Ethernet protocol
requires that a single message transmission may contain no more than 1500 bytes. A
longer message must therefore be formatted into multiple buffers to be sent via multiple

message transmissions.

In step 2514, a communications handler (which, in an exemplary embodiment, is an
Ethernet handler) makes a call to the Operating System (OS) for the address of the device
driver. One skilled in the relevant art(s) will recognize that other protocols could be

employed, including, for example, protocols with a larger network data packet size.

Generally, the communications handler will connect to a device driver before any
application messages are received for transmission. The communications handler will send
its own ‘broadcast’ message out over the network asking everyone to respond with their
identity, which for TCP/IP, results in IP addresses being returned. This is how the

communications handler knows what IP addresses can be accessed.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 100 -

In step 2516, the operating system selects a device driver address associated with
the specified IP address, and passes the address to the communications handler. In an
exemplary embodiment, the operating system maintains a table which maps IP addresses to
various device drivers. The device driver address may specify a device driver which
performs network communications (such as the NIOP or the Ethernet LAN NIC Drivers).
Alternatively, the device driver may specify a device driver which performs
communications via shared memory. The communications handler is not able to
distinguish between the two types of addresses. The 2200 operating system device driver
for shared memory can be adapted from a 2200 operating system NIOP, as described in
U.S. Patent Number 5,659,794, assigned to Unisys.

In steps 2518-2528, when the address indicates communication is to be performed
via shared memory, an HMP Shared Memory Driver (2200 operating system) 2318 or an
HMP Shared Memory NIC Device Driver NT/UNIX) 2320 is called. The called driver
first maps the target host ID to one of the nodes. This determines which one of queues

within the sending nodes' Output Queue will be utilized.

In step 2518, the called driver determines whether the queue for the target
(receiving) system requires resetting. If the queue for the target system requires resetting,
processing proceeds to step 2526 where the sending system (or sending "node") discards
the message, and sets a Need_Reset flag in the queue for the target system (or target

"node"). When the Need Reset flag is set, a reset procedure can be performed.

Where a TCP protocol is used instead of UDP, the message can be discarded
without resulting in message loss. This is because TCP waits for an acknowledge from the
receiving system indicating that the message has been received. This is tracked using
message IDs. Each message is retained in the local storage of the sending system until an
associated acknowledge is received. If an acknowledge is not received within a
predetermined period of time, another call is made to the operating system to re-send the
message. If UDP is utilized instead of TCP, the message would be lost since UDP does

not track the receipt of acknowledges from the receiving system.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 101 -

Typically, the sending application decides whether UDP or TCP is used. This
decision is transparent to shared memory. In an exemplary embodiment, the shared
memory of the present invention supports UDP, TCP and higher layer protocols that
connect with the device driver that handles shared memory. From a communications
handler point of view, shared memory of the present invention is just another LAN that

does not have very many nodes connected.

If the target queue does not require resetting, processing proceeds to step 2520,
where the sending system checks to determine if the target queue is full. In an exemplary
embodiment, this is done by comparing the value stored in the appropriate
Enqueued_offset (in the sending node's output queue) to the associated Dequeued offset
(in the receiving node's input queue). If putting a new entry in the target output queue will

cause the Enqueued_offset to be equal to the Dequeued offset, then the target output queue

is full.

When the target output queue is full, processing proceeds to step 2528 where the
message is discarded. The message can be re-sent later, as discussed above with regard to

steps 2518 and 2526.

When the target output queue is not full, processing proceeds to step 2522 where a
message buffer in shared memory is obtained from the sending node's message buffer pool.
One skilled in the relevant art(s) will recognize that this can be implemented in a variety
of ways. In an exemplary embodiment, a memory management module is associated with

the Shared Memory Device Driver on each node to keep track of empty buffers.

Preferably, for each Output Queue, a buffer pool including, for example, at least,
511 buffers, will be available. Each buffer can be, for example, 427 8-byte words in
length. In an exemplary embodiment, each buffer pool starts on a 4K word page boundary,
wherein each word is 8 bytes long. That is, a new buffer pool may start on every eighth

4K -byte page boundary. This allows for more efficient memory management.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-102 -

For example, each buffer pool can be 511*427%8 // 4096 = 1,748,992 words long,
where 511 is the number of queue entries, 427 is the number of words needed to handle a
1500 byte long message and an extra header needed to handle the 2200 operating system
requirements. 1500 divided by four equals 375 plus 50 maximum parts and two for buffer
and header length for a total of 427. Eight is for the maximum number of partitions and

4096 is to round it up to a page boundary for protection reasons.

After a buffer is obtained, processing proceeds to step 2524, where the message is
placed in the output queue by copying from local memory to the shared memory buffer.
During this process, a header is generated which serves as the header defined in physical

layer, layer 1, of the OSI model.

The header in the shared memory buffer can be viewed as a physical layer because
the MAC and LLC layers will be on the message when received by the shared memory
device driver. These headers will remain because at least the LLC layer is needed for
potential routing at the receiving node. The header in the buffer is necessary because of
the different memory access characteristics of the 2200 style processor and the Intel

platforms and represents how the data is at the physical layer.

When a 2200 operating system is performing the message send operation, the
Block Transfer Pack (BTP) hardware instruction is used to move the message data from
local to shared memory. This instruction converts the message data from 9-bit bytes to 8-
bit bytes, performs a zero-fill operation, and big endian (2200 style processor) to little

endian (Intel) conversion. Alternatively, this conversion could be performed in software.

In an exemplary embodiment, the message is added to the Output Queue by adding
the pointer to the message buffer in the appropriate location within the Output Queue, then
incrementing the appropriate Enqueued_offset with the sending node’s Output Queue. The
pointer is an offset from the start of the sending node's buffer area. Preferably, offsets are

used instead of real or virtual addresses so that all nodes are able to get to the same address

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-103 -

in the shared memory. (A receiving node's virtual or real addresses are not necessarily

mapped to the same location in memory as another node's virtual or real addresses.)

As previously described with regard to Figures 23 and 24, when a 2200 operating
system node is sending a message, a call is made to the operating system for a device
driver address. The 2200 operating system uses the IP Address to decide whether a NIOP
device driver or HMP Shared Merﬁory Driver should be utilized during the
communications operation. If an NT node is sending a message, similar functionality is
provided. The VLAN component receives the message-send call from NDIS. VLAN
passes this call to CONTROL, which determines whether the IP address associated with
the message-send operation is mapped to the Ethernet Device Driver, or to the SHM
Device Driver, and makes the appropriate device call. The SHM module performs the

functionality illustrated in steps 2518-2528.

In order to receive a message, each node in the system performs a loop that checks
the Output Queues for each node in the system. In an exemplary embodiment, each node
performs this check as if the system is fully configured with the maximum number of eight
nodes, even if fewer nodes are available. The Output Queues of the nodes which are not
available can be initialized so that it appears that no messages are available. Each node
checks its own Output Queue to determine if it is sending a message to itself, even though
this will generally not occur. These are design decisions that can be implemented to

simplify the code.

Alternatively, the number and identity of the available nodes can be communicated
to each node during system initialization so that only the output queues of nodes that are
actually present are checked. In this embodiment, each change in the number of nodes
participating in shared memory is communicated to the participating nodes when the

change occurs.

Figure 26 illustrates an exemplary message receiving process performed for each

partition. The process beings at step 2610, where a message receiving node checks a

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 104 -

Need Reset flag in another sub-Pod's output queue. For example, Node 0 checks the
Need Reset flag in the Node-1-to-Node-0 Queue in the Node 1 Output Queue. If the
Need Reset flag is set, processing proceeds to step 2612, where an initialization sequence

is performed.

If the Need Reset flag is not set, processing proceeds to step 2614 where the
message receiving sub-Pod compares an éppropriate Enqueued_offset flag with one of'its
own Dequeued_offset flags in its own Output Queue. For example, in Figures 16A and
16B, Node 0 compares the Enqueued offset flag in the Node-1-to-Node-0 Queue in the
Node 1 Output Queue to the Dequeued offset for Node 1 in it's own Output Queue (in
Word 1 of the Dequeued_offsets). If the values stored within the two fields are equal, the

queue is empty and processing proceeds to step 2624, where the routine is exited.

If a message is available, processing proceeds to step 2616 where an available
buffer is obtained within local memory. The buffer pool for the Shared Memory Driver
can be maintained by the operating system in conjunction with the communications
handler, as explained below. If a buffer is not available, a wait loop 2617 can be
performed. Instep 2618, a buffer is obtained and the Dequeued_offset is used as an offset
into the queue to retrieve a pointer to shared memory. The pointer is preferably an offset
from the start of the sending sub-Pod's buffer pool. The pointer is used to retrieve the

message data from one of the sending sub-Pod's message buffers in shared memory.

In step 2620, the message data 1s copied to the local buffer. On a NT/UNIX sub-
Pod receiving a message from a 2200 operating system, a compaction process can be
performed which moves the message bytes into contiguous locations that use all bits (e.g.,
64 bits) of a word. This is preferred because 2200 operating system message data occupies
only the least-significant four bytes of a word, with the rest being zero-filled. On the 2200
operating system side, the message data can be copied from shared memory using the
hardware Block Transfer Unpack (BTU) instruction, which converts message data from 8-

bit to 9-bit bytes, and performs little endian (Intel) to big endian (2200 style processor)

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 105 -

conversion. This conversion can be performed in software, firmware, hardware, or any

combination thereof.

Alternatively, messages can be stored in shared memory in 2200 style processor
format, whereby a message receiving Intel platform would convert between big and little

endian and add/remove the extra bit needed by the 2200 style processor.

After the message data is copied to a local buffer, processing proceeds to step 2622,
where the Shared Memory Driver adds the message to a local memory queue. The Shared
Memory Driver can then check to see that a receiving process (e.g., an application 2208) is
available to process the message. On the 2200 operating system side, the Shared Memory
Driver will check to see if a flag indicates that a co-operative processing communications
program (CPCOMM), developed by Unisys Corporation, is "sleeping." The CPCOMM
handles communications protocol layers when messages are sent. If CPCOMM is
sleeping, the Share Memory Driver makes a call to the operating system to wake
CPCOMM up with the newly queued message. Alternatively, polling could be utilized to

determine if a message is available in local memory.

Figure 27 illustrates an exemplary process for CPCOMM on the 2200 operating
system side that handles receiving messages. As is the case with sending messages,
CPCOMM does not know that a received message was transferred through shared memory.

From CPCOMM's point of view, all messages are sent/received over a network.

CPCOMM may be "sleeping" when an interrupt is received from the 2200
operating system. This interrupt is the result of the operating system receiving a call from
the Shared Memory Driver indicating that a message was queued to CPCOMM's local
message queue. When CPCOMM is interrupted, it enters a processing loop 2708. The
process begins at step 2710 where a buffer is acquired in local memory. In step 2712,
CPCOMM calls the 2200 operating system, passing the buffer address. The 2200
operating system places the buffer in one of the buffer pools associated with one of the

device drivers, depending on need. The Shared Memory Device Driver is associated with

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 106 -

one of these buffer pools. The buffers in these pools are then available for received

message data.

After the buffer address is passed to the operating system, processing proceeds to
step 2714, where CPCOMM checks to see if a message is available on its input queue.
Assuming the CPCOMM was interrupted from the operating system, a message is

available.

In step 2716, when a message is available, CPCOMM dequeues the message from
its queue, and passes it to the upper layers of the code. Processing then returns to step

2710, where CPCOMM acquires another buffer.

In step 2714, if CPCOMM finds that no more messages are available, processing
proceeds to step 2718, where CPCOMM determines whether enough empty buffers are
available for use by the various device drivers. If enough buffers are available, processing

proceeds to step 2720 where CPCOMM goes to sleep again.

V. Conclusions

It should be understood that embodiments of the present invention can be
implemented in hardware, software or a combination thereof. In such embodiments,
various components and steps can be implemented in hardware, firmware and/or software
to perform the functions of the present invention. Any presently available or future
developed computer software language and/or hardware components can be employed in
such embodiments of the present invention. In particular, the pseudo-code discussed and
provided above and in the appendixes below can be especially useful for creating the

software embodiments.

WO 00/36509 PCT/US99/30437

- 107 -

While the invention has been particularly shown and described with reference to
preferred embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the spirit and

scope of the invention.

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

- 108 -

Appendix A

Forward Windowing Function:

/***/

/* Assign TEMP_ADDR([29:0] to the processors' address PROCESSOR ADDR[35:6]. Then*/

/* adjusted for any Relocation, Reclamation, or Shared Windowing, if required. */
/***/
/* if PROCESSOR_ADDR[35:6] € RANGEgyarep memory */
if [Sgase""] < PROCESSOR_ADDR[35:6] < [TopOfMemory®S]
then TEMP_ADDR[29:0] « TEMP_ADDR[29:0] + [Sgase™V - Spase);
/* if PROCESSOR_ADDR(35:6] € RANGE ;65 memory ¥/
elseif [4GB] < [PROCESSOR_ADDR[35:6] < [Sgass"]
then TEMP_ADDR[29:0] «-[29:0] + [R, % - R.%5);
/* if PROCESSOR_ADDR([35:6] € RANGE oy memory */
else
then TEMP_ADDR([29:0] «—[29:0] + [R,*];
end if;

[sk dckok ok skskok sokosokokok kool skskslok ko ok skl sieokokok ok skokokokok sokok deokokokololol ok sok ok stk sololokkokoskok ok ok /

Forward Address Translation:

/* MSU Pair Selection: sokeofseok ok ok ot oo sk et ok sk ks ko sk ke ek ok ek o
/* Inputs: */
* TEMP ADDR: */
/* Registers used: */
/* PAIR_MODE, SMALLEST PAIR_SZ, PAIR_SEL */

/* Outputs: */

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

-109 -
/¥ TEMP _ADDR: address after any required adjustment */
/% RCVING_PAIR: indicator to the MSU_Pair this address is directed to */

Stk ok sk ook ook ok ok sk ok ok kst koo b ks kool ok ok skl okl ke kol ks ok ko ok ok ok

/* Initialization: sk okkokok ok sk o s ko e ko sk kol ko ok ok ok ko

/* TEMP_ADDR[29:0] is the address after any address relocation has been performed */
/* TEMP ADDR[29:0]= ADDR IN[35:6]; */
/* */
/# TOP_OF_INTRLV_RANGE is the address value where there is no more memory left */

/* for interleaving, and this is the address where stacking of memory addresses begins. */
/* TOP_OF INTRLV_RANGE = 2*SMALLEST PAIR SZ; */
1% */

Jseor ok sk sk ok kot Aok ook skl sk ook kb ok sk ookl s sl ekt s ek ks ket okl ek o /

if PAIR._MODE = INTERLEAVE then
/* interleave between pairs is enabled */

/* first check that the address is within the interleaved memory range */

if (TEMP_ADDR < TOP_OF INTRLV RANGE) then
/* interleave between Pairs */
/* use the low order cacheline address bit to select the MSU_Pair# */
RCVING PAIR = TEMP_ADDR[0];
/* then readjust the cacheline address by shifting the cacheline address bits */
/* to the right by 1 location and zero filling the most significant address bit */

TEMP_ADDR = ('0' || (TEMP_ADDR >> 1));

else
/* address is over top of interleave range so stack on the larger MSU_Pair */
RCVING PAIR = PAIR_SEL;
/* adjust address for stacking */
TEMP_ADDR = (TEMP_ADDR - SMALLEST_PAIR_SZ);

end if;
else [PAIR_MODE = STACK]

/* stack pairs */

if (TEMP_ADDR < SMALLEST PAIR_SZ) then

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

- 110 -

/* load into MSU_Pair(*/
RCVING PAIR = PAIR_SEL;

/* pass address through unadjusted */
TEMP_ADDR = TEMP ADDR,;

else

/* address is outside the address range of MSU_PairQ */

/* so load overflow (stack) it onto MSU_Pairl */
RCVING PAIR not(PAIR_SEL);

/* readjust the address for stacking into the High MSU_Pair */
TEMP_ADDR = (TEMP_ADDR - SMALLEST_PAIR _SZ);

end if;

end if;

/* MSU Selection After the Pair is Selected: **¥*x¥xkxiokikkorhrikiiorhkhkihkionkkidokkkk/

/* Inputs:

/* TEMP_ADDR - (possibly) adjusted by the previous routines

/* Registers used:

/* PAIR0O_MODE, PATIR0_SMALLEST _MSU_SZ, PAIR0_SEL
/* Outputs:

/¥ TEMP_ADDR: cacheline address after any required adjustment
/* RCVING_MSU: indicator to the MSU_# this address is directed to

e ke otk s ol s o s ook oo ko ko ok ke sk ol ok ok ok ok ok e okl koo okl ke ok ok /

/*Ihhﬂdkaﬁon: ***/
/* */
/* PAIRO_TOP_OF_INTLV_RANGE is the address value where no more memory is left */
/* for interleaving between MSUs of MSU_Pair0. */
/* PAIRO_TOP_OF_INTLV_RANGE = (2*PAIR0_SMALLEST MSU_SZ); */
/* */
/* PAIRI TOP OF INTRLV_RANGE is the address value where no more memory is left */
/* for interleaving between MSUs of MSU_Pairl. */
/* PAIR! TOP_OF INTRLV_RANGE = 2*PAIR1_SMALLEST PAIR_SZ;) */
* */

/***/

*/
*/
*/
*/
*/
*/
*/

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

-111-

if RCVING_PAIR = MUSH#0 then
/* Select between MSU#0 or #1 of MSU_PairQ */
if PAIR0O_MODE = INTERLEAVE then
/* interleaving between MSU#0 or #1 of MSU_Pair0 is enabled */
/* first check that the address is within the interleaved memory range */
if (TEMP_ADDR < PAIRO_TOP_OF_INTRLV_RANGE) then
/* use the low order cacheline address bit to select the MSU_Pair# */
RCVING MSU =TEMP ADDR][0];
/* then readjust the cacheline address by shifting the cacheline address bits */
/* to the right by 1 location and zero filling the most significant address bit */
TEMP_ADDR = ('0' || (TEMP_ADDR >> 1));

else
/* stack remainder */
/* address is over top of interleave range so stack on the larger MSU */
RCVING MSU = PAIR0_SEL;
/* adjust address for stacking */

TEMP_ADDR = (TEMP_ADDR - PAIR0_SMALLEST MSU_SZ);

end if;

else

/* Stack MSU#O first then stack the remainder in MSU#1 */
if (TEMP_ADDR < PAIR0_SMALLEST MSU_SZ) then
/* load into Low MSU, the one designated to receive address '0' */
RCVING MSU = PAIRO_SEL;
/* pass address through unadjusted */

TEMP_ADDR = TEMP_ADDR;

else

/* load overflow into High MSU */
RCVING MSU = not (PAIR0_SEL);
/* adjust address for stacking into the High MSU */
TEMP_ADDR = (TEMP_ADDR - PAIR0_SMALLEST MSU_SZ);

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

-112 -

end if;
end if;

else
if PAIR1_MODE = INTERLEAVE then
/* interleaving between MSU#2 or #3 of MSU_Pairl is enabled */

/* first check that the address is within the interleaved memory range */

if (TEMP_ADDR < PAIR1_TOP_OF_INTRLV_RANGE) then
/* use the low order cacheline address bit to select the MSU_Pair# */
RCVING_MSU = TEMP_ADDR[0];
/* then readjust the cacheline address by shifting the cacheline address bits */
/* to the right by 1 location and zero filling the most significant address bit */

TEMP ADDR = (0' || (TEMP_ADDR >> 1));

else
/* stack remainder */
/* address is over top of interleave range so stack on the larger MSU */
RCVING MSU = PAIR1_SEL;
/* adjust address for stacking */

TEMP_ADDR = (TEMP_ADDR - PAIR1_SMALLEST MSU_SZ);

end if;

else

/* Stack MSU#2 first then stack the remainder in MSU#3 */
/* Note: PAIR1_SEL = 0 is MSU#2; if = | MSU#3 */
if (TEMP_ADDR < PAIR1_SMALLEST MSU_SZ) then
/* load into Low MSU, the one designated to receive address '0' */
RCVING MSU = PAIR1_SEL;
/* pass address through unadjusted */
TEMP_ADDR = TEMP_ADDR;

else

/* load overflow into High MSU */
RCVING MSU = not (PAIR1_SEL);

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

-113-

/* adjust address for stacking into the High MSU */
TEMP_ADDR = (TEMP_ADDR - PAIR1_SMALLEST MSU_SZ);

end if;

end if;

end if;

7k sk sk stk stk ske ok ook ok sfe s s e sk s s sk sk ok sk ok seofe ek sk e sk b ks sfe sk sk sk sk s ke stk skl skokok okeoke sk ok sk ok skl sk sk stk sk skl skeok ok ok /

/* assign MSU_ADDR[29:0] to the adjusted TEMP_ADDR[29:0] and */
/* concatenated the RCVING_PAIR with the RCVING_MSU indicators to form MSU_SEL[1:0] */
/***/
MSU_ADDR][29:0] = TEMP_ADDR(29:0];
MSU_SEL[1:0] = (RCVING PAIR || RCVING MSU);

[skt s sk sk ook sk ok ok e sk ke sk ok o ok s s e e s e sk e s o s s ke s sk ok ok sk s s sk o sl oo ke ok b ok ok e afe sk o o s o ook s ok s kol sk s sk e sk e s e ook ok ok /

Appendix B

Reverse Translation Algorithm

/*Amg([])anduﬁon: ***/
/* Inputs: */

/* MSU ADDR - */

/* Registers used: */

/* PAIR0_MODE, PAIR0O_SMALLEST_MSU_SZ, PAIR0_SEL */

/* PAIR1_MODE, PAIR1_SMALLEST MSU_SZ, PAIR1_SEL */

/* Outputs: */

* TEMP _ADDR: cacheline address after any required adjustment */

/***/

/* Handling between MSUs of a Pair */

ifMSU_PAIR =1 then

/* MSU_Pairl is sending the address back */

if PAIR1_MODE = STACKED then

10

15

20

25

30

35

WO 00/36509

-114-

/* MSU#2 and MSU#3 are stacked */
if (MSU# = PAIR1_SEL then
/* addr is in the low MSU */

TEMP_ADDR = MSU_ADDR;

else

/* addr is in the high MSU, so addr is greater than stacked addr threshold

/* stored in PATIR1_SMALLEST_MSU_SZ reg, so adjust addr size
TEMP_ADDR =MSU _ADDR + PAIR1 SMALLEST MSU _SZ;

end if;
else
/* MSU#2 and MSU#3 are interleaved */
if MSU_ADDR > PAIR1_SMALLEST_SMU_SZ) then
/* addr is in the overflow MSU, so adjust addr size */
TEMP_ADDR = MSU_ADDR + PAIR1-SMALLEST MSU_SZ;
else
/* readjust the cacheline address by shifting the MSU address bits
/* to the left by 1 location and replacing the least significant address bit
/* with the sending MSU_# (0=MSU#2, 1=MSU#3)
TEMP_ADDR = (MSU_ADDR << 1 | MSU#));

end if;

end if;

PCT/US99/30437

*/

K/

*/
*/
*/

else /* MSU_Pair0 is sending the address back */

if PAIRO_MODE = STACKED then

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437
-115-
/* MSU#0 and MSU#1 are stacked */
if (MSU# = PAIRO0_SEL then
/* addr is in the low MSU */
TEMP_ADDR =MSU _ADDR,;
else
/* addr is in the high MSU, add back size offset */
TEMP_ADDR = MSU_ADDR + PAIR0_SMALLEST MSU _SZ;
end if;
else
/* MSU#0 and MSU#1 are interleaved */
if MSU_ADDR > PAIR0_SMALLEST_SMU_SZ) then
/* addr is in the overflow MSU, so adjust addr size */
TEMP_ADDR = MSU_ADDR + PAIRI-SMALLEST MSU_SZ;
else
/* readjust the address by shifting the bits to the left by 1 location and */
/* fill (insert) the least significant address bit with the sending MSU & */
/* (0=MSU#0, 1=MSU#1) */
TEMP_ADDR = (MSU_ADDR << 1 || MSU#));
end if;
endif;,
endif;
/* MSU Pair Translation.- ***/
/* Inputs: */
/* TEMP_ADDR - */
/* Registers used: */
/* PAIR_MODE, SMALLEST _MSU_SZ, PAIR_SEL */
/* Outputs: */
I* TEMP_ADDR: intermediate address after any required adjustment */

10

15

20

25

30

35

WO 00/36509 PCT/US99/30437

-116 -

/* The output is reassigned to the processors' memory request address. It is passed to the — */
/¥ memory relocation procedure for possible mapping adjustment. */

I PROCESSOR_ADDR[36:6] = TEMP_ADDR[29:0] %/

/***************************************’l‘*************************************/

/* Handling between pairs */
if PAIR MODE = 1 then /* MSU_Pair stacking is enabled */
if (MSU_Pair = PAIR_SEL) then

/* addr is in the low Pair */

TEMP ADDRS = TEMP_ADDR;

else
/* addr is in the high Pair so just added the size of the low Pair */
TEMP_ADDR = TEMP_ADDR + SMALLEST PAIR SZ;
end if;
else /* MSU_Pair interleaving is enabled */
if (TEMP_ADDR > SMALLEST_PAIR_SZ) then
/* addr is in the overflowed Pair */
TEMP_ADDR = TEMP_ADDR + SMALLEST PAIR SZ;
else
/* readjust the cacheline address by shifting the cacheline address bits */
/* to the left by 1 location and replacing the least significant address bit ~ */
/* with the sending MSU_Pair# */
TEMP_ADDR = ((TEMP_ADDR << 1) || MSU_Pair#);
endif;

endif;

10

15

20

25

WO 00/36509 PCT/US99/30437

-117 -

/*This ends the Reverse Address Translation Algorithm. Now the address must*/ /*be

checked to see if it was initially adjusted by the Relocation Function.*/

Reverse Windowing Function:

/***/

/* Adjusted TEMP_ADDR([29:0] to account for mapping around the PCI/APIC */

/* range 'hole'. Add back the hole size if relocation was performed. Then assign */
/* TEMP_ADDR[29:0] to the processors' address PROCESSOR_ADDR[35:6] */

/***/

/* if PROCESSOR_ADDR[35:6] € RANGE, oy yenory */
if [RYS] < TEMP_ADDR([29:0] < [RY® + 4GB - PCUAPICy,,;, s;,c]
TEMP_ADDR«TEMP_ADDR[29:0] -/ R% J;
end if,
/* if PROCESSOR_ADDR([35:6] € RANGE, ;e vevory */
elsif[R?® + 4GB - PCUAPIC,,, s,.] < TEMP_ADDR([29:0]
< [R% + 4GB - PCUAPICy,]
then TEMP_ADDR[29:0]«<TEMP_ADDR[29:0] + [R% - R% J;
/* if PROCESSOR_ADDR([35:6] € RANGExrep senory */
elsif[S¥SY.] < TEMP_ADDR[29:0] < [TopOfMemory®S+ $¥54 o %5, I
then TEMP_ADDR[29:0]<TEMP_ADDR[29:0] +/ %, - S'5Y. J;
PROCESSOR_ADDR([35:6] = TEMP_ADDR[29:0];

[k sk sk sk sk ook kot ok ok ok kosk stk skoRsk ook sk skoR sk skl ok ok okl ok ok ok ok sk sk ok ok o/

10

15

20

25

WO 00/36509 PCT/US99/30437

-118-

What Is Claimed Is:

1. A computer system comprising:

a plurality of processing modules, groups of one or more processing modules
being configured as separate partitions within the computer system, each partition
operating under the control of a separate operating system;

a main memory to which each processing module is connected such that
processor-to-memory latency is the same for each processing module across all of the
main memory, the main memory having defined therein at least one shared memory
window to which at least two different partitions have shared access; and

program code, executing on said at least two different partitions, that enables
those different partitions to communicate with each other through the shared memory

window.

2. The computer system recited in claim 1, wherein, for each different
partition configured within the computer system, the main memory further has defined

therein an exclusive memory window to which only that partition has access.

3. The computer system recited in claim 1, wherein ones of the partitions

operate under the control of different operating systems.

4. The computer system recited in claim 1, wherein ones of the partitions

operate under the control of different instances of a same operating system.

5. The computer system recited in claiml, wherein said program code on a
given partition is implemented as one of (i) part of the operating system on that
partition, (ii) a separate computer program running on that partition, (iii) a combination

of part of the operating system and a separate computer program, (iv) circuitry in which

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-119 -

the program code is hard-code, and (v) program code in combination with circuitry.

6. The computer system recited in claim 1, wherein said program code
implements a process by which a sending partition generates an inter-processor
interrupt on a receiving partition to signal the receiving partition that information is

being transferred to it through the shared memory window.

7. The computer system recited in claim 6, wherein the shared memory
window comprises a set of input queues associated with each partition, each input
queue of the set associated with a given partition corresponding to another partition and

storing entries representing communications from that other partition.

8. The computer system recited in claim 7, wherein the shared memory
window further comprises a plurality of pages of memory that can be allocated to the

partitions, as needed, to facilitate communication of information between them.

9. The computer system recited in claim 8, wherein an input queue entry
representing a communication between a sending partition and a receiving partition

may comprise a handle to one or more pages of the shared memory window.

10. The computer system recited in claim 8, wherein a sending partition may
use one or more allocated pages to store data representing a message to be

communicated to a receiving partition.

11. The computer system recited in claim 7, wherein in order for one
partition (a sending partition) to communicate with another partition (a receiving
partition), the program code on the sending partition:

(i) causes an entry to be created in the input queue of the receiving partition that
corresponds to the sending partition; and

(ii) causes an inter-processor interrupt to be generated on the receiving partition

to signal the receiving partition that the entry has been created in that input queue.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 120 -

12. The computer system recited in claim 11, wherein when the inter-
processor interrupt is detected on the receiving partition, the program code on the
receiving partition:

(i) causes each of its input queues to be examined to determine which of the
input queues contain entries representing communications from other partitions; and

(i1) causes any such entries to be extracted from the input queues that contain

them.

13. The computer system recited in claim 2, wherein the shared memory
window comprises a set of input queues associated with each partition, each input
queue of the set associated with a given partition corresponding to another partition and
storing entries representing communications from that other partition, each input queue
capable of storing a pre-defined number of entries and containing an overflow flag that

is caused to be set whenever the input queue is full.

14. The computer system recited in claim 13, wherein in order for one
partition (a sending partition) to communicate with another partition (a receiving
partition), the program code on the sending partition:

(i) causes an entry to be created in the input queue of the receiving partition that
corresponds to the sending partition;

(i1) causes the overflow flag of the input queue to be set if the creation of the
entry causes the input queue to become full; and

(iii) causes an inter-processor interrupt to be generated on the receiving
partition to signal the receiving partition that the entry has been created in that input

queue.

15. The computer system recited in claim 14, wherein when an inter-
processor interrupt is detected on the receiving partition, the program code on the
receiving partition:

(i) causes each of its input queues to be examined to determine which of the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 121 -

input queues contain entries representing communications from other partitions;

(ii) causes any such entries to be extracted from the input queues that contain
them; and

(iii) if the overflow flag of any input queue from which entries were extracted

was set, causes the overflow flag to be reset.

16. The computer system fecited in claim 15, wherein each partition
maintains a location in its exclusive memory window for storing input queue entries
that could not be placed in a designated input queue because the overflow flag of that
input queue was set previously to indicate that the input queue became full, the entries
stored in the exclusive memory window location remaining there until the overflow
flag of the designated input queue is reset indicating that it is no longer full, whereupon

the entries are transferred to the input queue.

17. The computer system recited in claim 15, wherein each partition
maintains a location in its exclusive memory window in which queue entries extracted

from a given input queue are stored temporarily.

18. The computer system recited in claim 15, wherein each partition assigns
a separate interrupt vector for each other partition from which it may receive an inter-
processor interrupt, and wherein the sending partition specifies the interrupt vector
assigned to it when sending an inter-processor interrupt to the receiving partition, and
further wherein, in response to the inter-processor interrupt, the receiving partition:

(i) uses the specified interrupt vector to identify the input queue associated with
the sending partition;

(i1’) causes any entries to be extracted from the identified input queue; and

(iii”) if the overflow flag of the identified input queue was set, causes the

overflow flag to be reset.

19. The computer system recited in claim 7, wherein each input queue

contains a count indicating the number of entries stored therein.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-122 -

20. The computer system recited in claim 8, wherein the shared memory
window further comprises a table indicating, for each page, whether the page is in-use

or is available for allocation.

21. The computer system recited in claim 20, wherein the pages that are

available for allocation are linked together to form a linked-list of available pages.

22. The computer system recited in claim 8, wherein each partition may
have ownership rights in a particular page, and wherein the page has a header

containing information that specifies which partitions have ownership rights in the

page.

23. The computer system recited in claim 22, wherein the header of the page
further comprises a lock field by which one partition may acquire exclusive access to a
page in order to update ownership information in the header of the page, thereby
providing a mechanism to synchronize multiple accesses to the page by different

partitions.

24. The computer system recited in claim 23, wherein the shared memory
window has a system-wide lock field associated with it by which one partition may
acquire exclusive access to the shared memory pages in order to allocate one or more
pages of the shared memory window, thereby providing a mechanism to synchronize

multiple requests for allocation of memory pages by different partitions.
25. The computer system recited in claim 24, wherein ownership

information of a page may be updated by acquiring the lock field of the page, without

having to acquire the system-wide lock field.

26. The computer system recited in claim 1, wherein the program code

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-123 -

implements a polling process by which each partition polls an area within the shared
memory window to determine whether any communications intended for it have been

placed in the shared memory window by another partition.

27. The computer system recited in claim 26, wherein each partition is
allocated a separate pool of message buffers in which it may place communications

intended for other partitions.

28. The computer system recited in claim 26, wherein the area comprises a
plurality of output queues, one for each partition, the output queue for a given partition
indicating whether that partition has placed in the shared memory window any
communications intended for any of the other partitions, each partition polling the
output queues of the other partitions to determine whether those other partitions have

placed any communications intended for it in the shared memory window.

29. The computer system recited in claim 28, wherein for any
communications placed in the shared memory window by a sending partition and
intended to be received by another partition, the output queue of the sending partition
specifies the location within the shared memory window of a buffer containing that

communication.

30. The computer system recited in claim 28, wherein the output queue of a
given partition comprises one or more node-to-node queues, one associated with each
other partition to which it may pass communications, each node-to-node queue
indicating whether communications intended for the partition with which it is
associated have been placed in the shared memory window, each partition polling the
node-to-node queues associated with it in the output queues of each other partition to
determine whether any of those other partitions have placed any communications

intended for it in the shared memory window.

31. The computer system recited in claim 30, wherein for any

10

15

20

25

30

WO 00/36509 PCT/US99/30437

124 -

communications placed in the shared memory window by a sending partition and
intended to be received by a receiving partition, the node-to-node queue associated with
the receiving partition in the output queue of the sending partition indicates the
existence of that communication and specifies the location within the shared memory

window of a buffer containing that communication.

32. The computer system recited in claim 29, wherein each partition of the
computer system further comprises a shared memory driver that receives a request to
send a communication to another partition and, in response thereto, causes the
communication to be placed in an available buffer in the shared memory window and
causes an indication of the communication to be placed in the output queue of the

sending partition.

33. The computer system recited in claim 32, wherein the shared memory
driver on each partition implements a same interface as a network device driver to
enable application programs and the operating system on that partition to send
communications to other partitions via the shared memory window in the same manner
that communications are sent to other computer systems over a network, the shared
memory driver thereby providing the appearance that communications between

partitions via shared memory are being made over a network.

34. A method for use in a computer system comprising a plurality of
processing modules and a main memory to which each processing module is connected
such that processor-to-memory latency is the same for each processing module across
all of the main memory, said method comprising:

configuring different processing modules of the computer system into different
partitions within the computer system, each partition comprising one or more processing
modules and each partition executing a separate operating system,;

assigning at least one shared memory window to which a plurality of the partitions
have shared access;

communicating information from a sending partition to a receiving partition by the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-125-

sending partition storing the information in a location within the shared memory window
and by the sending partition causing an inter-processor interrupt to be generated on the
receiving partition to signal the receiving partition that the information to be

communicated to it is stored in that location.

35. The method recited in claim 34, further comprising the step of creating
in the shared memory window, for each partition, a set of input queues, each input
queue of the set of a given partition corresponding to another partition and storing

entries representing communications from that other partition.

36. The method recited in claim 35, wherein said communicating step
comprises the steps of:

creating an entry in the input queue of the receiving partition that corresponds to
the sending partition, the entry representing a communication to be sent to the receiving
partition; and

generating an inter-processor interrupt on the receiving partition to signal the

receiving partition that the entry has been created.

37. The method recited in claim 36, further comprising the following steps
performed on the receiving partition:

detecting the inter-processor interrupt;

examining, in response to the inter-processor interrupt, each of the set of input
queues of the receiving partition to determine which of the input queues contains
entries representing communications from other partitions; and

extracting any such entries from the input queues that contain them.

38. The method recited in claim 37, wherein each partition assigns a
separate interrupt vector for each other partition from which it may receive an inter-
processor interrupt, and wherein the sending partition specifies the interrupt vector
assigned to it by the receiving partition when sending an inter-processor interrupt to the

receiving partition, and further wherein, in response to the inter-processor interrupt, the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 126 -

receiving partition performs the following alternative steps:

identifying the input queue associated with the sending partition using the
specified interrupt vector;

extracting any entries from the identified input queue; and

if the overflow flag of the identified input queue was set, resetting the overflow

flag.

39. The method recited in claim 37, further comprising the steps of:

defining, for each partition, an exclusive memory window within the main
memory to which the partition has exclusive access; and

after extracting an entry from an input queue of a receiving partition, storing the

entry in a temporary location within its exclusive memory window.

40. The method recited in claim 35, further comprising the step of defining a
region within the shared memory window comprising a plurality of pages of memory
that can be allocated to the partitions, as needed, to facilitate communication between

them.

41. The method recited in claim 40, wherein said communicating step
comprises the steps of:

allocating one or more pages of the shared memory window to the sending
partition;

copying information to be communicated from the sending partition to the
receiving partition into the allocated pages;

creating an entry in the input queue of the receiving partition that corresponds to
the sending partition, the entry containing a handle to the allocated pages; and

generating an inter-processor interrupt on the receiving partition to signal the

receiving partition that the entry has been created.

42. The method recited in claim 41, further comprising the following steps

performed on the receiving partition:

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 127 -

detecting the inter-processor interrupt;

examining, in response to the inter-processor interrupt, each input queue of the
set of the receiving partition to determine which of the input queues contains entries
representing communications from other partitions;

extracting any such entries from the input queues that contain them; and

if any extracted entry contains a handle to one or more allocated pages of

memory, utilizing the handle to access the allocated pages.

43. The method recited in claim 41, wherein each partition assigns a
separate interrupt vector for each other partition from which it may receive an inter-
processor interrupt, and wherein the sending partition specifies the interrupt vector
assigned to it by the receiving partition when sending an inter-processor interrupt to the
receiving partition, and further wherein, in response to the inter-processor interrupt, the
receiving partition performs the following alternative steps:

identifying the input queue associated with the sending partition using the
specified interrupt vector;

extracting any entries from the identified input queue; and

if any extracted entry contains a handle to one or more allocated pages of

memory, utilizing the handle to access the allocated pages.

44. The method recited in claim 35, wherein each input queue is capable of
storing a pre-defined number of entries and contains an overflow flag that can be set

whenever the input queue is full.

45. The method recited in claim 44, wherein said communicating step
comprises the steps of:

creating an entry in the input queue of the receiving partition that corresponds to
the sending partition, the entry representing information to be communicated to the
receiving partition;

setting the overflow flag of the input queue if the creation of the entry causes

the input queue to become full; and

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 128 -

generating an inter-processor interrupt on the receiving partition to signal the

receiving partition that the entry has been created in that input queue.

46. The method recited in claim 45, further comprising the following steps
performed on the receiving partition:

detecting the inter-processor interrupt;

examining, in response to the inter-processor interrupt, each of the set of input
queues of the receiving partition to determine which of the input queues contains
entries representing communications from other partitions;

extracting any such entries from the input queues that contain them; and,

if the overflow flag of any input queue from which entries were extracted was

set, resetting the overflow flag.

47. The method recited in claim 45, wherein each partition assigns a
separate interrupt vector for each other partition from which it may receive an inter-
processor interrupt, and wherein the sending partition specifies the interrupt vector
assigned to it by the receiving partition when sending an inter-processor interrupt to the
receiving partition, and further wherein, in response to the inter-processor interrupt, the
receiving partition performs the following alternative steps:

identifying the input queue associated with the sending partition using the
specified interrupt vector;

extracting any entries from the identified input queue; and

if the overflow flag of any input queue from which entries were extracted was

set, resetting the overflow flag.

48. The method recited in claim 35, further comprising the step of defining
for each partition, a separate exclusive memory window within the main memory to

which the partition has exclusive access.

49. The method recited in claim 48, wherein each input queue is capable of

storing a pre-defined number of entries and contains an overflow flag that can be set

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 129 -

whenever the input queue is full.

50. The method recited in claim 49, wherein said communicating step
comprises the steps of:

creating an entry in the input queue of the receiving partition that corresponds to
the sending partition, the entry representing information to be communicated to the
receiving partition; |

setting the overflow flag of the input queue if the creation of the entry causes
the input queue to become full, and thereafter temporarily storing any additional entries
to be created in that input queue in a location within the exclusive memory window of
the sending partition so that they can later be placed in the input queue when it is no
longer full; and

generating an inter-processor interrupt on the receiving partition to signal the

receiving partition that the input queue contains entries for the receiving partition.

51. The method recited in claim 50, further comprising the following steps
performed on the receiving partition:

detecting the inter-processor interrupt and locating an input queue containing
entries representing communications from another partition;

extracting the entries from the input queue; and,

if the overflow flag of any input queue from which entries were extracted was
set, resetting the overflow flag and sending a communication back to the corresponding
sending partition, via an entry in the corresponding input queue of that sending
partition, indicating that that sending partition can resume sending entries that may

have been temporarily stored in its exclusive memory window.

52. A method for allowing a plurality of operating systems to operate on a
computer system, wherein the computer system comprises a plurality of processing
modules and a main memory, said method comprising:

configuring different processing modules of the computer system into different

partitions within the computer system, each partition comprising one or more processing

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 130 -

modules and each partition executing a separate operating system;

assigning each partition an exclusive memory window within the main memory and
assigning at least one shared memory to which a plurality of the partitions have shared
access;

communicating messages from one partition to another partition via the shared
memory in accordance with a polling process by which each partition polls an area of the
shared memory to determine whether fnessages intended for it have been placed in the

shared memory window by another partition.

53. The method recited in claim 52, further comprising the step of
allocating, to each of the separate operating systems, a separate pool of message buffers
within the shared memory window in which the partition may place messages intended

for other partitions.

54. The method recited in claim 53, wherein the area of the shared memory
that is polled by the partitions comprises a plurality of output queues, one for each
partition, the output queue for a given partition indicating whether that partition has
placed in the shared memory window any messages intended for any of the other
partitions, said communicating step comprising each partition polling the output queues
of the other partitions to determine whether those other partitions have placed any

messages intended for it in the shared memory window.

55. The method recited in claim 54, further comprising the steps of:

a partition intending to send a message to another partition (sending partition)
placing the message in a buffer within the shared memory window;

the sending partition storing in its output queue an indication that a message
intended for the other partition has been placed in the buffer and in addition storing a
pointer to the buffer;

the partition to which the message is intended polling the output queue of the

sending partition, determining therefrom that the message has been placed in the buffer,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 131 -

and using the stored pointer to locate the buffer and to retrieve the message from the

buffer.

56. A computer system comprising:

a plurality of processing modules, each processing module comprising a
plurality of processors, groups of one or more processing modules being configured as
separate partitions within the computér system, each partition operating under the
control of a separate operating system;

a main memory within which each partition is assigned an exclusive memory
window to which only that partition has access and in which the operating system of
that partition operates; and

means for mapping the physical address space of the processors in each partition
to the respective exclusive memory window assigned to the partition, whereby the
exclusive memory windows of each partition are made to appear to their respective

operating systems as having a same base physical address in the main memory.

57. The computer system recited in 56, wherein each exclusive memory
window is made to appear to its respective operating systems as having a base physical

address of zero.

58. The computer system recited in claim 56, wherein said means for
mapping comprises means for relocating a reference to a location within the physical
address space of the processors on a given partition to the corresponding location

within the exclusive memory window assigned to that partition.

59. The computer system recited in claim 58, wherein said means for
relocating comprises:

a register that holds an offset (R, °®) from the base physical address of main
memory to the start of the exclusive memory window assigned to said given partition;
and

an adder for adding the offset (R, °®) to each reference by a processor in said

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-132-

given partition to a location within its physical address space, thereby relocating those

references to their corresponding locations within the exclusive memory window.

60. The computer system recited in claim 56, wherein the physical address
space of the processors of a given partition may contain a range of addresses
unavailable for memory storage, the unavailable range defining a memory hole,
addresses above the memory hole deﬁﬁing a high memory range and addresses below
the memory hole defining a low memory range, the computer system further
comprising means for reclaiming for other uses that portion of the exclusive memory
window of said given partition that would otherwise correspond to the memory hole as

a result of said mapping function.

61. The computer system recited in claim 60, wherein said means for
mapping comprises:

a register that holds an offset (R, °®) from the base physical address of main
memory to the start of the exclusive memory window assigned to said given partition;

a register that holds an a value (R."%) representing the size of the memory hole;
and an adder for:

(i) adding the offset (R, ®®) to each reference by a processor in said given
partition to a location within the low memory range of its physical address space,
thereby relocating those references to their corresponding locations within the exclusive
memory window, and

(i) adding the offset minus the value representing the size of the memory hole
(R, % - R.%) to each reference by a processor in said given partition to a location within
the high memory range of its physical address space, thereby relocating those
references to their corresponding locations within the exclusive memory window and
reclaiming that portion of the exclusive memory window that would otherwise have

corresponded to the memory hole.

62. The computer system recited in claim 56, wherein the main memory

further comprises a shared memory window separate from the exclusive memory

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 133 -

windows, and wherein the computer system further comprises means for mapping, on
each partition, a designated portion of the physical address space of the processors of

that partition to the shared memory window within the main memory.

63. The computer system recited in claim 59, wherein said means for
mapping a designated portion of the physical address space of the processors on a given
partition to the shared memory window comprises:

a register that holds an offset (Sg,:°°) from the base address of the physical
address space of the processors on the partition to the start of said designated portion of
that physical address space;

aregister that holds an offset (Sg,ee™™"

) from the base address of the main
memory to the start of the shared memory window within the main memory; and

an adder that adds the difference between the offsets (Spage™ " -Spase) to each
reference by a processor in said given partition to a location within said designated
portion, thereby relocating those references to their corresponding locations within the

shared memory window of the main memory.

64. The computer system recited in claim 56, wherein ones of the partitions

operate under the control of different operating systems.

65. The computer system recited in claim 56, wherein ones of the partitions

operate under the control of different instances of a same operating system.

66. In a computer system comprising (i) a plurality of processing modules,
each processing module comprising a plurality of processors, groups of one or more
processing modules being configured as separate partitions within the computer system,
each partition operating under the control of a separate operating system, and (ii) a
main memory within which each partition is assigned an exclusive memory window to
which only that partition has access and in which the operating system of that partition
operates, a method for making the exclusive memory windows of each partition appear

to their respective operating systems as having a same base physical address in the

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-134-

main memory, said method comprising relocating a reference to a location within the
physical address space of the processors on a given partition to the corresponding

location within the exclusive memory window assigned to that partition.

67. The method recited in claim 66, wherein said relocating step comprises:

storing a value representing an offset (R, °%) from the base physical address of
the main memory to the start of the e){clusive memory window assigned to a given
partition; and

adding the offset (R, %) to each reference by a processor in that partition to a
location within its physical address space, thereby relocating those references to their

corresponding locations within the exclusive memory window.

68. The method recited in claim 56, wherein the physical address space of
the processors of a given partition may contain a range of addresses unavailable for
memory storage, the unavailable range defining a memory hole, addresses above the
memory hole defining a high memory range and addresses below the memory hole
defining a low memory range, said method further comprising reclaiming for other uses
that portion of the exclusive memory window of said given partition that would

otherwise correspond to the memory hole as a result of said relocating step.

69. The method recited in claim 68, wherein said relocating and reclaiming
steps comprise:

storing a value representing an offset (R,) from the base physical address of
main memory to the start of the exclusive memory window assigned to said given
partition;

storing a value (R.°) representing the size of the memory hole;

adding the offset (R, °®) to each reference by a processor in said given partition
to a location within the low memory range of its physical address space, thereby
relocating those references to their corresponding locations within the exclusive
memory window; and

adding the offset minus the size of the memory hole (R, *° - R:%) to each

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 135 -

reference by a processor in said given partition to a location within the high memory
range of its physical address space, thereby relocating those references to their
corresponding locations within the exclusive memory window and reclaiming that
portion of the exclusive memory window that would otherwise have corresponded to

the memory hole.

70. The method recited in élaim 56, wherein the main memory further
comprises a shared memory window separate from the exclusive memory windows, and
wherein said method further comprises:

designating, on each partition, a portion of the physical address space of the
processors of that partition to correspond to the shared memory window within the
main memory; and

relocating any reference by a processor of a partition to a location within the
designated portion of its physical address space to the corresponding location within the

shared memory window within the main memory.

71. The method recited in claim 70, wherein said step of relocating a
reference by a processor on a partition to the designated portion of its physical address
to the corresponding location in the shared memory window, comprises:

storing a value representing an offset (Sp,g:"") from the base address of the
physical address space of the processor on that partition to the start of said designated
portion of that physical address space;

storing a value representing an offset (Sg, g™) from the base address of the
main memory to the start of the shared memory window within the main memory; and

adding the difference between the stored offsets (Spag™ " ~Spase) to any
reference by a processor in that partition to a location within the designated portion,
thereby relocating those references to their corresponding locations within the shared

memory window of the main memory.

72. The method recited in 56, wherein each exclusive memory window is

made to appear to its respective operating system as having a base physical address of

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 136 -

Z€ro.

73. A computer system comprising:

a plurality of processing modules, each processing module comprising a
plurality of processors, groups of one or more processing modules being configured as
separate partitions within the computer system, each partition operating under the
control of a separate operating system;v

a main memory within which each partition is assigned an exclusive memory
window to which only that partition has access and in which the operating system of
that partition operates, and within which there is also defined a shared memory window
to which a plurality of partitions have shared access;

means for mapping the physical address space of the processors in each partition
to the respective exclusive memory window assigned to the partition, whereby the
exclusive memory windows of each partition are made to appear to their respective
operating systems as having a same base physical address in the main memory; and

program code, executing on said plurality of partitions, that enables those

partitions to communicate with each other through the shared memory window.

74. The computer system recited in claim 73, wherein ones of the partitions

operate under the control of different operating systems.

75. The computer system recited in claim 73, wherein ones of the partitions

operate under the control of different instances of a same operating system.

76. The computer system recited in claim 73, wherein said program code
implements a process by which a sending partition generates an inter-processor
interrupt on a receiving partition to signal the receiving partition that information is

being transferred to it through the shared memory window.

77. The computer system recited in claim 76, wherein the shared memory

window comprises a set of input queues associated with each partition, each input

10

15

20

25

30

WO 00/36509 PCT/US99/30437

-137 -

queue of the set associated with a given partition corresponding to another partition and

storing entries representing communications from that other partition.

78. The computer system recited in claim 77, wherein the shared memory
window further comprises a plurality of pages of memory that can be allocated to the

partitions, as needed, to facilitate communication of information between them.

79. The computer system recited in claim 78, wherein each partition may
have ownership rights in a particular page, and wherein the page has a header

containing information that specifies which partitions have ownership rights in the

page.

80. The computer system recited in claim 79, wherein the header of the page
further comprises a lock field by which one partition may acquire exclusive access to a
page in order to update ownership information in the header of the page, thereby
providing a mechanism to synchronize multiple accesses to the page by different

partitions.

81. The computer system recited in claim 80, wherein the shared memory
window has a system-wide lock field associated with it by which one partition may
acquire exclusive access to the shared memory pages in order to allocate one or more
pages, thereby providing a mechanism to synchronize multiple requests for allocation

of memory pages by different partitions.

82. The computer system recited in claim 80, wherein the ownership of a
page can be updated by acquiring the lock field of that page, without having to acquire
the system-wide lock field.

83. The computer system recited in claim 77, wherein in order for one
partition (a sending partition) to communicate with another partition (a receiving

partition), the program code on the sending partition:

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 138 -

(i) causes an entry to be created in the input queue of the receiving partition that
corresponds to the sending partition; and '
(i) causes an inter-processor interrupt to be generated on the receiving partition

to signal the receiving partition that the entry has been created in that input queue.

84. The computer system recited in claim 83, wherein when the inter-
processor interrupt is detected on the receiving partition, the program code on the
receiving partition:

(i) causes each of its input queues to be examined to determine which of the
input queues contain entries representing communications from other partitions; and

(ii) causes any such entries to be extracted from the input queues that contain

them.

85. The computer system recited in claim 77, wherein each input queue is
capable of storing a pre-defined number of entries and contains an overflow flag that is
caused to be set by a sending partition whenever the input queue becomes full, and
which is reset by a receiving partition whenever entries are extracted from the input

queue.

86. The computer system recited in claim 73, wherein the program code
implements a polling process by which each partition polls an area within the shared
memory window to determine whether any communications intended for it have been

placed in the shared memory window by another partition.

87. The computer system recited in claim 86, wherein the area comprises a
plurality of output queues, one for each partition, the output queue for a given partition
indicating whether that partition has placed in the shared memory window any
communications intended for any of the other partitions, each partition polling the
output queues of the other partitions to determine whether those other partitions have

placed any communications intended for it in the shared memory window.

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 139 -

88. The computer system recited in claim 87, wherein for any
communications placed in the shared memory window by a sending partition and
intended to be received by another partition, the output queue of the sending partition
specifies the location within the shared memory window of a buffer containing that

communication.

89. The computer system recited in claim 88, wherein each partition is
allocated a separate pool of message buffers in which it may place communications

intended for other partitions.

90. The computer system recited in 73, wherein each exclusive memory
window is made to appear to its respective operating systems as having a base physical

address of zero.

91. The computer system recited in claim 73, wherein said means for
mapping comprises means for relocating a reference to a location within the physical
address space of the processors on a given partition to the corresponding location

within the exclusive memory window assigned to that partition.

92. The computer system recited in claim 91, wherein said means for
relocating comprises:

a register that holds an offset (R, °%) from the base physical address of main
memory to the start of the exclusive memory window assigned to said given partition;
and

an adder for adding the offset (R, °*) to each reference by a processor in said
given partition to a location within its physical address space, thereby relocating those

references to their corresponding locations within the exclusive memory window.

93. The computer system recited in claim 73, wherein the physical address
space of the processors of a given partition may contain a range of addresses

unavailable for memory storage, the unavailable range defining a memory hole,

10

15

20

25

30

WO 00/36509 PCT/US99/30437

- 140 -

addresses above the memory hole defining a high memory range and addresses below
the memory hole defining a low memory range, the computer system further
comprising means for reclaiming for other uses that portion of the exclusive memory
window of said given partition that would otherwise correspond to the memory hole as

a result of said mapping function.

94. The computer system récited in claim 93, wherein said means for
mapping comprises:

a register that holds an offset (R, °®) from the base physical address of main
memory to the start of the exclusive memory window assigned to said given partition;

a register that holds an a value (R.°) representing the size of the memory hole;
and an adder for:

(i) adding the offset (R, ®*) to each reference by a processor in said given
partition to a location within the low memory range of its physical address space,
thereby relocating those references to their corresponding locations within the exclusive
memory window, and

(ii) adding the offset minus the value representing the size of the memory hole
R, % - R.%) to each reference by a processor in said given partition to a location within
the high memory range of its physical address space, thereby relocating those
references to their corresponding locations within the exclusive memory window and
reclaiming that portion of the exclusive memory window that would otherwise have

corresponded to the memory hole.

95. The computer system recited in claim 73, further comprising means for
mapping, on each partition, a designated portion of the physical address space of the

processors of that partition to the shared memory window within the main memory.

96. The computer system recited in claim 95, wherein said means for
mapping a designated portion of the physical address space of the processors on a given
partition to the shared memory window comprises:

a register that holds an offset (Sp,s:"") from the base address of the physical

10

WO 00/36509 PCT/US99/30437

- 141 -

address space of the processors on the partition to the start of said designated portion of
that physical address space;

Y3Y) from the base address of the main

a register that holds an offset (Sp,q
memory to the start of the shared memory window within the main memory; and

an adder that adds the difference between the offsets (Sguge™>V -Spage’) to each
reference by a processor in said given partition to a location within said designated
portion, thereby relocating those references to their corresponding locations within the

shared memory window of the main memory.

WO 00/36509 PCT/US99/30437

1/34
100
/110 /112 /114
PROCESSOR(S) PROCESSOR(S) e o o | PROCESSOR(S) | 120
05] 05] 05] X
7 7) o
170 172 174
122
SYSTEM INTERCONNECTION <> 10
]
/
130
o
MAIN MEMORY voi”
/
160

Figure 1

WO 00/36509 PCT/US99/30437
160 2/34 210A /250A 260A
" 290 DIB PCI
r_—-_——22—0A— I \ 230A\
i | MEMORY < > A / “
| | STORAGE TCM TCT MP MP
UNIT | J 280
| t J/
| | 2708 .
: : 41_ L >sos]
: MEMOR; *!L TLe 40C 540D
| |STORAGE| | INTERCONECT T
: UNIT ‘_Il 2 240E 240F
I | ‘J-- TCT MP | ol MP
| SO, —— —
-222 2858 270D . —
3 "L [N
> TCM Ll TeT Mp | 2800 mp
¥ o AN
e 240G 240H
f/ 2508
DIB PCI L o8
250C
260C
DIB pail
294 290B 230C
YA 285¢ 270E 240 240K
220C ! £ 4 £
: - > TCM 1ot WP | ool WP
MEMORY
| | sTORAGE —> j 70 1/]
UNIT °
: TCT Mp | 280F| mp
| < <
I 220D Te 240L 240M
| ’ CROSSBAR 230D
- INTERCONNECT 270G J 240N 240P
| | MEMORY 7 2 2
| | STORAGE .
| UNIT | I | o TCT MP | 2g0d MP
| " J] Wi
I 270H :
bemmm e 25 ‘L [I~]
"TCM 1ot wp | 260H p
A
/ TLC 240R 2408
210 T 2108 /2500 260D
V4 »| DIB Je>] PCI

Figure 2

WO 00/36509
TOP OF
0S#4
newony [HIGH MM HoLE
SHARED MEMORY
HIGH MEMORY
LOW MM HOLE
LOW MEMORY
o)
TOP OF 0S#4
0S#3
Mooy [HiGH M HoLE
SHARED MEMORY
HIGH MEMORY
LOW MM HOLE
LOW MEMORY
(']
TOP OF 0sS#3
0S#2
mewony [HIGH WM HoLE
SHARED MEMORY
HIGH MEMORY
LOW MM HOLE
LOW MEMORY
o)
TOP OF os#2
OSH
ooy [HigH mm HoLE
SHARED MEMORY
HIGH MEMORY
LOW MM HOLE
LOW MEMORY
0
Os#
0s
ADDRESS SPACE

3/34

SHARED MEMORY

HIGH MEMORY

LOW MEMORY

OS#4 \

SHARED MEMORY

HIGH MEMORY

LOW MEMORY

0oS#3

SHARED MEMORY

HIGH MEMORY

LOW MEMORY

os#

SHARED MEMORY | /

HIGH MEMORY

LOW MEMORY

osH

ADDRESS
REMAPPING

PCT/US99/30437

LOGICAL PARTITION A:
SHARED MEMORY [14]
0s#
0S#4
LOGICAL PARTITION B:
SHARED MEMORY123]
0s#2
0s#3

TOP OF INSTALLED DRAM

SHARED MemoRy!'l

HIGH MEMORY
0S#4

LOW MEMORY

SHARED MEMORY!23]

HIGH MEMORY
0S#3

LOW MEMORY

HIGH MEMORY
0s#2

LOW MEMORY

/ HIGH MEMORY
OSH

LOW MEMORY

/ MSU
/ MEMORY SPACE

’ \

350

Figure 3

PCT/US99/30437

WO 00/36509

4/34

ol

OMOGNIM
0Ly

m
N

LMOANIM
09v

m
<

[go¥] Wvya 40 dot
30vdS SS3HAAY NSW

p ainbi4

IO = Om d
aov<<ipy
:QH._E
3003 soig
0SO/OMOAQNIM
0SO .
|||||||||||||||||||||||| ~oew
~<__ #oe
T~ OMOANIM 01 31VJ0T1V 370H 21dV/10d
30VdS OVa3ddYIN-AHOW3IW _— %4
0
~~_ Hp = 0y
T~ 989y PV
=~ (802)H0000°0008=H 3009 soid
‘ISOTIMOONIM — _ J
89¢
{MOANIM 01 g31VJ0T11V J10H 21dV/19d
30VdS OVa3ddVIN-AHOW3IN _— ,/mw v
SO HOV3 Ad QIM3IA SY
J0VdS $S3HAAvY SO

502

WO 00/36509
5/34
7.25Gb
HIGHMM | 575
70Gb| HOLE T ~"[SHARED
90Gb SHARED - 574~ MEMORY
8900.000H | MEMORY
6.875Gb ME&%}IV N
\
00000 Aesrames [\
) MEMORY --573\
4.0Gb 572 HIGH
LOWMM < _ MEMORY
3.8756b| HOLE N
LOwW
LOW 15717
. MEMORY
o ——
= 0s#3
HIGHMM | =4
6.875Gb HOLE 545 SHARED
775Gb SHARED |- 544~ | MEMORY
7100.000H || MEMORY
5.750Gb ME!'I‘%-IRY .
N
o000 ACLUBES [N
' MEMORY -1~ 543
4.0Gb 542 HIGH
LOWMM X MEMORY
3.750Gb| HOLE N
LOW
LOW L s541-T
MEMORY MEMORY
0—sr2 T
HIGHMM | 515
5.125Gb HOLE SHARED
SHARED - 514~] MEMORY
5.0Gb| MEMORY
HI'G_H——(
MEM8RY ~
HIGH
REHOR 513 | MEMORY
4,0Gb .
LOW MM |- 512 | UNUSED
3.984Gb| , HOLE ~ Y _MEMORY
LOW
Low | s11-T RY
RE&?gﬁ MEMORY MEMO
= osH
0S ADDRESS
ADDRESS\SPACE REMAPPING

~
~
~
~

~
17.275Gb"~
4,5100.000H

PCT/US99/30437

Figure 5
537
[17.3156b
4,5800.000
SHARED
A MEMORY
17.250Gb
4,5000.000
HIGH 15.625Gb
MEMORY | 3.E800.000
T 536
— 540A —
ow |5
N MEMORY 1
N 10.500Gb
T 2.A000.000
j ME:‘G;RY 10.00Gb
534" 2,8000.000
— 5408 —
533 Low
MEMORY
5.000Gb
-7, 1,4000.000
/ HIGH
7 _¥ MEMORY
s 532
—— 540C —
L LOW
531—"] MEMORY
[o]
/ / \
, 160
/
/ MSU
MEMORY SPACE
504
Figure 5

WO 00/36509 PCT/US99/30437

6/34
’/600
610 640
/ / 200.0000H
/.

/
} 128MB
/100.0000“ } 128MB
} 128MB } 128MB

800000H . |]]
128M } 128MB } 128MB
0.0000H , y) Z
620 630 650
PAIRO PAIR 1
/L /
AV4 -\
PAIR SIZE = 180.0000H PAIR SIZE = 200.0000H

Figure 6

WO 00/36509
7/34
SIZE=100_0000,

256M

SIZE=80_0000,

128M
CACHE LINE 0 CACHE LINE 2
000000000y, 000000000,
MSU #0 L
AN N /
NV

PAIR_SIZE=180_0000,

Figure 7

PCT/US99/30437

SIZE=200_0000y,
512M

porer i — e — —]

p - ——— — — — —

CACHE LINE 3
000000000,

CACHE LINE 1
000000000,

MSU #3
MSU_PAIR1

\/
PAIR_SIZE=200_0000y

/

WO 00/36509

810

Is
REFERENCED ADDRESS
(OSapg) WITHIN SHARED

ADDRESS SPACE?

820

IS REFERENCED
ADDRESS (0Spg) WITHIN

THE OS ADDRESS
SPACE?

MEMORY PORTION OF 0OS _

HIGH MEMORY PORTION OF

L

7

RELOCATED ADDRESS =
OSADR+RLOS

PCT/US99/30437

8/34

815
[

RELOCATED ADDRESS =
0So

+
(SeaseMSY_Spase?)

825
L

4

RELOCATED ADDRESS =
0Sapr+(R 95-Rc0S)

830

Figure 8

WO 00/36509 PCT/US99/30437

912

IS
INTERLEAVING
BETWEEN PAIRS
ENABLED?

O
o
o

904 91

[

STACK ON THE
LARGER MSU_PAIR

IS
ADDRESS
WITHIN INTERLEAVED
MEMORY
RANGE?

.

L U S S S S |

906

SELECT AN
MSU_PAIR

READJUST }—
@ > ADDRESS

IS
INTERLEAVING
BETWEEN MSUs
ENABLES?

(o4
n
o

STACK ‘
2

926 93

STACK ON THE
LARGER MSU

IS
ADDRESS
WITHIN INTERLEAVED
MEMORY
RANGE?

SELECTAN +
MSU

I~

P
®—= Toomee
v 940 Figure 9

CREATE
MSU_ADDR

WO 00/36509

21G
16G
1% 216
MSU
Spase=106 116
0S_SHADOW
S BASE =16G
0s
Spase =66 6G
R =206 4G
0s
RIS 1M 36
0
21G
16G
1% 216
MSU
Spage=10G 11G
0S_SHADOW
S BASE =11G
0s
Spase 6@ G
nfsﬂse 4G
0s
R =1M 36
0
21G
16G
T O: =21G
MSU
Sgage=106 116
0S_SHADOW_
Spasg = -oa
0s
S gasg =6 €6
R_ =106 46
ROS-1M 36
0

| os#3 |
SHADOW

| ose2 |
SHARED

| osH _|
SHARED

HIGH MEMORY

10/34

LOW MM HOLE

| HIGH MEMORY

LOW MEMORY

\. | LOW MEMORY

os#3

| osB
SHARED

SHADOW

| osH |
SHADOW

HIGH MEMORY

0oS#3

\

\ RECLAMAﬁO\N
\

A\

LOW MM HOLE

PCT/US99/30437

ADDRESS
REMAPPING

— OS#3 —

| HIGH MEMORY |\

LOW MEMORY

LOW MEMORY | |

os#2

 osB |
SHARED

I
SHARED

 osH |
SHADOW

HIGH MEMORY

0S#2 ~
RECLAMATION ™

LOW MM HOLE

HIGH MEMORY

LOW MEMORY

LOW MEMORY

OSH

0S#1
RECLAMATION

— OSH —

MSU
MEMORY SPACE

Figure 10

PCT/US99/30437

WO 00/36509

LL @inbi4
dvW3y ss3yaav - zo_hﬁﬁwm_wmwﬂmuws ON
Haldv | 3¥o43g
_
3JVvdsS SS3HAqQy | AVTHIAO 21dV 12d
3JVdS $s3Haav 3AIL03443 | HLIM
AHOWIW NIVW SO/MOSS3II0Hd | dVIN AHOW3W WILSAS
0 " 0
[
I
[
|
_
_
4: - - - -~ e e e — :r|ll|”
<> Ho000 0004 0 0000 0004 0
- AHOWIW NIVIN NON y f. == - —
(4 | JONVH OidV 10d MO | W82l
||||| Hoe e — = Y] e
H0000 0000 1 0000 0000 | p H0000 0000 1 o
Y |
/ |
4 _
N _—— _
Ho000 0001 | |
I
R o
Ho000 0005 | [wasz+og] 7 4000070005 1 Iwesz+os]
AHOW3W TYIISAHd 40 dOL e AHOW3W TVIISAHd 40 dOL
~ Ve
H0000 0009 | Iwzis+og]

AHOWIN 3A1103443 40 dOL

PCT/US99/30437

WO 00/36509

2L ainbi4
dVW3H SSIHAaY 1. NOLVINVIOI AHOM=M ON
YLV | 340438
30VdS ss3HaAav | AVTHIAO 91dV 19d
30VdS $SIHaAaY JAILD3443 | HLIM
AHOWIW NIVIY S0/H0SS300Ud _ dVIN AHOWIW WILSAS
m
0 | 0
_
. _
3 _
N _
= |
_
ey I N H0000-0004"
0000 00041
lllll >mwgnmm=mzm—m<mscn“z — i gxm>° n:aN- :“NF
H " W N R
0000 0084 0 i L #0000 0084 1 | 39NV D1dV 10d MO | ezt
——— == H0000* 3 o I
H0000 0000 | Eozms__ua_ée_ Dy 9 mS:._a_ a3ddvWaY an 821 \ __.“8.. 0000”1 DY
VIISAHd 30 dO1 H0000 0080 | [Wsz1+o8] —”‘%WPEIM“_
AHOW3W JA1L3343 40 dOL AVOISAHd
40 4Ol

WO 00/36509 PCT/US99/30437

13/34

1310

LOAD BIOS T
LOAD BIOS 1312

CONFIGURATION DATA

+ 1314

RELEASE SUB-PODs FROM RESET 1

(IDENTIFY BIOS SUB-PODs (BSPs))
INITIALIZE PCI J— 1316
BUSSES

+ 1318

/

READ CONFIGURATION DATA 1 opmonaL
TO IDENTIFY PARTITIONS

1320

CALCULATE SIZE OF !
HIGH AND LOW
MEMORY HOLES

Y 1322

INFORM MANAGEMENT INTERFACE
PROCESSOR (MIP) OF THE AMOUNT OF
MEMORY-MAPPED 1/0 SPACE REQUIRED
BY PCI CARDS

Y

SET UP REGISTERS, ETC TO PARTITION }— 132

MEMORY AND TO OPTIONALLY ACCOUNT
FOR HIGH AND LOW MEMORY HOLES

Y

BIOS READS J— 1326

BOOT SECTORS

Y

BIOS ISSUES INTERRUPTS |— 1328
TO PARTITION

STOP

Figure 13

WO 00/36509 PCT/US99/30437

14/34
1402
1414
\, \
\ \
1412a 1410a

™ 1416a

NODE N

OUTPUT N
QUEUE
14120
1416b
N
N
N N {
. . 1410b
[] ®
® ®
1410n

14120 1416n

N N

N \\{
MESSAGE QUEUE OUTPUT MESSAGE
AREA BUFFER POOL AREA
P/O SHARED MEMORY 160

Figure 14

WO 00/36509 PCT/US99/30437

15/34
141\23 MESSAGE QUEUE AREA (NODE OUTPUT QUEUES
" NODE 0 OUTPUT QUEUES RESET_OK FLAGS AND
NODE 1 OUTPUT QUEUES 15108 DEQUEUED_OFFSETS
NODE 2 OUTPUT QUEUES |, NODE X TO NODE 0 QUEUE
NODE 3 OUTPUT QUEUES NODE X TO NODE 1 QUEUE
NODE X TO NODE 2 QUEUE
< NODE X TO NODE 3 QUEUE
[]
[] [J
o ®
\ \
NODE 7 OUTPUT QUEUES NODE X TO NODE 7 QUEUE
N

Figure 15

WO 00/36509

16/34

A MORE DETAILED LOOK AT THE DEQUEUED_OFFSETS
AND THE MESSAGE QUEUES IS SHOWN BELOW:

PCT/US99/30437

0 32
63
NODE_0S_ID o
0 RESERVED (EXAMPLES FOLLOW) +
2 S 0
P c M
X N | U
T N _|1e12
NODE MAC ADDRESS 1
1-2 RESERVED (12 HEX DIGITS WITH 2 DIGITS PER BYTE)
3-7 RESERVED RESERVED
I K-
0 RESERVED RESET_OK | RESERVED | DEoueUED OFFSET
FOR NODE U
DEQUEUED_OFFSET
1 RESERVED RESET_OK | RESERVED | ~~ oottt
DEQUEUED_OFFSET
2 RESERVED RESET_OK | RESERVED | ~- oo tee |
[J
®
[]
DEQUEUED_OFFSET
7 RESERVED RESET_OK | RESERVED | =~ C ot
START OF OUTPUT QUEUE TO NODE 0 P/O
NODE-NODE
ENQUEUED OFFSET QUEUE
0 RESERVED NEED_RESET| RESERVED |~ FoC tobe o 1510

Figure 16A

PCT/US99/30437

WO 00/36509
17/34
1 RESERVED MESSAGE BUFFER OFFSET
2 RESERVED MESSAGE BUFFER OFFSET
[
[J
L]
511 RESERVED MESSAGE BUFFER OFFSET
START OF OUTPUT QUEUE TO NODE 1
ENQUEUED OFFSET
0 RESERVED NEED_RESET | RESERVED FOR NODE 1
1 RESERVED MESSAGE BUFFER OFFSET
2 RESERVED MESSAGE BUFFER OFFSET
[]
®
®
511 RESERVED MESSAGE BUFFER OFFSET
®
[]
L]
START OF OUTPUT QUEUE TO NODE 7
ENQUEUED OFFSET
0 RESERVED NEED_RESET | RESERVED FOR NODE 7
1 RESERVED MESSAGE BUFFER OFFSET
2 RESERVED MESSAGE BUFFER OFFSET
[]
[]
®
511 RESERVED MESSAGE BUFFER OFFSET

NODE_OS_ID IS A 4 CHARACTER STRING WITH ONE OF THE FOLLOWING VALUES:
‘0822’ - 052200 ARCHITECTURE

‘MCP’ - A-SERIES ARCHITECTURE

‘UNIX’ - INTEL ARCHITECTURE WITH A UNIX OPERATING SYSTEM

‘NT' - INTEL ARCHITECTURE WITH MICROSOFT WINDOWS NT OPERATING SYSTEM

Figure 16B

P/O
NODE-

} TO-NODE
QUEUE

1510a

1510

?1510n

PCT/US99/30437

WO 00/36509
18/34
1416
3
0 RESERVED WORD LENGTH OF BUFFER 5
1 RESERVED WORD LENGTH OF HEADER
32 47| 48 63
2 RESERVED BYTE SKIP COUNT | BYTE TRANSFER COUNT
3 RESERVED BYTE SKIP COUNT | BYTE TRANSFER COUNT
n RESERVED BYTE SKIP COUNT | BYTE TRANSFER COUNT
m RESERVED MESSAGE
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
b-1 RESERVED MESSAGE

Figure 17

-

} 1710

} 1712

WO 00/36509 PCT/US99/30437

19/34

NT PARTITION n
NT PARTITION 1

1802
\ NT PARTITION 0

TCPIP.SYS

NDIS

SHARED MEMORY
1804 NDIS I

™~ CORE SERVICES A
SHARED MEMORY

A

'

SHARED MEMORY

Figure 18

PCT/US99/30437

WO 00/36509

20/34

61 ainbi4

vi6l

\

ci6l

\

ol6}

\

318VL
318vL (¥9) SININD_LNdNI ANV JUNLONYLS
S39Vd ONINIVA3Y AHDLONI | NoiLvd0TIV H3aV3H 3N3N0 LNdNI NOL¥DOTlY | H3AV3H
9161 S35Vd AHOWIW GIHVHS 0061 JHNLINHLS TOHLNOD

WO 00/36509

21/34

1910

/

CONTROL STRUCTURE HEADER CONTENTS

VERSION ID

SHARED MEMORY STATUS

PARTITION ID OF “MASTER PARTITION”

SHARED MEMORY PARTITION CHECK IN INTERVAL

CLIENT DIRECTORY TABLE HEADER

PARTITION INFORMATION (10 WORDS PER PARTITION)

Figure 20

1912

/

ALLOCATION STRUCTURE CONTENTS

ALLOCATION LOCK

LENGTH OF SHARED MEMORY AREA (IN 4K BYTES PAGES)

SHARED MEMORY PAGE POINTER

FREE PAGE LIST HEAD

ALLOCATION TABLE HEADER

Figure 21

PCT/US99/30437

PCT/US99/30437

22/34

WO 00/36509

22 ainbi4
AHOW3IW GIHVHS
up12e
NHOMLIN OL <— / eh122 — (P NHOMLAN OL
094
H3AlNa H3IAIHG
H3ANG H3IAING
weomian | | ASONN AUOMN | [»uomian
camw ualee memN 0222 LK
. 3OV4HILINI 3OV4H3INI B0cce
SNOILYIINNWWOD SNOLLYOINNIWINOD
NHOMLIN T OHOMLIAN
\
o o o ez12e
L 1dv L |dV
uoI2e 0122
| ddV | 1 ddV
ugoze 8022
1 150 L 180
U902z 29022
uz0ee 2022 /

00ce

WO 00/36509 PCT/US99/30437
23/34
2202< 2202{
. 2206a _ 2206n
2200 0S NT/UNIX
APPLICATION APPLICATION
2210a 2210n
WINSOCK/SOCKETS 2912 WINSOCK/SOCKETS 9912
e —————— 'L ————— - e —————— 'L ————— -‘é e
| o o e e e - ———— - | I [r— e e e = ——] |
I || I |
: i TCP | UDP | IPS.. | | : : I TCP | UDP | IPS... | | :
| | | |
I T e d | | e e —_—————a |
P 2310 T N I 2312 T N
|
: 2314 : : 2314 :
I ETHERNET HANDLER | | ETHERNET HANDLER ' |
| | | |
L o e e e e e - — | b o o e o o e —— - —— |
2316 23181 | 2320
~. Nop HWP + \[HMP SHARED| | ETHERNET
DRIVER SHARED MEMORY NIC LAN NIC
MEMORY N\ DEVICE DEVICE
DRIVER DRIVER DRIVER
2214a } f
SHARED MEMORY
160

Figure 23

WO 00/36509 PCT/US99/30437
24/34
2410
NT USER APPLICATIONS
1 2412
wsocks2oLL +~
USER '_
© Kemne. 2
WiNDOows 1}
SOCKETS i
[/
TRANSPORT DRIVER INTERFACE (TDI)
2320 NBF TCPAP
\ 7 STREAMS| | NWLINK
2418
2430
1
BIOS [2420
oLy .
NDIS
1 2428 CoTS
-
o T oo —| gk e
SRIVER) vaen) DRIVER +— 2422
A 7
2426 2424
SOFTWARE
HARDWARE
NT SHARED
MEMORY

Figure 24

Figure 25

WO 00/36509 PCT/US99/30437
25/34
2510
SENDING APPLICATION PROGRAM
CALL API [AND PASS MESSAGE 2511
POINTERS TO LOCAL MEMORY,
MESSAGE BYTE COUNT, TARGET HOST
ID, IP ADDRESS]
+ 2512
PERFORM FUNCTIONS REQUIRED BY | -
LAYERS 3-4 OF OS|
COMMUNICATIONS MODEL
+ 2514
CALL OPERATING SYSTEM FOR THE 1—
ADDRESS OF THE NETWORK DEVICE
ASSOCIATED WITH THE IP ADDRESS
SHARED MEMORY DRIVER 2530
Y /2516 /
NO CALL IOP DEVICE DRIVER
IS “JﬁT'; gzggggsugsgggﬁn ——>={ AND PERFORM COMMUNICATIONS >
VIA A NETWORK
l YES 2518 2506
2 Yes ~
DISCARD MESSAGE AND
Tt
DOES TARGET NEED RESETTING? |——» PERFORM T IE AND
NO 2520 2528
o -
IS TARGET OUTPUT QUEUE FULL? | DISCARD MESSAGE | >
+ 2522
OBTAIN SHARED MEMORY 1
BUFFER AND COPY MESSAGE
FROM LOCAL MEMORY TO
SHARED MEMORY BUFFER
+ 2524
4
PUT MESSAGE IN OUTPUT
YY
EXIT

WO 00/36509 PCT/US99/30437

26/34
261 o\ ¢ 2612
. -
- . YES PERFORM
IS ‘NEED-RESET’ FLAG SET ——| NITIALIZATION
2614 +
~ IS A MESSAGE AVAILABLE?
(COMPARED THE ASSOCIATED NO
ENQUEUED-OFFSET WITH
DEQUEUED OFFSET)
2616 + 2617
\.
IS A LOCAL MEMORY BUFFER WAIT
AVAILABLE ON INPUT BUFFER QUEUE?
2618 y YES NO
~ GET BUFFER
2620 +
™ COPY MESSAGE FROM SHARED
MEMORY TO LOCAL BUFFER
2622 +
N QUEUE LOCAL BUFFER TO INPUT
QUEUE AND INDICATE THAT
MESSAGE IS AVAILABLE
2624
EXIT

Figure 26

WO 00/36509 PCT/US99/30437

27/34

START 2708

2710
ACQUIRE ABUFFERINLOCAL 1
MEMORY
l 2712
4‘/
CALL OS WITH A POINTER TO THE
LOCAL BUFFER; INPUT BUFFER QUEUE
FOR SHARED MEMORY DRIVER
No 2718
/2714 /
ARE ENOUGH EMPTY
A P ILIBLEIN L NO ! BUFFERS AVAILABLE
' ON QUEUE
l YES 2716 ¢ YES
DEQUEUE MESSAGE AND PASSIT | SET FLAG TO INDICATE
VIA THE API TO THE APPLICATION PROCESS IS ASLEEP,
PROGRAM THEN GO TO SLEEP
<
2720

Figure 27

PCT/US99/30437

WO 00/36509

28/34

10d
/
V092
a1a
\ A
v0se
/
voie

82 ainbi4
2082 A0d
go2 V082 40d-ans aovz 4042 gv08z a0d-ans HObZ
N L ™~ L
dW di dn dN 12d
vose | 8082 082~ | ~—aqosz \
diN diN di diN g092
7 \ 7 \
vore 011,74 0¥ O0ve gia
s | [101] ~aosz | o ~a012 X
V0L |3HovD 13ATT-aHIHL 0L |3HoVD 13ATT-QHIHL 9 Wom ;
//<8N ,/momm
» 193NNOJH3ILNI HYESSOHD -
J
~~—vo62
YYVYY /
091 AHOW3W NIVW OL

108¢

WO 00/36509 PCT/US99/30437

29/34

INPUT QUEUE HEADER CONTENTS
INPUT QUEUES POINTER

NUMBER OF INPUT QUEUES

INPUT QUEUE LENGTH

INPUT QUEUE SIGNAL SIZE

MAX NUMBER OF SIGNALS IN INPUT QUEUE

Figure 29

PCT/US99/30437

WO 00/36509

30/34

9l0g

0¢ ainbi4

vioe

¢ioe

\

oLoe

\

S3IHINI TYNDIS

CAAL
MOTJH3IAO0

INNOJ

X301

WO 00/36509

3110

CALL ALLOCATE
SHARED MEMORY
INTERFACE TO
REQUEST BUFFER FOR
MESSAGE TRANSFER

DETERMINE NUMBER OF
PAGES TO SATISFY
REQUESTED BUFFER SIZE

+ 3114

ACQUIRE ALLOCATION LOCK
AND ALLOCATE PAGES
FROM LIST OF AVAILABLE
PAGES

+ 3116

RELEASE ALLOCATION LOCK
AND RETURN HANDLE TO

PCT/US99/30437

ALLOCATED PAGES THAT
DEFINE BUFFER

31/34
3118
FILL BUFFER WITH
> MESSAGE DATA
3120
CALL SEND SIGNAL
CLIENT
3122 CORE SERVICES
SHARED MEMORY
IDENTIFY CORRESPONDING SOFTWARE
INPUT QUEUE FOR
RECEIVING PARTITION
* 3124
LOCK INPUT QUEUE mm,
‘ 1% RETERSEWPUT
INCREMENT INPUT QUEUE QUEUE LOCK
COUNT NO 3130
y 31
BUILD SIGNAL
IN INPUT QUEUE
3132 yEs
" ISSUE INTER-
PROCESSOR
INTERRUPT
3133 +
RELEASE INPUT
QUEUE LOCK

Figure 31A

b

WO 00/36509 PCT/US99/30437
32/34 3148
CLIENT USES HANDLE TO |
ACCESS MESSAGE DATA
A
CLIENT
CORE SERVICES
SHARED MEMORY
SOFTWARE
PROCESSORIN _}— 3134
RECEIVING PARTITION
CALLS INTERRUPT
SERVICE ROUTINE
FOR EACH
INPUT QUEUE: 3136
NEXT INPUT
EXAMINE INPUT QUEUE QUEUE -
3138
INPUT QUEUE NO
COUNT > 0?
COPY INPUT QUEUE _}— 3140
ENTRIES
TO LOCAL
PROCESSING BUFFER
+ - 3142
RESET INPUT QUEUE
COUNT TO ZERO
3144 3146
3143 / /
FORRACH ™ ExTRACT CALL
SIGNAL CLIENT'S
OVERFLOW "0 | FROM LOCAL |»-| RECEIVE s,;‘,?,{‘fs,
FLAG SET? PROCESSING SIGNAL ,
314 BUFFER INTERFACE
"RESET OVERFLOW FLAG I
AND SEND RESUME NEXT
SENDING SIGNAL TO SIGNAL
SENDING PARTITION

Figure 31B

PCT/US99/30437

WO 00/36509

33/34

gee ainbi4
3ONIY343Y 3OVd INNOD 39Vd %201 al dnouo oo
€ 3dAL € 3dAL NOILYD0TV3d IN3ND
NOILILHVd
vee ainbi4
YSVYW
%901 Qi dNOY®
dIHSHINMO
NOILYJ0T11vY3a INID NOILILHYd

PCT/US99/30437

WO 00/36509

$53Haav NOILILHVd G3LSNrav

£¢ aunbi4

—L

_ _

! !

| !

_ |

_ |

| _

! ! 0EVE g2 s

| _

! | .

“ “ 0eve o)

| | 06€€ 08ee
s | | - VA
g “ —{ R || v

| | @€ / 3

_ _ pige

| | 0see

_ | — = — - ~ _/

_ _ 135440 NSW 3AISN13X3 H| | 135440 NSW3NISNT0XT 01] | 135440 NSW IHVHS

- = 0 / » ol 0 / 0Lo ol
SS3HAQY %0019 FHOVD 0Le€ 096€
9 / | -

! 2Iee | o1ve [

| “ = sove — |~

| | . 3asva NOILYI0 13

“ ole | 00ve 7 occh 0} 3Sve SO GIHVHS

: - O ozee L

$$3HAAY HOSSIIO0Hd 0 ozozw:ﬂumm. 0000 = [3svansw cauwms

€ 9 g¢ ovee Bl ¢ ol

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

