Title: REDUCED FRICTION GRAFT AND STENT/GRAFT DEPLOYMENT CATHETER

Abstract

A low friction stent/graft (30) deployment catheter comprising a low friction graft having an outer coating (90) of a biocompatible lubricious material, such as Dow Corning’s medical silicone (360), and a delivery sheath (42) having an inner coating (80) of a biocompatible lubricious material, such as Dow Corning’s MDX4-4159.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PT</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
<td>TZ</td>
<td>Chad</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UB</td>
<td>Uganda</td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td></td>
<td></td>
<td>VI</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a graft and a stent/graft deployment catheter, particularly for repairing defects in arteries and other lumens within the body. More particularly, the invention relates to a reduced friction stent/graft deployment catheter for delivering a reduced friction graft in situ for repairing defective body lumens, and particularly abdominal aortic aneurysms.

2. Description of the Prior Art

An abdominal aortic aneurysm (AAA) is a sac caused by an abnormal dilatation of the wall of the aorta as it passes through the abdomen. The aorta is the main artery of the body, supplying blood to all organs and parts of the body except the lungs. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen, and finally divides into the iliac arteries which supply blood to the pelvis and lower extremities.

The AAA ordinarily occurs in the portion of the aorta below the kidneys. When left untreated, the aneurysm will eventually cause the sac to rupture with ensuing fatal hemorrhaging in a very short time. The repair of abdominal aortic aneurysms has typically required major abdominal surgery in which the diseased and aneurysmal segment of the aorta is bridged with a prosthetic device, such as a synthetic
5 graft.

As with all major surgeries, there are many disadvantages to the above mentioned surgical technique, the foremost of which is the high mortality and morbidity rate associated with surgical intervention of this magnitude. Other disadvantages of conventional surgical repair include the extensive recovery period associated with such surgery; difficulties in suturing the graft to the aorta; the unsuitability of the surgery for many patients, particularly older patients exhibiting comorbid conditions; and the problems associated with performing the surgical procedure on an emergency basis after the aneurysm has already ruptured.

In view of the above mentioned disadvantages of conventional surgical repair techniques, techniques have been developed for repairing AAAs by intraluminally delivering an aortic graft to the aneurysm site through the use of a catheter based delivery system, and securing the graft within the aorta using an expandable stent. Since the first documented clinical application of this technique was reported by Parodi et al. in the Annals of Vascular Surgery, Volume 5, pages 491-499 (1991), the technique has gained more widespread recognition and is being used more commonly. As vascular surgeons have become more experienced with this endovascular technique, however, certain problems have been encountered. One major problem involves deployment of the stent/graft.

Substantial friction between the outer surface of the graft material and the inner surface of the delivery sheath of the deployment catheter makes it sometimes difficult to deploy the stent/graft device precisely in the right location while not exerting significant forces which may damage the stent/graft device. The traditional expandable stent/graft is radially
compressed before insertion into the delivery sheath. The more
the stent/graft device can be compressed the smaller the
introducer sheath and the catheter can be made. Therefore, a
highly compressible stent/graft is desired. One problem with
radially compressing a given stent/graft to its maximum extent
is that once the compressed stent/graft is inserted into the
delivery sheath of the catheter, friction between the outer
surface of the graft and the inner surface of the delivery
sheath, caused by the restoring force of the compressed
stent/graft, makes it very difficult to push the stent/graft
out of the delivery sheath of the catheter, and therefore,
makes it difficult to accurately deploy the stent/graft
without damaging it. In light of this design limitation, the
total cross sectional area of a traditional expandable
stent/graft in its compressed deployment state is generally
designed 10% to 30% less than the area of the corresponding
delivery sheath in order to limit friction between the graft
and the delivery sheath and to ensure that the stent/graft is
not damaged upon deployment. Therefore, it is desired to
reduce the friction between the graft and the delivery sheath
so as to allow for the use of a reduced diameter introducer
sheath and deployment catheter.

The need exists for an improved graft and stent/graft
deployment catheter which will overcome the foregoing friction
deficiencies of the prior art. More particularly, there
exists a need for an improved low friction graft and
stent/graft deployment catheter, incorporating a lubricious
coating, which will prevent damage to the stent/graft, such as
buckling or kinking, during deployment.
SUMMARY OF THE INVENTION

Accordingly, it is an object of the invention to produce a low friction graft and a low friction stent/graft deployment catheter which is capable of accurately deploying the stent/graft without damaging the stent/graft.

It is another object of the invention to produce a method for packing the low friction stent/graft into the low friction stent/graft deployment catheter.

It is yet another object of the invention to produce a low friction stent/graft deployment catheter which will allow for the use of a smaller introducer sheath and which can be made smaller than similar stent/graft deployment catheters currently on the market without fear of damage to the stent/graft upon deployment.

The invention is a low friction stent/graft deployment catheter comprising a low friction graft having an outer coating of a biocompatible lubricous material, such as Dow Corning’s medical silicone 360 (360 is a Dow Corning product identifier), and a delivery sheath having an inner coating of a biocompatible lubricous material, such as Dow Corning’s MDX4-4159 (MDX4-4159 is a Dow Corning product identifier).

To the accomplishment of the above and related objects the invention may be embodied in the form illustrated in the accompanying drawings. Attention is called to the fact, however, that the drawings are illustrative only. Variations are contemplated as being part of the invention, limited only by the scope of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like elements are depicted by like reference numerals. The drawings are briefly described as follows.

FIG. 1 is longitudinal cross section of a distal portion of a prior art stent/graft deployment catheter.

FIG. 2 is longitudinal cross section of distal portion of an improved low friction stent/graft deployment catheter.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 illustrates a longitudinal cross section of a co-axial prior art stent/graft deployment catheter. Said catheter is comprised of a catheter body 10, a tip 50, an inner tube 40, a stent/graft 30, and a plunger 20, all of which are co-axial and have proximal and distal ends. Only a distal portion of the deployment catheter is shown for clarity. The catheter body 10 has an inner surface 70 and is slidingly disposed about the inner tube 40. The plunger 20 is slidingly disposed about the inner tube 40 and is slidingly disposed within the catheter body 10. The distal end of the inner tube 40 is attached to the tip 50. The stent/graft 30 is slidingly disposed about the inner tube 40 and within the catheter body 10 and is between the proximal end of the tip 50 and the distal end of the plunger 20. The stent/graft 30 has an outer surface 60 and a lumen 52 extending from its proximal end to its distal end. The stent/graft lumen 52 is occupied by a distal portion 41 of the inner tube 40.

The stent/graft deployment catheter is inserted percutaneously or via a surgical cut-down method into a blood
vessel. Upon proper positioning of the tip 50 in the blood vessel the plunger 20 is held in place and the catheter body 10 is pulled away from the tip 50 exposing the entire stent/graft 30 to patient’s blood. Upon contact with blood the stent/graft 30 expands such that the diameter of the stent/graft lumen 52 is larger than the diameter of the tip 50. The expanded stent/graft 30 becomes fixed in place in the blood vessel and thus bridges the aneurysm. The inner tube 40 is then pulled away from the stent/graft 30 such that the tip 50 passes through the lumen 52 of the stent/graft 30.

Finally, the deployment catheter is removed from the patient. As discussed above, friction between the catheter body 10 and the stent/graft 30 may require the surgeon to apply a great deal of longitudinal force to the plunger 20, to force the stent/graft out of the deployment catheter, which may damage the stent/graft 30.

FIG 2 illustrates a longitudinal cross section of an improved stent/graft deployment catheter. Only a distal portion of the deployment catheter is shown for clarity. The improved stent/graft deployment catheter is physically identical to the prior art catheter except for the presence of two lubricous coatings. A first coating 80 of a biocompatible lubricous material, such as Dow Corning’s MDX4-4159 (MDX4-4159 is a Dow Corning product identifier), is applied to the inner surface 70 of the catheter body 10. A second coating 90 of a biocompatible lubricous material, such as Dow Corning’s medical silicone 360 (360 is a Dow Corning product identifier), is applied to the outer surface 60 of the stent/graft 30. The stent/graft 30 is radially compressed to its maximum extent without fear that an increased stent/graft restorative force will increase friction between the inner
surface 70 of the catheter body 10 and the outer surface 60 of the stent/graft 30. Accordingly, the entire deployment catheter can be made smaller than the prior art deployment catheter. Note that the use of a single coating, either on the stent/graft 30 or on the catheter body 10, is contemplated.

Optimum results are achieved when the inner surface 70 of the catheter body 10 is coated twice with 5% MDX4-4159 solution, and the outer surface of the stent/graft 30 is coated with Dow Corning's medical silicone 360. The stent/graft deployment catheter is packed with the stent/graft 30 in the following manner. First, the inner surface 70 of the catheter body 10 is coated with MDX4-4159. Next, the stent/graft 30 is lubricated with Dow Corning's medical silicone 360. The stent/graft 30 is then compressed radially and is disposed about the distal portion 41 of the inner tube 40 and within the delivery sheath portion 42 of the catheter body 10.
CLAIMS

What is claimed is:

1. A catheter deployment device comprising a catheter body and a deployable device held by said catheter body, a lubricious material lies between the catheter body and the deployable device.

2. The catheter deployment device as claimed in claim 1 wherein the lubricious material comprises a coating of MDX4-4159 on the catheter body.

3. The catheter deployment device as claimed in claim 1 wherein the lubricious material comprises a Dow Corning medical silicone 360 coating on the outer surface of the deployable body.

4. The catheter deployment device as claimed in claim 1 wherein the lubricious material comprises a coating of MDX4-4159 on the catheter body and a Dow Corning medical silicone 360 coating on the outer surface of the deployable body.

5. The catheter deployment device as claimed in claim 1 wherein the deployable body is a stent/graft.

6. A catheter deployment device comprising a catheter body having a lubricious coating and a deployable body, the deployable body is held by the deployment catheter, and the lubricious coating lies between the catheter body and the deployable body.
7. A catheter deployment device comprising a catheter body and a deployable body having a lubricous coating, the deployable body is held by the catheter body, and the lubricous coating lies between the catheter body and the deployable body.

8. The catheter deployment device as claimed in claim 7 wherein the lubricous coating on the deployable body is Dow Corning medical silicone 360.

9. The catheter deployment device as claimed in claim 6 wherein the lubricous coating on the catheter body is MDX4-4159.

10. A stent/graft deployment catheter comprising a catheter body having an inner surface, a plunger, an inner tube, a tip, and a stent/graft having an outer surface, the catheter body, plunger, inner tube, tip, and stent graft, have distal and proximal ends and are co-axial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end of the plunger and the proximal end of the tip, the inner surface of the catheter body is coated with a first lubricous material.

11. The stent/graft deployment catheter as claimed in claim 10 wherein the first lubricous material is MDX4-4159.

12. The stent/graft deployment catheter as claimed in claim 10 wherein the outer surface of the stent/graft is coated with a second lubricous material.
13. The stent/graft deployment catheter as claimed in claim 12 wherein the second lubricous material is Dow Corning medical silicone 360.

14. A graft having an outer surface coated with a lubricous material.

15. The graft as claimed in claim 14 wherein the lubricous material is Dow Corning medical silicone 360.

16. A method for packing a stent/graft deployment catheter comprising a catheter body having an inner surface, a plunger, an inner tube, a tip, and a tubular stent/graft having an outer surface, the catheter body, plunger, inner tube, tip, and stent graft, have distal and proximal ends and are coaxial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end of the plunger and the proximal end of the tip, comprising the steps of:
   a) lubricating the inner surface of the catheter body with a first lubricous material;
   b) radially compressing the stent/graft; and
   c) disposing the compressed stent/graft about the distal end of the inner tube and within the distal end of the catheter body.

17. The method for packing a stent/graft deployment catheter as claimed in claim 16 wherein the first lubricous material is MDX4-4159.
18. A method for packing a stent/graft deployment catheter comprising a catheter body having an inner surface, a plunger, an inner tube, a tip, and a tubular stent/graft having an outer surface, the catheter body, plunger, inner tube, tip, and stent graft, have distal and proximal ends and are coaxial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end of the plunger and the proximal end of the tip, comprising the steps of:

a) lubricating the outer surface of the stent/graft with a first lubricious material;

b) radially compressing the stent/graft; and

c) disposing the compressed stent/graft about the distal end of the inner tube and within the distal end of the catheter body.

19. The method for packing a stent/graft deployment catheter as claimed in claim 18 wherein the first lubricious material is Dow Corning medical silicone 360.

20. The method as claimed in claim 18 wherein the method further comprises the step of lubricating the inner surface of the catheter body with a second lubricious material before radially compressing the stent/graft.

21. The method as claimed in claim 20 wherein the second lubricious material is MDX4-4159 and the first lubricious material is Dow Corning medical silicone 360.
AMENDED CLAIMS

What is claimed is:

1. A catheter deployment device comprising a catheter body having a lubricious inner surface, a self-expanding deployable device disposed within said catheter body, and a lubricious material between the lubricious inner surface of the catheter body and an outer surface of the deployable device, said lubricious material being in a liquid state prior to insertion in a vessel and while in said vessel.

2. The catheter deployment device as claimed in claim 1 wherein the lubricious material is an amino functional silicone oligomer.

3. (Canceled) The catheter deployment device as claimed in claim 1 wherein the lubricious material comprises a Dow Corning medical silicone 360 coating on the outer surface of the deployable body.

4. (Canceled) The catheter deployment device as claimed in claim 1 wherein the lubricious material comprises a coating of MDX4-4159 on the catheter body and a Dow Corning medical silicone 360 coating on the outer surface of the deployable body.

5. The catheter deployment device as claimed in claim 1 wherein the deployable device is a stent/graft.

6. (Canceled) A catheter deployment device comprising a catheter body having a lubricious coating and a deployable
body, the deployable body is held by the deployment catheter, and the lubricous coating lies between the catheter body and the deployable body.

7. (Canceled) A catheter deployment device comprising a catheter body and a deployable body having a lubricous coating, the deployable body is held by the catheter body, and the lubricous coating lies between the catheter body and the deployable body.

8. (Canceled) The catheter deployment device as claimed in claim 7 wherein the lubricous coating on the deployable body is Dow Corning medical silicone 360.

9. (Canceled) The catheter deployment device as claimed in claim 6 wherein the lubricous coating on the catheter body is MDX4-4159.

10. A stent/graft deployment catheter comprising a catheter body having a lubricous inner surface, a plunger, an inner tube, a tip, a stent/graft having an outer surface, and a lubricous material between the lubricous inner surface of the catheter body and the outer surface of the stent/graft, said lubricious material being in a liquid state prior to insertion in a vessel and while in said vessel, the catheter body, plunger, inner tube, tip, and stent/graft, have distal and proximal ends and are co-axial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end
of the plunger and the proximal end of the tip.

11. The stent/graft deployment catheter as claimed in claim 10 wherein the lubricous material is an amino functional silicone oligomer.

12. (Canceled) The stent/graft deployment catheter as claimed in claim 10 wherein the outer surface of the stent/graft is coated with a second lubricous material.

13. (Canceled) The stent/graft deployment catheter as claimed in claim 12 wherein the second lubricous material is Dow Corning medical silicone 360.

14. (Canceled) A graft having an outer surface coated with a lubricous material.

15. (Canceled) The graft as claimed in claim 14 wherein the lubricous material is Dow Corning medical silicone 360.

16. (Canceled) A method for packing a stent/graft deployment catheter comprising a catheter body having an inner surface, a plunger, an inner tube, a tip, and a tubular stent/graft having an outer surface, the catheter body, plunger, inner tube, tip, and stent graft, have distal and proximal ends and are co-axial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end of the plunger and the proximal end of the tip, comprising the steps of:
a) lubricating the inner surface of the catheter body with a first lubricious material;
b) radially compressing the stent/graft; and
c) disposing the compressed stent/graft about the distal end of the inner tube and within the distal end of the catheter body.

17. (Canceled) The method for packing a stent/graft deployment catheter as claimed in claim 16 wherein the first lubricious material is MDX4-4159.

18. (Canceled) A method for packing a stent/graft deployment catheter comprising a catheter body having an inner surface, a plunger, an inner tube, a tip, and a tubular stent/graft having an outer surface, the catheter body, plunger, inner tube, tip, and stent graft, have distal and proximal ends and are co-axial, the catheter body, the plunger, and the stent/graft are sludgingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the stent/graft lies between the distal end of the plunger and the proximal end of the tip, comprising the steps of:
a) lubricating the outer surface of the stent/graft with a first lubricious material;
b) radially compressing the stent/graft; and
c) disposing the compressed stent/graft about the distal end of the inner tube and within the distal end of the catheter body.

19. (Canceled) The method for packing a stent/graft deployment catheter as claimed in claim 18 wherein the first lubricious material is Dow Corning medical silicone 360.
20. (Canceled) The method as claimed in claim 18 wherein the method further comprises the step of lubricating the inner surface of the catheter body with a second lubricous material before radially compressing the stent/graft.

21. (Canceled) The method as claimed in claim 20 wherein the second lubricous material is MDX4-4159 and the first lubricous material is Dow Corning medical silicone 360.

22. A method for deploying a stent/graft loaded into a stent/graft delivery system, said stent/graft delivery system comprising a catheter having a lubricious inner surface, a plunger disposed within said catheter, and a lubricious material between the lubricious inner surface of the catheter and an outer surface of the stent/graft, said lubricious material being in a liquid state prior to insertion in a vessel and while in said vessel, comprising the step of moving the catheter and plunger relative to each other thereby exposing the stent/graft.

23. A method for packing a self-expanding deployable device into a catheter delivery system having a lubricious inner surface, comprising the steps of:
   a) applying a lubricious material to an outer surface of the deployable device, said lubricious material being in a liquid state prior to insertion into a vessel and while in said vessel;
   b) radially compressing the deployable device; and
   c) advancing said deployable device into the catheter delivery system.
24. A method for packing a self-expanding deployable device into a catheter delivery system having a lubricious inner surface, comprising the steps of:
a) applying a lubricious material to the lubricious inner surface of the catheter delivery system, said lubricious material being in a liquid state prior to insertion into a vessel and while in said vessel;
b) radially compressing the deployable device; and
c) advancing said deployable device into the catheter delivery system.

25. A catheter deployment device comprising a catheter body having a lubricious inner surface, a radially compressed self-expanding deployable device disposed within said catheter body, and a lubricious material between the lubricious inner surface of the catheter body and an outer surface of the deployable device, said lubricious material allowing the deployable device to be radially compressed further than without said lubricious material while still allowing for deployment.

26. The catheter deployment device as claimed in claim 25 wherein the lubricious material is an amino functional silicone oligomer.

27. The catheter deployment device as claimed in claim 25 wherein the deployable device is radially compressed such that the total cross sectional area occupied by the material making up the deployable device is less than 10% smaller than the cross sectional area of a portion of the catheter body in which the deployable body is disposed.
28. A stent/graft deployment catheter comprising a catheter body having a lubricious inner surface, a plunger, an inner tube, a tip, a stent/graft having an outer surface, and a lubricious material between the lubricious inner surface of the catheter body and the outer surface of the stent/graft, the catheter body, plunger, inner tube, tip, and stent/graft, have distal and proximal ends and are co-axial, the catheter body, the plunger, and the stent/graft are slidingly disposed about the inner tube, the plunger is disposed within the catheter body, the proximal end of the tip is attached to the distal end of the catheter body, the radially compressed stent/graft lies between the distal end of the plunger and the proximal end of the tip, said lubricious material allowing the stent/graft to be radially compressed further than without said lubricious material while still allowing for deployment.

29. The catheter deployment device as claimed in claim 28 wherein the lubricious material is an amino functional silicone oligomer.

30. The catheter deployment device as claimed in claim 29 wherein the stent/graft is radially compressed such that the total cross sectional area occupied by the material making up the stent/graft is less than 10% smaller than the cross sectional area of a portion of the catheter body in which the deployable body is disposed.

31. A method for deploying a radially compressed stent/graft loaded into a stent/graft delivery system, said stent/graft delivery system comprising a catheter having a lubricious inner surface, a plunger disposed within said catheter, and a
lubricious material between the lubricious inner surface of the catheter and an outer surface of the stent/graft, said lubricious material allowing the stent/graft to be radially compressed further than without said lubricious material while still allowing for deployment, comprising the step of moving the catheter and plunger relative to each other thereby exposing the stent/graft.

32. The method as claimed in claim 31 wherein said stent/graft is radially compressed such that the total cross sectional area occupied by the material making up the deployable device is less than 10% smaller than the cross sectional area of a portion of the catheter body in which the deployable body is disposed.

33. A method for packing a self-expanding deployable device into a catheter delivery system having a lubricious inner surface, comprising the steps of:
   a) applying a lubricious material to an outer surface of the deployable device;
   b) radially compressing the deployable device, said lubricious material allowing the deployable device to be radially compressed further than without said lubricious material while still allowing for deployment; and
   c) advancing said deployable device into the catheter delivery system.

34. A method for packing a self-expanding deployable device into a catheter delivery system having a lubricious inner surface, comprising the steps of:
   a) applying a lubricious material to the lubricious inner
surface of the catheter delivery system;
b) radially compressing the deployable device, said lubricious material allowing the deployable device to be radially compressed further than without said lubricious material while still allowing for deployment; and
c) advancing said deployable device into the catheter delivery system.

35. The method as claimed in claim 34 wherein the deployable device is compressed such that the total cross sectional area occupied by the material making up the deployable device is less than 10% smaller than the cross sectional area of a portion of the catheter delivery system in which the deployable device is disposed.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/07125

A. CLASSIFICATION OF SUBJECT MATTER
   IPC(6)   : A61B 17/00
   According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
   Minimum documentation searched (classification system followed by classification symbols)

   Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

   Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5,690,644 A (YUREK et al.) 25 November 1997, col. 5 lines 37-43.</td>
<td>1, 2, 5, 6, 9-11, 16, 17</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>3, 4, 7, 8, 12, 13, 18-21</td>
</tr>
<tr>
<td>X</td>
<td>US 4,740,207 A (KREAMER) 26 April 1988, col. 2 lines 29-35.</td>
<td>14, 15</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>3, 4, 7, 8, 12, 13, 18-21</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

Date of the actual completion of the international search
26 MAY 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Date of mailing of the international search report
15 JUN 1999

Authorized officer
MICHAEL THALER
Telephone No. (703) 308-2981

Form PCT (ISA 230 (second sheet) July 1992)