*

Canadian Intellectual Property Office

CA 2855179 C 2019/12/24

(11)(21) 2 855 179

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2012/10/30

(87) Date publication PCT/PCT Publication Date: 2013/05/16

(45) Date de délivrance/Issue Date: 2019/12/24

(85) Entrée phase nationale/National Entry: 2014/05/09

(86) N° demande PCT/PCT Application No.: CN 2012/001474

(87) N° publication PCT/PCT Publication No.: 2013/067765

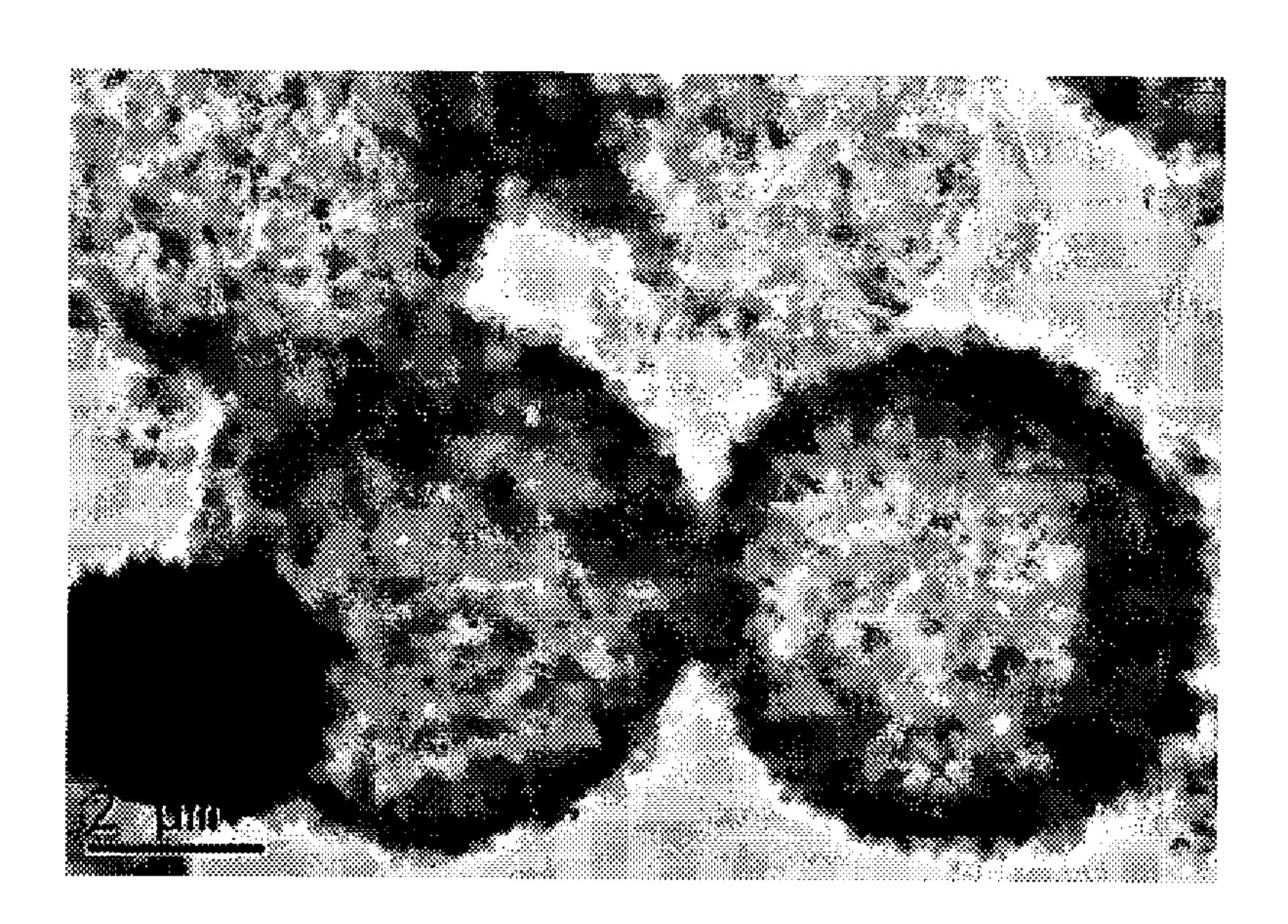
(30) Priorité/Priority: 2011/11/10 (CN201110353565.4)

(51) Cl.Int./Int.Cl. *C01B 39/48* (2006.01), *B01J 29/70* (2006.01)

(72) Inventeurs/Inventors:

LING, FENGXIANG, CN; YANG, WEIYA, CN; WANG, SHAOJUN, CN; SHEN, ZHIQI, CN

(73) Propriétaires/Owners:


CHINA PETROLEUM & CHEMICAL CORPORATION, CN;

FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC, CN

(74) **Agent**: KIRBY EADES GALE BAKER

(54) Titre: ZEOLITE SPHERIQUE CREUSE IM-5 ET SON PROCEDE DE PREPARATION

(54) Title: A HOLLOW IM-5 MOLECULAR SIEVE SPHERE AND THE PREPARATION PROCESS THEREOF

(57) Abrégé/Abstract:

Provided are hollow spherical zeolite IM-5 and a preparation method therefor. A cation quaternary ammonium salt surfactant having a long carbon chain is added to an zeolite IM-5 preparation system, where the molar ratio of a template agent/the surfactant is between approximately 0.3 and approximately 4.5, and hollow spherical zeolite IM-5 is generated via the micelle effect of the surfactant. The structure facilitates material mass transfer of a reaction process.

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织 国际局

(43) **国际公布日** 2013 年 5 月 16 日 (16.05.2013)

(10) 国际公布号 WO 2013/067765 A1

(51) 国际专利分类号:

C01B 39/48 (2006.01) B01J 29/70 (2006.01)

(21) 国际申请号: PCT/CN2012/001474

(22) 国际申请日: 2012年10月30日 (30.10.2012)

(25) **申请语言**: 中文

(26) **公布语言**: 中文

(30) 优先权:

201110353565.4 2011年11月10日 (10.11.2011) CN

- (71) 申请人: 中国石油化工股份有限公司 (CHINA PETROLEUM & CHEMICAL CORPORATION) [CN/CN]; 中国北京市朝阳区朝阳门北大街 22 号, Beijing 100728 (CN)。 中国石油化工股份有限公司 抚顺石油化工研究院 (FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC) [CN/CN]; 中国辽宁省抚顺市望花区升东路东段 31 号, Liaoning 113001 (CN)。
- (72) **发明人**: **凌风香** (LING, Fengxiang); 中国辽宁省抚顺市望花区丹东路东段 31 号, Liaoning 113001 (CN)。 **杨卫亚** (YANG, Weiya); 中国辽宁省抚顺市望花区丹东路东段 31 号, Liaoning 113001 (CN)。 **王少军** (WANG, Shaojun); 中国辽宁省抚顺市望花区丹东路东段 31 号, Liaoning 113001 (CN)。 **沈智奇** (SHEN, Zhiqi); 中国辽宁省抚顺市望花区丹东路东段 31 号, Liaoning 113001 (CN)。

- (74) 代理人: 中国专利代理(香港)有限公司 (CHINA PATENT AGENT (H.K.) LTD.); 中国香港特别行政区湾仔港湾道 23 号鹰君中心 22 号楼, Hong Kong (CN)。
- **指定国**(除另有指明,要求每一种可提供的国家保护): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW。
- (84) **指定国**(除另有指明,要求每一种可提供的地区保护): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), 欧亚 (AM, AZ, BY, KG, KZ, RU, TJ, TM), 欧洲 (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)。

本国际公布:

— 包括国际检索报告(条约第21条(3))。

(54) Title: HOLLOW SPHERICAL ZEOLITE IM-5 AND PREPARATION METHOD THEREFOR

(54) 发明名称: 一种空心球形 IM-5 分子筛及其制备方法

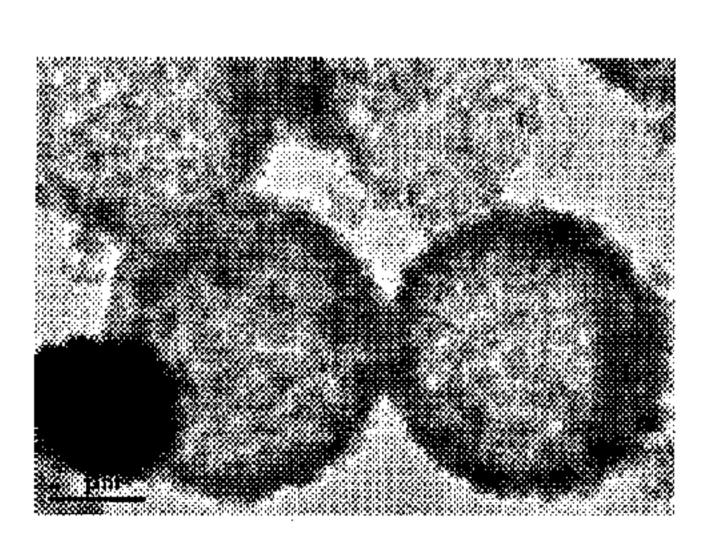


图 1 / Fig. 1

- (57) Abstract: Provided are hollow spherical zeolite IM-5 and a preparation method therefor. A cation quaternary ammonium salt surfactant having a long carbon chain is added to an zeolite IM-5 preparation system, where the molar ratio of a template agent/the surfactant is between approximately 0.3 and approximately 4.5, and hollow spherical zeolite IM-5 is generated via the micelle effect of the surfactant. The structure facilitates material mass transfer of a reaction process.
- (57) 摘要: 提供一种空心球形 IM-5 分子筛及其制备方法。向 IM-5 分子筛制备体系中添加长碳链的阳离子季铵盐表面活性剂,按照摩尔比计,模板剂/表面活性剂约 0.3-约 4.5,通过表面活性剂的胶束作用,生成空心球形 IM-5 分子筛。该结构有利于反应过程的物料传质。

A hollow IM-5 molecular sieve sphere and the preparation process thereof

Technical field

The present invention relates to a hollow IM-5 molecular sieve sphere, i.e., an IM-5 molecular sieve in the form of hollow sphere, and the preparation process thereof, and thus belongs to the field of preparing an inorganic material.

Background

The microporous molecular sieve material has regular pore structures and a large surface area, thus is widely used in the fields of adsorption, separation, chemical engineering, catalysis and the like. In recent years, some new structures of molecular sieve materials have been prepared continuously.

IM-5 molecular sieve is a new zeolite prepared using a bi-quaternary ammonium salt as the templet agent. The IM-5 molecular sieve has a pore-passage structure similar to that of ZSM-5, has a two dimensional 10MR crossing pore structure, and has relatively high thermal stability and hydrothermal stability. Thus the ZSM-5 has a broad prospect of application for catalysis in the petrochemical fields of paraffin cracking, isomerization of n-butylene, preparation of gasoline from Synthesis Gas and the like.

20

10

Journal of Molecular Catalysis A: Chemical, 2000, 162: 175-189 Discloses to obtain an IM-5 molecular sieve using 1,1-(pentamethylene) bis-(1-methylpyrrolidinium) bromide as the templet agent, under the condition of adding a promoter of sodium bromide and static hydrothermal conditions at a temperature of 175 degrees C.

25

Journal of Catalysis 215 (2003) 151-170 discloses to obtain an IM-5 molecular sieve using 1,1-(pentamethylene) bis-(1-methylpyrrolidinium) bromide as the templet agent, under the dynamic hydrothermal condition at a temperature of 160 degrees C.

CN1234012A discloses an IM-5 molecular sieve and the preparation process thereof. The IM-5 molecular sieve is obtained from hydrothermal crystallization at a temperature of 170 degrees C by adding additional NU-88 powder as a seed crystal.

By studying the products prepared according to the documents above, it can be seen that the IM-5 molecular sieves obtained from prior arts have a morphology of two dimensional rod form with a diameter of generally 50nm or more and an aspect ratio of generally about 5.

Currently, the preparation of the molecular sieve having a hollow sphere structure is highly interested in the art, in addition to the molecular sieve materials having rod, strip, massive, sphere forms and the like. This is because the special hollow structure may generally cause some special properties of the material, particularly for the catalysis, adsorption, controlled release of medicaments, nano-photoelectricity and the like.

Currently, the hollow sphere of a molecular sieve is prepared predominantly by using a polystyrene microsphere as templet, combining the layer-layer self assembly and a hydrothermal or gas-phase conversion crystallization process. The typically related documents comprise: Chem.Commun., 2000, 2161-2162 and Adv. Mater. 2006, 18, 801-806. This process preparing the molecular sieve hollow sphere using the polymer microsphere as a hard templet has complicated operation steps, poor controllability and relatively high cost.

20

CN101618336A prepares a MCM-22 molecular sieve hollow sphere by hydrothermal crystallization using carbon black particles as a templet. The carbon black templet has broader sources and lower cost compared with the polystyrene microsphere templet; however, due to the non-uniformity of the carbon black particle as well as a particle size of generally 20 microns or more, the hollow sphere obtained has a relatively large particle size, and correspondingly a thin pore wall, such that the hollow sphere is easy to be broken.

It can be seen that the current preparation with the molecular sieve hollow sphere uses generally a polymer microsphere and a hard templet such as carbon black and the like, thus the controllability is insufficient. Meanwhile, the amount of the hard templet used is relatively great, which is difficult to be burnt off, and the burn off of the templet

may bring abundant environmental pollutants.

Summary of the invention

10

20

The present invention provides an IM-5 molecular sieve in the form hollow sphere and a process of preparing the hollow IM-5 molecular sieve sphere using a soft templet. According to the process of the present invention, a hollow IM-5 molecular sieve sphere can be obtained based on a hydrothermal system conventionally used for preparing IM-5 molecular sieve, with the further incorporation of a cationic surfactant.

The hollow IM-5 molecular sieve sphere according to the present invention has an outer diameter for the hollow sphere of about 2-about 15 μ m, preferably that the outer diameter is not less than about 3 μ m, and more preferably not less than about 4 μ m; preferably that the outer diameter is not more than about 13 μ m, not more than about 12 μ m, not more than about 10 μ m, more preferably not more than about 9 μ m, or not more than about 8 μ m. For example, the outer diameter is preferably about 2-about 10 μ m, more preferably about 4-about 8 μ m. The wall of the hollow sphere consists essentially of small IM-5 crystal grains having a particle size of about 10-about 500nm, preferably about 10-about 200nm. The wall thickness of the hollow sphere is generally about 10%-about 40%, preferably about 15%-about 30%, of the outer diameter of the hollow sphere.

The process of preparing the hollow IM-5 molecular sieve sphere according to the present invention comprises:

- (1) mixing an alkali source, a templet agent, an aluminum source, water, a silicon source and a cationic surfactant (represented as SUR⁺), and stirring the mixture at a suitable temperature to generate a sol; and
- (2) elevating the temperature of the mixture of step (1) in a hydrothermal reactor to about 140-about 200 degrees C, after hydrothermal crystallization of about 2-about 15 days, taking out and separating the solid product, drying and calcinating to obtain a hollow IM-5 molecular sieve sphere.

In step (1), the temperature for stirring is about 20-about 70 degrees C, preferably

about 55-about 65 degrees C. The duration of stirring is about 1-about 24 hours, preferably about 10-about 20 hours.

In step (1), among various materials, the cationic surfactant is preferably added at the last. Before adding the cationic surfactant, it is preferable to carry out an ultrasonic dispersion to the mixture. The frequency used for the ultrasonic dispersion is The temperature for the ultrasonic dispersion is about 20-about 70 degrees C, preferably about 55-about 65 degrees C. The duration of the ultrasonic dispersion is about 1-about 24 hours, preferably about 10-about 20 hours. In step (1), the alkali source is sodium hydroxide, potassium hydroxide, lithium hydroxide or the combination thereof, preferably sodium hydroxide. The templet agent is 1,1'-(pentamethylene) bis(1-methylpyrrolidinium), having a structural formula of:

The aluminum source is aluminum nitrate, aluminum chloride, aluminum sulfate, or a combination thereof, preferably aluminum nitrate, aluminum chloride, or a combination thereof. The silicon source is white carbon, silicic acid, silanolate, silica sol, silica gel, or a combination thereof, preferably white carbon. The surfactant is one or more cationic quaternary ammonium salts having a carbon chain of 12-18 carbon atoms, wherein the carbon chain is preferably a normal alkane; and the corresponding negative ion for the cationic quaternary ammonium salt is a bromide ion or chloride ion, preferably bromide ion. The cationic quaternary ammonium salt having a carbon chain of 12-18 carbon atoms includes, but not limited to, octodecyl trimethylammonium bromide, cetyl trimethylammonium bromide, myristyl trimethylammonium bromide, and dodecyl trimethylammonium bromide.

In step (1), the molar ratios calculated based on the following species for the various components of the reaction mixture are:

SiO₂/Al₂O₃ of about 30-about 70, preferably of about 40-about 70;

R/SiO₂ of about 0.3-about 0.6, preferably about 0.3-about 0.45, R representing the

15

30

templet agent;

10

H₂O/SiO₂ of about 20-about 90, preferably about 50-about 90;

OH'/SiO₂ of about 0.5-about 0.8, preferably about 0.6-about 0.75; and

R/SUR⁺ of about 0.3-about 4.5, preferably not less than about 0.4, not less than about 0.5, or not less than about 0.6; and preferably not more than about 4, not more than about 3.5, not more than about 3, not more than about 2.5, not more than about 2, or not more than about 1.5; for example, the ratio is preferably about 0.6-about 1.5, wherein the SUR⁺ represents the cationic surfactant.

In step (2), the temperature for the hydrothermal crystallization is about 160-about 185 degrees C, more preferably about 165-about 175 degrees C. The duration of the hydrothermal crystallization is about 7-about 12 days.

The product obtained has particular reactivities for the fields of paraffin cracking, isomerization of n-butylene, preparation of gasoline from synthetic gas and the like, particularly for a reaction process having relatively large molecules as reactants such as paraffin cracking or a reaction process in need of a high space velocity.

As compared with the conventional hydrothermal process, the process according to the present invention adds a relatively great amount of the cationic quaternary ammonium salt having a carbon chain of 12-18 carbon atom in the IM-5 molecular sieve system, in which the cationic quaternary ammonium salt, in combination with the templet agent, forms a hollow IM-5 molecular sieve sphere, which structure benefits the mass transfer of materials. The process of preparing the molecular sieve hollow sphere utilizing the micelle of a quaternary ammonium salt as the soft templet according to the present invention uses a little amount of the templet agent, which is easy to be burnt off, resulting in very few emission and little environmental pollution. The product particles obtained are homogeneous and thus is highly controllable.

30 Description of drawings

Figure 1 is a transmission electron micrograph at low range of the hollow IM-5 molecular sieve sphere prepared according to Example 1 of the present invention.

Figure 2 is a scanning electron micrograph at low range of the hollow IM-5 molecular sieve sphere prepared according to Example 1 of the present invention.

Figure 3 is a transmission electron micrograph at high range of the hollow IM-5 molecular sieve sphere prepared according to Example 1 of the present invention.

Figure 4 is a XRD curve of the hollow IM-5 molecular sieve sphere prepared according to Example 1 of the present invention.

10

Figure 5 is a transmission electron micrograph of a conventional IM-5 molecular sieve prepared according to Comparative Example 1 of the present invention.

Embodiments

15 The outer diameter, wall thickness and grain size of the hollow sphere are measured with transmission electron micrograph and scanning electron micrograph. 20 transmission electron micrographs or scanning electron micrographs are taken randomly, from which the outer diameter, the wall thickness and the grain size of the molecular sieve on the pore wall of the hollow sphere are measured using an image processing software, Image J.

20 In the transmission electron micrograph, regarding an image of the hollow sphere, the length of high contrast area at the external rim of the sphere represents the wall thickness.

The embodiments and effects of the present invention will be further illustrated below by way of Examples.

25

In the examples, the transmission electron microscope (TEM) is manufactured by JEOL Ltd., Japan, with a model of JEM 2100 (HR), an accelerating voltage of 200KV, and a resolution of 0.23nm.

Example 1

Sodium hydroxide, 1,1 '-(pentamethylene) bis-(1-methylpyrrolidinium) bromide, aluminum nitrate, water, white carbon and cetyl trimethylammonium bromide (CTAB)

were mixed, according to molar ratios calculated based on the following species as follows: SiO₂/Al₂O₃=40, OH⁷/SiO₂=0.62, R/SiO₂=0.45, H₂O/SiO₂=50, and R/CTAB=0.7.

The mixture obtained was then stirred in a water bath at a temperature of 60 degrees C to be a homogeneous sol, which sol was kept at the constant temperature for 12 hours with stirring for pre-gelation. Subsequently, the gel was transferred into a hydrothermal reactor, heated to 165 degrees C, hydrothermally crystallized for 10 days, then cooled naturally, filtered and dried to obtain the as-synthesized products powder. By the XRD measurement, the products obtained were all well crystallized IM-5 molecular sieve, which were hollow spheres observed for the morphology with the TEM at low range, having an outer diameter of about 5 µm; while observed with the transmission electron microscope at high range, the wall thereof consisted of small particles with dimensions varying from 10 to 200nm, resulting in a wall thickness of about 1.4 µm.

Example 2

15

20

Sodium hydroxide, 1,1 '-(pentamethylene) bis-(1-methylpyrrolidinium) bromide, aluminum nitrate, water, white carbon and cetyl trimethylammonium bromide were mixed, according to molar ratios calculated based on the following species as follows: SiO₂/Al₂O₃=50, OH/SiO₂=0.70, R/SiO₂=0.40, H₂O/SiO₂=65, and R/CTAB=1.0. The mixture obtained was then stirred in a water bath at a temperature of 60 degrees C to be a homogeneous sol, which sol was kept at the constant temperature for 12 hours with stirring for pre-gelation. Subsequently, the gel was transferred into a hydrothermal reactor, heated to 170 degrees C, hydrothermally crystallized for 8 days, then cooled naturally, filtered and dried to provide a molecular sieve coarse powder. By the XRD measurement, the products obtained were all well crystallized IM-5 molecular sieve, which were hollow spheres observed for the morphology with the TEM at low range, having an outer diameter of about 8 μm; while observed with the transmission electron microscope at high range, the wall thereof consisted of small particles with dimensions varying from 40 to 200nm, resulting in a wall thickness of about 1.6 μm.

Example 3

Sodium hydroxide, 1,1 '-(pentamethylene) bis-(1-methylpyrrolidinium) bromide, aluminum nitrate, water, white carbon and dodecyl trimethylammonium bromide (DTAB)

were mixed, according to molar ratios calculated based on the following species as follows: SiO₂/Al₂O₃=70, OH⁻/SiO₂=0.73, R/SiO₂=0.45, H₂O/SiO₂=85, and R/DTAB=1.4.

The mixture obtained was then stirred in a water bath at a temperature of 60 degrees C to be a homogeneous sol, which sol was kept at the constant temperature for 20 hours with stirring for pre-gelation. Subsequently, the gel was transferred into a hydrothermal reactor, heated to 175 degrees C, hydrothermal crystallized for 7 days, then cooled naturally, filtered and dried to provide a molecular sieve coarse powder. By the XRD measurement, the products obtained were all well crystallized IM-5 molecular sieve, which were hollow spheres observed for the morphology with the TEM at low range, having an outer diameter of about 4 μm; while observed with the transmission electron microscope at high range, the wall thereof consisted of small particles with dimensions varying from 20 to 170nm, resulting in a wall thickness of about 0.9 μm.

Comparative Example 1

,

15

Sodium hydroxide, 1,1 '-(pentamethylene) bis-(1-methylpyrrolidinium) bromide, aluminum nitrate, water and white carbon were mixed, according to molar ratios calculated based on the following species as follows: SiO₂/Al₂O₃=40, OH'/SiO₂=0.62, R/SiO₂=0.45, and H₂O/SiO₂=50. The mixture obtained was then stirred in a water bath at a temperature of 60 degrees C to be a homogeneous sol, which sol was kept at the constant temperature for 12 hours with stirring for pre-gelation. Subsequently, the gel was transferred into a hydrothermal reactor, heated to 165 degrees C, hydrothermal crystallized for 10 days, then cooled naturally, filtered and dried to provide a molecular sieve coarse powder. By the XRD measurement, the products obtained were all well crystallized IM-5 molecular sieve, which had a short-rod form observed for the morphology with the TEM at low range, without the formation of a hollow sphere structure.

Claims

1. An IM-5 molecular sieve, wherein the IM-5 molecular sieve is in the form of a hollow sphere, the hollow sphere having an outer diameter of about 2 to about 15 μ m.

5

2. The IM-5 molecular sieve according to claim 1, wherein the hollow sphere has an outer diameter of 4 to 8 μm .

10

- 3. The IM-5 molecular sieve according to claim 1 or 2, wherein the wall of the hollow sphere consists of IM-5 crystal grains having a particle size of about 10 to about 500 nm.
 - 4. The IM-5 molecular sieve according to claim 3, wherein the wall of the hollow sphere consists of IM-5 crystal grains having a particle size of 10 to 200 nm.

15

5. The IM-5 molecular sieve according to any one of claims 1 to 4, wherein the wall thickness of the hollow sphere is about 10% to about 40% of the outer diameter of the hollow sphere.

20

6. The IM-5 molecular sieve according to 5, wherein the wall thickness of the hollow sphere is 15% to 30% of the outer diameter of the hollow sphere.

7. A process of preparing the IM-5 molecular sieve according to claim 1, said process comprising the steps of:

25 (1) mixing an alkali source, a templet agent, which is 1,1'-(pentamethylene) bis(1-methylpyrrolidinium), an aluminum source, water, a silicon source, and a cationic surfactant, wherein the cationic surfactant is a cationic quaternary ammonium salt having a carbon chain of 12-18 carbon atoms, and a corresponding negative ion that is a bromide ion or chloride ion, and stirring the mixture at a suitable temperature to generate a sol;

30

and

(2) elevating the temperature of the mixture of step (1) in a hydrothermal reactor to about 140 to about 200°C, maintaining the elevated temperature for about 2 to about 15

days for hydrothermal crystallization, taking out and separating the solid product of the hydrothermal crystallization, drying and calcinating the solid product to obtain a hollow IM-5 molecular sieve sphere;

wherein in step (1), the molar ratio of R/SUR⁺ is 0.6-4.5, wherein R represents the template agent and SUR⁺ represents the cationic surfactant.

8. The process according to claim 7, wherein in step (1), the temperature for stirring is about 20 to about 70°C; and the duration of stirring is about 1 to about 24 hours.

10

25

- 9. The process according to claim 8, wherein in step (1), the temperature for stirring is 55 to 65°C; and the duration of stirring is 10 to 20 hours.
- 10. The process according to claim 7, wherein in step (1), the alkali source is sodium hydroxide, potassium hydroxide, lithium hydroxide or a combination thereof; the aluminum source is aluminum nitrate, aluminum chloride, aluminum sulfate, or a combination thereof; and the silicon source is white carbon, silicic acid, silanolate, silica sol, silica gel, or a combination thereof.
- 11. The process according to claim 7, wherein in step (1), the corresponding negative ion is the bromide ion.
 - 12. The process according to any one of claims 7 to 11, wherein the surfactant is octodecyl trimethylammonium bromide, cetyl trimethylammonium bromide, myristyl trimethylammonium bromide or dodecyl trimethylammonium bromide.
 - 13. The process according to any one of claims 7, 10 or 11, wherein in step (1), the molar ratios calculated based on the following species for the various components of the mixture are:
- SiO_2/Al_2O_3 of about 30 to about 70;

R/SiO₂ of about 0.3 to about 0.6, R representing the templet agent;

H₂O/SiO₂ of about 20 to about 90; and

OH⁻/SiO₂ of about 0.5 to about 0.8.

14. The process according to claim 7, wherein in step (1), the molar ratio of R/SUR⁺ is about 0.6 to about 1.5.

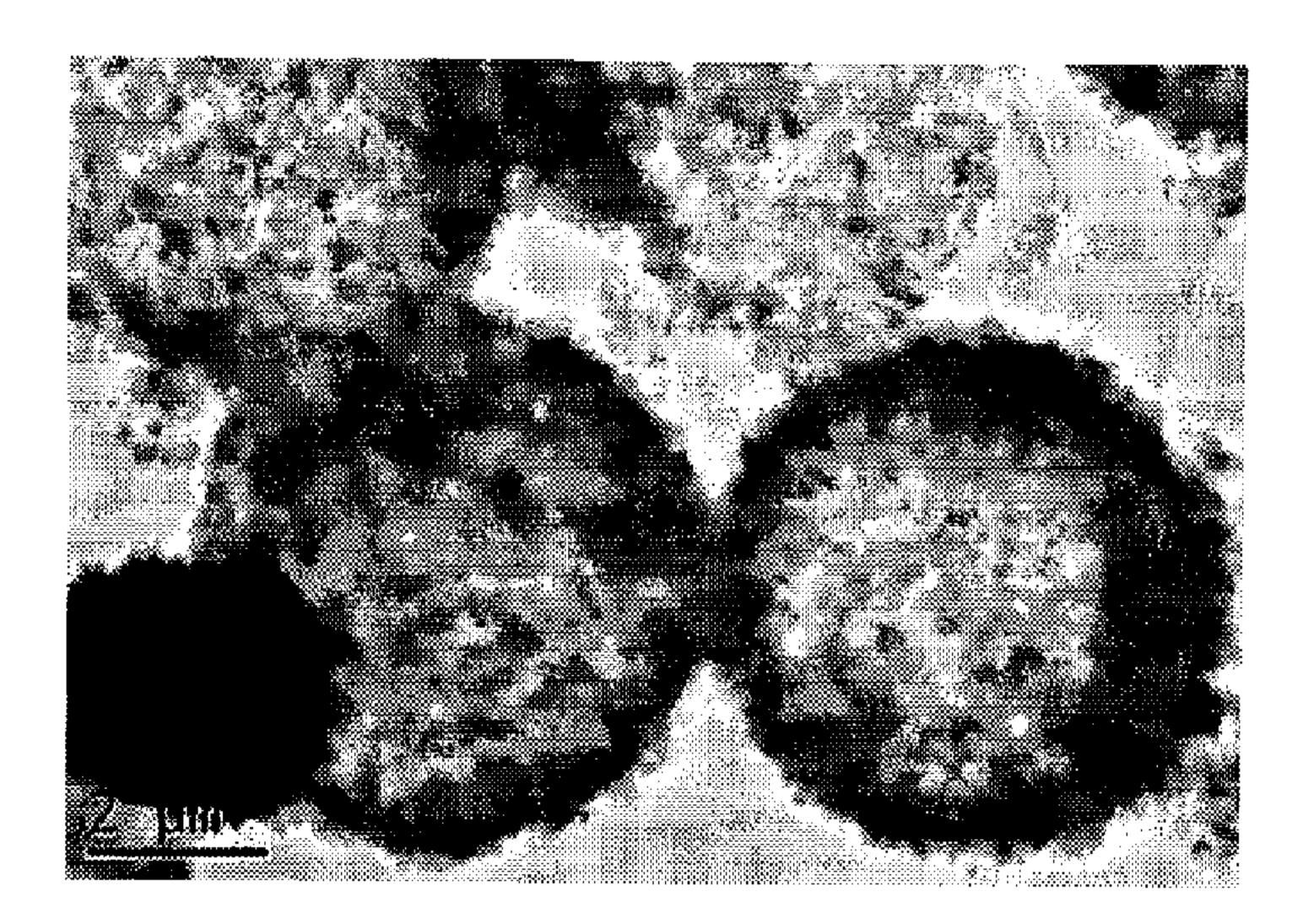
5

15. The process according to claim 13, wherein in step (1), the molar ratios calculated based on the following species for the various components of the mixture are:

 SiO_2/Al_2O_3 of 40 to 70;

 R/SiO_2 of 0.3 to 0.45;


 H_2O/SiO_2 of 50 to 90; and


 OH^{-}/SiO_{2} of 0.6 to 0.75.

16. The process according to claim 7, wherein in step (2), the temperature for the hydrothermal crystallization is about 160 to about 185°C.

15

- 17. The process according to claim 16, wherein in step (2), the temperature for the hydrothermal crystallization is 165 to 175°C.
- 18. The process according to any one of claims 7 to 17, wherein in step (2), the duration of hydrothermal crystallization is about 7 to about 12 days.

