(19) (19 DE 698 19 849 T2 2004.09.02

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97)EP 0 919 918 B1 1) intcl”: GO6F 11/34

(21) Deutsches Aktenzeichen: 698 19 849.2
(96) Europaisches Aktenzeichen: 98 309 631.4
(96) Europaischer Anmeldetag: 25.11.1998
(97) Erstverdffentlichung durch das EPA: 02.06.1999
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 19.11.2003
(47) Veroffentlichungstag im Patentblatt: 02.09.2004

(30) Unionsprioritat: (72) Erfinder:
980190 26.11.1997 us Chrysos, George Z., Marlboro, Massachusetts
01752, US; Dean, Jeffrey A., Menlo Park, California
(73) Patentinhaber: 94025, US; Hicks, James E., Newton,
Compaq Computer Corp., Houston, Tex., US Massachusetts 02159, US; Leibholz, Daniel L.,
Cambridge, Massachusetts 02138, US; McLellan,
(74) Vertreter: Edward J., Holliston, Massachusetts 01746, US;
Griinecker, Kinkeldey, Stockmair & Waldspurger, Carl A., Atherton, California 94027,
Schwanhéusser, 80538 Miinchen US; Weihl, William E., San Francisco, California
94114, US
(84) Benannte Vertragsstaaten:
DE, FR, GB

(54) Bezeichnung: Anordnung zum willkiirlichen Abtasten von Instruktionen in einer Prozessorpipeline

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte européaische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebuihr entrichtet worden ist (Art. 99 (1) Européisches Patentlibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 698 19 849 T2 2004.09.02

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf das Messen der Funktion eines Computer-
systems, und insbesondere auf ein Abtasten von
Ausfiuhrungsbefehlen.

[0002] Computerprozessoren werden schneller, al-
lerdings halt eine Software-Anwendungsfunktion
nicht damit Schritt. Fir groRe, kommerzielle Anwen-
dungen koénnen durchschnittiche Werte von Pro-
zesszyklen pro Befehl (cycles-per-instruction — CPI)
bis zu 2,5 oder 3 hoch sein. Mit einem Vier-Wege-Be-
fehl-Ausgabe-Prozessor bedeutet ein CPI von drei,
dass nur ein Befehlsschlitz alle zwolf gut genutzt
wird. Es ist wichtig zu verstehen, warum ein Softwa-
re-Durchsatz nicht an Hardware Verbesserungen an-
gepasst ist.

[0003] Es ist Ublich, solche Probleme auf die Spei-
cher-Latenzzeit zu schieben. Tatsachlich bendtigen
viele Softwareanwendungen viele Zyklen, darauf
wartend, dass Datenlbertragungen abgeschlossen
werden. Allerdings verschwenden andere Probleme,
wie beispielsweise Verzweigungs-Fehlvorhersagen,
auch Prozessorzyklen. Unabhangig der allgemeinen
Ursachen, missen System-Architekten, und Hard-
ware- und Software-Ingenieure, wissen, welche Be-
fehle blockieren bzw. liberlasten und warum, um die
Funktionsweise von modernen Computersystemen,
die komplexe Prozessoren einsetzen, zu verbessern.
[0004] Typischerweise wird dies durch Erzeugen ei-
nes ,Profils" des Verhaltens eines Systems, wahrend
es arbeitet, vorgenommen. Ein Profil ist eine Auf-
zeichnung von Funktionsdaten. Haufig wird das Profil
graphisch dargestellt, so dass die Engstellen der
Funktion leicht identifiziert werden kénnen.

[0005] Ein Profilieren kann durch ein Instrumentari-
um und eine Simulation vorgenommen werden. Mit
dem Instrumentarium wird ein zuséatzlicher Code zu
einem Programm hinzugefugt, um spezifische Ereig-
nisse wahrend der Ausflihrung eines Programms zu
Uberwachen. Eine Simulation versucht, das Verhal-
ten des gesamten Programms in einer kinstlichen
Umgebung zu Emulieren, im Gegensatz dazu, das
Programm in dem realen System auszufiihren.
[0006] Jedes dieser zwei Verfahren besitzt seine
Nachteile. Ein Instrumentarium stért das wahre Ver-
halten des Programms aufgrund der hinzugefiigten
Befehle und der zusatzlichen Daten-Referenzen.
Eine Simulation vermeidet ein Stérung auf Kosten ei-
nes wesentlichen Funktion-Overheads, wenn mit der
Ausfihrung des Programms auf einem realen Sys-
tem verglichen wird. Weiterhin ist es, mit entweder ei-
nem Instrumentarium oder einer Simulation, gewohn-
lich schwierig, ein gesamtes, grof3 dimensioniertes
Softwaresystem zu profilieren, d. h. Anwendung, Be-
triebssystem und Vorrichtungs-Treibercode.

[0007] Eine mit einer Hardware implementierten Er-
eignis-Abtastung kann auch dazu verwendet werden,
Profil-Informationen von Prozessoren zu erhalten.
Eine Hardware-Abtastung besitzt eine Anzahl von

Vorteilen gegenlber einer Simulation und einem In-
strumentarium: sie erfordert keine Modifizierung von
Softwareprogrammen, um deren Funktion zu mes-
sen. Eine Abtastung arbeitet auf vollstdndigen Syste-
men, mit einem relativ geringen Overhead. Tatsach-
lich ist in neuerer Zeit gezeigt worden, dass eine Pro-
filierung mit geringem Overhead, basierend auf einer
Abtastung, dazu verwendet werden kann, detaillierte
Befehl-Level-Informationen Uber Pipeline-Blockie-
rungen und deren Ursachen zu erhalten. Allerdings
fehlt vielen Hardware-Abtast-Techniken eine Flexibi-
litdt, da sie so ausgelegt sind, um spezifische Ereig-
nisse zu messen.

[0008] Die meisten, existierenden Mikroprozesso-
ren, wie beispielsweise der DIGITAL (RTM) Alpha
AXP 21164, der Intel (RTM) Pentium Pro und der
MIPS (RTM) R10000, sehen Ereignis-Zahler vor, die
eine Vielzahl von Ereignissen zahlen kénnen, wie
beispielsweise Daten-Cache-(D-Cache)-Fehler, Be-
fehls-Cache-(I-Cache)-Fehler und Verzwei-
gungs-Fehlvorhersagen. Die Ereignis-Zahler erzeu-
gen eine Unterbrechung, wenn die Zahler tberlau-
fen, so dass die Performance-Daten in den Zahlern
durch eine Software auf héheren Niveaus abgetastet
werden kdnnen.

[0009] Alle Ereigniszahler sind zum Erfassen von
aggregierten Informationen ntzlich, wie beispiels-
weise die Zahl von Verzweigungs-Fehlvorhersagen,
die das System erfahrt, wahrend ein bestimmtes Pro-
gramm, oder ein Teil davon, ausgeflihrt wird. Aller-
dings sind bekannte Ereignis-Zahler weniger nitz-
lich, um Zustands-Informationen in Bezug auf indivi-
duelle Befehle zuzuordnen, wie beispielsweise daru-
ber, welche Verzweigungs-Befehle haufig fehlinter-
pretiert werden. Dies kann aufgrund der Tatsache er-
folgen, dass die Programm-Zahler (program counters
— PC) von Befehlen, die Ereignisse verursachten,
nicht Ianger verfugbar sein kbénnen, wenn der Ereig-
nis-Zahler Gberlauft und unterbricht.

[0010] Es ist ein besonderes Problem, die dynami-
sche Operation eines Prozessors zu deduzieren, die
Befehle auRerhalb der Reihenfolge ausgeben kann.
Tatsachlich kann das Verhalten von Software-Pro-
grammen, die von einem Prozessor aufterhalb der
Reihenfolge ausgefuhrt werden, sehr subtil und
schwierig zu verstehen sein. Es wird der Ablauf von
Befehlen in einem Out-Of-Order Alpha 21264 Pro-
zessor als ein konkretes Beispiel betrachtet.

Superscalar-Prozessor-Architektur
Ausfuhrungs-Reihenfolge

[0011] Ein gestorter Prozessor bzw. ein Prozessor
,Out-of-Order" ruft Befehle ab und scheidet sie aus,
verarbeitet allerdings die Befehle entsprechend de-
ren Datenabhangigkeiten. Eine Verarbeitung von Be-
fehlen kann eine Register-Auflistung, eine Be-
fehl-Ausgabe und -Ausflihrung umfassen. Ein Befehl
befindet sich von dem Zeitpunkt an , In Bewegung"

2/23

DE 698 19 849 T2 2004.09.02

(»in-flight"), von dem an er abgerufen ist, bis er aus-
scheidet oder ausgesondert wird.

[0012] Wahrend jedes Prozessor-Zyklus ruft eine
erste Stufe der Prozessor-Pipeline einen Satz von
Befehlen von dem Befehls-Cache (I-Cache) ab. Der
Satz von Befehlen wird decodiert. Der Befehl-Deco-
dierer identifiziert, welche Befehle in dem abgerufe-
nen Satz ein Teil der Befehl-Datenfolge sind.

[0013] Da es mehrere Zyklen benétigen kann, um
den PC eines nachsten Befehls aufzulésen, um ab-
zurufen, wird der PC gewdhnlich zuvor durch eine
Verzweigung oder einen Sprung-Pradikator vorher-
gesagt. Wenn die Vorhersage nicht korrekt ist, wird
der Prozessor die fehlerhaft vorausgesagten Befehle
aussondern, die einen ,schlechten" Ausfiihrungspfad
belegen, und wird erneut damit beginnen, Befehle auf
dem ,guten" Pfad abzurufen.

[0014] Um zu ermdglichen, dass Befehle aufierhalb
der Reihenfolge ausgefiihrt werden, werden Regis-
ter, spezifiziert in Operanden von Befehlen, dyna-
misch umbenannt, um Konflikte eines Schreibens
nach einem Lesen (write-after-read) und eines
Schreibens nach einem Schreiben (write-after-write)
zu verhindern. Diese Umbenennung wird durch ein
Auflisten von architekturmaRigen oder ,virtuellen"
Registern zu physikalischen Registern begleitet.
Demzufolge kénnen zwei Befehle, die dasselbe, vir-
tuelle Register beschreiben, sicher auflerhalb der
Reihenfolge ausgefiihrt werden, da sie zu unter-
schiedlichen, physikalischen Registern hin schreiben
werden, und Benutzer der virtuellen Register werden
die geeigneten Werte erhalten.

[0015] Ein mittels Register aufgelisteter Befehl ist in
der Befehl-Warteschlange vorhanden, bis seine Ope-
randen berechnet worden sind und eine funktionale
LAusflihrungs"-Einheit des geeigneten Typs verflg-
bar ist. Die physikalischen Register, verwendet durch
einen Befehl, werden in dem Zyklus gelesen, den der
Befehl ausgibt. Nachdem Befehle ausgefuhrt worden
sind, werden sie als bereit markiert, um sie auszu-
scheiden, und werden durch den Prozessor ausge-
schieden werden, wenn alle vorherigen Befehle, be-
reit um auszuscheiden, in der Programm-Reihenfol-
ge ausgeschieden worden sind, d. h. Befehle schei-
den in der korrekten Programm-Reihenfolge aus. Un-
ter dem Ausscheiden beginnt der Prozessor die An-
derungen, vorgenommen durch den Befehl, zu dem
architekturmafigen ,Zustand" des Systems, und gibt
Ressourcen, verbraucht durch den Befehl, frei.

Fehlvorhersage

[0016] In einigen Fallen, wie beispielsweise sol-
chen, wenn eine Verzweigung fehlerhaft vorherge-
sagt ist, missen Befehle aufgefangen oder ausge-
sondert werden. Wenn dies auftritt, wird der momen-
tane, spekulative, architekturmaRige Zustand zurtick
zu einem Punkt in der Ausfihrung abgewickelt, wo
die fehlerhafte Vorhersage aufgetreten ist, und ein
Abrufen fahrt an dem korrekten Befehl fort.

Verzégerungen

[0017] Zahlreiche Ereignisse kénnen die Ausfih-
rung eines Befehls verzdgern. An der Front der Pipe-
line kann die Abrufeinheit aufgrund eines Fehlens ei-
nes |-Cache anhalten, oder die Abrufeinheit kann Be-
fehle entlang eines schlechten Pfads aufgrund einer
fehlerhaften Vorhersage abrufen. Die Auflistungsein-
richtung kann aufgrund eines Fehlens von freien,
physikalischen Registern oder aufgrund eines Feh-
lens von freien Schlitzen in der Ausgabe-Warte-
schlange blockieren. Befehle in der Ausgabe-Warte-
schlange kdnnen darauf warten, dass deren Regis-
ter-Abhangigkeiten erflllt werden, oder auf die Ver-
fugbarkeit von funktionalen Ausfiihrungseinheiten.
[0018] Befehle kénnen aufgrund eines Fehlens ei-
nes Daten-Cache blockieren. Befehle kdnnen stop-
pen, und zwar aufgrund davon, dass sie spekulativ
entlang eines schlechten Pfads ausgegeben wurden,
oder da der Prozessor eine Unterbrechung vornahm.
Viele dieser Ereignisse sind schwierig statisch vor-
herzusagen, z. B. durch eine Priifung des Codes, und
alle davon setzen die Funktionsweise des Systems
herab. Einfache Ereignis-Zahler sind nicht ausrei-
chend, um diesen Typ von Informationen zu individu-
ellen Befehlen zurlickzuflihren. Zusatzlich ist es
schwierig, exakt die Langen der Verzdgerungen zu
messen, um zu bestimmen, welche Verzdgerungen
eine besondere Aufmerksamkeit verdienen.

[0019] Es istin hochstem Malde wiinschenswert, Er-
eignisse zu spezifischen Befehlen und Maschinenzu-
stdnden zuzuordnen, so dass Programmierer, oder
Optimierungs-Tools, die Funktionsweise der Softwa-
re- und der Hardware-Komponenten von komplexen
Computersystemen, wie beispielsweise Super-Ska-
lar und gestdrte Prozessoren, oder fiir diese Art von
Prozessoren mit irgendeinem architekturmafigen
Design, verbessern kénnen.

Probleme mit Ereignis-Zahlern nach dem Stand der
Technik

[0020] Das Hauptproblem in Verbindung mit be-
kannten Ereignis-Zahlern ist dasjenige, dass der Be-
fehl, der das Ereignis verursachte, so dass der Zahler
Uberlief, gewdhnlich lange vor dem abgetasteten
Ausnahme-PC abgerufen wurde, d. h. der PC ist
nicht der Befehl, der den Uberlauf verursachte. Die
Lange der Verzdgerung zwischen dem Abrufen und
der Unterbrechung ist allgemein eine nicht vorher-
sagbare GroRe. Diese unvorhersagbare Verteilung
von Ereignissen macht es schwierig, geeignet Ereig-
nisse zu spezifischen Befehlen zuzuordnen. Eine ge-
stérte oder spekulative Ausfihrung verstarkt dieses
Problem, allerdings ist es auch in Maschinen, die
.in-order" arbeiten, wie beispielsweise der Alpha
21164 Prozessor, vorhanden.

[0021] Zum Beispiel unterbrechen vergleichende
Programm-Zahlerwerte, zugefihrt zu dem Funkti-
ons-Zahler, einen Handler, wahrend D-Cache-Refe-

3/23

DE 698 19 849 T2 2004.09.02

renz-Ereignis-Zahler fur den Alpha 21164 (In-Order)
Prozessor, namlich den Pentium Pro (Out-Of-Order)
Prozessor, iberwacht werden. Ein Beispielprogramm
besteht aus einer Schleife, die aus einem Ran-
dom-Memory-Access-Befehl, zum Beispiel einem
Lade-Befehl, gefolgt von hunderten von Null-Opera-
tions-Befehlen (null operation instructions — nop), be-
steht.

[0022] An dem In-Order-Alpha-Prozessor werden
alle Funktions-Zahler-Ereignisse (zum Beispiel Ca-
che-Fehler) dem Befehl zugeschrieben, der sechs
Zyklen nach dem Ereignis ausfuhrt, um zu einem gro-
Ren Peak an Abtastungen an dem siebten Befehl
nach dem Lade-Zugriff zu fuhren. Diese versetzte
Verteilung von Ereignissen ist nicht ideal. Allerdings
kann, da ein einzelner, grolRer Peak existiert, eine
statische Analyse manchmal nach riickwarts von die-
sem Peak an arbeiten, um den tatsachlichen Befehl,
der das Ereignis verursachte, zu identifizieren, aller-
dings ist dies nicht mehr als nur eine beste Annahme,
sogar fur ein einfaches Programm.

[0023] Fur die identische Programmausfihrung auf
dem Out-Of-Order Pentium Pro werden die Ereig-
nis-Abtastungen weit Uber die nachsten 25 Befehle
verteilt, was nicht nur eine Versetzung, sondern auch
eine wesentliche Verschleierung ebenso, darstellt.
Die weite Verteilung von Proben macht es nahezu
unmoglich, ein spezifisches Ereignis dem bestimm-
ten Befehl, der das Ereignis verursachte, zuzuschrei-
ben. Ein dhnliches Verhalten tritt dann auf, wenn an-
dere Hardware-Ereignisse berlicksichtigt werden.
[0024] Zusatzlich zu der versetzten oder verwisch-
ten Verteilung von Ereignis-Abtastungen leiden her-
kémmliche Ereignis-Zahler auch unter zusatzlichen
Problemen. Gewohnlich sind dort mehr Ereignisse
vorhanden, die von Interesse sind, als dort Ereig-
nis-Zahler vorhanden sind, was es demzufolge
schwierig macht, wenn nicht sogar unméglich, gleich-
zeitig alle Ereignisse, die von Interesse sind, zu Uber-
wachen. Die sich erhdhende Komplexitat von Pro-
zessoren ist dahingehend wahrscheinlich, dass sie
dieses Problem noch verstarkt.

[0025] Zusatzlich zeichnen Ereignis-Zahler nur die
Tatsache auf, dass ein Ereignis auftrat; sie liefern
nicht zusatzliche Zustandsinformation tber das Er-
eignis. Fur viele Arten von Ereignissen wirden zu-
satzliche Informationen, wie beispielsweise die La-
tenzzeit, um ein Cache-Fehlereignis zu behandeln,
aulerst nitzlich sein.

[0026] Weiterhin sind Zahler nach dem Stand der
Technik allgemein nicht in der Lage, Ereignisse zu
,Blind Spots" in dem Code zu behandeln. Ein Blind
Spot ist irgendein nicht unterbrechbarer Code, wie
beispielsweise Systemprogramme mit hoher Prioritat
und ein PAL Code, da das Ereignis nicht erkannt wer-
den wird, bis seine Unterbrechung anerkannt ist. Zu
diesem Zeitpunkt kann sich der Prozessor-Zustand
wesentlich geandert haben, was meistens zu fal-
schen Informationen fiihrt.

Blockierungen gegenuber Engstellen

[0027] Bei einem In-Order-Prozessor, im Pipe-
line-Betrieb, verhindert eine Befehl-Stérung in einer
Pipeline-Stufe, dass spatere Befehle durch diese
Pipeline-Stufe hindurchflihren. Deshalb ist es relativ
einfach, ,Engstellen" (,Bottleneck") Befehle auf ei-
nem In-Order-Prozessor zu identifizieren, wobei die-
se Engstellen-Befehle dazu tendieren, irgendwo in
der Pipeline zu blockieren. Fir einen In-Order-Pro-
zessor ist es moglich, Blockierungen durch Messen
der Latenzzeit eines Befehls zu identifizieren, wenn
er durch jede Pipeline-Stufe hindurchfiihrt, und durch
Vergleichen der gemessenen Latenzzeit mit der ide-
alen Latenzzeit dieses Befehls in jeder Pipeline-Stu-
fe. Ein Befehl kann vorab dahingehend angenommen
werden, dass er in einer Stufe blockiert wurde, wenn
er langer als die minimale Latenzzeit bendtigt, um
durch diese Stufe hindurchzufihren.

[0028] Allerdings kénnen, an einem Out-of-Or-
der-Prozessor, andere Befehle durch eine Pipe-
line-Stufe um einen Befehl herum hindurchfihren,
der in der Pipeline-Stufe blockiert ist. Tatsachlich
kann die zusatzliche Latenzzeit des blockierten Be-
fehls vollstandig durch die Verarbeitung von anderen
Befehlen maskiert sein, und tatsachlich konnen die
blokkierten Befehle nicht den beobachteten Ab-
schluss des Programms verzégern.

[0029] Gerade bei In-Order-Prozessoren kodnnen
Blockierungen in einer Pipeline-Stufe nicht zu der ge-
samten Ausfihrungszeit eines Programms beitra-
gen, wenn eine andere Pipeline-Stufe die Engstelle
ist. Zum Beispiel kdnnen, wahrend der Ausflihrung
eines speicher-intensiven Programms, die Abrufein-
richtung und die Auflistungseinrichtung der Be-
fehl-Pipeline oftmals blockieren, da der ,Gegen-
druck" (,Back-Pressure") von einer Ausfiihrungsein-
heit, verzogert durch einen D-Cache, fehlt.

[0030] Idealerweise wirde man die Speicher-Ope-
rationen, die Cache-Verfehlungen verursachen, als
die primare ,Engstelle" klassifizieren. Die Blockierun-
gen der Abrufeinrichtung und die Auflistungseinrich-
tung sind tatsachlich symptomatisch fir die Verzoge-
rungen aufgrund von Cache-Verfehlungen, das be-
deutet sekundare Engstellen.

[0031] Es ware wiinschenswert, solche Befehle, de-
ren Blockierungen nicht durch andere Befehle mar-
kiert sind, zu identifizieren, und sie als wahre Engstel-
len zu identifizieren. Weiterhin ist, um ein Programm-
verhalten zu verbessern, ein Erfordernis vorhanden,
sich auf kausale (priméare) Engstellen, im Gegensatz
zu den symptomatischen (sekundaren) Engstellen,
zu konzentrieren. Diese Klassifizierung von Pipe-
line-Stufen-Engstellen als kausale und symptomati-
sche erfordert eine detaillierte Kenntnis Gber den Zu-
stand der Pipeline und der Daten- und Ressourceab-
hangigkeiten der In-Flight-Befehle, die nicht von ein-
fachen Ereignis-Zahlern erhalten werden koénnen,
wie sie bekannt sind.

[0032] Das US-Patent 5,151,981 ,Instruction Samp-

4/23

DE 698 19 849 T2 2004.09.02

ling Instrumentation", herausgegeben von Wescott et
al., am 29. September 1992, schlagt einen Hard-
ware-Mechanismus flr eine auf einem Befehl basie-
rende Abtastung in einer Out-of-Order-Ausfihrungs-
maschine vor. Dabei ist eine Anzahl von Nachteilen in
der MaRnahme vorhanden, die durch Wescott et al.
vorgenommen wird. Zuerst kann deren MaRnahme
die Datenfolge von Befehlsabtastungen systematisch
die Datenfolge von Befehlsabtastungen beurteilen,
da nur Befehle, die einer bestimmten, internen Be-
fehlszahl zugeordnet sind, fiir eine Abtastung ausge-
wahlt werden koénnen.

[0033] Als Zweites tastet deren System nur ausge-
schiedene Befehle ab, und nicht alle Befehle, die ab-
gerufen sind, wobei einige davon ausgesondert sein
kénnen. Als Drittes konzentrieren sich die Informatio-
nen, die durch den Mechanismus von Wescott et al.
gesammelt sind, auf individuelle Ereignis-Attribute, z.
B. Cache-Verfehlungen, liefern allerdings nicht nutz-
liche Informationen zum Bestimmen der Zwi-
schen-Befehl-Beziehungen.

[0034] In neuerer Zeit ist ein Hardware-Mechanis-
mus, bezeichnet als ,Informing Loads", vorgeschla-
gen worden; siehe Horowitz et al., ,Informing memory
operations: Providing memory performance feedback
in modern processors", Proceedings 23" Annual In-
ternational Symposium on Computer Architecture,
Seiten 260-270, 22. Mai 1996. Dabei kann einer
Speicher-Operation durch eine konditionale Verzwei-
gungs-Operation gefolgt werden, die dann vorge-
nommen wird, und nur dann, wenn die Spei-
cher-Operation in dem Cache fehlerhaft ist. Obwohl
dieser Mechanismus nicht spezifisch fur einen Profi-
lierung ausgelegt ist, kdnnte er dazu verwendet wer-
den, speziell nur verfehlte Ereignis-Informationen
des D-Cache zu sammeln.

[0035] In einer anderen, spezialisierten Hardware,
bezeichnet als ein Cache-Miss-Look-Asi-
de-(CML)-Puffer, werden virtuelle Speicherseiten, die
unter einer Cache-Verfehlungs-Rate mit einem ho-
hen Level-2 leiden, identifiziert; siehe Bershad et al.,
+Avoiding conflict misses dynamically in large di-
rect-mapped caches", Proceedings of the Sixth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Sei-
ten 158-170, 4. Oktober 1994, fiir eine vollstandige
Beschreibung.

[0036] Einige Prozessoren, wie beispielsweise der
Intel Pentium, erlauben einer Software, die Inhalte ei-
nes Verzweigungs-Target-Puffers (branch target buf-
fer — BTB) des Verzweigungs-Prediktors zu lesen.
Durch periodisches Lesen des BTB in der Software
entwickelten Conte et al. eine sehr geringe Over-
headtechnik, um Kantenausfihrungsfrequenzen ei-
nes Programms abzuschatzen; siehe ,Using branch
handling hardware to support profile-riven optimizati-
on", Proceedings of the 27" Annual International
Symposium on Microarchitecture, Seiten 12-21, 30.
November 1994.

[0037] Diese Malnahme flihrt zu Informationen, die

ahnlich zu denjenigen sind, die durch Nachvollziehen
der Verzweigungs-Richtungs-Informationen, enthal-
ten in einer ,Profil-Aufzeichnung" (,profile record"),
die in Bezug stehende Abtastinformationen spei-
chert, erhalten werden. In neuerer Zeit schlugen Con-
te et al. einen Teil einer zusatzlichen Hardware vor,
bezeichnet als Profil-Puffer, der die Anzahl von Malen
zahlt, fur die eine Verzweigung vorgenommen wird
und nicht vorgenommen wird; siehe ,Accurate and
practical profile-driven compilation using the profile
buffer", Proceedings of the 29" Annual International
Symposium on Microarchitecture, Seiten 36-45, 2.
Dezember 1996.

[0038] Der Artikel ,Instruction Match Function for
Processors Monitoring" in IBM Technical Disclosure
Bulletin, Vol. 39, NO. 12, Dezember 1996, Seiten
119-121, offenbart eine Vorrichtung zum Abtasten
von Befehlen, die durch einen Dispatcher vor einer
Abtastung identifiziert werden.

[0039] Gemal der vorliegenden Erfindung wird eine
Vorrichtung zum Abtasten von Befehlen in einer Pro-
zessor-Pipeline eines Systems geschaffen, wobei die
Pipeline eine Vielzahl von Verarbeitungsstufen auf-
weist, und die umfasst:

eine Einrichtung, die Befehle in eine erste Stufe der
Pipeline abruft, wobei die Befehle durch zusatzliche
Felder identifiziert werden, die anzeigen, dass sie
zum Abtasten ausgewahlt worden sind, und die zu-
satzlichen Felder ein Abtast-Bit an jedem Befehl in
der Pipeline enthalten;

eine Einrichtung, die jeden der abgerufenen Befehle
als einen ausgewabhlten Befehl identifiziert;

eine Einrichtung, die Statusinformationen des Sys-
tems abtastet, wahrend sich ein bestimmter ausge-
wahlter Befehl in einer beliebigen Stelle der Pipeline
befindet;

eine Einrichtung, die die Statusinformationen spei-
chert; und

eine Einrichtung, die die Software informiert, wenn
der bestimmte ausgewahlte Befehl die Pipeline ver-
I&sst, so dass die Software jede der Statusinformati-
onen lesen kann, wobei die Einrichtung, die abtastet,
und die Einrichtung, die die Software informiert, in
Funktion aktiviert, indem das Abtast-Bit in dem aus-
gewahlten Befehl aktiviert wird.

[0040] Wahrend des Betriebs eines Prozessors wird
periodisch ein Befehl, der profiliert werden soll, zufal-
lig ausgewahlt, und eine Profil-Aufzeichnung davon,
was wahrend der Ausflihrung des Befehls auftritt,
wird in einem Satz von internen Profil-Registern des
Prozessors akkumuliert. Nachdem die Verarbeitung
des ausgewahlten Befehls endet, z. B. der Befehl
scheidet aus, wird ausgesondert oder abgefangen,
wird eine Unterbrechung erzeugt. Alternativ kann
eine Software ein Zeichen oder ein Register abfra-
gen. Die aufgezeichneten Informationen, die die De-
tails charakterisieren, wie der Befehl in der Pipeline
verarbeitet wurden, kénnen von den internen Pro-
fil-Registern durch eine Software abgetastet werden.
[0041] Die Profil-Register kénnen viele nutzliche

5/23

DE 698 19 849 T2 2004.09.02

Fakten Uber die Ausfiihrung eines Befehls aufzeich-
nen. Beispielhafte Funktions-Informationen kdnnen
umfassen: die Zahl von Zyklen, die der ausgewahlte
Befehl in jeder Stufe einer Ausfihrungs-Pipeline ver-
brachte, d. h.

[0042] Stufen-Latenzzeiten, ob der Befehl ein Ver-
fehlen eines I-Cache oder eines D-Cache unterlag,
die effektiven Adressen seiner Speicher-Operanden,
oder Verzweigungs/Sprung-Ziele, und ob der Befehl
ausgeschieden oder ausgesondert wurde.

[0043] Bei In-Order-Ausfiihrungs-Prozessoren ist
es mdoglich, die gesamte Zahl von Blokkier-Zyklen,
die jedem Befehl zuschreibbar sind, wenn man die
fetch-to-retire Latenzzeiten von abgetasteten Befeh-
len angibt, abzuschatzen.

[0044] An einem Out-Of-Order-Prozessor ist es in
Bezug auf die meisten Blockierungen wahrschein-
lich, dass sie andere Befehle Uiberlappen oder durch
diese maskiert werden, herausgegeben Out-Of-Or-
der um die blockierten Befehle herum. Dies gestaltet
die Identifikation von blockierten Befehlen schwierig.
Zusatzlich kann es notwendig sein, Informationen
Uber das durchschnittliche Niveau einer Konkurrenz
zu sammeln, wahrend jeder Befehl in Ausfihrung
war, um Engstellen zu identifizieren.

[0045] Die Hardware fur spezielle Zwecke koénnte
die Zahl von Befehlen, die ausgegeben werden, wah-
rend sich ein profilierter Befehl in Ausflhrung befin-
det, zahlen und aufzeichnen, um das Niveau einer
gleichzeitigen Ausfihrung zu messen. Allerdings
schlagt dies dahingehend fehl, Befehle zu bertick-
sichtigen, die ausgegeben werden, allerdings ausge-
sondert sind, und deshalb fehlschlagen, auszuschei-
den. Vorausgesetzt ist hier eine Messung der Menge
einer nutzbaren Gleichzeitigkeit. Die nutzbare
Gleichzeitigkeit ist die durchschnittliche Zahl von Be-
fehlen, die parallel herausgegeben werden und er-
folgreich ausscheiden, und zwar mit einem gegebe-
nen Befehl. Befehle, die herausgegeben werden, al-
lerdings darauffolgend ausgesondert werden, sind
nicht natzlich. Dann kénnen Befehle, deren Blockie-
rungen nicht durch eine nutzbare Konkurrenz mas-
kiert sind, als Engstellen klassifiziert werden. Um dies
in einer anderen Weise auszudricken, ist eine
Schlissel-Metrik, zum genauen Festlegen von Funk-
tions-Engstellen an einem Out-of-Order-Prozessor,
die Zahl von Ausgabe-Schlitzen, die verschwendet
wurden, wahrend ein gegebener Befehl ausgefiihrt
wurde.

[0046] Dementsprechend wird, um eine nitzliche
Konkurrenz zu messen, eine Technik, bezeichnet als
,N-wise sampling" (,N-weises Abtasten") vorgese-
hen. Die Grundidee ist diejenige, eine verschachtelte
Form einer Abtastung auszufiihren. Hierbei wird ein
Fenster von Befehlen, die gleichzeitig mit einem ers-
ten, profilierten Befehl ausgeflihrt werden konnen,
dynamisch definiert. Zum Beispiel wird dort, wo N
zwei ist, ein zweiter Befehl zufallig fur ein Profilieren
von dem Fenster aus Befehlen ausgewahlt. Der pro-
filierte und zweite Befehl bilden ein Abtast-Paar, fur

das Profil-Informationen zusammengestellt werden
kénnen.

[0047] Eine paarweise Abtastung erleichtert die Be-
stimmung der Zahl von verschwendeten Ausga-
be-Schlitzen, die jedem Befehl zuordenbar sind, und
trifft Engstellen akkurater als bekannte Techniken.
Allgemein ist eine paarweise Abtastung sehr flexibel,
was die Basis fir eine Analyse bildet, die eine breite
Vielfalt von Konkurrenz- und Benutzungs-Metriken,
die von Interesse sind, bestimmen kann.

[0048] Beispiele von Informationen, die erfasst wer-
den koénnen, umfassen: die Adresse des Befehls
(Programm-Zahler oder PC), ob der Befehl einen Be-
fehls-Cache-Fehler erlitten hat, und die Latenzzeit,
die notwendig war, um den Fehler zu bearbeiten.
Falls dieser Befehl zu einer Speicher-Operation fuhrt,
dann Bestimmen, ob der Befehl einen Daten-Ca-
che-Fehler erlitt, und Messen der Latenzzeit, um die
Speicher-Anforderung zu erfillen. Weiterhin kann die
Zeitdauer, die der Befehl in jeder Pipeline-Stufe be-
notigt, gemessen werden. Die Profil-Informationen
kénnen auch anzeigen, ob der Befiehl ausgeschie-
den oder ausgesondert wurde, und in dem letzteren
Fall, welche Art eines Trap eine Ausflihrung des Be-
fehls, um ausgesondert zu werden, verursachte.
[0049] Diese Informationen werden in einem Satz
von Profilierungs-Registern zusammengestellt, wenn
der Befehl durch die Ausfiihrungs-Pipeline fortfahrt.
Wenn ein Befehl eine Ausflihrung beendet, wird er
entweder aufgegeben oder er wird ausgesondert,
wobei eine Unterbrechung zu einer Software auf ei-
nem héheren Niveau zugefihrt wird. Die Software
kann dann die Informationen, die in den Profilie-
rungs-Registern vorhanden sind, in einer Vielfalt von
Arten und Weisen verarbeiten.

[0050] Die offenbarte Technik ist eine Verbesserung
gegeniber einer existierenden, eine Funktion Uber-
wachenden Hardware, und kann effektiv unter relativ
niedrigen Hardware-Kosten in modernen Mikropro-
zessoren ausgeflihrt werden, die Befehle, aulerhalb
der Reihenfolge, ausgeben koénnen.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0051] Fig. 1 zeigt ein Blockdiagramm eines Com-
putersystems mit einer befehlsgesteuerten Zu-
stands-Abtastung;

[0052] Fig. 2 zeigt ein Blockdiagramm einer Mikro-
prozessor-Ausfliihrungs-Pipeline zum Verarbeiten
von abgetasteten Befehlen;

[0053] Fig. 2b zeigt ein Blockdiagramm der Pipe-
line, die Zustands-Informationen darstellt, die abge-
tastet werden kénnen;

[0054] Fig. 3 zeigt ein Blockdiagramm einer Regis-
ter-Datei zum Speichern von Profil-Informationen;
[0055] Fig. 4 zeigt ein Blockdiagramm eines erhéh-
ten Befehls;

[0056] Fig. 5 zeigt ein Blockdiagramm zum Profilie-
ren von ausgewahlten Befehlen;

[0057] Fig. 6 zeigt eine schematische Darstellung

6/23

DE 698 19 849 T2 2004.09.02

einer Schaltung zum Messen von Pipeline-Latenzzei-
ten;

[0058] Fig. 7a zeigt ein Flussdiagramm eines Ver-
fahrens zum Abtasten von Befehlen; und

[0059] Fig. 7b zeigt ein Flussdiagramm eines Ver-
fahrens zum Abschéatzen von Statistiken Uber die Ei-
genschaften von Befehlen, verarbeitet durch die Pro-
zessor-Pipeline.

System-Ubersicht

[0060] Fig. 1 stellt ein Computersystem 100 dar,
das das Abtastverfahren und die -vorrichtung, die
hier beschrieben sind, verwenden kann. Das System
100 umfasst einen oder mehrere Prozessoren) 110,
sich auBerhalb des Chips befindliche Speicher 120
und Eingangs/Ausgangs-Schnittstellen (1/0) 130,
verbunden durch Busleitungen 140. Die Prozessoren
110 kénnen auf integrierten Halbleiterchips als Mehr-
fach-Ausfiuhrungs-Pipelines 111 ausgefiihrt werden,
umfassend funktionale Ausfiuhrungseinheiten, sich
auf dem Chip befindliche Daten-Cache (D-Cache)
113 und Befehls-Cache (I-Cache) 112, zum Beispiel
der Digital Equipment Corporation Alpha 21264 Pro-
zessor. Der Prozessor-Chip 110 umfasst auch eine
Hardware 119, die in gréRerem Detail nachfolgend
beschrieben ist, zum Abtasten von Prozessor-Zu-
standen fir ausgewahlte Befehle.

[0061] Die sich aufierhalb des Chips befindlichen
Speicher 120 kdnnen hierarchisch angeordnet wer-
den, umfassend Cache fur allgemeine Zwecke
(B-Cache oder SRAM) 121, flichtige Speicher
(DRAM) 122 und dauerhafte Speicher (Disk) 123. Die
I/0 130 kann dazu verwendet werden, Daten zu dem
System 100 einzugeben und davon auszugeben.

Operation

[0062] Wahrend der Operation bzw. des Betriebs
des Systems 100 werden Befehle und Daten von
Software-Programmen in den Speichern 120 gespei-
chert. Die Befehle und Daten werden herkdmmlich
unter Verwendung von bekannten Compiler-, Linker-
und Loader-Techniken erzeugt. Die Befehle und die
Daten werden zu der Ausfiihrungs-Pipeline 111 eines
der Prozessoren 110 Uber die Cache 112-113 Uber-
tragen. In der Pipeline werden die Befehle flr eine
Ausfiuhrung decodiert. Einige der Befehle arbeiten in
Bezug auf die Daten. Andere Befehle steuern den
Ausfihrungsfluss der Programme.

[0063] Es ist erwilinscht, detaillierte Funktions-Da-
ten zu sammeln, wahrend die Befehle ausgefiihrt
werden. Funktions-Daten kénnen zu Speicher-Ope-
rationen und Ausfihrungs-Ablaufen in Bezug gesetzt
sein.

Prozessor-Pipeline

[0064] Fig. 2a stellt eine Ausfihrungs-Pipeline 200
eines der Prozessoren 110 der Fig. 1 dar, die eine

Vielzahl von Stufen besitzt, die seriell angeordnet
sind, wie, zum Beispiel, Abruf-(Fetch-), Auflis-
tungs-(Map-), Ausgabe-(Issue-), Ausflihrungs-(Exe-
cute-) und Ausscheidungs-(Retire-) Einheiten, und
zwar jeweils 210, 220, 230, 240 und 250. Die Rate,
unter der die Pipeline 200 Informationen (Daten und
Befehle) verarbeitet, wird durch Systemtaktsignale
auf Leitungen 201 verarbeitet, d. h. sogenannte Takt-
~Zyklen".

[0065] Jeder Takt-Zyklus definiert einen ,Schlitz"
oder ein Intervall einer Zeit, wenn eine Stufe der
Pipeline 200 einen diskreten Umfang einer Verarbei-
tung vornehmen kann. Ein Verarbeitungs-Schlitz
tragt gewdhnlich Vorwarts-Befehle, und, in dem Fall
von Ausflhrungseinheiten, beschrieben nachfol-
gend, Daten, allgemein als ,Datenelemente" nachfol-
gend bezeichnet. In einigen Fallen fahrt, zum Beispiel
bei Verzweigungs-Fehlvorhersagen oder Ca-
che-Fehlern, oder Pipeline-Stillstdnden, der Takt fort,
zyklisch zu arbeiten, allerdings werden keine bedeu-
tungsvollen Befehle nach vorwarts getragen.

[0066] Als ein Vorteil kénnen die vorliegende Vor-
richtung und das Verfahren Zustands-Informationen
Uber Prozessor-Schlitze abtasten, die ,Abfall" (,gar-
bage") oder keine nitzlichen Daten flihren. Diese
sind als ,verschwendete" Schlitze bekannt. Ein Iden-
tifizieren und Abtasten von verschwendeten Schlit-
zen kann ein wichtiger Precursor sein, um Aufgaben
zu optimieren, da verschwendete Schlitze nicht nitz-
lich arbeiten, und deshalb die Systemfunktion ver-
schlechtern. Deshalb sind das, allgemein, was hier
abgetastet wird, nicht einfach ,Ereignisse" oder ,Be-
fehle" wie im Stand der Technik, sonder Zustands-In-
formationen, die dazu in Bezug gesetzt sind, Prozes-
sor-Schlitze durch die Pipeline 200 erzwungenerma-
Ren zu flhren, ob sie nun einem giltigen oder einem
ungultigen Befehl zugeordnet sind.

Abrufeinheit

[0067] Der B-Cache 121 Ubertragt Datenelemente
zu dem I-Cache 112 und dem D-Cache 113 jeweils.
Die Abrufeinheit 210, die einen Typ eines Translati-
on-Look-Side-Buffer (TLB) 205 verwendet, um virtu-
elle Adressen zu physikalischen Adressen aufzulé-
sen, ruft ndchste Befehle, die ausgefiihrtwerden sol-
len, von den |-Cache 112 ab. Die Elemente, die von
den |-Cache 112 abgerufen sind, sind allgemein aus-
fuhrbare Befehle. Allerdings kdnnen diese auch un-
gultige Befehle sein, wie zum Beispiel in dem Fall,
dass dem I-Cache, ,Abfall" Daten fehlen, d. h. kein
Befehl.

[0068] Vorzugsweise wird ein Satz von ,Befehlen"
wahrend eines einzelnen Prozessor-Zyklus abgeru-
fen. Der Satz kann, zum Beispiel, vier Befehle umfas-
sen. Mit anderen Worten ist die Pipeline 200 vier
Schlitze breit. Andere Typen von Prozessoren kon-
nen weniger oder mehr Befehle wahrend eines ein-
zelnen Prozessor-Zyklus abrufen. Allgemein bedeu-
tet dies, dass jeder Zyklus vier Verarbeitungs-Schlit-

7/23

DE 698 19 849 T2 2004.09.02

ze von dem Cache ausfiillt. Einige der Schlitze kon-
nen dann vergeudet werden, wenn der I-Cache 112
nicht die verfigbaren Daten hat. An Stelle eines Pau-
sierens, was die gesamten Verarbeitung anhalt, wer-
den die Schlitze nach vorne in jedem Fall getragen,
um sie fir den Zweck einer Abtastung verfligbar zu
machen, obwohl ein Abfall ,Befehl" in einem Schlitz
niemals fir eine Ausfihrung ausgegeben werden
kann.

[0069] Wahrend eines Abrufens koénnen ausge-
wahlte Befehle mit zusatzlichen Informationen erhdht
werden, um eine Abtastung oder eine System-Profi-
lierung zu ermoglichen. Ein erhdhter Befehl wird
nachfolgend unter Bezugnahme auf Fig. 4 beschrie-
ben. Es sollte angemerkt werden, dass, in anderen
Ausfuhrungen, die Erhéhung der ausgewahlten Be-
fehle in irgendeiner der Stufen des Prozessors statt-
finden kann, einschlie3lich der Ausgabeeinheit 230.

Auflistungs-Einheit

[0070] In dem System 100 werden die Operanden
von Befehlen dynamisch physikalischen Registern
unter Verwendung der Auflistungs-Einheit 220 in der
nachsten Stufe der Pipeline 200 zugeordnet oder
L2aufgelistet". Die Auflistungs-Einheit ordnet physikali-
sche Register zu architekturmafRigen oder ,virtuellen"
Registern zu. Mit anderen Worten kann dabei keine
eins zu eins Korrespondenz zwischen virtuellen und
physikalischen Registern vorhanden sein.

Ausgabeeinheit

[0071] In der nachsten Stufe werden die abgerufe-
nen Befehle durch eine Ausgabeeinheit 230 geord-
net. Die Ausgabeeinheit 230 umfasst eine Ausga-
be-Warteschlange, die einen Eintritt 231 am Kopf der
Warteschlange (head-of-the-queue entry) fir den
nachsten Befehl, der ausgefiihrt werden soll, besitzt.
Es sollte angemerkt werden, dass einer oder mehre-
re Befehle) in der Ausgabeeinheit 230 zum Stillstand
kommen koénnen, da Ressourcen oder Daten, die
durch die Befehle bendtigt werden, nicht verfligbar
sind. Deshalb kénnen andere, anhangige Befehle au-
Rerhalb der Reihenfolge von der Warteschlange 230
-.um" die angehaltenen Befehle herum ausgegeben
werden. Die korrekte Ausfiihrungs-Reihenfolge wird
in der Ausscheidungseinheit (retire unit) 250, die
nachfolgend beschrieben ist, bestatigt werden.

Ausfuhrungs-Einheiten

[0072] Die Befehle werden zu funktionalen Ausfiih-
rungs-Einheiten (EO, ..., E3) 241 und einer La-
de/Speicher-(ld/st)-Einheit 242 ausgegeben. Jede
der Ausflihrungs-Einheiten 241 kann so ausgelegt
sein, um Befehle mit spezifischen Typen von Opera-
tor-Coden (opcoden), zum Beispiel Ganzzahl und
FlieRpunkt-Arithmetik-Verzweigungs- und
Sprung-Befehlen, usw., zu handhaben. Zwischen-

werte kdnnen, wahrend durch die Ausflihrungs-Ein-
heiten verarbeitet wird, erzeugt werden. Die Id/st-Ein-
heit 240 flhrt Speicher-Zugriffs-Befehle, zum Bei-
spiel Laden und Speichern von Daten von und zu
dem D-Cache 113, aus. Die Id/st-Einheit 242 wird
speziell identifiziert, da sie lange Verzégerungen er-
leiden kann. Auch ist anzumerken, dass Spei-
cher-Zugriffs-Befehle mit langen Latenzzeiten ,voll-
standig" lang sein kdénnen, bevor die Daten in den
Prozessor gebracht werden, um einen Durchsatz zu
verbessern.

Ausscheide-Einheit

[0073] Die Beendigung einer Ausfiihrung eines Be-
fehls wird durch die Ausscheide-Einheit 250 gehand-
habt. Die Ausscheide Einheit 250 tbertragt die Verar-
beitungsstufe. Es sollte angemerkt werden, dass ei-
nige Befehle ausgesondert oder Ubersprungen wer-
den sollten. Zum Beispiel kann sich der Ausfuhrungs-
fluss andern, nachdem ein Befehl abgerufen ist, oder
ein Befehl kann ein Ausnahme-Uberspringen erlei-
den. In diesen Fallen werden der Befehl und alle da-
rauffolgenden Befehle, die in der Pipeline bereits
ausgesondert sind, und der spekulative Verarbei-
tungs-Zustand, zuriickgerollt. Als ein Vorteil hier sind
die ausgesonderten oder ,aussortierten" Befehle
auch profiliert, wie verschwendete oder ausgelasse-
ne Prozessor-Schlitze. Mit anderen Worten kann eine
Beendigung ein Aussondern eines vollstdndig ausge-
fuhrten, glltigen Befehls, eine Nachbearbeitung ei-
nes teilweise ausgeflihrten, giltigen Befehls oder ein
Aussondern eines ungiiltigen Befehls oder eines ver-
schwendeten oder ausgelassenen Schlitzes bedeu-
ten.

[0074] Die Grundidee, die hinter der vorliegenden
Technik steht, folgt der Verarbeitung von ,Datenele-
menten" in ausgewahlten ,Schlitzen", Primar-Befeh-
len, wenn sie durch die Stufen der Pipeline 200 fort-
schreiten. Eine Profilierungs-Hardware sammelt dy-
namisch detaillierte Zustands-Informationen. Die Zu-
stands-Informationen koénnen von irgendeiner der
Pipeline-Stufen her kommen, oder von irgendwo in
dem System 100, zum Beispiel von dem Cache auf
dem ersten und dem zweiten Niveau, oder anderen
Untersystemen. Die Zustands-Informationen kénnen
direkt zu spezifischen Ereignissen als Attribut zuge-
ordnet werden.

[0075] Hierbei ist die Design-Strategie diejenige, In-
formationen zusammenzustellen, was schwierig sta-
tisch in einer Profil-Aufzeichnung zu bestimmen ist.
Dies gestaltet die Profil-Aufzeichnung flr Funkti-
ons-Tools, fur eine auf ein Profil gerichtete Optimie-
rung oder zum Vornehmen von Ressource-Zuord-
nungs-Policy-Entscheidungen in Betriebssystemen
oder eine Software auf einem Anwendungs-Level,
nutzlich, einschliellich dynamischer Einstellungen
direkt in Abhangigkeit der Abtastung und Analyse. Es
wird daran erinnert, dass das vorliegenden Verfahren
und die vorliegende Vorrichtung so ausgelegt sind,

8/23

DE 698 19 849 T2 2004.09.02

um auf realen, funktionalen Befehlen zu arbeiten.
[0076] Um zu bestimmen, welche Zustands-Infor-
mationen dahingehend von Interesse sind, um sie als
Teil der Profil-Aufzeichnung zu sichern, ist es nitz-
lich, die Informationen zu priifen, die theoretisch fir
die verschiedenen Stufen der Pipeline 200 eines mo-
dernen Mikroprozessors, aulerhalb der Reihenfolge,
sind, wie dies in Fig. 2b dargestellt ist.

[0077] Wie in Fig. 2b dargestellt ist, sind die Stufen
der Pipeline das Abrufen 210, das Auflisten 220, das
Ausgeben 230, das Ausfuhren 240 und das Aus-
scheiden 250. Wahrend irgendeiner der Stufen kann,
in Abhangigkeit von der bestimmten Ausfiuhrung, ir-
gendein Befehl 202 ,in-flight", verarbeitet durch die
Pipeline 200, zum Abtasten durch die Leitung 512
ausgewahlt werden. Die Auswahl wird durch einen
Wert eines Zahlers 510 kontrolliert. Der Wert des
Zahlers kann durch die Leitung (init) 511 initialisiert
werden.

[0078] Zustands-Informationen, wie beispielsweise
Befehls-Adressen (PC) 281, Verzweigungs-Histo-
rie-Bits (branch history bits — HIST) 282, Stufen-La-
tenzzeiten (stage latencies) 283, Anzeige Uber die
vorgenommene Verzweigung (T) 287, Daten-Adres-
se (ADDR) 284, Daten-Fehler (MISS) 285, Ausschei-
dungs-Status 286, kdnnen auf Leitungen 288 abge-
tastet werden. Eine Beendigung der Verarbeitung der
ausgewahlten Befehle kann ein Unterbrechungs-Sig-
nal auf der Leitung 289 erzeugen. Das Unterbre-
chungs-Signal 289 kann bewirken, dass die Software
die Zustands-Informationen 281-286 Uber Leitungen
299 abtastet.

[0079] Alternativ kann eine Software die Leitung
289 uber ein internes Prozessor-Register 541 abfra-
gen.

Superscalar-Out-of-Order-Prozessor-Architektur

[0080] Ein Out-of-Order-Ausfiihrungs-Prozessor
bzw. ein Prozessor mit einer Ausfiihrung auRerhalb
der Reihenfolge ruft Befehle in der Reihenfolge ab
und scheidet sie aus, fihrt sie allerdings entspre-
chend deren Daten-Abhangigkeiten aus. Ein Befehl
ist dasjenige, dass er sich von der Zeit an ,in Bewe-
gung" (,in-flight") befindet, zu der er abgerufen ist, bis
er endet, z. B. ausscheidet, oder ausgesondert wird.
Befehle werden, nach einem Auflisten, in der Ausga-
beeinheit 230 platziert, und warten dort, bis Register,
die Eingangs-Operanden halten, aktualisiert werden.
[0081] Bei jedem Prozessor-Zyklus ruft die Ab-
rufeinheit 210 einen Satz von Befehlen von dem Be-
fehls-Cache 112 ab und codiert sie. Der Befehl-Deco-
dierer, der ein Teil der Abrufeinheit 210 sein kann,
identifiziert, welche Befehle in dem abgerufenen Satz
ein Teil der Befehl-Datenfolge ist. Da es mehrere Zy-
klen bendétigt, um den Programm-Zahler (PC) eines
nachsten Befehls aufzulésen, um abgerufen zu wer-
den, wird der nachste PC durch einen Verzweigungs-
oder Sprung-Pradikator vorhergesagt, der Teil der
Abrufeinheit 210 sein kann. Falls die Vorhersage

nicht korrekt ist, dann wird der Prozessor die fehlin-
terpretierten Befehle aussondern, d. h. der Befehl,
abgerufen auf einem ,schlechten" Pfad, und wird ein
Abrufen von Befehlen auf dem ,guten" Pfad erneut
starten.

[0082] Um zu ermdglichen, einen Vorgang
Out-of-Order auszufiihren, werden Register dyna-
misch durch die Abbildungseinheit 220 umbenannt,
um Konflikte eines Schreibens nach einem Lesen,
und eines Schreibens nach einem Schreiben, zu ver-
hindern. Zwei Befehle, die dasselbe, virtuelle Regis-
ter beschreiben, kénnen sicher auRerhalb der Rei-
henfolge (out-of-order) ausgefuhrt werden, da sie un-
terschiedliche, physikalische Register beschreiben
werden, und Verbraucher der virtuellen Register wer-
den die geeigneten Werte erhalten. Befehle werden
abgerufen, aufgelistet bzw. abgebildet und erneut
versucht, und zwar in der Reihenfolge, obwohl sie au-
Rerhalb der Reihenfolge ausgefiihrt werden konnen.
[0083] Die Register-Abbildungseinheit 220 ordnet
Operanden von abgerufenen Befehlen giltigen, phy-
sikalischen Registern zu. Das bedeutet, dass die vir-
tuellen Namen der Register-Operanden zu dem phy-
sikalischen Registerraum des Prozessors umben-
annt werden. Befehle gehen dann zu der Befehl-War-
teschlange 230 weiter, wo sie auf zwei Ereignisse,
vor einer Ausflihrung, warten. Zuerst missen deren
Register-Abhangigkeiten aufgelést werden. Als zwei-
tes missen die Ressourcen, die den Befehl bendti-
gen, z. B. Ausfiihrungseinheiten, Register, Ca-
che-Ports, Speicher-Warteschlangen, usw., verflg-
bar sein. Dies bedeutet, dass die erforderlichen Res-
sourcen nicht fiir irgendwelche momentan aufgeliste-
ten Befehle erneut zugeordnet werden kénnen.
[0084] Wenn diese zwei Bedingungen fir einen Be-
fehl erfillt sind, werden die Operanden des Befehls in
der physikalischen Register-Datei durchgesehen.
Der Inhalt der Operanden-Register und von einigen
Informationen Uiber den Befehl werden dann zu einer
geeigneten Ausflihrungseinheit 240 geschickt und
ausgefihrt. Wenn der Befehl in seiner Ausflhrung
beendet ist, und der Befehl der alteste ,nicht ausge-
schiedene" Befehl in dem Prozessor ist, wird der Be-
fehl ausgeschieden. Dies gibt die Ressourcen, ver-
wendet durch den Befehl, frei, wie beispielsweise
physikalische Register und Cache-Ports.

[0085] Zahlreiche Ereignisse kénnen die Ausfih-
rung eines Befehls verzdgern. Vor der Pipeline kann
die Abrufeinheit 210 aufgrund eines Fehlers eines
[-Cache 112 steckenbleiben bzw. blockieren oder die
Abrufeinheit 210 kann Befehle eines fehlerhaft vor-
hergesagten Wegs abrufen. Die Abbildungseinheit
220 kann aufgrund eines Fehlens von freien, physi-
kalischen Registern, oder aufgrund eines Fehlens
von freien Schlitzen in der Ausgabeeinheit 230, blo-
ckieren.

[0086] Befehle in der Ausgabeeinheit 230 kdnnen
darauf warten, dass deren Register-Abhangigkeiten
erfillt werden, oder auf die Verfligbarkeit von Ausflih-
rungseinheiten 240. Befehle kdnnen aufgrund von

9/23

DE 698 19 849 T2 2004.09.02

Fehlern in dem D-Cache blockieren. Befehle kénnen
abgefangen werden, da sie spekulativ entlang eines
schlechten Pfads ausgegeben wurden, oder da der
Prozessor eine Unterbrechung vornahm, wie bei-
spielsweise eine illegale Operation oder eine Spei-
cheradresse. Viele dieser Zustande sind schwierig
zum Zeitpunkt der Zusammenstellung vorherzusa-
gen, und alle davon verschlechtern die Funktionswei-
se des Systems 100. Dies gestaltet es lohnenswert,
die Informationen, verfigbar auf Leitungen 288, ab-
zutasten.

Profil-Informations-Register

[0087] Deshalb ist, wie in Fig. 3 dargestellt ist, ein
Speicher 300 zum Speichern von Profil-Informatio-
nen fur jeden Befehl, der abgetastet werden soll, vor-
gesehen. Der Speicher 300 kann in der Form einer
Register-Datei oder eines Puffers vorliegen. Mit an-
deren Worten wird ein ausgewahlter Befehl, der ab-
getastet werden wird, direkt mit der Register-Datei
300 identifiziert werden. Die Register-Datei 300 kann
eine Vielzahl von Registern umfassen. Alternativ
kann die Datei 300 als ein einzelnes, indexierbares
Register mit mehreren Feldern ausgefiihrt werden.
[0088] Die Datei 300 ist mit den Komponenten der
Pipeline 200 durch Leitungen 288 der Fig. 3b gekop-
pelt, so dass Funktions-Informationen, die zu dem
ausgewahlten Befehl in Bezug gesetzt sind, fir jede
Stufe der Pipeline 200 erfasst werden koénnen. Es
sollte angemerkt werden, dass die Profil-Register
300 mehr als einfache ,Ereignis" Zahler sind, wie dies
im Stand der Technik vorgefunden wird, wobei hier
die Register Funktions-Informationen zusammenstel-
len, die zu spezifischen, bekannten Befehlen und Er-
eignissen zuordenbar sind.

[0089] InFig. 3 hangtdie Zahl von Bits, die flr jedes
Register zugeordnet ist, von dem Typ von Informatio-
nen, die darin gespeichert sind, ab, zum Beispiel Be-
fehls-Adressen (64 Bits), Latenzzeiten, d. h. Zy-
klus-Zahlungen (8 oder 10 Bits), diskrete Ereignisse
(1 Bit pro Ereignis), usw.. Diese Zahlen sind nur eine
Richtlinie. Andere Ausfihrungen koénnen unter-
schiedliche Zahlen von Bits fur die verschiedenen
Register 300 verwenden, wobei dies eine Design-
wahl ist.

[0090] In der bevorzugten Ausfihrungsform spei-
chert ein Profil-PC-Register 310 den PC des ausge-
wahlten Befehls. Wie nachfolgend beschrieben ist,
besitzt ein Befehl, der profiliert werden soll, ein ,,Pro-
fil" Bit, das zugeordnet ist. Das PC-Register 310 kann
auch den Opcode des ausgewahlten Befehls umfas-
sen. Zusatzlich kénnen Prozessoren, die eine Mul-
ti-Threaded-Ausfiihrung von zusatzlichen Bits des
Registers 300 ermdglichen, den Identifizieren des
Thread speichern. Andere Felder des Registers 310
kdnnen den Prozess-ldentifizierer, die Adres-
sen-Raum-Zahl, die CPU-Zahl und die Befehls-Zahl
(inum) des Befehls, der ausgefihrt werden soll, spei-
chern. Zusétzlich kann, bei Prozessoren, die mehre-

re, logische Register-Satze haben, d. h. Hard-
ware-Zusammenhange, und gleichzeitig Threads
ausfiihren, das Register 310 einen Hardware-Kon-
text und Thread-Identifizieret speichern. Durch Spei-
chern dieser Informationen kénnen die Profil-Infor-
mationen direkt einem spezifischen Befehl zugeord-
net werden. Zusatzlich kdnnen die abgetasteten In-
formationen entsprechend zu einem Bereich von
Adressen, einem Opcode, Ausfihrungs-Threads,
Adressen-Raumen, und dergleichen, gefiltert wer-
den.

[0091] Ein profil-effektives Adressen-Register 320
wird mit einer Adresse, zugeordnet dem ausgewahl-
ten Befehl, geladen. Falls der Befehl ein Spei-
cher-Zugriffs-Befehl ist, dann kann die physikalische
Adresse, die sich aus der Translation der virtuellen
Speicher-Adresse ergibt, in dem Register 320 erfasst
werden. Falls der Befehl ein Sprung oder eine Ver-
zweigung ist, dann kann die physikalische Adresse,
die sich aus der Translation des virtuellen Ziel-PC er-
gibt, in dem Register 320 erfasst werden.

[0092] Als ein Vorteil der vorliegenden Abtasttech-
nik ist es mdglich, uber alle ,Befehle", verarbeitet
durch die Pipeline 200, abzutasten, unabhangig von
der Abtastrate. Die Befehle kdnnen gultige Befehle,
unglltige Befehle, nicht-unterbrechbare Befehle,
oder ,Abfall" (,garbage") Befehle sein. Demzufolge
sind die erfassten, effektiven Adressen statistisch fir
das Gesamtverhalten des Programms reprasentativ.
Durch Erfassen der effektiven Adressen von abge-
tasteten Befehlen koénnen Speicherzugdnge und
Ausfihrungs-Ablaufe prazise zu aktuellen, dynami-
schen Ausflihrungen korreliert werden.

[0093] Ein profiliertes Ereignis-Register 330 wird in,
zum Beispiel, Ein-Bit-Felder unterteilt. Die 1-Bit-Fel-
der zeichnen Ereignisse fur den ausgewahlten Befehl
auf. Wenn ein Befehl zuerst ausgewahlt ist, wird das
Register geldscht. Ereignisse kdnnten Cache-Fehler,
Verzweigungs-Fehlvorhersagen, Ressource-Konflik-
te, Traps- und Ausflhrungs-Bedingungen, ausschei-
den/aussondern/ungultig, = TLB-Fehler, genom-
men/nicht genommen, Daten-Abhangigkeits-Blockie-
rung, Ressovre-Abhangigkeits-Blockierungen, usw.,
sein. Es ist anzumerken, dass diese Ausflhrung er-
moglicht, dass mehrere Ereignisse einem einzelnen
Befehl zuordenbar sind. Es sollte angemerkt werden,
dass Ereignis-Informationen flir sowohl ausgeschie-
dene als auch ausgesonderte Befehle zusammenge-
stellt werden. Um die GréRe des Ereignis-Registers
330 zu verringern, kdnnen einige der Bit-Felder dazu
verwendet werden, unterschiedliche Typen von ge-
genseitig exklusiven Ereignissen, in Abhangigkeit
von dem opcode des Befehls, aufzuzeichnen.

[0094] Ein profiliertes Pfad-Register 340 wird dazu
verwendet, um neuere genommene/nicht genomme-
ne Verzweigungs-Informationen von einer Verzwei-
gungs-Historie-Tabelle zu erfassen. Verzwei-
gungs-Historie-Tabellen sind im Stand der Technik
fur andere Verwendungen ausreichend bekannt.
Eine herangezognene Historie einer globalen Ver-

10/23

DE 698 19 849 T2 2004.09.02

zweigung kann dazu verwendet werden, den Ausfih-
rungs-Pfad anzuzeigen, der den ausgewahlten Be-
fehl verursachte, um abgerufen zu werden. Es ist an-
zumerken, dass der Befehl nicht ein Verzwei-
gungs-Befehl fir diese Informationen sein muss, um
nutzlich zu sein. Die Verwendung der Pfad-Informati-
onen ist in gréRerem Detail nachfolgend beschrie-
ben.

[0095] Latenzzeit-Register 350 speichern Zeitab-
stimmungs-Informationen, die an Prifpunkten heran-
gezogen werden, wahrend sich ein ausgewahlter Be-
fehl in Bewegung befindet, z. B. zwischen den ver-
schiedenen Stufen der Pipeline 200. Die Prufpunkte
kénnen sich von Prozessor zu Prozessor in Abhan-
gigkeit davon unterscheiden, ob ein Befehl angehal-
ten werden sollte, auf ein bestimmtes Ereignis oder
eine Ressource wartend. Jedes Latenz-Register 350
zahlt die Zahl von Zyklen eines Befehls, verbraucht
zwischen zwei Prifpunkten.

[0096] Wenn der ausgewahlte Befehl einen Prif-
punkt passiert, d. h. in eine nachste Stufe in der Pipe-
line 200 eintritt, wird das entsprechende Latenz-Re-
gister 350 zuerst geléscht und dann einmal pro Zy-
klus erhoht, bis der Befehl den nachsten Prifpunkt
passiert, wenn das nachste Latenz-Register initiali-
siert wird und eine Zahlung beginnt. Die Zahl von La-
tenz-Registern 350 hangt von der Zahl von Stufen
der Pipeline 200 in einer bestimmten Ausfiihrung ab.
Ein vollstandiges Latenz-Profil ist in den Latenz-Re-
gistern 350 gespeichert, wenn der Befehl ausgeson-
dert wird oder ausscheidet.

[0097] Eine Liste von potenziell nutzlichen Latenz-
zeiten, um sie zusammenzustellen, umfasst:
fetch-to-map, map-to-data-ready, data ready-to-exe-
cute, execute-to-retire ready, retire ready-to-retire de-
lays. Fur Speicher-Befehle (Laden und Speichern)
kénnen Latenzzeiten ausgegeben werden, um abzu-
schlieRen (issue-to-completion). Diese letzte Latenz-
zeit unterscheidet sich von anderen Latenzzeiten da-
hingehend, dass einige Speicher-Operationen aus-
geschieden werden kdnnen, bevor die Daten, auf de-
nen sie gearbeitet haben, tatsachlich in den Prozes-
sor gebracht worden sind. Diese Latenzzeiten kénn-
ten direkt in den Registern 350 gezahlt werden, oder
die Register kdnnen grobe Zyklus-Zahlungen zusam-
menstellen, wobei in diesem Fall die Profilie-
rungs-Software Unterschiede zwischen groben Zah-
lungen fur aufeinanderfolgende Stufen berechnet,
um tatsachliche Latenzzeiten zu bestimmen. Eine
Schaltung, die beispielhafte Pipeline-Latenzzeit-Takt-
zyklen zahlt, wird nachfolgend unter Bezugnahme
auf Fig. 6 beschrieben.

[0098] Das Aktualisieren der Informationen in dem
Register (den Registern) 300 muss nicht unmittelbar
auftreten, wobei eine Verzdgerung akzeptierbar ist.
Alles das, was erforderlich ist, ist, dass die Unterbre-
chung, die die Tatsache signalisiert, dass der ausge-
wahlte Befehl abgeschlossen ist (ausgeschieden
oder ausgesondert ist), verzdgert wird, bis alle Infor-
mationen in der Register-Datei 300 aktualisiert wor-

den sind, oder der Unterbrechungs-Handler kann an-
halten, bis die Profil-Datei 300 aktualisiert worden ist.
[0099] Es sollte angemerkt werden, dass die Pro-
fil-Register-Datei 300 repliziert werden kann. Falls
mehrere Kopien der Profil-Register-Datei vorhanden
sind, dann konnen mehrere Befehle fir ein Profilie-
ren, entweder seriell, oder gleichzeitig, ausgewahlt
werden. In diesem Fall wird jeder ausgewahlte Fall
explizit mit einer spezifischen Register-Datei so, wie
dies nachfolgend beschrieben ist, identifiziert. Meh-
rere Register-Dateien kénnen auf ein einzelnes Un-
terbrechungssignal hin abgetastet werden, um den
Umfang eines Overhead zu verringern.

Identifizieren eines ausgewahlten Befehls

[0100] Wie in Fig. 4 dargestellt ist, umfasst jeder
Befehl 400 ein Abtastfeld. Zum Beispiel kann das Ab-
tastfeld ein Ein-Bit-Tag (Ein-Bit-Zeichen), bezeichnet
als ,Abtast"-Bit (S) 401 sein. Wenn das Abtast-Bit
401 aufgestellt ist, wird der Befehl zum Abtasten aus-
gewahlt. Ein Aufstellen des Bits 401 aktiviert die Ab-
tast-Hardware, die die Profil-Informationen zusam-
menstellt, und bewirkt auch die Unterbrechung, wenn
der ausgewahlte Befehl abschliet (ausgeschieden
oder ausgesondert wird). Alternativ kann jeder ,Be-
fehl", der abgerufen ist, aufeinanderfolgend mit ei-
nem ,inum" Wert nummeriert werden. In diesem Fall
kénnen Befehle mit spezifischen inum Werten ausge-
wahlt werden. Der Mechanismus zum Auswahlen
von Befehlen wird nachfolgend beschrieben.

[0101] Die Profil-Register-Datei 300 kann dann ge-
lesen werden, wenn die Felder aktualisiert worden
sind und das Unterbrechungssignal erzeugt ist. Das
Unterbrechungssignal kann bewirken, dass die privi-
legierte Profilierungs-Software (PSW) die Inhalte der
Profil-Register 300 verarbeitet. Es sollte angemerkt
werden, dass, in dem Fall, bei dem mehrere Abtas-
tungen aufgezeichnet werden, eine einzelne Unter-
brechung die Abtastung der Funktions-Daten fir
mehrere, ausgewahlte Befehle bewirken kann.
[0102] In Abhangigkeit von der Ausflihrung kann der
erhdhte Befehl 400 die folgenden, zusétzlichen Fel-
der, bis zu drei Befehl-Operanden (op1, op2 und op3)
411-413, den Programm-Zahler (PC) 420, den Ope-
rator-Code (opcode) 430, umfassen. Ein glltiges
Feld M 431 kann anzeigen, ob der ,Befehl" in dem
ausgewahlten Schlitz gultig ist oder nicht, und zwar
durch Einstellen eines Ein-Bit-Felds auf entweder
wahr oder falsch. Die Felder 440 und 450 kénnen
zum Anzeigen eines Befehls, der zu einem |-Cache
und TBL-Fehler, jeweils, in Bezug gesetzt ist, umge-
kehrt werden. Es ist anzumerken, dass, da eineinzel-
ner Befehl mehrere Operanden umfassen kann,
mehrere Fehler fur diesen Befehl mdglich sind.

Profil-Register-Datei-ID

[0103] In einem leicht komplizierteren Design kon-
nen mehrere Befehle gleichzeitig profiliert werden.

11/23

DE 698 19 849 T2 2004.09.02

Bei dieser Ausfiihrungsform ist eine Vielzahl von Re-
gister-Dateien 300 oder einzelnen, grofReren Regis-
tern mit Unterfeldern vorhanden, wobei die Zahl von
Dateien 300 der Zahl von sich in der Bearbeitung
(in-flight) befindlichen Befehlen entspricht, die gleich-
zeitig profiliert werden kénnen. Um diesen Fall zu
handhaben, wird Befehl 400 auch erhéht, um ein Ab-
tast-Register-Datei-Indentifizierer-(ID)-Feld 402 zu
umfassen. Dies ermoglicht auch, dass Profil-Informa-
tionen direkt mit einer der verschiedenen Regis-
ter-Dateien verknipft werden. Wie vorstehend ange-
fuhrt ist, ist dabei eine direkte Zuordnung zwischen
ausgewahlten Befehlen und Profil-Registern vorhan-
den. Die Profil-Informationen, zusammengestellt in
den Registern, sind deshalb direkt einem spezifi-
schen Befehl zuordenbar.

[0104] Gerade wenn nur ein sich in der Verarbeitung
befindlicher Befehl zu einem Zeitpunkt profiliert wird,
kann es nutzlich sein, die Datei oder das Register
300 durch das ID-Feld 402 indexiert zu haben, so
dass die Kosten des Unterbrechungs-Handlex der
Profilierungs-Software Uber mehrere Befehl-Abtas-
tungen amortisiert werden kénnen. Um zu bestim-
men, ob ein Befehl innerhalb eines Satzes von Be-
fehlen liegt, kann ein ausgewahlter Befehl unter Ver-
wendung einer ,verdrahteten ODER" (,wired-OR")
Operation durchgefiihrt werden.

Zufall-Abtastung

[0105] Das Overhead der vorliegenden Profilierung
wird durch Einschranken der Zahl von Befehlen, die
gleichzeitig profiliert werden kénnen, z. B. Bit 401
wird eingestellt, reduziert. Anstelle eines Profilierens
jedes Befehls in einem Programm oder einem Teil
des Programms werden hier Befehle, die profiliert
werden sollen, wahrend einer spezifischen Stufe der
Prozessor-Pipeline 200, ausgewahlt, z. B. wahrend
eines Abrufens, und die ausgewahlten Befehle wer-
den durch Aufstellen des Abtast-Bits 401 mit einem
Zeichen versehen. Falls das Abtast-Bit 401 aufge-
stellt ist, dann fuhren die Komponenten der Pipeline
200 die Profil-Informationen zu der (den) Profil-Re-
gister-Dateien) 300 weiter.

[0106] Die nachfolgenden Abschnitte beschreiben
die unterstitzenden Details einer Befehl-Level-Profi-
lierung, wie es hier beschrieben ist.

In der Bearbeitung befindliche Zustande

[0107] Zuerst wird jeder decodierte Befehl-Zustand,
der durch die Prozessor-Pipeline 200 hindurchfiihrt,
mit zusatzlichen Informationen erganzt bzw. erhéht,
wie dies vorstehend beschrieben ist. Ein Befehl wird
dahingehend angesehen, dass er sich von der Zeit
an in der Bearbeitung befindet, zu der er abgerufen
ist, bis er ausgeschieden oder ausgesondert wird.
Wie vorstehend angegeben ist, wird der Befehl mit
zumindest einem Abtast-Bit 401 erhdht bzw. erganzt.
Das Abtast-Bit 401 ist Teil des Zustands von jedem

sich in der Bearbeitung befindlichen Befehl und einer
Cache/Speicher-Anforderung. Wenn das Bit 401 auf-
gestellt ist, zeigt das Bit an, dass Profilierungs-Infor-
mationen fir diesen Befehl aufgezeichnet sind, an-
sonsten nicht.

[0108] In einem vereinfachten Design wird nur ei-
nem sich in der Bearbeitung befindlichen Befehl zu
einem Zeitpunkt ermdglicht, dass sein Abtast-Bit 401
aufgestellt ist. Das Abtast-Bit 401 verbleibt fiir den
ausgewahlten Befehl aufgestellt, bis der Befehl aus-
scheidet oder ausgesondert wird. In einem komple-
xeren Design mit Mehrfach-Register-Dateien 300
kénnen die mehrfachen, sich in der Bearbeitung be-
findlichen Befehle individuell profiliert werden und zu-
satzliche Bits kdnnen aufgestellt werden.

Auswahl und Abtasten eines profilierten Befehls

[0109] Wie in Fig. 5 dargestellt ist, schreiten, fir
eine Abruf-Stufen-Ausfiihrung, eine Auswahl von Be-
fehlen, die profiliert werden sollen, und ein Abtasten
von Profil-Informationen so fort, wie dies nachfolgend
angegeben ist. Ein Abruf-Zahler 510 wird durch, zum
Beispiel, privilegierte Profilierungs-Software (PSW)
520 (ber die Leitung 511 initialisiert. Die PSW 520
kann den Zahler 510 mit einem Wert, zufallig ausge-
wahlt von einem Intervall von Werten, das eine vor-
bestimmte Grofle besitzt, initialisieren. Demzufolge
werden die abgetasteten Befehle nicht mit irgendwel-
chen spezifischen Mustern in der Ausfiihrung von Be-
fehlen korrelieren. Die GréRRe des Intervalls bestimmt
die durchschnittliche Frequenz einer Abtastung. Die
Grolke des Intervalls kann variiert werden. Andere
Zufalls-Techniken, um den Wert des Zahlers 510 zu
initialisieren, umfassend eine Hardware, kénnen
auch verwendet werden.

[0110] Ohne eine zuféallige Abtastung kann es, zum
Beispiel dann, wenn Befehle unter einer festgelegten
Frequenz, wie im Stand der Technik, abgetastet wer-
den, nicht mdglich sein, ein statistisch korrektes Profil
aller Befehle, die abgerufen sind, z. B. die aggregier-
te Operation des Systems 100, zu erzeugen. Dies gilt
insbesondere fiir ein Ausfiihrungs-Thread bzw. einer
Ausfuhrungsfolge, die Ausfiihrungsschleifen besitzt,
die eine Anzahl von Befehlen umfasst, die nicht sehr
wichtig in Bezug auf die Rate einer Abtastung sind, z.
B. fir eine Schleife mit zwei Befehlen und einem Ab-
tastintervall von 65536 Befehlen. Als ein Vorteil wer-
den zufallig ausgewahlte Befehle Korrelationen, un-
abhangig der Lange des Abtastintervalls, erzeugen.
[0111] Fur jeden Befehl 400, der abgerufen ist, wird
der Zahler 510 erhoht, oder, alternativ, in einer unter-
schiedlichen Ausfiihrung, von seinem Anfangswert
erniedrigt, und zwar durch die Abrufeineinheit 210
der Pipeline 200. Wenn der Zahler 510, in Abhangig-
keit von der Ausflihrung, entweder tberlauft oder un-
terlauft, besitzt der momentan abgerufene Befehl
sein Abtast-Bit 401 aufgestellt, und das ID-Feld 402
kann auch initialisiert werden, wenn mehrere Befehle
zum Abtasten ausgewahlt werden.

12/23

DE 698 19 849 T2 2004.09.02

[0112] In einer alternativen Ausfuhrungsform wird
der Zahler 510 jeden Zyklus erhoht, anstelle davon,
dass dies fur jeden Befehl, der abgerufen ist, erfolgt,
z. B. der Zahler 510 zahlt Abruf-Gelegenheiten und
nicht tatsachliche Befehle, die abgerufen sind. Zum
Beispiel sind, falls die Abrufeinheit 210 vier Elemente
von dem 1-Cache 112 wahrend jedes Taktzyklus ab-
rufen kann, dann vier Abruf-Gelegenheiten vorhan-
den. Es kann ausreichend sein, dass ein oder mehre-
re Abrufvorgang (Abrufvorgange) von dem |-Cache
fehlen werden, oder ein ,schlechter" Befehl abgeru-
fen wird. In dem Fall eines Fehlens wird der Schilitz,
der fUr den fehlenden Befehl verfligbar ist, ,Abfall"
(,garbage") enthalten, und der Befehl muss als un-
glltig markiert werden. Ein schlechter Befehl ist ein
solcher, der auf einem schlechten Ausfihrungs-Pfad
liegt, oder ansonsten ausgesondert werden wird.
[0113] Ein Zahlen von Zyklen, anstelle von abgeru-
fenen Befehlen, vereinfacht vorteilhaft das Design.
Nur ein Zahlen von gliltigen, abgerufenen Befehlen
kann ziemlich kompliziert sein, da der Steuerablauf in
die Gruppe von abgerufenen Befehlen hinein ver-
zweigen und davon heraus verzweigen kann, und es
wird notwendig, alle Befehle zu decodieren, um zu
bestimmen, welche gliltig sind, so dass dies nicht lan-
ger ein einfacher Vorgang von nur einem Erhdhen
des Zahlers um vier ist.

[0114] Als ein Vorteil kann irgendetwas (gute Befeh-
le, schlechte Befehle, Abfall-Befehle), das von dem
[-Cache wahrend eines Zyklus abgerufen ist, zum
Abtasten ausgewahlt werden, so dass die wahre
Funktion des I-Cache 112 und der Pipeline 200 be-
stimmt werden kann. Hierbei ist kein Bias vorhanden,
so dass die Ergebnisse statistisch korrekt die Funkti-
onsweise des Systems abschatzen werden.

Filter-Befehle

[0115] Die abgetasteten Befehl-Informationen kon-
nen durch ein Filter 505 gefiltert werden. Ein Filtern
kann auf der Basis eines Befehl-Opcodes, von Ope-
randen, oder durch noch komplexere Filterkriterien,
wie beispielsweise einen ersten Typ eines Befehls
gefolgt durch einen anderen Typ eines Befehls, inner-
halb einer bestimmten Zeitperiode, erfolgen. Falls ein
Filtern an dem Eingang der Pipeline 200 vorhanden
ist, dann kann der Zahler 510 zuritickgesetzt werden.
Dabei ist eine Anzahl von Arten und Weisen vorhan-
den, um dies so vorzunehmen. In einer Art und Weise
wird der momentane Anfangswert des Zahlers 510 in
einem init-Register 513 gespeichert. Wenn ein Befehl
gefiltert wird, wird der Zahler 510 erneut mit dem
Wert, gespeichert in dem init-Register 513, geladen,
um die anfangliche, randomisierte Auswahl wieder
aufzurufen.

[0116] Nachdem der Befehl erhéht worden ist, liefert
die Pipeline 200 die Profilierungs-Informationen
281-286 der Fig. 2b zu der Register-Datei (den Re-
gister-Dateien) 300. Die Ausscheidungseinheit 250
schlief3t, auf den Befehl-Abschluss oder die Be-

fehl-Aussonderung hin, das Auffullen der Profil-Infor-
mationen ab und erzeugt ein Unterbrechungssignal
auf der Leitung 540, so dass die PSW 520 die Pro-
fil-Informationen abtasten kann.

[0117] Alternativ kann die PSW 520 die Leitung 540
Uber ein internes Prozessor-Register oder eine Spei-
cherstelle (541) abrufen. Als ein Merkmal der vorlie-
genden Technik ist, im Gegensatz zu Profilierungs-
techniken nach dem Stand der Technik, kein Einfluss
in Bezug auf die Prozessor-Zykluszeit vorhanden,
gerade obwohl die vorliegenden Technik prazise In-
formationen Uber Zustédnde Uber den Prozessor lie-
fert. Die einzige Zeiteinschrankung ist diejenige, dass
alle Profil-Informationen aufgezeichnet werden mis-
sen, bevor die Profil-Register 300 abgetastet werden.

Latenz-Zahler

[0118] Fig. 6 stellt eine Schaltung 600 zum Zahlen
von beispielhaften Latenzen bzw. Latenzzeiten dar:
fetch-to-map (FM), map-to-issue (Ml), issue-to-retire
(IR), fetch-to-trap (FT), und issue-to-1dst (ILS). Die
Schaltung 600 umfasst einen Zyklus-Zahler 610, ver-
bunden Uber eine Leitung 611 mit Verriegelungen
620.

[0119] Der Zyklus-Zahler 610 und die Verriegelung
620 werden durch ein Signal Pfetch auf der Leitung
601 initialisiert. Dieses Signal wird dann erzeugt,
wenn ein Befehl, der profiliert werden soll, abgerufen
ist, zum Beispiel ein Signal, abgeleitet von dem Ab-
tast-Bit 401. Der Zahler 610 wird durch Taktsignale
auf der Leitung 609 erhoht. Jedes Taktsignal ent-
spricht einem Prozessor-Zyklus.

[0120] Wenn der Befehl 400 durch die Stufen der
Pipeline 200 fortschreitet, triggern die Zu-
stands-Ubergénge in der Pipeline 200 Signale Pmap,
Pissue, Pretire, Ptrap und PLSdone, und zwar jeweils
auf den Leitungen 602-606. Die entsprechenden
Verriegelungen 620 kénnen auf Leitungen 612-616
zum Speichern in den Profil-Latenz-Registern (oder
Feldern) 350 der Fig. 3 gelesen werden.

Profilierungs-Anwendungen

[0121] Die Profilierungs-(Profiling)-Hardware, die
nachfolgend beschrieben ist, kann in einer Vielfalt
von unterschiedlichen Arten und Weisen verwendet
werden. Da die vorliegende Technik sehr detaillierte
Informationen Uber die Ausflihrung von individuellen
Befehlen liefert, kdnnte eine Anwendung eine grolie
Anzahl von Befehlen profilieren. Die Abtast-Informa-
tionen kdnnen in einem Speicherpuffer fir eine spa-
tere Verarbeitung durch Profiling-Tools gespeichert
werden, um detaillierte Befehl-Level-Informationen
Zu erzeugen.

[0122] Die Informationen kénnen dazu verwendet
werden, zum Beispiel Histogramme von Last-Latenz-
zeiten fur jeden Last-Befehl, Histogramme von Be-
fehl-Ausfiihrungs-Zeiten, und vielleicht sogar eine
moderate umfangreiche Analyse des Pipeline-Zu-

13/23

DE 698 19 849 T2 2004.09.02

stands fir jeden Befehl zu entwickeln. Da die Menge
an Informationen, vorgesehen durch diese Malinah-
me, dahingehend wahrscheinlich ist, dass sie sehr
hoch ist, ist das gesamte Speicher-Overhead der vor-
liegenden Technik auch dahingehend wahrschein-
lich, dass es sehr hoch ist, da ein wesentlicher Um-
fang eines Speicherverkehrs auftritt. Zum Beispiel
wird, falls eine Billion Befehle pro Sekunde abgerufen
werden, und eine Abtastung alle 10.000 abgerufene
Befehle durchgeflhrt wird, dann die Datenrate fir die
Profil-Informationen ungeféhr 2,4 MB pro Sekunde
sein.

[0123] Der nachfolgende Abschnitt beschreibt
durch eine Software ausgeflihrte Verfahren zum Ver-
ringern einer Bandbreite durch Aggregieren von Pro-
fil-Informationen.

Daten-Reduktion durch Filtern von Profil-Informatio-
nen

[0124] Das Volumen bzw. der Umfang von abgetas-
teten Daten kann durch Ignorieren einiger Felder der
Profil-Aufzeichnung verringert werden, z. B. die Da-
ten in den Profil-Registern 300, mit der Ausnahme
dann, wenn sie explizit angefordert werden. Ein Be-
nutzer des Systems 100 kann unterschiedliche Ni-
veaus einer Profilierung winschen. In einem nied-
rigsten Overhead-Mode kann die Profilierungs-Mo-
de-Anwendungs-Software einen Profil-Bericht fir
das gesamte oder einen Teil eines Programms erzeu-
gen, und zwar unter Verwendung nur der PC- und
Retire-Delay-Felder. In Abhangigkeit von der Opti-
mierung, die durchgefihrt werden soll, kbnnen ande-
re per-PC-Werte durch Mitteln oder andere, statisti-
sche Metriken, wie beispielsweise Minimum, Maxi-
mum oder Berechnen einer Standardabweichung,
summiert werden. Falls mehr Zeit bereitgestellt wird,
um Daten zu verarbeiten, kann die Profilierungs-An-
wendung Histogramme von verschiedenen Be-
fehl-Latenzzeiten erzeugen.

[0125] Die effektive Speicher-Adresse, die Verzwei-
gungs-Soll-Adresse und die Verzweigungs-Histo-
rie-Abtastungen werden wahrscheinlich eine teurere
Verarbeitung als die anderen Felder erfordern. Diese
Felder kdnnen wahrscheinlich ignoriert werden, mit
der Ausnahme dann, wenn Daten gesammelt wer-
den, um spezifische Optimierungs-Aufgaben durch-
zufiihren. Unter Bereitstellen der Inter-Befehl-Ab-
ruf-Distanz zwischen Befehlen in Zyklen, kann die
Profilierungs-Anwendung auch Informationen Uber
Level einer Gleichzeitigkeit bzw. Konkurrenz sam-
meln.

[0126] Ein Filtern der Profilierungs-Informationen
kann auch durch Hardware-Einrichtungen vorgenom-
men werden, zum Beispiel ein Masken-Register,
oder eine programmierbare Logik. Zum Beispiel nur
Abtastung, wenn ein Cache-Fehler vorhanden ist,
oder wenn der Befehl ausgeschieden ist, oder wenn
andere Bool'sche Kombinationen von Opcoden,
Operanden, Adressen, Ereignissen und Latenzzeiten

vorhanden sind.
Bestimmung einer Hardware-Operation

[0127] Die vorliegende Profilierungstechnik kann
dazu verwendet werden, ein prazises Verstandnis
der internen Operation eines Ausgabe-Prozessors,
aullerhalb der Reihenfolge, wie beispielsweise den
Alpha 21264 Prozessor, zu erhalten. Eines der ersten
Dinge, das Uber diesen Typ einer Maschinen-Organi-
sation anzumerken ist, ist dasjenige, dass viele Stel-
len vorhanden sein kénnen, wo ein Befehl in der
Pipeline 200 anhalt, und eine groRe Anzahl von
Grunden, warum sie hangen konnten.

[0128] Zum Beispiel kdnnte ein Befehl in der Ausga-
beeinheit 230 anhalten, entweder da einige seiner
Operanden keine Daten sind, die bereit sind, da eini-
ge der Ressourcen, erforderlich fir die Ausflihrung
des ausgewabhlten Befehls, nicht verfliigbar sind, oder
da andere Befehle so ausgewahlt wurden, um sie da-
vor auszufiihren.

[0129] Ein Befehl kdonnte in der Auflistungs-Stufe
hangen bleiben, die virtuell zu einem physikalischen
Register Auflistungen vornimmt, entweder weil die
Maschine auRerhalb der physikalischen Register vor-
handen ist, oder weil sich zu viele Befehle gerade in
der Ausfiihrung befinden, oder weil die Ausgabeein-
heit 230 voll ist; dies bedeutet, dass kein Platz dort
vorhanden ist, um den Befehl, der ausgefihrt werden
soll, einzugeben. Alternativ kann ein Befehl in der
Ausscheidungseinheit hangen bleiben, da zuvor aus-
gegebene Befehle, in der Programm-Reihenfolge,
noch nicht abgeschlossen wurden.

[0130] Eine Bestimmung exakt davon, wo ein Befehl
hangen blieb, warum er hangen blieb und wie lange
er hangen blieb, hangt stark von dem prazisen Zu-
stand der Maschine ab, wenn dieser Befehl ausge-
fuhrt wird. Da der Prozessor so dynamisch ist, ist es
schwierig fur die Software-Funktions-Werkzeuge,
diesen Zustand statistisch zu bestimmen.

Zusammenfassung der Betriebsweise

[0131] Wie in Fig. 7a dargestellt ist, kann ein Ver-
fahren 700 zum Profilieren die folgenden Schritte um-
fassen. Der Profilierungs-Zustand wird im Schritt 710
initialisiert. Hierbei werden Register geléscht und
Zahler werden deren individuellen Werten zugeord-
net. Im Schritt 720 wird ein Befehl abgerufen und ge-
zahlt. Im Schritt 730 wird der Befehl ausgewahlt,
wenn die Zahl von abgerufenen Befehlen seit einer
Initialisierung gleich zu einer vorbestimmten Zu-
falls-Zahl ist. Der ausgewahlte Befehl wird erhdht, um
seine Auswahl anzuzeigen.

[0132] Wenn der ausgewahlte Befehl durch die Aus-
fuhrungs-Pipeline 200 fortschreitet, werden Profil-In-
formationen im Schritt 740 zusammengestellt. Unter
Abschluss (ausgeschieden oder ausgesondert) wer-
den die zusammengestellten Informationen im Schritt
750 abgetastet. Abgetastete Informationen kdénnen

14/23

DE 698 19 849 T2 2004.09.02

fur eine darauffolgende Verarbeitung gepuffert wer-
den. Es ist auch moglich, einen bestimmten Profilie-
rungs-Zustand abzutasten, um detailliertere Informa-
tionen zu extrahieren.

Abschatzungs-Statistiken der Eigenschaften und der
verarbeiteten Befehle

[0133] Wiein Fig. 7b dargestellt ist, schatzt der Pro-
zess 799 Statistiken Uber die Eigenschaften von Be-
fehlen, verarbeitet durch die Pipeline 200, ab. Der
Prozess 799 kann die folgenden Schritte umfassen.
Schritt 751 liest die Profil-Aufzeichnung 300, abge-
tastet so, wie dies vorstehend im Schritt 750 be-
schrieben ist. Die Aufzeichnung wird dann gelesen,
wenn der ausgewahlte Befehl abschlielt. Im Schritt
760 wird die Abtastung ausgewahlt oder ausgeson-
dert, und zwar in Abhangigkeit von einer Funktion
755, die Zustand-Informationen des Systems bertick-
sichtigt.

[0134] Zum Beispiel nimmt die Funktion 755 als Ein-
gangs-Zustands-Informationen 756 solche wie bei-
spielsweise Adressen, Prozess-ldentifizierer, Adres-
sen-Raum-Zahlen, Hardware-Kontext-ldentifizierer
oder Thread-ldentifizieret der ausgewahlten Befehle.
Die Funktion 755 kann auch Zustands-Informationen,
wie beispielsweise Pfad-ldentifizierungs-Informatio-
nen, Opcode, Operanden, Latenzzeiten oder Ereig-
nisse, erfahren durch die ausgewahlten Befehle, ver-
wenden. Die Ereignis-Informationen kénnen einen
Ausscheidungs-/Aussonderungs-/Unglltigkeits-Sta-
tus, Cache-Treffer/Fehler, Verzweigungs-Fehlvorher-
sagen, Trap-Status, TLB-Treffer/Fehler, und Da-
ten-Ressource-Abhangigkeits-Status, usw., sein.
[0135] Schritt 760 erzeugt einen Untersatz von Ab-
tastungen basierend auf der Funktion 755. Im Schritt
780 werden Statistiken 790 bestimmt. Diese Statisti-
ken kénnen Durchschnitte, Standardabweichungen,
Histogramme (Verteilung) und Fehlerbegrenzungen
(error bounds) der Eigenschaften der abgetasteten
Befehle sein. Zum Beispiel durchschnittliche Raten,
unter denen spezifizierte Ereignisse auftreten, durch-
schnittliche Latenzzeiten einer Befehl-Ausflihrung
und von Speicher-Zugriffen. Durchschnitte der Aus-
fuhrungsraten von Verarbeitungen, Threads oder
Hardware-Zusammenhangen kénnen auch bestimmt
werden. Die Histogramme kdnnen die Verteilung ei-
ner Befehl-Ausfiihrung, von Speicher-Zugrift-Raten
oder Latenzzeiten darstellen.

[0136] Die Begrenzung in Bezug auf die Fehler
kann durch den Umkehrwert einer Quadratwurzel der
Zahl von Abtastungen fiur die bestimmte Eigenschaft,
die abgetastet werden soll, angenahert werden.

Patentanspriiche

1. Vorrichtung zum Abtasten von Befehlen in ei-
ner Prozessor-Pipeline (200) eines Systems, wobei
die Pipeline eine Vielzahl von Verarbeitungsstufen
aufweist, und die umfasst:

eine Einrichtung (210), die Befehle in eine erste Stufe
der Pipeline abruft, wobei die Befehle willkirlich
durch zusatzliche Felder identifiziert werden, die an-
zeigen, dass sie zum Abtasten ausgewahlt worden
sind, und die zusatzlichen Felder ein Abtast-Bit (401)
an jedem Befehl in der Pipeline enthalten;

eine Einrichtung, die jeden der abgerufenen Befehle
als einen ausgewabhlten Befehl identifiziert;

eine Einrichtung, die Statusinformationen des Sys-
tems abtastet, wahrend sich ein bestimmter ausge-
wahlter Befehl in einer beliebigen Stufe der Pipeline
(200) befindet;

eine Einrichtung (300), die die Statusinformationen
speichert; und

eine Einrichtung, die Software informiert, wenn der
bestimmte ausgewahlte Befehl die Pipeline (200)
verlasst, so dass die Software jede der Statusinfor-
mationen lesen kann, wobei die Einrichtung, die ab-
tastet, und die Einrichtung, die Software informiert, in
Funktion aktiviert werden, indem das Abtast-Bit (401)
in dem ausgewahlten Befehl aktiviert wird.

2. Vorrichtung (100) nach Anspruch 1, wobei die
ausgewahlten Befehle giiltige Befehle, die durch die
Pipeline (200) vollstandig bearbeitet werden, giiltige
Befehle, die vor dem Verlassen der Pipeline abgebro-
chen werden, und ungultige Befehle enthalten, die
vor dem Verlassen der Pipeline teilweise bearbeitet
werden.

3. Vorrichtung (100) nach Anspruch 1, wobei die
ausgewahlten Befehle nicht unterbrechbare Befehle
enthalten kénnen.

4. Vorrichtung (100) nach einem der Ansprtliche 1
bis 3, wobei die Vielzahl von Stufen Abrufstufen
(210), Abbildungsstufen (220), Ausgabestufen (230),
Ausfihrungsstufen (240) und Ausscheidestufen
(250) enthalten.

5. Vorrichtung (100) nach einem der vorangehen-
den Anspriiche, wobei die zusatzlichen Felder Be-
fehlsnummern speichern, und die des Weiteren Ver-
gleichsregister (300) enthalt, die die zusatzlichen Fel-
der speichern.

6. Vorrichtung (100) nach einem der vorangehen-
den Anspriiche, die des Weiteren enthalt:
einen Abtast-Zahler (510);
eine Einrichtung (520), die den Abtast-Zahler (510)
auf einen vorgegebenen Wert initialisiert;
eine Einrichtung, die die ldentifizierungseinrichtung
aktiviert, wenn der Abtast-Zahler (510) in Reaktion
auf vorgegebene Ereignisse Uberlauft.

7. Vorrichtung (100) nach Anspruch 6, wobei die
vorgegebenen Ereignisse giiltige abgerufene Befeh-
le sind.

8. Vorrichtung (100) nach Anspruch 6, wobei eine

15/23

DE 698 19 849 T2 2004.09.02

Abrufrate durch einen Takt bestimmt wird und die vor-
gegebenen Ereignisse Unterteilungen von Taktzyk-
len sind, die einem einzelnen, potentiell abgerufenen
Befehl entsprechen.

9. Vorrichtung (100) nach Anspruch 6, wobei die
vorgegebenen Ereignisse der Eintritt von Befehlen in
jede beliebige Stufe der Pipeline (200) sind.

10. Vorrichtung (100) nach Anspruch 6, wobei
der vorgegebene Wert willkiirlich aus einem Intervall
von Zahlen gewahlt wird, um die durchschnittliche
Abtastfrequenz vorzugeben.

11. Vorrichtung (100) nach Anspruch 10, wobei
die GroRe des Intervalls von Zahlen geandert wird,
um die durchschnittliche Abtastfrequenz dynamisch
zu verandern.

12. Vorrichtung (100) nach Anspruch 10, wobei
die willktrliche Zahl durch die Software bestimmt
wird.

13. Vorrichtung (100) nach Anspruch 10, wobei
die willkdrliche Zahl durch Hardware erzeugt wird.

14. Vorrichtung (100) nach einem der vorange-
henden Anspriiche, wobei die Statusinformationen
Informationen enthalten, die den ausgewahlten Be-
fehl identifizieren.

15. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen die Adressen der
ausgewahlten Befehle enthalten.

16. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen Identifizierungen
von Prozessen enthalten, die den ausgewahlten Be-
fehl ausfuhren.

17. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen Adressraumzahlen
enthalten.

18. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen eine Hardwarekon-
text-Kennung enthalten.

19. Vorrichtung (100) nach einem der vorange-
henden Anspriiche, wobei die Einrichtung, die Soft-
ware informiert, eine Unterbrechung erzeugt, wenn
der bestimmte ausgewahlte Befehl die Pipeline ver-
|asst.

20. Vorrichtung (100) nach einem der Anspriche
1 bis 18, wobei die Einrichtung, die Software infor-
miert, ein Flag setzt, das durch die Software abge-
fragt werden kann, um festzustellen, dass der be-
stimmte ausgewahlte Befehl die Pipeline verlassen
hat.

21. Vorrichtung (100) nach einem der vorange-
henden Anspriiche, wobei eine Teilgruppe der aus-
gewahlten Befehle abgetastet wird.

22. Vorrichtung (100) nach einem der vorange-
henden Anspriiche, wobei die Statusinformationen
eine Thread-Kennung enthalten.

23. Vorrichtung (100) nach einem der Anspriiche
1 bis 20, wobei die Statusinformationen einen Ausge-
schieden-/Abgebrochen-Status der ausgewahlten
Befehle enthalten.

24. Vorrichtung (100) nach einem der Anspriiche
1 bis 20, wobei die Statusinfonnationen Ereignisse
enthalten, die bei der Verarbeitung der ausgewahlten
Befehle erfasst werden.

25. Vorrichtung (100) nach einem der Anspriiche
1 bis 20, wobei die Statusinfonnationen Latenzen
enthalten, die bei den ausgewahlten Befehlen auftre-
ten.

26. Computersystem (100), das eine Vorrichtung
nach einem der Anspriiche 1 bis 25 enthalt.

Es folgen 7 Blatt Zeichnungen

16/23

. | —cZ1
e ¥S10 T\

ol Wvya —1—cel

0 ejep

DE 698 19 849 T2 2004.09.02

Anhangende Zeichnungen

€Lk~

pm—

VD O

ne

FHIVD |

h
y

—t

aNIT3dId

[

6117

17/23

DE 698 19 849 T2 2004.09.02

ez 'Ol

vow. _

dHOVO-4

o |

10z
e’ 102
Y wam o 3
S~ 3Hovoa 2h IHOVO —
.CIONI. A
444 - 102 - E_N. .
_‘ONW 18/ eb . «V hu.
| _ Iy
TEYE | . _ | LIFHNIZ ﬂT
s | g O | RS R R S e
-sny | [T ! i -4N
<t |l ” > —
o%2 e e/ oezd ozz” o1z’
W
|)

ovz’

18/23

DE 698 19 849 T2 2004.09.02

682+

N3IHOO¥8Y3INN -

qz "oId

.ﬂwNJ

1

q 282

_ m 1:14
d

2T Toeeime sz, |
SSIW % znavinaanis) [ASH]).

A

2

102

13%°]

‘B FOVSHIHAUO,
SONNDIIMZHIN
JHOVOd JHOVOI
_‘Il..l.l'..l-.'L 1‘![['-1 P e — — —— -
e o
ONNAIFHOS ONNYHINAS 3gvosny JONNLS4ny EE[pS[=\
-snvy -SNV
052 o¥2 oez/ 4 oz’ a 012
_ THYMSNY _ 7
+ r4%*]
015 H3ATHIVZ

19/23

DE 698 19 849 T2 2004.09.02

¥ Ol

20vy KOy 0SY- ovvJ 08P~ VeV 0Zh~ i~ Civ
00%.

£ Ol

ose~T HALSIOFY-ZNILY]

ove —T. H31SI934-avd4d S31431M1408d

oce~T| YILSIOFY-SINOITYI SILAFINIH0Ud

cNm.Lw - d31SI93Y-NISSIHAY SILHTINIH0¥d

oie—t H31SI1934-0d S31H3INIH40¥d

oog

20/23

DE 698 19 849 T2 2004.09.02

- RGT

025y

-SON

LI3HNIZ

02¢

Nisin
-4NY

0ze

| ooy " | o .
ONNHOIHEYALINN MSd ,mh_ 1] 1]epoado] 94 [cdo] zdo] jdo
wed r|_ | : e
ovs—1 —Jd| 215-
1 e " ¥ITHIVZ
: - o3y
QOM.\ {3 LSI e A
“ } : ,
LIHNIZY 4 _ ! -
1. DRI 0 LEHNIE ¢- qu
SONNQIEHOS aNMadid el o e
_ "
/] *
el-f| 3rovoa | 605 yaL4 (€ aHovo

ZhL-

21/23

DE 698 19 849 T2 2004.09.02

010/

000y B o
euopg
509+ L
| ey
voc# .
T E:Eu
- 09N
EUGRIE BES B S T T N T ¥ g ‘
q e q q IR D Y
. F 4oy 1 v Y v dew
v Y o Yl Y1 0o v 10 Vv 00z”
029~ §1¢1 Led | e =N Wed
'} g a R] i
1 2 1 T |
A C0lg-ii9.
DivL [— 600
ddo. YITHIVZ-SNINAZ . 4 \ 109
T Emmm.r.

22/23

DE 698 19 849 T2 2004.09.02

NIYILSILYLS | QN .G\h*
-1avHosnaeE [~ 08L :

ooy 09.:
oNNHoIIMaY |, . . 08
aHOMLLNHOS (€ zlysyainn ¢ NITHIYMSNY)llllu|||_|
-HO¥NA¥3E3N .
. r— T — -~ = _ ONNLSYLEY
08L~ ﬁ | -3831
<
-G8~ NOIDINNA | ﬁ
ﬁ\ — 00E—~- ONNHOIFZANV
: “408d
NINOILYWHOANI
o.mh....r.. -SANV.LSNZ
J ey
e, ‘Ol ,
082 - OELy 0zLy oKL

-sny!

N3lsvigvy

NI3N

23/23

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

