
(19) United States
US 20090210647A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0210647 A1
Kandasamy et al. (43) Pub. Date: Aug. 20, 2009

(54) METHOD FOR DYNAMICALLY RESIZING
FILE SYSTEMS

(76) Inventors: Madhusudanan Kandasamy,
TamilNaud (IN); Pruthvi Panyam
Nataraj, Bangalore (IN);
Ranganathan Vidya, Bangalore
(IN)

Correspondence Address:
IBM CORPORATION
INTELLECTUAL PROPERTY LAW
115O1 BURNET ROAD
AUSTIN, TX 78758 (US)

(21) Appl. No.: 12/031,778

(22) Filed: Feb. 15, 2008

Application running 10

write() syscall

12

Sufficient
space?

YES

12

Return
Success

Can borrow from
friend file
system?

Borrow data blocks
from friend file

system.

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/170; 711/E12.002
(57) ABSTRACT

Methods (100), systems (300) and computer program prod
ucts are disclosed for uninterrupted execution of an applica
tion program (110). The method (100) comprises: receiving a
write operation call to a native file system from an application
program (110) being executed on an operating system; and
dynamically allocating (120, 122) free data blocks to the
native file system from at least one other file system in a group
of file systems until completion of execution of the applica
tion program (110) thereby completing the write operation
call. The group of file systems is configured to allow sharing
of free data blocks amongst the group of file systems.

100

/

116

Patent Application Publication Aug. 20, 2009 Sheet 1 of 3 US 2009/0210647 A1

100

110 1 Application running

write() syscall

12

Sufficient
Space?
p 116

Can borrow from
friend file
system?

YES

12

Borrow data blocks
from friend file

system.

Return
Success

FIG. I.

Patent Application Publication Aug. 20, 2009 Sheet 2 of 3 US 2009/0210647 A1

21
O 120 Shrink another file

system of friend file
System.

212
Get data blocks from
other file system.

214
Extend native file
System.

216
Update status file.

FIG 2

Patent Application Publication Aug. 20, 2009 Sheet 3 of 3 US 2009/0210647 A1

(Wide-area)
Computer
Network

Computer
Network

304

305 313
306 312

Keyboard

302 303 FIG. 3

US 2009/0210647 A1

METHOD FOR DYNAMICALLY RESZING
FILE SYSTEMS

TECHNICAL FIELD

0001. The present invention relates generally to informa
tion technology and more particularly to file storage systems
for computing devices.

BACKGROUND

0002. In the various forms of the UNIX operating system,
the number of disk blocks allocated in a file system is based
on an initial configuration of file systems during creation of
the file system. The sizes of the file systems remains unaltered
until the file systems are removed and recreated for resizing,
as required by a user. However, some file systems still provide
a mechanism to increase the space by System administrators,
and there are instances largely faced by System administrators
or application developers, when an application exits or fails to
continue execution due to a lack of file system space. An
application running in the UNIX operating system may create
temporary files on the native file system for data manipulation
and when the application runs out of storage space on the
native file system the application has no option but quit.
Disadvantages include ramifications on system resource uti
lization and overhead for system administrators.
0003. Some UNIX systems, for example AIX, allow the
size of the file system to be increased without un-mounting
the file system or rebooting the operating system. This does
not let the applications increase the size of the file system for
required usage of disk blocks while the applications are run
ning. Therefore, the applications running eventually fail
execution due to a crash or exits due to lack of disk space
when the file system becomes full. Only the root or the super
user can change the size of the file system, as needed, and the
application must be re-run. If the file system gets full, only
partial dumps are created on file systems, which is a disad
Vantage for application developers and kernel developers.
0004 For example, in UNIX file systems, /var, /tmp, etc.
are typically used to create temporary files. Running applica
tions create files temporally on Such file systems and delete
the temporary files after completing application execution.
Consider a scenario where each temporary file system has 0.5
GB of free disk space. If an application tries to create a 0.6 GB
file, the application simply terminates due to insufficient disk
space. Therefore, there exists a need for an improved method
and system for dynamically resizing the filed systems without
which the promise of this technology may never be fully
achieved.

SUMMARY

0005. In accordance with an aspect of the invention, there
is provided a method for uninterrupted execution of an appli
cation program. The method comprises: receiving a write
operation call to a native file system from an application
program being executed on an operating system; and dynami
cally allocating free data blocks to the native file system from
at least one other file system in a group of file systems until
completion of execution of the application program thereby
completing the write operation call, wherein the group of file
systems is configured to allow sharing of free data blocks
amongst the group of file systems.
0006. The method may further comprise selecting a set of

file systems as the group of file system. Still further, the

Aug. 20, 2009

method may comprise determining if the application program
requires additional data blocks for continued execution.
0007. The method may further comprise performing the
write operation call to the native file system.
0008. The method may further comprise providing a vir
tual file system (VFS) layer of the operating system as an
interface for one or more application programs.
0009. The method may further comprise borrowing free
data blocks from at least one other file system in the group of
file systems thereby increasing the size of the native file
system.
0010 Still further, the method may comprise reducing the
size of the other file system from which the free data blocks
are borrowed.
0011. The method may further comprise configuring each

file system in the group of file systems to limit the data blocks
borrowed from each file system.
0012. The native file system may be configured to borrow
data blocks available from another file system within the
group of file system thereby satisfying at least the require
ments of completing the write operation call for the executing
application program.
0013 The method may comprise reducing the size of the
native file system by releasing the borrowed data blocks in
response to reduced usage of the native file system and
increasing the size of the other file system in the group of file
systems that yielded the borrowed data blocks, thereby resort
ing normalcy to the file system.
0014 Disk space utilized across the group of file systems

is constant.
0015 The method may comprise checking if the native file
system belongs to the group of file systems. The method may
further comprise verifying the borrow status of the file system
in the group of file systems. The method may comprise:
checking if the data blocks borrowed from the other file
systems in the group of file system is less than the maximum
limit of data blocks that can be borrowed; and examining
other free space details of the remaining file systems in the
group of file system to determine if there is a file system to
borrow from. The method may further comprise selecting the
other file system, wherein the other file system comprises
additional free data blocks more than required by the file
system borrowing the data blocks.
0016. The step of dynamically allocating may further
comprise: reducing a size of storage space of the other file
system in response to a file system specific call on the other
file system; reducing a size of a logical Volume of the other file
system to match the reduced size of the other file system using
a logical Volume specific function called on a Volume group;
increasing the logical Volume size of the native file system
borrowing the free data blocks to utilize the free disk space
freed by the logical volume of the other file system; and
updating the status of both the native and other file systems.
0017. In accordance with a further aspect of the invention,
there is provided a system for uninterrupted execution of an
application program. The system comprises: at least one stor
age device for storing data and computer program code to be
carried out by a processing unit; a processing unit coupled to
the at least one storage unit, the processing unit being pro
grammed with the computer program code to implement
steps of receiving a write operation call to a native file system
from an application program being executed on an operating
system; and dynamically allocating free data blocks to the
native file system from at least one other file system in a group

US 2009/0210647 A1

of file systems until completion of execution of the applica
tion program thereby completing the write operation call,
wherein the group of file systems is configured to allow
sharing of free data blocks amongst the group of file systems.
0018. The native file system and the at least one other file
system in a group of file systems may be implemented using
one or more storage devices coupled to the processing unit.
0019. The native file system may be configured to borrow
data blocks available from another file system within the
group of file system thereby satisfying at least the require
ments of completing the write operation call for the executing
application program.
0020. In accordance with still another aspect of the inven

tion, there is provided a computer program product compris
ing a computer readable medium having recorded thereon a
computer program for uninterrupted execution of an applica
tion program. The computer program comprises: a computer
program code module for receiving a write operation call to a
native file system from an application program being
executed on an operating system; and a computer program
code module for dynamically allocating free data blocks to
the native file system from at least one other file system in a
group of file systems until completion of execution of the
application program thereby completing the write operation
call, wherein the group of file systems is configured to allow
sharing of free data blocks amongst the group of file systems.

BRIEF DESCRIPTION OF THE DRAWINGS

0021 Embodiments of the invention are described here
inafter with reference to the drawings, in which:
0022 FIG. 1 is a flow diagram illustrating a method of
resizing a native file system having insufficient storage space
for storing a temporary file;
0023 FIG. 2 is a flow diagram illustrating sub-steps of
step 120 of FIG. 1; and
0024 FIG.3 is a block diagram of a general-purpose com
puting system with which embodiments of the invention may
be practiced.

DETAILED DESCRIPTION

0025 Methods, systems and computer program products
are disclosed for uninterrupted execution of an application
program. In the following description, numerous specific
details, including particular operating systems, file sizes, and
the like are set forth. However, from this disclosure, it will be
apparent to those skilled in the art that modifications and/or
Substitutions may be made to the method, system and com
puter program product described herein without departing
from the scope and spirit of the invention. In other circum
stances, specific details may be omitted so as not to obscure
the invention.
0026. The explosion and complexity of information tech
nology is outstripping people's ability to manage and main
tain computer systems. This has stimulated research into
autonomic computing, involving automating many functions
associated with computing today, in a manner similar to the
autonomic function of the human central nervous system.
This involves Smart computing components that provide what
is needed when needed without any conscious mental or
physical effort by users. Embodiments of the invention
employ autonomic computing in respect of the better utiliza
tion of free storage space in multiple file systems, i.e., user
friendly file systems that are self configuring and tunable.

Aug. 20, 2009

0027. In the embodiments of the invention, a set of file
systems are formed as a group called a friend file system. A
file system residing within the friend file system can borrow
free data blocks from any other file system within the same
group. Each file system in the friend file system can be con
figured to limit the number of data blocks a file system can
borrow from another file system in the friend file system, as
well as limit the number of data blocks that file system can
yield to another file system in the friend file system. A file
system that borrows data blocks from another file system in
the friend file system fulfills the needs of any currently run
ning applications by increasing the size of the borrowing file
system. The same file system that borrowed the blocks returns
those data blocks as soon as the file system usage gets reduced
(e.g., the application deletes the temporarily created file) or at
a pre-set interval determined by the user or the system. The
file system can automatically grow and shrink on demand, but
the total disk space utilization across all file systems in the
friend file system should be kept constant. Thus, the embodi
ments of the invention utilize autonomic computing in rela
tion to file systems within the friend file system involving the
self configurability/tunability of a file system within the
friend file system in response to the needs of an application
program allocated data blocks within that group while run
ning, and in which free data blocks are shared between file
systems in the group. A friend file system is a member of a
group of file systems from which free data blocks may be
borrowed to resize the file system requiring them.
0028 Embodiments of the invention allow file systems
within the friend file system to borrow data blocks from one
another by letting a native file system (e.g. one involving an
application call) increase and regain its default size dynami
cally based on requirements of the running applications. A
user configures the file systems, preferably the friend file
system, in a configuration file that can be stored in a root file
system. This configuration file can also contain information
about the maximum number of data blocks a file system can
borrow and/or the maximum number of data blocks the file
system can yield to another file system in the friend file
system. A Virtual File System (VFS) of an operating system
(e.g., UNIX) reads the configuration file and loads the con
figuration file into memory during boot up of the operating
system. In light of this disclosure, it should be apparent to one
skilled in the art that any operating system that Supports
storing a configuration file, containing information about the
maximum number of data blocks a filed system can borrow or
be given, to perform dynamic resizing offile systems in which
a native file system in a group of file systems can leverage
other file systems inside the same group to utilize their data
blocks temporarily should fall within the scope of this inven
tion. For example, in one embodiment, all file systems located
within the friend file system are preferably from the same
volume group. The VFS also maintain details about current
resizing status of each file system in the friend file system,
including the number of data blocks that have been borrowed
from or given to another file system of the friend file system.
(0029 FIG. 1 illustrates a method 100 of dynamically
changing the size of file systems in a friend file system where
a native file system requires increased size to permit file
storage operations to be carried out by an application pro
gram. The additional storage required is borrowed from one
or more other file systems in the friend file system. As shown
in FIG. 1, an application program 110 makes a write system
call (write() syscall) to the VFS 112 for the native file system

US 2009/0210647 A1

of the application program 110. If the write system call gen
erated by the application program 10 fails in the native file
system (A), a check is made in step 114 by the VFS to
determine if there is sufficient free space (free data blocks) in
the native file system A to perform the operation. For the
ease of description only, labels such as A and B are used to
differentiate between the native file system (A) in terms of a
particular file system operation and another file system B in
the friend file system. If there is sufficient space (Yes) in the
native file system A to perform the operation, processing
continues at step 122 and the file is written to the native file
system A. In step 124, the VFS returns that the write system
call operation was successful. However, if decision step 114
returns false (No), processing continues at Step 116.
0030) Ifat step 114, there is insufficient space in the native

file system A to perform the operation, then in step 116, the
VFS checks if the native file system A in respect of the
application program 110 can borrow space from the friend file
system to continue uninterrupted execution of the application
program. That is, a check is made to determine if the native
file system. A belongs to a friend file system enabled for
borrowing storage space, i.e. free data blocks, and if so, the
borrow status of the file system is verified. If step 116 returns
false (No), the VFS returns that the write system call opera
tion has failed in step 118. In step 116, if the number of
borrowed blocks from other file systems in the friend file
system is less than the maximum limit of blocks that can be
borrowed, all other free space details of the other file systems
in the friend file system are examined to determine if there is
a file system to borrow from. If one exists, a file system B of
the friend file system is selected if that file system B has
more free space than required by the native file system A and
if the file system B has given blocks in this manner less than
the maximum number (limit) of yield blocks that file system
B is permitted to yield or lend to another file system in the
friend file system. If the file system B does not have suffi
cient space, data could be borrowed from more than one file
system like Band C, thereby catering to the requirement of
A. That is, step 116 returns true (Yes) and processing con
tinues at step 120. Once there is sufficient space after borrow
ing space from a friend file system to perform the operation of
the application program, processing continues at step 122 and
the file is written to the native file system A. In step 124, the
VFS returns that the write system call operation was success
ful.

0031. In step 120, the native file system borrows data
blocks from the friend file system to increase its size. As
illustrated in FIG. 2, borrowing data blocks from a friend file
system involves several sub-steps detailed in steps 210-216.
In sub-step 210, another file system B of the friend file
system is shrunk. The VFS makes a file system specific call on
the file system B to shrink the size of storage space of that
file system B. A logical volume specific function is called on
the volume group by the VFS to reduce the size of the logical
volume of the file system B of the friend file system to match
the reduced file system size, thereby obtaining data blocks of
the friend file system in sub-step 212.
0032. In sub-step 214, the native file system A is extended
by the data blocks borrowed from the friend file system. The
logical volume size offile system A is increased to utilize the
free disk space freed by the logical volume of the file system
B. In step 216, the status file of the friend file system is
updated. That is, the status of both file systems is updated. The
write instruction made to the file system A is restarted in step

Aug. 20, 2009

122. In this manner, the write system call to file system A can
be completed without a write error or failure, provided suffi
cient free data blocks are available elsewhere in the friend file
system.
0033 Embodiments of the invention described herein
with reference to FIGS. 1 and 2 may be implemented using a
computer system 300, such as that shown in FIG. 3. The
processes of FIGS. 1 and 2 may be implemented as software
executable within the computer system 300. In particular,
steps of the methods shown in FIGS. 1 and 2 are effected by
instructions in the software that are carried out within the
computer system 300. The instructions may beformed as one
or more code modules, each for performing one or more
particular tasks. The software may also be divided into two
separate parts, in which a first part and the corresponding
code modules performs the methods for uninterrupted execu
tion of an application program and a second part and the
corresponding code modules manage a user interface
between the first part and the user. The software may be stored
in a computer readable medium, including the storage devices
described hereinafter. The software is loaded into the com
puter system 300 from the computer readable medium and
executed by the computer system 300. A computer readable
medium having such software or computer program recorded
on the computer readable medium is a computer program
product. The use of the computer program product in the
computer system 300 preferably effects an advantageous sys
tem for uninterrupted execution of an application program.
0034. As shown in FIG. 3, the computer system 300 is
formed by a computer module 301, input devices such as a
keyboard 302 and a mouse pointer device 303, and output
devices including a printer 315, a display device 314 and
loudspeakers 317. An external Modulator-Demodulator (Mo
dem) transceiver device 316 may be used by the computer
module 301 for communicating to and from a communica
tions network 320 via a connection 321. The network 320
may be a wide-area network (WAN), such as the Internet or a
private WAN. Where the connection 321 is a telephone line,
the modem 316 may be a traditional “dial-up' modem. Alter
natively, where the connection 321 is a high capacity connec
tion, the modem 316 may be a broadband modem. A wireless
modem may also be used for wireless connection to the net
work 320.

0035. The computer module 301 typically includes at least
one processor unit 305, and a memory unit 306 for example
formed from semiconductor random access memory (RAM)
and read only memory (ROM). The module 301 also includes
a number of input/output (I/O) interfaces including an audio
video interface 307 that couples to the video display 314 and
loudspeakers 317, an I/O interface 313 for the keyboard 302
and mouse 303 and optionally a joystick (not illustrated), and
an interface 308 for the external modem 316 and printer 315.
In some implementations, the modem 316 may be incorpo
rated within the computer module 301, for example within the
interface 308. The computer module 301 also has a local
network interface 311 which, via a connection 323, permits
coupling of the computer system 300 to a local computer
network322, known as a Local Area Network (LAN). As also
illustrated, the local network322 may also couple to the wide
network 320 via a connection 324, which would typically
include a so-called “firewall device or similar functionality.
The interface 311 may be formed by an EthernetTM circuit
card, a wireless BluetoothTM or an IEEE 802.11 wireless
arrangement.

US 2009/0210647 A1

0036. The interfaces 308 and 313 may afford both serial
and parallel connectivity, the former typically being imple
mented according to the Universal Serial Bus (USB) stan
dards and having corresponding USB connectors (not illus
trated). USB and Firewire are common interfaces used for
connection to such a scanner as are other serial and parallel
interfaces. Storage devices 309 are provided and typically
include a hard disk drive (HDD) 310. Other devices such as a
memory stick, a floppy disk drive and a magnetic tape drive
(not illustrated) may also be used. An optical disk drive 312 is
typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g., CD-ROM,
DVD), USB-RAM, and floppy disks for example may then be
used as appropriate sources of data to the system 300.
0037. The components 305 to 313 of the computer module
301 typically communicate via an interconnected bus 304 and
in a manner which results in a conventional mode of operation
of the computer system 300 known to those in the relevant art.
Examples of computers on which the described arrangements
can be practised include IBM-PC's and compatibles, Sun
Sparestations, Apple MacTM or like computer systems
evolved therefrom.

0038. The computer system 300 consists of an execution
module 327 coupled to the processor 305 and is configured to
monitor the operating system calls. The execution module
works in conjunction with the processor 305 and is configured
to dynamically determine if the application program requires
additional data blocks for continued execution and allocate
free data blocks to a native file system from at least one other
filed system in a group of file systems for performing unin
terrupted execution of the application program. IN one
embodiment, the execution module 327 maintains a record of
the native system files system and data blocks allocated with
each of the native files system. The execution module is
further configured to maintain a record of the group of file
systems and data blocks allocated to each of the group of file
systems, and connects the native files system to the group of
file systems by means of a relationship that is maintained in
the execution module, for example a lookup table. When the
execution module receives a write operation call to the native
file system from the application program being executed on
an operating system, and performs the write call operation to
the native file system. The file system is selected from a group
of file systems. The execution module provides a virtual file
system (VFS) layer of the operating system as an interface for
one or more application programs. The execution module is
configured to borrow free data blocks from at least one other
file system in the group of file system to increase size of the
native file system. The execution module is configured to
reduce size of the other file system from which data blocks are
borrowed. The execution module is configured to maintain a
constant disk space utilized across the group of file systems.
The execution module is configured to perform a consistency
check if the native file system belongs to the group of file
systems. The execution module may be implemented as Soft
ware or hardware as desired.

0039 Typically, the software is resident on the hard disk
drive 310 and read and controlled in execution by the proces
Sor 305. Intermediate storage of such programs and any data
fetched from the networks 320 and 322 may be accomplished
using the semiconductor memory 306, possibly in concert
with the hard disk drive 310. In some instances, the software
may be supplied to the user encoded on one or more CD-ROM
and read via the corresponding drive 312, or alternatively may

Aug. 20, 2009

be read by the user from the networks 320 or 322. Still further,
the software can also be loaded into the computer system 300
from other computer readable media. Computer readable
media refers to any storage medium that participates in pro
viding instructions and/or data to the computer system 300
for execution and/or processing. Examples of Such media
include floppy disks, magnetic tape, CD-ROM, a hard disk
drive, a ROM or integrated circuit, a magneto-optical disk, or
a computer readable card such as a PCMCIA card and the
like, whether or not such devices are internal or external of the
computer module 301. Examples of computer readable trans
mission media that may also participate in the provision of
instructions and/or data include radio or infra-red transmis
sion channels as well as a network connection to another
computer or networked device, and the Internet or Intranets
including e-mail transmissions and information recorded on
Websites and the like.
0040. The second part of the application programs and the
corresponding code modules mentioned hereinbefore may be
executed to implement one or more graphical user interfaces
(GUIs) to be rendered or otherwise represented upon the
display 314. Through manipulation of the keyboard 302 and
the mouse 303, a user of the computer system 300 and the
application may manipulate the interface to provide control
ling commands and/or input to the applications associated
with the GUI(s).
0041. The method of FIGS. 1 and 2 may alternatively be
implemented in dedicated hardware such as one or more
integrated circuits performing the functions or Sub functions
of uninterrupted execution of an application program. Such
dedicated hardware may include graphic processors, digital
signal processors, or one or more microprocessors and asso
ciated memories.
0042. If a file is deleted in a file system (e.g. file system
A) of the group and if that file system (e.g. 'A) borrowed
some blocks from another file system of the friend file system,
the VFS performs complementary, but similar steps as given
hereinbefore to reduce the size of the native file system (e.g.
A) to or towards the original file system size, dependent
upon the number of free data blocks borrowed from other file
systems in the group.
0043. In the foregoing manner, embodiments of the inven
tion enable the dynamic resizing of the file systems, in which
a native file system in a group of file systems can leverage
other file systems inside the same group to utilize their data
blocks temporarily. A file system can thereby temporarily
increase its size based on the needs of an application and
native file system to release the data blocks to its friend after
use, thereby allowing other file system to borrow blocks
whenever needed.
0044 Space requirements of files opened by one or more
applications on any file systems, and not by any file server, are
managed so that the free data blocks between groups of file
systems are shared. Reservation of file space is not initiated
by any file service. If a file operated by the application runs
out of space on the native file system in which a write opera
tion of data fails on the native file system for the file needed by
the application under execution, the write system call works
with the friend file system to verify if free data blocks can be
borrowed. The VFS computes, based on configuration of the
group of file systems, the number of free data blocks that can
be lent to the native file system from the other file system of
the friend file system that the blocks are borrowed from. That
is, data blocks are not reserved beforehand for a file. The

US 2009/0210647 A1

expansion (and contraction) of the native file system occurs
on a need basis for the request initiated by the executing
application if a write operation from an application cannot be
completed on the native file system and if sufficient free
blocks can be used from another file system in the group. The
data blocks from the lending file system are reduced and
offered to the borrowing native file system based on pre
defined values set using VFS parameters.
0045. In the embodiments of the invention, a file system in
a group of file systems leverages all other file systems within
the same group to utilize their data blocks temporarily. A file
system within a group can temporarily increase its size based
on the needs of an application program using the file system.
In this manner, an application program is able normally to
continue execution without a crash occurring due to lack of
space in the native file system accessed by the application
program. The embodiments of the invention allow an appli
cation program to consume additional disk space temporarily
from the friend file system. Thus, the embodiments of the
invention enable dynamic resizing of file systems within a
group by borrowing data blocks from one or more file sys
tems. The native file system accessed by the application can
release the data blocks to a file system(s) of the friend file
system after use, allowing another file system to borrow
blocks when needed. The embodiments of the invention
thereby increase the effective usage of disk space across file
systems within a group of file systems.
0046. The embodiments of the invention are applicable to
the information technology and file storage system industries,
amongst others. The foregoing describes only some embodi
ments of the present invention, and modifications and/or
changes can be made thereto without departing from the
Scope and spirit of the invention, the embodiments being
illustrative and not restrictive.
We claim:
1. A method for uninterrupted execution of an application

program, the method comprising:
receiving a write operation call to a native file system from

an application program being executed on an operating
system; and

dynamically allocating free data blocks to said native file
system from at least one other file system in a group of
file systems until completion of execution of the appli
cation program thereby completing the write operation
call, wherein the group of file systems is configured to
allow sharing of free data blocks amongst the group of
file systems.

2. The method as claimed in claim 1, further comprising
selecting a set of file systems as the group of file system.

3. The method as claimed in claim 2, further comprising
determining if the application program requires additional
data blocks for continued execution.

4. The method as claimed in claim 1, further comprising
performing the write operation call to the native file system.

5. The method as claimed in claim 1, further comprising
providing a virtual file system (VFS) layer of the operating
system as an interface for one or more application programs.

Aug. 20, 2009

6. The method as claimed in claim 1, further comprising
borrowing free data blocks from at least one other file system
in the group of file systems thereby increasing the size of said
native file system.

7. The method as claimed in claim 6 further comprising
reducing the size of the other file system from which the free
data blocks are borrowed.

8. The method according to claim 1, further comprising
configuring each file system in the group of file systems to
limit the data blocks borrowed from each file system.

9. The method according to claim 1, wherein the native file
system is configured to borrow data blocks available from
another file system within the group of file system thereby
satisfying at least the requirements of completing the write
operation call for the executing application program.

10. The method according to claim 1, comprising reducing
the size of the native file system by releasing the borrowed
data blocks in response to reduced usage of the native file
system and increasing the size of the other file system in the
group of file systems that yielded the borrowed data blocks,
thereby resorting normalcy to the file system.

11. The method according to claim 1, wherein disk space
utilized across the group of file systems is constant.

12. The method according to claim 1, comprising checking
if the native file system belongs to the group of file systems.

13. The method according to claim 12, further comprising
verifying the borrow status of the file system in the group of
file systems.

14. The method according to claim 13, comprising:
checking if the data blocks borrowed from the other file

systems in the group of file system is less than the maxi
mum limit of data blocks that can be borrowed; and

examining other free space details of the remaining file
systems in the group of file system to determine if there
is a file system to borrow from.

15. The method according to claim 14, further comprising
selecting the other file system, wherein the other file system
comprises additional free data blocks more than required by
the file system borrowing the data blocks.

16. The method according to claim 1, wherein the step of
dynamically allocating further comprises:

reducing a size of storage space of the other file system in
response to a file system specific call on the other file
system;

reducing a size of a logical Volume of the other file system
to match the reduced size of the other file system using a
logical Volume specific function called on a Volume
group;

increasing the logical Volume size of said native file system
borrowing said free data blocks to utilize the free disk
space freed by the logical volume of said other file
system; and

updating the status of both said native and other file
systems.

