发明名称

一种非锑阻燃聚醚胺复合材料及其制备方法和应用

摘要

本发明提供了一种非锑阻燃聚醚胺复合材料，原料包括下述以重量百分比计的组分：聚醚胺 20% - 90%，卤化阻燃剂 5% - 25%，非锑阻燃协效剂 2% - 10%，润滑剂 0.1% - 3%，抗氧化剂 0.1% - 1%，表面改性剂 0.3% - 3% 和增塑改性剂 1% - 40%，百分比为各组分相对于所述原料的重量百分比；其中所述的非锑阻燃协效剂包括氧化镁、二氧化硅和二氧化铝，摩尔比为 2 - 3 : 1 - 2 : 1。本发明还提供了该复合材料的制备方法和应用。本发明的非锑阻燃聚醚胺复合材料在不含有三氧化二锑和碳酸锌的情况下，实现 CTI 提高到 400V 以上，并且不会出现流痕问题，还能降低生产成本。本发明的非锑阻燃聚醚胺复合材料能够采用常规的设备和方法制备得到，不需要对制造设备进行改造，易于进行工业化生产。
1. 一种非锑阻燃聚酰胺复合材料，其特征在于：其原料包括下述以重量百分比计的组分：聚酰胺 20% - 90%，卤系阻燃剂 5% - 25%，非锑阻燃协效剂 2% - 10%，润滑剂 0.1% - 3%，抗氧化剂 0.1% - 1%，表面改性剂 0.3% - 3% 和增强改性剂 1% - 40%，百分比为各组分相对于所述原料的重量百分比；其中所述的非锑阻燃协效剂包括氧化镁、氧化硅和二氧化锡，三者的摩尔比为 2-3：1-2：1。

2. 如权利要求 1 所述的非锑阻燃聚酰胺复合材料，其特征在于：其原料包括下述以重量百分比计的组分：聚酰胺 35% - 75%，卤系阻燃剂 10% - 25%，非锑阻燃协效剂 4% - 10%，润滑剂 0.2% - 0.8%，抗氧化剂 0.2% - 0.8%，表面改性剂 0.8% - 1.2% 和增强改性剂 5% - 32%。

3. 如权利要求 1 或 2 所述的非锑阻燃聚酰胺复合材料，其特征在于：所述的聚酰胺为尼龙 66 和/或尼龙 6，所述聚酰胺的相对粘度为 2.3 - 2.7。

4. 如权利要求 1 或 2 所述的非锑阻燃聚酰胺复合材料，其特征在于：所述的卤系阻燃剂为聚氯化苯乙烯、溴化聚苯乙烯和十溴二苯乙烷中的一种或多种。

5. 如权利要求 1 或 2 所述的非锑阻燃聚酰胺复合材料，其特征在于：所述的润滑剂为乙撑二硬脂酰胺、改性乙撑双硬脂酰胺、聚乙烯蜡和硬脂酸盐中的一种或多种。

6. 如权利要求 1 或 2 所述的非锑阻燃聚酰胺复合材料，其特征在于：所述的抗氧化剂为抗氧剂 1010、1098 和 168 中的一种或多种。

7. 如权利要求 1 或 2 所述的非锑阻燃聚酰胺复合材料，其特征在于：所述的表面改性剂为乙烯-醋酸乙烯酯共聚物和/或硅酮，所述的表面改性剂为无碱玻璃纤维、玻璃微珠和无机矿物中的一种或多种，所述的无机矿物为滑石粉、硅灰石、高岭土、蒙脱土和云母中的一种或多种。

8. 如权利要求 1 〜 7 中任一项所述的非锑阻燃聚酰胺复合材料的制备方法，其包括下述步骤：在双螺杆挤出机的主喂料口加入所述聚酰胺，在第一侧喂料口加入下述组分的混合物；所述卤系阻燃剂、所述非锑阻燃协效剂、所述润滑剂、所述抗氧化剂和所述表面改性剂，在第二侧喂料口加入所述增强改性剂，挤出，冷却即可。

10. 权利要求 1 〜 7 中任一项所述的非锑阻燃聚酰胺复合材料在用于制造低压断路器壳体、线圈骨架、汽车电器、工业电器壳体、交流接触器外壳和电子接插件中的应用。
一种非锑阻燃聚酰胺复合材料及其制备方法和应用

技术领域
[0001] 本发明涉及改性高分子新材料领域，具体涉及一种非锑阻燃聚酰胺复合材料及其制备方法和应用。

背景技术
[0002] 聚酰胺俗称尼龙 (PA)，是分子主链上含有重复酰胺基团 (-NHCO-) 的一类热塑性树脂总称。未经改性的聚酰胺阻燃性能较差，在使用过程中极易引发火灾。因此在电子电器等领域应用时都需要对聚酰胺进行阻燃改性。可用于聚酰胺阻燃改性的阻燃剂种类主要有卤系、磷系、氮系等，目前卤系阻燃聚酰胺使用最为广泛。而卤系阻燃剂通常需要搭配阻燃协效剂才能达到好的阻燃性能，目前最常用的阻燃协效剂有三氧化二锑，硼酸锌等。2011年国土资源部发布控制锑矿开采总量要求，锑资源持续紧缺，导致三氧化二锑价格不断飞升，寻找三氧化二锑替代品已提上日程。而且采用三氧化二锑作为阻燃协效剂的相比漏电起痕指数 (CTI) 较低，通常都低于 300V。
[0003] 专利 200610053337.4《高 CTI 值高阻燃性增强聚酰胺》中使用硼酸锌作为阻燃协效剂，提高了 CTI 值。但实际在应用中，首先硼酸锌本身含有结晶水，且耐温性不高，在挤出制备阻燃聚酰胺的高温条件下容易释放出结晶水，从而使挤出的塑料粒子发泡，有空心。基于同理原因，硼酸锌阻燃聚酰胺产品在注塑时表面容易出现流痕等不良表面状况。作为接触器产品应用时，如果高频试验时在额定电压作用下，这种频繁通电会生热能，热能促使硼酸锌内结晶水释放出来产生水汽，导致寿命试验次数还未达到要求就被击穿。

发明内容
[0004] 本发明所要解决的技术问题在于克服了现有的聚酰胺复合材料中含稀缺资源三氧化二锑，并且采用三氧化二锑的聚酰胺复合材料 CTI 值不高，而硼酸锌在注塑时表面易出现流痕等缺陷，提供了一种非锑阻燃聚酰胺复合材料，该复合材料中不含有三氧化二锑和硼酸锌，并且该复合材料的 CTI 值大于 400V，不会出现流痕等问题。本发明还提供了所述非锑阻燃聚酰胺复合材料的制备方法和应用。
[0005] 本发明提供了一种非锑阻燃聚酰胺复合材料，其原料包括下述以重量百分比计的组分：聚酰胺 20% - 90%，卤系阻燃剂 5% - 25%，非锑阻燃协效剂 2% - 10%，润滑剂 0.1% - 3%，抗氧化剂 0.1% - 1%，表面改性剂 0.3% - 3% 和增强改性剂 1% - 40%；其中所述的非锑阻燃协效剂包括氧化镁、氧化硅和氧化锌，氧化镁：氧化硅：氧化锌 = 摩尔比 2 - 3 : 1 - 2 : 1。
[0006] 在本发明一较佳的实施方式中，所述非锑阻燃聚酰胺复合材料的原料包括下述以重量百分比计的组分：聚酰胺 35% - 75%，卤系阻燃剂 10% - 25%，非锑阻燃协效剂 4% - 10%，润滑剂 0.2% - 0.8%，抗氧化剂 0.2% - 0.8%，表面改性剂 0.8% - 1.2% 和增强改性剂 5% - 32%。
[0007] 本发明中，所述的聚酰胺可为本领域中各种常规的聚酰胺，如尼龙 66 和 / 或尼龙
6. 所述聚酰胺的相对粘度较佳地为 2.3～2.7。

[0008] 本发明中，所述的卤系阻燃剂可为本领域中常规使用的各种卤系阻燃剂，较佳地为聚溴化苯乙烯、溴化聚苯乙烯和十溴二苯乙烯中的一种或多种。其中所述的聚溴化苯乙烯可采用本领域中作为阻燃剂使用的各种规格型号的聚溴化苯乙烯。所述的溴化聚苯乙烯可采用本领域中作为阻燃剂使用的各种规格型号的溴化聚苯乙烯。

[0009] 本发明中，所述的润滑剂可为本领域中常规使用的各种用于聚酰胺复合材料中的润滑剂，较佳地为乙撑双硬脂酸酰胺（EBS）、改性EBS、聚乙烯蜡和硬脂酸盐中的一种或多种。

[0010] 本发明中，所述的抗氧化剂可为本领域中常规使用的各种用于聚酰胺复合材料的抗氧化剂，较佳地为抗氧剂 1010、1098 和 168 中的一种或多种。

[0011] 本发明中，所述的表面改性剂可为本领域中常规使用的各种用于聚酰胺复合材料的表面改性剂，较佳地为乙烯-醋酸乙烯酯共聚物和/或硅酮，其中醋酸乙烯酯链段在该共聚物中的重量含量较佳地为 20%～30%。

[0012] 本发明中，所述的增强改性剂可为本领域中常规使用的各种用于聚酰胺复合材料的增强改性剂，较佳地为无碱玻璃纤维、玻璃微珠和无机矿物中的一种或多种，所述的无机矿物较佳地为滑石粉、硅灰石、高岭土、蒙脱土和云母中的一种或多种。

[0013] 本发明还提供了所述非锌阻燃聚酰胺复合材料的制备方法，其包括下述步骤：在双螺杆挤出机的主螺杆口加入所述聚酰胺，在第一侧螺杆口加入下述组份的混合物。所述卤系阻燃剂、所述非锌阻燃协效剂、所述润滑剂、所述抗氧化剂和所述表面改性剂，在第二侧螺杆口加入上述增强改性剂，挤出，冷却即可。

[0014] 其中，所述的混合物较佳地通过高速混合机混合得到。

[0015] 其中，所述双螺杆挤出机的温度分布为：由进料段到机头分别为：210～240℃，230～275℃，245～280℃，250～275℃，240～270℃，235～265℃，230～265℃和 230～260℃，模头温度为 235～270℃。

[0016] 本发明还提供了所述非锌阻燃聚酰胺复合材料在用于制造低压断路器壳体、线圈骨架、汽车电器、工业电器壳体、交流接触器外壳和电子接插件中的应用。

[0017] 本发明中，上述优选条件在符合本领域常识的基础上可任意组合，即得本发明各较佳实施例。

[0018] 本发明的原料和试剂皆市售可得。

[0019] 本发明的积极进步效果在于：

[0020] 1. 本发明的非锌阻燃聚酰胺复合材料在不含有三氧化二锑和硼酸锌的情况下，能够实现 CTI 提高到 400V 以上，同时不会出现流痕问题，并能还能够降低生产成本。

[0021] 2. 本发明的非锌阻燃聚酰胺复合材料能够采用常规的设备和方法制备得到，不需要对制造设备进行改造，易于进行工业化生产。

具体实施方式

[0022] 为更好地理解本发明，以下结合具体实施例对本发明作进一步说明，但本发明并不受其限制。

[0023] 实施例中所使用的 PA66 购于美国首诺，型号为 21ZL，相对粘度为 2.4。
[0024] PA6 购于台湾集盛，型号为 TP-4208，相对粘度为 2.4。
[0025] 聚醚化苯乙烯购于美国科聚亚公司，型号为 PBS-64H1W。
[0026] 溴化聚苯乙烯购于美国雅宝公司，型号为 SAYTEX HP-5010P。
[0027] 十溴二苯乙烷购于美国雅宝公司，型号为 SAYTEX 8010。
[0028] EBS 购于普一化工科技（无锡）有限公司，型号为 EBA-60。
[0029] 改性 EBS 购于苏州兴泰国光化学品助剂有限公司，型号为 TAF。
[0030] 聚乙烯蜡购于美国霍尼韦尔，型号为 AC-540A。
[0031] 乙烯 - 醋酸乙烯酯共聚物购于泰国石化，型号为 SV1055，醋酸乙烯酯链段含量为28wt%。
[0032] 硅酮购于美国道康宁，型号为 MB50-011。
[0033] 实施例 1 和 2 中的非锑阻燃协效剂为氧化镁、二氧化硅和二氧化锡的组合物，其中氧化镁：二氧化硅：二氧化锡的摩尔比为 2:1:1。
[0034] 实施例 3 和 4 中的非锑阻燃协效剂为氧化镁、二氧化硅和二氧化锡的组合物，其中氧化镁：二氧化硅：二氧化锡的摩尔比为 3:2:1。
[0035] 实施例 1-3：
[0036] 非锑阻燃聚酰胺复合材料的原料配方及所得复合材料的性能参数见表 1。
[0037] 非锑阻燃聚酰胺复合材料的制备方法为：将表 1 配方中 PA6 和增强改性剂（无碱玻璃纤维和硅灰石）外的其它所有组分加入高速混合机中混合均匀得混合物，取出。从双螺杆挤出机的主喂料口加入 PA6，在第一侧喂料口加入所述混合物，再在第二侧喂料口加入增强改性剂，使所有物料在双螺杆挤出机中混合均匀，挤出，冷却，切粒，得到非锑阻燃聚酰胺复合材料。
[0038] 实施例 1-3 的挤出温度由进料段到机头分别为：240℃、275℃、280℃、275℃、
270℃、265℃、265℃和 260℃，模头温度 270℃。
[0039] 表 1
[0040]
配方

<table>
<thead>
<tr>
<th>原料配比</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>对比例 1</th>
<th>对比例 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA66 (%)</td>
<td>39.9</td>
<td>53.9</td>
<td>54.9</td>
<td>/</td>
<td>40.9</td>
<td>/</td>
</tr>
<tr>
<td>PA6 (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>68</td>
<td>/</td>
<td>69</td>
</tr>
<tr>
<td>聚溴化苯乙烯 (%)</td>
<td>20</td>
<td>/</td>
<td>24</td>
<td>/</td>
<td>20</td>
<td>/</td>
</tr>
<tr>
<td>溴化聚苯乙烯 (%)</td>
<td>/</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>十溴二苯乙烷 (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>18</td>
<td>/</td>
<td>18</td>
</tr>
<tr>
<td>三氧化二锑 (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>7</td>
<td>/</td>
<td>6</td>
</tr>
<tr>
<td>非锑阻燃协效剂 (%)</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>EBS (%)</td>
<td>0.5</td>
<td>/</td>
<td>/</td>
<td>0.5</td>
<td>/</td>
<td>0.5</td>
</tr>
<tr>
<td>改性 EBS (%)</td>
<td>/</td>
<td>0.5</td>
<td>0.5</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>聚乙烯蜡 (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.5</td>
<td>/</td>
</tr>
<tr>
<td>抗氧剂 1010 (%)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.5</td>
<td>/</td>
<td>0.5</td>
</tr>
<tr>
<td>抗氧剂 1098 (%)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>/</td>
<td>0.3</td>
<td>/</td>
</tr>
<tr>
<td>抗氧剂 168 (%)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>/</td>
<td>0.3</td>
<td>/</td>
</tr>
<tr>
<td>乙烯-醋酸乙烯酯共聚物 (%)</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>硅酮 (%)</td>
<td>1</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>无碱玻璃纤维 (%)</td>
<td>30</td>
<td>25</td>
<td>10</td>
<td>/</td>
<td>30</td>
<td>/</td>
</tr>
<tr>
<td>硅灰石 (%)</td>
<td>/</td>
<td>5</td>
<td>/</td>
<td>5</td>
<td>/</td>
<td>5</td>
</tr>
</tbody>
</table>

性能指标

<table>
<thead>
<tr>
<th>复合材料性能参数</th>
<th>测试标准</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>对比例 1</th>
<th>对比例 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>拉伸强度 (MPa)</td>
<td>ASTM D638</td>
<td>165</td>
<td>155</td>
<td>100</td>
<td>62</td>
<td>170</td>
<td>65</td>
</tr>
<tr>
<td>断裂伸长率 (%)</td>
<td>ASTM D638</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>25</td>
<td>2.5</td>
<td>30</td>
</tr>
<tr>
<td>弯曲强度 (MPa)</td>
<td>ASTM D638</td>
<td>235</td>
<td>220</td>
<td>150</td>
<td>105</td>
<td>240</td>
<td>110</td>
</tr>
<tr>
<td>弯曲模量 (MPa)</td>
<td>ASTM D638</td>
<td>9800</td>
<td>9600</td>
<td>5200</td>
<td>4210</td>
<td>9850</td>
<td>4250</td>
</tr>
<tr>
<td>缺口冲击强度 (J/m)</td>
<td>ASTM D790</td>
<td>100</td>
<td>88</td>
<td>70</td>
<td>42</td>
<td>120</td>
<td>45</td>
</tr>
<tr>
<td>阻燃性 (1.6mm)</td>
<td>UL94</td>
<td>V0</td>
<td>V2</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
<tr>
<td>CTI(Solution A) (V)</td>
<td>IEC60112</td>
<td>475</td>
<td>500</td>
<td>425</td>
<td>425</td>
<td>275</td>
<td>250</td>
</tr>
</tbody>
</table>
实施例 4

非锑阻燃聚酰胺复合材料的原料配方及所得复合材料的性能参数见表 1。

非锑阻燃聚酰胺复合材料的制备方法为：将表 1 配方中除 PA6 和增强改性剂（硅灰石）外的其它所有组分加入高速混合机中混合均匀得混合物，取出。从双螺杆挤出机的主喂料口加入 PA6，在第一侧喂料口加入所述混合物，再在第二侧喂料口加入增强改性剂，使所有物料在双螺杆挤出机中混合均匀，挤出，冷却，切粒，得到非锑阻燃聚酰胺复合材料。

实施例 4 的挤出温度由进料段到机头分别为：210℃、230℃、245℃、245℃、240℃、235℃、230℃ 和 230℃，模头温度 235℃。

对比实施例 1

对比聚酰胺复合材料的原料配方及所得复合材料的性能参数见表 1。

对比聚酰胺复合材料的制备方法为：将表 1 配方中除 PA66 和增强改性剂（玻璃纤维）外的其它所有组分加入高速混合机中混合均匀得混合物，取出。从双螺杆挤出机的主喂料口加入 PA66，在第一侧喂料口加入所述混合物，再在第二侧喂料口加入增强改性剂，使所有物料在双螺杆挤出机中混合均匀，挤出，冷却，切粒，得到聚酰胺复合材料。

对比实施例 1 的挤出温度由进料段到机头分别为：240℃、275℃、280℃、275℃、270℃、265℃、265℃ 和 260℃，模头温度 270℃。

对比实施例 2

对比聚酰胺复合材料的原料配方及所得复合材料的性能参数见表 1。

对比聚酰胺复合材料的制备方法为：将表 1 配方中除 PA6 和增强改性剂（硅灰石）外的其它所有组分加入高速混合机中混合均匀得混合物，取出。从双螺杆挤出机的主喂料口加入 PA6，在第一侧喂料口加入所述混合物，再在第二侧喂料口加入增强改性剂，使所有物料在双螺杆挤出机中混合均匀，挤出，冷却，切粒，得到聚酰胺复合材料。

对比实施例 2 的挤出温度由进料段到机头分别为：210℃、230℃、245℃、245℃、240℃、235℃、230℃ 和 230℃，模头温度 235℃。

效果实施例 1

根据表 1 所述的标准测试对实施例 1-4 以及对比实施例 1-2 的复合材料进行性能测试，结果见表 1。

实施例 1-4 的非锑阻燃聚酰胺复合材料在注塑时表面不会出现流痕。

从表 1 可以看出，本发明的非锑阻燃聚酰胺复合材料的相对电起痕指数（CTI）高于 400V，而使用三氧化二锑阻燃聚酰胺复合材料的 CTI 值小于 300V，证明本发明的非锑阻燃聚酰胺复合材料其 CTI 值有明显提高。