ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Заявка: 2000129189/12, 21.11.2000
Дата начала действия патента: 21.11.2000
Приоритет: 22.11.1999 EP 99850175.3
Дата публикации: 10.01.2003
Адрес для переписки:
129010, Москва, ул. Б. Спаская, 25, стр. 3,
ООО "Юридическая фирма Городской и Партнеры", пат. пат. Е.В. Томской рег. № 106

Способ получения пероксида водорода антрахиноновым методом и композиция для получения пероксида водорода

Изобретение предназначено для химической промышленности. Пероксид водорода получают аттрахиноновым методом, чередуя стадии гидрирования и окисления смеси альпиламещенных антрахинонов и ахиламещенных тетрагидроантрахинонов, растворенных в одинаковой меру в одном органическом растворителе. В этой смеси 10-55 мол. % альпиламещенных антрахинонов и ахиламещенных тетрагидроантрахинонов заменены амиловой группой. Моллярное соотношение альпиламещенных тетрагидроантрахинонов и ахиламещенных антрахинонов по крайней мере 1:1, предпочтительно 50:1. От 55 до 80 мол.% антрахинонов и тетрагидроантрахинонов замещены одной этиловой группой. Органическим растворителем может быть один или более гидроксихоновых растворителей из группы, включающей алюфосфаты, тетраалкилмочевины, производные циклической мочевины и амиламещенные капролактамы. Композиция, содержащая указанную смесь, практически свобода от незамещенного антрахинона и тетрагидроантрахинона. Рабочий раствор обладает высокой растворимостью, позволяет использовать высокие концентрации гидроксихонов, устойчив к побочным реакциям в ходе гидрирования, 2 с. и 8 с. п. ф. л. 4 табл.
RU 2 196 106 C2

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

ABSTRACT OF INVENTION

(21), (22) Application: 2000129189/12, 21.11.2000
(30) Priority: 22.11.1999 EP 99850175.3
(46) Date of publication: 10.01.2003
(38) Mail address:
129010, Moskva, ul. B.Spasskaja, 25, str.3,
OOO "Juridicheskaja firma Gorodisskij i
Partnery", pat.pov. E.V.Tomskoj reg. № 106

(54) ANTHRAQUINONE METHOD FOR PREPARING HYDROGEN PEROXIDE AND COMPOSITION FOR PREPARING HYDROGEN PEROXIDE

(57) Abstract:
FIELD: hydrogen peroxide production.
SUBSTANCE: hydrogen peroxide is prepared by anthraquinone method using alternation of stages of hydrogenation and oxidation of mixture of alkyl- substituted anthraquinones and alkyl-substituted tetrahydroanthraquinones dissolved in at least one organic solvent. In this mixture, 10 to 55 mol % of alkyl-substituted anthraquinones and tetrahydroanthraquinones are substituted by aryl group. Molar ratio of alkyl-substituted tetrahydroanthraquinones to alkyl-substituted anthraquinones is at least 1:1. Preferably 50:1, 56 to 80 mol % of anthraquinones and tetrahydroanthraquinones are substituted by one ethyl group. Organic solvent can be one or more hydroquinone solvent from the group including alkyl phosphates, tetraalkylureas, cyclic urea derivatives, and alkyl-substituted caprolactams. Composition containing indicated mixture is essentially free of unsubstituted anthraquinone and tetrahydroanthraquinone. EFFECT: increased solubility of solution, enabled use of high concentrations, and increased resistance of solvent against side reactions during hydrogenation. 103 Follow, 4 tbl, 4 ex

Applicant: AKTsO NOBEL' N.V. (NL)
Inventor: NJuSTREM Mats (SE), ERNVIK Kristina (SE), TOR Khans (SE), SAARI Seppo (SE)
Proprietor: AKTsO NOBEL' N.V. (NL)
Representative: Tomskaja Elena Vladimirovna
Изобретение относится к способу получения пероксида водорода антрахиноновым методом, в котором рабочий раствор содержит определенную смесь антрахинонов и тетрагидроантрахинонов. Изобретение также относится к композиции, содержащей смесь антрахинонов, используемых в качестве рабочего раствора при получении пероксида водорода.

Антрахиноновый метод является наиболее общим способом получения пероксида водорода. Согласно такому способу замещенные антрахиноны и/или тетрагидроантрахиноны, растворенные в смеси подходящих органических растворителей, так называемых рабочих растворах, подвергаются гидрированию с образованием соответствующих гидрохинонов. Затем полученные гидрохиноны окисляют кислородом (обычно воздухом) обратно в хиноны с одновременным образованием пероксида водорода, который затем можно экстрагировать водой, тогда как хиноны возвращаются в рабочий раствор на стадию гидрирования.

Антрахиноновый метод описан в литературе, например в энциклопедии Kirk-Othmer, "Encyclopedia of chemical technology", 4-е изд., т.13, стр. 961-995.

Наиболее решающей стадией антрахинонового метода является гидрирование. Существующие проблемы главным образом состоят в минимизации потерь антрахинонов и тетрагидроантрахинонов на нежелательные побочные реакции и в достижении высокой концентрации гидрохинонов в рабочем растворе. Было установлено, что для преодоления указанных проблем важным фактором является состав рабочего раствора.

В WO 95/28360 раскрывается получение пероксида водорода с использованием рабочего раствора, главным образом состоящего из тетрагидрофенантреноилфталоил-триметиленфталоил-триметиленфталоильных амидов, в среде органического растворителя.

В WO 98/28225 раскрывается получение пероксида водорода с использованием рабочего раствора, состоящего из этил- и амилантрахинонов в среде органических растворителей.

Авторами изобретения была обнаружена возможность получения рабочего раствора, обладающего высокой растворимостью, позволяющего использовать высокую концентрацию гидрохинонов, кроме того рабочий раствор также обладает устойчивостью к побочным реакциям в ходе стадии гидрирования.

Таким образом, настоящее изобретение относится к способу получения пероксида водорода антрахиноновым способом, включающем следующую стадию гидрирования и окисления антрахинонов и тетрагидроантрахинонов в рабочем растворе. Рабочий раствор, подлежащий гидрированию, содержит смесь амилантрахинонов и амилантрахиноновых тетрагидразофталоилтриметиленфталоильных амидов, которые растворяются на крайней мере в одном органическом растворителе, в котором 10-55 мол.%, предпочтительно 20-50 мол.%, от общего количества антрахинонов и амилантрахинонов замещены одной амиловой группой, в молярное соотношение амилантрахиноновых тетрагидразофталоилтриметиленфталоильных антрахинонов составляет по крайней мере 1:1, предпочтительно примерно 1:1 до приближительно 50:1. Наиболее предпочитительно приближительно от 0:1 до приближительно 50:1. В некоторых случаях удобнее работать при молочном состоянии приближительно до 9:1. Однако возможно также использовать рабочие растворы, практически не содержащие амилантрахиноновых антрахинонов.

Амилантрахиноновые антрахиноны и амилантрахиноновые тетрагидразофталоилтриметиленфталоильные амиды в основном образуются из 2-гидрокси- или 2-изо-эстер-амилантрахинонов, предпочтительно из их смеси. Также предпочтительно, чтобы 45-90 мол.%, наиболее предпочитительно 55-80 мол.%, антрахинонов и тетрагидразофталоилтриметиленфталоильные амиды были замещены одной или несколькими другими амиловыми группами, наиболее предпочитительно содержащими, в целом, 1-4 углеродных атомов, особенно предпочтительно одной этиленовой группой. Наиболее предпочитительно, чтобы амилантрахиноновые антрахиноны и тетрагидразофталоилтриметиленфталоильные амиды представляли собой монозамещенные вещества, предпочтительно в положении 2.

Использование амилантрахинонового антрахинона и амилантрахинонового тетрагидразофталоилтриметиленфталоильного раствора значительно увеличивает возможность достижения высокой степени гидрирования без риска осаждения гидрохинонов в рабочем растворе, даже при сравнительно низких концентрациях амилантрахиноновых хинонов. Однако высокие степени гидрирования могут быть достигнуты лишь в том случае, когда используется достаточно большое количество тетрагидразофталоилтриметиленфталоильных антрахинонов. Кроме того, при низких концентрациях тетрагидразофталоилтриметиленфталоильных антрахинонов увеличивается потеря активных хинонов на образование продуктов деградации. Может также происходить нежелательное осаждение.

Если используют слишком высокое количество амилантрахинонового антрахинона и амилантрахинонового тетрагидразофталоилтриметиленфталоильного раствора, плотность рабочего раствора становится слишком высокой, что будет затруднять экстракцию пероксида водорода водой после стадии окисления. Было обнаружено, что плотность понижается, если мольная доля амилантрахиноновых хинонов в общем количестве хинонов поддерживается на низком значении. Предпочтительно, когда рабочий раствор имеет плотность при 20°С 910-980 кг/м³ более предпочитительно 930-970 кг/м³. Кроме этого, получение амилантрахинонового антрахинона более сложно, чем получение амилантрахинонового антрахинона, что делает его наиболее дорогим ингредиентом рабочего раствора.
Моллярное соотношение между алюламещенными тетрагидроантрахинонами и алюламещенными антрахинонами в выдержанном рабочем растворе (рабочий раствор, который использовали для получения поглощения водорода в течение, по крайней мере, шести месяцев) обычно имеет близкую величину для антрахинонов, замещенных различными аликильными группами. Молярные отношения для каждой аликильной группы, предпочтительно, отличаются менее чем в 2,5 раза, наиболее предпочтительно менее чем в 1,7 раз.

Алюламещенные тетрагидроантрахиноны обычно получают из β-тетрагидроантрахинонов, однако, могут использоваться и некоторые α-тетрагидроантрахиноны.

Помимо прямого или косвенного гидрирования в гидроксилоне протекает большое число вторичных реакций. Так, например, антрахиноны могут дополнительно реагировать с образованием тетрагидроантрахинонов, которые на стадии окисления превращаются в тетрагидроантрахиноны, количество которых не обнаружено в рабочем растворе. Это означает, что при запуске процесса, белого изобарного исходного рабочей раствор может содержать лишь небольшие количества тетрагидроантрахинонов или не содержать их совсем, поскольку они будут образовываться автоматически в ходе реакции. По мере достижения желательных концентраций антрахинонов и тетрагидроантрахинонов по крайней мере часть рабочего раствора обычно поддерживают обработке с целью упрощения обратного дегидрирования тетрагидроантрахинонов в антрахиноны.

Также происходит прямое или косвенное образование некоторых желателевых побочных продуктов, как эпоксиды, окталиоантрахиноны, оксантрены, антрены и диандрены. Некоторые из этих соединений, например эпоксиды, могут быть превращены обратно в антрахиноны, тогда как другие продукты, например диандрены, составляют необратимую потерю активного рабочего раствора. Было обнаружено, что образование желателевых побочных продуктов может быть минимизировано в том случае, если молярное соотношение между тетрагидроантрахинонами и антрахинонами поддерживается в указанных пределах.

Предпочтительно, чтобы рабочий раствор, подготовленный гидрированию, практически не содержал незамещенных антрахинонов и тетрагидроантрахинонов, поскольку было установлено, что эти соединения обладают плохой растворимостью и легко образуют окталиоантрахиноны, который трудно подвергается окислению с образованием пероксида водорода. Особенно предпочтительно, чтобы рабочий раствор, подлежащий гидрированию, в основном состоял из алюламещенных соединений, наиболее предпочтительно, когда он представляет собой смесь ампили- и аллиламещенного антрахинона с тетрагидроантрахиноном в по крайней мере одном органическом растворителе, предпочтительно содержащем менее 100 кг/м³, наиболее предпочтительно менее 50 кг/м³ таких соединений, как эпоксиды и другие продукты деградации, образующиеся из антрахинонов или растворителей, некоторые из которых даже трудно идентифицировать.

Указанный по меньшей мере один органический растворитель, предпочтительно представляет собой смесь одного или более хиноновых растворителей с одним или более, по крайней мере, двумя гидроксиновыми растворителями. Подходящие хиноновые растворители могут включать ароматические, алифатические или насыщенные углеводороды, такие как бензол, аликипированные или полиалкипированные бензолы, трет-бутилбензол, трет-милитилбензол, такие аликипированные бензолы или нафтенаты, как трет-бутилбисульфит, метилинафталин. Подходящие гидроксиновые растворители могут включать алкилосуфокси (например, триоктилосуфоксид), алкилосуфонаты, сложные эфиры аликапиоксианол, N,N-дикароноамины, N-алкил-2-нитрилопиролиды и высококипящие спирты, предпочтительно содержащие 8-9 углеродных атомов (например, ди-изобутилкарбонил). Нейтральные гидроксиновые растворители выбирают из алкилосуфоксидов, тетраакиламинов, производных циклической мочевины и алюламещенных капролактов. Особенно предпочтительные гидроксиновые растворители описаны в патентах США 4800073 и 4800074, и они включают такие алюламещенные капролакты, как октилкапролактам и такие производные циклической мочевины, как N,N'-диациламещенная алкиламинов.

Стадию гидрирования обычно осуществляют путем контактирования рабочего раствора с газообразным водородом или присутствием катализатора, при температуре приблизительно от 0 до, примерно, 100°C, предпочтительно от приблизительно 40 до приблизительно 75°C, и при атмосферном давлении от приблизительно 100 до приблизительно 1500 кПа, предпочтительно от приблизительно 200 до приблизительно 600 кПа. Степень гидрирования (выраженной числом молей гидроксинов в расчете на 1 м³ рабочего раствора) обычно составляет приблизительно от 350 до приблизительно 800, предпочтительно приблизительно от 400 до приблизительно 500.

В качестве активного катализатора могут применяться, например, металлы, выбранные из группы, состоящей из нигеля, палладия, платины, родия, рутения, золота, серебра или их смесей. Предпочтительные металллы представляют собой палладий, платину и золото, причем особенно предпочтительными являются палладий или смеси, содержащие по крайней мере 50 вес. % палладий.

Активный катализатор может использоваться в свободной форме, например палладиевая чернь, суспендированная в рабочем растворе, или может быть нанесен на такой твердый носитель, как частицы, применяемые в виде суспензии или напыленного слоя. Однако особенно предпочтительно применять катализатор в виде активного металла на
Пример 2
Два различных рабочих раствора, 2А и 2Б, готовили растворением этилгалактинина и β-тетрагидроизолицилэфира с применением смеси растворителей, состоящей из 25% тетрабутиламмония и 75% триметилбензола (по объему). Каждый раствор гидрировали в лабораторном реакторе с усилением палладиевого катализатора на носителе из диоксида кремния, 50 мл рабочего раствора использовали в условиях циркуляции в реакторе при 50°C. Водород подавали в реактор под давлением 250 кПа (абс.). Практически весь водород гидрировался в гидроксиде менее чем за час. Гидрирование продолжали в течение 72 ч. Состав реакционной среды определяли методом ГХ-анализа, и полученные результаты представлены в таблице 2.

Из представленных данных можно сделать вывод, что этилгалактинина более подтвержден деградации в ходе гидрирования, чем его тетрагидроизолицилэфир.

Пример 3
Образец выдержанного рабочего раствора, отработавшего более одного года, извлекали из антрахинового рабочего цикла, и было обнаружено, что такой раствор содержит также обычные продукты деградации. Осаждение гидроксида исследовали с использованием образца как такого (образец 3А) и также после добавления дополнительного количества гидроксида. В качестве добавляемого гидроксида применяли β-тетрагидроизолицилэфир (образец 3В), амилантиквин (образец 3С) или β-тетрагидроамилэфир (образец 3D). Для каждого образца получали по несколько концентраций гидроксида в результате гидрирования в лабораторном реакторе с использованием водорода и палладиевого катализатора. Образцы выдерживали при низкой температуре (от, примерно, -10 до +15°C) с целью получения осадка за максимальную концентрацию гидроксида принимали те образцы, в которых осадок быстро исчезал при нагревании до комнатной температуры. Концентрацию гидроксида определяли титрованием образовавшегося пероксида водорода при осаждении образца кислородом и экстракции его водой. Исходный образец рабочего раствора главным образом содержал β-форму тетрагидроизолицилэфира, однако при этом присутствовало небольшое количество α-формы. Амилантиквин в добавленном гидроксиде представлял 2-тетракисилилиллиптил, а также 2-тетракисилиллиптил (небольшая часть). Растворителем в рабочем растворе служили смесь тетрабутиламмония и смешанных ароматических углеводородов технического сорта (главным образом углеводороды C9 и C10). Полученные результаты представлены в таблице 3.

Из полученных результатов можно сделать вывод о том, что умеренное добавление тетрагидроамилэфира повышает максимальное содержание гидроксида до более высокого значения без опасности осаждения.

Пример 4
Из антрахинового реакционного цикла
отбирали два образца выдержанного рабочего раствора, отработавшего более 9 месяцев, причем такой раствор содержал также обычные продукты деградации. В качестве растворителей использовали смесь тетрабутилмочевины (образец 4А) или октилкарбоплатам (образец 4В) со смешанными ароматическими углеводородами технического сорта (главным образом, углеводороды C₉ и C₁₀). В обоих образцах присутствовало также небольшое количество триоктилфосфата. Композицию растворителей слегка модифицировали путем выпаривания и добавления растворительных компонентов с тем, чтобы получить подходящее количество растворителя, содержащего до 1/3 по объему гидроксиовального растворителя (тетрабутилмочевина или октилкарбоплатам), причем оставшееся количество представляло собой растворитель хинона. Ожидаемое гидроксиона изучали по методике, описанной в примере 3. Полученные результаты представлены в таблице 4.

Из полученных результатов можно сделать вывод, что очень высокая степень гидрирования может быть достигнута без опасности окисления, даже при относительно низких концентрациях амилантрахинона и тетрагидроамилантрахинона.

Формула изобретения:
1. Способ получения пероксида водорода антрахиноновым методом, включающий чередующиеся стадии гидрирования и окисления смеси алилзамещенных антрахинонов и алилзамещенных тетрагидроантрахинонов, растворенных по крайней мере в одном органическом растворителе, отличающийся тем, что в указанной смеси 10-55 мол. % алилзамещенных антрахинонов и алилзамещенных тетрагидроантрахинонов замещены одной амиловой группой, причем молярное соотношение алилзамещенных тетрагидроантрахинонов и алилзамещенных антрахинонов составляет по крайней мере 1:1.
2. Способ по п. 1, в котором молярное соотношение алилзамещенных тетрагидроантрахинонов и алилзамещенных антрахинонов составляет приблизительно от 2:1 до приблизительно 50:1.
3. Способ по п. 1 или 2, в котором 45-90 мол. % антрахинонов и тетрагидроантрахинонов замещены одной этильной группой.
4. Способ по любому из п. 1-3, в котором 56-80 мол. % антрахинонов и тетрагидроантрахинонов замещены одной этильной группой.
5. Способ по любому из п. 1-4, в котором рабочий раствор, подлежащий гидрированию, практически свободен от незамещенного антрахинона и тетрагидроантрахинона.
6. Способ по любому из п. 1-5, в котором по крайней мере один органический растворитель включает один или более хиноновых растворителей и один или более гидроксиовальных растворителей, выбранных из алилфосфатов, тетрагидроамилантрахинона, производных циклической мочевины и алилзамещенных карбоплатам.
7. Способ по любому из п. 1-6, в котором стадию гидрирования осуществляют до степени 350-800 моль гидроксиона на 1 м³ рабочего раствора.
8. Композиция, содержащая смесь алилзамещенных антрахинонов и алилзамещенных тетрагидроантрахинонов, растворенную по крайней мере в одном органическом растворителе, отличающуюся тем, что 10-55 мол. % алилзамещенных антрахинонов и алилзамещенных тетрагидроантрахинонов замещены одной амиловой группой, а молярное соотношение алилзамещенных тетрагидроантрахинонов и алилзамещенных антрахинонов составляет по крайней мере 1:1.
9. Композиция по п. 8, в которой такая композиция практически свобода от незамещенного антрахинона и тетрагидроантрахинона.
10. Композиция по п. 8 или 9, которая содержит 55-80 мол. % антрахинонов и тетрагидроантрахинонов, замещенных одной этильной группой.
Таблица 1

<table>
<thead>
<tr>
<th>Образец рабочего раствора</th>
<th>1А</th>
<th>1В</th>
<th>1С</th>
</tr>
</thead>
<tbody>
<tr>
<td>Содержание этилантрахинона (кг/м³)</td>
<td>77</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Содержание тетрагидроэтилантрахинона (кг/м³)</td>
<td>0</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td>Молярное соотношение (тетра): (не-тетра)</td>
<td>0:1</td>
<td>1:0</td>
<td>2:1</td>
</tr>
<tr>
<td>Время осаждения (часы)</td>
<td>35</td>
<td>Не осаждали</td>
<td>Не осаждали</td>
</tr>
<tr>
<td>Содержание осажденного гидрохинона (моль/м³)</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Образец рабочего раствора</th>
<th>2А</th>
<th>2В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Исходное содержание этилантрахинона (моль/м³)</td>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>Исходное содержание β-тетрагидроэтилантрахинона (моль/м³)</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>Содержание этилантрахинона и его тетрагидро форм через 72 часа (моль/м³)</td>
<td>210</td>
<td>242</td>
</tr>
<tr>
<td>Образцы рабочих растворов</td>
<td>3А</td>
<td>3В</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Содержание этилантрахинона (кг/м³)</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>Содержание тетрагидроэтилантрахинона (кг/м³)</td>
<td>90</td>
<td>113</td>
</tr>
<tr>
<td>Содержание амилантрахинона (кг/м³)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Содержание тетрагидроамилантрахинона (кг/м³)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Общее содержание гидрохинона без осаждения (моль/м³)</td>
<td>393</td>
<td>398</td>
</tr>
<tr>
<td>Плотность жидкости (20°C)</td>
<td>947</td>
<td>955</td>
</tr>
<tr>
<td>Молярная доля амиловых групп (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Молярное соотношение (тетра)/(не-тетра)</td>
<td>1,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Содержание</td>
<td>Образец раствора</td>
<td>рабочего раствора</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>этилантрахинона (кг/м³)</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>тетрагидроэтилантрахинона (кг/м³)</td>
<td>107</td>
<td>117</td>
</tr>
<tr>
<td>амилантрахинона (кг/м³)</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>тетрагидроамилантрахинона (кг/м³)</td>
<td>61</td>
<td>51</td>
</tr>
<tr>
<td>Общее количество гидрохинона без осаждения (моль/м³)</td>
<td>645</td>
<td>620</td>
</tr>
<tr>
<td>Плотность жидкости (кг/м³)</td>
<td>965</td>
<td>970</td>
</tr>
<tr>
<td>Молярная доля амиловых групп (%)</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>Молярное соотношение (тетра)/(не-тетра)</td>
<td>3,7</td>
<td>7,7</td>
</tr>
</tbody>
</table>