
DE69819849T220040902
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 698 19 849 T2 2004.09.02

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 919 918 B1
(21) Deutsches Aktenzeichen: 698 19 849.2
(96) Europäisches Aktenzeichen: 98 309 631.4
(96) Europäischer Anmeldetag: 25.11.1998
(97) Erstveröffentlichung durch das EPA: 02.06.1999
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 19.11.2003
(47) Veröffentlichungstag im Patentblatt: 02.09.2004

(51) Int Cl.7: G06F 11/34

(54) Bezeichnung: Anordnung zum willkürlichen Abtasten von Instruktionen in einer Prozessorpipeline

(30) Unionspriorität:
980190 26.11.1997 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Chrysos, George Z., Marlboro, Massachusetts
01752, US; Dean, Jeffrey A., Menlo Park, California
94025, US; Hicks, James E., Newton,
Massachusetts 02159, US; Leibholz, Daniel L.,
Cambridge, Massachusetts 02138, US; McLellan,
Edward J., Holliston, Massachusetts 01746, US;
Waldspurger, Carl A., Atherton, California 94027,
US; Weihl, William E., San Francisco, California
94114, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/23

DE 698 19 849 T2 2004.09.02
Beschreibung

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf das Messen der Funktion eines Computer-
systems, und insbesondere auf ein Abtasten von
Ausführungsbefehlen.
[0002] Computerprozessoren werden schneller, al-
lerdings hält eine Software-Anwendungsfunktion
nicht damit Schritt. Für große, kommerzielle Anwen-
dungen können durchschnittliche Werte von Pro-
zesszyklen pro Befehl (cycles-per-instruction – CPI)
bis zu 2,5 oder 3 hoch sein. Mit einem Vier-Wege-Be-
fehl-Ausgabe-Prozessor bedeutet ein CPI von drei,
dass nur ein Befehlsschlitz alle zwölf gut genutzt
wird. Es ist wichtig zu verstehen, warum ein Softwa-
re-Durchsatz nicht an Hardware Verbesserungen an-
gepasst ist.
[0003] Es ist üblich, solche Probleme auf die Spei-
cher-Latenzzeit zu schieben. Tatsächlich benötigen
viele Softwareanwendungen viele Zyklen, darauf
wartend, dass Datenübertragungen abgeschlossen
werden. Allerdings verschwenden andere Probleme,
wie beispielsweise Verzweigungs-Fehlvorhersagen,
auch Prozessorzyklen. Unabhängig der allgemeinen
Ursachen, müssen System-Architekten, und Hard-
ware- und Software-Ingenieure, wissen, welche Be-
fehle blockieren bzw. überlasten und warum, um die
Funktionsweise von modernen Computersystemen,
die komplexe Prozessoren einsetzen, zu verbessern.
[0004] Typischerweise wird dies durch Erzeugen ei-
nes „Profils" des Verhaltens eines Systems, während
es arbeitet, vorgenommen. Ein Profil ist eine Auf-
zeichnung von Funktionsdaten. Häufig wird das Profil
graphisch dargestellt, so dass die Engstellen der
Funktion leicht identifiziert werden können.
[0005] Ein Profilieren kann durch ein Instrumentari-
um und eine Simulation vorgenommen werden. Mit
dem Instrumentarium wird ein zusätzlicher Code zu
einem Programm hinzugefügt, um spezifische Ereig-
nisse während der Ausführung eines Programms zu
überwachen. Eine Simulation versucht, das Verhal-
ten des gesamten Programms in einer künstlichen
Umgebung zu Emulieren, im Gegensatz dazu, das
Programm in dem realen System auszuführen.
[0006] Jedes dieser zwei Verfahren besitzt seine
Nachteile. Ein Instrumentarium stört das wahre Ver-
halten des Programms aufgrund der hinzugefügten
Befehle und der zusätzlichen Daten-Referenzen.
Eine Simulation vermeidet ein Störung auf Kosten ei-
nes wesentlichen Funktion-Overheads, wenn mit der
Ausführung des Programms auf einem realen Sys-
tem verglichen wird. Weiterhin ist es, mit entweder ei-
nem Instrumentarium oder einer Simulation, gewöhn-
lich schwierig, ein gesamtes, groß dimensioniertes
Softwaresystem zu profilieren, d. h. Anwendung, Be-
triebssystem und Vorrichtungs-Treibercode.
[0007] Eine mit einer Hardware implementierten Er-
eignis-Abtastung kann auch dazu verwendet werden,
Profil-Informationen von Prozessoren zu erhalten.
Eine Hardware-Abtastung besitzt eine Anzahl von

Vorteilen gegenüber einer Simulation und einem In-
strumentarium: sie erfordert keine Modifizierung von
Softwareprogrammen, um deren Funktion zu mes-
sen. Eine Abtastung arbeitet auf vollständigen Syste-
men, mit einem relativ geringen Overhead. Tatsäch-
lich ist in neuerer Zeit gezeigt worden, dass eine Pro-
filierung mit geringem Overhead, basierend auf einer
Abtastung, dazu verwendet werden kann, detaillierte
Befehl-Level-Informationen über Pipeline-Blockie-
rungen und deren Ursachen zu erhalten. Allerdings
fehlt vielen Hardware-Abtast-Techniken eine Flexibi-
lität, da sie so ausgelegt sind, um spezifische Ereig-
nisse zu messen.
[0008] Die meisten, existierenden Mikroprozesso-
ren, wie beispielsweise der DIGITAL (RTM) Alpha
AXP 21164, der Intel (RTM) Pentium Pro und der
MIPS (RTM) R10000, sehen Ereignis-Zähler vor, die
eine Vielzahl von Ereignissen zählen können, wie
beispielsweise Daten-Cache-(D-Cache)-Fehler, Be-
fehls-Cache-(I-Cache)-Fehler und Verzwei-
gungs-Fehlvorhersagen. Die Ereignis-Zähler erzeu-
gen eine Unterbrechung, wenn die Zähler überlau-
fen, so dass die Performance-Daten in den Zählern
durch eine Software auf höheren Niveaus abgetastet
werden können.
[0009] Alle Ereigniszähler sind zum Erfassen von
aggregierten Informationen nützlich, wie beispiels-
weise die Zahl von Verzweigungs-Fehlvorhersagen,
die das System erfährt, während ein bestimmtes Pro-
gramm, oder ein Teil davon, ausgeführt wird. Aller-
dings sind bekannte Ereignis-Zähler weniger nütz-
lich, um Zustands-Informationen in Bezug auf indivi-
duelle Befehle zuzuordnen, wie beispielsweise darü-
ber, welche Verzweigungs-Befehle häufig fehlinter-
pretiert werden. Dies kann aufgrund der Tatsache er-
folgen, dass die Programm-Zähler (program counters
– PC) von Befehlen, die Ereignisse verursachten,
nicht länger verfügbar sein können, wenn der Ereig-
nis-Zähler überläuft und unterbricht.
[0010] Es ist ein besonderes Problem, die dynami-
sche Operation eines Prozessors zu deduzieren, die
Befehle außerhalb der Reihenfolge ausgeben kann.
Tatsächlich kann das Verhalten von Software-Pro-
grammen, die von einem Prozessor außerhalb der
Reihenfolge ausgeführt werden, sehr subtil und
schwierig zu verstehen sein. Es wird der Ablauf von
Befehlen in einem Out-Of-Order Alpha 21264 Pro-
zessor als ein konkretes Beispiel betrachtet.

Superscalar-Prozessor-Architektur

Ausführungs-Reihenfolge

[0011] Ein gestörter Prozessor bzw. ein Prozessor
„Out-of-Order" ruft Befehle ab und scheidet sie aus,
verarbeitet allerdings die Befehle entsprechend de-
ren Datenabhängigkeiten. Eine Verarbeitung von Be-
fehlen kann eine Register-Auflistung, eine Be-
fehl-Ausgabe und -Ausführung umfassen. Ein Befehl
befindet sich von dem Zeitpunkt an „ In Bewegung"
2/23

DE 698 19 849 T2 2004.09.02
(„in-flight"), von dem an er abgerufen ist, bis er aus-
scheidet oder ausgesondert wird.
[0012] Während jedes Prozessor-Zyklus ruft eine
erste Stufe der Prozessor-Pipeline einen Satz von
Befehlen von dem Befehls-Cache (I-Cache) ab. Der
Satz von Befehlen wird decodiert. Der Befehl-Deco-
dierer identifiziert, welche Befehle in dem abgerufe-
nen Satz ein Teil der Befehl-Datenfolge sind.
[0013] Da es mehrere Zyklen benötigen kann, um
den PC eines nächsten Befehls aufzulösen, um ab-
zurufen, wird der PC gewöhnlich zuvor durch eine
Verzweigung oder einen Sprung-Prädikator vorher-
gesagt. Wenn die Vorhersage nicht korrekt ist, wird
der Prozessor die fehlerhaft vorausgesagten Befehle
aussondern, die einen „schlechten" Ausführungspfad
belegen, und wird erneut damit beginnen, Befehle auf
dem „guten" Pfad abzurufen.
[0014] Um zu ermöglichen, dass Befehle außerhalb
der Reihenfolge ausgeführt werden, werden Regis-
ter, spezifiziert in Operanden von Befehlen, dyna-
misch umbenannt, um Konflikte eines Schreibens
nach einem Lesen (write-after-read) und eines
Schreibens nach einem Schreiben (write-after-write)
zu verhindern. Diese Umbenennung wird durch ein
Auflisten von architekturmäßigen oder „virtuellen"
Registern zu physikalischen Registern begleitet.
Demzufolge können zwei Befehle, die dasselbe, vir-
tuelle Register beschreiben, sicher außerhalb der
Reihenfolge ausgeführt werden, da sie zu unter-
schiedlichen, physikalischen Registern hin schreiben
werden, und Benutzer der virtuellen Register werden
die geeigneten Werte erhalten.
[0015] Ein mittels Register aufgelisteter Befehl ist in
der Befehl-Warteschlange vorhanden, bis seine Ope-
randen berechnet worden sind und eine funktionale
„Ausführungs"-Einheit des geeigneten Typs verfüg-
bar ist. Die physikalischen Register, verwendet durch
einen Befehl, werden in dem Zyklus gelesen, den der
Befehl ausgibt. Nachdem Befehle ausgeführt worden
sind, werden sie als bereit markiert, um sie auszu-
scheiden, und werden durch den Prozessor ausge-
schieden werden, wenn alle vorherigen Befehle, be-
reit um auszuscheiden, in der Programm-Reihenfol-
ge ausgeschieden worden sind, d. h. Befehle schei-
den in der korrekten Programm-Reihenfolge aus. Un-
ter dem Ausscheiden beginnt der Prozessor die Än-
derungen, vorgenommen durch den Befehl, zu dem
architekturmäßigen „Zustand" des Systems, und gibt
Ressourcen, verbraucht durch den Befehl, frei.

Fehlvorhersage

[0016] In einigen Fällen, wie beispielsweise sol-
chen, wenn eine Verzweigung fehlerhaft vorherge-
sagt ist, müssen Befehle aufgefangen oder ausge-
sondert werden. Wenn dies auftritt, wird der momen-
tane, spekulative, architekturmäßige Zustand zurück
zu einem Punkt in der Ausführung abgewickelt, wo
die fehlerhafte Vorhersage aufgetreten ist, und ein
Abrufen fährt an dem korrekten Befehl fort.

Verzögerungen

[0017] Zahlreiche Ereignisse können die Ausfüh-
rung eines Befehls verzögern. An der Front der Pipe-
line kann die Abrufeinheit aufgrund eines Fehlens ei-
nes I-Cache anhalten, oder die Abrufeinheit kann Be-
fehle entlang eines schlechten Pfads aufgrund einer
fehlerhaften Vorhersage abrufen. Die Auflistungsein-
richtung kann aufgrund eines Fehlens von freien,
physikalischen Registern oder aufgrund eines Feh-
lens von freien Schlitzen in der Ausgabe-Warte-
schlange blockieren. Befehle in der Ausgabe-Warte-
schlange können darauf warten, dass deren Regis-
ter-Abhängigkeiten erfüllt werden, oder auf die Ver-
fügbarkeit von funktionalen Ausführungseinheiten.
[0018] Befehle können aufgrund eines Fehlens ei-
nes Daten-Cache blockieren. Befehle können stop-
pen, und zwar aufgrund davon, dass sie spekulativ
entlang eines schlechten Pfads ausgegeben wurden,
oder da der Prozessor eine Unterbrechung vornahm.
Viele dieser Ereignisse sind schwierig statisch vor-
herzusagen, z. B. durch eine Prüfung des Codes, und
alle davon setzen die Funktionsweise des Systems
herab. Einfache Ereignis-Zähler sind nicht ausrei-
chend, um diesen Typ von Informationen zu individu-
ellen Befehlen zurückzuführen. Zusätzlich ist es
schwierig, exakt die Längen der Verzögerungen zu
messen, um zu bestimmen, welche Verzögerungen
eine besondere Aufmerksamkeit verdienen.
[0019] Es ist in höchstem Maße wünschenswert, Er-
eignisse zu spezifischen Befehlen und Maschinenzu-
ständen zuzuordnen, so dass Programmierer, oder
Optimierungs-Tools, die Funktionsweise der Softwa-
re- und der Hardware-Komponenten von komplexen
Computersystemen, wie beispielsweise Super-Ska-
lar und gestörte Prozessoren, oder für diese Art von
Prozessoren mit irgendeinem architekturmäßigen
Design, verbessern können.

Probleme mit Ereignis-Zählern nach dem Stand der
Technik

[0020] Das Hauptproblem in Verbindung mit be-
kannten Ereignis-Zählern ist dasjenige, dass der Be-
fehl, der das Ereignis verursachte, so dass der Zähler
überlief, gewöhnlich lange vor dem abgetasteten
Ausnahme-PC abgerufen wurde, d. h. der PC ist
nicht der Befehl, der den Überlauf verursachte. Die
Länge der Verzögerung zwischen dem Abrufen und
der Unterbrechung ist allgemein eine nicht vorher-
sagbare Größe. Diese unvorhersagbare Verteilung
von Ereignissen macht es schwierig, geeignet Ereig-
nisse zu spezifischen Befehlen zuzuordnen. Eine ge-
störte oder spekulative Ausführung verstärkt dieses
Problem, allerdings ist es auch in Maschinen, die
„in-order" arbeiten, wie beispielsweise der Alpha
21164 Prozessor, vorhanden.
[0021] Zum Beispiel unterbrechen vergleichende
Programm-Zählerwerte, zugeführt zu dem Funkti-
ons-Zähler, einen Handler, während D-Cache-Refe-
3/23

DE 698 19 849 T2 2004.09.02
renz-Ereignis-Zähler für den Alpha 21164 (In-Order)
Prozessor, nämlich den Pentium Pro (Out-Of-Order)
Prozessor, überwacht werden. Ein Beispielprogramm
besteht aus einer Schleife, die aus einem Ran-
dom-Memory-Access-Befehl, zum Beispiel einem
Lade-Befehl, gefolgt von hunderten von Null-Opera-
tions-Befehlen (null operation instructions – nop), be-
steht.
[0022] An dem In-Order-Alpha-Prozessor werden
alle Funktions-Zähler-Ereignisse (zum Beispiel Ca-
che-Fehler) dem Befehl zugeschrieben, der sechs
Zyklen nach dem Ereignis ausführt, um zu einem gro-
ßen Peak an Abtastungen an dem siebten Befehl
nach dem Lade-Zugriff zu führen. Diese versetzte
Verteilung von Ereignissen ist nicht ideal. Allerdings
kann, da ein einzelner, großer Peak existiert, eine
statische Analyse manchmal nach rückwärts von die-
sem Peak an arbeiten, um den tatsächlichen Befehl,
der das Ereignis verursachte, zu identifizieren, aller-
dings ist dies nicht mehr als nur eine beste Annahme,
sogar für ein einfaches Programm.
[0023] Für die identische Programmausführung auf
dem Out-Of-Order Pentium Pro werden die Ereig-
nis-Abtastungen weit über die nächsten 25 Befehle
verteilt, was nicht nur eine Versetzung, sondern auch
eine wesentliche Verschleierung ebenso, darstellt.
Die weite Verteilung von Proben macht es nahezu
unmöglich, ein spezifisches Ereignis dem bestimm-
ten Befehl, der das Ereignis verursachte, zuzuschrei-
ben. Ein ähnliches Verhalten tritt dann auf, wenn an-
dere Hardware-Ereignisse berücksichtigt werden.
[0024] Zusätzlich zu der versetzten oder verwisch-
ten Verteilung von Ereignis-Abtastungen leiden her-
kömmliche Ereignis-Zähler auch unter zusätzlichen
Problemen. Gewöhnlich sind dort mehr Ereignisse
vorhanden, die von Interesse sind, als dort Ereig-
nis-Zähler vorhanden sind, was es demzufolge
schwierig macht, wenn nicht sogar unmöglich, gleich-
zeitig alle Ereignisse, die von Interesse sind, zu über-
wachen. Die sich erhöhende Komplexität von Pro-
zessoren ist dahingehend wahrscheinlich, dass sie
dieses Problem noch verstärkt.
[0025] Zusätzlich zeichnen Ereignis-Zähler nur die
Tatsache auf, dass ein Ereignis auftrat; sie liefern
nicht zusätzliche Zustandsinformation über das Er-
eignis. Für viele Arten von Ereignissen würden zu-
sätzliche Informationen, wie beispielsweise die La-
tenzzeit, um ein Cache-Fehlereignis zu behandeln,
äußerst nützlich sein.
[0026] Weiterhin sind Zähler nach dem Stand der
Technik allgemein nicht in der Lage, Ereignisse zu
„Blind Spots" in dem Code zu behandeln. Ein Blind
Spot ist irgendein nicht unterbrechbarer Code, wie
beispielsweise Systemprogramme mit hoher Priorität
und ein PAL Code, da das Ereignis nicht erkannt wer-
den wird, bis seine Unterbrechung anerkannt ist. Zu
diesem Zeitpunkt kann sich der Prozessor-Zustand
wesentlich geändert haben, was meistens zu fal-
schen Informationen führt.

Blockierungen gegenüber Engstellen

[0027] Bei einem In-Order-Prozessor, im Pipe-
line-Betrieb, verhindert eine Befehl-Störung in einer
Pipeline-Stufe, dass spätere Befehle durch diese
Pipeline-Stufe hindurchführen. Deshalb ist es relativ
einfach, „Engstellen" („Bottleneck") Befehle auf ei-
nem In-Order-Prozessor zu identifizieren, wobei die-
se Engstellen-Befehle dazu tendieren, irgendwo in
der Pipeline zu blockieren. Für einen In-Order-Pro-
zessor ist es möglich, Blockierungen durch Messen
der Latenzzeit eines Befehls zu identifizieren, wenn
er durch jede Pipeline-Stufe hindurchführt, und durch
Vergleichen der gemessenen Latenzzeit mit der ide-
alen Latenzzeit dieses Befehls in jeder Pipeline-Stu-
fe. Ein Befehl kann vorab dahingehend angenommen
werden, dass er in einer Stufe blockiert wurde, wenn
er länger als die minimale Latenzzeit benötigt, um
durch diese Stufe hindurchzuführen.
[0028] Allerdings können, an einem Out-of-Or-
der-Prozessor, andere Befehle durch eine Pipe-
line-Stufe um einen Befehl herum hindurchführen,
der in der Pipeline-Stufe blockiert ist. Tatsächlich
kann die zusätzliche Latenzzeit des blockierten Be-
fehls vollständig durch die Verarbeitung von anderen
Befehlen maskiert sein, und tatsächlich können die
blokkierten Befehle nicht den beobachteten Ab-
schluss des Programms verzögern.
[0029] Gerade bei In-Order-Prozessoren können
Blockierungen in einer Pipeline-Stufe nicht zu der ge-
samten Ausführungszeit eines Programms beitra-
gen, wenn eine andere Pipeline-Stufe die Engstelle
ist. Zum Beispiel können, während der Ausführung
eines speicher-intensiven Programms, die Abrufein-
richtung und die Auflistungseinrichtung der Be-
fehl-Pipeline oftmals blockieren, da der „Gegen-
druck" („Back-Pressure") von einer Ausführungsein-
heit, verzögert durch einen D-Cache, fehlt.
[0030] Idealerweise würde man die Speicher-Ope-
rationen, die Cache-Verfehlungen verursachen, als
die primäre „Engstelle" klassifizieren. Die Blockierun-
gen der Abrufeinrichtung und die Auflistungseinrich-
tung sind tatsächlich symptomatisch für die Verzöge-
rungen aufgrund von Cache-Verfehlungen, das be-
deutet sekundäre Engstellen.
[0031] Es wäre wünschenswert, solche Befehle, de-
ren Blockierungen nicht durch andere Befehle mar-
kiert sind, zu identifizieren, und sie als wahre Engstel-
len zu identifizieren. Weiterhin ist, um ein Programm-
verhalten zu verbessern, ein Erfordernis vorhanden,
sich auf kausale (primäre) Engstellen, im Gegensatz
zu den symptomatischen (sekundären) Engstellen,
zu konzentrieren. Diese Klassifizierung von Pipe-
line-Stufen-Engstellen als kausale und symptomati-
sche erfordert eine detaillierte Kenntnis über den Zu-
stand der Pipeline und der Daten- und Ressourceab-
hängigkeiten der In-Flight-Befehle, die nicht von ein-
fachen Ereignis-Zählern erhalten werden können,
wie sie bekannt sind.
[0032] Das US-Patent 5,151,981 „Instruction Samp-
4/23

DE 698 19 849 T2 2004.09.02
ling Instrumentation", herausgegeben von Wescott et
al., am 29. September 1992, schlägt einen Hard-
ware-Mechanismus für eine auf einem Befehl basie-
rende Abtastung in einer Out-of-Order-Ausführungs-
maschine vor. Dabei ist eine Anzahl von Nachteilen in
der Maßnahme vorhanden, die durch Wescott et al.
vorgenommen wird. Zuerst kann deren Maßnahme
die Datenfolge von Befehlsabtastungen systematisch
die Datenfolge von Befehlsabtastungen beurteilen,
da nur Befehle, die einer bestimmten, internen Be-
fehlszahl zugeordnet sind, für eine Abtastung ausge-
wählt werden können.
[0033] Als Zweites tastet deren System nur ausge-
schiedene Befehle ab, und nicht alle Befehle, die ab-
gerufen sind, wobei einige davon ausgesondert sein
können. Als Drittes konzentrieren sich die Informatio-
nen, die durch den Mechanismus von Wescott et al.
gesammelt sind, auf individuelle Ereignis-Attribute, z.
B. Cache-Verfehlungen, liefern allerdings nicht nütz-
liche Informationen zum Bestimmen der Zwi-
schen-Befehl-Beziehungen.
[0034] In neuerer Zeit ist ein Hardware-Mechanis-
mus, bezeichnet als „Informing Loads", vorgeschla-
gen worden; siehe Horowitz et al., „Informing memory
operations: Providing memory performance feedback
in modern processors", Proceedings 23rd Annual In-
ternational Symposium on Computer Architecture,
Seiten 260–270, 22. Mai 1996. Dabei kann einer
Speicher-Operation durch eine konditionale Verzwei-
gungs-Operation gefolgt werden, die dann vorge-
nommen wird, und nur dann, wenn die Spei-
cher-Operation in dem Cache fehlerhaft ist. Obwohl
dieser Mechanismus nicht spezifisch für einen Profi-
lierung ausgelegt ist, könnte er dazu verwendet wer-
den, speziell nur verfehlte Ereignis-Informationen
des D-Cache zu sammeln.
[0035] In einer anderen, spezialisierten Hardware,
bezeichnet als ein Cache-Miss-Look-Asi-
de-(CML)-Puffer, werden virtuelle Speicherseiten, die
unter einer Cache-Verfehlungs-Rate mit einem ho-
hen Level-2 leiden, identifiziert; siehe Bershad et al.,
„Avoiding conflict misses dynamically in large di-
rect-mapped caches", Proceedings of the Sixth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Sei-
ten 158–170, 4. Oktober 1994, für eine vollständige
Beschreibung.
[0036] Einige Prozessoren, wie beispielsweise der
Intel Pentium, erlauben einer Software, die Inhalte ei-
nes Verzweigungs-Target-Puffers (branch target buf-
fer – BTB) des Verzweigungs-Prediktors zu lesen.
Durch periodisches Lesen des BTB in der Software
entwickelten Conte et al. eine sehr geringe Over-
headtechnik, um Kantenausführungsfrequenzen ei-
nes Programms abzuschätzen; siehe „Using branch
handling hardware to support profile-riven optimizati-
on", Proceedings of the 27th Annual International
Symposium on Microarchitecture, Seiten 12–21, 30.
November 1994.
[0037] Diese Maßnahme führt zu Informationen, die

ähnlich zu denjenigen sind, die durch Nachvollziehen
der Verzweigungs-Richtungs-Informationen, enthal-
ten in einer „Profil-Aufzeichnung" („profile record"),
die in Bezug stehende Abtastinformationen spei-
chert, erhalten werden. In neuerer Zeit schlugen Con-
te et al. einen Teil einer zusätzlichen Hardware vor,
bezeichnet als Profil-Puffer, der die Anzahl von Malen
zählt, für die eine Verzweigung vorgenommen wird
und nicht vorgenommen wird; siehe „Accurate and
practical profile-driven compilation using the profile
buffer", Proceedings of the 29th Annual International
Symposium on Microarchitecture, Seiten 36–45, 2.
Dezember 1996.
[0038] Der Artikel „Instruction Match Function for
Processors Monitoring" in IBM Technical Disclosure
Bulletin, Vol. 39, NO. 12, Dezember 1996, Seiten
119–121, offenbart eine Vorrichtung zum Abtasten
von Befehlen, die durch einen Dispatcher vor einer
Abtastung identifiziert werden.
[0039] Gemäß der vorliegenden Erfindung wird eine
Vorrichtung zum Abtasten von Befehlen in einer Pro-
zessor-Pipeline eines Systems geschaffen, wobei die
Pipeline eine Vielzahl von Verarbeitungsstufen auf-
weist, und die umfasst:
eine Einrichtung, die Befehle in eine erste Stufe der
Pipeline abruft, wobei die Befehle durch zusätzliche
Felder identifiziert werden, die anzeigen, dass sie
zum Abtasten ausgewählt worden sind, und die zu-
sätzlichen Felder ein Abtast-Bit an jedem Befehl in
der Pipeline enthalten;
eine Einrichtung, die jeden der abgerufenen Befehle
als einen ausgewählten Befehl identifiziert;
eine Einrichtung, die Statusinformationen des Sys-
tems abtastet, während sich ein bestimmter ausge-
wählter Befehl in einer beliebigen Stelle der Pipeline
befindet;
eine Einrichtung, die die Statusinformationen spei-
chert; und
eine Einrichtung, die die Software informiert, wenn
der bestimmte ausgewählte Befehl die Pipeline ver-
lässt, so dass die Software jede der Statusinformati-
onen lesen kann, wobei die Einrichtung, die abtastet,
und die Einrichtung, die die Software informiert, in
Funktion aktiviert, indem das Abtast-Bit in dem aus-
gewählten Befehl aktiviert wird.
[0040] Während des Betriebs eines Prozessors wird
periodisch ein Befehl, der profiliert werden soll, zufäl-
lig ausgewählt, und eine Profil-Aufzeichnung davon,
was während der Ausführung des Befehls auftritt,
wird in einem Satz von internen Profil-Registern des
Prozessors akkumuliert. Nachdem die Verarbeitung
des ausgewählten Befehls endet, z. B. der Befehl
scheidet aus, wird ausgesondert oder abgefangen,
wird eine Unterbrechung erzeugt. Alternativ kann
eine Software ein Zeichen oder ein Register abfra-
gen. Die aufgezeichneten Informationen, die die De-
tails charakterisieren, wie der Befehl in der Pipeline
verarbeitet wurden, können von den internen Pro-
fil-Registern durch eine Software abgetastet werden.
[0041] Die Profil-Register können viele nützliche
5/23

DE 698 19 849 T2 2004.09.02
Fakten über die Ausführung eines Befehls aufzeich-
nen. Beispielhafte Funktions-Informationen können
umfassen: die Zahl von Zyklen, die der ausgewählte
Befehl in jeder Stufe einer Ausführungs-Pipeline ver-
brachte, d. h.
[0042] Stufen-Latenzzeiten, ob der Befehl ein Ver-
fehlen eines I-Cache oder eines D-Cache unterlag,
die effektiven Adressen seiner Speicher-Operanden,
oder Verzweigungs/Sprung-Ziele, und ob der Befehl
ausgeschieden oder ausgesondert wurde.
[0043] Bei In-Order-Ausführungs-Prozessoren ist
es möglich, die gesamte Zahl von Blokkier-Zyklen,
die jedem Befehl zuschreibbar sind, wenn man die
fetch-to-retire Latenzzeiten von abgetasteten Befeh-
len angibt, abzuschätzen.
[0044] An einem Out-Of-Order-Prozessor ist es in
Bezug auf die meisten Blockierungen wahrschein-
lich, dass sie andere Befehle überlappen oder durch
diese maskiert werden, herausgegeben Out-Of-Or-
der um die blockierten Befehle herum. Dies gestaltet
die Identifikation von blockierten Befehlen schwierig.
Zusätzlich kann es notwendig sein, Informationen
über das durchschnittliche Niveau einer Konkurrenz
zu sammeln, während jeder Befehl in Ausführung
war, um Engstellen zu identifizieren.
[0045] Die Hardware für spezielle Zwecke könnte
die Zahl von Befehlen, die ausgegeben werden, wäh-
rend sich ein profilierter Befehl in Ausführung befin-
det, zählen und aufzeichnen, um das Niveau einer
gleichzeitigen Ausführung zu messen. Allerdings
schlägt dies dahingehend fehl, Befehle zu berück-
sichtigen, die ausgegeben werden, allerdings ausge-
sondert sind, und deshalb fehlschlagen, auszuschei-
den. Vorausgesetzt ist hier eine Messung der Menge
einer nutzbaren Gleichzeitigkeit. Die nutzbare
Gleichzeitigkeit ist die durchschnittliche Zahl von Be-
fehlen, die parallel herausgegeben werden und er-
folgreich ausscheiden, und zwar mit einem gegebe-
nen Befehl. Befehle, die herausgegeben werden, al-
lerdings darauffolgend ausgesondert werden, sind
nicht nützlich. Dann können Befehle, deren Blockie-
rungen nicht durch eine nutzbare Konkurrenz mas-
kiert sind, als Engstellen klassifiziert werden. Um dies
in einer anderen Weise auszudrücken, ist eine
Schlüssel-Metrik, zum genauen Festlegen von Funk-
tions-Engstellen an einem Out-of-Order-Prozessor,
die Zahl von Ausgabe-Schlitzen, die verschwendet
wurden, während ein gegebener Befehl ausgeführt
wurde.
[0046] Dementsprechend wird, um eine nützliche
Konkurrenz zu messen, eine Technik, bezeichnet als
„N-wise sampling" („N-weises Abtasten") vorgese-
hen. Die Grundidee ist diejenige, eine verschachtelte
Form einer Abtastung auszuführen. Hierbei wird ein
Fenster von Befehlen, die gleichzeitig mit einem ers-
ten, profilierten Befehl ausgeführt werden können,
dynamisch definiert. Zum Beispiel wird dort, wo N
zwei ist, ein zweiter Befehl zufällig für ein Profilieren
von dem Fenster aus Befehlen ausgewählt. Der pro-
filierte und zweite Befehl bilden ein Abtast-Paar, für

das Profil-Informationen zusammengestellt werden
können.
[0047] Eine paarweise Abtastung erleichtert die Be-
stimmung der Zahl von verschwendeten Ausga-
be-Schlitzen, die jedem Befehl zuordenbar sind, und
trifft Engstellen akkurater als bekannte Techniken.
Allgemein ist eine paarweise Abtastung sehr flexibel,
was die Basis für eine Analyse bildet, die eine breite
Vielfalt von Konkurrenz- und Benutzungs-Metriken,
die von Interesse sind, bestimmen kann.
[0048] Beispiele von Informationen, die erfasst wer-
den können, umfassen: die Adresse des Befehls
(Programm-Zähler oder PC), ob der Befehl einen Be-
fehls-Cache-Fehler erlitten hat, und die Latenzzeit,
die notwendig war, um den Fehler zu bearbeiten.
Falls dieser Befehl zu einer Speicher-Operation führt,
dann Bestimmen, ob der Befehl einen Daten-Ca-
che-Fehler erlitt, und Messen der Latenzzeit, um die
Speicher-Anforderung zu erfüllen. Weiterhin kann die
Zeitdauer, die der Befehl in jeder Pipeline-Stufe be-
nötigt, gemessen werden. Die Profil-Informationen
können auch anzeigen, ob der Befiehl ausgeschie-
den oder ausgesondert wurde, und in dem letzteren
Fall, welche Art eines Trap eine Ausführung des Be-
fehls, um ausgesondert zu werden, verursachte.
[0049] Diese Informationen werden in einem Satz
von Profilierungs-Registern zusammengestellt, wenn
der Befehl durch die Ausführungs-Pipeline fortfährt.
Wenn ein Befehl eine Ausführung beendet, wird er
entweder aufgegeben oder er wird ausgesondert,
wobei eine Unterbrechung zu einer Software auf ei-
nem höheren Niveau zugeführt wird. Die Software
kann dann die Informationen, die in den Profilie-
rungs-Registern vorhanden sind, in einer Vielfalt von
Arten und Weisen verarbeiten.
[0050] Die offenbarte Technik ist eine Verbesserung
gegenüber einer existierenden, eine Funktion über-
wachenden Hardware, und kann effektiv unter relativ
niedrigen Hardware-Kosten in modernen Mikropro-
zessoren ausgeführt werden, die Befehle, außerhalb
der Reihenfolge, ausgeben können.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0051] Fig. 1 zeigt ein Blockdiagramm eines Com-
putersystems mit einer befehlsgesteuerten Zu-
stands-Abtastung;
[0052] Fig. 2 zeigt ein Blockdiagramm einer Mikro-
prozessor-Ausführungs-Pipeline zum Verarbeiten
von abgetasteten Befehlen;
[0053] Fig. 2b zeigt ein Blockdiagramm der Pipe-
line, die Zustands-Informationen darstellt, die abge-
tastet werden können;
[0054] Fig. 3 zeigt ein Blockdiagramm einer Regis-
ter-Datei zum Speichern von Profil-Informationen;
[0055] Fig. 4 zeigt ein Blockdiagramm eines erhöh-
ten Befehls;
[0056] Fig. 5 zeigt ein Blockdiagramm zum Profilie-
ren von ausgewählten Befehlen;
[0057] Fig. 6 zeigt eine schematische Darstellung
6/23

DE 698 19 849 T2 2004.09.02
einer Schaltung zum Messen von Pipeline-Latenzzei-
ten;
[0058] Fig. 7a zeigt ein Flussdiagramm eines Ver-
fahrens zum Abtasten von Befehlen; und
[0059] Fig. 7b zeigt ein Flussdiagramm eines Ver-
fahrens zum Abschätzen von Statistiken über die Ei-
genschaften von Befehlen, verarbeitet durch die Pro-
zessor-Pipeline.

System-Übersicht

[0060] Fig. 1 stellt ein Computersystem 100 dar,
das das Abtastverfahren und die -vorrichtung, die
hier beschrieben sind, verwenden kann. Das System
100 umfasst einen oder mehrere Prozessoren) 110,
sich außerhalb des Chips befindliche Speicher 120
und Eingangs/Ausgangs-Schnittstellen (I/O) 130,
verbunden durch Busleitungen 140. Die Prozessoren
110 können auf integrierten Halbleiterchips als Mehr-
fach-Ausführungs-Pipelines 111 ausgeführt werden,
umfassend funktionale Ausführungseinheiten, sich
auf dem Chip befindliche Daten-Cache (D-Cache)
113 und Befehls-Cache (I-Cache) 112, zum Beispiel
der Digital Equipment Corporation Alpha 21264 Pro-
zessor. Der Prozessor-Chip 110 umfasst auch eine
Hardware 119, die in größerem Detail nachfolgend
beschrieben ist, zum Abtasten von Prozessor-Zu-
ständen für ausgewählte Befehle.
[0061] Die sich außerhalb des Chips befindlichen
Speicher 120 können hierarchisch angeordnet wer-
den, umfassend Cache für allgemeine Zwecke
(B-Cache oder SRAM) 121, flüchtige Speicher
(DRAM) 122 und dauerhafte Speicher (Disk) 123. Die
I/O 130 kann dazu verwendet werden, Daten zu dem
System 100 einzugeben und davon auszugeben.

Operation

[0062] Während der Operation bzw. des Betriebs
des Systems 100 werden Befehle und Daten von
Software-Programmen in den Speichern 120 gespei-
chert. Die Befehle und Daten werden herkömmlich
unter Verwendung von bekannten Compiler-, Linker-
und Loader-Techniken erzeugt. Die Befehle und die
Daten werden zu der Ausführungs-Pipeline 111 eines
der Prozessoren 110 über die Cache 112–113 über-
tragen. In der Pipeline werden die Befehle für eine
Ausführung decodiert. Einige der Befehle arbeiten in
Bezug auf die Daten. Andere Befehle steuern den
Ausführungsfluss der Programme.
[0063] Es ist erwünscht, detaillierte Funktions-Da-
ten zu sammeln, während die Befehle ausgeführt
werden. Funktions-Daten können zu Speicher-Ope-
rationen und Ausführungs-Abläufen in Bezug gesetzt
sein.

Prozessor-Pipeline

[0064] Fig. 2a stellt eine Ausführungs-Pipeline 200
eines der Prozessoren 110 der Fig. 1 dar, die eine

Vielzahl von Stufen besitzt, die seriell angeordnet
sind, wie, zum Beispiel, Abruf-(Fetch-), Auflis-
tungs-(Map-), Ausgabe-(Issue-), Ausführungs-(Exe-
cute-) und Ausscheidungs-(Retire-) Einheiten, und
zwar jeweils 210, 220, 230, 240 und 250. Die Rate,
unter der die Pipeline 200 Informationen (Daten und
Befehle) verarbeitet, wird durch Systemtaktsignale
auf Leitungen 201 verarbeitet, d. h. sogenannte Takt-
„Zyklen".
[0065] Jeder Takt-Zyklus definiert einen „Schlitz"
oder ein Intervall einer Zeit, wenn eine Stufe der
Pipeline 200 einen diskreten Umfang einer Verarbei-
tung vornehmen kann. Ein Verarbeitungs-Schlitz
trägt gewöhnlich Vorwärts-Befehle, und, in dem Fall
von Ausführungseinheiten, beschrieben nachfol-
gend, Daten, allgemein als „Datenelemente" nachfol-
gend bezeichnet. In einigen Fällen fährt, zum Beispiel
bei Verzweigungs-Fehlvorhersagen oder Ca-
che-Fehlern, oder Pipeline-Stillständen, der Takt fort,
zyklisch zu arbeiten, allerdings werden keine bedeu-
tungsvollen Befehle nach vorwärts getragen.
[0066] Als ein Vorteil können die vorliegende Vor-
richtung und das Verfahren Zustands-Informationen
über Prozessor-Schlitze abtasten, die „Abfall" („gar-
bage") oder keine nützlichen Daten führen. Diese
sind als „verschwendete" Schlitze bekannt. Ein Iden-
tifizieren und Abtasten von verschwendeten Schlit-
zen kann ein wichtiger Precursor sein, um Aufgaben
zu optimieren, da verschwendete Schlitze nicht nütz-
lich arbeiten, und deshalb die Systemfunktion ver-
schlechtern. Deshalb sind das, allgemein, was hier
abgetastet wird, nicht einfach „Ereignisse" oder „Be-
fehle" wie im Stand der Technik, sonder Zustands-In-
formationen, die dazu in Bezug gesetzt sind, Prozes-
sor-Schlitze durch die Pipeline 200 erzwungenerma-
ßen zu führen, ob sie nun einem gültigen oder einem
ungültigen Befehl zugeordnet sind.

Abrufeinheit

[0067] Der B-Cache 121 überträgt Datenelemente
zu dem I-Cache 112 und dem D-Cache 113 jeweils.
Die Abrufeinheit 210, die einen Typ eines Translati-
on-Look-Side-Buffer (TLB) 205 verwendet, um virtu-
elle Adressen zu physikalischen Adressen aufzulö-
sen, ruft nächste Befehle, die ausgeführtwerden sol-
len, von den I-Cache 112 ab. Die Elemente, die von
den I-Cache 112 abgerufen sind, sind allgemein aus-
führbare Befehle. Allerdings können diese auch un-
gültige Befehle sein, wie zum Beispiel in dem Fall,
dass dem I-Cache, „Abfall" Daten fehlen, d. h. kein
Befehl.
[0068] Vorzugsweise wird ein Satz von „Befehlen"
während eines einzelnen Prozessor-Zyklus abgeru-
fen. Der Satz kann, zum Beispiel, vier Befehle umfas-
sen. Mit anderen Worten ist die Pipeline 200 vier
Schlitze breit. Andere Typen von Prozessoren kön-
nen weniger oder mehr Befehle während eines ein-
zelnen Prozessor-Zyklus abrufen. Allgemein bedeu-
tet dies, dass jeder Zyklus vier Verarbeitungs-Schlit-
7/23

DE 698 19 849 T2 2004.09.02
ze von dem Cache ausfüllt. Einige der Schlitze kön-
nen dann vergeudet werden, wenn der I-Cache 112
nicht die verfügbaren Daten hat. An Stelle eines Pau-
sierens, was die gesamten Verarbeitung anhält, wer-
den die Schlitze nach vorne in jedem Fall getragen,
um sie für den Zweck einer Abtastung verfügbar zu
machen, obwohl ein Abfall „Befehl" in einem Schlitz
niemals für eine Ausführung ausgegeben werden
kann.
[0069] Während eines Abrufens können ausge-
wählte Befehle mit zusätzlichen Informationen erhöht
werden, um eine Abtastung oder eine System-Profi-
lierung zu ermöglichen. Ein erhöhter Befehl wird
nachfolgend unter Bezugnahme auf Fig. 4 beschrie-
ben. Es sollte angemerkt werden, dass, in anderen
Ausführungen, die Erhöhung der ausgewählten Be-
fehle in irgendeiner der Stufen des Prozessors statt-
finden kann, einschließlich der Ausgabeeinheit 230.

Auflistungs-Einheit

[0070] In dem System 100 werden die Operanden
von Befehlen dynamisch physikalischen Registern
unter Verwendung der Auflistungs-Einheit 220 in der
nächsten Stufe der Pipeline 200 zugeordnet oder
„aufgelistet". Die Auflistungs-Einheit ordnet physikali-
sche Register zu architekturmäßigen oder „virtuellen"
Registern zu. Mit anderen Worten kann dabei keine
eins zu eins Korrespondenz zwischen virtuellen und
physikalischen Registern vorhanden sein.

Ausgabeeinheit

[0071] In der nächsten Stufe werden die abgerufe-
nen Befehle durch eine Ausgabeeinheit 230 geord-
net. Die Ausgabeeinheit 230 umfasst eine Ausga-
be-Warteschlange, die einen Eintritt 231 am Kopf der
Warteschlange (head-of-the-queue entry) für den
nächsten Befehl, der ausgeführt werden soll, besitzt.
Es sollte angemerkt werden, dass einer oder mehre-
re Befehle) in der Ausgabeeinheit 230 zum Stillstand
kommen können, da Ressourcen oder Daten, die
durch die Befehle benötigt werden, nicht verfügbar
sind. Deshalb können andere, anhängige Befehle au-
ßerhalb der Reihenfolge von der Warteschlange 230
„um" die angehaltenen Befehle herum ausgegeben
werden. Die korrekte Ausführungs-Reihenfolge wird
in der Ausscheidungseinheit (retire unit) 250, die
nachfolgend beschrieben ist, bestätigt werden.

Ausführungs-Einheiten

[0072] Die Befehle werden zu funktionalen Ausfüh-
rungs-Einheiten (E0, ..., E3) 241 und einer La-
de/Speicher-(Id/st)-Einheit 242 ausgegeben. Jede
der Ausführungs-Einheiten 241 kann so ausgelegt
sein, um Befehle mit spezifischen Typen von Opera-
tor-Coden (opcoden), zum Beispiel Ganzzahl und
Fließpunkt-Arithmetik-Verzweigungs- und
Sprung-Befehlen, usw., zu handhaben. Zwischen-

werte können, während durch die Ausführungs-Ein-
heiten verarbeitet wird, erzeugt werden. Die Id/st-Ein-
heit 240 führt Speicher-Zugriffs-Befehle, zum Bei-
spiel Laden und Speichern von Daten von und zu
dem D-Cache 113, aus. Die Id/st-Einheit 242 wird
speziell identifiziert, da sie lange Verzögerungen er-
leiden kann. Auch ist anzumerken, dass Spei-
cher-Zugriffs-Befehle mit langen Latenzzeiten „voll-
ständig" lang sein können, bevor die Daten in den
Prozessor gebracht werden, um einen Durchsatz zu
verbessern.

Ausscheide-Einheit

[0073] Die Beendigung einer Ausführung eines Be-
fehls wird durch die Ausscheide-Einheit 250 gehand-
habt. Die Ausscheide Einheit 250 überträgt die Verar-
beitungsstufe. Es sollte angemerkt werden, dass ei-
nige Befehle ausgesondert oder übersprungen wer-
den sollten. Zum Beispiel kann sich der Ausführungs-
fluss ändern, nachdem ein Befehl abgerufen ist, oder
ein Befehl kann ein Ausnahme-Überspringen erlei-
den. In diesen Fällen werden der Befehl und alle da-
rauffolgenden Befehle, die in der Pipeline bereits
ausgesondert sind, und der spekulative Verarbei-
tungs-Zustand, zurückgerollt. Als ein Vorteil hier sind
die ausgesonderten oder „aussortierten" Befehle
auch profiliert, wie verschwendete oder ausgelasse-
ne Prozessor-Schlitze. Mit anderen Worten kann eine
Beendigung ein Aussondern eines vollständig ausge-
führten, gültigen Befehls, eine Nachbearbeitung ei-
nes teilweise ausgeführten, gültigen Befehls oder ein
Aussondern eines ungültigen Befehls oder eines ver-
schwendeten oder ausgelassenen Schlitzes bedeu-
ten.
[0074] Die Grundidee, die hinter der vorliegenden
Technik steht, folgt der Verarbeitung von „Datenele-
menten" in ausgewählten „Schlitzen", Primär-Befeh-
len, wenn sie durch die Stufen der Pipeline 200 fort-
schreiten. Eine Profilierungs-Hardware sammelt dy-
namisch detaillierte Zustands-Informationen. Die Zu-
stands-Informationen können von irgendeiner der
Pipeline-Stufen her kommen, oder von irgendwo in
dem System 100, zum Beispiel von dem Cache auf
dem ersten und dem zweiten Niveau, oder anderen
Untersystemen. Die Zustands-Informationen können
direkt zu spezifischen Ereignissen als Attribut zuge-
ordnet werden.
[0075] Hierbei ist die Design-Strategie diejenige, In-
formationen zusammenzustellen, was schwierig sta-
tisch in einer Profil-Aufzeichnung zu bestimmen ist.
Dies gestaltet die Profil-Aufzeichnung für Funkti-
ons-Tools, für eine auf ein Profil gerichtete Optimie-
rung oder zum Vornehmen von Ressource-Zuord-
nungs-Policy-Entscheidungen in Betriebssystemen
oder eine Software auf einem Anwendungs-Level,
nützlich, einschließlich dynamischer Einstellungen
direkt in Abhängigkeit der Abtastung und Analyse. Es
wird daran erinnert, dass das vorliegenden Verfahren
und die vorliegende Vorrichtung so ausgelegt sind,
8/23

DE 698 19 849 T2 2004.09.02
um auf realen, funktionalen Befehlen zu arbeiten.
[0076] Um zu bestimmen, welche Zustands-Infor-
mationen dahingehend von Interesse sind, um sie als
Teil der Profil-Aufzeichnung zu sichern, ist es nütz-
lich, die Informationen zu prüfen, die theoretisch für
die verschiedenen Stufen der Pipeline 200 eines mo-
dernen Mikroprozessors, außerhalb der Reihenfolge,
sind, wie dies in Fig. 2b dargestellt ist.
[0077] Wie in Fig. 2b dargestellt ist, sind die Stufen
der Pipeline das Abrufen 210, das Auflisten 220, das
Ausgeben 230, das Ausführen 240 und das Aus-
scheiden 250. Während irgendeiner der Stufen kann,
in Abhängigkeit von der bestimmten Ausführung, ir-
gendein Befehl 202 „in-flight", verarbeitet durch die
Pipeline 200, zum Abtasten durch die Leitung 512
ausgewählt werden. Die Auswahl wird durch einen
Wert eines Zählers 510 kontrolliert. Der Wert des
Zählers kann durch die Leitung (init) 511 initialisiert
werden.
[0078] Zustands-Informationen, wie beispielsweise
Befehls-Adressen (PC) 281, Verzweigungs-Histo-
rie-Bits (branch history bits – HIST) 282, Stufen-La-
tenzzeiten (stage latencies) 283, Anzeige über die
vorgenommene Verzweigung (T) 287, Daten-Adres-
se (ADDR) 284, Daten-Fehler (MISS) 285, Ausschei-
dungs-Status 286, können auf Leitungen 288 abge-
tastet werden. Eine Beendigung der Verarbeitung der
ausgewählten Befehle kann ein Unterbrechungs-Sig-
nal auf der Leitung 289 erzeugen. Das Unterbre-
chungs-Signal 289 kann bewirken, dass die Software
die Zustands-Informationen 281–286 über Leitungen
299 abtastet.
[0079] Alternativ kann eine Software die Leitung
289 über ein internes Prozessor-Register 541 abfra-
gen.

Superscalar-Out-of-Order-Prozessor-Architektur

[0080] Ein Out-of-Order-Ausführungs-Prozessor
bzw. ein Prozessor mit einer Ausführung außerhalb
der Reihenfolge ruft Befehle in der Reihenfolge ab
und scheidet sie aus, führt sie allerdings entspre-
chend deren Daten-Abhängigkeiten aus. Ein Befehl
ist dasjenige, dass er sich von der Zeit an „in Bewe-
gung" („in-flight") befindet, zu der er abgerufen ist, bis
er endet, z. B. ausscheidet, oder ausgesondert wird.
Befehle werden, nach einem Auflisten, in der Ausga-
beeinheit 230 platziert, und warten dort, bis Register,
die Eingangs-Operanden halten, aktualisiert werden.
[0081] Bei jedem Prozessor-Zyklus ruft die Ab-
rufeinheit 210 einen Satz von Befehlen von dem Be-
fehls-Cache 112 ab und codiert sie. Der Befehl-Deco-
dierer, der ein Teil der Abrufeinheit 210 sein kann,
identifiziert, welche Befehle in dem abgerufenen Satz
ein Teil der Befehl-Datenfolge ist. Da es mehrere Zy-
klen benötigt, um den Programm-Zähler (PC) eines
nächsten Befehls aufzulösen, um abgerufen zu wer-
den, wird der nächste PC durch einen Verzweigungs-
oder Sprung-Prädikator vorhergesagt, der Teil der
Abrufeinheit 210 sein kann. Falls die Vorhersage

nicht korrekt ist, dann wird der Prozessor die fehlin-
terpretierten Befehle aussondern, d. h. der Befehl,
abgerufen auf einem „schlechten" Pfad, und wird ein
Abrufen von Befehlen auf dem „guten" Pfad erneut
starten.
[0082] Um zu ermöglichen, einen Vorgang
Out-of-Order auszuführen, werden Register dyna-
misch durch die Abbildungseinheit 220 umbenannt,
um Konflikte eines Schreibens nach einem Lesen,
und eines Schreibens nach einem Schreiben, zu ver-
hindern. Zwei Befehle, die dasselbe, virtuelle Regis-
ter beschreiben, können sicher außerhalb der Rei-
henfolge (out-of-order) ausgeführt werden, da sie un-
terschiedliche, physikalische Register beschreiben
werden, und Verbraucher der virtuellen Register wer-
den die geeigneten Werte erhalten. Befehle werden
abgerufen, aufgelistet bzw. abgebildet und erneut
versucht, und zwar in der Reihenfolge, obwohl sie au-
ßerhalb der Reihenfolge ausgeführt werden können.
[0083] Die Register-Abbildungseinheit 220 ordnet
Operanden von abgerufenen Befehlen gültigen, phy-
sikalischen Registern zu. Das bedeutet, dass die vir-
tuellen Namen der Register-Operanden zu dem phy-
sikalischen Registerraum des Prozessors umben-
annt werden. Befehle gehen dann zu der Befehl-War-
teschlange 230 weiter, wo sie auf zwei Ereignisse,
vor einer Ausführung, warten. Zuerst müssen deren
Register-Abhängigkeiten aufgelöst werden. Als zwei-
tes müssen die Ressourcen, die den Befehl benöti-
gen, z. B. Ausführungseinheiten, Register, Ca-
che-Ports, Speicher-Warteschlangen, usw., verfüg-
bar sein. Dies bedeutet, dass die erforderlichen Res-
sourcen nicht für irgendwelche momentan aufgeliste-
ten Befehle erneut zugeordnet werden können.
[0084] Wenn diese zwei Bedingungen für einen Be-
fehl erfüllt sind, werden die Operanden des Befehls in
der physikalischen Register-Datei durchgesehen.
Der Inhalt der Operanden-Register und von einigen
Informationen über den Befehl werden dann zu einer
geeigneten Ausführungseinheit 240 geschickt und
ausgeführt. Wenn der Befehl in seiner Ausführung
beendet ist, und der Befehl der älteste „nicht ausge-
schiedene" Befehl in dem Prozessor ist, wird der Be-
fehl ausgeschieden. Dies gibt die Ressourcen, ver-
wendet durch den Befehl, frei, wie beispielsweise
physikalische Register und Cache-Ports.
[0085] Zahlreiche Ereignisse können die Ausfüh-
rung eines Befehls verzögern. Vor der Pipeline kann
die Abrufeinheit 210 aufgrund eines Fehlers eines
I-Cache 112 steckenbleiben bzw. blockieren oder die
Abrufeinheit 210 kann Befehle eines fehlerhaft vor-
hergesagten Wegs abrufen. Die Abbildungseinheit
220 kann aufgrund eines Fehlens von freien, physi-
kalischen Registern, oder aufgrund eines Fehlens
von freien Schlitzen in der Ausgabeeinheit 230, blo-
ckieren.
[0086] Befehle in der Ausgabeeinheit 230 können
darauf warten, dass deren Register-Abhängigkeiten
erfüllt werden, oder auf die Verfügbarkeit von Ausfüh-
rungseinheiten 240. Befehle können aufgrund von
9/23

DE 698 19 849 T2 2004.09.02
Fehlern in dem D-Cache blockieren. Befehle können
abgefangen werden, da sie spekulativ entlang eines
schlechten Pfads ausgegeben wurden, oder da der
Prozessor eine Unterbrechung vornahm, wie bei-
spielsweise eine illegale Operation oder eine Spei-
cheradresse. Viele dieser Zustände sind schwierig
zum Zeitpunkt der Zusammenstellung vorherzusa-
gen, und alle davon verschlechtern die Funktionswei-
se des Systems 100. Dies gestaltet es lohnenswert,
die Informationen, verfügbar auf Leitungen 288, ab-
zutasten.

Profil-Informations-Register

[0087] Deshalb ist, wie in Fig. 3 dargestellt ist, ein
Speicher 300 zum Speichern von Profil-Informatio-
nen für jeden Befehl, der abgetastet werden soll, vor-
gesehen. Der Speicher 300 kann in der Form einer
Register-Datei oder eines Puffers vorliegen. Mit an-
deren Worten wird ein ausgewählter Befehl, der ab-
getastet werden wird, direkt mit der Register-Datei
300 identifiziert werden. Die Register-Datei 300 kann
eine Vielzahl von Registern umfassen. Alternativ
kann die Datei 300 als ein einzelnes, indexierbares
Register mit mehreren Feldern ausgeführt werden.
[0088] Die Datei 300 ist mit den Komponenten der
Pipeline 200 durch Leitungen 288 der Fig. 3b gekop-
pelt, so dass Funktions-Informationen, die zu dem
ausgewählten Befehl in Bezug gesetzt sind, für jede
Stufe der Pipeline 200 erfasst werden können. Es
sollte angemerkt werden, dass die Profil-Register
300 mehr als einfache „Ereignis" Zähler sind, wie dies
im Stand der Technik vorgefunden wird, wobei hier
die Register Funktions-Informationen zusammenstel-
len, die zu spezifischen, bekannten Befehlen und Er-
eignissen zuordenbar sind.
[0089] In Fig. 3 hängt die Zahl von Bits, die für jedes
Register zugeordnet ist, von dem Typ von Informatio-
nen, die darin gespeichert sind, ab, zum Beispiel Be-
fehls-Adressen (64 Bits), Latenzzeiten, d. h. Zy-
klus-Zählungen (8 oder 10 Bits), diskrete Ereignisse
(1 Bit pro Ereignis), usw.. Diese Zahlen sind nur eine
Richtlinie. Andere Ausführungen können unter-
schiedliche Zahlen von Bits für die verschiedenen
Register 300 verwenden, wobei dies eine Design-
wahl ist.
[0090] In der bevorzugten Ausführungsform spei-
chert ein Profil-PC-Register 310 den PC des ausge-
wählten Befehls. Wie nachfolgend beschrieben ist,
besitzt ein Befehl, der profiliert werden soll, ein „Pro-
fil" Bit, das zugeordnet ist. Das PC-Register 310 kann
auch den Opcode des ausgewählten Befehls umfas-
sen. Zusätzlich können Prozessoren, die eine Mul-
ti-Threaded-Ausführung von zusätzlichen Bits des
Registers 300 ermöglichen, den Identifizieren des
Thread speichern. Andere Felder des Registers 310
können den Prozess-Identifizierer, die Adres-
sen-Raum-Zahl, die CPU-Zahl und die Befehls-Zahl
(inum) des Befehls, der ausgeführt werden soll, spei-
chern. Zusätzlich kann, bei Prozessoren, die mehre-

re, logische Register-Sätze haben, d. h. Hard-
ware-Zusammenhänge, und gleichzeitig Threads
ausführen, das Register 310 einen Hardware-Kon-
text und Thread-Identifizieret speichern. Durch Spei-
chern dieser Informationen können die Profil-Infor-
mationen direkt einem spezifischen Befehl zugeord-
net werden. Zusätzlich können die abgetasteten In-
formationen entsprechend zu einem Bereich von
Adressen, einem Opcode, Ausführungs-Threads,
Adressen-Räumen, und dergleichen, gefiltert wer-
den.
[0091] Ein profil-effektives Adressen-Register 320
wird mit einer Adresse, zugeordnet dem ausgewähl-
ten Befehl, geladen. Falls der Befehl ein Spei-
cher-Zugriffs-Befehl ist, dann kann die physikalische
Adresse, die sich aus der Translation der virtuellen
Speicher-Adresse ergibt, in dem Register 320 erfasst
werden. Falls der Befehl ein Sprung oder eine Ver-
zweigung ist, dann kann die physikalische Adresse,
die sich aus der Translation des virtuellen Ziel-PC er-
gibt, in dem Register 320 erfasst werden.
[0092] Als ein Vorteil der vorliegenden Abtasttech-
nik ist es möglich, über alle „Befehle", verarbeitet
durch die Pipeline 200, abzutasten, unabhängig von
der Abtastrate. Die Befehle können gültige Befehle,
ungültige Befehle, nicht-unterbrechbare Befehle,
oder „Abfall" („garbage") Befehle sein. Demzufolge
sind die erfassten, effektiven Adressen statistisch für
das Gesamtverhalten des Programms repräsentativ.
Durch Erfassen der effektiven Adressen von abge-
tasteten Befehlen können Speicherzugänge und
Ausführungs-Abläufe präzise zu aktuellen, dynami-
schen Ausführungen korreliert werden.
[0093] Ein profiliertes Ereignis-Register 330 wird in,
zum Beispiel, Ein-Bit-Felder unterteilt. Die 1-Bit-Fel-
der zeichnen Ereignisse für den ausgewählten Befehl
auf. Wenn ein Befehl zuerst ausgewählt ist, wird das
Register gelöscht. Ereignisse könnten Cache-Fehler,
Verzweigungs-Fehlvorhersagen, Ressource-Konflik-
te, Traps- und Ausführungs-Bedingungen, ausschei-
den/aussondern/ungültig, TLB-Fehler, genom-
men/nicht genommen, Daten-Abhängigkeits-Blockie-
rung, Ressovre-Abhängigkeits-Blockierungen, usw.,
sein. Es ist anzumerken, dass diese Ausführung er-
möglicht, dass mehrere Ereignisse einem einzelnen
Befehl zuordenbar sind. Es sollte angemerkt werden,
dass Ereignis-Informationen für sowohl ausgeschie-
dene als auch ausgesonderte Befehle zusammenge-
stellt werden. Um die Größe des Ereignis-Registers
330 zu verringern, können einige der Bit-Felder dazu
verwendet werden, unterschiedliche Typen von ge-
genseitig exklusiven Ereignissen, in Abhängigkeit
von dem opcode des Befehls, aufzuzeichnen.
[0094] Ein profiliertes Pfad-Register 340 wird dazu
verwendet, um neuere genommene/nicht genomme-
ne Verzweigungs-Informationen von einer Verzwei-
gungs-Historie-Tabelle zu erfassen. Verzwei-
gungs-Historie-Tabellen sind im Stand der Technik
für andere Verwendungen ausreichend bekannt.
Eine herangezognene Historie einer globalen Ver-
10/23

DE 698 19 849 T2 2004.09.02
zweigung kann dazu verwendet werden, den Ausfüh-
rungs-Pfad anzuzeigen, der den ausgewählten Be-
fehl verursachte, um abgerufen zu werden. Es ist an-
zumerken, dass der Befehl nicht ein Verzwei-
gungs-Befehl für diese Informationen sein muss, um
nützlich zu sein. Die Verwendung der Pfad-Informati-
onen ist in größerem Detail nachfolgend beschrie-
ben.
[0095] Latenzzeit-Register 350 speichern Zeitab-
stimmungs-Informationen, die an Prüfpunkten heran-
gezogen werden, während sich ein ausgewählter Be-
fehl in Bewegung befindet, z. B. zwischen den ver-
schiedenen Stufen der Pipeline 200. Die Prüfpunkte
können sich von Prozessor zu Prozessor in Abhän-
gigkeit davon unterscheiden, ob ein Befehl angehal-
ten werden sollte, auf ein bestimmtes Ereignis oder
eine Ressource wartend. Jedes Latenz-Register 350
zählt die Zahl von Zyklen eines Befehls, verbraucht
zwischen zwei Prüfpunkten.
[0096] Wenn der ausgewählte Befehl einen Prüf-
punkt passiert, d. h. in eine nächste Stufe in der Pipe-
line 200 eintritt, wird das entsprechende Latenz-Re-
gister 350 zuerst gelöscht und dann einmal pro Zy-
klus erhöht, bis der Befehl den nächsten Prüfpunkt
passiert, wenn das nächste Latenz-Register initiali-
siert wird und eine Zählung beginnt. Die Zahl von La-
tenz-Registern 350 hängt von der Zahl von Stufen
der Pipeline 200 in einer bestimmten Ausführung ab.
Ein vollständiges Latenz-Profil ist in den Latenz-Re-
gistern 350 gespeichert, wenn der Befehl ausgeson-
dert wird oder ausscheidet.
[0097] Eine Liste von potenziell nützlichen Latenz-
zeiten, um sie zusammenzustellen, umfasst:
fetch-to-map, map-to-data-ready, data ready-to-exe-
cute, execute-to-retire ready, retire ready-to-retire de-
lays. Für Speicher-Befehle (Laden und Speichern)
können Latenzzeiten ausgegeben werden, um abzu-
schließen (issue-to-completion). Diese letzte Latenz-
zeit unterscheidet sich von anderen Latenzzeiten da-
hingehend, dass einige Speicher-Operationen aus-
geschieden werden können, bevor die Daten, auf de-
nen sie gearbeitet haben, tatsächlich in den Prozes-
sor gebracht worden sind. Diese Latenzzeiten könn-
ten direkt in den Registern 350 gezählt werden, oder
die Register können grobe Zyklus-Zählungen zusam-
menstellen, wobei in diesem Fall die Profilie-
rungs-Software Unterschiede zwischen groben Zäh-
lungen für aufeinanderfolgende Stufen berechnet,
um tatsächliche Latenzzeiten zu bestimmen. Eine
Schaltung, die beispielhafte Pipeline-Latenzzeit-Takt-
zyklen zählt, wird nachfolgend unter Bezugnahme
auf Fig. 6 beschrieben.
[0098] Das Aktualisieren der Informationen in dem
Register (den Registern) 300 muss nicht unmittelbar
auftreten, wobei eine Verzögerung akzeptierbar ist.
Alles das, was erforderlich ist, ist, dass die Unterbre-
chung, die die Tatsache signalisiert, dass der ausge-
wählte Befehl abgeschlossen ist (ausgeschieden
oder ausgesondert ist), verzögert wird, bis alle Infor-
mationen in der Register-Datei 300 aktualisiert wor-

den sind, oder der Unterbrechungs-Handler kann an-
halten, bis die Profil-Datei 300 aktualisiert worden ist.
[0099] Es sollte angemerkt werden, dass die Pro-
fil-Register-Datei 300 repliziert werden kann. Falls
mehrere Kopien der Profil-Register-Datei vorhanden
sind, dann können mehrere Befehle für ein Profilie-
ren, entweder seriell, oder gleichzeitig, ausgewählt
werden. In diesem Fall wird jeder ausgewählte Fall
explizit mit einer spezifischen Register-Datei so, wie
dies nachfolgend beschrieben ist, identifiziert. Meh-
rere Register-Dateien können auf ein einzelnes Un-
terbrechungssignal hin abgetastet werden, um den
Umfang eines Overhead zu verringern.

Identifizieren eines ausgewählten Befehls

[0100] Wie in Fig. 4 dargestellt ist, umfasst jeder
Befehl 400 ein Abtastfeld. Zum Beispiel kann das Ab-
tastfeld ein Ein-Bit-Tag (Ein-Bit-Zeichen), bezeichnet
als „Abtast"-Bit (S) 401 sein. Wenn das Abtast-Bit
401 aufgestellt ist, wird der Befehl zum Abtasten aus-
gewählt. Ein Aufstellen des Bits 401 aktiviert die Ab-
tast-Hardware, die die Profil-Informationen zusam-
menstellt, und bewirkt auch die Unterbrechung, wenn
der ausgewählte Befehl abschließt (ausgeschieden
oder ausgesondert wird). Alternativ kann jeder „Be-
fehl", der abgerufen ist, aufeinanderfolgend mit ei-
nem „inum" Wert nummeriert werden. In diesem Fall
können Befehle mit spezifischen inum Werten ausge-
wählt werden. Der Mechanismus zum Auswählen
von Befehlen wird nachfolgend beschrieben.
[0101] Die Profil-Register-Datei 300 kann dann ge-
lesen werden, wenn die Felder aktualisiert worden
sind und das Unterbrechungssignal erzeugt ist. Das
Unterbrechungssignal kann bewirken, dass die privi-
legierte Profilierungs-Software (PSW) die Inhalte der
Profil-Register 300 verarbeitet. Es sollte angemerkt
werden, dass, in dem Fall, bei dem mehrere Abtas-
tungen aufgezeichnet werden, eine einzelne Unter-
brechung die Abtastung der Funktions-Daten für
mehrere, ausgewählte Befehle bewirken kann.
[0102] In Abhängigkeit von der Ausführung kann der
erhöhte Befehl 400 die folgenden, zusätzlichen Fel-
der, bis zu drei Befehl-Operanden (op1, op2 und op3)
411–413, den Programm-Zähler (PC) 420, den Ope-
rator-Code (opcode) 430, umfassen. Ein gültiges
Feld M 431 kann anzeigen, ob der „Befehl" in dem
ausgewählten Schlitz gültig ist oder nicht, und zwar
durch Einstellen eines Ein-Bit-Felds auf entweder
wahr oder falsch. Die Felder 440 und 450 können
zum Anzeigen eines Befehls, der zu einem I-Cache
und TBL-Fehler, jeweils, in Bezug gesetzt ist, umge-
kehrt werden. Es ist anzumerken, dass, da eineinzel-
ner Befehl mehrere Operanden umfassen kann,
mehrere Fehler für diesen Befehl möglich sind.

Profil-Register-Datei-ID

[0103] In einem leicht komplizierteren Design kön-
nen mehrere Befehle gleichzeitig profiliert werden.
11/23

DE 698 19 849 T2 2004.09.02
Bei dieser Ausführungsform ist eine Vielzahl von Re-
gister-Dateien 300 oder einzelnen, größeren Regis-
tern mit Unterfeldern vorhanden, wobei die Zahl von
Dateien 300 der Zahl von sich in der Bearbeitung
(in-flight) befindlichen Befehlen entspricht, die gleich-
zeitig profiliert werden können. Um diesen Fall zu
handhaben, wird Befehl 400 auch erhöht, um ein Ab-
tast-Register-Datei-Indentifizierer-(ID)-Feld 402 zu
umfassen. Dies ermöglicht auch, dass Profil-Informa-
tionen direkt mit einer der verschiedenen Regis-
ter-Dateien verknüpft werden. Wie vorstehend ange-
führt ist, ist dabei eine direkte Zuordnung zwischen
ausgewählten Befehlen und Profil-Registern vorhan-
den. Die Profil-Informationen, zusammengestellt in
den Registern, sind deshalb direkt einem spezifi-
schen Befehl zuordenbar.
[0104] Gerade wenn nur ein sich in der Verarbeitung
befindlicher Befehl zu einem Zeitpunkt profiliert wird,
kann es nützlich sein, die Datei oder das Register
300 durch das ID-Feld 402 indexiert zu haben, so
dass die Kosten des Unterbrechungs-Handlex der
Profilierungs-Software über mehrere Befehl-Abtas-
tungen amortisiert werden können. Um zu bestim-
men, ob ein Befehl innerhalb eines Satzes von Be-
fehlen liegt, kann ein ausgewählter Befehl unter Ver-
wendung einer „verdrahteten ODER" („wired-OR")
Operation durchgeführt werden.

Zufall-Abtastung

[0105] Das Overhead der vorliegenden Profilierung
wird durch Einschränken der Zahl von Befehlen, die
gleichzeitig profiliert werden können, z. B. Bit 401
wird eingestellt, reduziert. Anstelle eines Profilierens
jedes Befehls in einem Programm oder einem Teil
des Programms werden hier Befehle, die profiliert
werden sollen, während einer spezifischen Stufe der
Prozessor-Pipeline 200, ausgewählt, z. B. während
eines Abrufens, und die ausgewählten Befehle wer-
den durch Aufstellen des Abtast-Bits 401 mit einem
Zeichen versehen. Falls das Abtast-Bit 401 aufge-
stellt ist, dann führen die Komponenten der Pipeline
200 die Profil-Informationen zu der (den) Profil-Re-
gister-Dateien) 300 weiter.
[0106] Die nachfolgenden Abschnitte beschreiben
die unterstützenden Details einer Befehl-Level-Profi-
lierung, wie es hier beschrieben ist.

In der Bearbeitung befindliche Zustände

[0107] Zuerst wird jeder decodierte Befehl-Zustand,
der durch die Prozessor-Pipeline 200 hindurchführt,
mit zusätzlichen Informationen ergänzt bzw. erhöht,
wie dies vorstehend beschrieben ist. Ein Befehl wird
dahingehend angesehen, dass er sich von der Zeit
an in der Bearbeitung befindet, zu der er abgerufen
ist, bis er ausgeschieden oder ausgesondert wird.
Wie vorstehend angegeben ist, wird der Befehl mit
zumindest einem Abtast-Bit 401 erhöht bzw. ergänzt.
Das Abtast-Bit 401 ist Teil des Zustands von jedem

sich in der Bearbeitung befindlichen Befehl und einer
Cache/Speicher-Anforderung. Wenn das Bit 401 auf-
gestellt ist, zeigt das Bit an, dass Profilierungs-Infor-
mationen für diesen Befehl aufgezeichnet sind, an-
sonsten nicht.
[0108] In einem vereinfachten Design wird nur ei-
nem sich in der Bearbeitung befindlichen Befehl zu
einem Zeitpunkt ermöglicht, dass sein Abtast-Bit 401
aufgestellt ist. Das Abtast-Bit 401 verbleibt für den
ausgewählten Befehl aufgestellt, bis der Befehl aus-
scheidet oder ausgesondert wird. In einem komple-
xeren Design mit Mehrfach-Register-Dateien 300
können die mehrfachen, sich in der Bearbeitung be-
findlichen Befehle individuell profiliert werden und zu-
sätzliche Bits können aufgestellt werden.

Auswahl und Abtasten eines profilierten Befehls

[0109] Wie in Fig. 5 dargestellt ist, schreiten, für
eine Abruf-Stufen-Ausführung, eine Auswahl von Be-
fehlen, die profiliert werden sollen, und ein Abtasten
von Profil-Informationen so fort, wie dies nachfolgend
angegeben ist. Ein Abruf-Zähler 510 wird durch, zum
Beispiel, privilegierte Profilierungs-Software (PSW)
520 über die Leitung 511 initialisiert. Die PSW 520
kann den Zähler 510 mit einem Wert, zufällig ausge-
wählt von einem Intervall von Werten, das eine vor-
bestimmte Größe besitzt, initialisieren. Demzufolge
werden die abgetasteten Befehle nicht mit irgendwel-
chen spezifischen Mustern in der Ausführung von Be-
fehlen korrelieren. Die Größe des Intervalls bestimmt
die durchschnittliche Frequenz einer Abtastung. Die
Größe des Intervalls kann variiert werden. Andere
Zufalls-Techniken, um den Wert des Zählers 510 zu
initialisieren, umfassend eine Hardware, können
auch verwendet werden.
[0110] Ohne eine zufällige Abtastung kann es, zum
Beispiel dann, wenn Befehle unter einer festgelegten
Frequenz, wie im Stand der Technik, abgetastet wer-
den, nicht möglich sein, ein statistisch korrektes Profil
aller Befehle, die abgerufen sind, z. B. die aggregier-
te Operation des Systems 100, zu erzeugen. Dies gilt
insbesondere für ein Ausführungs-Thread bzw. einer
Ausführungsfolge, die Ausführungsschleifen besitzt,
die eine Anzahl von Befehlen umfasst, die nicht sehr
wichtig in Bezug auf die Rate einer Abtastung sind, z.
B. für eine Schleife mit zwei Befehlen und einem Ab-
tastintervall von 65536 Befehlen. Als ein Vorteil wer-
den zufällig ausgewählte Befehle Korrelationen, un-
abhängig der Länge des Abtastintervalls, erzeugen.
[0111] Für jeden Befehl 400, der abgerufen ist, wird
der Zähler 510 erhöht, oder, alternativ, in einer unter-
schiedlichen Ausführung, von seinem Anfangswert
erniedrigt, und zwar durch die Abrufeineinheit 210
der Pipeline 200. Wenn der Zähler 510, in Abhängig-
keit von der Ausführung, entweder überläuft oder un-
terläuft, besitzt der momentan abgerufene Befehl
sein Abtast-Bit 401 aufgestellt, und das ID-Feld 402
kann auch initialisiert werden, wenn mehrere Befehle
zum Abtasten ausgewählt werden.
12/23

DE 698 19 849 T2 2004.09.02
[0112] In einer alternativen Ausführungsform wird
der Zähler 510 jeden Zyklus erhöht, anstelle davon,
dass dies für jeden Befehl, der abgerufen ist, erfolgt,
z. B. der Zähler 510 zählt Abruf-Gelegenheiten und
nicht tatsächliche Befehle, die abgerufen sind. Zum
Beispiel sind, falls die Abrufeinheit 210 vier Elemente
von dem 1-Cache 112 während jedes Taktzyklus ab-
rufen kann, dann vier Abruf-Gelegenheiten vorhan-
den. Es kann ausreichend sein, dass ein oder mehre-
re Abrufvorgang (Abrufvorgänge) von dem I-Cache
fehlen werden, oder ein „schlechter" Befehl abgeru-
fen wird. In dem Fall eines Fehlens wird der Schlitz,
der für den fehlenden Befehl verfügbar ist, „Abfall"
(„garbage") enthalten, und der Befehl muss als un-
gültig markiert werden. Ein schlechter Befehl ist ein
solcher, der auf einem schlechten Ausführungs-Pfad
liegt, oder ansonsten ausgesondert werden wird.
[0113] Ein Zählen von Zyklen, anstelle von abgeru-
fenen Befehlen, vereinfacht vorteilhaft das Design.
Nur ein Zählen von gültigen, abgerufenen Befehlen
kann ziemlich kompliziert sein, da der Steuerablauf in
die Gruppe von abgerufenen Befehlen hinein ver-
zweigen und davon heraus verzweigen kann, und es
wird notwendig, alle Befehle zu decodieren, um zu
bestimmen, welche gültig sind, so dass dies nicht län-
ger ein einfacher Vorgang von nur einem Erhöhen
des Zählers um vier ist.
[0114] Als ein Vorteil kann irgendetwas (gute Befeh-
le, schlechte Befehle, Abfall-Befehle), das von dem
I-Cache während eines Zyklus abgerufen ist, zum
Abtasten ausgewählt werden, so dass die wahre
Funktion des I-Cache 112 und der Pipeline 200 be-
stimmt werden kann. Hierbei ist kein Bias vorhanden,
so dass die Ergebnisse statistisch korrekt die Funkti-
onsweise des Systems abschätzen werden.

Filter-Befehle

[0115] Die abgetasteten Befehl-Informationen kön-
nen durch ein Filter 505 gefiltert werden. Ein Filtern
kann auf der Basis eines Befehl-Opcodes, von Ope-
randen, oder durch noch komplexere Filterkriterien,
wie beispielsweise einen ersten Typ eines Befehls
gefolgt durch einen anderen Typ eines Befehls, inner-
halb einer bestimmten Zeitperiode, erfolgen. Falls ein
Filtern an dem Eingang der Pipeline 200 vorhanden
ist, dann kann der Zähler 510 zurückgesetzt werden.
Dabei ist eine Anzahl von Arten und Weisen vorhan-
den, um dies so vorzunehmen. In einer Art und Weise
wird der momentane Anfangswert des Zählers 510 in
einem init-Register 513 gespeichert. Wenn ein Befehl
gefiltert wird, wird der Zähler 510 erneut mit dem
Wert, gespeichert in dem init-Register 513, geladen,
um die anfängliche, randomisierte Auswahl wieder
aufzurufen.
[0116] Nachdem der Befehl erhöht worden ist, liefert
die Pipeline 200 die Profilierungs-Informationen
281–286 der Fig. 2b zu der Register-Datei (den Re-
gister-Dateien) 300. Die Ausscheidungseinheit 250
schließt, auf den Befehl-Abschluss oder die Be-

fehl-Aussonderung hin, das Auffüllen der Profil-Infor-
mationen ab und erzeugt ein Unterbrechungssignal
auf der Leitung 540, so dass die PSW 520 die Pro-
fil-Informationen abtasten kann.
[0117] Alternativ kann die PSW 520 die Leitung 540
über ein internes Prozessor-Register oder eine Spei-
cherstelle (541) abrufen. Als ein Merkmal der vorlie-
genden Technik ist, im Gegensatz zu Profilierungs-
techniken nach dem Stand der Technik, kein Einfluss
in Bezug auf die Prozessor-Zykluszeit vorhanden,
gerade obwohl die vorliegenden Technik präzise In-
formationen über Zustände über den Prozessor lie-
fert. Die einzige Zeiteinschränkung ist diejenige, dass
alle Profil-Informationen aufgezeichnet werden müs-
sen, bevor die Profil-Register 300 abgetastet werden.

Latenz-Zähler

[0118] Fig. 6 stellt eine Schaltung 600 zum Zählen
von beispielhaften Latenzen bzw. Latenzzeiten dar:
fetch-to-map (FM), map-to-issue (MI), issue-to-retire
(IR), fetch-to-trap (FT), und issue-to-1dst (ILS). Die
Schaltung 600 umfasst einen Zyklus-Zähler 610, ver-
bunden über eine Leitung 611 mit Verriegelungen
620.
[0119] Der Zyklus-Zähler 610 und die Verriegelung
620 werden durch ein Signal Pfetch auf der Leitung
601 initialisiert. Dieses Signal wird dann erzeugt,
wenn ein Befehl, der profiliert werden soll, abgerufen
ist, zum Beispiel ein Signal, abgeleitet von dem Ab-
tast-Bit 401. Der Zähler 610 wird durch Taktsignale
auf der Leitung 609 erhöht. Jedes Taktsignal ent-
spricht einem Prozessor-Zyklus.
[0120] Wenn der Befehl 400 durch die Stufen der
Pipeline 200 fortschreitet, triggern die Zu-
stands-Übergänge in der Pipeline 200 Signale Pmap,
Pissue, Pretire, Ptrap und PLSdone, und zwar jeweils
auf den Leitungen 602–606. Die entsprechenden
Verriegelungen 620 können auf Leitungen 612–616
zum Speichern in den Profil-Latenz-Registern (oder
Feldern) 350 der Fig. 3 gelesen werden.

Profilierungs-Anwendungen

[0121] Die Profilierungs-(Profiling)-Hardware, die
nachfolgend beschrieben ist, kann in einer Vielfalt
von unterschiedlichen Arten und Weisen verwendet
werden. Da die vorliegende Technik sehr detaillierte
Informationen über die Ausführung von individuellen
Befehlen liefert, könnte eine Anwendung eine große
Anzahl von Befehlen profilieren. Die Abtast-Informa-
tionen können in einem Speicherpuffer für eine spä-
tere Verarbeitung durch Profiling-Tools gespeichert
werden, um detaillierte Befehl-Level-Informationen
zu erzeugen.
[0122] Die Informationen können dazu verwendet
werden, zum Beispiel Histogramme von Last-Latenz-
zeiten für jeden Last-Befehl, Histogramme von Be-
fehl-Ausführungs-Zeiten, und vielleicht sogar eine
moderate umfangreiche Analyse des Pipeline-Zu-
13/23

DE 698 19 849 T2 2004.09.02
stands für jeden Befehl zu entwickeln. Da die Menge
an Informationen, vorgesehen durch diese Maßnah-
me, dahingehend wahrscheinlich ist, dass sie sehr
hoch ist, ist das gesamte Speicher-Overhead der vor-
liegenden Technik auch dahingehend wahrschein-
lich, dass es sehr hoch ist, da ein wesentlicher Um-
fang eines Speicherverkehrs auftritt. Zum Beispiel
wird, falls eine Billion Befehle pro Sekunde abgerufen
werden, und eine Abtastung alle 10.000 abgerufene
Befehle durchgeführt wird, dann die Datenrate für die
Profil-Informationen ungefähr 2,4 MB pro Sekunde
sein.
[0123] Der nachfolgende Abschnitt beschreibt
durch eine Software ausgeführte Verfahren zum Ver-
ringern einer Bandbreite durch Aggregieren von Pro-
fil-Informationen.

Daten-Reduktion durch Filtern von Profil-Informatio-
nen

[0124] Das Volumen bzw. der Umfang von abgetas-
teten Daten kann durch Ignorieren einiger Felder der
Profil-Aufzeichnung verringert werden, z. B. die Da-
ten in den Profil-Registern 300, mit der Ausnahme
dann, wenn sie explizit angefordert werden. Ein Be-
nutzer des Systems 100 kann unterschiedliche Ni-
veaus einer Profilierung wünschen. In einem nied-
rigsten Overhead-Mode kann die Profilierungs-Mo-
de-Anwendungs-Software einen Profil-Bericht für
das gesamte oder einen Teil eines Programms erzeu-
gen, und zwar unter Verwendung nur der PC- und
Retire-Delay-Felder. In Abhängigkeit von der Opti-
mierung, die durchgeführt werden soll, können ande-
re per-PC-Werte durch Mitteln oder andere, statisti-
sche Metriken, wie beispielsweise Minimum, Maxi-
mum oder Berechnen einer Standardabweichung,
summiert werden. Falls mehr Zeit bereitgestellt wird,
um Daten zu verarbeiten, kann die Profilierungs-An-
wendung Histogramme von verschiedenen Be-
fehl-Latenzzeiten erzeugen.
[0125] Die effektive Speicher-Adresse, die Verzwei-
gungs-Soll-Adresse und die Verzweigungs-Histo-
rie-Abtastungen werden wahrscheinlich eine teurere
Verarbeitung als die anderen Felder erfordern. Diese
Felder können wahrscheinlich ignoriert werden, mit
der Ausnahme dann, wenn Daten gesammelt wer-
den, um spezifische Optimierungs-Aufgaben durch-
zuführen. Unter Bereitstellen der Inter-Befehl-Ab-
ruf-Distanz zwischen Befehlen in Zyklen, kann die
Profilierungs-Anwendung auch Informationen über
Level einer Gleichzeitigkeit bzw. Konkurrenz sam-
meln.
[0126] Ein Filtern der Profilierungs-Informationen
kann auch durch Hardware-Einrichtungen vorgenom-
men werden, zum Beispiel ein Masken-Register,
oder eine programmierbare Logik. Zum Beispiel nur
Abtastung, wenn ein Cache-Fehler vorhanden ist,
oder wenn der Befehl ausgeschieden ist, oder wenn
andere Bool'sche Kombinationen von Opcoden,
Operanden, Adressen, Ereignissen und Latenzzeiten

vorhanden sind.

Bestimmung einer Hardware-Operation

[0127] Die vorliegende Profilierungstechnik kann
dazu verwendet werden, ein präzises Verständnis
der internen Operation eines Ausgabe-Prozessors,
außerhalb der Reihenfolge, wie beispielsweise den
Alpha 21264 Prozessor, zu erhalten. Eines der ersten
Dinge, das über diesen Typ einer Maschinen-Organi-
sation anzumerken ist, ist dasjenige, dass viele Stel-
len vorhanden sein können, wo ein Befehl in der
Pipeline 200 anhält, und eine große Anzahl von
Gründen, warum sie hängen könnten.
[0128] Zum Beispiel könnte ein Befehl in der Ausga-
beeinheit 230 anhalten, entweder da einige seiner
Operanden keine Daten sind, die bereit sind, da eini-
ge der Ressourcen, erforderlich für die Ausführung
des ausgewählten Befehls, nicht verfügbar sind, oder
da andere Befehle so ausgewählt wurden, um sie da-
vor auszuführen.
[0129] Ein Befehl könnte in der Auflistungs-Stufe
hängen bleiben, die virtuell zu einem physikalischen
Register Auflistungen vornimmt, entweder weil die
Maschine außerhalb der physikalischen Register vor-
handen ist, oder weil sich zu viele Befehle gerade in
der Ausführung befinden, oder weil die Ausgabeein-
heit 230 voll ist; dies bedeutet, dass kein Platz dort
vorhanden ist, um den Befehl, der ausgeführt werden
soll, einzugeben. Alternativ kann ein Befehl in der
Ausscheidungseinheit hängen bleiben, da zuvor aus-
gegebene Befehle, in der Programm-Reihenfolge,
noch nicht abgeschlossen wurden.
[0130] Eine Bestimmung exakt davon, wo ein Befehl
hängen blieb, warum er hängen blieb und wie lange
er hängen blieb, hängt stark von dem präzisen Zu-
stand der Maschine ab, wenn dieser Befehl ausge-
führt wird. Da der Prozessor so dynamisch ist, ist es
schwierig für die Software-Funktions-Werkzeuge,
diesen Zustand statistisch zu bestimmen.

Zusammenfassung der Betriebsweise

[0131] Wie in Fig. 7a dargestellt ist, kann ein Ver-
fahren 700 zum Profilieren die folgenden Schritte um-
fassen. Der Profilierungs-Zustand wird im Schritt 710
initialisiert. Hierbei werden Register gelöscht und
Zähler werden deren individuellen Werten zugeord-
net. Im Schritt 720 wird ein Befehl abgerufen und ge-
zählt. Im Schritt 730 wird der Befehl ausgewählt,
wenn die Zahl von abgerufenen Befehlen seit einer
Initialisierung gleich zu einer vorbestimmten Zu-
falls-Zahl ist. Der ausgewählte Befehl wird erhöht, um
seine Auswahl anzuzeigen.
[0132] Wenn der ausgewählte Befehl durch die Aus-
führungs-Pipeline 200 fortschreitet, werden Profil-In-
formationen im Schritt 740 zusammengestellt. Unter
Abschluss (ausgeschieden oder ausgesondert) wer-
den die zusammengestellten Informationen im Schritt
750 abgetastet. Abgetastete Informationen können
14/23

DE 698 19 849 T2 2004.09.02
für eine darauffolgende Verarbeitung gepuffert wer-
den. Es ist auch möglich, einen bestimmten Profilie-
rungs-Zustand abzutasten, um detailliertere Informa-
tionen zu extrahieren.

Abschätzungs-Statistiken der Eigenschaften und der
verarbeiteten Befehle

[0133] Wie in Fig. 7b dargestellt ist, schätzt der Pro-
zess 799 Statistiken über die Eigenschaften von Be-
fehlen, verarbeitet durch die Pipeline 200, ab. Der
Prozess 799 kann die folgenden Schritte umfassen.
Schritt 751 liest die Profil-Aufzeichnung 300, abge-
tastet so, wie dies vorstehend im Schritt 750 be-
schrieben ist. Die Aufzeichnung wird dann gelesen,
wenn der ausgewählte Befehl abschließt. Im Schritt
760 wird die Abtastung ausgewählt oder ausgeson-
dert, und zwar in Abhängigkeit von einer Funktion
755, die Zustand-Informationen des Systems berück-
sichtigt.
[0134] Zum Beispiel nimmt die Funktion 755 als Ein-
gangs-Zustands-Informationen 756 solche wie bei-
spielsweise Adressen, Prozess-Identifizierer, Adres-
sen-Raum-Zahlen, Hardware-Kontext-Identifizierer
oder Thread-Identifizieret der ausgewählten Befehle.
Die Funktion 755 kann auch Zustands-Informationen,
wie beispielsweise Pfad-Identifizierungs-Informatio-
nen, Opcode, Operanden, Latenzzeiten oder Ereig-
nisse, erfahren durch die ausgewählten Befehle, ver-
wenden. Die Ereignis-Informationen können einen
Ausscheidungs-/Aussonderungs-/Ungültigkeits-Sta-
tus, Cache-Treffer/Fehler, Verzweigungs-Fehlvorher-
sagen, Trap-Status, TLB-Treffer/Fehler, und Da-
ten-Ressource-Abhängigkeits-Status, usw., sein.
[0135] Schritt 760 erzeugt einen Untersatz von Ab-
tastungen basierend auf der Funktion 755. Im Schritt
780 werden Statistiken 790 bestimmt. Diese Statisti-
ken können Durchschnitte, Standardabweichungen,
Histogramme (Verteilung) und Fehlerbegrenzungen
(error bounds) der Eigenschaften der abgetasteten
Befehle sein. Zum Beispiel durchschnittliche Raten,
unter denen spezifizierte Ereignisse auftreten, durch-
schnittliche Latenzzeiten einer Befehl-Ausführung
und von Speicher-Zugriffen. Durchschnitte der Aus-
führungsraten von Verarbeitungen, Threads oder
Hardware-Zusammenhängen können auch bestimmt
werden. Die Histogramme können die Verteilung ei-
ner Befehl-Ausführung, von Speicher-Zugrift-Raten
oder Latenzzeiten darstellen.
[0136] Die Begrenzung in Bezug auf die Fehler
kann durch den Umkehrwert einer Quadratwurzel der
Zahl von Abtastungen für die bestimmte Eigenschaft,
die abgetastet werden soll, angenähert werden.

Patentansprüche

1. Vorrichtung zum Abtasten von Befehlen in ei-
ner Prozessor-Pipeline (200) eines Systems, wobei
die Pipeline eine Vielzahl von Verarbeitungsstufen
aufweist, und die umfasst:

eine Einrichtung (210), die Befehle in eine erste Stufe
der Pipeline abruft, wobei die Befehle willkürlich
durch zusätzliche Felder identifiziert werden, die an-
zeigen, dass sie zum Abtasten ausgewählt worden
sind, und die zusätzlichen Felder ein Abtast-Bit (401)
an jedem Befehl in der Pipeline enthalten;
eine Einrichtung, die jeden der abgerufenen Befehle
als einen ausgewählten Befehl identifiziert;
eine Einrichtung, die Statusinformationen des Sys-
tems abtastet, während sich ein bestimmter ausge-
wählter Befehl in einer beliebigen Stufe der Pipeline
(200) befindet;
eine Einrichtung (300), die die Statusinformationen
speichert; und
eine Einrichtung, die Software informiert, wenn der
bestimmte ausgewählte Befehl die Pipeline (200)
verlässt, so dass die Software jede der Statusinfor-
mationen lesen kann, wobei die Einrichtung, die ab-
tastet, und die Einrichtung, die Software informiert, in
Funktion aktiviert werden, indem das Abtast-Bit (401)
in dem ausgewählten Befehl aktiviert wird.

2. Vorrichtung (100) nach Anspruch 1, wobei die
ausgewählten Befehle gültige Befehle, die durch die
Pipeline (200) vollständig bearbeitet werden, gültige
Befehle, die vor dem Verlassen der Pipeline abgebro-
chen werden, und ungültige Befehle enthalten, die
vor dem Verlassen der Pipeline teilweise bearbeitet
werden.

3. Vorrichtung (100) nach Anspruch 1, wobei die
ausgewählten Befehle nicht unterbrechbare Befehle
enthalten können.

4. Vorrichtung (100) nach einem der Ansprüche 1
bis 3, wobei die Vielzahl von Stufen Abrufstufen
(210), Abbildungsstufen (220), Ausgabestufen (230),
Ausführungsstufen (240) und Ausscheidestufen
(250) enthalten.

5. Vorrichtung (100) nach einem der vorangehen-
den Ansprüche, wobei die zusätzlichen Felder Be-
fehlsnummern speichern, und die des Weiteren Ver-
gleichsregister (300) enthält, die die zusätzlichen Fel-
der speichern.

6. Vorrichtung (100) nach einem der vorangehen-
den Ansprüche, die des Weiteren enthält:
einen Abtast-Zähler (510);
eine Einrichtung (520), die den Abtast-Zähler (510)
auf einen vorgegebenen Wert initialisiert;
eine Einrichtung, die die Identifizierungseinrichtung
aktiviert, wenn der Abtast-Zähler (510) in Reaktion
auf vorgegebene Ereignisse überläuft.

7. Vorrichtung (100) nach Anspruch 6, wobei die
vorgegebenen Ereignisse gültige abgerufene Befeh-
le sind.

8. Vorrichtung (100) nach Anspruch 6, wobei eine
15/23

DE 698 19 849 T2 2004.09.02
Abrufrate durch einen Takt bestimmt wird und die vor-
gegebenen Ereignisse Unterteilungen von Taktzyk-
len sind, die einem einzelnen, potentiell abgerufenen
Befehl entsprechen.

9. Vorrichtung (100) nach Anspruch 6, wobei die
vorgegebenen Ereignisse der Eintritt von Befehlen in
jede beliebige Stufe der Pipeline (200) sind.

10. Vorrichtung (100) nach Anspruch 6, wobei
der vorgegebene Wert willkürlich aus einem Intervall
von Zahlen gewählt wird, um die durchschnittliche
Abtastfrequenz vorzugeben.

11. Vorrichtung (100) nach Anspruch 10, wobei
die Größe des Intervalls von Zahlen geändert wird,
um die durchschnittliche Abtastfrequenz dynamisch
zu verändern.

12. Vorrichtung (100) nach Anspruch 10, wobei
die willkürliche Zahl durch die Software bestimmt
wird.

13. Vorrichtung (100) nach Anspruch 10, wobei
die willkürliche Zahl durch Hardware erzeugt wird.

14. Vorrichtung (100) nach einem der vorange-
henden Ansprüche, wobei die Statusinformationen
Informationen enthalten, die den ausgewählten Be-
fehl identifizieren.

15. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen die Adressen der
ausgewählten Befehle enthalten.

16. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen Identifizierungen
von Prozessen enthalten, die den ausgewählten Be-
fehl ausführen.

17. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen Adressraumzahlen
enthalten.

18. Vorrichtung (100) nach Anspruch 14, wobei
die Identifizierungsinformationen eine Hardwarekon-
text-Kennung enthalten.

19. Vorrichtung (100) nach einem der vorange-
henden Ansprüche, wobei die Einrichtung, die Soft-
ware informiert, eine Unterbrechung erzeugt, wenn
der bestimmte ausgewählte Befehl die Pipeline ver-
lässt.

20. Vorrichtung (100) nach einem der Ansprüche
1 bis 18, wobei die Einrichtung, die Software infor-
miert, ein Flag setzt, das durch die Software abge-
fragt werden kann, um festzustellen, dass der be-
stimmte ausgewählte Befehl die Pipeline verlassen
hat.

21. Vorrichtung (100) nach einem der vorange-
henden Ansprüche, wobei eine Teilgruppe der aus-
gewählten Befehle abgetastet wird.

22. Vorrichtung (100) nach einem der vorange-
henden Ansprüche, wobei die Statusinformationen
eine Thread-Kennung enthalten.

23. Vorrichtung (100) nach einem der Ansprüche
1 bis 20, wobei die Statusinformationen einen Ausge-
schieden-/Abgebrochen-Status der ausgewählten
Befehle enthalten.

24. Vorrichtung (100) nach einem der Ansprüche
1 bis 20, wobei die Statusinfonnationen Ereignisse
enthalten, die bei der Verarbeitung der ausgewählten
Befehle erfasst werden.

25. Vorrichtung (100) nach einem der Ansprüche
1 bis 20, wobei die Statusinfonnationen Latenzen
enthalten, die bei den ausgewählten Befehlen auftre-
ten.

26. Computersystem (100), das eine Vorrichtung
nach einem der Ansprüche 1 bis 25 enthält.

Es folgen 7 Blatt Zeichnungen
16/23

DE 698 19 849 T2 2004.09.02
Anhängende Zeichnungen
17/23

DE 698 19 849 T2 2004.09.02
18/23

DE 698 19 849 T2 2004.09.02
19/23

DE 698 19 849 T2 2004.09.02
20/23

DE 698 19 849 T2 2004.09.02
21/23

DE 698 19 849 T2 2004.09.02
22/23

DE 698 19 849 T2 2004.09.02
23/23

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

