发明名称

液晶光栅干涉测量空间光调制器相位调制特性的装置及方法

摘要

本发明公开了一种液晶光栅干涉测量空间光调制器相位调制特性的装置及方法。该方法操作简单，具有良好的鲁棒性。加载到空间光调制器的灰度图由三部分组成，一半屏幕是二元衍射光栅灰度图，另一半屏幕分为上下两部分，其中作为参考的区域加载零灰度级，其余区域从零灰度级递增至255。随着灰度值增加，经过相位调制的反射光束与光栅产生的+1级衍射光干涉生成一整幅相位条纹图，通过测量同一幅干涉条纹的周期和相位条纹之间的相对移动量来计算SLM的相位调制量大小，消除了环境振动或空气湍流引起的条纹抖动对测量的影响，提高了测量精度。该方法不需要复杂的光学装置，且具有优良的机械稳定性，反应快速更易实施。
1. 液晶光栅干涉测量空间光调制器相位调制特性的方法，以消除环境振动或空气湍流引起的条纹抖动对测量的影响，其特征在于：包括以下步骤：

(1) 设计空间光调制器的组合灰度图，其中，在空间光调制器上加载的灰度图分为三部分，其中一半屏幕加载二元垂直的衍射光栅，另一半屏幕分为上下两部分，均加载均匀的灰度级，上下两部分分别为测量区域和参考区域，其中，参考区域加载零灰度级，测量区域从零灰度级逐步增加至255；

(2) 采集光束：将从激光中发出的激光光束经扩束、滤波、准直为平行光束后，经偏振器得到振动方向平行于液晶分子长轴的线偏振光，偏振光入射到空间光调制器，由CCD相机采集：由液晶光栅衍射的+1级光，分别与经过相位调制的出射光束，以及没有经过相位调制的出射光束相互干涉产生的干涉条纹图像；

(3) 计算空间光调制器的相位调制量

根据以下公式采用相对条纹移动法在错位条纹图上计算测量区域的相位调制量δ：

$$\delta = 2\pi \left(\frac{\Delta}{\lambda} \right)$$

其中，Δ和λ分别为条纹相对移动量和条纹周期宽度。

2. 根据权利要求1所述的液晶光栅干涉测量空间光调制器相位调制特性的方法，其特征在于：条纹周期宽度λ的计算方法为：因为干涉条纹是沿水平分布的，作垂直扫描线穿过各条纹，扫描线与M个条纹的中心线分别交于P0，P1，…Pm点，则条纹间距矢量为V = (Pm-Pm-1, …P2-P1, P1-P0)，条纹周期宽度λ为：

$$\lambda = \frac{1}{M} \sum_{i=1}^{M} V_i$$

3. 根据权利要求1所述的液晶光栅干涉测量空间光调制器相位调制特性的方法，其特征在于：条纹相对移动量Δ的计算方法为：当左右两组干涉条纹产生垂直方向的相对移动时，判断条纹移动方向，两条垂直扫描线分别穿过静止条纹和移动条纹，与每条干涉条纹中心线的交点分别为P0，P1，…Pm和S0，S1，…Sm，条纹位移矢量为T = (Pm-S0，P1-S1，…Pm-Sm)，条纹移动量Δ为：

$$\Delta = \frac{1}{M+1} \sum_{i=0}^{M} T_i$$

4. 根据权利要求1至3中任一项所述的液晶光栅干涉测量空间光调制器相位调制特性的方法，其特征在于：步骤(1)中加载二元垂直的衍射光栅，对于衍射光栅的灰度级选择，将其中一组条纹设置为零灰度级，剩下的条纹灰度级设置为128。

5. 根据权利要求1至3中任一项所述的液晶光栅干涉测量空间光调制器相位调制特性的方法，其特征在于：步骤(2)中，采用显微物镜进行扩束，采用针孔进行滤波，采用准直透镜进行准直，其中，针孔同时位于显微物镜(2)的焦点位置和准直透镜(4)的焦点位置。

6. 一种基于权利要求1至5中任一项所述的一种液晶光栅干涉测量空间光调制器相位调制特性的方法的相位调制特性的装置，其特征在于：依次设置的激光器(1)、显微物镜(2)、针孔(3)、准直透镜(4)、偏振器(5)、反射式空间光调制器(6)、CCD相机(7)；所述激光器(1)、显微物镜(2)、针孔(3)、准直透镜(4)、偏振器(5)同轴设置，反射式空间光调制器(6)与激光束形成一定的夹角，其中，针孔同时位于显微物镜(2)的焦点位置和准直透镜(4)的焦点位置。
7. 根据权利要求6所述的液晶光栅干涉测量空间光调制器相位调制特性的装置，其特征在于：所述激光器采用波长为532nm的绿色激光器。
液晶光栅干涉测量空间光调制器相位调制特性的装置及方法

【技术领域】
本发明属于光电信测技术领域，涉及液晶空间光调制器（LC-SLM）相位调制特性的测量，特别涉及一种液晶光栅干涉测量空间光调制器相位调制特性的方法。

【背景技术】
基于LC-SLM空间分辨率高、可编程控制、质量轻等优点，在众多领域得到广泛应用。许多应用对波前相位控制的高精度和相位调制深度范围的线性化提出了要求，这就需要准确评价空间光调制器的性能，甚至校正厂家预设的相位响应参数。

【发明内容】
本发明提出了一种液晶光栅干涉测量空间光调制器相位调制特性的装置及方法。实验简单，所需仪器成本低，不需要复杂的光学装置，克服了干涉法、激光法和衍射法等方法中对波前相位控制的装置的复杂性，且具有良好的鲁棒性和机械稳定性。

本发明采用以下技术方案：

c. 设计空间光调制器的组合灰度图，其中，空间光调制器上加载的灰度图分为三部分，其中一半屏幕加载二元垂直的衍射光栅，另一半屏幕分为上下两部分，均加载均匀的灰度级，上下两部分分别为测量区域和参考区域，其中，参考区域加载零灰度级；

c. 采集光束：将从激光中发出的激光光束经扩展、滤波、准直为平行光束后，经偏振器得到振动方向平行于液晶分子的线偏振光，偏振光入射到空间光调制器，由CCD相机采集；由液晶光栅衍射的+1级光，经过相位调制的出射光束，以及没有经过相位调制的出射光束相互干涉产生的干涉条纹图像；

d. 计算空间光调制器的相位调制量

根据以下公式采用相对条纹移动法在零位条纹图上计算测量区域的相位调制量δ：

δ = (Δx / Δz) (2π / λ)

其中，Δx为条纹的移动距离，Δz为光程差，λ为光波长。
\[\delta = 2\pi (\Delta / \Lambda)\]

其中，\(\Delta\) 和 \(\Lambda\) 分别为条纹相对移动量和条纹周期宽度。

条纹周期宽度 \(\Lambda\) 的计算方法为：因为干涉条纹是沿水平分布的，作垂直扫描线穿过各条纹，扫描线与 M 个条纹的中心线分别相交于 \(P_0, P_1, \cdots, P_M\) 点，则条纹间距矢量为 \(V = (P_0 - P_{M-1}, \cdots, P_0 - P_1, P_1 - P_0)\) ，条纹周期宽度 \(\Lambda\) 为：

\[\Lambda = \frac{1}{M} \sum_{i=0}^{M-1} V_i^*\]

条纹相对移动量 \(\Delta\) 的计算方法为：当左右两组干涉条纹产生垂直方向的相对移动时，判断条纹移动方向，两条垂直扫描线分别穿过静止条纹和移动条纹，与每条干涉条纹中心线的交点分别为 \(P_0, P_1, \cdots, P_M\) 和 \(S_0, S_1, \cdots, S_M\) ，则条纹位移矢量为 \(T = (P_0 - S_0, P_1 - S_1, \cdots, P_M - S_M)\) ，条纹移动量 \(\Delta\) 为：

\[\Delta = \frac{1}{M + 1} \sum_{i=0}^{M} T_i^*\]

步骤 (1) 中加载二元垂直的衍射光栅，对于衍射光栅的灰度级选择，将其中一组条纹设置为零灰度级，剩下的条纹灰度级设置为 128。

步骤 (2) 中，采用显微物镜进行扫描，采用针孔进行滤波，采用准直透镜进行准直，其中，针孔同时位于显微物镜的焦点位置和准直透镜的焦点位置。

一种液晶光栅干涉测量空间光调制器相位调制特性的装置，依次设置的激光器、显微物镜、针孔、准直透镜、偏振器、反射式空间光调制器、CCD 相机，所述激光器、显微物镜、针孔、准直透镜、偏振器同轴设置，反射式空间光调制器与激光束形成一定的夹角，其中，针孔同时位于显微物镜的焦点位置和准直透镜的焦点位置。

所述激光器采用波长为 532nm 的绿色激光器。

与现有技术相比，本发明至少具有以下有益效果：本发明能准确测量 LC-SLM 的相位调制特性，利用 LC-SLM 自生成液晶光栅的方法，能够克服传统干涉法入射光和出射光空间分离和衍射法相位估计复杂不足。与其他方法相比，这种方法能够测量到环境波动引起的条纹抖动对测量精度的影响，不需要复杂的光学装置，具有优良的机械稳定性，反应快速且实验易操作。

【附图说明】

图 1 为光束小角度斜入射到光栅发生的衍射示意图。
图 2 为液晶光栅干涉测量空间光调制器相位调制特性系统装置示意图。
图 3 为加载灰度图组合模式及仿真结果，其中，图 (a) 为组合模式，图 (b) 为仿真结果。
图 4 为干涉条纹的图像处理过程示意图。
图 5 为 SLM 相位调制量的计算示意图。

【具体实施方式】

本发明的目的是在准确测量 LC-SLM 的相位调制特性的基础上，利用 SLM 自生成液晶光栅的方法，克服传统干涉法入射光和出射光空间分离和衍射法相位估计复杂不足。
具体地说，本发明提供一种自生成液晶光栅干涉测量LC-SLM的相位调制特性的方法，与其他方法相比，这种方法能够消除环境振动或空气湍流引起的条纹抖动对测量的影响，且不需要复杂的光学装置，具有优良的机械稳定性，反应快速而易实施。

0029 为实现上述目的，本发明采用以下技术方案：

0030 一种液晶光栅干涉测量空间光调制器相位调制特性的方法，包括以下步骤：

0031 (1) 选择测量LC-SLM相位调制特性区域，根据SLM的参数设计，编码生成对应其像素的组合灰度图。在SLM上加载的灰度图分成三部分，其中一半屏幕加载一元垂直的衍射光栅，对于衍射光栅的灰度值选择，将其一组条纹设置为零灰度级（即黑色），其余的条纹灰度级设置为128（即灰色）。SLM一半屏幕分为上下两部分，其中，上半部分为测量区域，下半部分为参考区域，上下两部分均加载均匀的灰度值，参考区域加载零灰度级，测量区域从零灰度级逐步增加到255。

0032 (2) 构建测量系统装置：

0033 请参阅图2所示，一种液晶光栅干涉测量空间光调制器相位调制特性的装置，包括依次设置的激光器1、显微物镜2、针孔3、准直透镜4、偏振器5、反射式空间光调制器（LC-SLM）6、CCD相机7。所述激光器1、显微物镜2、针孔3、准直透镜4、偏振器5同轴设置，反射式空间光调制器6与激光束形成一定的夹角。

0034 激光器1固定在平台上，显微物镜2置于激光器2后，起平波作用的针孔3置于显微物镜2的焦点位置处，准直透镜4置于针孔3后，针孔3同时处于准直透镜4的焦点处，偏振器5置于准直透镜4后，激光束通过准直透镜4后得到平行光束，光束小角度斜入射至LC-SLM6，CCD相机采集出射光束的干涉条纹。计算机通过数据线分别与反射式LC-SLM、CCD相机连接。

0035 上述激光器采用波长为532nm的绿色激光器。

0036 一种液晶光栅干涉测量空间光调制器相位调制特性的测量装置，采用上述装置进行测试，操作步骤如下：

0037 搭建实验系统，从激光器出射的激光束入射到显微物镜进行扩束，并通过针孔滤波后入射至准直透镜，经透镜准直成平行光束后入射到偏振器，得到振荡方向平行于像素分子的线偏振光，偏振光入射到LC-SLM，然后光束反射至CCD相机上。通过CCD相机采集由液晶光栅衍射出的+1级光（即从左半个屏幕出射的+1级光）、经相位调制的出射光束（从测量区域射出的光束），以及没有经过相位调制的出射光束（即从参考区域出射的出射光束）相互干涉产生的干涉条纹图案。\(\delta \)为衍射光栅周期，\(\Phi \)为入射角，\(m = 0, \pm 1, \pm 2, \cdots \)为衍射光级次，\(R_1 \)和\(R_2 \)代表平行光束。

0038 (3) LC-SLM相位调制量的计算：

0039 在SLM上加载步骤1所述的灰度图，由CCD相机采集液晶光栅衍射的+1级光、经相位调制的出射光束，以及没有经过相位调制的出射光束干涉产生的干涉条纹图案。随着测量区域加载灰度值递增，条纹将发生位移移动，而参考区域对应的条纹基本保持不变。使用相对条纹移动法在一整幅位移条纹图上计算测量区域的相位调制量。

0040 先对采集到的干涉条纹进行图像后处理，LC-SLM相位调制量\(\delta \)可以利用干涉条纹的相对移动量来获得，即是上述的相对条纹移动法，计算公式如下：

\[\delta = 2\pi (\Delta / \Lambda) \]
式中的条纹相对移动量和条纹周期宽度分别为 Δ 和 Λ，这两个参数的获得可以通过间距平均值的计算来实现。

请参阅图5所示，因干涉条纹是沿水平分布的，作垂直扫描线穿过各条纹，扫描线与M个条纹的中心线分别交于P_0, P_1, \cdots, P_m点，则条纹间距矢量为$V = (P_m-P_{m-1}, \cdots, P_2-P_1, P_1-P_0)$，条纹周期宽度 Λ 为:

$$\Lambda = \frac{1}{M} \sum_{i=1}^{M} V_i$$

当左右两组干涉条纹产生垂直方向的相对移动时，判断条纹移动方向，两组垂直扫描线分别穿过静止条纹和移动条纹，与每条干涉条纹中心线的交点分别为P_0, P_1, \cdots, P_n和S_0, S_1, \cdots, S_m，则条纹位移矢量为$T = (P_o-S_0, P_{1}-S_1, \cdots, P_m-S_m)$，条纹移动量 Δ 为:

$$\Delta = \frac{1}{M+1} \sum_{i=0}^{M} T_i$$

与现有技术相比，本发明具有如下突出的实质性特点和显著的优点：本发明除了能准确测量LC-SLM的相位调制特性，同时利用SLM自生成液晶光栅的方法，能够克服传统干涉法入射光和出射光空间分离和衍射法相位估计复杂等不足。与其他方法相比，这种新方法能够消除环境振动或空气湍流引起的条纹抖动对测量精度的影响，不需要复杂的光学装置，具有优良的机械稳定性，反应快速且试验易操作。

下面结合附图对本发明技术方案的实施作进一步的详细描述，一种液晶光栅干涉测量系统光调制器相位调制特性的方法，它由以下步骤实现：

1. 液晶光栅干涉测量系统光调制器相位调制特性区域，根据SLM的参数设计，编码生成对应其像素的组合灰度图，如图4所示。在SLM上加载的灰度图分成三部分，其中一半屏幕加载一元垂直的衍射光栅，对于衍射光栅的灰度级选择，将其中一组条纹设置为零灰度级，将剩下的条纹灰度级设置为128。SLM另一半屏幕分为上下两部分，加载均匀的灰度级，作为参考的区域加载零灰度级，而测量区域从零灰度级逐步增加至255。

2. 液晶二元衍射光栅周期P为8个像素，则衍射光栅的周期位置周期为72μm。

3. 本实验中对于衍射光栅的灰度级选择，由相关实验数据，干涉图的对比度随着衍射光栅条纹灰度值的变化而改变，这是因为液晶器件存在瞬时相位调制量不恒定的闪烁现象，当光栅中条纹调制的相位差为π时，干涉条纹图总将产生最大对比度，所以将其中一组条纹设置为零灰度级，将剩下的条纹灰度级设置为128。

4. 本实验中所述的参考区域对应图1的右下部分，而测量区域对应图1的左上部分。

5. （2）搭建系统测量装置，如图2所示，一种液晶光栅干涉测量系统光调制器相位调制特性的系统装置，包括激光器、显微物镜、针孔、准直透镜、偏振器、反射式LC-SLM、CCD相机。其特征在于，所述激光器固定在平台上，显微物镜置于激光器后，起滤波作用的针孔置于物镜焦点位置处，并同时处于准直透镜的焦点位置，激光束通过准直透镜后得到平行光束，光束小角度斜入射LC-SLM，CCD相机采集出射光束的干涉条纹。计算机通过数据线分别与反射式LC-SLM，CCD相机连接。

6. 本实验中使用的激光器采用波长为532nm的绿色激光器（其他波长的可见光同样
适用本装置，只是同一款LC-SLM对不同波长的可见光的相位调制深度不同。

【0056】本实例中其他装置均为常用简易的光学器件。

【0057】一种液晶光栅干涉测量空间光调制器相位调制特性的测量装置，采用上述装置进行测试，具体操作步骤是：

【0058】搭建实验系统，从激光器出射的激光束入射到显微物镜进行扩束，并通过针孔滤波后入射到准直透镜，经透镜准直成平行光束后入射到偏振器，得到振动方向平行于液晶分子的线偏振光，偏振光入射到LC-SLM，然后光束反射到CCD相机上。根据斜入射式的衍射公式d(sinθ - sinθ) = mλ和空间几何关系，找出0级光和+1级光的干涉位置，安置CCD相机采集由液晶光栅衍射的+1级光，经过相位调制的出射光束，以及没有经过相位调制的出射光束干涉产生的干涉条纹图像。

【0059】（3）LC-SLM相位调制量的计算：

【0060】在SLM上加载如图1所示的灰度图，搭建如图2所示的测量系统装置，由CCD相机采集液晶光栅衍射的+1级光，经过相位调制的出射光束，以及没有经过相位调制的出射光束干涉产生的干涉条纹图像。随着测量区域加载灰度值递增，条纹将发生错位移动，而参考区域对应的条纹保持不变。使用相对条纹移动法在一幅位移条纹图上计算测量区域的相位调制量。

【0061】如图3所示，先对采集到的干涉条纹进行图像后处理，LC-SLM相位调制量可以根据干涉条纹的相对移动量来获得，即上述的相对条纹移动法，计算公式如下：

$$\delta = 2\pi \left(\frac{\Delta}{\lambda} \right)$$ (1)

【0062】式中的条纹相对移动量和条纹周期宽度分别为Δ和λ，这两个参数的获得可以通过远距平均法的计算来实现。因为干涉条纹是沿水平分布的，作垂直扫描线穿过各条纹，扫描线与M个条纹的中心线分别交于P_0,P_1,\cdots,P_M点，则条纹间距矢量为$V = (P_M - P_{M-1}, \cdots, P_2 - P_1, P_1 - P_0)$，条纹周期宽度$\lambda$为：

$$\lambda = \frac{1}{M} \sum_{i=1}^{M} V_i$$ (2)

【0063】当左右两组干涉条纹产生垂直方向的相对移动时，判断条纹移动方向，两条垂直扫描线分别穿过静止条纹和移动条纹，与每条干涉条纹中心线的交点分别为P_0,P_1,\cdots,P_M和S_0,S_1,\cdots,S_M，则条纹位移矢量为$T = (P_0 - S_0, P_1 - S_1, \cdots, P_M - S_M)$，条纹移动量$\Delta$为：

$$\Delta = \frac{1}{M} \sum_{i=1}^{M} T_i$$ (3)

【0064】上述的图像后处理包括均值滤波，得到其水平梯度图，然后进行二值化、开操作和骨骼提取。本发明未详细阐述部分为本领域已知的成熟技术。

【0065】与现有技术相比，本发明具有如下突出的实质性特点和显著的优点：

【0066】1. 本发明结合了能准确测量LC-SLM的相位调制特性，利用SLM自生成液晶光栅的方法，能够克服传统干涉法入射光和出射光空间分离和衍射法相位估计复杂等不足；

【0067】2. 本发明能够消除环境振动或空气湍流引起的条纹抖动对测量精度的影响；

【0068】3. 本发明不需要复杂的光学装置，不需要精确对准，具有优良的机械稳定性，反应快速且实验易操作；

【0069】4. 本发明能够较容易地采集到干涉条纹。
图5