PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

GO6F 12/10, 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/48077

17 August 2000 (17.08.00)

(21) International Application Number: PCT/US00/03434

(22) International Filing Date: 11 February 2000 (11.02.00)

(30) Priority Data:

09/248,291 11 February 1999 (11.02.99) uUs

(71) Applicant: ORACLE CORPORATION [US/US]; 500 Oracle
Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors: SEXTON, Harlan, 704 Arnold Way, Menlo Park,
CA 94025 (US). UNIETIS, David, 756 18th Avenue,
Menlo Park, CA 94025 (US). JUNGERMAN, Mark; 2628
Laguna Street, San Francisco, CA 94123 (US). MEYER,
Scott; 1112 Desolo Drive, Pacifica, CA 94044 (US).
ROSENBERG, David; 5323 Keene, San Jose, CA 95124
(US).

(74) Agents: HICKMAN, Brian, D. et al.; McDermott, Will &
Emery, 600 13th Street N.W., Washington, DC 20005-3096
(US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™™, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A MACHINE-INDEPENDENT MEMORY MANAGEMENT SYSTEM WITHIN A RUN-TIME ENVIRONMENT

(57) Abstract

An invariant numeric reference format is defined in
a run-time environment for both run-time and storage use.
A numeric reference to an object encodes the location of
the object as an integral offset from an implicit machine
pointer. In environments where the size of contiguous virtual
memory segments is limited, objects are stored in a number of
fixed-size contiguous chunks in virtual memory called pages.
A page—offset numeric reference includes an offset and a page
number, which is used to index a page map that contains a
page pointer to the beginning of the page. Page-offset numeric
references are dereferenced by adding the offset in the numeric
reference to the page pointer obtained from the page map based
on the page number in the numeric reference.

500 .
N INSTANTIATE 510 1oap
OBJECT OBJECT
3 :
502~ [INSTANTIATE LOAD :
NUMERIC S0 nuweRec '
REFERENCE REFERENCE
504~ ACCESS OBJECTS DURING RUN TIME
BY DEREFERENCING NUMERIC REFERENCES
v H
506~ savE
OBJECT
A\ 4
508 SAVE
N NUMERIC
REFERENCE

AL
AM
AT
AU
AZ
BA
BB

BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/48077 PCT/US00/03434
1

A MACHINE-INDEPENDENT MEMORY MANAGEMENT SYSTEM
WITHIN A RUN-TIME ENVIRONMENT

RELATED APPLICATIONS

The present application is related to the following applications:

U.S. Patent Application Ser. No. 09/248,295, entitied “A Memory Management
System Within a Run-Time Environment,” filed on even date herewith by Harlan Sexton
et al. (docket no. 50277-178; OID-1997-48-01), the contents of which are hereby
incorporated by reference.

U.S. Patent Application Ser. No. 09/248,294, entitled “Address Calculation of
Invariant References Within a Run-Time Environment,” filed on even date herewith by
Harlan Sexton et al. (docket no. 50277-179; OID-1997-48-03), the contents of which are
hereby incorporated by reference.

U.S. Patent Application Ser. No. 09/248,297, entitled “A Paged Memory
Management System Within a Run-Time Environment,” filed on even date herewith by
Harlan Sexton et al. (docket no. 50277-261; OID-1997-48-17), the contents of which are

hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to computer systems and more particularly to

managing memory for a run-time environment.

BACKGROUND OF THE INVENTION

A dynamic run-time environment for a language such as JAVA™ is responsible
for managing memory for objects that are created and destroyed during the execution of
a program. An object may be defined as a logically contiguous atomic unit of typed

state of the program. Objects thus encapsulate data in particular regions of memory

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

that are allocated and deallocated for the program by the dynamic run-time
environment.

The state of the program, or “program state,” is the set of objects, the content of
the objects, and the references between the objects that exist at a specific point in time
during the execution of the program. A “reference” to an object is an entity used to
identify and ultimately access a region of memory that stores the data of the object.
Typically, references between objects in a run-time environment are encoded using
machine pointers. A machine pointer is a native entity that contains the address of the
object in the main memory, which can be a real address or, more commonly, a virtual
address. Since machine pointers are closely coupled to the underlying hardWare and
firmware of a computer system, machine pointers provide a fast means of accessing
objects and, hence, are a popular implementation for references.

In a run-time environment, however, a program state that contains machine
pointers is so machine-dependent that it is sometimes disadvantageous. For example,
it may be desirable to store the program state on disk or other secondary storage
medium and restore the stored program state to main memory. Some run-time
environments, in fact, are designed to use the same program state on different types of
machines. For instance, such run-time environments provide load-balancing and crash
recovery functions by transferring the execution of a program (including its state) from
one machine to another.

One of the reasons why machine pointers are not machine-independent is that
the size in bits of a machine pointer is determined by the extent of the virtual address
space, which varies between computer architectures. In fact, some computer
architectures even have pointers of varying sizes, for example, near (16-bit) pointers
and far (32-bit) pointers. If program state includes machine pointers whose size varies
from platform to platform, then the size of objects will vary from platform to platform.

Furthermore, since the size of intervening objects will vary, the relative locations

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

between objects will vary from platform to platform. For example, on a platform with
near pointer the relative location of one object can be 48 bytes from another object, but
on a platform with far pointers, the relative location might increase to 96 bytes.

One approach directed to machine independence, known as “pointer swizzling,”
employs two completely different formats for representing references: a machine-
dependent runtime format using pointers for references in main memory, and a platform
invariant format for encoding references in secondary storage. When the reference is
written to secondary storage, machine pointers are converted into a machine-
independent symbol such as a string or serial number. When the reference is read
back into main memory from secondary storage, the symbol is unswizzled and
converted back into a machine pointer. Swizzling is also referred to as “serialization’
and “pickling.”

Since the size and relative locations of objects differs between platforms,
swizzling and unswizzling operations employ a look-up technique into an associative
data structure, wherein a machine pointer is associated with a corresponding symbol.
Look-up operations, however, are computationally expensive, requiring many memory
accesses into an auxiliary symbol table, typically implemented by a hash table or binary
tree stored in memory. Thus, frequent storage and retrieval of program state into and
out of secondary storage can be responsible for a significant drain on system
performance.

Differences between server environments make machine independence very
difficult to achieve for portable run-time environments even with pointer swizzling. For
example, some operating systems, in practice if not by design, limit the guaranteed size
of contiguous virtual memory to a “page,” typically about two or four kilobytes in size.
This page-size limitation is particularly common for allocating objects in shared memory
for access by different processes. Consequently, in paged memory systems, large

objects such as arrays cannot be contiguously allocated for these servers. Prior paged

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

memory systems either failed when sufficiently large blocks of virtual memory was not
available, or employed ad hoc constructions to simulate specific array types.

Failure to allocate memory for large objects, merely because sufficient
contiguous virtual address space is unavailable, limits the availability and marketability
for such run-time environments. Ad hoc simulations, moreover, are impracticable for
paged memory servers especially for large, user defined objects, because they are
unknown to the designer of the run-time environment. Furthermore, it is difficult to

integrate such ad hoc solutions with the pointer swizzling operations for addressing

machine independence.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

SUMMARY OF THE INVENTION

There exists a need for a memory management system that can efficiently save
and restore program state in a machine-independent format. Specifically, a need exists
for a reference format that can be easily stored and has comparatively efficient run-time
performance. There is also a need for a memory management system that is portable
to, and capable of working with, operating systems that impose a page-size limitation to
contiguous memory.

These and other needs are addressed by the present invention, in which a genus
of machine-independent formats, called a numeric reference format, is defined for both
run-time and storage. A numeric reference to an object encodes the location of the
object as an integral offset from an implicit machine pointer. Since the semantics of an
integer, as opposed to a native machine pointer, can be completely specified in terms of
size and byte-order, integers can be easily translated between machines without
applying computationally expensive pointer swizzling operations.

Accordingly, one aspect of the invention relates to a computer-implemented
method and a computer-readable medium bearing instructions for managing memory
for a run-time environment. The methodology includes storing a plurality of objects in a
virtual memory; storing references between the objects as numeric references in the
virtual memory; and storing the objects in a secondary storage that is not part of the
virtual memory and the references in a numeric reference format in a secondary storage
that is not part of the virtual memory.

Another aspect of the invention invoives a computer-implemented method and a
computer-readable medium bearing instructions for managing memory for a run-time
environment. Management of the run-time environment involves loading objects into
virtual memory from secondary storage that is not part of the virtual memory; loading
references between the objects as numeric references into the virtual memory; and

dereferencing one of the numeric references by adding, to a machine pointer, an offset

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

contained within the numeric reference. Use of numeric references for storing
references between objects provides an invariant representation for references, thereby
enabling machine-independent program state to be stored within and loaded from
secondary storage that is not part of the virtual memory.

In circumstances where program state containing the objects and references is to
be used in environments where the size of contiguous virtual memory segments is
limited, the objects are stored or loaded into virtual memory in a number of fixed-size
contiguous chunks called “pages.” A “page-offset’ numeric reference for such
environments includes a page number, which is used to index a page map that contains
a page pointer to the beginning of the page, and an offset. Page-offset numeric
references are dereferenced by adding the offset in the numeric reference to the page
pointer obtained from the page map based on the page number in the numeric
reference. Use of page-offset numeric references allows for a software virtual memory
system to be systematically implemented for all system-defined and user-defined types
supported in a run-time environment, in effect, implementing a software paged memory
system .

Still other objects and advantages of the present invention will become readily
apparent from the following detailed description, simply by way of illustration of the best
mode contemplated of carrying out the invention. As will be realized, the invention is
capable of other and different embodiments, and its several details are capable of
modifications in various obvious respects, all without departing from the invention.

Accordingly, the drawing and description are to be regarded as illustrative in nature, and

not as restrictive.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FIG. 1 depicts a computer system that can be used to implement the present
invention;

FIG. 2(a) is schematic drawing of a layout of a base-offset numeric reference.

FIG. 2(b) is a schematic drawing of a portion of a virtual memory configuration in

which the base-offset numeric reference is used.

FIG. 2(c) is a flowchart for generating a base-offset numeric reference from a
machine pointer.

FIG. 2(d) is a flowchart for dereferencing a base-offset numeric reference.

FIG. 3(a) is schematic drawing of a layout of a page-offset numeric reference.

FIG. 3(b) is a schematic drawing of a portion of a virtual memory configuration in

which the page-offset numeric reference is used.

FIG. 3(c) is a flowchart for generating a page-offset numeric reference from a
machine pointer.

FIG. 3(d) is a flowchart for dereferencing a page-offset numeric reference.

FIG. 4(a) is schematic drawing of a layout of a self-relative numeric reference.

FIG. 4(b) is a schematic drawing of a portion of a virtual memory configuration in

which the self-relative numeric reference is used.

FIG. 4(c) is a flowchart for generating a seif-relative numeric reference from a

machine pointer.

FIG. 4(d) is a flowchart for dereferencing a self-relative numeric reference.

FIG. 5 is flowchart for saving and loading numeric references in a secondary

storage.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for memory management in a run-time environment is
described. In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In other instances, well-
known structures and devices are shown in block diagram form in order to avoid

unnecessarily obscuring the present invention.

HARDWARE OVERVIEW

FIG. 1 is a block diagram that illustrates a computer system 100 upon which an
embodiment of the invention may be implemented. Computer system 100 includes a
bus 102 or other communication mechanism for communicating information, and
processors 104 and 105 both coupled with bus 102 for processing information.
Computer system 100 also includes a main memory 108, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 102 for storing
information and instructions to be executed by processor 104. Main memory 106 also
may be used for storing temporary variables or other intermediate information during
execution of instructions to be executed by processor 104 and processor 105.
Computer system 100 further includes a read only memory (ROM) 108 or other static
storage device coupled to bus 102 for storing static information and instructions for
processor 104 and processor 105. A storage device 110, such as a magnetic disk or
optical disk, is provided and coupled to bus 102 for storing information and instructions.

Computer system 100 may be coupled via bus 102 to a display 112, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
114, including alphanumeric and other keys, is coupled to bus 102 for communicating

information and command selections to processor 104. Another type of user input

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

device is cursor control 116, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 104 and for
controlling cursor movement on display 112. This input device typically has two
degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

The invention is related to the use of computer system 100 for memory
management in a run-time environment. ‘According to one embodiment of the invention,
managing memory in a run-time environment is provided by computer system 100 in
response to processor 104 and/or processor 105 executing one or more sequences of
one or more instructions contained in main memory 106. Such instructions may be read
into main memory 106 from another computer-readable medium, such as storage
device 110. Execution of the sequences of instructions contained in main memory 106
causes processor 104 and/or processor 105 to perform the process steps described
herein. Although FIG. 1 depicts a dual processing arrangement with processors 104
and 105, one or more processors in a uni-processing or multi-processing arrangement,
respectively, may also be employed to execute the sequences of instructions contained
in main memory 106. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 104 and/or processor 105 for
execution. Such a medium may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media. Non-volatile media include, for
example, optical or magnetic disks, such as storage device 110. Volatile media include
dynamic memory, such as main memory 106. Transmission media include coaxial

cables, copper wire and fiber optics, including the wires that comprise bus 102.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
10

Transmission media can also take the form of acoustic or light waves, such as those
generated during radio frequency (RF) and infrared (IR) data communications.
Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD,
any other optical medium, punch cards, paper tape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described infra, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 104 and/or processor 105 for
execution. For example, the instructions may initially be borne on a magnetic disk of a
remote computer. The remote computer can load the instructions into its dynamic
memory and send the instructions over a telephone line using a modem. A modem
local to computer system 100 can receive the data on the telephone line and use an
infrared transmitter to convert the data to an infrared signal. An infrared detector
coupled to bus 102 can receive the data carried in the infrared signal and place the data
on bus 102. Bus 102 carries the data to main memory 106, from which processor 104
and/or processor 105 retrieves and executes the instructions. The instructions received
by main memory 106 may optionally be stored on storage device 110 either before or
after execution by processor 104 and/or processor 105.

Computer system 100 also includes a communication interface 118 coupled to
bus 102. Communication interface 118 provides a two-way data communication
coupling to a network link 120 that is connected to a local network 122. For example,
communication interface 118 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 118 may be a local area

network (LAN) card to provide a data communication connection to a compatible LAN.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
11

Wireless links may also be implemented. In any such implementation, communication
interface 118 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

Network link 120 typically provides data communication through one or more
networks to other data devices. For example, network link 120 may provide a
connection through local network 122 to a host computer 124 or to data equipment
operated by an Internet Service Provider (ISP) 126. ISP 126 in turn provides data
communication services through the worldwide packet data communication network,
now commonly referred to as the “Internet” 128. Local network 122 and Internet 128
both use electrical, electromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on network link 120 and
through communication interface 118, which carry the digital data to and from computer
system 100, are exemplary forms of carrier waves transporting the information.

Computer system 100 can send messages and receive data, including program
code, through the network(s), network link 120, and communication interface 118. In
the Internet example, a server 130 might transmit a requested code for an application
program through Internet 128, ISP 126, local network 122 and communication interface
118. In accordance with the invention, one such downloaded application provides for
memory management in a run-time environment as described herein. The received
code may be executed by processor 104 as it is received, and/or stored in storage
device 110, or other non-volatile storage for later execution. In this manner, computer
system 100 may obtain application code in the form of a carrier wave.

“Virtual memory” refers to memory addressable by a storage allocation
technique in which auxiliary storage, such as memory in storage device 110, can be
addressed as though it were part of the main memory 106. More specifically,
combinations of hardware, firmware, and operating system cooperate to automatically

swap portions of the code and data for an executing process on an as-needed basis.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
12

Thus, the virtual address space may be regarded as addressable main memory to a
process executing on a computer system that maps virtual addresses into real
addresses. The size of the virtual address space is usually limited by the size of a
native machine pointer, but not by the actual number of storage elements in main
memory 110.

On many operating systems, a process will utilize a certain amount of virtual
memory that no other user process may access in order to provide data security.
“Shared memory” refers to the virtual address space on the computer system 100 that is
concurrently accessible to a plurality of executing user processes on a processor 104.

In some embodiments, shared memory is also accessible to executing user processes
on a plurality of processors, such as processors 104 and 105.

“Secondary storage” as used herein refers to storage elements, other than virtual
memory, accessible to a process. Secondary storage may be local or networked. Local
secondary storage, furnished by storage device 100 on computer system 100, typically
takes the form of a random access storage device such as a magnetic or optical disk.
Networked secondary storage is provided by storage devices on other computer
systems, for example on host 124, accessible over a local area network 122, or server

130, accessible over a wide area network such as the internet.

NUMERIC REFERENCES
A numeric reference employs a machine-independent format for encoding
references between objects that is suitable for both run-time use in virtual memory and
storage use in secondary storage. Unlike symbols and strings employed with pointer
swizzling, numeric references are easily stored in a secondary storage, in some cases
needing no conversion at all and in other cases requiring only minor arithmetic-logical
operations such as bit-twiddling and byte rearrangement. For run-time usage, numeric

references can be efficiently “dereferenced,” that is, converted into a machine pointer,

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
13

without requiring many memory accesses into an auxiliary symbol table, hash table,
tree, or other complex data structure. Therefore, numeric references need not be
converted into machines at load time, reducing the overhead of loading program state.

Preferably, numeric references are implemented in a run-time environment that
requires all encoded data (e.g. for objects) to be strongly typed and all primitive types,
including references, to have an invariant format. For example, a run-time environment
may require floating point numbers to use-an IEEE format. In such a run-time
environment, references between objects, conventionally implemented by machine
pointers, are encoded as integer values indicating offsets from an implicit machine
pointer. The numeric reference is defined to be invariant, having a specified number of
bytes, a specified byte-ordering, and a specified alignment. The implicit machine
pointer is a virtual address that is derivable from the memory environment of one the
objects.

For example, numeric references may be encoded as a little endian, two’s
complement (if signed) four-byte integer referring to objects aligned on an eight-byte
boundary, although numeric references in accordance with the present invention, of
course, are not limited to these particular specifications. Since almost all machines
provide a mapping between a numeric type and a native primitive type, accessing data
in this format is at least as efficient as, for example, accessing structures generated by
C compilers for that machine.

The use of numbers to encode references stems from the realization that the
invariant format for encoding objects and primitive types in a run-time environment
ensures that every instance of a type will have the same size between platforms. Since
every object has a consistent size between platforms, the relative locations between
objects are also consistent. Since objects on any platform will be located at a
consistent offset from some point in the virtual address space, this offset can be

expressed as a consistent number of bytes from a virtual address. Thus, numeric

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
14

references include an offset portion that indicates a number of bytes from an implicit
address. Consequently, numeric references are machine-independent, and program
state with numeric references can be used on incompatible processors, such as
processors with differently sized machine pointers.

Since a process may use some of its virtual address space for storing non-
invariant data, i.e. for purposes other than storing program state, it is useful to define a
physical or logical area of the virtual address space in which the offsets between objects
remain consistent and thus can be advantageously expressed as numbers. An “object
memory” is a subset of the virtual address space containing either existing objects or
available space for allocating new objects. Since an object memory is a subset of the
virtual address space, numeric references within the object memory can be smaller than
machine pointers. For example, 32-bit (four-byte) numeric references can be profitably
used on a computer with a 64-bit virtual address space (2%, about 16 billion gigabytes).
Since one of the impediments to machine-independence is the differing sizes of
machine pointers, the use of fixed-size numeric references, even in very large virtual
address spaces, helps in attaining a machine-independent reference format.

In some implementations, a plurality of object memories are provided, for
example, to hold objects of different durations, or of other distinct characteristics, to
assist in garbage collection. Accordingly, numeric references encode references
between objects in the same object memory. References between objects of different
object memory, on the other hand, would be encoded in another reference format
having the same size as the numeric reference. For example, indexed references,
which are described infra, are one type of format that may be used for such inter-object
memory references.

In contrast to symbols swizzled from machine pointers, numeric references are
easily converted into and from machine pointers. In general, a numeric reference to an

object is converted into a machine pointer to the object by adding an offset contained in

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
15

the numeric reference to an implicit virtual address. Conversely, a machine pointer to
the object is converted into a numeric reference by calculating a pointer difference
between the machine pointer to the object and the implicit virtual address. The implicit
virtual address points to the beginning of a region of the virtual memory space in which
the referencing object or the referenced object is located. The precise identity of the
implicit virtual address depends more specifically on the species of the numeric
reference that is employed.

Three numeric references are disclosed herein: (1) a base-offset numeric
reference, which contains an offset relative to a “base address” at the beginning of the
object memory, especially if the object memory consists of a contiguous segment of
memory, (2) a page-offset numeric reference that is relative to the start of a page also
specified in the numeric reference, and (3) a self-relative numeric reference, that is

relative to the beginning of the referencing object.

BAseE-OFFSET NUMERIC REFERENCES

A base-offset numeric reference to an object encodes the location of the object
as an offset from the beginning of the object memory within which the object is located.
FIG. 2(a) depicts a layout of an exemplary four-byte (32-bit) base-offset numeric
reference 200. In some embodiments, the base-offset numeric reference 200 includes,
in addition to the offset, a small number of bits for a tag 202, that is used for
discriminating among various kinds of numeric and other supported reference formats
and to cache storage properties of the referenced object. The function of the tag 202 is
described in more detail hereafter. It is to be understood that the present invention is
not limited to numeric references that include a tag 202.

The base-offset numeric reference 200 includes an offset 204, which indicates
the displacement from a base address. If the base-offset numeric reference includes a

tag 202, the offset 204 may be defined as the numeric reference with the tag 202

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
16

masked off. For example, a base-offset numeric reference having a hexadecimal value
of 0x00046740 specifies a displacement of 0x00046740 or 288,576 bytes from the base
address. As another example, a three-bit tagged numeric reference of 0x00004321
specifies a displacement of 0x00004320 or 17,184 bytes from the base address.

Referencing and dereferencing a base-offset numeric reference is illustrated with
respect to an exemplary memory configuration of a portions of a virtual address space
_210 as shown in FIG. 2(b). Virtual address space 210 includes an object memory
consisting of a contiguous memory segment 212 and another object memory consisting
of a contiguous memory segment 214. The contiguous memory segment size is
preferably large, for example, in the range of 256kB (2'® bytes) to 32MB (2% bytes),
such as 4MB (2% bytes). The beginning of contiguous memory segment 212 is located
at a base address marked by base pointer B. Object 216 is located at an address
marked by object machine pointer P within contiguous memory segment 212.

For purposes of discussion, it will be assumed that the object machine pointer is
not tagged or if the object machine pointer P is tagged, the tag is masked off from the
object machine pointer P as the beginning of the calculations. In those embodiments
that employ tagged numeric references, it is assumed that the appropriate tag 202 will
be handled separately in the numeric reference 200.

FIG. 2(c) illustrates steps taken to produce a base-offset numeric reference
based on a machine pointer P to object 216. At step 220, the machine pointer P to
object 216 is obtained, typically from a variable passed into a function, returned from a
function or memory allocation operator, loaded from a memory address not part of the
program state, or produced by dereferencing a numeric reference. In a working
example to illustrate this calculation, a machine pointer P having a value of 0x20446740
is obtained from a pointer parameter passed into a function of the run-time environment.

At step 222, a base pointer B containing the base address of the object memory

is determined. If the contiguous memory segment is guaranteed to be aligned on a

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
17

boundary at least as large as the size of the contiguous memory segment, then the
base address can be determined by masking off the appropriate number of bits from the
machine pointer P. In this case, if contiguous memory segment is aligned on a 4MB
boundary, then the base pointer can be obtained by masking off the least significant 22
bits to produce, for example, a base address of 0x2040000.

On the other hand, for implementations without this guarantee, then a header or
pre-header for the object may be consulted by dereferencing the machine pointer P plus
a fixed non-negative or negative displacement, respectively. In various implementations,
the header or pre-header may contain the base address itself or an object memory
identifier that can used to index a data structure to retrieve the base address. In the
working example, let us assume that a base pointer having a base address of
0x20400000 is determined.

At step 224, the offset 204 that will be stored in the base-offset numeric
reference 200 is calculated as a difference of the virtual address of the object 216 and
the base address of the object memory consisting of the contiguous memory segment
212. This calculation can be performed by subtracting the base pointer B from the
object pointer P. For the implementations that impose a sufficient alignment restriction
on contiguous memory segments, then steps 222 and 224 can be coalesced into a
single masking of all but the least 22 significant bits, e.g. OFFSET = P &~ (~0 << 22).

In the working example, the calculated offset is 0x20446740 — 0x20400000 =
0x00046740, which constitutes the base-offset numeric reference. An appropriate tag
202, if implemented, is added or logically-ored into the resuit.

FIG. 2(d) illustrates steps taken to produce a machine pointer P based on a
base-offset numeric reference to object 216. At step 230, the base-offset numeric
reference to object 216 is obtained, typically by reading from a memory address of the
program state. In a working example to illustrate this calculation, a base-offset numeric

reference having a value of 0x00046740 is obtained from reading a program state

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
18

memory location under control of a memory management component of the run-time
environment.

At step 232, a base pointer B containing the base address of the object memory
is determined. If the contiguous memory segment is guaranteed to be aligned on a
boundary at least as large as the size of the contiguous memory segment, then the
base address can be determined by masking the appropriate number of bits of the
virtual address of the object that contains the numeric reference, or the “referencing
object.” In this case, if the contiguous memory segment is aligned on a 4MB boundary,
then the base pointer can be obtained by masking off the least significant 22 bits to
produce, for example, a base address of 0x2040000.

On the other hand, for implementations without this guarantee, a header or pre-
header for the referencing object may be consulted by dereferencing the machine
pointer P plus a fixed offset. In various implementations, the header or pre-header may
contain the base address itself or an object memory identifier that can used to index a
data structure to retrieve the base address. In the working example, let us assume that
a base pointer having a base address of 0x20400000 is determined.

At step 234, the virtual address of the object 216 is obtained by adding the offset
204 stored in the numeric reference 200 to the base address of the object memory
consisting of the contiguous memory segment 212. This calculation can be performed
by adding the offset 204 to the base pointer B. An appropriate machine pointer tag 202,
if necessary, is added or logically-ored into the result. In the working example, the

virtual address of the object 214 is calculated to be 0x20400000 + 0x00046740 =
0x20446740.

PAGE-OFFSET NUMERIC REFERENCES
In circumstances where the program state is to be used in server environments

in which the maximum size of a contiguous memory segment is severely constrained, it

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
19

is useful to divide the program state into a plurality of fixed-size contiguous chunks of
memory called “pages.” A page is a moderately sized contiguous memory segment that
is supported within the server environments, especially for shared memory. The pages
of an object memory need not be contiguous; in other words, a paged object memory
contains a plurality of contiguous memory segments in multiples of the page size.

To access the disparate pages of an object memory, a page map is maintained
for a paged object memory to keep track of the pages. Each page is assigned a page
number, which is used to index the page map to fetch the virtual address of the
beginning of the page, called a page address. The indirection provided by the page map
indexed by a page number allows pages to be relocated simply by updating the page
address in the page map. A certain amount of space, called a “page header” is
reserved at the beginning of the page to store useful information for the memory
management of the page, including the page number, the address of the page map, and
the base address of the object memory (page address for page 0).

Accordingly, a page-offset numeric reference to an object encodes the location of
the object as an offset from the beginning of the page within which the object is located.
FIG. 3(a) depicts a layout of an exemplary four-byte (32-bit) page-offset numeric
reference 300. In some embodiments, the page-offset numeric reference 300 includes,
in addition to the offset, a small number of bits for a tag 302, that is used for
discriminating among various kinds of numeric and other supported reference formats
and to cache storage properties of the referenced object. The function of the tag 302 is
described in more detail infra, and it is to be understood, of course, that the present
invention is not limited to numeric references that include a tag 302.

The page-offset numeric reference 300 includes an offset 304, which indicates
the displacement from a page address. The page address is determined by accessing
a page map for the object memory baséd on a page number 304 also contained in the

page-offset numeric reference. If the page-offset numeric reference includes a tag 302

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
20

and a page number 306, the offset 304 may be defined as the numeric reference with
the tag 302 and the page number 306 masked off. For example, a page-offset numeric
reference having a hexadecimal value of 0x00001740 specifies a displacement of
0x00000740 or 1,856 bytes from the page address of page number 1.

Referencing and dereferencing a page-offset numeric reference is illustrated with
respect to an exemplary memory configuration of a portions of a virtual address space
310 as shown in FIG. 3(b). Virtual address space 310 includes an object memory
comprising pages 312a, 312b, 312c¢, 312d, and 312e. A page map 314, which in one
embodiment is stored in page 0 (312a), contains entries for page addresses
corresponding to the pages 312a, 312b, 312c, 312d, and 312e. The page size is
preferably moderately sized and compatible with those servers which severely restrict
the size of contiguous memory segments. For example, the page size may be in the
range of 256B (2° bytes) to 32kB (2'° bytes), such as 4kB (2'2 bytes). The beginning of
page 312b is located at a page address marked by page pointer PP. Object 316 is
located at an address marked by object machine pointer P within page 312b.

For purposes of discussion, it will be assumed that the object machine pointer is
not tagged or if the object machine pointer P is tagged, the tag is masked off from the
object machine pointer P as the beginning of the calculations. In those embodiments
that employ tagged numeric references, then it is assumed that the appropriate tag 302
will be handled separately in the numeric reference 300.

FIG. 3(c) illustrates steps taken to produce a page-offset numeric reference
based on a machine pointer P to object 316. At step 320, the machine pointer P to
object 316 is obtained, typically from a variable passed into a function, returned from a
function or memory allocation operator, loaded from a memory address not part of the
program state, or produced by dereferencing a numeric reference. In a working
example to illustrate this calculation, a machine pointer P having a value of 0x20446740

is obtained from a pointer parameter passed into a function of the run-time environment.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
21

At step 322, a page pointer PP containing the page address of the page is
determined. If the page is guaranteed to be aligned on a boundary at least as large as
the fixed-size of the page, then the page address can be determined by masking off the
appropriate number of bits from the machine pointer P. In this case, if page is aligned
on a 4kB boundary, then the base pointer can be obtained by masking off the least
significant 12 bits to produce, for example, a page address of 0x20446000.

On the other hand, for implementations without this page alignment guarantee, a
header or pre-header for the object may be consuited by dereferencing the machine
pointer P plus a fixed non-negative or negative displacement, respectively. In various
implementations, the header or pre-header may contain the page address itself or an
offset from the referencing object to the beginning of the page. In the working example,
let us assume that a page pointer having a page address of 0x20446000 is determined.

At step 324, the page number 306 and the offset 304 portions of the page-offset
numeric reference are determined. The page address is used to fetch the
corresponding page number from the page header of page 312b. Preferably, this page
number is already shifted by the page size to facilitate the bitwise masking operations.
In the example, if the object is in 4kB page 1 (i.e. page 312b), then the page number
would be 1 << 12 = 0x00001000. The offset 304 is calculated as a difference of the
virtual address of the object 316 and the page address of the page 312b. This
calculation can be performed by subtracting the page pointer PP from the object pointer
P. In the working example, the calculated offset 304 is 0x20446740 —~ 0x20446000 =
0x00000740. Combining the shifted page number and the offset produces a page-
offset numeric reference of 0x00001000 | 0x00000740 = 0x00001740. An appropriate
tag 302, if implemented, is added or logically-ored into the resuit.

FIG. 3(d) illustrates steps taken to produce a machine pointer P based on a
page-offset numeric reference to object 316. At step 330, the page-offset numeric

reference to object 316 is obtained, typically by reading from a memory address. in a

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
22

working example to illustrate this calculation, a page-offset numeric reference having a
value of 0x00001740 is obtained from reading a program state memory location under
control of a memory management component of the run-time environment.

At step 332, the page pointer PP containing the page address of the page is
determined. First, the appropriate page map 314 needs to be identified, which is found
in the page header of the referencing object. If the page of the referencing object is
guaranteed to be aligned on a boundary at least as large as the size of the page, then
the referencing page address can be determined by masking the appropriate number of
bits of the virtual address of the referencing object. In this case, if the page is aligned
on a 4kB boundary, then the referencing page address pointer can be obtained by
masking off the least significant 12 bits of 0x1C209B70, for example, to produce a page
address of 0x1C209000.

On the other hand, for implementations without this guarantee, a header or pre-
header for the referencing object may be consulted by dereferencing the machine
pointer P plus a fixed offset. In various implementations, the header or pre-header may
contain the referencing page address itself or an offset from the referencing object to
the beginning of the referencing page.

Accordingly, the page map 314 is reachable by a field reserved in the referencing
page header. The appropriate entry in page map 314 is determined by indexing the
page 306 value, shifted right by an appropriate amount, e.g. 12 for 4kB pages. In the
working example, assume that a page pointer having a page address of 0x20446000 is
thus fetched from entry #1 of page map 314.

At step 334, the virtual address of the object 316 is obtained by adding the offset
304 stored in the numeric reference 300 to the page address of the page 312b, fetched
from page map 314. This calculation can be performed by adding or logically oring the
offset 304 to the page pointer PP. In the working example, the virtual address of the

object 314 is calculated to be 0x20446000 + 0x00000740 = 0x20446740. An

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
23

appropriate machine pointer tag 302, if necessary, is added or logically-ored into the
resuit.

Since a paged object crosses a page boundary, slot-access operations for the
paged object need additional support from the run-time environment. A slot-access
operation gets or sets a value of a “slot” in a object (i.e. a field or instance variable) at a
known displacement from the virtual address of the beginning of the object. If the object
is contiguous, then the address of the slot can be determined simply by adding the
displacement to the beginning of the object. For paged objects, on the other hand, this
addition results in an invalid address, because the page boundary may occur between
any of the slots and vary from instance to instance.

Accordingly, a slot-access operation of a machine pointer to a paged object
requires first converting the machine pointer in to a page-offset numeric reference and
checking to see if adding the displacement crosses one or more page boundaries. The
displacement is added to the page-offset numeric reference and adjusted to account for
the size of the page headers for each of the crossed boundaries. The resultant page-
offset numeric reference is then dereferenced as described supra.

It is evident that the slot-access operation for a paged object is fairly
cumbersome. Therefore, it is desirable, when allocating memory for an object, to find or
allocate a new page that can fit the object if possible. Preferably, only those objects
that are larger than the effective page size (i.e. the fixed pages size minus the page
header size) are allocated on a plurality of pages. Since distinguishing between paged
objects and contiguous objects is a common operation in performing a slot-access
operation, the contiguity of the referenced object is preferably stored in a machine
pointer tag as a storage property to avoid dereferencing the machine pointer to fetch

that storage property from the object’s header.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
24

SELF-RELATIVE NUMERIC REFERENCES

As described supra, dereferencing a page-offset numeric reference to a object,
whether the object is paged or contiguous, involves some overhead, which incurs a
performance penalty that may be unacceptable for some implementation environments.
More specifically, dereferencing a page-offset numeric reference requires at least one
memory access to the page map, which may not be currently in cache or, worse, loaded
in volatile memory. Consequently, resolving the resulting cache miss or page fault
requires additional machine cycles and therefore imposes a performance hit.

Because of the performance hit, it is desirable to define and use self-relative
numeric references. When a referencing object contains a self-relative numeric
reference to a referenced object, the self-relative numeric reference contains an offset
to the referenced object that is relative to an address of the referencing object, e.g. the
starting address of the object. Dereferencing a self-relative numeric reference therefore
entails adding the offset to the virtual address the start of the referencing object. Since
the virtual address to the referencing object is used to fetch the self-relative numeric
reference from memory in the first place, a machine pointer with this virtual address is
probably sitting in a high-speed register. Even if the machine pointer is not in a register,
it is on the stack and probably in the cache or in a loaded page. Therefore, the
overhead for dereferencing a self-relative numeric reference is commensurate with
dereferencing a machine pointer and much less than dereferencing a page-offset
pointer.

Accordingly, a self-relative numeric reference to an object encodes the location
of the object as an offset from the beginning of the referencing object. FIG. 4(a) depicts
a layout of an exemplary four-byte (32-bit) self-relative numeric reference 400. In some
embodiments, the self-relative numeric reference 400 includes, in addition to the offset,
a small number of bits for a tag 402, that is used for discriminating among various kinds

of numeric and other supported reference formats and to cache storage properties of

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
25

the referenced object. The function of the tag 402 is described in more detail infra, and
it is to be understood, of course, that the present invention is not limited to numeric
references that include a tag 402.

The self-relative numeric reference 400 includes an offset 404, which indicates
the displacement from the referencing object. If the self-relative numeric reference
includes a tag 402, the offset 404 may be defined as the numeric reference with the tag
402 masked off. For example, a self-relative numeric reference having a hexadecimal
value of 0x0423CBDO specifies a displacement of 69,454,800 bytes from the
referencing object. As another example, a three-bit tagged numeric reference of
0x00004321 specifies a displacement of 0x00004320 or 17,184 bytes from the
referencing object.

Referencing and dereferencing a self-relative numeric reference is illustrated with
respect to an exemplary memory configuration of portions of a virtual address space
410 as shown in FIG. 4(b). Virtual address space 410 includes an object memory
comprising page 412a and 412b. Object 414 is located at an address within page 412a
marked by machine pointer S, and object 216 is located at an address within page 412b
marked by object machine pointer P.

For purposes of discussion, it will be assumed that, if the object machine pointer
P is tagged, then the tag is masked off from the object machine pointer P as the
beginning of the calculations. In those embodiments that employ tagged numeric
references, then it is assumed that the appropriate tag 402 will be set in the numeric
reference 400. In another embodiment, wherein machine pointers and numeric
references are both tagged, a tag assignment scheme may be adopted such that the
calculations for referencing and dereferencing disclosed herein also generate the
appropriate tag, without having to handle the tags separately.

FIG. 4(c) illustrates steps taken to produce a self-relative numeric reference

based on a machine pointer P to object 416 for storage in object 414. At step 420, the

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
26

machine pointer P to object 416 is obtained, typically from a variable passed into a
function, returned from a function or memory allocation operator, loaded from a memory
address not part of the program state, or produced by dereferencing a numeric
reference. In a working example to illustrate this calculation, a machine pointer P
having a value of 0x20446740 is obtained from a pointer parameter passed into a
function of the run-time environment.

At step 422, a source machine pointer S containing the virtual address of the
referencing object determined. Since the self-relative numeric reference is to be stored
in the referencing object, this pointer is already available, typically in a high-speed
memory such as a register or cache. In the working example, let us assume that a
source pointer S having a base address of 0x1C209B70 is determined.

At step 424, the offset 404 that will be stored in the self-relative numeric
reference 400 is calculated as a difference of the virtual address of the referenced
object 616 and the virtual address of the referencing object 414. This calculation can be
performed by subtracting the source pointer S from the object pointer P. In the working
example, the calculated offset is 0x20446740 — 0x1C209B70 = 0x0423CBDO0, which
constitutes the self-relative numeric reference. When the calculated offset is negative,
software arithmetic may be employed to ensure that the negative number is in the
proper format for a portable numeric reference. For example, such software arithmetic
would employed in an embodiment wherein negative numeric references are required to
be in two's compiement representation but the underlying hardware employs a different
representation for negative number, for example one’s complement or sign-magnitude.
Finally, an appropriate tag 402, if implemented, is added or logically-ored into the result.

FIG. 4(d) illustrates steps taken to produce a machine pointer P based on a self-
relative numeric reference to object 416. At step 430, the self-relative numeric
reference to object 416 is obtained, typically by reading from a memory address of the

program state, such as from within referencing object 414. When the offset in the

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
27

numeric reference is a negative number, software arithmetic may be employed to
ensure that the negative number is in the proper format for the underlying hardware. In
a working example to illustrate this calculation, a self-relative numeric reference having
a value of 0x0423CBDO is obtained from reading a program state memory location
under control of a memory management component of the run-time environment.

At step 432, a source pointer S containing the virtual address of the referencing
object. Since the self-relative numeric reference is fetched from the referencing object,
the machine pointer for the referencing object 414 is already available, typically in a
high-speed memory such as a register or cache. In the working example, let us assume
that a source pointer S having a virtual address of 0x1C209B70 is determined.

At step 434, the virtual address of the object 416 is obtained by adding the offset
404 stored in the numeric reference 400 to the source address of the referencing object
414. This calculation can be performed by adding the offset 404 to the source pointer
S. An appropriate machine pointer tag 402, if necessary, is added or logically-ored into
the result. In the working example, the virtual address of the object 414 is calculated to

be 0x1C208B70 + 0x0423CBDO = 0x20446740.

SAVING AND LOADING PROGRAM STATE

FIG. 5 is a flowchart illustrating a life cycle of numeric references within a run-
time environment. At step 500, the run-time environment instantiates an object, by
allocating and initializing memory for the object. The run-time environment manipulates
access and updates to the object through a machine pointer.

When a reference to the object is to be stored in another object, the “referencing
object,” the machine pointer is converted into a numeric reference (step 502). This
operation involves calculating an offset (preferably measured in bytes) from the object
to an implied pointer to a predefined location in an area of virtual memory associated

with either the referencing object or the referenced object, depending on the kind of

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
28

numeric reference employed. For example, a base-offset numeric reference specifies
an offset from the beginning of an object memory; a page-offset numeric reference
specifies an offset from the beginning of a page; and a self-relative numeric reference
specifies an offset from the beginning of the referencing object. In other embodiments,
the numeric reference may be relative to the end of the memory area, or to a location at
a fixed displacement from the beginning or end of the memory area, whether interior or
exterior.

At step 504, objects are accessed during run-time by dereferencing the numeric
references. Dereferencing a numeric reference involving generating the implied
machine pointer and adding the offset in the numeric reference. Of the three described
kinds of numeric references, self-relative numeric references exhibit the best
performance, because the implied pointer, the beginning of the referencing object, is
almost always already available. Page-offset numeric references, on the other hand,
exhibit the worst run-time performance because it is necessary to access the page map.

When the program state is to be saved to a secondary storage medium, both the
objects (step 506) and the numeric references contained in the objects (step 508) are
saved. Since numeric references provide an invariant, machine-independent
representation, numeric references saved to secondary storage will take up the same
space as in virtual memory. To the extent that any processing or software arithmetic
needs to occur for saving and loading numerical references, e.g. to handle endianness
or one’s complement architectures, this processing will not require changes to the size
of the numeric references. Therefore, objects (step 510) and numeric references (step
512) can be loaded later in the process or by another processed with little overhead,
and then accessed as any other numeric reference (step 504).

Each of the three described kinds of numeric references exhibit different degrees
of flexibility in saving and loading to and from secondary storage. Page-offset numeric

references are the most flexible because the pages can be relocated anywhere in the

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
29

virtual memory as long as the page map is updated. Base-offset numeric references.
however, are limited to systems capable of allocating contiguous segments of the virtual
memory that are as large as the object memory. Self-relative numeric references,
although implementable on a paged memory system, require that the various pages be
loaded in the same relative locations, which may not always be possible.

Accordingly, there is a trade-off between run-time performance and flexibility in
secondary storage. Of the three types of numeric references described supra, self-
relative numeric references exhibit the best run-time performance and page-offset
numeric references exhibit the most flexible secondary storage properties. Therefore, it
would be desirable to use self-relative numeric references for run-time usage and page-
offset numeric references for secondary storage usage.

In accordance with one embodiment, numeric references are converted into
page-offset numeric reference when saving to the secondary storage (step 508).
Furthermore, run-time numeric references, where possible, are implemented as self-
relative numeric references. More specifically, a numeric reference is instantiated in
step 502 as a self-relative numeric reference and a page-offset numeric reference
loaded from secondary storage in step 512 is converted into a self-relative numeric
reference. This conversion can be eager, at load time, or lazy, at dereference time.
Unlike pointer swizzling, the overhead for convert between numeric reference types is

relatively low, does not violate the invariant format of objects, and be deferred until

necessary.

TAGGED NUMERIC REFERENCES
In some environments, it is necessary for page-offset numeric references and
self-references to co-exist during run-time. For example, a self-relative numeric
reference might be limited to 32 bits and therefore cannot express a reference between

objects that are displaced from each other by more than 2% bytes (four gigabytes),

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
30

which can easily happen on a 64-bit virtual memory system. Consequently, self-relative
numeric references would be used with near objects and page-offset numeric
references would be used with far objects. Since self-relative numeric references and
page-offset numeric references are dereferenced differently and since the performance
of dereferencing self-relative numeric references is critical to the overall performance of
the run-time environment, it is desirable for a cheap way to distinguish between self-
relative numeric references and page-offset numeric references.

According to one embodiment, numeric references are tagged to indicate
whether the numeric references are self-relative numeric references or page-offset
numeric references. In other words, a certain number of bits in a numeric reference, for
example the higher-order bits or lower-order bits, is reserved for distinguishing the
numeric reference format. The information embedded within the numeric reference,
which is likely to be sitting in a fast-access machine register, can therefore be retrieved
very quickly, without requiring additional memory cycles to fetch the header of the
referenced object.

A preferred implementation of numeric reference tagging introduces an alignment
invariant and then exploits the alignment invariant in a run-time environment to encode
the numeric reference format in the lower-order bits. Specifically, objects managed by
the run-time environment are stored at an N-bit aligned address, or, in other words, the
storage for these objects begins at virtual addresses at 2"-byte boundaries. For
example, if the objects can be stored at three-bit aligned addresses, that is, on 2°=8
byte boundaries, a legal start address for such an object might be 0x20446740, but an
address such as 0x20446743 is not a valid start address for the storage of an object.
Consequently, the three least significant bits of the numeric reference do not serve to
differentiate different objects, since only one of the eight values for the three least

significant bits is a legal address and the remaining seven values do not point to any

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
31

other object. Given this alignment restriction, numeric references that resolve to
addresses 0x20446740 through 0x20446747 effectively refer to the same object.

Therefore, any of the N least significant bits of a reference to an N-bit aligned
object can be used as a tag to encode other information, namely the format of the
numeric reference and storage properties of the reference object. For example, tag
values of 0 and 4 may indicate a page-offset numeric reference, while tag values of 3
and 7 indicate a self-relative numeric reference. The remaining portion of the numeric
reference contains the offset for the numeric reference and other information important
for the particular format of the numeric reference, such as the page number.

Reference tagging also allows numeric references to be used in conjunction with
other reference types. For example, an indexed reference is a type of reference that
evaluates to an array entry of one sort of another. Some the non-tag bits of the indexed
reference specify the array and others specific an index into the array. A page-offset
numeric reference may be thought of a hybrid numeric reference and indexed
reference, wherein the page number specifies an index into the page map and the offset
portion specifies a relative location of the object within the page. As mentioned eariier,
some embodiments restrict the use of numeric references for encoding references
between objects in the same object memory; accordingly, indexed references provide a

mechanism for supporting references between objects of different object memories.

Numeric references therefore encode references between objects an invariant
format that is both efficient for run-time usage and flexible for machine-independent
secondary storage. Since numeric references encode a reference as an integral offset
from an implied machine pointer, numeric references can easily between converted into
and from machine pointers, without requiring expensive lookups into associative data

structure as in pointer swizzling. Moreover, page-offset numeric references provide a

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
32

systematic approach for managing memory for large objects, allowing the large objects
to be broken up into non-contiguous pages in a manner transparent to the user code.
While this invention has been described in connection with what is presently
considered to be the most practical and preferred embodiment, it is to be understood
that the invention is not limited to the disclosed embodiment, but on the contrary, is
intended to cover various modifications and equivalent arrangements included within

the spirit and scope of the appended claims.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
33

CLAIMS

WHAT IS CLAIMED IS:

1. A method of managing memory for a run-time environment, comprising the
computer-implemented steps of:
storing a plurality of objects in a virtual memory;
storing references between the objects as numeric references in the virtual memory,
wherein a numeric references includes an offset from a virtual memory address;
and
storing the objects and the references in a numeric reference format in a secondary

storage that is not part of the virtual memory.

2. The method of claim 1, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing objects instantiated by a first process executing on a first processor in a
virtual memory accessible to the first process; and

the step of storing the objects in a secondary storage includes the step of storing the
objects in a secondary storage loadable without swizzling by a second process

executing on a second processor that is incompatible with the first processor.

3. The method of claim 1, further comprising the computer-implemented step of
generating the numeric references by calculating pointer differences between
addresses of the objects and machine pointers at predetermined locations relative to

regions of the virtual memory in which the objects are located.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
34

4. The method of claim 3, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing the objects within a contiguous memory segment;

the step of storing references between the objects in a numeric reference format in

the virtual memory includes the step of storing the references as base-offset

numeric references.

5. The method of claim 4, wherein the step of generating the numeric references as
unpaged base-offset numeric references includes the step of determining pointer
differences between addresses of the objects and a beginning of the contiguous

memory segment to produce the base-offset numeric references.

6. The method of claim 3, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing the objects within a plurality of non-contiguous pages; and

the step of storing references between the objects as numeric references in the

virtual memory includes the step of storing the references as page-offset numeric

references.

7. The method of claim 6, wherein the step of determining pointer differences
includes the step of determining pointer differences between addresses of the objects

and a beginning of a page storing the objects to produce the page-offset numeric

references.

8. The method of claim 3, wherein the step of determining pointer differences
includes the step of determining pointer differences between addresses of referenced

objects and a beginning of referencing objects.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
35

9. The method of claim 3, wherein the step of storing the references as any of base-
offset numeric references, page-offset numeric references, and self-relative numeric
references includes storing a tag value in tag portion of a numeric reference, said tag

value indicating whether the numeric reference is a self-relative reference.

10. The method of claim 1, wherein:
the step of storing references between the objects as numeric references in the

virtual memory includes the step of storing the references between the objects as

self-relative numeric references in the virtual memory; and
the step of storing the references in a numeric reference format in a secondary

storage includes storing the references in a page-offset numeric reference

format.

11. A method of managing memory in a run-time environment, comprising the
computer-implemented steps of:
loading a plurality of objects into a virtual memory from a secondary storage that is
not part of the virtual memory;
loading references between the objects as numeric references from the secondary
storage into the virtual memory; and
dereferencing one of the numeric references by adding, to a machine pointer, an

offset contained within the one of the numeric references.
12. The method of claim 11, wherein:

the step of loading a plurality of objects into a virtual memory includes the step of

loading the object into a contiguous memory segment; and

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
36

the step of dereferencing one of the numeric references includes the step of adding
the offset to a machine pointer holding the address of a beginning of the

contiguous memory segment.

13. The method of claim 11, wherein
the step of loading a plurality of objects into a virtual memory inciudes the steps of:
loading the objects into a plurality of non-contiguous pages, and
updating a page map containing a plurality of page pointers holding addresses of
a beginning of corresponding said pages; and |
the step of dereferencing one of the numeric references includes the steps of:

fetching a page pointer from the page map based on a page number contained

within the one of references, and

adding the offset to the page pointer.

14. The method of claim 11, wherein:

the step of loading references between the objects as numeric references into the
virtual memory includes the step of converting base-offset numeric references
into self-relative numeric references; and

the step of dereferencing one of the numeric references includes the step of adding

the offset to a machine pointer holding the address of a beginning of an object

containing the one of the numeric references.

15. The method of claim 11, wherein the step of loading references between the
objects as numeric references from a secondary storage into the virtual memory
includes the steps of:

loading the references between the objects as page-offset numeric references from

a secondary storage;

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
37

converting the page-offset numeric references into self-relative numeric references:

and

storing the self-relative references in the virtual memory.

16. A computer-readable medium bearing instructions for managing memory for a
run-time environment, said instructions arranged, when executed, for causing one or
more processors to perform the steps of:

storing a plurality of objects in a virtual memory;

storing references between the objects as numeric references in the virtual memory,

wherein a numeric references includes an offset from a virtual memory address:

and

storing the objects and the references in a numeric reference format in a secondary

storage that is not part of the virtual memory.

17. The computer-readable medium of claim 16, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing objects instantiated by a first process executing on a first processor in a
virtual memory accessible to the first process; and

the step of storing the objects in a secondary storage includes the step of storing the
objects in a secondary storage loadable without swizzling by a second process

executing on a second processor that is incompatible with the first processor.

18. The computer-readable medium of claim 16, wherein said instructions are
further arranged to cause said one or more processors to perform the step of generating
the numeric references by calculating pointer differences between addresses of the

objects and machine pointers at predetermined locations relative to regions of the virtual

memory in which the objects are located.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
38

19. The computer-readable medium of claim 18, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing the objects within a contiguous memory segment;

the step of storing references between the objects in a numeric reference format in

the virtual memory includes the step of storing the references as base-offset

numeric references.

20. The computer-readable medium of claim 19, wherein the step of generating the
numeric references as unpaged base-offset numeric references inciudes the step of
determining pointer differences between addresses of the objects and a beginning of

the contiguous memory segment to produce the base-offset numeric references.

21. The computer-readable medium of claim 18, wherein:

the step of storing a plurality of objects in a virtual memory includes the step of
storing the objects within a plurality of non-contiguous pages; and

the step of storing references between the objects as numeric references in the

virtual memory includes the step of storing the references as page-offset numeric

references.

22. The computer-readable medium of claim 21, wherein the step of determining
pointer differences includes the step of determining pointer differences between

addresses of the objects and a beginning of a page storing the objects to produce the

page-offset numeric references.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
39

23. The computer-readable medium of claim 18, wherein the step of determining
pointer differences includes the step of determining pointer differences between

addresses of referenced objects and a beginning of referencing objects.

24. The computer-readable medium of claim 18, wherein the step of storing the
references as any of base-offset numeric references, page-offset numeric references,

and self-relative numeric references includes storing a tag value in tag portion of a

numeric reference, said tag value indicating whether the numeric reference is a self-

relative reference.

25. The computer-readable medium of claim 16, wherein:

the step of storing references between the objects as numeric references in the
virtual memory includes the step of storing the references between the objects as
self-relative numeric references in the virtual memory; and

the step of storing the references in a numeric reference format in a secondary

storage includes storing the references in a page-offset numeric reference

format.

26. A computer-readable medium bearing instructions for managing memory in a
run-time environment, said instructions arranged, when executed, to cause one or more
processors to perform the steps of:

loading a plurality of objects into a virtual memory from a secondary storage that is

not part of the virtual memory;

loading references between the objects as numeric references from the secondary

storage into the virtual memory; and

dereferencing one of the numeric references by adding, to a machine pointer, an

offset contained within the one of the numeric references.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
40

27. The computer-readable medium of claim 26, wherein:

the step of loading a plurality of objects into a virtual memory includes the step of
loading the object into a contiguous memory segment: and

the step of dereferencing one of the numeric references includes the step of adding
the offset to a machine pointer holding the address of a beginning of the

contiguous memory segment.

28. The computer-readable medium of claim 26, wherein
the step of loading a plurality of objects into a virtual memory includes the steps of:
loading the objects into a plurality of non-contiguous pages, and
updating a page map containing a plurality of page pointers holding addresses of
a beginning of corresponding said pages; and
the step of dereferencing one of the numeric references includes the steps of:

fetching a page pointer from the page map based on a page number contained
within the one of references, and

adding the offset to the page pointer.

29. The computer-readable medium of claim 26, wherein:

the step of loading references between the objects as numeric references into the
virtual memory includes the step of converting base-offset numeric references
into self-relative numeric references: and

the step of dereferencing one of the numeric references includes the step of adding
the offset to a machine pointer holding the address of a beginning of an object

containing the one of the numeric references.

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434
41

30. The computer-readable medium of claim 26, wherein the step of loading

references between the objects as numeric references from a secondary storage into

the virtual memory includes the steps of:

loading the references between the objects as page-offset numeric references from

a secondary storage;

converting the page-offset numeric references into self-relative numeric references;

and

storing the self-relative references in the virtual memory.

SUBSTITUTE SHEET (RULE 26)

PCT/US00/03434

WO 00/48077

1/5

vl
1SOH
0 joor
144} N 5 81 — —
N i) 701
MIOMIAN }= > JOVREIN
o1/ TOREN |\oilvoiNnoo| | H0SS300%d 408S3004d
“ A A A
I i
m Y Y Y
! m sndg
n_m_ m 7 ¥ \ A
LINYINI
i 1 ! 1
8zl “ 0Ll p— 901
— | | 30M0 o PEN
. Ot “ 39VHOLS NIV
yangas |

91l
TO¥INOD
d0SdNnd

A

(223

301A30 LNdNI

{1
AY1dSId

SUBSTITUTE SHEET (RULE 26)

WO 00/48077

2/5

PCT/US00/03434

3 00 0
1 32 0 %200
OFFSET TAG }
204 202
FIG. 2A
VM B P
21& \ 4 Y)
WG A i
SEGMENTZ OBJECT’ SEGMENT”
212 216 214
FIG. 2B
220 230
N N
NUMERIC REFERENCE
/ POINTER P TO OBJECT / / prhiphvin /
292 232
A Y
DETERMINE DETERMINE
BASE POINTER B BASE POINTER B
224 234
A 4 Y
/ OFFSET=P-B / / P =B+ OFFSET /
FIG. 2C FIG. 2D

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

3/5
3 11 0 0
1 21 320 1300
PAGE OFFSET | TAG
306 04 302
FIG. 3A
; PAGE
> - MAP 314
| l”.
M il
31&. Y "/V V/ "7/ V/
D7/ & //////// D7
PAGE” PAGE PAGE PAGE
312 OBJECT '315¢ PAGE
a 312b 36 312¢ 3124 312e
FIG. 3B
320 330
NUMERIC REFERENCE
/ POINTER P T0 OBLECT / / ERICREFERE /
322 332
Y \
DETERMINE DETERMINE
PAGE POINTER PP PAGE POINTER PP
324 334
i | \ Y
DETERMINE PAGE;]
/ OFFSET=P - PP / / P=PP+ OFFSET /
FIG. 3C FIG. 3D

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

4/5
3 0 0
1 320 b400
OFFSET TAG
404 402
FIG. 4A
M S P
41& | Y
/ 4 /
0 Y /
AN PAGE” -
PAGE OBJECT Mde OBJECT
412a 414 416
FIG. 4B
420 430
NUMERIC REFERENCE
/ POINTER P TO OBJECT / / WITH OoraEs /
422 | 432
Y A 4
DETERMINE DETERMINE
SOURCE POINTER S SOURCE POINTER S
424 434
Y A 4
/ OFFSET=P-S / / P =S+ OFFSET /
FIG. 4C FIG. 4D

SUBSTITUTE SHEET (RULE 26)

WO 00/48077 PCT/US00/03434

5/5
500 Y
N INSTANTIATE 510\] LOAD
OBJECT OBJECT

Y Y

502\ INSTANTTE | 54 [LOAD

NUMERIC NUMERIC
REFERENCE REFERENCE
Y
504~ ACCESS OBJECTS DURING RUN TIME

A\

506~ sAvE
OBJECT

\

508~ | SAVE
NUMERIC
REFERENCE

BY DEREFERENCING NUMERIC REFERENCES E

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte ional Application No

PCT/US 00/03434

A. CLASSIFICATION OF SIBJECT MATTER
IPC 7 GO6F12/10 GO6F9/44

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fieids searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search temms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages ‘ Relevant to claim No.
X WILSON P R: "POINTER SWIZZLING AT PAGE 1,11,13,
FAULT TIME: EFFICIENTLY SUPPORTING HUGE 16,26,28

ADDRESS SPACES ON STANDARD HARDWARE"
COMPUTER ARCHITECTURE NEWS,US,ASSOCIATION
FOR COMPUTING MACHINERY, NEW YORK,

vol. 19, no. 4, 1 June 1991 (1991-06-01),

pages 6-13, XP000228934
ISSN: 0163-5964

page 7, left-hand column, line 43 -page
11, left-hand column, line 8

Y

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A® document defining the general state of the art which is not
considered to be of particular relevance

"E" eariier document but published on or after the intemational
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disciosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priority date ciaimed

“T* later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undedying the

invention

“X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

in the art.

*&" document member of the same patent family

Date of the actual completion of the intemational search Date of mailing of the intemationat search report
31 May 2000 09/06/2000
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl, :
Fax: (+31-70) 340-3016 Nielsen, 0

Form PCT/ISA/210 (second sheet) (July 1892)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Imt ational Application No

PCT/US 00/03434

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A MOSS J E B: "WORKING WITH PERSISTENT
OBJECTS: TO SWIZZLE OR NOT TO SWIZZLE"
TIEEE TRANSACTIONS ON SOFTWARE
ENGINEERING,US,IEEE INC. NEW YORK,

vol. 18, no. 8,

1 August 1992 (1992-08-01), pages 657-673,
XP000343278

ISSN: 0098-5589
page 659, left-hand column, line 28 -page
660, right-hand column, 1ine 30
A US 5 426 747 A (HARADHVALA SAM J ET AL)
20 June 1995 (1995-06-20)
column 2, line 23 -column 5, line 2
A EP 0 700 000 A (IBM)
6 March 1996 (1996-03-06)
column 4, line 5 - line 33

1,11,16,
26

1,11,16,
26

1,11,16,
26

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inte

ional Application No

iiomation en patent family members PCT/US 00/03434
Patent document Publication Patent family Publication

cited in search report date member(s) date
US 5426747 A 20-06-1995 us 5649139 A 15-07-1997
EP 0700000 A 06-03-1996 us 5581765 A 03-12-1996
CA 2153442 A 01-03-1996
JP 2986075 B 06-12-1999
JP 8077023 A 22-03-1996

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

