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ADAPTIVE INITIAL PROGRAM VOLTAGE FOR NON-VOLATILE
MEMORY

BACKGROUND OF THE INVENTION

Field

[0001] The present invention relates to non-volatile storage.

Description of the Related Art

[0002] Semiconductor memory devices have become more popular for
use in various electronic devices. For example, non-volatile semiconductor
memory is used in cellular telephones, digital cameras, personal digital
assistants, mobile computing devices, non-mobile computing devices and other
devices. Electrical Erasable Programmable Read Only Memory (EEPROM)
and flash memory are among the most popular non-volatile semiconductor

memories.

[0003] Both EEPROM and flash memory utilize a floating gate that is
positioned above and insulated from a channel region in a semiconductor
substrate. The floating gate is positioned between source and drain regions. A
control gate is provided over and insulated from the floating gate. The
threshold voltage of the transistor is controlled by the amount of charge that is
retained on the floating gate. That is, the minimum amount of voltage that
must be applied to the control gate before the transistor is turned on to permit
conduction between its source and drain is controlled by the level of charge on

the floating gate.

[0004] When programming an EEPROM or flash memory device,
typically a program voltage is applied to the control gate and the bit line is

grounded. Electrons from the channel are injected into the floating gate.
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When electrons accumulate in the floating gate, the floating gate becomes
negatively charged and the threshold voltage of the memory cell is raised so
that the memory cell is in the programmed state. More information about
programming can be found in U.S. Patent 6,859,397, titled “Source Side Self
Boosting Technique For Non-Volatile Memory;” and in U.S. Patent 6,917,542,
titled “Detecting Over Programmed Memory,” both patents are incorporated

herein by reference in their entirety.

[0005] Some EEPROM and flash memory devices have a floating gate
that is used to store two ranges of charges and, therefore, the memory cell can
be programmed/erased between two states, an erased state and a programmed
state that correspond to data “1” and data “0.” Such a device is referred to as a

binary device.

[0006] A multi-state flash memory cell is implemented by identifying
multiple, distinct allowed threshold voltage ranges. Each distinct threshold
voltage range corresponds to a predetermined value for the set of data bits.
The specific relationship between the data programmed into the memory cell
and the threshold voltage ranges of the cell depends upon the data encoding
scheme adopted for the memory cells. For example, U.S. Patent No. 6,222,762
and U.S. Patent Application Publication No. 2004/0255090, both of which are
incorporated herein by reference in their entirety, describe various data

encoding schemes for multi-state flash memory cells.

[0007] In some embodiments, the program voltage applied to the control
gate includes a series of pulses that are increased in magnitude with each
successive pulse by a predetermined step size (e.g. 0.2v, 0.3v, 0.4v, or others).
The choice of the magnitude of program voltage is a compromise. Too high of
a magnitude will result in some memory cells being over-programmed, while
too low of a magnitude will result in longer programming times. Typically,

users of non-volatile memory desire that the memory program quickly.
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[0008] In the prior art devices, the same program signal is used for new
devices that have not been significantly used (also called fresh devices) and
heavily used devices. However, as a non-volatile memory device undergoes
many programming cycles, charge becomes trapped in the insulation between
the floating gate and the channel region. This trapping of charge shifts the
threshold voltage to a higher level, which allows the memory cell to program
more quickly. The program voltage at a given magnitude may not over-
program a fresh device; however, that same magnitude may over-program a
device that has been heavily used. Thus, new devices will have their program
voltage set low enough to avoid over programming when the device is older.
This lowering of the magnitude of the program voltage will reduce the speed at

which the fresh device programs data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1 is a top view of a NAND string.
[0010] Figure 2 is an equivalent circuit diagram of the NAND string.
[0011] Figure 3 is a block diagram of a non-volatile memory system.

[0012] Figure 4 is a block diagram depicting one embodiment of a

memory array.

[0013] Figure 5 is a block diagram depicting one embodiment of a sense

block.

[0014] Figure 6 depicts an example set of threshold voltage distributions

and depicts an example programming process.

[0015] Figure 7 depicts an example set of threshold voltage distributions

and depicts an example programming process.
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[0016] Figures 8A-8C depict examples of threshold voltage distributions

and an example programming process.

[0017] Figure 9A is a table the depicts one example order of programming
pages of data in a block.

[0018] Figure 9B is a flow chart describing one example order of

programming pages of data in a block.

[0019] Figure 10 is a flow chart describing one embodiment of a process

for operating non-volatile storage.

[0020] Figure 11 is a flow chart describing one embodiment of a process

for programming non-volatile storage.

[0021] Figure 12 is a flow chart describing one embodiment of a process

for programming memory cells in a block.

[0022] Figure 13 is a flow chart describing one embodiment of a process

for programming memory cells connected to a word line.
[0023] Figure 14 depicts an example set of programming pulses.

[0024] Figure 15 is an example table used to dynamically determine a

magnitude of an initial program pulse.

[0025] Figure 16 is an example table used to dynamically determine a

magnitude of an initial program pulse.

[0026] Figure 17 is a table that depicts one example of using the table of
Figure 15.
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DETAILED DESCRIPTION

[0027] The technology described herein attempts to increase the speed of
programming while reducing the risk of over-programming by dynamically
adjusting the magnitude of the initial programming pulse. When programming
a set of non-volatile storage elements using a multi-stage programming
process, a scries of programming pulses are used for cach stage. The
magnitude of the initial program pulse for the current stage being performed is
dynamically set as a function of the number of program pulses used for the
same stage of the multi-stage programming process when programming non-
volatile storage clements connected to one or more previously programmed

word lines.

[0028] One example of a flash memory system uses the NAND structure,
which includes arranging multiple transistors in series, sandwiched between
two select gates. The transistors in series and the select gates are referred to as
a NAND string. Figure 1 is a top view showing one NAND string. Figure 2 is
an equivalent circuit thereof. The NAND string depicted in Figures 1 and 2
includes four transistors 100, 102, 104 and 106 in series and sandwiched
between a first (drain side) select gate 120 and a second (source side) select
gate 122. Select gate 120 connects the NAND string to a bit line via bit line
contact 126. Select gate 122 connects the NAND string to source line 128.
Select gate 120 is controlled by applying the appropriate voltages to select line
SGD. Select gate 122 is controlled by applying the appropriate voltages to
select line SGS. Each of the transistors 100, 102, 104 and 106 has a control
gate and a floating gate. For example, transistor 100 has control gate 100CG
and floating gate 100FG. Transistor 102 includes control gate 102CG and a
floating gate 102FG. Transistor 104 includes control gate 104CG and floating
gate 104FG. Transistor 106 includes a control gate 106CG and a floating gate
106FG. Control gate 100CG is connected to word line WL3, control gate
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102CG is connected to word line WL2, control gate 104CG is connected to
word line WL1, and control gate 106CG is connected to word line WLO.

[0029] Note that although Figures 1 and 2 show four memory cells in the
NAND string, the use of four memory cells is only provided as an example. A
NAND string can have less than four memory cells or more than four memory
cells. For example, some NAND strings will include eight memory cells, 16
memory cells, 32 memory cells, 64 memory cells, 128 memory cells, etc. The
discussion herein is not limited to any particular number of memory cells in a
NAND string. One embodiment uses NAND strings with 66 memory cells,
where 64 memory cells are used to store data and two of the memory cells are

referred to as dummy memory cells because they do not store data.

[0030] A typical architecture for a flash memory system using a NAND
structure will include several NAND strings. Each NAND string is connected
to the common source line by its source select gate controlled by select line
SGS and connected to its associated bit line by its drain select gate controlled
by select line SGD. Each bit line and the respective NAND string(s) that are
connected to that bit line via a bit line contact comprise the columns of the
array of memory cells. Bit lines are shared with multiple NAND strings.
Typically, the bit line runs on top of the NAND strings in a direction

perpendicular to the word lines and is connected to a sense amplifier.

[0031] Relevant examples of NAND type flash memories and their
operation are provided in the following U.S. Patents/Patent Applications, all of
which are incorporated herein by reference: U.S. Pat. No. 5,570,315; U.S. Pat.
No. 5,774,397; U.S. Pat. No. 6,046,935; U.S. Pat. No. 6,456,528; and U.S.
Pat. Publication No. US2003/0002348.

[0032] Other types of non-volatile storage devices, in addition to NAND
flash memory, can also be used. For example, non-volatile memory devices

are also manufactured from memory cells that use a dielectric layer for storing
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charge. Instead of the conductive floating gate elements described earlier, a
dielectric layer is used. Such memory devices utilizing diclectric storage
element have been described by Eitan et al., “NROM: A Novel Localized
Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol.
21, no. 11, November 2000, pp. 543-545. An ONO dielectric layer extends
across the channel between source and drain diffusions. The charge for one
data bit is localized in the dielectric layer adjacent to the drain, and the charge
for the other data bit is localized in the dielectric layer adjacent to the source.
United States patents Nos. 5,768,192 and 6,011,725 disclose a non-volatile
memory cell having a trapping dielectric sandwiched between two silicon
dioxide layers. Multi-state data storage is implemented by separately reading
the binary states of the spatially separated charge storage regions within the
dielectric. Non-volatile storage based on MONOS or TANOS types of
structures or nanocrystals can also be used. Other types of non-volatile storage

can also be used.

[0033] Figure 3 illustrates a memory device 210 having read/write circuits
for reading and programming a page (or other unit) of memory cells (e.g.,
NAND multi-state flash memory) in parallel. Memory device 210 may include
one or more memory die or chips 212. Memory die 212 includes an array (two-
dimensional or three dimensional) of memory cells 200, control circuitry 220,
and read/write circuits 230A and 230B. In one embodiment, access to the
memory array 200 by the various peripheral circuits is implemented in a
symmetric fashion, on opposite sides of the array, so that the densities of
access lines and circuitry on each side are reduced by half. The read/write
circuits 230A and 230B include multiple sense blocks 300 which allow a page
of memory cells to be read or programmed in parallel. The memory array 200
is addressable by word lines via row decoders 240A and 240B and by bit lines
via column decoders 242A and 242B. Word lines and bit lines are examples of

control lines. In a typical embodiment, a Controller 244 is included in the
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same memory device 210 (e.g., a removable storage card or package) as the
one or more memory die 212. Commands and data are transferred between the
host and Controller 244 via lines 232 and between the Controller 244 and the
one or more memory die 212 via lines 234. In one embodiment, Controller
244 includes a data storage (Controller memory), a memory interface for
interfacing with the memory chip/die and one or more processes in

communication with the data storage and memory interface.

[0034] Control circuitry 220 cooperates with the read/write circuits 230A
and 230B to perform memory operations on the memory array 200. The
control circuitry 220 includes a state machine 222, an on-chip address decoder
224, and a power control module 226. The state machine 222 provides chip-
level control of memory operations. The on-chip address decoder 224 provides
an address interface between that used by the host or a memory controller to
the hardware address used by the decoders 240A, 240B, 242A, and 242B. The
power control module 226 controls the power and voltages supplied to the
word lines and bit lines during memory operations. In one embodiment, power
control module 226 includes one or more charge pumps that can create
voltages larger than the supply voltage. Control circuitry 220 provides address
lines ADDR to row decoders 240A and 204B, as well as column decoders
242A and 242B. Column decoders 242 A and 242B provide data to controller
244 via the signal lines marked Data /0.

[0035] In one embodiment, one or any combination of control circuitry
220, power control circuit 226, decoder circuit 224, state machine circuit 222,
decoder circuit 242A, decoder circuit 242B, decoder circuit 240A, decoder
circuit 240B, read/write circuits 230A, read/write circuits 230B, and/or
controller 244 can be referred to as one or more managing circuits. The one or

more managing circuits perform the processes described herein.
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[0036] Figure 4 depicts an exemplary structure of memory cell array 200.
In one embodiment, the array of memory cells is divided into a large number
of blocks (e.g., blocks 0 — 1023, or another amount of blocks) of memory cells.
As is common for flash memory systems, the block is the unit of erase. That is,
cach block contains the minimum number of memory cells that are erased

together. Other units of erase can also be used.

[0037] A Dblock contains a set of NAND stings which are accessed via bit
lines (e.g., bit lines BLO — BL69,623) and word lines (WLO, WLI1, WL2,
WL3). Figure 4 shows four memory cells connected in series to form a NAND
string. Although four cells are shown to be included in each NAND string,
more or less than four can be used (e.g., 16, 32, 64, 128 or another number or
memory cells can be on a NAND string). One terminal of the NAND string is
connected to a corresponding bit line via a drain select gate (connected to
select gate drain line SGD), and another terminal is connected to the source

line via a source select gate (connected to select gate source line SGS).

[0038] Each block is typically divided into a number of pages. In one
embodiment, a page is a unit of programming. Other units of programming
can also be used. One or more pages of data are typically stored in one row of
memory cells. For example, one or more pages of data may be stored in
memory cells connected to a common word line. A page can store one or more
sectors. A sector includes user data and overhead data (also called system
data). Overhead data typically includes header information and Error
Correction Codes (ECC) that have been calculated from the user data of the
sector. The controller (or other component) calculates the ECC when data is
being programmed into the array, and also checks it when data is being read
from the array. Alternatively, the ECCs and/or other overhead data are stored
in different pages, or even different blocks, than the user data to which they
pertain. A sector of user data is typically 512 bytes, corresponding to the size

of a sector in magnetic disk drives. A large number of pages form a block,



WO 2014/120943 PCT/US2014/013889

-10-

anywhere from 8 pages, for example, up to 32, 64, 128 or more pages.
Different sized blocks, pages and sectors can also be used. Additionally, a

block can have more or less than 69,624 bit lines.

[0039] Figure 5 is a block diagram of an individual sense block 300
partitioned into a core portion, referred to as a sense module 480, and a
common portion 490. In one embodiment, there will be a separate sense
module 480 for each bit line and one common portion 490 for a set of multiple
sense modules 480. In one example, a sense block will include one common
portion 490 and eight sense modules 480. Each of the sense modules in a group
will communicate with the associated common portion via a data bus 472. One
example can be found in U.S. Patent Application Publication 2006/0140007,

which is incorporated herein by reference in its entirety.

[0040] Sense module 480 comprises sense circuitry 470 that determines
whether a conduction current in a connected bit line is above or below a
predetermined level. In some embodiments, sense module 480 includes a
circuit commonly referred to as a sense amplifier. Sense module 480 also
includes a bit line latch 482 that is used to set a voltage condition on the
connected bit line. For example, a predetermined state latched in bit line latch
482 will result in the connected bit line being pulled to a state designating
program inhibit (e.g., Vdd) in order to lock out memory cells from

programming.

[0041] Common portion 490 comprises a processor 492, a set of data
latches 494 and an 1/0O Interface 496 coupled between the set of data latches
494 and data bus 420. Processor 492 performs computations. For example, one
of its functions is to determine the data stored in the sensed memory cell and
store the determined data in the set of data latches. The set of data latches 494
is used to store data bits determined by processor 492 during a read operation.

It is also used to store data bits imported from the data bus 420 during a
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program operation. The imported data bits represent write data meant to be
programmed into the memory. I/O interface 496 provides an interface between

data latches 494 and the data bus 420.

[0042] During read or sensing, the operation of the system is under the
control of state machine 222 that controls (using power control 226) the supply
of different control gate voltages to the addressed memory cell(s). As it steps
through the various predefined control gate voltages corresponding to the
various memory states supported by the memory, the sense module 480 may
trip at one of these voltages and an output will be provided from sense module
480 to processor 492 via bus 472. At that point, processor 492 determines the
resultant memory state by consideration of the tripping event(s) of the sense
module and the information about the applied control gate voltage from the
state machine via input lines 493. It then computes a binary encoding for the
memory state and stores the resultant data bits into data latches 494. In another
embodiment of the core portion, bit line latch 482 serves double duty, both as a
latch for latching the output of the sense module 480 and also as a bit line latch

as described above.

[0043] It is anticipated that some implementations will include multiple
processors 492, In one embodiment, each processor 492 will include an output
line (not depicted in Fig. 5) such that each of the output lines is wired-OR’d
together. In some embodiments, the output lines are inverted prior to being
connected to the wired-OR line. This configuration enables a quick
determination during the program verification process of when the
programming process has completed because the state machine receiving the
wired-OR line can determine when all bits being programmed have reached the
desired level. For example, when each bit has reached its desired level, a logic
zero for that bit will be sent to the wired-OR line (or a data one is inverted).
When all bits output a data 0 (or a data one inverted), then the state machine

knows to terminate the programming process. In embodiments where each
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processor communicates with eight sense modules, the state machine may (in
some embodiments) need to read the wired-OR line eight times, or logic is
added to processor 492 to accumulate the results of the associated bit lines

such that the state machine need only read the wired-OR line one time.

[0044] Data latch stack 494 contains a stack of data latches corresponding
to the sense module. In one embodiment, there are three (or four or another
number) data latches per sense module 480. In one embodiment, the latches

are each one bit.

[0045] During program or verify, the data to be programmed is stored in
the set of data latches 494 from the data bus 420. During the verify process,
Processor 492 monitors the verified memory state relative to the desired
memory state. When the two are in agreement, processor 492 sets the bit line
latch 482 so as to cause the bit line to be pulled to a state designating program
inhibit. This inhibits the memory cell coupled to the bit line from further
programming even if it is subjected to programming pulses on its control gate.
In other embodiments the processor initially loads the bit line latch 482 and the

sense circuitry sets it to an inhibit value during the verify process.

[0046] In some implementations (but not required), the data latches are
implemented as a shift register so that the parallel data stored therein is
converted to serial data for data bus 420, and vice versa. In one preferred
embodiment, all the data latches corresponding to the read/write block of
memory cells can be linked together to form a block shift register so that a
block of data can be input or output by serial transfer. In particular, the bank of
read/write modules is adapted so that each of its set of data latches will shift
data in to or out of the data bus in sequence as if they are part of a shift register

for the entire read/write block.

[0047] Additional information about the sensing operations and sense

amplifiers can be found in (1) United States Patent Application Pub. No.
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2004/0057287, “Non-Volatile Memory And Method With Reduced Source
Line Bias Errors,” published on March 25, 2004; (2) United States Patent
Application Pub No. 2004/0109357, “Non-Volatile Memory And Method with
Improved Sensing,” published on June 10, 2004; (3) U.S. Patent Application
Pub. No. 20050169082; (4) U.S. Patent Publication 2006/0221692, titled
“Compensating for Coupling During Read Operations of Non-Volatile
Memory,” Inventor Jian Chen, filed on April 5, 2005; and (5) U.S. Patent
Application Publication No. 2006/0158947, titled “Reference Sense Amplifier
For Non-Volatile Memory,” Inventors Siu Lung Chan and Raul-Adrian
Cernea, filed on December 28, 2005. All five of the immediately above-listed

patent documents are incorporated herein by reference in their entirety.

[0048] At the end of a successful programming process (with
verification), the threshold voltages of the memory cells should be within one
or more distributions of threshold voltages for programmed memory cells or
within a distribution of threshold voltages for erased memory cells, as
appropriate.  Figure 6 illustrates example threshold voltage distributions
(corresponding to data states) for the memory cell array when each memory
cell stores two bits of data. Other embodiments, however, may use more or
less than two bits of data per memory cell (e.g., such as three, or four or more

bits of data per memory cell).

[0049] Figure 6 shows a first threshold voltage distribution E for erased
memory cells. Three threshold voltage distributions, A, B and C for
programmed memory cells are also depicted. In one embodiment, the threshold
voltages in the E distribution are negative and the threshold voltages in the A,
B and C distributions are positive. Each distinct threshold voltage distribution
of Figure 6 corresponds to predetermined values for the set of data bits. The
specific relationship between the data programmed into the memory cell and
the threshold voltage levels of the cell depends upon the data encoding scheme

adopted for the cells. For example, U.S. Patent No. 6,222,762 and U.S. Patent
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Application Publication No. 2004/0255090, both of which are incorporated
herein by reference in their entirety, describe various data encoding schemes
for multi-state flash memory cells. In one embodiment, data values are
assigned to the threshold voltage ranges using a Gray code assignment so that
if the threshold voltage of a floating gate erroneously shifts to its neighboring
physical state, only one bit will be affected. One example assigns “11” to
threshold voltage range E (state E), “10” to threshold voltage range A (state
A), “00” to threshold voltage range B (state B) and “01” to threshold voltage
range C (state C). However, in other embodiments, Gray code is not used.
Although Figure 6 shows four states, the present invention can also be used
with other multi-state structures including those that include more or less than

four states.

[0050] Figure 6 also shows three read reference voltages, Vra, Vrb and
Vrc, for reading data from memory cells. By testing whether the threshold
voltage of a given memory cell is above or below Vra, Vrb and Vrc, the system
can determine what state the memory cell is in. Figure 6 also shows three
verify reference voltages, Vva, Vvb and Vvc. When programming memory
cells to state A, the system will test whether those memory cells have a
threshold voltage greater than or equal to Vva. When programming memory
cells to state B, the system will test whether the memory cells have threshold
voltages greater than or equal to Vvb. When programming memory cells to
state C, the system will determine whether memory cells have their threshold

voltage greater than or equal to Vvc.

[0051] In one embodiment, known as full sequence programming,
memory cells can be programmed from the erase state E directly to any of the
programmed states A, B or C. For example, a population of memory cells to be
programmed may first be erased so that all memory cells in the population are
in erased state E. Then, a programming process is used to program memory

cells directly into states A, B or C. While some memory cells are being
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programmed from state E to state A, other memory cells are being

programmed from state E to state B and/or from state E to state C.

[0052] Figure 7 illustrates one example of a two-stage technique of
programming a multi-state memory cell that stores data for two different
pages: a lower page and an upper page. Four states are depicted: state E (11),
state A (10), state B (00) and state C (01). For state E, both pages store a “1.”
For state A, the lower page stores a “0” and the upper page stores a “1.” For
state B, both pages store “0.” For state C, the lower page stores “1” and the
upper page stores “0.” Note that although specific bit patterns have been
assigned to each of the states, different bit patterns may also be assigned. In a
first programming stage, the memory cells’ threshold voltages levels are set
according to the bit to be programmed into the lower logical page. If that bit is
a logic “1,” the threshold voltage is not changed since the respective memory
cell is in the appropriate state as a result of having been earlier erased.
However, if the bit to be programmed is a logic “0,” the threshold level of the
cell is increased to be state A, as shown by arrow 504. That concludes the first

programming stage.

[0053] In a second programming stage, the memory cell’s threshold
voltage level is set according to the bit being programmed into the upper
logical page. If the upper logical page bit is to store a logic “1,” then no
programming occurs since the memory cell is in one of states E or A,
depending upon the programming of the lower page bit, both of which carry an
upper page bit of “1.” If the upper page bit is to be a logic “0,” then the
threshold voltage is shifted. If the first stage resulted in the memory cell
remaining in the erased state E, then in the second stage the memory cell is
programmed so that the threshold voltage is increased to be within state C, as
depicted by arrow 502. If the memory cell had been programmed into state A
as a result of the first programming stage, then the memory cell is further

programmed in the second stage so that the threshold voltage is increased to be
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within state B, as depicted by arrow 506. The result of the second stage is to
program the memory cell into the state designated to store a logic “0” for the

upper page without changing the data for the lower page.

[0054] In one embodiment, a system can be set up to perform full
sequence writing if enough data is written to fill up an entire page. If not
enough data is written for a full page, then the programming process can
program the lower page programming with the data received. When
subsequent data is received, the system will then program the upper page. In
yet another embodiment, the system can start writing in the mode that
programs the lower page and convert to full sequence programming mode if
enough data is subsequently received to fill up an entire (or most of a) word
line’s memory cells. More details of such an embodiment are disclosed in U.S.
Patent Application 2006/0126390, incorporated herein by reference in its

entirety.

[0055] Figures 8A—C describe another multi-stage programming process
for programming non-volatile memory. The process of Figure 8A-C reduces
floating gate to floating gate coupling by, for any particular memory cell,
writing to that particular memory cell with respect to a particular page
subsequent to writing to adjacent memory cells for previous pages. In one
example of an implementation of the process taught by Figures 8A—C, the non-
volatile memory cells store two bits of data per memory cell, using four data
states. For example, assume that state E is the erased state and states A, B and
C are the programmed states. State E stores data 11. State A stores data 01.
State B stores data 10. State C stores data 00. This is an example of non-Gray
coding because both bits change between adjacent states A & B. Other
encodings of data to physical data states can also be used. Each memory cell
stores two pages of data. For reference purposes, these pages of data will be
called upper page and lower page; however, they can be given other labels.

With reference to state A for the process of Figures 8A-C, the upper page
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stores bit 0 and the lower page stores bit 1. With reference to state B, the upper
page stores bit 1 and the lower page stores bit 0. With reference to state C, both
pages store bit data 0. The programming process of Figures 8A-C is a two-
stage programming process; however, the process of Figures 8A-C can be used
to implement a three stage process, a four state process, etc. In the first stage,
the lower page is programmed. If the lower page is to remain data 1, then the
memory cell state remains at state E. If the data is to be programmed to 0, then
the threshold of voltage of the memory cell is raised such that the memory cell
is programmed to state B'. Figure 8A therefore shows the programming of
memory cells from state E to state B'. State B' depicted in Figure 8A is an
interim state B; therefore, the verify point is depicted as Vvb', which is lower
than Vvb. Figure 8A shows the first stage of programming, used to program

the lower page data.

[0056] In one embodiment, after a memory cell is programmed from state
E to state B', its neighbor memory cell (on word line WLn + 1) in the NAND
string will then be programmed with respect to its lower page. After
programming the neighbor memory cell, the floating gate to floating gate
coupling effect may raise the apparent threshold voltage of earlier programmed
memory cell. This will have the effect of widening the threshold voltage
distribution for state B' to that depicted as threshold voltage distribution 520 of
Figure 8B. This apparent widening of the threshold voltage distribution will be

remedied when programming the upper page.

[0057] Figure 8C depicts the process of programming the upper page (the
second stage). If the memory cell is in erased state E and the upper page is to
remain at 1, then the memory cell will remain in state E. If the memory cell is
in state E and its upper page data is to be programmed to 0, then the threshold
voltage of the memory cell will be raised so that the memory cell is in state A.
If the memory cell was in intermediate threshold voltage distribution 520 and

the upper page data is to remain at 1, then the memory cell will be
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programmed to final state B. If the memory cell is in intermediate threshold
voltage distribution 520 and the upper page data is to become data 0, then the
threshold voltage of the memory cell will be raised so that the memory cell is
in state C. The process depicted by Figures 8A—C reduces the effect of floating
gate to floating gate coupling because only the upper page programming of
neighbor memory cells will have an effect on the apparent threshold voltage of
a given memory cell. An example of an alternate state coding is to move from
distribution 520 to state C when the upper page data is a 1, and to move to state

B when the upper page data is a 0.

[0058] Although Figures 8A—C provide an example with respect to four
data states and two pages of data, the concepts taught by Figures 8A—C can be
applied to other implementations with more or less than four states and
different than two pages. More details about the programming process of
Figure 8A-C can be found in U.S. Patent No. 7,196,928, incorporated herein

by reference.

[0059] Figure 9 is a table that describes one embodiment of the order for
programming memory cells utilizing the programming method of Figures 8A—
C. For memory cells connected to word line WLO, the lower page forms page
0 and the upper page forms page 2. For memory cells connected to word line
WLI1, the lower page forms page 1 and the upper page forms page 4. For
memory cells connected to word line WL2, the lower page forms page 3 and
the upper page forms page 6. For memory cells connected to word line WL3,
the lower page forms page 5 and the upper page forms page 5, and so on. In
this embodiment, memory cells are programmed according to page number:;
page 0, page 1, page 2, page 3. The first stage of the two above--described
multi-stage programming processes is used to program the lower page of data

and the second stage is used to program the upper page of data.
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[0060] Figure 9B is a flow chart that also describes the order of
programming pages of data in a block. The four steps are generically
described, and can apply to any set of word lines. For a currently selected
word line, WLn, the first stage of the multi-stage programming processes is
use to program the lower page of data (step 560). Subsequently, the second
stage of the multi-stage programming processes is used to program upper page
of data for the word line WLn-1 (step 560), where WLn-1 is adjacent WLn and
was subjected to the first stage of programming prior to subjecting WLn to the
first stage of programming. Subsequently, the first stage of the multi-stage
programming processes is used to program lower page of data for the word line
WLn+1 (step 564), where WLn+1 is adjacent WLn and was subjected to the
first stage of programming after subjecting WLn to the first stage of
programming. Subsequently, the second stage of the multi-stage
programming processes is used to program upper page of data for the word line
WLn (step 566). This process will repeat for all word lines (or a subset of
word lines). In one embodiment, the first and last word line are not
programmed according to the order of Figs. 9A and/or 9B. However, as can
been seen, in one embodiment the order of programming is somewhat in the
direction of source side to drain side. Other orders of programming can also be

used.

[0061] Figure 10 is a flow chart describing one embodiment of a process
for operating non-volatile memory, such as the system of Figure 3 (or other
systems). In step 600, a request to program data is received. The request can
be from a host, another device or the controller. The request can be received at
the controller, control circuitry, state machine, or other device. In response to
the request, the controller, control circuitry, state machine, or other device will
determine which block of flash memory cells will be used to store the data in
step 602. The data will be programmed into the determined block using any of

the programming processes described above (or other programming processes)
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in step 604. The programmed data will be read one or many times in step 606.
There is a dashed line between steps 604 and 606 because an unpredictable
amount of time may pass between the steps, and step 606 is not performed in
response to step 604. Rather, step 606 is performed in response to a request to

read the data or other event.

[0062] Figure 11 is a flow chart describing a programming process for
programming memory cells in a block. Fig. 11 is one embodiment of step 604
of Fig. 10. In step 632, memory cells are erased (in blocks or other units) prior
to programming. Memory cells are erased in one embodiment by raising the p-
well to an erase voltage (e.g., 20 volts) for a sufficient period of time and
grounding the word lines of a selected block while the source and bit lines are
floating. A strong electric field is, thus, applied to the tunnel oxide layers of
selected memory cells and the selected memory cells are erased as electrons of
the floating gates are emitted to the substrate side, typically by Fowler-
Nordheim tunneling mechanism. As electrons are transferred from the floating
gate to the p-well region, the threshold voltage of the selected memory cells
are lowered. Erasing can be performed on the entire memory array, on
individual blocks, or another unit of cells. Other techniques for erasing can
also be used. In step 634, soft programming is performed to narrow the
threshold voltage distribution of the erased memory cells. Some memory cells
may be in a deeper erased state than necessary as a result of the erase process.
Soft programming can apply programming pulses to move the threshold
voltage of the deeper erased memory cells to a higher threshold voltage that is
still in a valid range for the erased state. In step 636, the memory cells of the
block are programmed as described herein. In one embodiment, step 636
includes programming memory cells connected to many or all word lines for a
block. In one example, the order of programming is according to Figure 9A or

Figure 9B. However, other orders of programming can also be used.
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[0063] The process of Figure 11 can be performed at the direction of the
State Machine 222, Controller 244 or combination of State Machine 222and
Controller 244, using the various circuits described above. For example, the
controller may issue commands and data to the state machine to program the
data. In response, the state machine may operate the circuits described above

to carry out the programming operations.

[0064] Figure 12 is a flowchart describing one embodiment of a process
performed by a Controller 244 to program memory cells in a block. For
example, the process of Figure 12 can be performed as one example
implementation of step 636 of Figure 11. In step 702 of Figure 12, Controller
244 accesses a portion of the data that needs to be programmed. For example,
one page of data may be accessed. In step 704, a word line is chosen for
programming that data. If the Controller is implementing the order depicted in
Figure 9A or 9B, then the next word line in the order will be chosen. In step
706, Controller 244 chooses the appropriate stage (e.g. first stage or second
stage) of the multi-stage programming process to use to program the accessed
portion of data into the chosen word line. In step 708, Controller 244
determines/calculates the magnitude of the initial program pulse for the
programming voltage (Vpgm) for the current stage of the multi-stage
programming process as a function of the program counter PC from the same
stage of the multi-stage programming process for one or more previously
programmed word lines. The program counter PC provides an indication of
the number of program pulses applied during the current stage to the memory
cells being programmed. Alternatively, the program counter provides an
indication of the number of program loops/iterations performed (e.g., iterations
of steps 806-808 of Figure 13) during the current stage. The program loop
count PC is an integer, usually between one and 26. However, other ranges
and types of numbers can also be used. More details of the program counter

PC are described below with respect to Figure 13.
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[0065] For an example implementation of step 708, consider the order of
programming depicted in Figures 9A or 9B. When programming the lower
page of WL3 (Page 5), Controller 244 determines the magnitude of the initial
programming pulse for Page 5 based on or as a function of the program
counter PC from programming the lower page of WL2 (Page 3) and the lower
page for WL1 (Page 1). In other words, when programming the first stage for
WL3 (Page 5), Controller 244 determines the magnitude of the initial
programming pulse to use during the first stage of programming for WL3
(Page 5) as a function of the number of programming pulses (or the number of
program loops/iterations performed) when performing the first stage for WL2
and/or WL1. So when performing the first stage of a multi-stage programming
process, the Controller considers results from performance of the first page of
other word lines already programmed. When programming the second stage of
a programming process, Controller 244 considers results from performance of
the second stage of the multi-stage programming process for other word lines

already programmed.

[0066] The function used in step 708 to calculate the magnitude of the
initial programming pulse can include an average of program counts, a rolling
average (i.e. of the last X word lines) of program counts, the median of
program counts, another mathematical function of program counts, or a table
of lookup values based on program counts. In another example, the function
can be an average of the most recent X program counts word lines, without
considering outlier word lines. (An outlier word line could for example be
defined as one with a program count being more than a standard deviation
from the mean). Other mathematical functions can also be used. In some (but
not all) embodiments, the system will ignore the first word line (WLO) or first
set of word lines. In other embodiments, the system may only consider
previous word lines of the same parity as the current one. (Thus, when

programming an even word line only the program counts from previous even
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word lines would be used.) In yet another embodiment, the system may only
consider past programming of this particular WL (e.g. WLO) on other blocks.
Based on the results of the function, the system can choose to raise the
magnitude of the initial program voltage, lower the magnitude of the initial
program voltage or keep it the same. For example, if the average PC for
previously programmed word lines is higher than desired, then the magnitude
of the initial program voltage can be raised. In one embodiment, the Controller
will seek to achieve an average of 17-18 program pulses when programming
an upper page of data and the Controller will seek to achieve an average of 8-9

program pulses when programming an upper page of data.

[0067] In step 710, Controller 244 sends a command to the memory chip
212, and more specifically to state machine 222, to program data. Controller
244 also sends the data to be programmed and the value of the magnitude of
the initial program pulse (Vpgm init). In one embodiment, the memory chip
212 has a nominal value for the magnitude of the initial program pulse and the
Controller will only send adjustments to the nominal value. In some cases, this
nominal value is set during die sort (and can be referred to as the trimmed
value). In response to the information sent in step 712, the memory chip 212
will perform the commanded program operation. In step 712, Controller 244
will receive the results from the programming which will include a status and
the final program counter PC from the programming operation. The program
counter PC is stored. In step 714, it is determined whether the program
counter PC is less than a lower limit. For example, the system may determine
that if programming happens too fast (too few programming loops/pulese),
then there may be a problem. If PC is not less than the Lower  Limit, then it
is assumed there is no problem. In step 716, Controller 244 determines
whether more data needs to be programmed for that block. If not, the process

is complete (step 718). If there is more data to program, then the process will
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loop back to step 702 and Controller 244 accesses the next portion of data to be

programmed according to the process of Figure 12.

[0068] If, in step 714, it is determined that the program counter PC is
lower than the Lower Limit (one example of a Lower Limit is 14), then
Controller 244 will check to see if there is a problem with the data
programmed. In step 720, the Controller 244 reads the newly programmed
data from the memory cells that were the subject of the programming operation
by sending a read command to memory chip 212. That data will be read
according to the standard read process, which includes using error correction
codes (ECC) to recover any errors. [fthe ECC process completes successfully,
it is assumed that the data matches what was programmed. In some
embodiments, the system can also compare the data read in step 720 to the data
stored in Controller 244 from the programming process itself. If the data
matches (step 722), then there is no problem and the process will continue at
step 716. If the data does not match, then the data is reprogrammed in step 724
(possibly to a different physical memory location) and the process will then

continue at step 716.

[0069] Figure 13 is a flow chart describing one embodiment of a process for
performing programming on one or more memory cells connected to a common
word line. Therefore, when programming a block of memory cells the process
of Figure 13 is performed one or more times for each word line of the block.
The process of Figure 13 can be performed one or multiple times during step
636 of Figure 11. For example, the process of Figure 13 can be used to program
memory cells (e.g., full sequence programming) from state E directly to any of
states A, B or C. Alternatively, the process of Figure 13 can be used to perform
one or each of the stages of the process of Figure 7 or Figures 8A-C. For
example, when performing the process of Figures 8A-C, the process of Fig. 13
is used to implement the first stage that includes programming some of the

memory cells from state E to state B’. The process of Fig. 13 can then be used
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again to implement the second stage that includes programming some of the
memory cells from state E to state A and from state B’ to states B and C. In
some embodiments, it is likely that the process of Figure 13 will be performed
many times during step 636, according to the process of Figure 9B (or 9A). In
one embodiment, the process of Figure 13 is performed at the direction of the

state machine in response to the Controller performing step 710 of Figure 12.

[0070] In step 802, the data to be programmed (that has been received from the
Controller), is stored in the appropriate latches 494. 1In step 804, the
programming voltage (Vpgm) is initialized to the magnitude (e.g., ~12-16V or
another suitable level) of the initial programming pulse, as determined and
instructed by the Controller. In other embodiments, the State Machine or other
component can determine the magnitude (e.g., ~12-16V or another suitable
level) of the initial programming pulse. In addition, step 804 includes

initializing a program counter PC maintained by state machine 222 to 0.

[0071] Typically, the program voltage applied to the control gate during a
program operation is applied as a series of program pulses. Between
programming pulses are a set of one or more verify pulses to perform
verification. In many implementations, the magnitude of the program pulses is
increased with each successive pulse by a predetermined step size, referred to as
AVpgm. For example, Figure 14 shows a set of programming pulses that
comprise Vpgm, with the magnitude of the initial program pulse depicted as
Vpgm_init and the step size depicted as AVpgm. In step 806 of Fig. 13, a
program pulse of the program signal Vpgm is applied to the selected word line
(the word line selected for programming). In one embodiment, the memory
cells being programmed are all connected to the same word line (the selected
word line). The unselected word lines receive one or more boosting voltages
(e.g., ~9 volts) to perform boosting schemes known in the art in order to avoid
program disturb. There are many different boosting schemes that can be used

with the technology described herein. In one embodiment, if a memory cell
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should be programmed, then the corresponding bit line is grounded. On the
other hand, if the memory cell should remain at its current threshold voltage,
then the corresponding bit line is connected to Vdd to inhibit programming. In
step 806, the program pulse is concurrently applied to all memory cells
connected to the selected word line so that all of the memory cells connected to
the selected word line that should be programmed are programmed
concurrently. That is, they are programmed at the same time (or during
overlapping times). In this manner all of the memory cells connected to the
selected word line will concurrently have their threshold voltage change, unless

they have been locked out from programming.

[0072] In step 808, the appropriate memory cells are verified using the
appropriate set of target levels to perform one or more verify operations. If a
memory cell is verified to have reached its target, it is locked out from further
programming. One embodiment for locking out a memory cell from further

programming is to raise the corresponding bit line voltage to, for example, Vdd.

[0073] In step 810, the system counts the number of memory cells that have
not yet reached their respective target threshold voltage distribution. That is, the
system counts the number of memory cells that have failed the verify process.
This counting can be done by the state machine, the controller, or other logic.
In one implementation, each of the sense blocks 300 (see Fig. 3) will store the
status (pass/fail) of their respective memory cells. These values can be counted
using a digital counter. As described above, many of the sense blocks have an
output signal that is wire-OR’d together. Thus, checking one line can indicate
that no cells of a large group of cells have failed verify. By appropriately
organizing the lines being wired-OR together (e.g., a binary tree- like structure),
a binary search method can be used to determine the number of cells that have
failed. In such a manner, if a small number of cells failed, the counting is
completed rapidly. If a large number of cells failed, the counting takes a longer

time. More information can be found in United States Patent Publication
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2008/0126676, incorporated hercin by reference in its entirety. In another
alternative, each of the sense amplifiers can output an analog voltage or current
if its corresponding memory cell has failed and an analog voltage or current
summing circuit can be used to count the number of memory cells that have
failed. In one embodiment, there is one total counted, which reflects the total
number of memory cells currently being programmed that have failed the last

verify step. In another embodiment, separate counts are kept for each data state.

[0074] In step 812, it is determined whether the count from step 810 is less
than or equal to a predetermined limit. In one embodiment, the predetermined
limit is the number of bits that can be corrected by ECC during a read process
for the page of memory cells. If the number of failed cells is less than or equal
to the predetermined limit, than the programming process can stop and a status
of “PASS” is reported in step 814. In this situation, enough memory cells
programmed correctly such that the few remaining memory cells that have not
been completely programmed can be corrected using ECC during the read
process. In some embodiments, step 810 will count the number of failed cells
for each sector, cach target data state or other unit, and those counts will
individually or collectively be compared to a threshold in step 812. In another
embodiment, the predetermined limit can be less than the number of bits that
can be corrected by ECC during a read process to allow for future errors. When
programming less than all of the memory cells for a page, or comparing a count
for only one data state (or less than all states), than the predetermined limit can
be a portion (pro-rata or not pro-rata) of the number of bits that can be corrected
by ECC during a read process for the page of memory cells. In some
embodiments, the limit is not predetermined. Instead, it changes based on the
number of errors already counted for the page, the number of program-erase

cycles performed, temperature or other criteria.

[0075] If the number of failed cells is not less than the predetermined limit,

then the programming process continues at step 8§16 and the program counter
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PC is checked against an Upper limit value. One example of a program limit
value is 26; however, other values can be used. If the program counter PC is
not less than the upper limit value, then the program process is considered to
have failed and a status of FAIL is reported in step 820. If the program counter
PC is less than the upper limit value, then the process continues at step 818
during which time the Program Counter PC is incremented by 1 and the
program voltage Vpgm is stepped up to the next magnitude. For example, the
next pulse will have a magnitude greater than the previous pulse by a step size
(e.g., a step size of 0.1-0.7 volts). After step 818, the process loops back to step

806 and another program pulse is applied to the selected word line.

[0076] During verify operations (e.g., step 808) and read operations, the
selected word line is connected to a voltage, a level of which is specified for
each read operation (e.g., Vra, Vrb, and Vrc,) or verify operation (e.g. Vva,
Vvb, and Vvc) in order to determine whether a threshold voltage of the
concerned memory cell has reached such level. After applying the word line
voltage, the conduction current of the memory cell is measured to determine
whether the memory cell turned on in response to the voltage applied to the
word line. If the conduction current is measured to be greater than a certain
value, then it is assumed that the memory cell turned on and the voltage applied
to the word line is greater than the threshold voltage of the memory cell. If the
conduction current is not measured to be greater than the certain value, then it is
assumed that the memory cell did not turn on and the voltage applied to the

word line is not greater than the threshold voltage of the memory cell.

[0077] There are many ways to measure the conduction current of a
memory cell during a read or verify operation. In one example, the conduction
current of a memory cell is measured by the rate it discharges or charges a
dedicated capacitor in the sense amplifier. In another example, the conduction
current of the selected memory cell allows (or fails to allow) the NAND string

that includes the memory cell to discharge a corresponding bit line voltage.
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The voltage on the bit line is measured after a period of time to see whether it
has been discharged or not. Note that the technology described herein can be
used with different methods known in the art for verifying/reading. More
information about verifying/reading can be found in the following patent
documents that are incorporated herein by reference in their entirety: (1)
United States Patent Application Pub. No. 2004/0057287; (2) United States
Patent Application Pub No. 2004/0109357; (3) U.S. Patent Application Pub.
No. 2005/0169082; and (4) U.S. Patent Application Pub. No. 2006/0221692.
The erase, read and verify operations described above are performed according
to techniques known in the art. Thus, many of the details explained can be
varied by one skilled in the art. Other erase, read and verify techniques known

in the art can also be used.

[0078] Figure 15 is a table that can be stored in memory (data storage) of
Controller 244, to be used as part of step 708 of Figure 12. The table of Figure
15 is used to determine the magnitude of the initial program pulse for upper
page programming, which in one embodiment is the second stage of the multi-
stage programming process of Figures A-C. That is, the table of Figure 15
provides the function used by Controller 244 to perform step 708 of Figure 12.

[0079] The left most column of Figure 15 indicates what the program
counter PC was for the most recently programmed word line for the same stage
as currently being programmed. For example, if Controller 244 is
programming the upper page for WL3 (Page 8 of Figure 9A), then the left most
column of Figure 15 describes the program counter PC for the upper page of
word line WL2. The seven columns to the right of the left most column of
Figure 15 indicate the shift used by the Controller when programming the most
recently programmed word line whose PC is indicated in the left most column.
That is, Figure 15 assumes the memory system has a nominal magnitude of the
initial program pulse. In one embodiment, this nominal magnitude is set

during die sort to obtain a standard performance. The result of Figure 15 is
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Controller 244 choosing to raise or lower the current magnitude of the initial
program pulse by 1-6 multiples of AVpgm. In one embodiment, AVpgm is
equal to .4 volts for upper page programming. In this example, the system
seeks to have a programming process be performed using 17-18 program
pulses. Therefore, if the PC for the previously programmed word line is 17 or
18, the magnitude of the initial program pulse will not change for the current
word line. If the PC for the previously programmed word line is greater than
18, then the magnitude of the initial program pulse will increase in order to
speed up the programming process. If the PC for the previously programmed
word line is less than 17, then the magnitude of the initial program pulse may
be lowered in order to slow down programming. In one embodiment, PC = 14
is the Lower _ Limit referred to in step 714 of Figure 12, and if the PC for the
previous WL is 14 or less, then Controller 244 will read the program data to

make sure there are no errors.

[0080] For example, when programming the upper page for the current
word line WLn, if the upper page for the previously programmed word line
WLn-1 was 20 and the offset for the previous word line was 3, then the offset
for programming the upper page of the current word line will be 4. That is,
when programming the upper page of the current word line, the magnitude of
the initial program pulse will be raised from the nominal magnitude by
4xAVpgm. Similarly, if the PC for programming the upper page of the
previous word line is 15 and the offset for programming the upper page of the
previous word line was 5, then programming the upper page of the current
word line will use programming pulses with a lower initial magnitude than the
previous word line such that the magnitude of the initial program pulse for the
programming upper page of the current word line will be equal to the nominal
voltage plus 3xAVpgm. In one example embodiment, AVpgm is equal to 0.4

volts when programming the upper page.
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[0081] Figure 16 provides a table implementing the function used by
Controller 244 in step 708 of Figure 12 for determining the magnitude of the
initial programming pulse for the stage of programming that programs the
lower page. The left most column shows the PC for the most recently
programmed word line for the same stage as currently being programmed. The
four columns on the right indicate the amount of shift from the nominal
magnitude initial program voltage for the previously programmed word line.
In this example, AVpgm is equal to 0.7 volts for lower page programming.
Additionally, in the example of Figure 16, the system seeks to complete lower
page programming with 8-9 program pulses. Therefore, if the PC for the most
recently programmed word line for the same stage as currently being
programmed was 8 or 9, then the magnitude of the initial programming pulse
remains the same. If the PC for the most recently programmed word line for
the same stage as currently being programmed was greater than nine, the
magnitude initial program pulse will be raised. If PC for the most recently
programmed word line for the same stage as currently being programmed is
less than eight, the magnitude of the initial program pulse will be lowered, as
per Figure 16. For example, if the system is programming the lower page of
WL3, and PC for WL2 was 12 and the shift of the magnitude initial program
pulse was two when programming the lower page of WL2, then when
programming WL3’s lower page the shift (in units of AVpgm) for the

magnitude of the initial program pulse is 3xAVpgm.

[0082] Figure 17 provides a programming example as a result of using in
the table of Figure 15 which governs upper page or second-stage
programming. The left most column shows the current word line being
programmed (upper page programming - the second stage of the multi-stage
programming process). The middle column, shift, indicates how much (in
units of AVpgm) the magnitude of the initial program voltage was shifted up

from the nominal initial program voltage. The right most column, PC,
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indicates how many program pulses were performed when programming the
upper page for that word line. In one embodiment, the present technology

described herein is not used for the first word line or the first set of word lines.

[0083] The example of Figure 17 indicates that when programming WL2,
there was no shift used for the magnitude of the initial program pulse and it
took 22 program pulses to complete programming of the upper page (second
stage). Therefore, pursuant to the table of Figure 15, the magnitude of the
initial program pulse is raised by 1xAVpgm. When programming WL3, it still
took 21 program pulses; therefore, the magnitude of the initial program pulse is
raised by another 1xAVpgm for programming the upper page (second stage) of
the next word line (WL4). This trend continues until programming the upper
page of WL6, in which case it took 18 program pulses. Figure 15 indicates
that when the programming takes 17 or 18 program pulses, the magnitude of
the initial program pulse does not change. Therefore, the shift will remain at

4xAVpgm.

[0084] When programming the upper page of WL12, the PC lowers to 15;
therefore, when programming the upper page of the next word line WL13,
Controller 244 shifts down the magnitude of the initial program pulse to only
2xAVpgm. When programming WLI13, 17 program pulses were used to
program the upper page; therefore, there will be no change for the magnitude
of the initial program pulse when programming the upper page of the next
word line. When programming the upper page of WL14, twenty program
pulses were applied; therefore, the magnitude of the initial program pulse will
be raised when programming the upper page of the next word line (which is
WLI15). When programming WL16-20, the number of program loops is 18,
17, 17, 18 respectively; therefore, there is no need to change the magnitude of

the initial program pulse.



WO 2014/120943 PCT/US2014/013889

233

[0085] In some embodiments, the magnitude of the initial program pulse
will also be based on the number of program-erase cycles performed. For
example, one implementation can limit the amount of change of Vpgm_init
based on how many program-erase cycles have been performed by a block or
by the entire memory. A device that has less than 1,000 cycles may only be
allowed to raise the magnitude of the initial program pulse by a small amount
while a device that has undergone 10,000 program-erase cycles may be
allowed to increase the magnitude of the initial program pulse by a greater

amount.

[0086] In another embodiment, the Controller, state machine or other
component can analyze the threshold voltages of the memory cells after a
programming operation in order to look for an upper tail in any data state. An
upper tail is a group of memory cells that have threshold voltages higher than
the intended threshold voltage distribution for that particular data state. If an
upper tail is found for any data state, the magnitude of the initial program pulse
will be lowered when programming the same stage (or any stage) for the next

word line.

[0087] As discussed above, when programming a particular stage of a
multi-stage programming process, the system will look at the performance of
that particular stage for previously programmed word lines. In some
embodiments, this technique will be used only for odd word lines, or only for
even word lines. That is, when performing a particular stage of a multi-stage
programming process for an odd word line, the system will determine the
magnitude of the voltage initial program pulse based on the performance of
that same particular stage of the multi-stage programming process only when
used for previously programmed odd word lines. When programming the
particular stage of the multi-stage programming process on the even word line,

the system will set the magnitude initial of the programming pulse based on



WO 2014/120943 PCT/US2014/013889

-34-

prior performance of the same particular stage when performed on the

previously programmed even word lines.

[0088] In some embodiments, the change in magnitude of the initial
program pulse can be limited or dampened such that it does not change more
than the predetermined amount from one word line to an adjacent word line.

Other variations can also be used.

[0089] In one embodiment, the initial non-zero magnitude of the program
pulses is reset to a default value when starting programming for a new block.
In another embodiment, the initial non-zero magnitude of the program pulses is

periodically reset to a default value.

[0090] One embodiment includes a method of programming data into
non-volatile storage comprising: programming non-volatile storage elements
connected to a first set of one or more word lines using one or more stages of a
multi-stage programming process, the multi-stage programming process
includes at least a particular stage and an additional stage; determining a
voltage magnitude of an initial program pulse for the particular stage of the
multi-stage programming process as a function of number of program pulses
applied for the particular stage when the particular stage was used to program
the non-volatile storage elements connected to the first set of one or more
word lines; and programming non-volatile storage elements connected to a
selected word line using the particular stage of the multi-stage programming
process with the initial program pulse having the determined voltage
magnitude, the selected word line is not in the first set of one or more word

lines.

[0091] One embodiment includes a non-volatile storage system,
comprising: non-volatile storage elements; word lines including a first set of
one or more word lines and a selected word line that is not in the first set of

one or more word lines, a first subset of the non-volatile storage elements are
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connected to the first set of one or more word lines, a second subset of the non-
volatile storage elements are connected to the selected word line; and one or
more managing circuits in communication with the non-volatile storage
elements and the word lines. The one or more managing circuits program the
first subset of the non-volatile storage elements using one or more stages of a
multi-stage programming process. The multi-stage programming process
includes at least a particular stage and an additional stage. The one or more
managing circuits determine a voltage magnitude of an initial program pulse
for the particular stage of the multi-stage programming process as a function of
number of program pulses applied for the particular stage when the particular
stage was used to program the first subset of the non-volatile storage. The one
or more managing circuits program the second subset of non-volatile storage
clements using the particular stage of the multi-stage programming process

with the initial program pulse having the determined voltage magnitude.

[0092] One embodiment includes a method of programming data into
non-volatile storage comprising: causing programming of non-volatile storage
clements connected to a first set of one or more word lines using one or more
stages of a multi-stage programming process, the multi-stage programming
process includes at least a particular stage and an additional stage; determining
an initial non-zero magnitude of a programming signal as a function of past
performance of the particular stage when programming the non-volatile storage
elements connected to the first set of one or more word lines; and causing
programming of non-volatile storage elements connected to a selected word
line using the particular stage of the multi-stage programming process with the
programming signal having the determined initial non-zero magnitude, the

selected word line is not in the first set of one or more word lines.

[0093] One embodiment includes a non-volatile storage system,
comprising: data storage; a memory interface; and one or more processors in

communication with the data storage and the memory interface. The one or
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more processors send data and commands to a memory system having non-
volatile storage clements via the memory interface. The memory system
including a first set of one or more word lines and a selected word line that is
not in the first set of one or more word lines. A first subset of the non-volatile
storage elements are connected to the first set of one or more word lines. A
second subset of the non-volatile storage elements are connected to the
selected word line. The one or more processors cause programming of the first
subset of non-volatile storage elements using one or more stages of a multi-
stage programming process. The multi-stage programming process includes at
least a particular stage and an additional stage. The one or more processors
determine an initial non-zero magnitude of a programming signal as a function
of past performance of the particular stage when programming the first subset
of non-volatile storage elements. The one or more processors cause
programming of the second subset of non-volatile storage elements using the
particular stage of the multi-stage programming process with the programming

signal having the determined initial non-zero magnitude.

[0094] The foregoing detailed description of the invention has been
presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain the principles of
the invention and its practical application to thereby enable others skilled in the
art to best utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended

that the scope of the invention be defined by the claims appended hereto.
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CLAIMS
We claim:
L. A method of programming data into non-volatile storage
comprising:

programming non-volatile storage elements connected to a first set of
one or more word lines using one or more stages of a multi-stage programming
process, the multi-stage programming process includes at least a particular stage
and an additional stage;

determining a voltage magnitude of an initial program pulse for the
particular stage of the multi-stage programming process as a function of number
of program pulses applied for the particular stage when the particular stage was
used to program the non-volatile storage elements connected to the first set of
one or more word lines; and

programming non-volatile storage elements connected to a selected
word line using the particular stage of the multi-stage programming process

with the initial program pulse having the determined voltage magnitude.

2. The method of claim 1, wherein:

the function is implemented by a look-up table.

3. The method of claim 1, wherein:

the function is a moving average of total number of program pulses
applied for the particular stage when the particular stage was used to program
the non-volatile storage elements connected to one or more word lines of the

first set of one or more word lines.

4, The method of claim 1, wherein:
the determining the voltage magnitude of the initial program pulse is

further based on a number of program-erase cycles performed.
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5. The method of claim 1, wherein:

the determining the voltage magnitude of the initial program pulse is
further based on whether an upper tail of non-volatile storage elements is
detected for a data state such that presence of the upper tail causes a reduction

in the voltage magnitude of the initial program pulse.

6. The method of claim 1, wherein:
the determining the voltage magnitude of the initial program pulse is
further based on a number of bits in error when the data in the non-volatile

storage elements is read back.

7. The method of any of claims 1-6, wherein:

the first set of one or more word lines include odd numbered word lines;

and

the first set of one or more word lines do not include even numbered
word lines.

8. The method of any of claims 1-7, wherein:

the first set of one or more word lines include even numbered word
lines; and

the first set of one or more word lines do not include odd numbered
word lines.

9. The method of any of claims 1-8, wherein:
the determining the voltage magnitude of the initial program pulse
includes determining a change in voltage magnitude from a previous initial

program pulse and limiting the change.

10. The method of any of claims 1-9, further comprising;:

determining if a total number of program pulses used when performing
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the particular stage of the multi-stage programming process on the non-volatile
storage elements connected to the selected word line is less than a lower limit;
and

re-programming data targeted for the non-volatile storage elements
connected to the selected word line if the total number of program pulses is less

than the lower limit.

11. The method of any of claims 1-10, wherein:

the multi-stage programming process is a two stage programming
process that programs two bits per non-volatile storage element, one of the two
bits is programmed into a lower page and the other of the two bits is
programmed into an upper page;

the first stage of the multi-stage programming process is an additional
stage which programs the lower page of data; and

the second stage of the multi-stage programming process is a particular

stage which programs the upper page of data.

12. A non-volatile storage system, comprising:

non-volatile storage elements;

word lines including a first set of one or more word lines and a selected
word line that is not in the first set of one or more word lines, a first subset of
the non-volatile storage elements are connected to the first set of one or more
word lines, a second subset of the non-volatile storage elements are connected
to the selected word line; and

one or more managing circuits in communication with the non-volatile
storage elements and the word lines, the one or more managing circuits program
the first subset of the non-volatile storage elements using one or more stages of
a multi-stage programming process, the multi-stage programming process
includes at least a particular stage and an additional stage, the one or more

managing circuits determine a voltage magnitude of an initial program pulse for
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the particular stage of the multi-stage programming process as a function of the
number of program pulses applied for the particular stage when the particular
stage was used to program the first subset of the non-volatile storage, the one or
more managing circuits program the second subset of non-volatile storage
elements using the particular stage of the multi-stage programming process with

the initial program pulse having the determined voltage magnitude.

13. The non-volatile storage system of claim 12, wherein:

the function is implemented by a look-up table.

14. The non-volatile storage system of claim 12, wherein:

the function is a moving average of total number of program pulses
applied for the particular stage when the particular stage was used to program
the non-volatile storage elements connected to one or more word lines of the

first set of one or more word lines.

15. The non-volatile storage system of claim 12, wherein:
the one or more managing circuits determine the voltage magnitude of
the initial program pulse additionally based on a number of program-erase

cycles performed.

16. The non-volatile storage system of claim 12, wherein:

the one or more managing circuits determine the voltage magnitude of
the initial program pulse additionally based on whether an upper tail of non-
volatile storage elements is detected for a data state such that presence of the
upper tail causes a reduction in the voltage magnitude of the initial program

pulse.

17. The non-volatile storage system of claim 12, wherein:

the one or more managing circuits determine if a total number of
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program pulses used when performing the particular stage of the multi-stage
programming process on the non-volatile storage elements connected to the
selected word line is less than a lower limit; and

the one or more managing circuits re-program the data targeted for the
non-volatile storage elements connected to the selected word line if the total

number of program pulses is less than the lower limit.
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