2007/148900 A 1IN} 1A 0 000 D000 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O OO0 OO

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(10) International Publication Number

WO 2007/148900 Al

(51) International Patent Classification:
GOG6F 15/00 (2006.01)

(21) International Application Number:
PCT/KR2007/002947

(22) International Filing Date: 18 June 2007 (18.06.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10-2006-0054746 19 June 2006 (19.06.2006) KR

(71) Applicant (for all designated States except US): SAM-
SUNG ELECTRONICS CO., LTD. [KR/KR]; 416
Maetan-dong, Yeongtong-gu, Suwong-si, Gyeonggi-do
443-742 (KR).

(72) Inventor; and

(75) Inventor/Applicant (for US only): OH, Sung Jo [/KR];
No. 114-403, Woonam, Apt., Gwonseon-dong Gwon-
seon-gu, Suwon-si, Gyeonggi-do 441-390 (KR).

(74) Agent: YOON, Dong Yol; YOON & LEE International
Patent & Law office, 9th FL, Yosam Bldg., Seoul 135-748
(KR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: PROGRAM UPGRADE SYSTEM AND METHOD FOR OTA-CAPABLE PORTABLE DEVICE

20

UPGRADE
PACKAGE
SERVER

Net Work

Upgrade
Package

Uparade
Package

De-compressor

Instail Generator|

UPGRADE
PACKAGE
PROCESSOR

Downloader|

Installeu

RECIPIENT DEVICE

Upgrade
Package

Ul module

Translator

De-compressor

Compressor I

[utModue |

—

(57) Abstract: A program upgrade system and method for portable device using an over-the-air programming mechanism, that
includes an upgrade package processor for generating an upgrade package for a program and an upgrade package server allowing a
recipient device to download the upgrade package. The method includes generating, the upgrade package on the basis of differences
between a first and second versions of the program at the upgrade package processor notifying, the recipient device of an issuance
of the upgrade package at the upgrade package server downloading, the upgrade package from the upgrade package server to the
recipient device installing the upgrade package in a first memory; and merging the upgrade package and the first version of the
program to be loaded as the second version of the program on a volatile memory in response to an upgrade command.

[1]

(2]

[3]

[4]

[5]

[6]

WO 2007/148900 PCT/KR2007/002947

Description

PROGRAM UPGRADE SYSTEM AND METHOD FOR OTA-

CAPABLE PORTABLE DEVICE
Technical Field

The present invention relates to a system upgrade method and, in particular, to a
system and method for updating a program (including an operating firmware and ap-
plication software) of a portable device using an over-the-air programming
mechanism.

Background Art

Electronic devices, such as mobile phones and personal digital assistants (PDAs),
contain firmware and application software that are provided by the manufacturers of
the electronic devices, telecommunication carriers, or third parties. Such firmware and
application software may contain software bugs requires version upgrades. In order to
fix and upgrade the firmware and application software, a user visits a customer care
center operated by the manufacturer or the carrier. In the case of an over-the-air (OTA)
capable device, the firmware or software upgrade can be performed by the OTA
mechanism in which the firmware or software upgrades are distributed to the device

over the air.
Disclosure of Invention
Technical Problem

In order to use the OTA upgrade process, the electronic device incorporates a
download module for downloading an upgrade package and an upgrade processing
module for performing the upgrade of target firmware or software with the
downloaded upgrade package. However, most conventional OTA capable devices are
limited in OTA operation stability.

Technical Solution

The present invention has been made in an effort to solve at least the above
problems, and the present invention provides a program upgrade system and method
for an OTA-capable mobile phone that enables updating firmware with an upgrade
package received over the air.

The present invention provides a program upgrade system and method for an OTA-
capable portable device that enables updating firmware of the portable device by
combining an upgrade package, which is generated on the basis of differences between
an old version firmware and a new version firmware, over the air with the old version
firmware installed in the portable device.

The present invention provides a program upgrade system and method for an OTA-

WO 2007/148900 PCT/KR2007/002947

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

capable portable device that enables updating firmware with an upgrade package
received over the air, the upgrade package containing history data, map data having
index information for indicating a relationship of the upgrade package and upgrade
target version of the program, and upgrade data representing differences between two
versions of the program.

The present invention provides a program upgrade system and method for an OTA-
capable portable device that enables producing an upgrade package containing upgrade
data created on the basis of a difference between new and reference versions of
firmware, history data for indicating a relationship of the upgrade package and upgrade
target version of the program of the firmware, and map data for mapping the blocks of
the two versions.

The present invention providesa program upgrade system and method for an OTA-
capable portable device that enables producing an upgrade package containing upgrade
data created on the basis of a difference between new and old versions of firmware,
history data for indicating a relationship of the upgrade package and upgrade target
version of the program of the firmware, and map data for mapping the blocks of the
two versions.

The present invention provides a program upgrade system and method for an OTA-
capable portable device that enables updating firmware of the portable device by
combining a reference firmware installed in the portable device and an upgrade
package downloaded over the air.

The present invention provides a program upgrade system and method for an OTA-
capable portable device that enables updating firmware of the portable device by
combining a reference firmware installed in the portable device with at least one
upgrade package downloaded over the air.

Brief Description of the Drawings

The above and other objects, features and advantages of the present invention will be
more apparent from the following detailed description in conjunction with the ac-
companying drawings, in which:

FIG. 1 is a diagram illustrating a program upgrade system according to an exemplary
embodiment of the present invention

FIG.2 is a block diagram illustrating an operation of the upgrade package processor
10 of the program upgrade system of FIG. 1;

FIGS. 3 to 8 are diagrams illustrating data formats of upgrade packages generated in
the upgrade package processor of FIG. 2;

FIG. 9 is a block diagram illustrating a configuration of an upgrade package

processor of a program upgrade system in accordance with an exemplary embodiment

WO 2007/148900 PCT/KR2007/002947

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

of the present invention;

FIG. 10 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with another exemplary
embodiment of the present invention

FIG. 11 is a diagram illustrating a data format of an upgrade package generated by
the upgrade package processor of FIG. 9;

FIG. 12is a diagram illustrating a data format of an upgrade package generated by the
upgrade package processor of FIG. 10;

FIG. 13 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with another exemplary
embodiment of the present invention;

FIG. 14 is a block diagram illustrating a configuration of a recipient device of a
program upgrade system according to an exemplary embodiment of the present
invention;

FIG. 15 is a block diagram illustrating a configuration of a first memory of a
recipient device of FIG. 14;

FIG. 16 is a diagram illustrating a structure of the second storage region of the first
memory 250 of FIG. 15;

FIG. 17 is a diagram illustrating a data format of the history data of each upgrade
package stored in the second storage region of FIG. 16

FIG. 18 is a block diagram illustrating an upgrade operation of a program upgrade
system according to an exemplary embodiment of the present invention;

FIG. 19 is a block diagram illustrating an upgrade operation of a program upgrade
system according to another exemplary embodiment of the present invention;

FIGS. 20 and 21 are block diagram illustrating an upgrade operation of a program
upgrade system according to another exemplary embodiment of the present invention;

FIG. 22 is a block diagram illustrating an upgrade operation of the recipient device of
the program upgrade system according to an exemplary embodiment of the present
invention;

FIG. 23 is a flowchart illustrating a program upgrade method according to an
exemplary embodiment of the present invention;

FIGS. 24 to 16C are flowcharts illustrating an upgrade package generation procedure
of a program upgrade method according to an exemplary embodiment of the present
invention;

FIG. 27 is a flowchart illustrating an upgrade package generation procedure of a
program upgrade method according to an exemplary embodiment of the present
invention;

FIG. 28 is a flowchart illustrating a compression reliability test procedure of FIG. 27;

WO 2007/148900 PCT/KR2007/002947
[32] FIG. 29 is a flowchart illustrating an install data generation procedure of FIG. 27;
[33] FIG. 30 is a flowchart illustrating an upgrade package generation procedure of FIG.

27;
[34] FIG. 31 is a message flow diagram illustrating a program download procedure of a

program upgrade method according to an exemplary embodiment of the present
invention;

[35] FIG. 32 is a flowchart illustrating a downloaded upgrade package processing
procedure of a program upgrade method according to an exemplary embodiment of the
present invention;

[36] FIG. 33 is a flowchart illustrating an upgrade package install procedure of a program
upgrade method according to an exemplary embodiment of the present invention;

[37] FIG. 34 is a flowchart illustrating an upgraded program running procedure of a
program upgrade method according to an exemplary embodiment of the present
invention; and

[38] FIGS. 35 to 38 are flowcharts illustrating an upgrade program running procedure of a
program upgrade method according to another exemplary embodiment of the present
invention.

Best Mode for Carrying Out the Invention

[39] In accordance with an aspect of the resent invention, the above and other objects are
accomplished by a program upgrade method in a network including an upgrade
package processor for generating an upgrade package for a program and an upgrade
package server allowing a recipient device to download the upgrade package. The
program upgrade method includes generating, at the upgrade package processor, the
upgrade package on the basis of differences between a first version and a second
version of the program; notifying, at the upgrade package server, more than one
recipient device of an issuance of the upgrade package; downloading, at the recipient
device, the upgrade package from the upgrade package server; installing the upgrade
package in a non-volatile memory; and merging the upgrade package and the first
version to be loaded as the second version in a volatile memory in response to an
upgrade command.

[40] In accordance with another aspect of the present invention, the above and other
objects are accomplished by a program upgrade method in a network including an
upgrade package processor for generating an upgrade package for a program and an
upgrade package server allowing a recipient device to download the upgrade package.
The program upgrade method includes generating, at the upgrade package processor,
the upgrade package on the basis of differences between a first version and a second

version of the program; notifying, at the upgrade package server, the recipient device

WO 2007/148900 PCT/KR2007/002947

[41]

[42]

[43]

[44]

of an issuance of the upgrade package; downloading, at the recipient device, the
upgrade package from the upgrade package server; installing the upgrade package in
an upgrade package region of a first memory in which the first version is installed;
upgrading the first version to the second version by merging the upgrade package and
the first version in response to an upgrade command; and loading the second version in
a second memory.

In accordance with another aspect of the present invention, the above and other
objects are accomplished by a program upgrade method in a network including an
upgrade package processor for generating an upgrade package for a program and an
upgrade package server allowing a recipient device to download the upgrade package.
The program upgrade method includes comparing, at the upgrade package processor, a
first version and a second version the program on a block-by-block basis generating
install data containing map data for mapping blocks of the second version to the first
version on the basis of a comparison result; generating the upgrade package by
merging the install data and upgrade data; downloading, at the recipient device, the
upgrade package; and upgrading the first version installed at the recipient device to the
second version by applying the upgrade package to the first version.

In accordance with another aspect of the present invention, the above and other
objects are accomplished by a program upgrade system. The program upgrade system
includes an upgrade package processor for generating an upgrade package using a first
version and a second version of a program; an upgrade package server for storing the
upgrade package and advertizing issuance of the upgrade package; and at least one
recipient device for downloading the upgrade package and upgrading the program
using the downloaded package, the recipient device comprising a first memory for
separately installing the first version and the upgrade package and a second memory
for loading the second version upgraded by merging the first version and the upgrade
package.

Mode for the Invention

Exemplary embodiments of the present invention are described with reference to the
accompanying drawings in detail. The same reference numbers are used throughout the
drawings to refer to the same or like parts. Detailed descriptions of well-known
functions and structures incorporated herein may be omitted to avoid obscuring the
subject matter of the present invention.

In the following embodiments, a number of the blocks of upgrade versions and a size
of a macro/block are defined only to help in the understanding of the present invention.
However, it will be obvious to those skilled in the art that the present invention can be

implemented without specifically defining the number and size of the macroblocks or

WO 2007/148900 PCT/KR2007/002947

[45]

[46]

[47]

[48]

modification thereof.

In the following embodiments, an "upgrade" is a process modifying source codes of
firmware or software of a system using an upgrade package for fixing bugs and
improving usability or performance.

An "upgrade package"is a collection of information on the old and new versions of a
target program. "Upgrade data" are modifications to existing codes of the target
program. "Install data" are a set of information for updating an old version to a new
version of the program. The install data can include history data for indicating a re-
lationship of the upgrade package and the first version, and map data for mapping the
blocks of the second version to the first version. The map data can include commands
such as "copy", "shift", "modify", etc. for creating a new version of the program, and
block location data for executing the commands. A "first version" means an old ve
rsion of a target program and is interchangeably referred to as a "reference version." A
"second version"is an upgrade version of the first version of the program. The second
version of the program can be an upgrade package created on the basis of differ-
encesbetween the first and second versions of the program. A recipient device is
installed with the first version of the software during manufacturing stage and can
download and store at least one upgrade package when an upgrade event occurs. The
upgrade package include install data and upgrade data required for updating the
program from the first version to the second version, and particularly, can includes
commands "copy", shift", and "modify", and block location data for executing the
commands. A "program" can be an operating firmware and application software.

A "first memory" is a memory for storing the first and second versions of the
program. A "second memory" is a memory for loading a program upgraded from the
first version using the upgrade package represented by the second version. The first
and second memories can be implemented with first and second memory regions in a
single memory unit or can be implemented as physically separated memory modules.
In the following embodiments, the first and second memories are individual memory
modules. The first memory is a flash memory as a non-volatile memory, and the
second memory is a synchronous dynamic random access memory (SDRAM) as a
volatile memory. The first memory stores the first version of the program and at least
one upgrade package as the second version of the program. The upgrade package
includes history data for identifying versions of the program (including map data) and
upgrade data. If an upgrade event occurs by a system initialization or a user command,
the system loads the second version of the program upgraded using the upgrade
package in the second memory such that the system operates with the second version
of the program.

The first version of the program can be the reference version of the program. The

WO 2007/148900 PCT/KR2007/002947

[49]

[50]

[51]

[52]

[53]

second version of the program can be an upgrade package including the install data and
upgrade data. The install data can include history data and/or map data. The first
version of the program can be an initial version of the program, and the second version
of the program includes the upgrade data produced on the basis of the difference
between the first and second versions of the program, and install data for installing the
upgrade data. The program loaded in the second memory can be a program created by
combining the first and second versions of the program.

The program upgrade system can be divided into a transmission system for
producing and transmitting upgrade packages and a recipient device for receiving the
upgrade packages and upgrading a target program with the upgrade packages.

FIG.1 is a diagram illustrating a program upgrade system according to an exemplary
embodiment of the present invention.

Referring to FIG. 1, a program upgrade system includes an upgrade package
processor 10, an upgrade package server 20, and a recipient device 30 that
communicate with each other through a network.

If a new version (second version) of a program is introduced, the upgrade package
processor 10 generates an upgrade package from the old version (first version) and the
new version (second version) of the program and then transmits the upgrade package
to the upgrade package server 20. Here, the upgrade package processor 10
communicate with the upgrade package server 20 through a wireless channel es-
tablished on the basis of a wireless communication standard such as Code Division
Multiple Access (CDMA), Universal Mobile Telecommunication System (UMTS),
Wireless Broadband (WiBro), Wireless Fidelity (Wi-Fi), Worldwide Interoperability
for Microwave Access (WiMAX), Bluetooth (hereinafter "Bluetooth"), and Zigbee, or
a wired communication standard such as Universal Serial Bus (USB) and Universal
Asynchronous Receiver/Transmitter (UART). The upgrade package server 20 can be
integrated into the upgrade package processor 10. If an upgrade package is received
from the upgrade package processor 10, the upgrade package server 20 transmits a no-
tification message to a plurality of recipient devices 30 such that the recipient devices
download the upgrade package. Also, the upgrade package server 20 and the recipient
devices 30 communicate with each other through a wireless channel established on the
basis of a wireless communication standard such as CDMA, UMTS, WiBro, Wi-Fi,
WiMAX, Bluetooth, and Zigbee, or a wired communication standard such as USB and
UART.

If the upgrade package is successfully downloaded, the recipient device 30 stores the
upgrade package into a memory unit for producing a second version of the program.
The memory unit can be implemented with a first memory and a second memory. The

first and second memories can be integrated in a single memory unit, or can be

WO 2007/148900 PCT/KR2007/002947

[54]
[55]

[56]

[57]

[58]

separated from each other. The first memory stores the first version of the program and
the upgrade package, and the second memory loads the second version of the program
produced from the first version of the program and the upgrade package. That is, the
recipient device 30 stores the upgrade package downloaded from the upgrade package
server 20 into the first memory as the information for creating the second version of
the program. The second version of the program is generated by merging the first
version of the program and the upgrade package and then loaded in the second
memory, in response to an upgrade command. After the upgrade process, the recipient
device 30 operates with the second version of the program loaded on the second
memory.

An operation of the upgrade package processor 10 is described hereinafter.

FIG. 2 is a block diagram illustrating an operation of the upgrade package processor
10 of the program upgrade system of FIG. 1.

Referring to FIG. 2, the upgrade package processor 10 receives the first and second
versions, 50 and 55, of a program input from outside. The first version 50 of the
program can be an original version, and the second version of the program can be one
upgraded from the firstversion of the program. The upgrade package processor 10
generates the upgrade package from the first and second versions of the program. The
upgrade package processor 10 compares and first and second versions, 50 and 55, and
produces the upgrade package based on the difference between and first and second
versions, 50 and 55, and then transmits the upgrade package to the upgrade package
server 20. The upgrade package includes upgrade data and install data. The upgrade
data is generated in accordance with a difference between and first and second versions
of the program, and the install data includes history information and map data. The
history data is data to be merged with the second version, and the map data includes
commands for copying, changing, and shifting according to a comparison result of the
versions, and index information of the commands. The upgrade package can include
only the history data and map data. In this case, the modified data is included in the
map data rather than in the upgrade data. The upgrade package can be transported to
the upgrade package server 20 through a wired or wireless channel.

FIGS. 3 to 8 are diagrams illustrating data formats of upgrade packages generated in
the upgrade package processor 10 of FIG. 2.

In this embodiment, the upgrade package contains upgrade data, history data, and
map data, or contains only the history and map data. Through the description of the
present invention, the term "old version" is interchangeably used for referring to a first
version (V1), and the term "new version" is for referring to a second version (V2). In
the case that the second version (V2) is produced using the first version of the

program, a gap region can be assigned for the first version (V1) of the program in

WO 2007/148900 PCT/KR2007/002947

[59]

[60]

[61]
[62]

[63]

[64]

order to reduce a shift operation in the upgrade process.

Referring to FIGS. 3 to 8, the upgrade package processer 10 compares the data of the
V1 and V2 on a block-by-block basis having a preset size (this block is herein referred
to as a macro block or MB), retrieves an attribute of each block (copy (C), modify (M),
shift (S)), and generates the upgrade package on the basis of the attributes. The
upgrade package includes the upgrade data, history data, and map data. In some cases,
the upgrade data is not included in the upgrade package. The macroblock is a unit
generated by dividing data, and 16 instruction is 16 bits and 32 instruction is 32 bits.

The map data includes command strings starting with a command such as C (copy),
M (modify: insert or replace as same size), and S (shift). Each command string is
structured in the following command string format:

[Cmd][start block No, number of block][flag][distance][difference]

where "Cmd" can be one of C, M, and S, "start block No" denotes a start block
number of the corresponding command, and "number of block" denotes a number of
the blocks corresponding to the command. "flag" has a value of O, 1, or 2. The flag is
set to 0 when the Cmd is "C" (just copy) or S (just shift), 1 when block data can be
generated from V1 (generate data from V1) with the Cmd "M," and 2 when the block
data cannot be generated from V1 but is in delta package (not use V1) with the Cmd
"M." The delta package can be the upgrade data. The "distance” means a block index
information indicating a location of a block of V2 in V1.

If a block of V2, of which its data differs from that of a corresponding block of V1, is
detected while comparing the V1 and V2, the upgrade package processor 10 tags the
block with M for indicating a modified data block. If a modified data block is detected,
the upgrade package processor 10 searches a predetermined number of blocks from the
block of V1, corresponding to the modified block, in both directions for finding a
block having the data of the modified block.

In the examples of FIGS. 3 to 5, 15 blocks are searched for the blocks in both
directions from the modified block. If a block having identical data is found in the
search range, the upgrade package processor 10 gathers the index of the block having
the identical data. The search range can be set to any number of blocks, for example 2,
4,8, 16 or 32. In this embodiment, the number of blocks of the search range is 16. The
upgrade package processor 10 searches for the 16 blocks in the respective directions
from the current block. Accordingly,32 blocks are compared with the block of the
second version. In FIGS. 3 to 5, four blocks 16 to 19 of the V2 are modified in
comparison with the V1 are found as the blocks having the data identical with those of
the modified data. Accordingly, the upgrade package processor 10 generates the
upgrade package with the map data containing the indexes of the blocks 6, 7, 12, and
13 rather than packing the modified data themselves.

10

WO 2007/148900 PCT/KR2007/002947

[65]

[66]

[67]

[68]

[69]

The map data of the modified blocks are generated by comparing in unit of block or a
set of blocks. Typically, the modified data of the second version can be generated as a
plurality of blocks. That is, when the program is upgraded to a new version, the
upgraded program (V2) can be generated by inserting and or replacing the data in the
form of the modified blocks. In this case, the modified block data can be identical with
or similar to the block data of the reference program (V1). In this embodiment, the
map data is generated by comparing in a unit of a set of blocks when searching the
modified blocks. In this case, the number of blocks included in the set can be 2, 4, 8,
16, etc. The number of blocks is set to a multiple of 2 for increasing computation
speed. The blocks of the second version (V2) are compared with the blocks of the first
version (V1). If the blocks are copied or shifted blocks, the indexes of the blocks are
included in the map data. If the blocks are modified blocks, the upgrade package
processor 10 compares the block data, determines the command for the blocks of the
second version as "modify", and generates the map data with the indexes of the blocks.
In the case of a 2-block search, the search starts at the block indexes of 0, 2, 4, 6, etc.
In the case of a 4-block search, the search starts at the block indexes of 0, 4, 8, In the
case aof 8-block search, the search starts at the block indexes of 0, 8, 16, This is for
reducing the calculation complexity of the upgrade package processor 10.

In FIGS. 3 to 5, the search range is set to 32 blocks (16 blocks in both directions) and
the modified block search is performed in a unit of multiple blocks. FIG. 3 shows an
example that the blocks identical with the modified blocks of the second version (V2)
exist in the search range of the first version (V1). FIG. 4 shows an example that the
blocks similar to the modified blocks of the second version (V2) exist in the search
range of the first version (V1). FIG. 5 shows an example that no blocks identical with
or similar to the modified blocks of the second version (V2) exist in the search range of
the first version (V1).

In the case where the blocks identical with the modified blocks of the V2 are found
in the search range of the V1, the upgrade package processor 10 generates map data
having the information on the indexes of the blocks.

As shown in FIG. 3. the upgrade package processor 10 compares the V1 and V2 in
unit of block. If at least one modified block is detected, the upgrade package processor
10 searches for an identical block in the search range of the V1. If an identical block is
found, the upgrade package processor 10 produces the map data containing the index
of the block of the V1 rather than generating the upgrade data of the modified block of
the V2.

In the example of FIG. 3, the 16" to 19" blocks of the V1 are right-shifted so as to
occupy the 20" to 24" blocks of the V2. Accordingly, the upgrade package processor
10 searches for the blocks identical with the modified 16" to 19" blocks of the V2 and

11

WO 2007/148900 PCT/KR2007/002947

—_ o, —_—_——_.—_. .
~N] N N N D
~ N D B W N =

e e e e e e e e

[79]

[80]

—_— —, —, —
o0 o0 o0 OO
w kW

detects that the 12", 13", 8", and 9"blocks of the V1 are identical with the modified 16
®to 19" blocks. As shown in FIG. 3, the 16" and 17"blocks of the V2 are identical with
the 12" and 13" blocks of the V1, and the 18" and 19" blocks of V1 are identical with
the 8" and 9" blocks. Table 1 shows map data to be contained in the upgrade package
generated in such manner depicted in FIG. 3.

Table 1

C:0,15, F:0, null, null

M:16,4 F:1, (16-12), (17-13), (18-8), (19-9), 0,0,0,0

S:20,5 F:0, (20-4), 0

OR

C:0,15, F:0, null, null

M:16,4 F:1, (16-12), (17-13), (18-8), (19-9), 0,0,0,0

S:20,5 F:0, (20-16), 0

In Table 1, the map data inform that the 0" to 15" blocks of the V2 are identical with
those of the V1, the 16" to 19" blocks of V2 are identical with 12", 13", 8", and 9"
blocks of V1, and the 20"to 24" blocks of the V2 are identical with the 16" to 20"
blocks of V1. That is, when the modified blocks of the V2 are found in the search
range of the V1, the upgrade package processor 10 generates the map data mapping the
modified blocks of the V2 to the blocks found in the search rangeof the V1. In this
case, the upgrade package is generated with the history data and the map data shown in
Table 1.

FIG. 4 shows another example of the upgrade package generation technique when
blocks identical with some modified blocks of the V2 do not exist but similar blocks
exist in the search range of the V1. As shown in FIG. 4, the 16" to 19" blocks of V2
are newly inserted and the original 16" to 19" blocks of V1 are right-shifted to become
the 20" to 24" blocks of the V2.

As shown in FIG. 4, there is no blocks identical with the 17" and 18" blocks of the
V2 in the search range of the V1. In this case, the upgrade package processor 10
generates the map data shown in Table 2 using the data of the V1 and V2.

Table 2

C:0,15, F:0, null, null

M:16,4 F:1, (16-12), (17-13), (18-6), (19-7), 0, code (B,K),code (B,C), 0

S:20,5 F:0, (20-4), 0

In Table 2, the map data inform that the 0" to 15" blocks of the V2 are identical with
those of the V1 and the 20" to 24" blocks of the V2 are identical with the 16" to 20"
blocks of the V1. Also, the map data inform that the 16" and 19" blocks of V2 are
identical with 12" and 7", the 17"block of the V2 is entropy-encoded (code (B,K)) by a

12

WO 2007/148900 PCT/KR2007/002947

[87]

[88]

[89]

[90]

o —
NO N NO O
B W N

difference with the 13"block of the V1, and the 18" block of the V2 is entropy-
encoded (code (B,C)) by a difference with the 8" block of the V1. In the case that a
block identical with the modified block of the V2 is not found in the search range of
the V1 as in FIG. 6, the upgrade package processor 10 maps the modified blocks of the
V2 to corresponding blocks of the V1 and performs entropy coding on the basis of the
difference of the blocks of the V1 and V2.

FIG. 5shows another example of the upgrade package generation technique when
blocks identical with or similar to some modified blocks of the V2 do not exist in the
search range of the V1.

The upgrade package processor 10 compares the V1 and V2 in unit of block, checks
the attributes (C, M, or S) of the blocks of the V2, and generates the upgrade data on
the basis of the attributes of the blocks. The data of modified blocks are packed into
the upgrade package. As described above, the upgrade package processor 10 checks if
a block identical with a modified block of the V2 exists in the search range of the V1.
If no identical block is found, the upgrade package processor 10 performs the entropy
coding with the difference of the blocks of the V1 and V2 to generate upgrade data.

In FIG. 5, the 16" to 19" blocks of V2 are inserted in comparison such that the 16" to
19"blocks of the V1 are right-shifted. The upgrade package processor 10 searches for
blocks identical with the newly inserted blocks of the V2 in the search range of the V1.
Since there are no identical blocks in the search range, the upgrade package processor
10 designates the attribute M to the inserted blocks and sets the blocks as the upgrade
data.

As shown in FIG. 5, there are no blocks identical with the 16" to 19" blocks of the
V2 in the search range of the V1. In this case the upgrade package processor 10
generates the map data as shown in Table 3 and the upgrade data using the entropy

coding.

Table 3

C:0,15, F:0, null, null

M:16,4 F:2, null, null

S:20,5, F:0, (20-4), 0

In table 3, the map data inform that 0" to 15" blocks of the V2 are identical with
those of the V1, the 20" to 24"blocks of V2 are identical with the 16" to 20" blocks of
the V1, and the 16™ to 19" blocks of V2 are entropy-coded into Z, W, P, and X (code
(E, C)). When a modified block is not found in the search range as in FIG. 5, the
upgrade package processor 10 sets the flag of the block to 2 (F=2) and generates
separate upgrade data. In this case, the upgrade package includes the history data, map

data, and upgrade data.

13

WO 2007/148900 PCT/KR2007/002947

[97]

[98
[99
[100
[101
[102
[103

—_— e e

[104]

[105]

[106]

[107]

In the case of FIG. 5, the upgrade package processor 10 also can generate the
upgrade package without additional upgrade data. Table 4 shows the map data when

the upgrade data are excluded from the upgrade package.

Table 4

C:0,15, F:0, null, null

M:16,4 F:2, null, Z,W.P,X

S:20,5, F:0, (20-4), 0

In the case that the modified blocks are not found in the search range of the V1 (see
FIG. 5), the upgrade package processor produces map data by entropy-encoding the
data of the modified blocks. If the map data is generated in the form of Table 4, the
upgrade package processor 10 does not produce additional upgrade data and generates
the upgrade package with the history data and the map data.

FIG. 6shows an example of an improved upgrade package generation technique by
providing a gap region in the V1, and FIG. 7 shows an example of an upgrade package
generation technique especially when a block of the V1 is removed from the V2.

Referring to FIG. 6, if new data is added or some data is removed in the V2 in
comparison with the V1, the upgrade package processor 10 shifts the blocks following
the add or removed blocks. If the blocks are left-shifted, the upgrade package
processor 10 searches for the block identical with each modified block in the search
range of the V1. If an identical block is found, the upgrade package processor 10 maps
the block index of the V1 to the modified block of V2. Conversely, if no identical
macro block is found, the upgrade package processor 10 performs entropy coding on
the modified block data of the V2 to generate upgrade data.

While updating the V1 to the V2, a plurality of shift operations may be performed.
The V1 can be programmed with a gap region reserved for the shift operations. The
gap region can be configured in consideration of the upgrade data for the V2.
Preferably, the shift operations are performed without affecting a next component
using the gap region as shown in FIG. 6. In the example of FIG. 6, the V2 is
programmed by removing the 6™ to 10" blocks of the V1, adding the 3rd, 4th, 8th, 9th, 13"
and 17" to 19" blocks to the V1, and replacing the 15" block. In this case, the 5 blocks
are deleted and 8 blocks are added such that last 3 blocks are shifted. Since the last 3
blocks are shifted to the gap region, the next component of the V2 can be compared
with the corresponding component of V1 without affect of the shift operations.

Referring to FIG. 7, the Firmware Over-The-Air (FOTA)-capable binary data is
provided with gap regions such that the components are protected from each other. The
program has the structure of FIG. 7. That is, the V1 is composed by a plurality of

components (in FIG. 7, 5 components), and each component has a gap region. When

14

WO 2007/148900 PCT/KR2007/002947

[108]

[109]

[110]

[111
[112
[113
[114
[115
[116
[117

— e e e e e

[118]

the V2 is introduced as an upgraded program of the V1 with additional data blocks, the
upgrade package processor 10 can perform shift operations with the gap region. That
is, the upgrade package processor 10 performs the upgrade process in a unit of a
component such that the upgrade package can be generated per component.

As described above, the upgrade package is generated with the history data, map
data, and upgrade data. In this case, the map data includes the attributes (copy, modify,
and shift) of the blocks with block indexes, and the upgrade data represents the
modified blocks. Also, the upgrade package can be generated with the map data and
history data but not the upgrade data. In this case, the map data can include the in-
formation on the modified blocks in addition to the attributes of the blocks and their
indexes.

FIG. 8 shows an example of the upgrade package generation technique using the
history data and the upgrade data. In the case of generating the upgrade package with
the history data and the upgrade data, the upgrade package processor 10 generates
upgrade data as shown in FIG. 8 without the production of map data. Here, the upgrade
data has a structure containing the block data together with block indexes of the V2.

Referring to FIG. 8, the V2 is programmed by adding new 6" and 7" blocks between
the 5" and 6" blocks of the V1, adding new 13" to 17" blocks between the 14" and 15"
blocks of the V1, and removing the 9™ to 12" blocks of the V1. In this case, the
upgrade package processor 10 incorporates the block indexes and information on the
block data into the upgrade package. The upgrade data has a structure similar to that of
the map data. That is, the upgrade data include the command strings starting with one
of command of a C (copy), M (modify, insert or replace as same size), and S (shift),
and structured in the following string formats.

Copy command string

[cmd][start block No][number of block]

Modify command string

[cmd][start block No][number of block][data]

Shift command string

[cmd][start block No][number of block][previous version position]

The copy command string includes a start block index and a number of the blocks to
be copied; the modify command string includes a start block index and concatenation
information of the blocks; and the shift command string includes a start block index
and a corresponding block index of the V1.

In the example of FIG. 8, the upgrade information for indicating the blocks to be
copied to the V2 can be expressed by "C:0,6": the upgrade information for indicating
the blocks to be modified can be expressed by "M:6,2,X,Y" and "M:13,5, A,B,C,D,E"

and the upgrade inform for indicating the blocks to be shifted can be expressed by

15

WO 2007/148900 PCT/KR2007/002947

[119]

[120
[121
[122
[123
[124
[125
[126
[12
[128

—_— e e e e d e e

[129]

[130]

[131]

"S:8,3,6,S:11,2,13" and "S:18,7,15."

In the case that the upgrade package is generated as shown in FIG. 8, the recipient
device receive the upgrade package copies the 0" to 5" blocks of the V2 from the V1,
adds the X and Y for the 6" and 7" blocks, shifts the 6™ to 8" blocks of the V1 for 8" to
10" blocks of the V2, discards the 9" to 12" blocks of the V1, shifts the 13" and 14"
blocks of the V1 for the 11™ and 12" blocks of the V2, adds the A, B, C, D, and E for
the 13" to 17" blocks of the V2, and shifts the 15" to 21" blocks of the V1 for 18" to
24" blocks of the V2. The upgrade data of the upgrade package (delta package)

generated by the upgrade package processor 10 can be expressed as Table 5.

Table 5

C:0,6

M:6,2,X,Y

S:8,3,6

S:11,2,13

M:13,5,A,B,C.D,E

S:18,7,15

The upgrade package processor 10 generates the upgrade package by combining the
upgrade data and the history data and transports the upgrade package to the upgrade
package server 20. At this time, the upgrade package generated by the upgrade
package processor 10 is compressed before the upgrade package server 20. By
generating the upgrade package using the upgrade data without map data, the upgrade
package generation speed can be improved. The upgrade package can be generated
without the compression process.

The upgrade package generation techniques are described with reference to FIGS. 4
to 7 in more detail when using the history data, map data, and upgrade data and using
the history data and upgrade data.

FIG. 9 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with an exemplary embodiment
of the present invention. The upgrade package processor 10 compresses the V1 and
V2, produces an upgrade data and map data through a comparison analysis, generates
an upgrade package by combining an install data including the map data and the
upgrade data.

FIG. 10 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with another exemplary
embodiment of the present invention. The upgrade package processor 10 compresses
the Vland V2, produces upgrade data, and generates an upgrade package by

combining install data and the upgrade data. In this embodiment, the install data does

16

WO 2007/148900 PCT/KR2007/002947

[132]

[133]

[134]

[135]

not include map data.

FIG. 11 is a diagram illustrating a data format of an upgrade package generated by
the upgrade package processor of FIG. 9, and FIG. 12is a diagram illustrating a data
format of an upgrade package generated by the upgrade package processor of FIG. 10.

FIG. 13 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with another exemplary
embodiment of the present invention. The upgrade package processor 10 compares raw
data of the V1 and V2 to produce an upgrade data through the comparison analysis,
and generates an upgrade package by combining install data including map data and
the upgrade data. In this case, the install data can be generated without map data.

Referring to FIGS. 4 to 12, the upgrade package processor 10 includes a first
compressor 160, a first decompressor 165, a comparator 110, an install data generator
180 including a history data generator 120 and a map data generator 150, a package
generator 130, a second compressor 140, and a second decompressor 145. A first
version (V1) 50 and the second version (V2) 55 of a program are input after being
compressed as shown in FIGS. 4 and 5 or input in the form of raw data without the
compression process as shown in FIG. 13. The comparator 110 compares the V1 and
V2 in unit of block and checks to determine if corresponding blocks of the V1 and V2
are identical with each other. The comparator 110 can use an exclusive OR operation
circuit. If the compared blocks are not identical with each other, the comparator 110
searches for a block identical with the corresponding block of the V2 in a search range
of the V1. If a block identical with the corresponding block of the V2 is found in the
search range of the V1, the comparator 110 delivers information on the comparison
result and the block index of the block found for the corresponding block of the V2 to
the install data generator 180.

That is, the comparator 110 compares the blocks of theV1 and V2 having the same
block index and, if the two blocks having the same block index are identical with each
other, delivers thecomparison result with identity information. Conversely, if the two
blocks are not identical with each other, the comparator 110 searches for the block
identical with the current block of the V2 in the search range of the V1. The search
range is defined by a number of the blocks from a target block in regressive and
progressive directions of the compression process (in the examples of FIGS. 3t0 §, a
total 30 blocks, 15 blocks in each of the regressive and progressive directions). The
search can be performed by swinging the target block of the V2 in the search range of
the V1. If an identical block is found in the search range of the V1, the comparator 110
delivers the comparison result with a block index of identical block to the install data
generator 180. If no identical block is found, the comparator 110 delivers the

comparison result with a block index of a neighbor block in the V1 (in the case of

17

WO 2007/148900 PCT/KR2007/002947

[136]

[137]

[138]

[139]

[140]

modified block, a block index of the block next to the copied or shifted block) to the
install data generator 180.

Returning to FIGS. 3 to 5, if the 0" to 15" blocks of the V2 are compared with cor-
responding blocks of V1, the comparator 110 delivers the comparison results with their
identities to the install data generator 180.

In the case of 16" to 19" blocks of the V2, the comparator 110 recognizes that the
blocks are not identical with those of the V1 so as to search for the blocks identical
with respective target blocks of the V2 in the search range of the V1. If the search
range is 15 blocks, the comparator 110 searches the 1% to 15" blocks and then searches
again the 17" to 31" blocks of the V1. In the case of FIG. 3, the comparator 110
recognizes that the 16™ to 19" blocks of the V2 are identical with the 12th, 13th, 8th, and
9" blocks of the V1, respectively. Accordingly, the comparator 110 delivers the
comparison result having the block indexes of the 16" to 19" blocks of the V2 and the
block indexes of the 12%, 13", 8", and 9" blocks of the V1 with their relationships to
the install data generator 180.

In the case of FIG. 4, the comparator 110 recognizes that the 16" to 19" blocks of the
V2 are similar to 12th, 13th, 6th, and 7" blocks of the V1 such that the comparator 110
delivers a comparison result having the block indexes of the 16" to 19" blocks of the
V2 and the block indexes of the 12", 13", 6", and 7" blocks of the V1 with their rela-
tionships to the install generator 180. At this time, the comparison result informs a
difference between data K of the 17" block of the V2 and data B of the 13" block of
the V1, and a difference between data C of the 18" block of the V2 and the data B of
the 6" block of the V1. That is, when a prior block of two sequential blocks of the V2
is identical with a prior block of two sequential blocks of the V1 but a posterior block
of the two sequential blocks of the V2 is not identical with a posterior block of the two
sequential blocks of the V1, the comparator 110 delivers the comparison result having
block indexes with their relationships.

In the case of FIG. 5 where the blocks identical to or a series of blocks similar to the
16" to 19" blocks of the V2 are not found in the search range of the V1, the comparator
110 delivers the comparison result indicating that the 16" to 19" blocks of the V2
cannot be derived from the V1.

The install data generator 180 can be implemented with the history data generator
120 and the map data generator 120 as shown in FIG. 9, or can be implemented only
with the history data generator 120 as shown in FIG. 10. The history data generator
120 stores a version number of the second version of the program. For example, the
version number stored in the history data generator 120 is 5, the version of the second
program V2 is 5 such that the first version V1 is upgraded by combining with the

second version V2 having a version number of 5. The map data generator 150

18

WO 2007/148900 PCT/KR2007/002947

[141]

[142]

[143]

[144]

produces map data for generating the upgrade package by analyzing the comparison
result having blocks indexes of the first and second versions. The map data is produced
in the format of [Cmd][start block No, number of block][flag][distance][difference]. If
the blocks of the first and second versions having the same block indexes are identical
with each other, the map data generator 150 sets the command field of the map data to
C and lists the block indexes. The operation is repeated until a modified block or a
deleted block is detected in the second version.

If the blocks having the same block index differ from each other, the map data
generator 150 sets the command field of the map data to M or S. The command M can
imply an insertion command or a replacement command. The map data generator 150
analyzes the comparison result in association with the block indexes. If it is determined
that the second version V2 includes additional blocks in comparison with the first
version V1, the map data generator 150 sets the command field to M of the map data.
After setting the command field to M, the map data generator 150 searches for the
blocks identical with the added blocks in the search range of the V1. The map data
generator 150 generates a modification map data depending on whether the identical
blocks are found as in the example of FIG. 3, similar block patterns are found as in the
example of FIG. 4, or no identical blocks and no similar block patterns are found as in
the example of FIG. 5, in the search range of the V1. In the case of FIG. 5, the map
data and upgrade data are separately generated as in Table 3, or the upgrade data can
be incorporated into the map data as in Table 4. In the following embodiment, how to
generate the map data and upgrade data are separately described.

When a modified block replaces the original block of the same size, the map data
generator 150 performs an entropycoding on the basis of the difference between the
two blocks and generates the map data with the entropy coding result. In this case, the
blocks following the replaced block are not shifted. When some blocks of the first
version V1 are removed in the second version V2, the map data generator 150
generates map data for shifting the blocks following the removed block such that the
empty spaces are filled by the shifted blocks.

If the modified blocks are inserted, the original blocks are right-shifted. After
generating the insertion map data for inserting the modified blocks, the map data
generator 150 analyzes the output of the comparator 110, i.e. the block indexes of the
first and second versions. Next, the map data generator 150 generates the map data in-
corporating the block indexes, a number of the blocks to be shifted, and numbers of
shift blocks of the first and second versions.

If the second version shown in FIG. 3 is introduced, the map data generator 150
generates the map data as shown in Table 1. If the second version shown in FIG. 4 is

introduced, the map data generator 150 generates the map data as shown in Table 2. If

19

WO 2007/148900 PCT/KR2007/002947

[145]

[146]

[147]

the second version shown in FIG. 5 is introduced, the map data generator 150
generates the map data as shown in Table 3 or 4. In the following description, the map
data generation is described with an example of FIG. 5and Table 3.

The package generator 130 analyzes the compressed block data of the second version
output from the first compressor 160 and the map data output from the map data
generator 150 and generates an upgrade package on the basis of the analysis result. The
package generator 130 determines whether to generate the upgrade data on the basis of
the map data received from the map data generator 150. In more detail, the package
generator 130 analyzes the command field of the map data. The package generator 130
does not generate upgrade data if the command field of the map data of a block is set to
C or S. If the map data contains data for the corresponding block or a block index for
indexing a block of the first version, even though the command field of the map data is
set to M, the package generator 130 does not generate upgrade data. Conversely, if the
map data has the command field set to M but not a block index of the first version or
entropy data, the package generator 130 produces upgrade data using compressed
block data of the second version. That is, package generator 130 does not generate data
if the flag is set to F=1 although the command field is set to M, but generates data
when the command field is set to M and the flag is set to 2.

Next, the package generator 130 generates an upgrade package by merging the
upgrade data, if it is provided, and the install data generated by the install data
generator 180. The install data can be composed of only the history data or the history
data and the map data. That is, the install data generator 180 can be implemented with
the history data generator 120 and the map data generator 150 as depicted in FIG. 9, or
with only the history data generator 120 as depicted in FIG. 10.

Referring to FIG 5, the install data generator 180 is implemented without the map
data generator 150 unlike in FIG. 9. In this case, the package generator 130 generates
the upgrade data including the block indexes of the first version mapped to the cor-
responding block indexes of the second version and information on the block data. At
this time, the upgrade data is provided with commands similar to those provided by the
map data generator 150 of FIG. 9. The upgrade data per block can be expressed in such
a format as C:[start block No|[number of block], M:[start block No][number of block]
[data], and S:[start block No][number of block][previous version position].That is, the
upgrade data for copying a block from the V1 includes a start block index and a
number of the blocks to be copied; the upgrade data for adding or modifying blocks of
the V1 includes a start block index, a number of the blocks to be inserted or modified,
and concatenated block data for the blocks to be inserted or modified; and the upgrade
data for shifting blocks of the V1 includes a number of the blocks to be shifted and a
block index of a first block to be shifted.

20

WO 2007/148900 PCT/KR2007/002947

[148]

[149]

[150]

[151]

[152]

Next, the package generator 130 generates an upgrade package by merging the
upgrade data and the history data and transmits the upgrade package to the upgrade
package server 20. The upgrade package can be compressed by the second compressor
140 before being transmitted to the upgrade package server 20. In the case that the
upgrade package is generated without map data, the upgrade package can be quickly
generated.

As described above, the upgrade package can be composed of the history data, map
data, and upgrade data, or composed of only the history data and the upgrade data.
FIG. 11 shows a data format of an upgrade package generated by the upgrade package
processor of FIG. 9, and FIG. 12 show a data format of an upgrade package generated
by the upgrade package processor of FIG. 10.

The upgrade package output from the package generator 130 is compressed by the
second compressor 140 and the compressed upgrade package is transmitted to the
upgrade package server 20. The second compressor 140 may not be used. However, it
is prefer to compress the upgrade package for improving the transmission efficiency.
In the case that the first and second versions of the programs are compressed by the
first compressor 160, the first decompressor 165 decompresses the compressed first
and second versions for testing if the compression on the first and second versions
were correctly performed. If it is determined that an error occurred while compressing
the first and second versions, the first compressor 160 is controlled to retry the
compression.

The upgrade package processor 10 is structured such that the first and second
versions of the program are compared in the forms of compressed program data in
FIGS. 4 and 5. In this case, the comparator 110 compares the compressed first and
second versions of the program. However, the comparator 110 can be configured to
compare the raw data of the first and second versions.

FIG. 13 is a block diagram illustrating a configuration of an upgrade package
processor of a program upgrade system in accordance with another exemplary
embodiment of the present invention. As shown in FIG. 13, the upgrade package
processor 10 is implemented without the first compressor unlike the upgrade package
processors in FIGS. 4 and 5. Accordingly, the comparator 110 divides the first and
second versions of the program into blocks and compares the data of the first and
second versions of the program in a unit of a block. The structure and operation of the
upgrade package processor of FIG. 13 are identical with that of FIG. 9 except that the
upgrade package processor of FIG. 13 has no first compressor. Although the install
data generator 180 includes the history data generator 120 and map data generator, the
installd at a generator 180 can implemented only with the history data generator 120 as

in the upgrade package generator of FIG. 10.

21

WO 2007/148900 PCT/KR2007/002947

[153]

[154]

[155]

[156]

[157]

[158]

As described above, the upgrade package processor 10 compares the data of the
second version to the corresponding data of the first version and generates an upgrade
package with or without the install data depending on the comparison result. If the
second version is programmed such that some data blocks are removed from or added
to the first version, the original data blocks are shifted. In the case that some blocks are
removed, the blocks following the removed blocks are left-shifted. In contrast, if some
blocks are added, the blocks occupied positions at which the new blocks are added are
right-shifted. When the second version includes modified blocks, the upgrade package
processor 10 searches for blocks identical with the modified blocks in a search range of
the first version, and matches the block indexes of searched blocks in the V1 to the
block indexes of the modified blocks in the V2 or performs entropy coding on the basis
of the similarities of some series of the blocks, depending on the search result. The
blocks of the V1 replaced by the modified blocks are right-shifted in the V2 as much as
the number of the modified blocks. The upgrade package processor 10 produces map
data having a command filed set to C (copy), M (modify), and S (shift) on the basis of
the comparison result, and generates an upgrade package composed of the map data,
history data, and upgrade data. The map data can be incorporated into the upgrade
data. The upgrade package is transmitted to the upgrade package server 20 through a
wired or wireless communication channel.

If an upgrade package is received from the upgrade package processor 10, the
upgrade package server 20 notifies the recipient devices 30 of an issuance of a new
upgrade package such that the recipients 30 can download the upgrade package from
the upgrade package server 20. The upgrade package server may include a notification
server for notifying the issuance of new upgrade package.

If an upgrade notification message is received from the upgrade package server 20,
the recipient device 30 triggers a download of the upgrade package by responding to
the upgrade notification message.

FIG. 14 is a block diagram illustrating a configuration of a recipient device of a
program upgrade system according to an exemplary embodiment of the present
invention.

Referring to FIG. 14, the recipient device 30 includes a downloader 0, an installer
230, a translator 240, a first memory 250, and a second memory 260.

The downloader 220 receives the upgrade package downloaded from the upgrade
package server 20, the installer 230 extracts install data and upgrade data and stores the
extracted install data and upgrade data into the first memory 250. The install data are
composed of history data and map data. However, the install data may include only the
history data. In the case that the install data has no map data, block mapping in-

formation can be contained in the upgrade data. If the install data having no map data

22

WO 2007/148900 PCT/KR2007/002947

[159]

[160]

is received, the installer 230 performs a comparison analysis on the first version and
the upgrade data and determines whether to generate map data depending on the
analysis result. In the case where no map data is generated by the installer 230, the
translator 240 can merge the upgrade package and the first version of the program
using the mapping information contained in the upgrade data. The installer 230 stores
the history data, map data, and upgrade data within a region of the first memory 250
prepared for the upgrade package. The first memory 250 can store the first version of
the program and at least one upgrade package for updating the first version to the
second version of the program. A number N of the upgrade packages that can be stored
in the first memory 250 can be preset. In this embodiment, N is set to 6.

If an upgrade package for a new version of the program is downloaded, the recipient
device 30 outputs an alert for notifying the user that a program upgrade is prepared. At
this time, the translator 240 reads out the data of the first version of the program and
the upgrade package for the second version, and merges the data of the first version
and the upgrade package so as to produces the second version. The second version of
the program is loaded on the second memory 260. At this time, the translator 240
analyzes the install data of the upgrade package to check the version number and the
target version to be upgraded. Also, the translator 240 analyses the map data and
upgrades the data of the blocks of the target version (in this embodiment, the first
version) with corresponding upgrade data with reference to the map data. In the case
where the install data has no map data, the translator 240 analyzes the history data and
determines a target version of the program to be upgraded on the basis of the history
data analysis result. The second version can be generated by merging the upgrade data
of the upgrade package and the first version. The translator 240 loads the data of the
second version on the second memory 260 while the first version is upgraded to the
second version. After completing the upgrade process, the recipient device 30 operates
with the second version of the program loaded on the second memory 260.

As described above, the first memory 250 stores the first version of the program and
at least one upgrade package for updating the first version to the second version. The
upgrade package includes install data (history and map data) and upgrade data. The
install data can be composed of only history data. Also, the upgrade package can be
composed of only the install data. The install data is composed of the map data
containing mapping information of the history data and the upgrade data of the
upgrade package. The map data provides a relationship between the two versions by
using the 3 types of commands i.e. copy, modify, and shift. The map data is used for a
quick address calculation for updating the data of the first version to the data of the
second version. With reference to the data of the first version stored in the first

memory 250 and using the map data, the second version of the program can be quickly

23

WO 2007/148900 PCT/KR2007/002947

[161]

[162]

[163]

[164]

[165]

[166]

generated and loaded on the second memory 260.

The install data of the upgrade package can be produced with or without the map
data at the upgrade package processor 10. Accordingly, the upgrade package
downloaded from the upgrade package server 20 may or may not include the map data.
In the case that the upgrade package has no map data, the installer 230 can produce the
map data by comparing the data of the first version stored in the first memory 250 and
the upgrade package and analyzing the comparison result for mapping the upgrade data
of contained in the upgrade package to the data of the first version. The upgrade data
can be structured as shown in FIG. 8. The reason why the map data is generated by the
installer 230 is to increase the second version generation speed of the translator 240. In
the case where the upgrade data contains mapping information for mapping the
upgrade data to the data of the first version, the upgrade data can be directly replaced
or replaced with reference to map data generated afterward.

Although it is preferred to upgrade the first version with the latest upgrade package,
the first version can be upgraded with an upgrade package for another version of the
program. This is possible because the recipient device 30 provides for the storage of
different versions of upgrade packages. Accordingly, if the second version generation
fails with a particular upgrade package, it is possible to try to generate the second

version using another upgrade package stored in the first memory 250.

The first memory 250 can be implemented with several storage regions for storing
upgrade packages, respectively (in this embodiment, 6 upgrade packages can be
stored). Accordingly, even though a new upgrade package is downloaded for the
upgrade package server 20, a previously downloaded upgrade package is not deleted.
The upgrade records are stored as upgrade history, while maintaining the upgrade and
installdat a for the first version of the program. Since the information on the first and
second versions are maintained with the upgrade history, the upgrade can be performed
with a high fault tolerance. For example, when the last upgrade package does not work,
another upgrade package can be used by user selection. Even in the worst case where
all of the upgrade packages do not work, the original version of the program can be
recovered.

FIG. 15 is a block diagram illustrating a configuration of a first memory of a
recipient device of FIG. 14. Referring to FIG. 15, the first memory includes a first
storage region 310, a second storage region 320, and a third storage region 330.

The first storage region 310 stores the first version of the program in the form of raw
data or compressed data. The second storage region 320 stores at least one upgrade
package for generating a new version of the program. Each upgrade package includes

the upgrade data and install data. The upgrade data may include commands with block

24

WO 2007/148900 PCT/KR2007/002947

[167]

[168]

[169]

indexes for updating the data of an old version, or data to be added for the new version.
Accordingly, the size of the second storage region 320 is determined based on the
number of upgrade packages stored therein. The third storage region 330 is a user
space for storing user data with a file system.

FIG. 16 is a diagram illustrating a structure of the second storage region 320 of the
first memory 250 of FIG. 15, and FIG. 17 is a diagram illustrating a data format of the
history data of each upgrade package stored in the second storage region 320 of FIG.
16.

Referring to FIG. 16, the second storage region 320 is provided with a predetermined
number of storage regions for storing the upgrade packages (in this embodiment, 6
upgrade packages). Each storage region is structured to store history data, map data,
and upgrade data constituting the upgrade package. Typically, the upgrade package
includes install data and upgrade data, and the install data is composed of history data
or history and map data. The second storage region 320 can be configured to separately
store the history data and map data. The history data is stored for maintaining a link to
the first version stored within the first storage region 310. The map data and upgrade
data of the first version may not be stored or may exist as null data. FIG. 16 shows an
example of the upgrade package composed of the history data, map data, and upgrade
data. In the case that the upgrade package processor 10 generates the upgrade package
with the history data and the map data, the second storage region 320 can be structured
with the storage regions for storing the history data and map data of corresponding
version.

Referring to FIG. 17, the history data includes a version field, a size field, a
combined flag field, and a fail flag field. Here, the version field contains a version
number of the upgrade package (one of #2 to #7 in FIG. 16), the size field contains a
size value of the history data, the combined flag field contains a version number of a
target version to be upgraded (in this example, the version number #1 of the first
version), and the fail flag field contains information indicating the occurrence of a
loading failure. The version number #1 of the first version can be contained in the
version field and linked to the combined flag field. For example, if a version field and
combined flag field of the history data of an upgrade package, respectively contain #5
and V#1, the recipient device 30 upgrades the first version of #1 by merging the
second version of #5 and the first version of #1. The downloaded upgrade package is
stored into the second storage region 320 of the first memory 310 shown as shown in
FIG. 15 in the structure of FIG. 10. When an upgrade package stored in the second
storage region 320 is requested, the requested package is merged with the first version
stored in the first storage region 310 such that the first version is upgraded to the

second version.

25

WO 2007/148900 PCT/KR2007/002947

[170]

[171]

[172]

[173]

[174]

[175]

FIG. 18 is a block diagram illustrating an upgrade operation of a program upgrade
system according to an exemplary embodiment of the present invention. In the
example shown in FIG. 18, the first memory is a non-volatile memory such as flash
memory, and the second memory is a volatile memory such as a random access
memory (RAM).

Referring to FIG. 18, if an upgrade request is input, a loader (not shown) loads an
upgrade package of the requested version from the second storage region 320 of the
first memory 250, and the translator 240 generates a second version of the program by
merging the loaded upgrade package and the first version of the program stored in the
first storage region 310 and then loads the second version on the second memory 260.
The upgrade request is generated in response to a user command. That is, the recipient
device 30 outputs an alert for notifying the user of an issuance of an upgrade package
when an upgrade package is downloaded, or there exists a downloaded package which
is not applied such that the user can trigger an upgrade to the target program. If the
upgrade request is input by the user in response to the upgrade alert, the recipient
device 30 performs an upgrade process as described above and loads the upgraded
version of the program on the second memory 260. Accordingly, the recipient device
30 operates afterward with the second version.

The upgrade process can be performed after the recipient device is initialized. As
shown in FIG. 135, the first version and upgrade packages of the program are separately
stored in the first memory 250 and the program upgrade is performed by merging the
first version and one of the upgrade packages such that the second version of the
program is generated and loaded on the second memory 260.

FIG. 19 is a block diagram illustrating an upgrade operation of a program upgrade
system according to another exemplary embodiment of the present invention. In this
embodiment, the first memory 250 does not store an upgrade package for the second
version.

Referring to FIG. 19, the first memory 250 stores the first version of the program.
Here, the first version can be an initial version of the program. The first version of the
program is composed of n blocks B#1 to B#n. Install data of the first version includes
history data and map data. The history data has a version field set to #1 and a
combined flag field set to #1. The map data can be structured in the form of one of
Tables 1 to 3.

If an upgrade request command is input, the translator 240 analyzes the install data.
In the case where no upgrade package exists in the first memory 250, a map data
region is in a null state or provided with map data {C:0,n, F:0, null, null}. Such map
data implies a command to load the first version of the program stored in the first

memory 250 into the second memory, whereby the translator 240 copies the first

26

WO 2007/148900 PCT/KR2007/002947

[176]

[177]

[178]

[179]

version from the first memory 250 and loads the copied first version into the second
memory 260. Accordingly, the recipient device 30 is operated by the first version
loaded in the second memory 260. The first version can be stored in the first memory
250 in a compressed state. In this case, the translator 240 decompresses the
compressed first version using the decompressor 270 and then loads it in the second
memory 260. Also, when an upgrade package compressed by the second compressor
140 of the upgrade package processor 10 is downloaded, the translator 240 performs
translation after the compressed upgrade package is decompressed by the de-
compressor 270, before loading in the second memory 260.

FIGS. 20 and 21 are block diagrams illustrating an upgrade operation of a program
upgrade system according to another exemplary embodiment of the present invention.
In this embodiment, the first version V1 is stored in the first storage region 310 of the
first memory 250 and the upgrade packages are stored in the second storage region 320
of the first memory 250. The first version can be an initial version or a preset reference
version, and each upgrade package is composed of upgrade data and install data. The
install data includes history data containing version numbers of the second version and
a target version to be upgraded (in the example, the first version), and map data. The
first version is composed of n blocks B#1 to B#n as in FIGS. 20 and 21. The combined
flag field of the history data is set to #0 and the map data can be structured in the form
of one of Tables 1 to 3.

Referring to FIG. 20, the first storage region 310 of the first memory 250 stores the
first version of the program, and a specific upgrade package stored in the second
storage region 320 of the first memory 250 has the map data in the form of Table 1.
The history data of the upgrade package has a flag for merging the upgrade package
with the first version. In this case, the translator 240 upgrades the first version to the
second version with reference to the map data and loads the second version into the
second memory 260. The map data includes information for copying the 0" to 15"
blocks of the first version, copying the 12", 13", 8", and 9" of the first version for the
156" to 19" blocks of the second version, and right-shifting the blocks following the 15
" block of the first version. Accordingly, the translator 240 upgrades the first version
with reference to the map data and loads the upgraded program, i.e. the second version,
into the second memory 260 as shown in FIG. 21.

In the case where there exists a gap between the blocks, the blocks are shifted to the
gap.

Referring to FIG. 21, the first storage region 310 of the first memory stores the first
version of the program, and the second storage region 320 of the first memory 250
stores the upgrade packages. It is assumed that a specific upgrade package has its map

data structured in the form of Table 3. The history data of the upgrade package has a

27

WO 2007/148900 PCT/KR2007/002947

[180]

[181]

[182]

[183]

[184]

[185]

flag for indicating the merge of the first version and the upgrade package. The map
data has information for copying the 0" to 15" blocks of the first version inserting the
upgrade data {Z,W,P, X} for the 16™ to 19" blocks of the second version, and right-
shifting the blocks following the 15" block of the first version. In this manner, the
translator 240upgrades the first version with reference to the map data.

After the program is upgraded, the recipient device 30 is operated by the second
version of the program that is upgraded in accordance with the examples of FIGS. 20
and 21. The first version and the upgrade packages can be stored in compressed states.
The upgrade packages can be downloaded as a compressed package or compressed
after being downloaded. In the case where the first version and the upgrade packages
are stored in the compressed states, the translator 240 decompresses the compressed
first version and the upgrade packages using the decompressor 270 for use in an
upgrade process. In the case where the first and second versions are compared in the
compressed states (when the first and second versions are compressed by the first
compressor 160 of the upgrade package processor 10), the blocks input to the translator
240 can be in compressed states. In this case, the translator 240 decompresses the
compressed data of the first version and the upgrade package using the decompressor
275 and loads the decompressed data into the second memory 260.

FIG. 22 is a block diagram illustrating an upgrade operation of the recipient device of
the program upgrade system according to an exemplary embodiment of the present
invention.

Referring to FIG. 22, the first memory 250 stores the first version of the program and
upgrade packages for the second version. The translator 240 merges an upgrade
package and the first version in response to an upgrade command such that the second
version is generated and loaded into the second memory 260. After the second version
of the program is loaded into the second memory 260, the recipient device 30 is
operated by the second version of the program. The upgrade process can be repeatedly
performed when the recipient device 30 is initialized or an upgrade command is input.

As described above, the program upgrade method according to an embodiment of the
present invention downloads an upgrade package through a predetermined com-
munication standard channel, stores the downloaded upgrade package, performs
upgrade of the program using the stored upgrade package, loads the upgraded program,
and operates the recipient device under the control of the upgraded program.

The program upgrade method of the present invention can be an upgrade package
generation procedure, a downloaded install data processing procedure, a downloaded
upgrade package management procedure, and an upgrade execution procedure.

In the upgrade package generation procedure, the first and second versions of the

program are input to the upgrade package processor 10. The first and second versions

28

WO 2007/148900 PCT/KR2007/002947

[186]

[187]

[188]

[189]

[190]

can be input in a raw or in a compressed state. Next, the first and second versions are
compared such that differences between the two versions are determined. On the basis
of the differences, install data including map data for merging the upgrade package
with the first version installed in the recipient device are generated. The install data is
packed into an upgrade package together with upgrade data, and the upgrade package
is transmitted to the upgrade package server.

In the downloaded install data processing procedure, the upgrade package
transmitted to the upgrade package server is downloaded to a recipient device. The
recipient device can obtain the install data contained in the upgrade package by
comparing the upgrade package with a reference version (here, the first version), and
the install data to facilitate an address calculation. That is, when merging the first
version, stored in the first memory 250, and the upgrade package into the second
memory 260, the data of the first version and upgrade package can be quickly
processed on a block basis using the install data.

In the upgrade package management procedure, the install data is used for fast
address calculation referring to the map data that are obtained by comparing the
upgrade package and the first version, and for facilitating the merging of the first
version and the upgrade package into the second memory 260.

The upgrade package installation can be performed depending on whether or not the
map data is packed in the upgrade package. In the case where the map data is packed in
the upgrade package, the recipient device 30 extracts the history data, map data, and
upgrade data from the upgrade package and independently stores the extracted data in
the upgrade package regions of the first memory 250.

On the other hand, if no map data is contained in the upgrade package, the recipient
device 30 can obtain the map data by comparing the first version stored in the first
memory 250 and the downloaded upgrade package. At this time, the map data can be
integrated into the upgrade data as shown in FIG. 8. In this case, the recipient device
extracts the map data from the upgrade data during the install process and install the
map data in a map data region. The recipient device also extracts the upgrade data and
installs it in the upgrade package storage region. Accordingly, the recipient device can
install the upgrade package in the same manner as the map data is packed in the
upgrade package. The install data also includes history data of the upgrade package.
The history data indicates the versions of the upgrade packages and the target program.
In this embodiment, 6 upgrade packages can be stored in the first memory 250. When a
merge failure occurs with a specific upgrade package, the recipient device allows the
user to select another upgrade package by displaying an upgrade package list.

In the upgrade execution procedure, the upgrade packages are stored in cor-

responding storage regions prepared in the first memory 250. Accordingly, when a new

29

WO 2007/148900 PCT/KR2007/002947

[191]

[192]

[193]

[194]

upgrade package is downloaded, the previously downloaded upgrade package is not
erased. Accordingly, when a specific upgrade package is not loaded, the recipient
device 30 allows the user to select another upgrade package for program upgrade by
displaying an upgrade package list. Even in the worst case where all of the upgrade
packages are not loaded, the first version of the program can be loaded.

FIG. 23 is a flowchart illustrating a program upgrade method according to an
exemplary embodiment of the present invention. The steps of the program upgrade
method are depicted in relation to the operations of the upgrade package processor 10
and the recipient device 30 of the program upgrade system of FIG. 1.

Referring to FIG. 23, the upgrade package processor 10 receives the first and second
versions of a program in step S411. An upgrade package is generated, when a new
version of the program is introduced, by comparing the old version, i.e. the first
version, and the new version, i.e. the second version. The upgrade package is
composed of upgrade data and install data. The first version can be an original version
or a reference version that is programmed to be merged with upgraded packages. The
upgrade package is an information package for upgrading the first version of the
program installed in the recipient device to the second version. The recipient device
can store at least one upgrade package.

If the first and second versions of the program are received, the upgrade package
processor 10 analyzes the differences between the first and second versions in step
S413, and generates upgrade package on the basis of the analysis result in step S415.
The upgrade package can include upgrade data and install data containing information
for combining the upgrade data with the first version. The install data includes history
data providing a history of the second version and map data providing information for
mapping blocks of the first and second versions of the program. The map data does not
have to be contained in the install data. In this case, the recipient device can generate
the map data in the program upgrade process. The install data are provided for fa-
cilitating the program upgrade process. If the upgrade package is successfully
generated, the upgrade package processor 10 transmits the upgrade package to the
upgrade package server 20. Upon receiving the upgrade package, the upgrade package
server 20 transmits an upgrade notification message to the recipient device 30. If an
upgrade notification message is received, the recipient device 20 starts downloading
the upgrade package in response to a user command. The download procedure can be
determined on the basis of the communication standard supported by the recipient
device 30. The communication standards include CDMA, UMTS, GSM, WiBro, Wi-
Fi, WiMAX, Bluetooth, UWB, Zigbee, and USB.

If the upgrade package download is started, the recipient device 30 receives the

upgrade package in step S451 and stores the downloaded upgrade package into the first

30

WO 2007/148900 PCT/KR2007/002947

[195]

[196]
[197]

[198]

memory 250. The first memory 250 is provided with the first storage region 310 for
storing the first version of the program and a second storage region 320 for storing the
upgrade packages. The second storage region 320 can be structured in the form of
multiple storage regions for storing corresponding upgrade packages. In this
embodiment, the second storage region 320 has 6 storage regions. Eachstorage region
can separately store the history, map data, and upgrade data.

In the case where the map data is not contained in the install data of the downloaded
upgrade package, the installer 230 of the recipient device 30 generates the map data
with reference to the upgrade package and the first version of the program. After the
upgrade package is stored in the first memory 250, the recipient device 30 upgrades, in
response to a user command or a reboot, the program to the second version by merging
the upgrade package and the first version and then loads the second version of the
program on the second memory 260 in step S455. Accordingly, the recipient device 20
is operated afterward under the control of the second version of the program. The
second memory 260 can be a working memory such as a volatile memory. In such a
manner, the recipient device 30 generates the second version of the program by
merging the first version stored in the first memory 250 and the recently downloaded
upgrade package in a system initialization process, and loads the second version on the
second memory 260 for controlling operations of the recipient device 30. When the
program upgrade fails with respect to a specific upgrade package, the recipient device
30 can automatically try upgrading the program with another upgrade package stored
in the first memory 250. Also, the recipient device 30 allows the user to select an
upgrade package by providing an upgrade package list such that the first version is
upgraded with a selected upgrade package.

An upgrade package generation procedure is described hereinafter in more detail.

FIGS. 24 to 16Care flowcharts illustrating an upgrade package generation procedure
of a program upgrade method according to an exemplary embodiment of the present
invention.

Referring to FIG. 24, the upgrade package processor 10 loads the first and second
versions of the program in a memory in step S501, and compares the two versions with
each other to determine differences between the two versions in step S503. After de-
termining the differences between the first and second versions, the upgrade package
processor 10 generates comparison analysis data. Next, the upgrade package processor
10 generates upgrade data in step S505 and install data in step S507 on the basis of the
comparison analysis. The upgrade package processor 10 can be implemented with a
package generator 130 and an install data generator 180. In this case, the upgrade data
and install data can be generated in parallel processes. The package generator 130 also

can be implemented to generate the upgrade data and the install data in series. In this

31

WO 2007/148900 PCT/KR2007/002947

[199]

[200]

[201]

[202]

[203]

[204]

[205]

case, the upgrade data can be generated before or after the generation of the install
data.

The install data provides information for merging the upgrade package with the first
version of the program in the form indicating the history data and map data. The
history data contains information on the versions of the first and second versions of the
program and the size of the versions. The map data includes provides information for
mapping blocks of the first and second versions of the program. The map data can be
generated at the upgrade package processor 10 or at the recipient device 30. Ac-
cordingly, the map data does not have to be packed in the upgrade package.

FIG. 25 is a flowchart illustrating the install data generation procedure of step S507
of FIG. 24, and FIG. 26 is a flowchart illustrating upgrade package generation
procedure of step S509 of FIG. 24.

Accordingly, in the install data generation procedure of FIG. 25, the map data may or
may not be generated. Also, in the upgrade package generation procedure of FIG. 26,
the map data may or may not be merged.

Referring to FIG. 25, the upgrade package processor 10 generates the history data in
step S521 and determines if map data is required for the upgrade package in step S523.
If the map data is required, the upgrade package processor 10 generates the map data
with reference to the comparison analysis in step S525.

Referring to FIG. 26, the upgrade package processor 10 determines whether to pack
the map data in the upgrade package in step S531. If it is determined to pack the map
data in the upgrade package, the upgrade package processor 10 generates the upgrade
package with the map data in step S533, and otherwise, the upgrade package processor
10 generates the upgrade package without map data in step S535. The map data can be
structured as shown Tables 1 to 4 in association with FIGS. 3 to 5.

At step S501 of FIG. 24, the first and second versions of the program canbe input in
a state of raw data or compressed data (for example, the first and second versions can
be compressed by the first compressor 160). Also, the upgrade package generated at
step S509 can be compressed before transmitting to the upgrade package server (for
example, the upgrade package can be compressed by the second compressor 140 of the
upgrade package processor 10). By compressing the first and second versions, the data
processing needed for comparing the first and second version can be reduced. The
compression of the upgrade package can reduce the transmission data amount. When
the data compression is applied, the compressed data is decompressed in order to
perform a reliability test. Only when the compressed data passes the test, can the next
process be performed.

FIG. 27 is a flowchart illustrating an upgrade package generation procedure of a

program upgrade method according to an exemplary embodiment of the present

32

WO 2007/148900 PCT/KR2007/002947

[206]

[207]

[208]

[209]

invention. FIG. 28 is a flowchart illustrating a compression reliability test procedure of
FIG. 27. FIG. 29 is a flowchart illustrating an install data generation procedure of FIG.
27. F1G. 30 is a flowchart illustrating an upgrade package generation procedure of FIG.
27.

Referring to FIGS. 17to 20, a configure file is input to the upgrade package processor
10 in step S551. The configure file includes flags for defining operations of the
upgrade package processor 10. Among the flags, C_FLAG is a compression flag for
configuring whether or not to apply data compression, M_FLAG is a map generation
flag for configuring whether or not to generate map data, and V_FLAG is a verify flag
for verifying whether or not the compression is normally performed by decompressing
compressed information. Next, the upgrade package processor 10 loads both the first
and second versions of the program in step S553. The first version can be an initial
version or a reference version for upgrading the program, and the second version is the
last version of the program.

After loading the two versions, the upgrade package processor 10 determines
whether to compress the both versions referring to C_FLAG in step S555. If no
compression is required, the upgrade package processor 10 configures the two versions
for generating a map in step S561. If the C_FLAG is setto 1 (C_FLAG=1), i.e. the
data compression is required, the upgrade package processor 10 executes a compressor
(compressor_1) in step S557 and controls the compressor to compress the first and
second versions of the program in step S559. Next, the upgrade package compressor
10 executes a comparator to compare the compressed two versions in step S563.

The compression procedure at step S559 is performed as shown in FIG. 28. In the
case where the compression flag is set, the verify flag is set in general. If the verify
flag (V_FLAG) is set, the upgrade package processor 10 decompresses the compressed
data and compares the decompressed data to the original data before the compression.

Referring to FIG. 28, after compressing the first and second versions of the program,
the upgrade package processor 10 determines if the verify flag is set to 1 (V_FLAG=1)
in step S601. If the verity flag is set to 1, the upgrade package processor 10 executes a
decompressor (Decompressor_1)to decompress the compressed first and second
versions in step S603 and compares the data before and after the compression in step
S605. Next, the upgrade package processor 10 verifies a successful compression by de-
termining if the data before and after the compression are identical with each other in
step S607. If the compression is verified, the upgrade package processor 10 sends the
verification results to the comparator 110 in step S609, and otherwise, the upgrade
package processor 10 executes an error handling process in step S611. In this case, the
upgrade package processor 10 may again perform the compression on the first and

second versions.

33

WO 2007/148900 PCT/KR2007/002947

[210]

[211]

[212]

[213]

[214]

Returning to FIG. 27, after comparing the first and second versions at step S563, the
upgrade package processor 10 executes an install data generator 180 to generate install
data in step S565. The install data generator 180 may or may not generate a map
depending on the value of M_FLAG. Accordingly, the upgrade package processor 10
determines if the map flag is set to 1 (M_FLAG=1) in step S567. If the map flag is set
to 1, the upgrade package processor controls the comparator 110 to compare the first
and second versions in step $569. The data comparison is performed in unit of block of
a predetermined data size. If a block having different data is found in the comparison
process, an identical block search is performed in the search range of the first version
as shown in FIGS. 3 to 5.

The first and second versions are compared in a raw data state or a compressed data
state. After completing the comparison, the upgrade package processor 10 controls the
comparator 110 to transmit the comparison result to the install data generator 180 in
step S571 and save the comparison result in a storage region in step S577. In a case
that the map flag is set to O (M_FLAG=0), the upgrade package processor 10 controls
the comparator to compare the first and second versions in step S575 and save the
comparison result for use in generating the install data in the storage region in step
S577. The first and second versions are compared in a raw data state or a compressed
data state. When the map data is required, the upgrade package processor 10 controls
the transmission of the comparison result to the install data generator 180 and savesthe
comparison result in a storage region for use in generating the map data and the
upgrade data. When the map data is not required, the upgrade package processor 10
controls the saving of the comparison result in the storage region for use in generation
of upgrade data.

Next, the upgrade package processor 10 controls the install data generator 180 to
generate the install data in step S579. The install data generation procedure is
performed as shown in FIG. 29.

Referring to FIG. 29, the upgrade package processor 10 controls the install data
generator 180 to start generating the install data in step S651 and checks history in-
formation of the first and second versions in step S653. Next, the upgrade package
processor 10 runs a history data generator 120 in step S655, such that the history data
generator generates the history data in step S657. The history data has a format
composed of a header, first input version information, second input version in-
formation, and memory information. Each of the first and second input version in-
formation is composed of a version identifier (SW VER), a time stamp (SW time
stamp), and a checksum (SW checksum). That is, the history data provides information
on the version numbers of the first and second versions.

After the history data is generated, the upgrade package processor 10 determines if

34

WO 2007/148900 PCT/KR2007/002947

[215]

[216]

[217]

[218]

the map flag is set to 1 (M_FLAG=1) in step S659. If the map flag is set to 1, the
upgrade package processor 10 runs a map data generator 150 in step S603, and the map
data generator 150 generates the map data (S665). The map data includes commands
such as copy (C), modify (M), and shift (S). The map data is set per block. The map
data is generated on the basis of the comparison result of the first and second versions
such that the blocks of which data are identical with those of previous version are set
with C, the blocks additionally inserted to the previous version or modified from the
blocks of the previous version are set to M, and the blocks located at the positions to be
occupied by inserted or modified blocks are set with S. That is, the map data is
composed of the block indexes and data indicating the differences between the first
and second blocks. As described above, the map data is produced in the format of
[Cmd][start block No, number of block][flag][distance][difference]. When the first and
second versions are given in FIGS. 3 to 5, the map data is structured as shown in
Tables 1 to 3. In this case, the upgrade data becomes the blocks associate with
command M, i.e. modified data. After generating the map data, the upgrade package
processor 10 merges the history data and the map data in step S667. Accordingly, the
install data is generated with or without the map data in step S661.

Returning to FIG. 27, after the install data is generated, the upgrade package
processor 10 executes the package generator 130 in step S581 and the package
generator 130 generates the upgrade package in step S583.

FIG. 30 is a flowchart illustrating an upgrade package generation procedure of a
program upgrade method according to another exemplary embodiment of the present
invention.

Referring to FIG. 30, the upgrade package processor 10 controls the package
generator 130 to generate upgrade data on the basis of the comparison result. When
blocks identical with the modified blocks of the second version are not found in the
first version, the package generator 130 sets the modified blocks as the upgrade data.
The location of the upgrade data is determined depending on the map data. Although it
is assumed that the upgrade package includes the history data, map data, and install
data in this embodiment, the upgrade package can be composed without map data. In
the case that the upgrade package is composed of only the install data, the upgrade
package processor 10 generates the map date having mapping information on the
blocks of the second version that are different form the first version and the different
blocks themselves.

When the install data has no map data, the upgrade package generator 130 can
generate the upgrade data having the indexes of the blocks of the second version that
are to be combined with the first version. In this case, the upgrade data can be

structured in the format having commands C, M, and S as shown in FIG. 8. That is, the

35

WO 2007/148900 PCT/KR2007/002947

[219]

[220]

[221]

[222]

[223]

upgrade data for copying a block from the first version includes a start block index and
a number of the blocks to be copied, the upgrade data for adding or modifying blocks
of the first version includes a start block index, a number of the blocks to be inserted or
modified, and concatenated block data for the blocks to be inserted or modified, and
the upgrade data for shifting blocks of the first version includes a number of the blocks
to be shifted and a block index of a first block to be shifted. In this manner, the
upgrade data includes the map information.

Preferably, the upgrade data is transmitted in the compressed state. Accordingly, the
upgrade package processor 10 executes the compressor (Compressor_2) in step S623
and controls the compressor to compress the upgrade data in step S625. Sequentially,
the upgrade package processor 10 executes the decompressor (Decompressor_2) for
verifying the compression in step S627 and controls the comparator to compare the
data before and after the compression in step S629. If the compression is verified at
step S631, the upgrade package processorlQ generates an upgrade package by merging
the upgrade data and the install data in step S633 and transmits the upgrade package to
the upgrade package server 20 in step S635. If the compression failure is detected at
step S631, the upgrade package processor 10 performs an error handling process in
step S637.

The upgrade package is distributed to the recipient devices 30 in accordance with a
download procedure. The upgrade package is composed of the upgrade data generated
on the basis of the difference between the first and second version and the install data
for installing the upgrade data.

FIG. 31 is a message flow diagram illustrating a program download procedure of a
program upgrade method according to an exemplary embodiment of the present
invention.

Referring to FIG.31, if an upgrade package is received from the upgrade package
processor 10, the upgrade package server 20 transmits a notification message to the
recipient device 30 in step S711. The upgrade package server 20 and the recipient
device 30 are connected through a communication channel established on the basis of a
communication standard such as CDMA, UMTS, GSM, WiBro, Wi-Fi, WiMAX,
Bluetooth, UWB, Zigbee, and USB.

In response to the notification message, the recipient device 30 transmits an ac-
knowledgement message (ACK) to the upgrade package server 20 in step S713. Upon
receiving the ACK, the upgrade package server 20 transmits a download allowance
message to the recipient device 30 in step S715. If an ACK is received from the
recipient device 30 in response to the download allowance message, the upgrade
package server 20 transmits management information message to the recipient device
30 in step S719. By transmitting an ACK to the upgrade package server 20 in response

36

WO 2007/148900 PCT/KR2007/002947

[224]

[225]

[226]

[227]

[228]

to the management information message, the recipient device 30 start downloading the
upgrade package from the upgrade package server 20 in step S723. If the upgrade
package is successfully downloaded, the recipient device 30 transmits a download
complete message to the upgrade package server 20 in step S7235, and the upgrade
package server 20 transmits a transmission end information message (send end_info)
to the recipient device 30 in step S727. By receiving, at the upgrade package server 20,
an ACK from the recipient device 30 in response to the transmission end information
message in step S729, the update package download procedure ends.

As described above, the upgrade package server 20 notifies the recipient devices 30
of the issuance of the upgrade package such that the recipient devices 30 download the
upgrade package. The recipient device 30 stores the upgrade package downloaded
from the upgrade package server 20 into the first memory 250 and starts upgrading a
target program in response to a user command such that the upgraded version of the
program is loaded on the second memory 260.

FIG. 32 is a flowchart illustrating a downloaded upgrade package processing
procedure of a program upgrade method according to an exemplary embodiment of the
present invention.

Referring to FIG. 32, the recipient device 30 stores the first version of the program
within the first memory 250 in step S801. The first version can be a version installed in
the first memory 250 during the manufacturing phase of the recipient device 30, or a
reference version installed later. If an upgrade package notification message is
received, the recipient device 30 downloads the upgrade package through the
procedure depicted in FIG. 31. The recipient device 30 downloads the upgrade package
form the upgrade package server 20 and temporarily stores the downloaded upgrade
package through steps S803 to S807. The upgrade package can be immediately
installed in the first memory 250 or installed after a normal operation of the recipient
device 30 ends. After the upgrade package is downloaded, the recipient device 30
determines if an install command is input in step S809. If no install command is input,
the recipient device 30 returns to the normal operation mode in step S811.

If an install command is input, the recipient device 30 installs the upgrade package
into the first memory 250 in step S813. The first memory 250 is a non-volatile memory
and comprises separate regions for storing the first version and multiple upgrade
packages. That is, the first memory 250 is composed of the first and second storage
regions as shown in FIGS. 9, 16, and 17. The upgrade packages are stored in an order
of issuance times with such that the upgrade history is secured.

After the upgrade package is installed, the recipient device 30 determines whether a
system reboot command is input in step S815. If no system reboot command is input,

the recipient device 30 returns to the normal operation mode in step S817. In this case,

37

WO 2007/148900 PCT/KR2007/002947

[229]

[230]

[231]

[232]

[233]

[234]

[235]

since the program is not yet upgraded, the recipient device 30 operates with the
previous version.

If a reboot command input is detected at step S813, the recipient device 30 reboots to
be initialized in step S821 and executes the translator 240 for activating the second
version from the downloaded upgrade package in step S823.

The translator 240 merges the upgrade package installed in the first memory 250 and
the first version of the program so as to generate and load the second version in the
second memory 260. Accordingly, the recipient device 30 operates afterward under the
management of the second version of the program.

Next, the recipient device 30 checks a status of the upgrade package to determine if
the upgrade is successfully performed or failed in step S825. If the upgrade failed, the
recipient device loads the first version of the program in step S833. If the upgrade is
successfully performed, the recipient device 30 loads the upgrade package in step S827
and assembles the upgrade package and the first version in the second memory 260 in
step S829 and then operates under the management of the second version on the
second memory in step S831.

FIG. 33 is a flowchart illustrating an upgrade package install procedure of a program
upgrade method according to an exemplary embodiment of the present invention.

Referring to FIG. 33, in an upgrade package download command is input, the
recipient device 30 executes a downloader in step S841 and controls the downloader to
download the upgrade package from the upgrade package server 20 in step S843. The
upgrade package download can be performed in different manner depending on the
communication standard adopted by the recipient device 30. That is, the recipient
device 30 can be one of CDMA, UMTS, GSM, WiBro, Wi-Fi, WiMAX, Bluetooth,
UWRB, and Zigbee enabled terminals, or can be connected to the upgrade package
server 20 through a USB.

During the download session, the recipient device 30 detects if the upgrade package
is successfully downloaded in step S8435. If an error is detected, the recipient device 30
performs an error handling process in step S849 and then retries the download of the
upgrade package in step S849.

If the upgrade package is successfully downloaded, the recipient device 30 executes
an installer in step S851. Next, the recipient device 30 controls the installer to extract
the history data from the upgrade package in step S853, gathers history information
from the history data in step S855, and builds a history table in the first memory in step
S857. Next, the recipient device 30 detects if map data is packed in the upgrade
package in step S859. If map data is packed in the upgrade package, the recipient
device 30 extracts the map data from the upgrade package in step S875, stores the map

data an upgrade data in corresponding storage regions of the first memory 250 in steps

38

WO 2007/148900 PCT/KR2007/002947

[236]

[237]

[238]

[239]

S877 and S879. Consequently, the history data, map data, and upgrade data packed in
the upgrade package are installed in the first memory 250 in step S881.

If map data is not packed in the upgrade package, the recipient device 30 executes a
decompressor (decompressor_2) in step S861. Next, the recipient device 30 controls
the decompressor to decompress the upgrade data packed in the upgrade package in
step S863 and parse the upgrade data in step S865. Next, the recipient device 30
compares the upgrade data with the first version in the first memory 250 in step S867
and generates map data with reference to the comparison result in step S869. Next, the
recipient device 30 stores the map data generated in the recipient device and the
upgrade data packed in the upgrade package into the upgrade package storage region
of the first memory in steps S871 and S873. Consequently, the history data, map data,
and upgrade data packed in the upgrade package are installed in the first memory 250
in step S881. In the case where the upgrade data includes information on the map data,
the map data generation process can be skipped. That is, the upgrade data can be
structured with information on the map data as shown in FIG. 8. In the case of FIG. 8,
the upgrade data is provided with commands for processing respective blocks and cor-
responding block indexes such that the recipient device 30 can independently generate
the map data map data from the upgrade data. Also, since the map data generation
process is not required, the steps S861 to S873 can be skipped. In this case, the
translator combines the upgrade data with the first version with reference to the in-
formation on the map data incorporated in the upgrade data. In this embodiment, when
the upgrade data incorporates the information on the map, the installer generates the
map data from the update data such that update data and the install data are installed in
the upgrade package region in the same data format and processed by the translator in
the same format.

As depicted in FIG. 33, the recipient device 30 downloads the upgrade package and
installs the history data, map data, and upgrade data packed in the upgrade package
within corresponding storage regions of the first memory 250. At this time, the map
data may or may not be packed in the upgrade package. When no map data is packed
in theupgrade package, the recipient device 30 stores the upgrade package within the
first memory 250 and compares the upgrade package with the first version so as to
generate map data on the basis of the comparison analysis and stores the map data in
the upgrade package storage region.

F1G.24 is a flowchart illustrating an upgraded program running procedure of a
program upgrade method according to an exemplary embodiment of the present
invention.

Referring to FIG.24, the upgraded program is activated when the recipient device 30

is turned on, or in response to a user command. After the recipient device 30 is

39

WO 2007/148900 PCT/KR2007/002947

[240]

[241]

[242]

[243]

[244]

initialized, the second version of the program upgraded by combining the first version
and the last downloaded upgrade package is loaded in the second memory 260 for
operating the recipient device 30. The information stored in the second memory 260 is
represented by a program that can run in a volatile memory.

If the recipient device 20 is turned on in step S881, the recipient device 30 starts
booting the system and initializes codes in step S882 and executes a loader in step
S883. Next, the recipient device 30 scans the upgrade package storage regions of the
first memory 250 and checks for the upgrade packages in step S884. If no upgrade
package exists, the recipient device 30 executes the translator 240 in step S885 and
controls the translator to perform security check and validity check of the version in
step S886. Next, the recipient device 30 determines if the first version stored in the
first memory 250 is compressed in step S887. If it is determined that the first version is
compressed, the recipient device 30 runs the decompressor (decompressor_1) 270 to
decompress the first version in step S888 and controls the translator to translate the
first version in the second memory 260 in step S889 such that the first version of the
program runs. If it is determined that the first version is not compressed at step S887,
the recipient device 30 skips step S888 and performs steps S889 and S890.

Returning to step S884, if at least one upgrade package exists in the first memory
250, the recipient device 30 executes translator 240 in step S891 and loads the recently
downloaded upgrade package in step S892. The upgrade package can be composed of
at least two of the history data, map data, and upgrade data.

Next, the recipient device 30 runs the decompressor (decompressor_2) 270 to
decompress the loaded upgrade package (only the upgrade data may be compressed) in
step S893 and performs security check and validity check of the version in step S894.
Next, the recipient device 30 determines if the first version stored in the first memory
250 is compressed in step S895. If it is determined that the first version is compressed,
the recipient device 30 runs the decompressor (decompressor_1) 270 to decompress
the first version in step S896 and controls the translator to translate and combine the
first version and the upgrade package in the second memory 260 in step S897 such that
the upgraded version of the program runs in step S890. If it is determined that the first
version is not compressed at step S8935, the recipient device 30 skips step S896 and
performs steps S897 and S890.

FIGS. 35 to 38are flowcharts illustrating an upgrade program running procedure of a
program upgrade method according to another exemplary embodiment of the present
invention.

Referring to FIGS. 35 to 38, if the recipient device 30 is turned on in step S901, the
recipient device starts booting the system and initializes codes in step S903 and

executes a loader in step S905. Next, the recipient device 30 determines if any upgrade

40

WO 2007/148900 PCT/KR2007/002947

[245]

[246]

package is available with reference to the history of upgrade packages in step S907 and
checks the upgrade packages in step S909. If no upgrade package exists, the recipient
device 30 executes the translator 240 in step S911 and performs security check in step
S921 (see FIG. 36). Next, the recipient device 30 determines in step S9 if the first
version stored is compressed. If it is determined that the first version is compressed,
the recipient device 30 runs the decompressor (decompressor_1) 270 and the translator
in steps S923 and S9 and controls the decompressor and the translator to cooperatively
decompress and translate the first version in step $925. While decompressing and
translating the data of the first version, the recipient device 30 monitors the processes
to detect if the first version is completely translated, using a counter (Count=EOD) in
step S927. The decompression and translation processes repeat until the counter
reaches the end of the data (EOD) (Count=EOD) in the second memory 260. If it is
determined that the first version of the program is not compressed at step S9, the
recipient device 30 controls the translator to translate the first version in the second
memory 260 without decompression in step S926 until the counter reaches the end of
the data. If the counter reaches the EOD, the recipient device 30 verifies the entire data
of the translated first version of the program in step $928 and runs the first version for
operating the system.

Returning to FIG. 35, if at least one upgrade package exists in the first memory 250
at step S909, the recipient device inspects the history information of all the upgrade
packages in step S913 and checks fail flags in the history information in step S915.
The fail flag indicates if loading the upgrade package has failed. If the fail flag is set to
true (fail flag=true), the upgrade package has failed. For this reason, the recipient
device 20 determines if the fail flag of the history information of upgrade packages is
set to "true" in step S917. If the fail flag is not set to "true,” the recipient device 30
performs the program upgrade procedure through steps S931 to S946 of FIG. 37. In
contrast, if the fail flag is set to "true," the recipient device 30 performs the program
upgrade procedure through steps S951 to S969 of FIG. 38.

As shown in FIG. 37, if the fail flag is not set to "true,"the recipient device 30 checks
the history data of the latest upgrade packages in step S321 and checks the fail flag of
the history data in step S932. If the fail flag is not set to "true," the recipient device 30
loads the map data and upgrade data of the upgrade package in steps S933 and S934.
Next, the recipient device 30 loads the translator in step S935, performs security
checks in step S936, and loads the decompressor (Decompressor_1) in step S937.
Next, the recipient device 30 determines in step S938 if the first version of the program
is compressed. If the first version is compressed, the recipient device 30 runs the de-
compressor and the translator in steps S939, S940, and S94 1. Next, the recipient device

30 controls the first and second decompressors and the translator to decompress and

41

WO 2007/148900 PCT/KR2007/002947

[247]

[248]

[249]

translate the first version and the upgrade package in the second memory 260 in step
S942. While decompressing and translating the data of the first version and the
upgrade package, the recipient device 30 monitors the processes to detect if the process
is completed with reference to a counter (Count=EOD) in step S943. The de-
compression and translation processes are repeated until the counter reaches the EOD.
If it is determined at step S938 that the first version is not compressed, the recipient
device 30 runs the translator in step S940 and controls the translator to translate the
data of the first version and the upgrade package in the second memory without de-
compression process in step S944 until the counter reaches the EOD. If the counter
reaches the EOD, the recipient device 30 verifies the entire data of the translated first
version and the upgrade package in step S945 and runs the upgrade version of the
program for operating the system in step S946.

The map data contained in the upgrade package can be structured as shown in Tables
1 to 4. In the case of Table 1, 2, or 4, the translator O of the recipient device 30
generates the second version by merging the first version of the program and the
upgrade package with reference to the map data.

Referring to Table 1 of the map data {C:0,15, F:0, null, null}, {M:16,4 F:1, (16-12),
(17-13), (18-8), (19-9), 0,0,0,0}, {S:20,5, F:0, (20-4), 0}, the recipient device 30
processes the blocks indexed with the commands C, M, and S and upgrades the first
version in accordance with the map data. That is, the recipient device 30 copies the 0"
to 15" blocks of the first version and pastes the copied blocks into the second version
with the same block indexes, copies the 12th, 13th, 8th, and 9"blocks of the first version
and pastes the copied blocks for the 16" to 19" blocks of the second version, and copies
the 16" to 20" blocks of the first version and pastes the copied blocks for the 20" and "
blocks of the second version.

Referring to Table 2 of the map data {C:0,15, F:0, null, null}, {M:16,4 F:1,
(16-12),(17-13),(18-8),(19-9), 0,code(B,K),code(E,C),0}, {S:20,5, F:0, (20-4), 0}, the
recipient device 30 copies the blocks of the first versionand places the copied blocks
for the second version in accordance with the index map following the commands C
and S, and generates block data using the block indexes and entropy-coded data
following the command M. That is, the recipient device 30 copies the 0" to 15" blocks
of the first version and pastes the copied blocks into the second version with the same
block indexes, places the 12" block, code (B,K), code (E,C), and 9" block of the first
version for the 16™ 19" blocks of the second version, and places the 16™ to 20" blocks
of the first version for 20" to ™ blocks of the second version. Here, the code (B,K)
means data obtained by entropy-coding the difference between the 13"block of the first
version and 17"of the second version, and code (E,C) means a data obtained by

entropy-coding the difference between the 8" block of the first version and the 18"

42

WO 2007/148900 PCT/KR2007/002947

[250]

[251]

[252]

[253]

block of the second version.

Referring to Table 3 of the map data {C:0,15, F:0, null, null}, {M:16,4, F:2, null,
null}, {S:20,5, F:0, (20-4), 0}, the recipient device 30 copies the blocks of the first
version and places the copied blocks for the second version in accordance with the
index map following the command C and S, and generates block data using the block
indexes and update data following the command M. That is, the recipient device 30
copies the 0" to 15" blocks of the first version and places the copied blocks in the
second version with the same block indexes, and places the blocks contained in the
upgrade data for the 16" to 19" blocks of the second version. Accordingly, the 16" to
19™blocks of the second version have data Z, W, P, and X (sec FIG. 5).

In the case where the upgrade package is composed of the historydata and the update
data without map data, the recipient device 30 can generate the map data by comparing
the first version of the program and the upgrade data and analyzing the comparison
result. The map data generation process can be skipped. In this embodiment, the
installer generates the map data using the map information incorporated into the
upgrade data. Referring to Table 4 of the map data {C:0,6},{M:6,2,X,Y}, {S:8,3,6,}
{S:11,2,13}, {M:13,5, A,B,C,D.,E}, {S:18,7,15}, the installer 230 of the recipient
device 30 generates map data in association with the commands C and S. In as-
sociation with the command M, however, the installer 230 generates map data and/or
update data on the basis of the map information implied in the upgrade package. The
map data and upgrade data are separately stored in the upgrade package region.

As shown in FIG. 38, if the fail flag is set to "true," at step S917 of FIG. 35, the
recipient device 30 checks if all fail flags of the upgrade packages are set to "true" in
step S951. If all the fail flags are set to "true,"” the recipient device 30 loads the
translator in step S925 and performs step S921. That is, if all the upgrade packages
have errors, the recipient device 30 loads the first version of the program into the
second memory 260 such that the recipient device 30 operates under the control of the
first version. The first version may be an original version of the program installed
during the manufacturing phase.

If not all of the fail flags of the upgrade package are set to "true,"the recipient device
30 checks the upgrade packages of which fail flags are not set to "true" in step S953
and displays available upgrade packages in step S954. If a selection command is input
in step S955 for selecting one of the available upgrade packages , the recipient device
30 loads the map data and upgrade data of the selected upgrade package in association
with the history information in steps S956 and S957. Next, the recipient device 30
executes the translator in step S956 and performs security check on the data in step
S959. Next, the recipient device 30 runs the decompressor (Decompressor_2) for

decompressing, if the upgrade data are compressed, the upgrade data in step S960.

43

WO 2007/148900 PCT/KR2007/002947

[254]

[255]

[256]

[257]

[258]

[259]

Next, the recipient device 30 determines if the first version of the program is
compressed in step S961. If the first version is compressed, the recipient device 30
runs the first decompressor (Decompressor_1) and the translator in steps S962, S963,
and S964. Next, the recipient device 30 controls the first and second decompressors
and the translator to decompress and translate the first version and the upgrade package
in the second memory 260 in step S965. While decompressing and translating the data
of the first version and the upgrade data, the recipient device 30 monitors the processes
to detect if the process is completed with reference to the EOD (Count=EOD?) in step
S966. The decompression and translation process are repeated until the counter reaches
the EOD.

As described above, in the program upgrade method according to an embodiment of
the present invention, the upgrade package provider generates an upgrade package in
accordance with the differences between old and new versions of a target program, and
the recipient device downloads and upgrades an old version to the new version such
that the upgraded new version of the non-volatile memory is loaded into the volatile
memory for operating the recipient device.

The upgrade package generation mechanism has the following characteristics.

If two versions of the program are input, the upgrade package processor compares
the two versions and generates comparison result data using the differences of the two
versions. Here, the first version is a reference version which can be a program installed
during the manufacturing phase or a program decided afterward. The second version is
an upgraded version of the program to be downloaded by the recipient device for
upgrading the first version of the program. Multiple upgrade versions can be issued, so
the second version can be one of the upgrade versions, particularly, the latest version.

The two versions can be compared before or after being compressed. In the case of
comparison after compression, a compression verification process can be performed by
decompressing each compressed version and comparing the data before and after the
compression.

The install data is generated on the basis of the comparison result data. The install
data is the data providing information on how to install the update data to the first
version.

The install data must include history data. The install data also contains version
identifiers of the first and second versions and a flag indicating a history of loading
failure. The install data can include map data in addition to the history data. The map
data is data providing information on how to map the update data to the first version.
The map data is provided with commands such as "copy"”, "modify", and "shift", and
block indexes for mapping the blocks in the first version. If it is required that the

second version is produced by inserting some blocks into the first version and the

44

WO 2007/148900 PCT/KR2007/002947

[260]

[261]

[262]

[263]

[264]

[265]

[266]

blocks to be inserted are identical or at least similar, the blocks can be informed by the
map data rather than packing the blocks themselves.

The install data can be integrated into the upgrade data. In this case, the upgrade
package processor compares the first and second versions of the program in block
units. When the number of the blocks is changed, i.e. some blocks are removed or
added or the data of each block is modified, such information is incorporated into the
upgrade data as the install data. In this case, the update data includes the modify
command M of the map data. The install data also can be provided without map data.
In this case, the map data is produced at the recipient device. When the upgrade data is
provided with the map data, the map data generation process is not required.

The upgrade data or the upgrade package can be provided in a compressed form. In
this case, the upgrade package processor decompresses the compressed upgrade data or
package and compared the data before and after compression for verifying successful
compression.

The upgrade package generated by the upgrade package processor 10 is transmitted
to the upgrade package server 20, and the upgrade package server 20 notifies the
recipient device 30 of the issuance of the upgrade package such that the recipient
device downloads the upgrade package.

The recipient device 30 installs the upgrade package in the first memory such as a
non-volatile memory and loads the second version upgraded from the first version with
the upgrade package in the second memory such as the volatile memory such that the

recipient device operates under the control of the second version of the program.

Industrial Applicability

As described above, in the program upgrade system and method of the present
invention, an upgrade package generated on the basis of differences between a
reference version and a new version of a program, resulting in fast upgrade package
generation. Since the first version and the upgrade package downloaded from a
network are separately installed in a non-volatile storage area and loaded as an upgrade
version on the volatile storage area, it is possible to secure operability of the program
even in an upgrade failure situation. Also, since the program upgrade system and
method of the present invention enables installing multiple upgrade packages
separately in a non-volatile storage area, it is possible to operate the recipient device
with user-preferable version of the program. Also, the program upgrade system and
method is advantageous in the program version can be selected by the user.

Furthermore, since the upgrade of V1 itself is not performed on the first memory, a

fault tolerant control effect can be implicitly expected. This is because the operation

45

WO 2007/148900 PCT/KR2007/002947

[267]

stability is secured even when the program upgrade fails with an upgrade package
using the V1 of the first version stored in the first memory.

Although exemplary embodiments of the present invention have been described in
detail hereinabove, it should be clearly understood that many variations and modi-
fications of the basic inventive concepts herein taught which may appear to those
skilled in the present art will still fall within the spirit and scope of the present

invention, as defined in the appended claims.

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

46

WO 2007/148900 PCT/KR2007/002947

Claims

A program upgrade method in a network comprising:

generating anupgrade package on the basis of differences between a first version
and a second version of the program;

notifying, at least one recipient device of an issuance of an upgrade package at
the upgrade package server and

downloading, the upgrade package from the upgrade package server to the
receipt device, installing the upgrade package in a first memory, and merging the
upgrade package and the first version of the programto be loaded as the second
version of the program in a second memory in response to an upgrade command.
The program upgrade method of claim 1, wherein the upgrade package includes
install data for merging the upgrade package with the first version of the program
and upgrade data to be combined with the first version of the program.

The program upgrade method of claim 2, wherein the install data includes history
data for merging the first version of the program and the upgrade package, and
map data for mapping the upgrade data to the first version of the program.

The program upgrade method of claim 1, wherein generating the upgrade
package comprises:

comparing the first and the second versions of the program in a unit of a block;
generating an install data containing a map data for mapping blocks of the
second version of the program to the first version of the program based on the
comparison result; and

generating the upgrade package by packing the install data and an upgrade data.
The program upgrade method of claim 4, wherein the first version of the
program and at least one upgrade package are separately stored in the first
memory.

The program upgrade method of claim 5, wherein the upgrade command is
generated with a selection of a version when the recipient device is initialized or
by a key input.

The program upgrade method of claim 4, wherein the map data includes an
indexes of blocks of the second version of the program associated with the
program upgrade and the upgrade commands for applying the blocks to the first
version of the program.

The program upgrade method of claim 7, wherein the map data includes a
command strings each structured in the form of [Cmd][start block No][number of
blocks][flag][distance], where the [Cmd] field has a value indicating at least one

"non

of commands "copy", "modify", and "shift", the[start block No] field has a block

47

WO 2007/148900 PCT/KR2007/002947

[9]

[10]

[11]

[12]

[13]

index of a start block the [number of blocks] field has value indicating a number
of blocks from the start block, the [flag] field has a value indicating an origin of
the blocks, and the[distance] field has a value indicating a distance from a block
of the first version of the program to a block of the second version of the
program mapped each other.

The program upgrade method of claim 8, wherein the command "modify"implies
a insertion of a new block or a modification of a block of the first version of
program.

The program upgrade method of claim 7, wherein the map data includes
command strings each structured in the form of [Cmd][start block No, number of
blocks][flag][distance][difference], where the [Cmd] field has a value indicating
one of commands "copy", "modify", and "shift", the [start block No, number of
blocks] field has a block index of a start block and a valueindicating a number of
blocks from the start block, the[flag] field has a value informing an origin of the
blocks, the[distance] field has a value indicating a distance from a block of the
first version of the program to a block of the second version mapped each other,
and the [difference] field has a value indicating a difference between the blocks
of the first version and the second version of the program.

The program upgrade method of claim 10, wherein the [difference] field is set
for canceling a generation of upgrade data of a corresponding block.

The program upgrade method of claim 11, wherein the first version of the
program is an original version of the program installed during a manufacturing
phase of the recipient device, and the second version of the program is a program
upgraded from the first version of the program, the second version of the
program representing multiple versions of the program issued after the first
version of the program.

A program upgrade package generation method, comprising the steps of:
comparing a first version and a second version of a program in units of a block;
generating an upgrade data containing a map data for mapping blocks of the
second version to blocks of the first version of the program based on the
comparison result;

generating an upgrade package by packing a history data for indicating a re-
lationship of the upgrade package and the first version of the program and the
upgrade data;

advertising an issuance of the upgrade package; and

downloading, the upgrade package to at least one recipient device, installing the
downloaded upgrade package in a non-volatile memory, generating the second

version of the program by merging an upgrade package with the first version in

48

WO 2007/148900 PCT/KR2007/002947

[14]

[15]

[16]

[17]

[18]

[19]

response to an upgrade request signal, and operating the recipient device with the
second version of the program.

The program upgrade method of claim 13, wherein the first version of the
program and at least one upgrade package are separately stored in the non-
volatile memory.

The program upgrade method of claim 14, wherein the upgrade command is
generated when the recipient device is initialized or by a key input, and the
upgrade package is selectable from among multiple upgrade packages.

The program upgrade method of claim 15, wherein the upgrade package includes
an install data having a history data for indicating a relationship of the upgrade
package and first version of the program to support the merge of the upgrade
package and the first version.

The program upgrade method of claim 16, wherein the upgrade data includes at
least one of copy block data structured in a string of [start block No][number of
blocks], modify block data structured in a string of [start block No][number of
blocks][data], and shift block data [start block No][number of blocks][previous
version position], wherein the [start block No] field has a block index of a start
block, the [number of blocks] field has value indicating a number of blocks from
the start block, the [data] field contains data of corresponding block, and the
[previous version position] field has a start block index for the blocks to be
shifted.

The program upgrade method of claim 17, wherein the [previous version position
] field indicates one of a block number of the second version of the program a
number of blocks or a block number of the second version of the program a
block number of the first version of the program.

A program upgrade method in a network including an upgrade package processor
for generating an upgrade package for a program and an upgrade package server
allowing a recipient device to download the upgrade package, comprising the
steps of:

generating, the upgrade package based on differences between a first version and
a second version of the program at the upgrade package processor

notifying, the recipient device of an issuance of the upgrade package at the
upgrade package server

downloading, the upgrade package from the upgrade package server to the
recipient device,

installing the upgrade package in an upgrade package region of a first memory in
which the first version of the program is installed;

upgrading the first version to the second version of the program by merging the

49

WO 2007/148900 PCT/KR2007/002947

[20]

[21]

[22]

[23]

[24]

[25]

upgrade package and the first version of the program in response to an upgrade
command; and

loading the second version of the program into a second memory.

The program upgrade method of claim 19, wherein generating the upgrade
package comprises:

comparing the first version and the second version of the program in units of a
block;

generating an install data containing a map data for mapping blocks of the
second version of the program to blocks of the first version based on the
comparison result; and

generating the upgrade package by packing the install data and an upgrade data.
The program upgrade method of claim 20, wherein the first memory comprises:
a first version storage region for storing the first version of the program; and

an upgrade package storage region having at least two areas for storing different
upgrade packages, the install data and the upgrade data packed in the upgrade
package being stored separately.

The program upgrade method of claim 21, wherein the install data includes a
history data for indicating a relationship of the upgrade package and the first
version of the program to support the merge of the upgrade package and the first
version of the program, and installing the upgrade package comprises:
extracting the history data, the map data, and the upgrade data from the upgrade
package;

storing the history data within a history data area of a corresponding upgrade
package region;

storing the map data within a map data area of a corresponding upgrade package
region; and

storing the upgrade data within an upgrade data area of a corresponding upgrade
package region.

The program upgrade method of claim , wherein upgrading the first version to
the second version of the program comprises:

loading the upgrade package of a latest version of the program from the first
memory; and

applying the upgrade data of the loaded upgrade package to the first version of
the program with reference to the map data of the upgrade package.

The program upgrade method of claim 23, wherein the first memory is a non-
volatile memory, and the second memory is a volatile memory.

The program upgrade method of claim , wherein the upgrade command is

generated when the recipient device is initialized or by a key input, and a last

50

WO 2007/148900 PCT/KR2007/002947

[26]

[27]

[28]

[29]

[30]

issued upgrade package among multiple upgrade packages is selected for
upgrading the program.

A program upgrade method in a network including an upgrade package processor
for generating an upgrade package for a program and an upgrade package server
allowing a recipient device to download the upgrade package, comprising the
steps of:

comparing, a first version and a second version the program in units of a block at
the upgrade package processor

generating an install data containing a map data for mapping blocks of the
second version to the first version of the program based on the comparison result;
and

generating the upgrade package by merging the install data and an upgrade data;
downloading, the upgrade package at the recipient device and

upgrading the first version of the program installed at the recipient device to the
second version of the program by applying the upgrade package to the first
version.

The program upgrade method of claim 26, wherein the map data is structured as
a string of [Cmd][start block No][number of blocks][flag][distance], where the
[Cmd] field has a value indicating one of commands "copy", "modify", and
"shift", the[start block No] field has a block index of a start block, the [number of
blocks] field has value indicating a number of blocks from the start block, the
[flag] field has a value informing an origin of the blocks, and the[distance] field
has a value indicating a distance from a block of the first version to a block of the
second version of the program mapped each other.

The program upgrade method of claim 27, wherein the command
"modify"implies a insertion of a new block or a modification of a block of the
first version.

The program upgrade method of claim 26, wherein the map data includes
command strings each structured in the form of [Cmd][start block No, number of
blocks][flag][distance][difference], where the [Cmd] field has a value indicating
one of commands "copy", "modify", and "shift", the [start block No, number of
blocks] field has a block index of a start block and a value indicating a number of
blocks from the start block, the [flag] field has a value informing an origin of the
blocks, the [distance] field has a value indicating a distance from a block of the
second version to a block of the first version of the program mapped each other,
and the [difference] field has a value indicating a difference between the blocks
of the first and second versions of the program.

The program upgrade method of claim 29, wherein the [difference] field is set

51

WO 2007/148900 PCT/KR2007/002947

[31]

[32]

[33]

[34]

[35]

[36]

for canceling a generation of the upgrade data of a corresponding block.

A program upgrade system, comprising:

an upgrade package processor for generating an upgrade package using a first
version and a second version of a program;

an upgrade package server for storing the upgrade package and advertising an
issuance of the upgrade package; and

at least one recipient device for downloading the upgrade package and upgrading
the program using the downloaded package, the recipient device includes a first
memory for separately installing the first version of the program and the upgrade
package and a second memory for loading the second version of the program
upgraded by merging the first version of the program and the upgrade package.
The program upgrade system of claim 31, wherein the upgrade package
processor comprises:

a comparator for comparing the first version and the second version of the
program in units of a block;

an install data generator for generating an install data having a map data for
mapping blocks of the second version to blocks of the first version of the
program and

a package generator for creating the upgrade package by merging the install data
and an upgrade data.

The program upgrade system of claim 32, wherein the recipient device
comprises:

an installer for installing the upgrade package within an upgrade package region
of the first memory; and

a translator for loading the first version of the program and the upgrade package
in the first memory in response to an upgrade command, generating the second
version of the program by applying the upgrade package to the first version of
the program, and loading the second version of the program into the second
memory.

The program upgrade system of claim 33, wherein the upgrade command is
generated when the recipient device is initialized or by a key input, and a last
issued upgrade package among multiple upgrade packages is selected for
upgrading the program.

The program upgrade system of claim 34, wherein the install data includes a
history data for indicating a relationship between the upgrade package and the
first version of the program.

The program upgrade system of claim 35, wherein the map data includes indexes

of blocks of the second version of the program associated with the program

52

WO 2007/148900 PCT/KR2007/002947

[37]

[38]

[39]

[40]

[41]

[42]

upgrade and commands for applying the blocks to the first version of the
program.

The program upgrade system of claim 35, wherein the map data includes
command strings each structured in the form of [Cmd][start block No][number of
blocks][flag][distance], where the [Cmd] field has a value indicating one of
commands "copy", "modify", and "shift", the[start block No] field has a block
index of a start block, the [number of blocks] field has value indicating a number
of blocks from the start block, the [flag] field has a value informing an origin of
the blocks, and the[distance] field has a value indicating a distance from a block
of the first version of the program to a block of the second version of the
program mapped each other.

The program upgrade system of claim 36, wherein the command
"modify"implies a insertion of a new block or a modification of a block of the
first version.

The program upgrade system of claim 35, wherein the map data includes
command strings each structured in the form of [Cmd][start block No, number of
blocks][flag][distance][difference], where the[Cmd] field has a value indicating
one of commands "copy", "modify", and "shift", the [start block No, number of
blocks] field has a block index of a start block and a value indicating a number of
blocks from the start block, the [flag] field has a value informing an origin of the
blocks, the [distance] field has a value indicating a distance from a block of the
second version of the program to a block of the second version of the program
mapped each other, and the [difference] field has a value indicating a difference
between the blocks of the first and second versions of the program.

The program upgrade system of claim 39, wherein the [difference] field is set for
canceling a generation of upgrade data of a corresponding block.

The program upgrade system of claim 40, wherein the first version of the
program is an original version of the program installed during a manufacturing
phase of the recipient device, and the second version of the program is a program
upgraded from the first version of the program, the second version of the
program any one of multiple versions of the program issued after the first version
of the program.

The program upgrade system of claim 31, wherein the upgrade package
processor comprises:

a comparator for comparing the first version and the second version of the
program in units of a block;

an install data generator for generating an install data having upgrade data for

merging blocks of the second version and blocks of the first version of the

53

WO 2007/148900 PCT/KR2007/002947

[43]

[44]

[45]

[46]

program and

a package generator for creating the upgrade package by merging the upgrade
data containing the map data for mapping the blocks of the second version to
blocks of the first version of the program and the history data for indicating a re-
lationship between the upgrade package and the first version of the program.
The program upgrade system of claim 42, wherein the recipient device
comprises:

an installer for extracting the map data from the upgrade package and installing
the upgrade package containing the history data, the map data, and the upgrade
data within an upgrade package storage region of the first memory based on the
map data; and

a translator for generating the second version of the program by merging the
upgrade data and the first version of the program based on the map data and
loading the second version of the program into the second memory.

The program upgrade system of claim 43, wherein the upgrade command is
generated when the recipient device is initialized or by a key input, and a last
issued upgrade package among multiple upgrade packages is selected for
upgrading the program.

The program upgrade system of claim 44, wherein the upgrade data includes at
least one of copy block data structured in a string of [start block No][number of
blocks], modify block data structured in a string of [start block No][number of
blocks][data], and shift block data [start block No][number of blocks][previous
version position], wherein the [start block No] field has a block index of a start
block, the [number of blocks] field has a value indicating a number of blocks
from the start block, the [data] field contains data of corresponding block, and
the [previous version position] field has a start block index for the blocks to be
shifted.

The program upgrade system of claim 45, wherein the [previous version position
] field indicates one of a block number of the second version of the program +a
number of blocks and a block number of the second version —a block number of
the first version of the program.

PCTER 2007/ 0029417

00294707,

PCT/KR2007/002947’

WO 2007/148900

1/35

_
10Ss3.dwod-aq

Jojejsuell

aInpow In
30IA30 IN3IdIO3
18]|eisu]
MWNW__MMM ._mu.mo_:;om
o IO In
0g

108sSalduwio)

lojelauay |jeisul

SINPO 1N
H0SS3004d
~1 30vdadn
01
abeyoed
apelbdn
XI0M 18N

1'OId

mmmw_omn_
apelbdn

dINHIS
J9VIVd
30vd3dN

PCLER2007/ 00294 1

y (- f 90
" WO 2007/148900 N PCT/KR2007/002947)@7
2/35
FIG . 2
iP ;F
First version Second version
| —10
UPGRADE PACKAGE |-
PROCESSOR

lungrade package

UPGRADE PACKAGE |~ 20
SERVER

ff"

TTUTE SHEERT

&
C.
&
€53
|

PCTER2007/ 002941

PCT/KR2007/002947

007.

WO 2007/148900

. {. 4

3/35

0'(r-02) °0:4 §'0¢:S
TINN TINN 0:4 61°0:D

0'0°0°0 (6-611(8-8LIEL-LLI121-01) “L:d YO LI

eleqg del

HIUS AMIDOI Ado)
vii|a|vl|a|v|4|afd|a|a|v|a,;d 8|V
oL|giipLie|eL|tL|oL|6(8|L|O |G|V €S L |0

X
‘_oum‘_mQEoo
||||| . .y..:-.....«...;n..:--:u|m=_=88m|::-|
4 Y N
vi1 a|v i|lg|a|v|a|d|8\Vv
vzlezlzz|1zloz|6L|8L|LL|oL|gL|vL|eL|2L|tLioL| 6|8 | L |9 |G|V |E|c|l 0

) |

4)\

9)

PCTER 2007/ 00294 1

s,

4
PCT/KR2007/002947

WO 2007/148900

4/35

0 ‘It-02) ‘0: G02:S
TINN “TINN 04 G1'0:2

0 (9'818p09 ‘9130’0 (L-61)19-8LI1EL-LLIT2-1) ‘L Y'OLIW

HIUS MIpoi

eleq deiy
Ado9

¥ Old

LA

boin b

arvw gy

ii'

o b
2

e
T <

3TITU

nn nnnv(

0(})7/002941

PCT/KR2007/002947

BCI/ER)

WO 2007/148900

5/35

0 ‘(v-02) ‘0:4 G0Z:S
X|d|ml|z TION “TINN ‘224 7' LW
e120 opeldn TINN “TINN 04 G10:0
o2 e1eq gl
HIUS RJIDON fdo3
&\<,m<m< alilalalv|alolalv
orlatlotletlatlutlot|sle{clals|tl{ela|t]|oO
j0)81RdWO0Y
|||||||||||||||||||| —BUIBIS — — - — — — -
viilalvlialvlalalslalalv|a|olaly
vzlezlzzlizlozlsi e i lotlat vt ler|zt|nlotl6 |8 |c|ala|v|ela|L]oO

G Old

9)\

=T

wedl Luca

i
)

¥

[1098

2h &

A§
e V3
ol

2

{

1,

PCIERI00T/ 002947

AR UV\I7-

PCT/KR2007/002947

WO 2007/148900

6/35

pope * padeida DapDe
NOIG3H dv| | B
mwwhwmmmmmww¢u_nw zz1z]0z|61 a1 |t [or|et |onlet|a
Pt
©NoDMdvD! | | 77
wwwawowmmwmﬁwmwwwNw_N 0Z|6L|8L|LL|OL|GL|tL|EL|2L|LL|OL 9

9" Old

TSUBSTITUTE SHEET

N

LA

e C PCTER2007/7 0029417

WO 2007/148900 ' PCT/KR2007/002947 .
7/35

FIG . 7

Version 1

omponent 1
comp Gap

Component 2
P Gap

omponent 3
comp Gap

omponent 4
comp Gap

Component o

Gap

&
-

ITUTE SHEET

BCERI00T/ 00294 T

C

PCT/KR2007/002947

WO 2007/148900

8/35

Gl

e et | 2

HIUS

abeyoed eliad

AIPOi Jius IS AJIPOIN AdoJ

g Old

ET

g
¥ie
Sk

TITUTE

h)

SUS

C C FCIER200T/ 002947

WO 2007/148900 | PCT/KR2007/002947)].
9/35
FIG.9
o0 .
vi| . - SW Linker
First version SW Compiler
Y2 ' second version 10
™55 P,
| ST [A coweamator [T
’]
160 165
FIRST HISTORY DATA }i—+ 120
DECOMPRESSOR GENERATOR
1~J_-180
MAP DATA |} i 150
GENERATOR h
]
PACKAGE L —|_-130
GENERATOR
| 5“
140 SECOND UPGRADE
COMPRESSOR PACKAGE SERVER
1~ Seconn
Upgrade processor DECOMPRESSOR

e

SUBSTITUTE SHEET

c . PCLER200T/7 002947

WO 2007/148900 \ PCT/KR2007/002947)7.
10/35
FIG . 10
50 .
vi[. = SW Linker
First version SW Compiler
V2 Second version 10
55 p
> FIRST 1) L~ 110
> comPRESSOR |— | COMPARATOR
, é, 165 —
/ 1| 180
FIRST HISTORY DATA || 120
DECOMPRESSOR GENERATOR
]
PACKAGE | —L| 130
GENERATOR
F »
M0~ Second 1 UPGRADE
COMPRESSOR PACKAGE SERVER
19~ sgconn
Upgrade processor DECOMPRESSOR

(—J . BITRRIONT / 00 204 7

WO 2007/148900 T PCT/KR2(107J/T)0U29.[4.72007.
11/35
FIG. 11 FIG. 12
HISTORY DATA HISTORY DATA
MAP DATA
UPGRADE DATA
UPGRADE DATA

- ~ HUERI00T/ 002947

WO 2007/148900 \ PCT/KR2007/002_9.47.'.
12/35
FIG . 13
50)
vi|) e SW Linker
First version SW Compiler
Y2 | second version 10
—k
55 P,
i\ comparator | 110
]
1.]_180
HISTORY DATA L | 120
GENERATOR hd
MAPDATA || | 150
GENERATOR hd
]
PACKAGE | —+J 130
GENERATOR
F)
140
UPGRADE
COMPRESSOR |—— PACKAGE SERVER
145—_|
DECOMPRESSOR
Upgrade processor

WO 2007/148900

220

r_)

—— DOWNLOADER

~ DCHER2007/7 002941

PCT/KR2007/002947]
13/35
FIG . 14
230 240
INSTALLER |——» TRANSLATOR |—
FIRST MEMORY SECOND MEMORY
250 260

%
L
L

{

UUSTITUTE SHEET

(" PCHER2007/ 002947

WO 2007/148900 PCT/KR2007/002947
ICNL A AT
14/35

FIG. 15

Non-Volatile memory
310 J
Compressed or .
Uncompressd File system
Version 1 (User space)

(first version) T\ 330
1 i
| | Upgrade Package | | Upgrade Package | !
T (#3] |

320 < |

| |
| |
| | Upgrade Package | | Upgrade Package | |
: (#4) (#5) :
| |
: |
| | Upgrade Package | | Ungrade Package | |
: (#6) (#7) :
oy ——— '

SUBSTITUTE SHEET|

PCER 2007/ 0029417
PCT/KR2007/002947

-

U i.

LR

WO 2007/148900

15/35

belj ied

bel4 paulquog

9ZIS

UOISIaA

9.1manns AI0IsiH

LT "DId

Blep apel6dn L#

eiep dei 0 L#

ojul A10ISIU dN JO [#

Blep apelbdn 9+#

eiep dey jo 9#

0jul A10ISIU dN JO 9#

elep apelbdn G#

eiep dew jo G#

0jul A10)SI4 dN 0 G#

eilep apelbdn t#

elep deiy Jo v#

ojul AJOISIU dN JO D#

elep apelbdn £+#

elep dei Jo £#

0jul AlOISIU dN J0 E#

Blep apelbdn g#

eiep deiy Jo Z#

0jui AJOISIU dN 0 Z#

TINN

eiep dei Jo L#A

A0ISIY JO L#A

N.hﬂ!ll
L

02€

91 Old

j00d abeyaed apelbdn

C " WCUER200T/ 002947

WO 2007/148900 . PCT/KR2007/002947I.

16/35
FIG. 18
250 (_2)60
Flash Memory RAM
System new version of

Softvgare N Syarom

an :
310~ | Firmware Translating > Sofgwé]re
d Firmware

Loading
| Upgrade Package
320~ Pool

SUBSTITUTE SHEET

.

£ N A " Aa

PCIRR 2007/ 00294 1
PCT/KR2007/002947

o

{

17/35

WO 2007/148900

| U# Y9019 MS

(UOISIBA IS11))
IA lolejsuelt —
U# 400ig
(1-U)# %o0I9
20
| Al N (2-u# %o0I8
1)114 (E-U)# Xao0|g
H A v_oo_m
£# 30019
¢# 0019
_ L# 1o0[d
0z ~A417108s31dwW09-30 je—HA 04 %00Id
L # Y309 (UOISIBA |eniul)
07 0018 ISI3A [eRIUT) LA
1 AIOW3N WYY x Alowap yseld
09¢ : eiep depy .
08¢ 61 DI

C ¢ KCHERI0T/ 002847

WO 2007/148900 PCT/I('R;()OA7/(;02"9I77‘
18/35
FIG . 20
% C:0,15 F:0 NULL, NULL %
M:16,4 F:1, (16-12),(17-13),(18-8),(19-8) 0,0,0,0
$:20,n-20, F:0, (20-41,0
250 260
FLASH MEMORY J RAM P
V1 (initial version) V2 [second version]

Block #0 A Block #0 A
Block #1 B Block #1 B
Block #2 C Block #2 C
Block #3 D Block #3 D
Block #4 A Block #4 A
Block #5 B Block #5 B
Block #6 B Block #6 B
Block #7 F — Map data Block #7 F | copled
Block #8 D Block #8 D block
Block #9 F Block #9 F
Block #10 A Upgrade data Block #10 B
Block #11 B J Block #11 A
Block #12 A A - Block #12 A
Block #13 B |——»! Decompressor "~ 270 Block #13 B
Block #14 L Lompmmm g 215 Block #14 L
Block #15 A i l e Block #15 A
Block #16 B N Block #16 A
Block #17 A 8 Block #17 B ,_modified
Block #18 C Translator = £ > [Block #18 D block
Block #19 D '8 | Block #19 F
Block #20 F 2 Block #20 B
Block #21 A N Block #21 A
Block #22 H 240 Block #22 C shifted
Block #23 A Block #23 D — “biock
Block #24 B Block #24 F

£ tomree g
SUESTITUTE SHE

- EURNT/ 002941

PCT/KR2007/002947

T,

WO 2007/148900

19/35
FIG. 21
{ C:0,15 F:0 NULL, NULL %
M:16,4 F:2, NULL, NULL
S:20.N-20 F:0, (20-4), 0)
250 260
FLASH MEMORY J RAM /
V1 (initial version) V2 (second version]
Block #0 A Block #0 A
Block #1 B Block #1 B
Block #2 C Block #2 C
Block #3 D Block #3 D
Block #4 A Block #4 A
Block #5 B Block #5 B
Block #6 B Block #6 B
Block #7 F — Map data Block #7 F copled
—
Block #8 D Block #8 D block
Block #9 F Block #9 F
Block #10 A Upgrade data|{ZWPX}| | Biock #10 A
Block #11 B L Block #11 B
Block #12 A rodoo- - Block #12 A
Block #13 B » Decompressor | ~--210 Block #13 B
Block #14 1 Lo pmmmqm] 279 Block #14 L
Block #15 A i l L Block #15 A
Block #16 B - Block #16 2
Block #17 A L8 Block #17 W modified
Block #18 C Translator = S => | Block #18 P block
Block #19 D '8! Block #19 X
Block #20 F =% Block #20 B
Block #21 A N Block #21 A
Block #22 H 240 Block #22 C shifted
Block #23 A Block #23 D block
Block #24 B Block #24 F

SUBSTITUTE

?..,,..,m
Sﬂp“‘:m

PCT/KR2007/002947

BC/ER 2007 / 00 294 T

C.

WO 2007/148900

20/35

U# %201q MS passaldwoaun

L-U# %20iq MS passadwodun

¢-U# Y2010 MS passaldwodun

““# 00|00 MS passa.ldwoduf

“"# Y000 MS passaiduwioduf

“# 90|q MS passaldwoauf

“# 00| MS passaldwoaun

....* Y20iq MS passaldwoauf

M00|qd MS umwwm..nEou::

e OGNS PRSIl T

% \.b. AT SO T A

8# Y100|0 MS umwmm._n_.:ou::

m* xuo_n >>m um.wmua&ow::

¥# %2010 MS passaldwodun

£# %2010 MS passaldwodun

Z# 2010 MS passaldwodun

L# Y0010 MS Passaldwodun

0# %90i|q MS passa.ldwodun

I

09¢

108saJdwogd-ad
pue
lojejsuell

(UoisIan puodas)
abeyoed apelbdn

0vé

HH
L 1

I
cNm

{UOISI3AA 1S14)
| UOISIBA
passalduwio)

\
01€

~—0G¢

66 Old

- o POI/RR 2007/ 00294 7

WO 2007/148900 \ PCT/KR2007/002947 7.

21/35

FIG. 23

INPUT FIRST

AND SECOND VERsions |~ 5411
COMPARE FIRST

AND SECOND VERgions [~ S413

'

GENERATE UPGRADE PACKAGE |~ 8415

DOWNLOAD UPGRADE PACKAGE |~ S451

'

STORE UPGRADE PACKAGE
IN NON-VOLATILE MEMORY [~ 408

'

GENERATE UPGRADED

VERSION USING UPGRADE PACKAGE}~ S455

AND LOAD UPGRADE VERSION
ON VOLATILE MEMORY

SUBSTITUTE SHEET|

(C PCIRR20T/Z 002947

WO 2007/148900 PCT/KR2007/002947
22/35

FIG. 24

LOAD FIRST
8501~ AnD SECOND VERSIONS

;

5503 COMPARE FIRST

AND SECOND VERSIONS
S507
GENERATE UPGRADE DATA =
505 g T LT GENERATE INSTALL DATA

)

GENERATE UPGRADE PACKAGE | | 3509
BY MERGING UPGRADE DATA
AND INSTALL DATA

l

TRANSMIT UPGRADE PACKAGE 3511
TO UPGRADE PACKAGE SERVER| [

SUBSTITUTE SHEET

C ¢ NIRRT/ 002947

WO 2007/148900 | PCT/KR2007/002947 .
23/35

FIG. 25

GENERATE HISTORY DATA~. S521
$523

REQUIRE MAP DATA ?

YES

GENERATE MAP DATA BASED
ON COMPARISON RESULT [S925

FIG. 26

5931

REQUIRE NO
MERGING gAAP DATA
VES l 5B
GENERATE UPGRADE PACKAGE GENERATE UPGRADE PACKAGE
BY MERGING HISTORY DATA, |~ S533 | BY MERGING HISTORY DATA
MAP DATA, AND UPGRADE DATA AND UPGRADE DATA

eI E SGHEET]
|SURSTITUTE SHEET!

PCTER 20077 00 294 1
PCT/KR2007/002947

.

{. hUk‘}?.

WO 2007/148900

24/35

LLGS

[T eiep opeiban
€86S-1| “ajelouan
IOICIENED)
18GS— apeyoed angaxy
A
6.8S— | eiep jeisul a1esauay
A
P
194Jnq uj ynsal J0jeI8uab
dejy 01 elep o
UOSIIROWIO0D BUINES || o, B2l O3 BIE0 o [~ 1488

GLGS -

GN Pue LA
u3amiag aledwoy

GA pue LA
uaamiaq asedwoy [~ 69GS

¢ uofielauay
dein 8yl uni o}

l01elauab eiep

pasN

J03B1eqW0)
a1n99x3
1 A
£9GS
UOISIaA pu0das % ISl
puissaidwoy ||~ BSSS
dewio} s,uoisian | [Jossaidwod
2INBJU07 anoaxg |~ LSSS —
1 £l
1958 e
K w—cumﬁm.,_».mu_oa @
¢ | :
ON “.J0} SSaJdwod 0} -
pasn -
GGGS -
\ =o_m_mm\\ e
puoas SUO|SIaN £
woq peoy |~ ESSS |2
\ UOISISA X s
15114 5
aIn6)uoa nduj [~ 1558
6eld AJBA : QYT A
Bel4 UONEIaUaD ddei : DY I
Beld uo|ssaJdwod : 9yl |
lieIsu] au} 9Indax3 |~ G9GS
L "OId

C ~ KURRNT/ 002047

WO 2007/148900 -) PCT/KR2007/002947
25/35

FIG. 28

S601

Need to
verify ?
(V_FLAG==1]

— First Version /
Execute #Second Versioy
S603-~ pecompressor_1 [+
Compressed
First Version
Compare before
S605— and after Compressed
compression 7 Second Version

3607

verifying

done Error handing |}~ S611

| Notify verification
S609-~ \asit to comparator

SUBSTITUTE SHEET

PCI/ER 20077 002947

C

100294711

PCT/KR2007/002947

WO 2007/148900

26/35

£9gs
U

auoq

~1998

ojul deiy pue
A101SIy 8613

0jul dejy ajelauay

ainpouwl dely uny

i : 8zZIS ¥20i19
44444€X0 : SSaIppYy pua Alowa
0X0 : SSaJppy liels AloWwan

8LO4EGYHX0 : WNSHIBUI MS 1SZ
£2219002 : dWeISawl] MS 1SZ
OYZX0 : HIA MS 182

0£0344E2X0 - WNSY¥I3Ug MS 1SL
41°21900¢ : dweisawil MmS 1St
gY¢X0 - HIA MS 181

XXXV : JNYN TI00WN

V1X0 : HIA 91INOD
8L9GYEZLX0 : WNN Ji9den

0Ju] Alowaw

0Jul UOISIBA
nduj puoaas

0Jjul UOJSIap
nduj is14

JapeaH

I==9VI{ I\

6G9S

elep
Alois|y 91elausy

LG9S

%

ajnpoul
AlO)siy uny

~~GG3S

%

SUO0ISIAA Yloq Jo
0Ju] AJ0ISIU Y9309

~~EG3S

%

uonelauay
lieisui 11e1s

1698

64 DId

KRR/ 00294 T

WO 2007/148900 ‘ PCT/KR2007/002947
27/35

FIG. 30

“Generate upgrade data
S621~7 “in package generator

!

5623~ Execute Compressor_2

v

3629 Compressing package data

¢ Uncompressed
7" Upgrade data

S627-" Execute Decompressor_2 [<¢—j '

Compressed

! 7" Uparade data
Compare before

S629~7 and after compression

3631

no

Verifying
done
?

v

Error handling |~ S637

yes

Merge lMlgl'ade data
3633~ _and Map data
in package gen

v

S635~" Upgrade package

POI/ER 2007/ 00294 7

C

PCT/KR2007/002947.

WO 2007/148900

28/35

62L AV >

Lil e 0JUI"pua puas

GZL g
auop Gujpeojumo(

A Guipeojumoq

Y44 XV "

6LL [« 0Ju] Juswabeuew puas

LLL MOV "

GLL |e Buipeojumoq molly

ELL A0V i

LLL (< uonedNoN puas

WaysSAg buiniaday Ezmm

1 OId

POI/ER 2007/ 00294 1

PCT/KR2007/002947”.

WO 2007/148900

29/35

) IA

£€8s

ssed

df 40
smejls ayl

XJ3ud
1A

¢h —~ 1£8S
+
wey u|
dn+LA Buyquassy N 6688
+
dn Peaol o 1788

lojejsuell peol .~ ezas

]

1288 ~

18S3aYy

apoul [deiou 8yl
01 uin}ay

é
100qaY

€18S

Sak
G18S

Wa1sAS

N~ L18S

WaisAs sy}
1 1e dn au1 11eISY

»

lleisui

apouw
jeuljou 03 ulniay

~118S

jou 10 Jjesuj

608S

Bulnes auod |—~;0gs
i

dn 6uines ~gogs
+

dn Buipeojumoa ~~g0g8s
+

LA ~108S

¢ DId

PIER 70077 002941

.

Jo ¥ (. GVVI.

PC’E/KR2007/002947

WO 2007/148900

30/35

v

dn wouij eyep den
GL8S bupoenx3
~| 100d1e elep de
LL8S | ___.va..w:__U "
~] _lood e ee
6L8S mu_man: __Sm__uh_
1888 auog
jood je eje
EL8S 7| apelbdn __Swm__
~J _loodieele
1L8S %_s_ ay) __Smm_
gagg ~ 21nap Ul elep de

a9lelauay

Saf

(2
eijep deiy
ul-Hing seH

6G8S
[00d Ul 9|qe1
£101SIU & BUIABS LG8S
AN Ul LA UMM elep
apelbdn ajedwon M"L98S 1
» oju) AJoisiy |leisul > GG8S
BI1ED X
apelbdn au} asled ~"G98S 37 Wo1;
» mwmc asm_: ™ £G8S
21Ep apeJba URJe.sixa
ssaldiionag [~ €98S A
A 19][R18U] BY) peOT |~ 1G8S
Z_10ssa.dwooap
91n99X3 ~198S
{ auog
BuipeOjUMOQ

Gv8sS
/v ~| Bulpuey Jois3
YI0M1au wWol)
abeyoed apeisdn L~ £v8S
BUIpeojuMoq
~ A9y A
6v8S 19pROjUMOD JIBIS
1988 a1n99x3

ce OId

PCHER2007/7 00294 1

-

W

-

PC’I;/K132_007'/0029'4_7

WO 2007/148900

31/35

¢
| ~10SSalWodap < passaiduod
uny r; Sak Sl LA
968S G68S
WYY Ul dn+LA Buiiejsuel]
LB8S
G88S ~-1 lojejsuel) peo]
. y
msauiuny ~0p8s
. gggs 1 X28ud K1INJ3g
A
passalduiod
ou Sl IA
L88S
Sok
688S 888S
SN S
Jojejsuel yim ~10SS3.1W0J3
Wvd Ul LA Bupejsuen [_ uny P

108Y3d AInd8s ~y68s
Ndommm_m_n_..__sou% _~£58S

1

dn 1S8je| 8yl peol—~z68s

ﬂ

Jojejsuel} peoi

~168S

oJul Aloisiy
ou \8uo uay) a0\

788S
m_=uo%wmmrmﬁ ~£88S
ot _|caes
%
hm;ow_wwc%mz ~1888

[

ﬁ:ﬁ

il ENE 6
e oy i
ooy

T

ve Old

BCTER 2007/ 00294 T

.

v ¥ L. LUV

PC’{/KR2007/002947

WO 2007/148900

"dN 91j103ds ay) Inoge uayoiqg si INH1 jo Guiuesw ayl

32/35

sbe} [1ej J0
lle Ul anjeA
lilej Aue puno4

¢3nyl == Gel} |led L

16S

¢
oju) A101ISIy

auo
ueyl siou

ou

loje|sues} peol ~~116S

606S

ojul AJoisiy ul 6ell
e} uoea auy }oaug |~ G168
oju| AI01SIU 1SIX9
j0 |l ayp yoaug |~ E16S
oJuj AI0ISIY
abeyaoed apelbdn
UM 3jqejieAe Si|
abeyoed ape.lbdn | ~L06S
auiwialad
Japeoj ainpon
IRE) € ~~G06S
ap0d azileniul
100q dn el [~ E06S
9]9K9 Jamod uaddeH (-~ | ggS

SHEET

R
s
e

It

.

J

=¥

Ge Old

PCERR2007/7 002947

S

(sl

U

PCT/KLR%JOO7/002947

WO 2007/148900

33/35

MS aul uny

~~ 6¢6S

%

MS 311u3 BUIAJIIBA |~ 8Z6S

A

%29yd A11INJ3S

~~ 1¢6S

2
003 == WUN0J >4y

L2BS 926S

5

Jojejsuel] yiim

VY ul LA 6unejsuel]l

f

A

l

Joje|suel}

Wvd ul LA Buijejsuen

‘ 1"108S21dWO093p Yyum

ou

(2
passaidwo)
S LA

¢26S

1 7108S3.duwiodaq
peo]

~~ 8268

|

,J
GZ6S

|~10ss3.1dwoda(
unyg

~~ 7268

yda1s

ITUTE SHEET

=

7"33
Couw

9€ VId

POOER 20077 00294 17

PCT/KR2\1007/002947

[hVV7.

&

WO 2007/148900

34/35

fom
1T
gegs | loleisuen peol e L
or6S ~ MS aul uny 7 o
ojul A101SIU 1SB| 8} y
a gess ~{ ¥98ua Mynag m___u:onwm:ou abeyoed| |
apeJsdn ay) peo i~
ap6S ~ MS 81nu3 BuIkIBA I p Wwp f =
— fo
10SS3JdW0993 =
a ress ™ uny { veeS WW
eiep dey a
H_uumn_,\w__ H ~ EE6S
003 == WN0J > - passaIdwon > 1
S! LA
Y68 0v6S anien ey am | _
79 ¢E6S
£v6S S f 8e6S : »S
2_10558.10I093D _ ST
WY Ul N+ BURElSes) Joeisuesn un e b 0559010080 153le| 8yl puty [1EBS
« Y r~ l
N.mowmma:_ooou OEDS 1-10SSa.dW09a(
ue Joje|suel)
‘1-10SS9.dW09ap M |- uny
~1 WYY Ul dn+LA 6unejsuel] \
¢6s LUBS

LE "DId

.

PGTER 2007/ 00 29 4 1

PCT/KR2007/002947 .

WO 2007/148900

35/35

LG6S

886S-~{ 10jeISUBL RO
MS aul uny _~ B96S 1] 1 peoi AIIJ (
+|||_ oJul KI0ISIY
* ay199ds 8y} BUIPUOdSa1109
MS ainu3 BuIkpIap -~ 896S 686S- -] Y998yd KNS abeyded mummns ay} peo1
Z-10ssaJdwodag m_ww w%%s ~~ QGBS
pops | ¢ 0ssald : E
l 1968 auo 19998 13sN ~~GGHS
— é
003 == 3n03 >3y = passaJdwod »
181l dN 38igejieae
9968 £96S €965 aul J0 99|0Ud |~ pcps
S d 2068 LM J9SN BPINOId
¢_10Ss81dWo93p N saf X
J¥H U] d+ LA BUNBISUB) i0ieIsue und oSS et o
< Y v YOIUM BINS aydew | oo
¢ 10ssaldulodsp 1-1055810W0290 ou
pue 10)ejSue))
| 1-J0ssalauiodap Lim T un :
cogs | WYH UT dn+LA BURBISUEIL - df JO [Ie
¥96S Sek ™\ uaxorg
1012[SUBJ} PRO] 1668
gdals .
\ 3¢ "OIH

¢S6S

o

INTERNATIONAL SEARCH REPORT International application No.
PCT/KR2007/002947

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 15/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPCS8 : GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "Keyword : software, upgrade, network and similar terms"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A JP 17-11209A (SONY CORP.) 13 January 2005 1-46
See Paragraph [0017]-[[0031], [0041]-[0045] & Figs. 1. 3

A US 5,909,581A (SEONG KAB, PARK) 1 June 1999 1-46
See Column 3, Line 25 - Column 4, Line 36 & Fig. 3

A US 2005/0193386 A1 (JED MCCALEB et al.) 1 September 2005 1-46
See Paragraph [0023]-[0047] & Figs. 2, 3

A US 2004/0237081 A1 (DANIEL P. HOMILLER) 25 November 2004 1-46
See abstract & Fig. 1

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
20 SEPTEMBER 2007 (20.09.2007) 20 SEPTEMBER 2007 (20.09.2007)
Name and mailing address of the ISA/KR Authorized officer s

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YEO, Won Hyeon
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5696

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/KR2007/002947

Patent document Publication Patent family Publication

cited in search report date member(s) date

JP 17-11209A 13.01.2005 CN1809809A 26.07.2006
KR1020060021332A 07.03.2006
US2006200812A1 07.09.2006
W02004114126A1 29.12.2004

US 5,909,581A 01.06. 1999 KR100286008B 1 10.01.2001

US 2005/0193386A1 01.09.2005 None

US 2004/0237081A1 25.11.2004 CN1791859A 21.06.2006
EP1625496A2 15.02.2006
JP2007503654T12 22.02.2007
US2004215386A1 28.10.2004
US2006247843A1 02.11.2006
US7010416B2 07.03.2006
US7231292B2 12.06.2007
W02004102382A2 25.11.2004
W02004102382A3 20.01.2005

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - wo-search-report
	Page 91 - wo-search-report

