

US 20120122102A1

(19) United States (12) Patent Application Publication

Sampath et al.

(54) COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

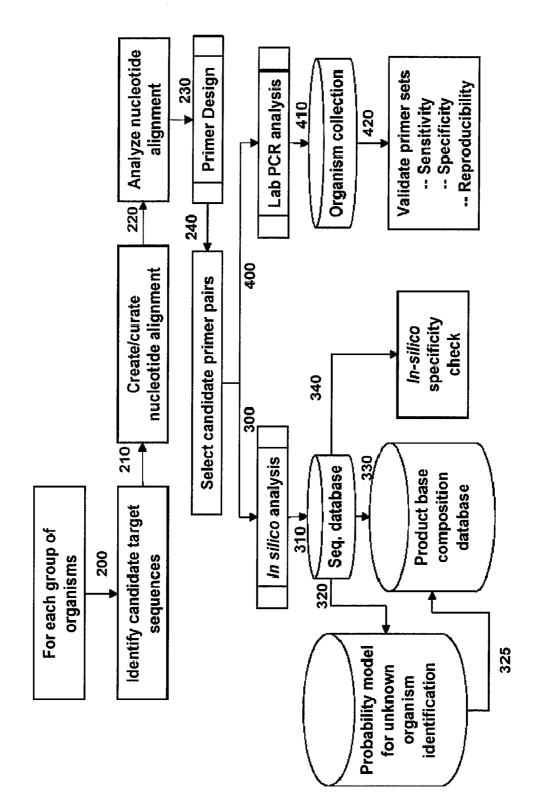
- (76) Inventors: Rangarajan Sampath, San Diego, CA (US); Thomas A. Hall, Oceanside, CA (US); David J. Ecker, Encinitas, CA (US); Lawrence Blyn, Mission Viejo, CA (US)
- (21) Appl. No.: 11/683,360
- (22) Filed: Mar. 7, 2007

Related U.S. Application Data

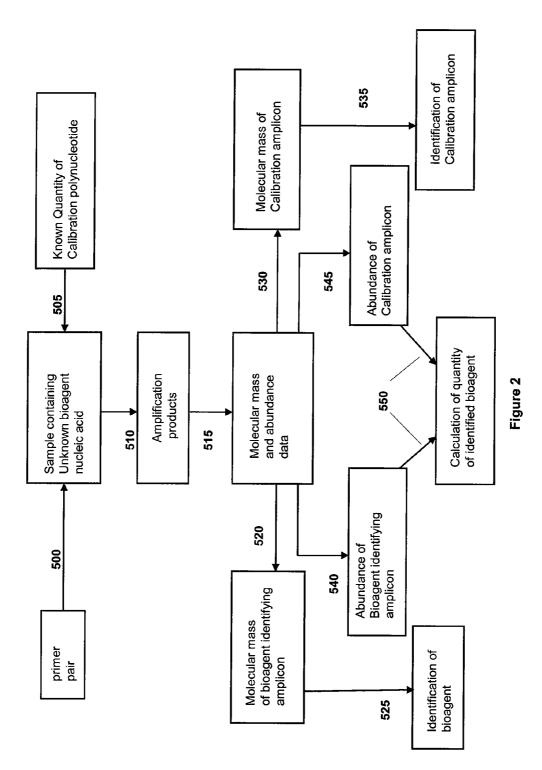
- (63) Continuation of application No. 11/409,535, filed on Apr. 21, 2006, now abandoned, which is a continuation-in-part of application No. 11/060,135, filed on Feb. 17, 2005, now abandoned, said application No. 11/409,535 is a continuation-in-part of application No. 10/728,486, filed on Dec. 5, 2003, now Pat. No. 7,718, 354.
- (60) Provisional application No. 60/545,425, filed on Feb. 18, 2004, provisional application No. 60/559,754,

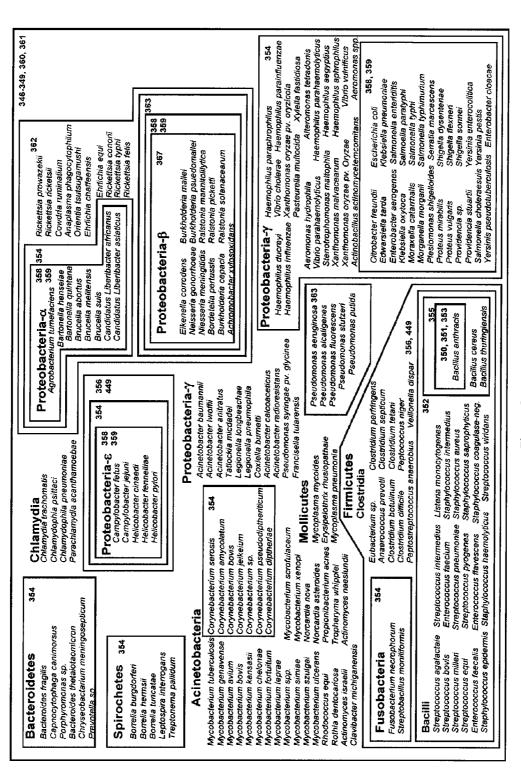
(10) Pub. No.: US 2012/0122102 A1 (43) Pub. Date: May 17, 2012

filed on Apr. 5, 2004, provisional application No. 60/632,862, filed on Dec. 3, 2004, provisional application No. 60/639,068, filed on Dec. 22, 2004, provisional application No. 60/648,188, filed on Jan. 28, 2005, provisional application No. 60/501,926, filed on Sep. 11, 2003, provisional application No. 60/674,118, filed on Apr. 21, 2005, provisional application No. 60/705,631, filed on Aug. 3, 2005, provisional application No. 60/732,539, filed on Nov. 1, 2005, provisional application No. 60/773,124, filed on Feb. 13, 2006.

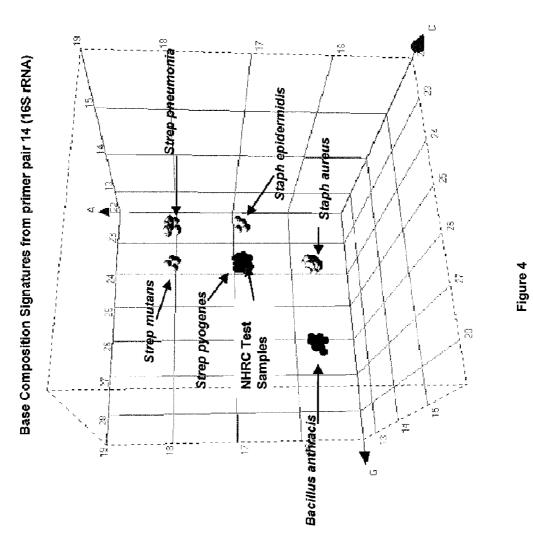

Publication Classification

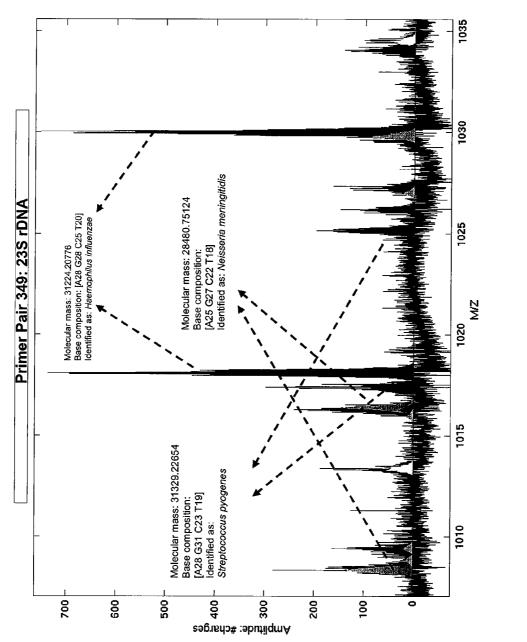
(51)	Int. Cl.	
	C12Q 1/68	(2006.01)
	C07H 21/04	(2006.01)

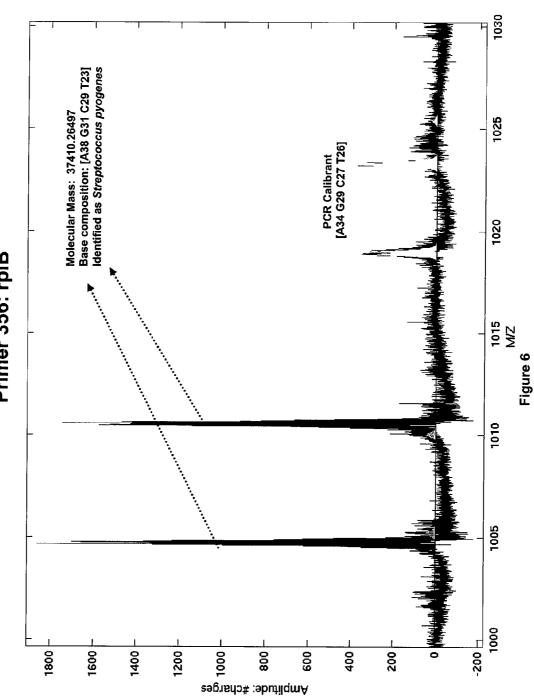

(52) U.S. Cl. 435/6.12; 536/24.33


(57) **ABSTRACT**

The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.







Primer 356: rplB

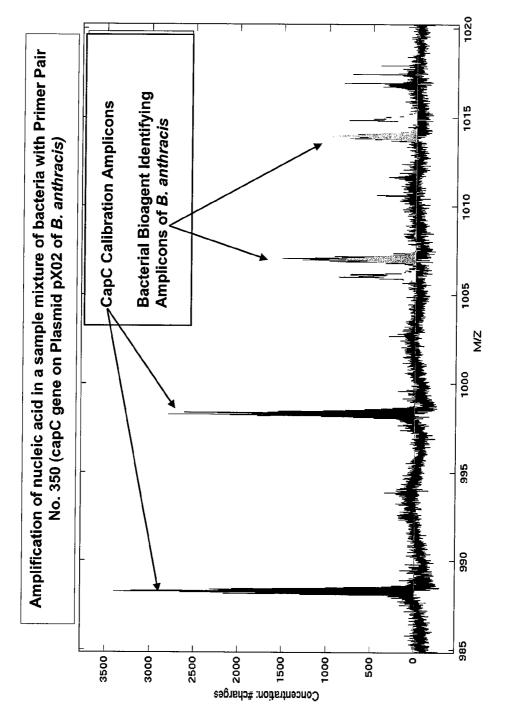


Figure 7

COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 11/409,535, filed Apr. 21, 2006, which is a continuation-in-part of U.S. application Ser. No. 11/060,135, filed Feb. 17, 2005 which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/545,425 filed Feb. 18, 2004; U.S. Provisional Application Ser. No. 60/559,754, filed Apr. 5, 2004; U.S. Provisional Application Ser. No. 60/632, 862, filed Dec. 3, 2004; U.S. Provisional Application Ser. No. 60/639,068, filed Dec. 22, 2004; and U.S. Provisional Application Ser. No. 60/648,188, filed Jan. 28, 2005. U.S. application Ser. No. 11/409,535 is a also continuation-in-part of U.S. application Ser. No. 10/728,486, filed Dec. 5, 2003 which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/501,926, filed Sep. 11, 2003. U.S. application Ser. No. 11/409,535 also claims the benefit of priority to: U.S. Provisional Application Ser. No. 60/674,118, filed Apr. 21, 2005; U.S. Provisional Application Ser. No. 60/705,631, filed Aug. 3, 2005; U.S. Provisional Application Ser. No. 60/732, 539, filed Nov. 1, 2005; and U.S. Provisional Application Ser. No. 60/773,124, filed Feb. 13, 2006. Each of the abovereferenced U.S. Applications is incorporated herein by reference in its entirety. Methods disclosed in U.S. application Ser. Nos. 09/891,793, 10/156,608, 10/405,756, 10/418,514, 10/660,122, 10,660,996, 10/660,997, 10/660,998, 10/728, 486, 11/060,135, and 11/073,362, are commonly owned and incorporated herein by reference in their entirety for any purpose.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with United States Government support under CDC contract RO1 CI000099-01. The United States Government has certain rights in the invention.

SEQUENCE LISTING

[0003] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled DIBIS0083USC8SEQ.txt, created on Mar. 6, 2007 which is 252 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0004] The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.

BACKGROUND OF THE INVENTION

[0005] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.

[0006] Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.

[0007] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

[0008] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.

[0009] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicons and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

SUMMARY OF THE INVENTION

[0010] The present invention provides compositions, kits and methods for rapid identification and quantification of bacteria by molecular mass and base composition analysis.

[0011] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456.

[0012] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261.

[0013] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261.

[0014] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 288.

[0015] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1269.

[0016] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 288 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1269.

[0017] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 698.

[0018] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1420.

[0019] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 698 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1420.

[0020] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 217.

[0021] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1167

[0022] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 217 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1167.

[0023] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 399.

[0024] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1041.

[0025] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 399 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1041.

[0026] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 430.

[0027] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1321.

[0028] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 430 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1321.

[0029] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 174.

[0030] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 853.

[0031] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID

NO: 174 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 853.

[0032] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 172.

[0033] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1360.

[0034] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 172 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1360.

[0035] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261.

[0036] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 456 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1261 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 288:1269, 698:1420, 217:1167, 399:1041, 430:1321, 174:853, and 172:1360.

[0037] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681.

[0038] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.

[0039] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.

[0040] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 315.

[0041] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1379.

[0042] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 315 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1379.

[0043] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 346.

[0044] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 955.

[0045] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 346 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 955.

[0046] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 504.

[0047] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1409.

[0048] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 504 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1409.

[0049] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 323.

[0050] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1068.

[0051] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 323 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1068.

[0052] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 479.

[0053] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 938.

[0054] Another embodiment is an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 479 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 938.

[0055] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022.

[0056] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 681 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1022 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 315:1379, 346:955, 504:1409, 323:1068, 479:938.

[0057] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583.

[0058] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923.

[0059] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923.

[0060] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 454.

[0061] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1418.

[0062] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 454 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1418.

[0063] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 250.

[0064] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 902.

[0065] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 250 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 902.

[0066] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 384.

[0067] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 878.

[0068] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 384 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 878.

[0069] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 694.

[0070] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1215.

[0071] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 694 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1215.

[0072] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 194.

[0073] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1173.

[0074] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 194 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1173.

[0075] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 375.

[0076] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 890.

[0077] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 375 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 890.

[0078] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 656.

[0079] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1224.

[0080] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 656 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1224.

[0081] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 618.

[0082] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1157.

[0083] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 618 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1157.

[0084] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 302.

[0085] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 852.

[0086] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 302 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 852.

[0087] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 199.

[0088] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 889.

[0089] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 199 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 889.

[0090] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 596.

[0091] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1169.

[0092] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 596 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1169.

[0093] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 150.

[0094] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1242.

[0095] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 150 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1242.

[0096] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166.

[0097] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1069.

[0098] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1069.

[0099] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166.

[0100] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1168.

[0101] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 166 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1168.

[0102] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 583 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 923 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 454:1418, 250:902, 384:878, 694:1215, 194:1173, 375: 890, 656:1224, 618:1157, 302:852, 199:889, 596:1169, 150: 1242, 166:1069 and 166:1168. **[0103]** One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437.

[0104] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1137.

[0105] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1137.

[0106] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 530.

[0107] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 891.

[0108] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 530 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 891.

[0109] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 474.

[0110] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 869.

[0111] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 474 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 869.

[0112] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 268.

[0113] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1284.

[0114] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 268 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1284.

[0115] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 418.

[0116] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1301.

[0117] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 418 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1301.

[0118] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 318.

[0119] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1300.

[0120] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 318 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1300.

[0121] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 440.

[0122] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1076.

[0123] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 440 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1076.

[0124] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 219.

[0125] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1013.

[0126] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 219 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1013.

[0127] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 437 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1137 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 530:891, 474:869, 268:1284, 418:1301, 318:1300, 440: 1076 and 219:1013.

[0128] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325.

[0129] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163.

[0130] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163.

[0131] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 278.

[0132] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1039.

[0133] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 278 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1039.

[0134] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 465.

[0135] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1037.

[0136] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 465 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1037.

[0137] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 148.

[0138] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1172.

[0139] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 148 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1172.

[0140] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 190.

[0141] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1254.

[0142] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 190 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1254.

[0143] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 266.

[0144] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1094.

[0145] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 266 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1094.

[0146] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 508.

[0147] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1297.

[0148] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 508 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1297.

[0149] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 259.

[0150] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1060.

[0151] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 259 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1060.

[0152] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 325 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1163 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 278:1039: 465:1037, 148:1172, 190:1254, 266:1094, 508:1297 and 259:1060.

[0153] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376.

[0154] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265.

[0155] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265.

[0156] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 267.

[0157] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1341.

[0158] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 267 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1341.

[0159] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 705.

[0160] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1056.

[0161] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 705 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1056. **[0162]** One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 710.

[0163] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1259.

[0164] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 710 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1259.

[0165] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 374.

[0166] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1111.

[0167] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 374 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1111.

[0168] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 545.

[0169] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 978.

[0170] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 545 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 978.

[0171] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 249.

[0172] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1095.

[0173] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 249 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1095.

[0174] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 195.

[0175] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1376.

[0176] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 195 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1376.

[0177] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 311.

[0178] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1014.

[0179] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 311 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1014.

[0180] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 365.

[0181] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1052.

[0182] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 365 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1052.

[0183] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 527.

[0184] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1071.

[0185] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 527 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1071.

[0186] One embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 490.

[0187] Another embodiment is an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1182.

[0188] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 490 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1182.

[0189] Another embodiment is a kit comprising an oligonucleotide primer pair including an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 376 and an oligonucleotide primer 14 to 35 nucleobases in length having at least 70% sequence identity with SEQ ID NO: 1265 and further comprising one or more primer pairs wherein each member of said one or more primer pairs is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by SEQ ID NOs: 267:1341, 705:1056, 710:1259, 374:1111, 545:978, 249:1095, 195:1376, 311:1014, 365:1052, 527:1071 and 490:1182.

[0190] In some embodiments, either or both of the primers of a primer pair composition contain at least one modified nucleobase such as 5-propynyluracil or 5-propynylcytosine for example.

[0192] In some embodiments, either or both of the primers of the primer pair comprises at least one non-templated T residue on the 5'-end.

[0193] In some embodiments, either or both of the primers of the primer pair comprises at least one non-template tag.

[0194] In some embodiments, either or both of the primers of the primer pair comprises at least one molecular mass modifying tag.

[0195] In some embodiments, the present invention provides primers and compositions comprising pairs of primers, and kits containing the same, and methods for use in identification of bacteria. The primers are designed to produce amplification products of DNA encoding genes that have conserved and variable regions across different subgroups and genotypes of bacteria.

[0196] Some embodiments are kits that contain one or more of the primer pair compositions. In some embodiments, each member of the one or more primer pairs of the kit is of a length of 14 to 35 nucleobases and has 70% to 100% sequence identity with the corresponding member from any of the primer pairs listed in Table 2.

[0197] Some embodiments of the kits contain at least one calibration polynucleotide for use in quantitiation of bacteria in a given sample, and also for use as a positive control for amplification.

[0198] Some embodiments of the kits contain at least one anion exchange functional group linked to a magnetic bead.

[0199] In some embodiments, the present invention also provides methods for identification of bacteria. Nucleic acid from the bacterium is amplified using the primers described above to obtain an amplification product. The molecular mass of the amplification product is measured. Optionally, the base composition of the amplification product is determined from the molecular mass. The molecular mass or base composition is compared with a plurality of molecular masses or base compositions of known analogous bacterial identifying amplicons, wherein a match between the molecular mass or base composition and a member of the plurality of molecular masses or base compositions identifies the bacterium. In some embodiments, the molecular mass is measured by mass spectrometry in a modality such as electrospray ionization (ESI) time of flight (TOF) mass spectrometry or ESI Fourier transform ion cyclotron resonance (FTICR) mass spectrometry, for example. Other mass spectrometry techniques can also be used to measure the molecular mass of bacterial bioagent identifying amplicons.

[0200] In some embodiments, the present invention is also directed to a method for determining the presence or absence of a bacterium in a sample. Nucleic acid from the sample is amplified using the composition described above to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The molecular mass or base composition of the amplification product is compared with the known molecular masses or base compositions of one or more known analogous bacterial bioagent identifying amplicons, wherein a match between the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of the amplification product and the molecular mass or base composition of one or more known bacterial bioagent identifying

amplicons indicates the presence of the bacterium in the sample. In some embodiments, the molecular mass is measured by mass spectrometry.

[0201] In some embodiments, the present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with the composition described above and a known quantity of a calibration polynucleotide comprising a calibration sequence. Nucleic acid from the unknown bacterium in the sample is concurrently amplified with the composition described above and nucleic acid from the calibration polynucleotide in the sample is concurrently amplified with the composition described above to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular masses and abundances for the bacterial bioagent identifying amplicon and the calibration amplicon are determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass and comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. In some embodiments, the base composition of the bacterial bioagent identifying amplicon is determined.

[0202] In some embodiments, the present invention provides methods for detecting or quantifying bacteria by combining a nucleic acid amplification process with a mass determination process. In some embodiments, such methods identify or otherwise analyze the bacterium by comparing mass information from an amplification product with a calibration or control product. Such methods can be carried out in a highly multiplexed and/or parallel manner allowing for the analysis of as many as 300 samples per 24 hours on a single mass measurement platform. The accuracy of the mass determination methods in some embodiments of the present invention permits allows for the ability to discriminate between different bacteria such as, for example, various genotypes and drug resistant strains of *Staphylococcus aureus*.

BRIEF DESCRIPTION OF THE DRAWINGS

[0203] The foregoing summary of the invention, as well as the following detailed description of the invention, is better understood when read in conjunction with the accompanying drawings which are included by way of example and not by way of limitation.

[0204] FIG. 1: process diagram illustrating a representative primer pair selection process.

[0205] FIG. **2**: process diagram illustrating an embodiment of the calibration method.

[0206] FIG. **3**: common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.

[0207] FIG. **4**: a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0208] FIG. **5**: a representative mass spectrum of amplification products indicating the presence of bioagent identifying amplicons of *Streptococcus pyogenes, Neisseria meningitidis*, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.

[0209] FIG. **6**: a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplifon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rp1B. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.

[0210] FIG. 7: a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 1464), and primer pair number 350 which targets the capC gene on the virulence plasmid pX02 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

DEFINITIONS

[0211] As used herein, the term "abundance" refers to an amount. The amount may be described in terms of concentration which are common in molecular biology such as "copy number," "pfu or plate-forming unit" which are well known to those with ordinary skill. Concentration may be relative to a known standard or may be absolute.

[0212] As used herein, the term "amplifiable nucleic acid" is used in reference to nucleic acids that may be amplified by any amplification method. It is contemplated that "amplifiable nucleic acid" also comprises "sample template."

[0213] As used herein the term "amplification" refers to a special case of nucleic acid replication involving template specificity. It is to be contrasted with non-specific template replication (i.e., replication that is template-dependent but not dependent on a specific template). Template specificity is here distinguished from fidelity of replication (i.e., synthesis of the proper polynucleotide sequence) and nucleotide (riboor deoxyribo-) specificity. Template specificity is frequently described in terms of "target" specificity. Target sequences are "targets" in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been designed primarily for this sorting out. Template specificity is achieved in most amplification techniques by the choice of enzyme. Amplification enzymes are enzymes that, under conditions they are used, will process only specific sequences of nucleic acid in a heterogeneous mixture of nucleic acid. For example, in the case of $Q\beta$ replicase, MDV-1 RNA is the specific template for the replicase (D. L. Kacian et al., Proc. Natl. Acad. Sci. USA 69:3038 [1972]). Other nucleic acid will not be replicated by this amplification enzyme. Similarly, in the case of T7 RNA polymerase, this amplification enzyme has a stringent specificity for its own promoters (Chamberlin et al., Nature 228:227 [1970]). In the case of T4 DNA ligase, the enzyme will not ligate the two oligonucleotides or polynucleotides, where there is a mismatch between the oligonucleotide or polynucleotide substrate and the template at the ligation junction (D. Y. Wu and R. B. Wallace, Genomics 4:560 [1989]). Finally, Taq and Pfu polymerases, by virtue of their ability to function at high temperature, are found to display high specificity for the sequences bounded and thus defined by the primers; the high temperature results in thermodynamic conditions that favor primer hybridization with the target sequences and not hybridization with non-target sequences (H. A. Erlich (ed.), PCR Technology, Stockton Press [1989]).

[0214] As used herein, the term "amplification reagents" refers to those reagents (deoxyribonucleotide triphosphates, buffer, etc.), needed for amplification, excluding primers, nucleic acid template, and the amplification enzyme. Typically, amplification reagents along with other reaction components are placed and contained in a reaction vessel (test tube, microwell, etc.).

[0215] As used herein, the term "analogous" when used in context of comparison of bioagent identifying amplicons indicates that the bioagent identifying amplicons being compared are produced with the same pair of primers. For example, bioagent identifying amplicon "A" and bioagent identifying amplicon "B", produced with the same pair of primers are analogous with respect to each other. Bioagent identifying amplicon "C", produced with a different pair of primers is not analogous to either bioagent identifying amplicon "A" or bioagent identifying amplicon "B".

[0216] As used herein, the term "anion exchange functional group" refers to a positively charged functional group capable of binding an anion through an electrostatic interaction. The most well known anion exchange functional groups are the amines, including primary, secondary, tertiary and quaternary amines.

[0217] The term "bacteria" or "bacterium" refers to any member of the groups of eubacteria and archaebacteria.

[0218] As used herein, a "base composition" is the exact number of each nucleobase (for example, A, T, C and G) in a segment of nucleic acid. For example, amplification of nucleic acid of Staphylococcus aureus strain carrying the lukS-PV gene with primer pair number 2095 (SEQ ID NOs: 456:1261) produces an amplification product 117 nucleobases in length from nucleic acid of the lukS-PV gene that has a base composition of A35 G17 C19 T46 (by conventionwith reference to the sense strand of the amplification product). Because the molecular masses of each of the four natural nucleotides and chemical modifications thereof are known (if applicable), a measured molecular mass can be deconvoluted to a list of possible base compositions. Identification of a base composition of a sense strand which is complementary to the corresponding antisense strand in terms of base composition provides a confirmation of the true base composition of an unknown amplification product. For example, the base composition of the antisense strand of the 139 nucleobase amplification product described above is A46 G19 C17 T35.

[0219] As used herein, a "base composition probability cloud" is a representation of the diversity in base composition resulting from a variation in sequence that occurs among different isolates of a given species. The "base composition probability cloud" represents the base composition constraints for each species and is typically visualized using a pseudo four-dimensional plot.

[0220] In the context of this invention, a "bioagent" is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but

not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.

[0221] As used herein, a "bioagent division" is defined as group of bioagents above the species level and includes but is not limited to, orders, families, classes, clades, genera or other such groupings of bioagents above the species level.

[0222] As used herein, the term "bioagent identifying amplicon" refers to a polynucleotide that is amplified from a bioagent in an amplification reaction and which 1) provides sufficient variability to distinguish among bioagents from whose nucleic acid the bioagent identifying amplicon is produced and 2) whose molecular mass is amenable to a rapid and convenient molecular mass determination modality such as mass spectrometry, for example.

[0223] As used herein, the term "biological product" refers to any product originating from an organism. Biological products are often products of processes of biotechnology. Examples of biological products include, but are not limited to: cultured cell lines, cellular components, antibodies, proteins and other cell-derived biomolecules, growth media, growth harvest fluids, natural products and bio-pharmaceutical products.

[0224] The terms "biowarfare agent" and "bioweapon" are synonymous and refer to a bacterium, virus, fungus or protozoan that could be deployed as a weapon to cause bodily harm to individuals. Military or terrorist groups may be implicated in deployment of biowarfare agents.

[0225] In context of this invention, the term "broad range survey primer pair" refers to a primer pair designed to produce bioagent identifying amplicons across different broad groupings of bioagents. For example, the ribosomal RNA-targeted primer pairs are broad range survey primer pairs which have the capability of producing bacterial bioagent identifying amplicons for essentially all known bacteria. With respect to broad range primer pairs employed for identification of bacteria, a broad range survey primer pair for bacteria such as 16S rRNA primer pair number 346 (SEQ ID NOs: 202:1110) for example, will produce an bacterial bioagent identifying amplicon for essentially all known bacteria.

[0226] The term "calibration amplicon" refers to a nucleic acid segment representing an amplification product obtained by amplification of a calibration sequence with a pair of primers designed to produce a bioagent identifying amplicon.

[0227] The term "calibration sequence" refers to a polynucleotide sequence to which a given pair of primers hybridizes for the purpose of producing an internal (i.e. included in the reaction) calibration standard amplification product for use in determining the quantity of a bioagent in a sample. The calibration sequence may be expressly added to an amplification reaction, or may already be present in the sample prior to analysis.

[0228] The term "clade primer pair" refers to a primer pair designed to produce bioagent identifying amplicons for species belonging to a clade group. A clade primer pair may also be considered as a "speciating" primer pair which is useful for distinguishing among closely related species.

[0229] The term "codon" refers to a set of three adjoined nucleotides (triplet) that codes for an amino acid or a termination signal.

[0230] In context of this invention, the term "codon base composition analysis," refers to determination of the base composition of an individual codon by obtaining a bioagent identifying amplicon that includes the codon. The bioagent identifying amplicon will at least include regions of the target nucleic acid sequence to which the primers hybridize for generation of the bioagent identifying amplicon as well as the codon being analyzed, located between the two primer hybridization regions.

[0231] As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (i.e., a sequence of nucleotides such as an oligonucleotide or a target nucleic acid) related by the base-pairing rules. For example, for the sequence "5'-A-G-T-3'," is complementary to the sequence "3'-T-C-A-5'." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids. Either term may also be used in reference to individual nucleotides, especially within the context of polynucleotides. For example, a particular nucleotide within an oligonucleotide may be noted for its complementarity, or lack thereof, to a nucleotide within another nucleic acid strand, in contrast or comparison to the complementarity between the rest of the oligonucleotide and the nucleic acid strand.

[0232] The term "complement of a nucleic acid sequence" as used herein refers to an oligonucleotide which, when aligned with the nucleic acid sequence such that the 5' end of one sequence is paired with the 3' end of the other, is in "antiparallel association." Certain bases not commonly found in natural nucleic acids may be included in the nucleic acids of the present invention and include, for example, inosine and 7-deazaguanine. Complementarity need not be perfect; stable duplexes may contain mismatched base pairs or unmatched bases. Those skilled in the art of nucleic acid technology can determine duplex stability empirically considering a number of variables including, for example, the length of the oligonucleotide, base composition and sequence of the oligonucleotide, ionic strength and incidence of mismatched base pairs. Where a first oligonucleotide is complementary to a region of a target nucleic acid and a second oligonucleotide has complementary to the same region (or a portion of this region) a "region of overlap" exists along the target nucleic acid. The degree of overlap will vary depending upon the extent of the complementarity.

[0233] In context of this invention, the term "division-wide primer pair" refers to a primer pair designed to produce bioagent identifying amplicons within sections of a broader spectrum of bioagents For example, primer pair number 352 (SEQ ID NOS: 687:1411), a division-wide primer pair, is designed to produce bacterial bioagent identifying amplicons for members of the *Bacillus* group of bacteria which comprises, for example, members of the genera *Streptococci*, *Enterococci*, and *Staphylococci*. Other division-wide primer pairs may be used to produce bacterial bioagent identifying amplicons for other groups of bacterial bioagents.

[0234] As used herein, the term "concurrently amplifying" used with respect to more than one amplification reaction refers to the act of simultaneously amplifying more than one nucleic acid in a single reaction mixture.

[0235] As used herein, the term "drill-down primer pair" refers to a primer pair designed to produce bioagent identifying amplicons for identification of sub-species characteristics or confirmation of a species assignment. For example, primer pair number 2146 (SEQ ID NOS: 437:1137), a drill-down *Staphylococcus aureus* genotyping primer pair, is designed to produce *Staphylococcus aureus* genotyping amplicons. Other drill-down primer pairs may be used to produce bioagent identifying amplicons for *Staphylococcus aureus* and other bacterial species.

[0236] The term "duplex" refers to the state of nucleic acids in which the base portions of the nucleotides on one strand are bound through hydrogen bonding the their complementary bases arrayed on a second strand. The condition of being in a duplex form reflects on the state of the bases of a nucleic acid. By virtue of base pairing, the strands of nucleic acid also generally assume the tertiary structure of a double helix, having a major and a minor groove. The assumption of the helical form is implicit in the act of becoming duplexed.

[0237] As used herein, the term "etiology" refers to the causes or origins, of diseases or abnormal physiological conditions.

[0238] The term "gene" refers to a DNA sequence that comprises control and coding sequences necessary for the production of an RNA having a non-coding function (e.g., a ribosomal or transfer RNA), a polypeptide or a precursor. The RNA or polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or function is retained.

[0239] The terms "homology," "homologous" and "sequence identity" refer to a degree of identity. There may be partial homology or complete homology. A partially homologous sequence is one that is less than 100% identical to another sequence. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues (18/20=0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of a primer 20 nucleobases in length would have 15/20=0.75 or 75% sequence identity with the 20 nucleobase primer. In context of the present invention, sequence identity is meant to be properly determined when the query sequence and the subject sequence are both described and aligned in the 5' to 3' direction. Sequence alignment algorithms such as BLAST, will return results in two different alignment orientations. In the Plus/Plus orientation, both the query sequence and the subject sequence are aligned in the 5' to 3' direction. On the other hand, in the Plus/Minus orientation, the query sequence is in the 5' to 3' direction while the subject sequence is in the 3' to 5' direction. It should be understood that with respect to the primers of the present invention, sequence identity is properly determined when the alignment is designated as Plus/Plus. Sequence identity may also encompass alternate or modified nucleobases that perform in a functionally similar manner to the regular nucleobases adenine, thymine, guanine and cytosine with respect to hybridization and primer extension in amplification reactions. In a non-limiting example, if the 5-propynyl pyrimidines propyne C and/or propyne T replace one or more C or T residues in one primer which is otherwise identical to another primer in sequence and length, the two primers will have 100% sequence identity with each other. In another non-limiting example, Inosine (I) may be used as a replacement for G or T and effectively hybridize to C, A or U (uracil). Thus, if inosine replaces one or more C, A or U residues in one primer which is otherwise identical to another primer in sequence and length, the two primers will have 100% sequence identity with each other. Other such modified or universal bases may exist which would perform in a functionally similar manner for hybridization and amplification reactions and will be understood to fall within this definition of sequence identity.

[0240] As used herein, "housekeeping gene" refers to a gene encoding a protein or RNA involved in basic functions required for survival and reproduction of a bioagent. House-keeping genes include, but are not limited to genes encoding RNA or proteins involved in translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like.

[0241] As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is influenced by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, and the T_m of the formed hybrid. "Hybridization" methods involve the annealing of one nucleic acid to another, complementary nucleic acid, i.e., a nucleic acid having a complementary nucleotide sequence. The ability of two polymers of nucleic acid containing complementary sequences to find each other and anneal through base pairing interaction is a well-recognized phenomenon. The initial observations of the "hybridization" process by Marmur and Lane, Proc. Natl. Acad. Sci. USA 46:453 (1960) and Doty et al., Proc. Natl. Acad. Sci. USA 46:461 (1960) have been followed by the refinement of this process into an essential tool of modern biology.

[0242] The term "in silico" refers to processes taking place via computer calculations. For example, electronic PCR (ePCR) is a process analogous to ordinary PCR except that it is carried out using nucleic acid sequences and primer pair sequences stored on a computer formatted medium.

[0243] As used herein, "intelligent primers" are primers that are designed to bind to highly conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and, upon amplification, yield amplification products which ideally provide enough variability to distinguish individual bioagents, and which are amenable to molecular mass analysis. By the term "highly conserved," it is meant that the sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity among all, or at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% of species or strains. [0244] The "ligase chain reaction" (LCR; sometimes referred to as "Ligase Amplification Reaction" (LAR) described by Barany, Proc. Natl. Acad. Sci., 88:189 (1991); Barany, PCR Methods and Applic., 1:5 (1991); and Wu and Wallace, Genomics 4:560 (1989) has developed into a wellrecognized alternative method for amplifying nucleic acids. In LCR, four oligonucleotides, two adjacent oligonucleotides which uniquely hybridize to one strand of target DNA, and a complementary set of adjacent oligonucleotides, that hybridize to the opposite strand are mixed and DNA ligase is added to the mixture. Provided that there is complete complementarity at the junction, ligase will covalently link each set of hybridized molecules. Importantly, in LCR, two probes are ligated together only when they base-pair with sequences in the target sample, without gaps or mismatches. Repeated cycles of denaturation, hybridization and ligation amplify a short segment of DNA. LCR has also been used in combination with PCR to achieve enhanced detection of single-base changes. However, because the four oligonucleotides used in this assay can pair to form two short ligatable fragments, there is the potential for the generation of target-independent background signal. The use of LCR for mutant screening is limited to the examination of specific nucleic acid positions.

[0245] The term "locked nucleic acid" or "LNA" refers to a nucleic acid analogue containing one or more 2'-O, 4'-C-methylene- β -D-ribofuranosyl nucleotide monomers in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The primers of the present invention may contain LNA modifications.

[0246] As used herein, the term "mass-modifying tag" refers to any modification to a given nucleotide which results in an increase in mass relative to the analogous non-mass modified nucleotide. Mass-modifying tags can include heavy isotopes of one or more elements included in the nucleotide such as carbon-13 for example. Other possible modifications include addition of substituents such as iodine or bromine at the 5 position of the nucleobase for example.

[0247] The term "mass spectrometry" refers to measurement of the mass of atoms or molecules. The molecules are first converted to ions, which are separated using electric or magnetic fields according to the ratio of their mass to electric charge. The measured masses are used to identity the molecules.

[0248] The term "microorganism" as used herein means an organism too small to be observed with the unaided eye and includes, but is not limited to bacteria, virus, protozoans, fungi; and ciliates.

[0249] The term "multi-drug resistant" or multiple-drug resistant" refers to a microorganism which is resistant to more than one of the antibiotics or antimicrobial agents used in the treatment of said microorganism.

[0250] The term "multiplex PCR" refers to a PCR reaction where more than one primer set is included in the reaction pool allowing 2 or more different DNA targets to be amplified by PCR in a single reaction tube.

[0251] The term "non-template tag" refers to a stretch of at least three guanine or cytosine nucleobases of a primer used to produce a bioagent identifying amplicon which are not complementary to the template. A non-template tag is incorporated into a primer for the purpose of increasing the primerduplex stability of later cycles of amplification by incorporation of extra G-C pairs which each have one additional hydrogen bond relative to an A-T pair.

[0252] The term "nucleic acid sequence" as used herein refers to the linear composition of the nucleic acid residues A, T, C or G or any modifications thereof, within an oligonucleotide, nucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single or double stranded, and represent the sense or antisense strand **[0253]** As used herein, the term "nucleobase" is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).

[0254] The term "nucleotide analog" as used herein refers to modified or non-naturally occurring nucleotides such as 5-propynyl pyrimidines (i.e., 5-propynyl-dTTP and 5-propynyl-dTCP), 7-deaza purines (i.e., 7-deaza-dATP and 7-deaza-dGTP). Nucleotide analogs include base analogs and comprise modified forms of deoxyribonucleotides as well as ribonucleotides.

[0255] The term "oligonucleotide" as used herein is defined as a molecule comprising two or more deoxyribonucleotides or ribonucleotides, preferably at least 5 nucleotides, more preferably at least about 13 to 35 nucleotides. The exact size will depend on many factors, which in turn depend on the ultimate function or use of the oligonucleotide. The oligonucleotide may be generated in any manner, including chemical synthesis, DNA replication, reverse transcription, PCR, or a combination thereof. Because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage, an end of an oligonucleotide is referred to as the "5'-end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3'-end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5' and 3' ends. A first region along a nucleic acid strand is said to be upstream of another region if the 3' end of the first region is before the 5' end of the second region when moving along a strand of nucleic acid in a 5' to 3' direction. All oligonucleotide primers disclosed herein are understood to be presented in the 5' to 3' direction when reading left to right. When two different, non-overlapping oligonucleotides anneal to different regions of the same linear complementary nucleic acid sequence, and the 3' end of one oligonucleotide points towards the 5' end of the other, the former may be called the "upstream" oligonucleotide and the latter the "downstream" oligonucleotide. Similarly, when two overlapping oligonucleotides are hybridized to the same linear complementary nucleic acid sequence, with the first oligonucleotide positioned such that its 5' end is upstream of the 5' end of the second oligonucleotide, and the 3' end of the first oligonucleotide is upstream of the 3' end of the second oligonucleotide, the first oligonucleotide may be called the "upstream" oligonucleotide and the second oligonucleotide may be called the "downstream" oligonucleotide.

[0256] In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.

[0257] As used herein, the terms "PCR product," "PCR fragment," and "amplification product" refer to the resultant mixture of compounds after two or more cycles of the PCR steps of denaturation, annealing and extension are complete. These terms encompass the case where there has been amplification of one or more segments of one or more target sequences.

[0258] The term "peptide nucleic acid" ("PNA") as used herein refers to a molecule comprising bases or base analogs such as would be found in natural nucleic acid, but attached to a peptide backbone rather than the sugar-phosphate backbone typical of nucleic acids. The attachment of the bases to the peptide is such as to allow the bases to base pair with complementary bases of nucleic acid in a manner similar to that of an oligonucleotide. These small molecules, also designated anti gene agents, stop transcript elongation by binding to their complementary strand of nucleic acid (Nielsen, et al. Anticancer Drug Des. 8:53 63). The primers of the present invention may comprise PNAs.

[0259] The term "polymerase" refers to an enzyme having the ability to synthesize a complementary strand of nucleic acid from a starting template nucleic acid strand and free dNTPs.

[0260] As used herein, the term "polymerase chain reaction" ("PCR") refers to the method of K. B. Mullis U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,965,188, hereby incorporated by reference, that describe a method for increasing the concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the double stranded target sequence. To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing, and polymerase extension can be repeated many times (i.e., denaturation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the "polymerase chain reaction" (hereinafter "PCR"). Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified." With PCR, it is possible to amplify a single copy of a specific target sequence in genomic DNA to a level detectable by several different methodologies (e.g., hybridization with a labeled probe; incorporation of biotinylated primers followed by avidinenzyme conjugate detection; incorporation of 32P-labeled deoxynucleotide triphosphates, such as dCTP or dATP, into the amplified segment). In addition to genomic DNA, any oligonucleotide or polynucleotide sequence can be amplified with the appropriate set of primer molecules. In particular, the amplified segments created by the PCR process itself are, themselves, efficient templates for subsequent PCR amplifications.

[0261] The term "polymerization means" or "polymerization agent" refers to any agent capable of facilitating the addition of nucleoside triphosphates to an oligonucleotide. Preferred polymerization means comprise DNA and RNA polymerases.

[0262] As used herein, the terms "pair of primers," or "primer pair" are synonymous. A primer pair is used for amplification of a nucleic acid sequence. A pair of primers comprises a forward primer and a reverse primer. The forward primer hybridizes to a sense strand of a target gene sequence to be amplified and primes synthesis of an antisense strand

(complementary to the sense strand) using the target sequence as a template. A reverse primer hybridizes to the antisense strand of a target gene sequence to be amplified and primes synthesis of a sense strand (complementary to the antisense strand) using the target sequence as a template.

[0263] The primers are designed to bind to highly conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and yield amplification products which ideally provide enough variability to distinguish each individual bioagent, and which are amenable to molecular mass analysis. In some embodiments, the highly conserved sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity, or between about 99-100% identity. The molecular mass of a given amplification product provides a means of identifying the bioagent from which it was obtained, due to the variability of the variable region. Thus design of the primers requires selection of a variable region with appropriate variability to resolve the identity of a given bioagent. Bioagent identifying amplicons are ideally specific to the identity of the bioagent.

[0264] Properties of the primers may include any number of properties related to structure including, but not limited to: nucleobase length which may be contiguous (linked together) or non-contiguous (for example, two or more contiguous segments which are joined by a linker or loop moiety), modified or universal nucleobases (used for specific purposes such as for example, increasing hybridization affinity, preventing non-templated adenylation and modifying molecular mass) percent complementarity to a given target sequences.

[0265] Properties of the primers also include functional features including, but not limited to, orientation of hybridization (forward or reverse) relative to a nucleic acid template. The coding or sense strand is the strand to which the forward priming primer hybridizes (forward priming orientation) while the reverse priming primer hybridizes to the non-coding or antisense strand (reverse priming orientation). The functional properties of a given primer pair also include the generic template nucleic acid to which the primer pair hybridizes. For example, identification of bioagents can be accomplished at different levels using primers suited to resolution of each individual level of identification. Broad range survey primers are designed with the objective of identifying a bioagent as a member of a particular division (e.g., an order, family, genus or other such grouping of bioagents above the species level of bioagents). In some embodiments, broad range survey intelligent primers are capable of identification of bioagents at the species or sub-species level. Other primers may have the functionality of producing bioagent identifying amplicons for members of a given taxonomic genus, clade, species, sub-species or genotype (including genetic variants which may include presence of virulence genes or antibiotic resistance genes or mutations). Additional functional properties of primer pairs include the functionality of performing amplification either singly (single primer pair per amplification reaction vessel) or in a multiplex fashion (multiple primer pairs and multiple amplification reactions within a single reaction vessel).

[0266] As used herein, the terms "purified" or "substantially purified" refer to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. An "isolated polynucleotide" or "isolated oligonucleotide" is therefore a substantially purified polynucleotide. **[0267]** The term "reverse transcriptase" refers to an enzyme having the ability to transcribe DNA from an RNA template. This enzymatic activity is known as reverse transcriptase activity. Reverse transcriptase activity is desirable in order to obtain DNA from RNA viruses which can then be amplified and analyzed by the methods of the present invention.

[0268] The term "ribosomal RNA" or "rRNA" refers to the primary ribonucleic acid constituent of ribosomes. Ribosomes are the protein-manufacturing organelles of cells and exist in the cytoplasm. Ribosomal RNAs are transcribed from the DNA genes encoding them.

[0269] The term "sample" in the present specification and claims is used in its broadest sense. On the one hand it is meant to include a specimen or culture (e.g., microbiological cultures). On the other hand, it is meant to include both biological and environmental samples. A sample may include a specimen of synthetic origin. Biological samples may be animal, including human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Biological samples may be obtained from all of the various families of domestic animals, as well as feral or wild animals, including, but not limited to, such animals as ungulates, bear, fish, lagamorphs, rodents, etc. Environmental samples include environmental material such as surface matter, soil, water, air and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and nondisposable items. These examples are not to be construed as limiting the sample types applicable to the present invention. The term "source of target nucleic acid" refers to any sample that contains nucleic acids (RNA or DNA). Particularly preferred sources of target nucleic acids are biological samples including, but not limited to blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputum and semen.

[0270] As used herein, the term "sample template" refers to nucleic acid originating from a sample that is analyzed for the presence of "target" (defined below). In contrast, "back-ground template" is used in reference to nucleic acid other than sample template that may or may not be present in a sample. Background template is often a contaminant. It may be the result of carryover, or it may be due to the presence of nucleic acid contaminants sought to be purified away from the sample. For example, nucleic acids from organisms other than those to be detected may be present as background in a test sample.

[0271] A "segment" is defined herein as a region of nucleic acid within a target sequence.

[0272] The "self-sustained sequence replication reaction" (3SR) (Guatelli et al., Proc. Natl. Acad. Sci., 87:1874-1878 [1990], with an erratum at Proc. Natl. Acad. Sci., 87:7797 [1990]) is a transcription-based in vitro amplification system (Kwok et al., Proc. Natl. Acad. Sci., 86:1173-1177 [1989]) that can exponentially amplify RNA sequences at a uniform temperature. The amplified RNA can then be utilized for mutation detection (Fahy et al., PCR Meth. Appl., 1:25-33 [1991]). In this method, an oligonucleotide primer is used to add a phage RNA polymerase promoter to the 5' end of the sequence of interest. In a cocktail of enzymes and substrates that includes a second primer, reverse transcriptase, RNase H, RNA polymerase and ribo- and deoxyribonucleoside triphosphates, the target sequence undergoes repeated rounds of transcription, cDNA synthesis and second-strand synthesis to amplify the area of interest. The use of 3SR to detect mutations is kinetically limited to screening small segments of DNA (e.g., 200-300 base pairs).

[0273] As used herein, the term ""sequence alignment"" refers to a listing of multiple DNA or amino acid sequences and aligns them to highlight their similarities. The listings can be made using bioinformatics computer programs.

[0274] In context of this invention, the term "speciating primer pair" refers to a primer pair designed to produce a bioagent identifying amplicon with the diagnostic capability of identifying species members of a group of genera or a particular genus of bioagents. Primer pair number 2249 (SEQ ID NOs: 430:1321), for example, is a speciating primer pair used to distinguish *Staphylococcus aureus* from other species of the genus *Staphylococcus*.

[0275] As used herein, a "sub-species characteristic" is a genetic characteristic that provides the means to distinguish two members of the same bioagent species. For example, one viral strain could be distinguished from another viral strain of the same species by possessing a genetic change (e.g., for example, a nucleotide deletion, addition or substitution) in one of the viral genes, such as the RNA-dependent RNA polymerase. Sub-species characteristics such as virulence genes and drug-are responsible for the phenotypic differences among the different strains of bacteria.

[0276] As used herein, the term "target" is used in a broad sense to indicate the gene or genomic region being amplified by the primers. Because the present invention provides a plurality of amplification products from any given primer pair (depending on the bioagent being analyzed), multiple amplification products from different specific nucleic acid sequences may be obtained. Thus, the term "target" is not used to refer to a single specific nucleic acid sequence. The "target" is sought to be sorted out from other nucleic acid sequences and contains a sequence that has at least partial complementarity with an oligonucleotide primer. The target nucleic acid may comprise single- or double-stranded DNA or RNA. A "segment" is defined as a region of nucleic acid within the target sequence.

[0277] The term "template" refers to a strand of nucleic acid on which a complementary copy is built from nucleoside triphosphates through the activity of a template-dependent nucleic acid polymerase. Within a duplex the template strand is, by convention, depicted and described as the "bottom" strand. Similarly, the non-template strand is often depicted and described as the "top" strand.

[0278] As used herein, the term "T_m" is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. Several equations for calculating the T_m of nucleic acids are well known in the art. As indicated by standard references, a simple estimate of the T_m value may be calculated by the equation: $T_m = 81.5 + 0.41(\% \text{ G+C})$, when a nucleic acid is in aqueous solution at 1 M NaCl (see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985). Other references (e.g., Allawi, H. T. & SantaLucia, J., Jr. Thermodynamics and NMR of internal G. T mismatches in DNA. Biochemistry 36, 10581-94 (1997) include more sophisticated computations which take structural and environmental, as well as sequence characteristics into account for the calculation of T_m .

[0279] The term "triangulation genotyping analysis" refers to a method of genotyping a bioagent by measurement of molecular masses or base compositions of amplification products, corresponding to bioagent identifying amplicons, obtained by amplification of regions of more than one gene. In this sense, the term "triangulation" refers to a method of establishing the accuracy of information by comparing three or more types of independent points of view bearing on the same findings. Triangulation genotyping analysis carried out with a plurality of triangulation genotyping analysis primers yields a plurality of base compositions that then provide a pattern or "barcode" from which a species type can be assigned. The species type may represent a previously known sub-species or strain, or may be a previously unknown strain having a specific and previously unobserved base composition barcode indicating the existence of a previously unknown genotype.

[0280] As used herein, the term "triangulation genotyping analysis primer pair" is a primer pair designed to produce bioagent identifying amplicons for determining species types in a triangulation genotyping analysis.

[0281] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by analyzing a plurality of bioagent identifying amplicons produced with different primer pairs. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of *B. anthracis* (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B. anthracis* genome would suggest a genetic engineering event.

[0282] In the context of this invention, the term "unknown bioagent" may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species Staphylococcus aureus for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. patent Ser. No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of "unknown" bioagent are applicable since the SARS coronavirus was unknown to science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. patent Ser. No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of "unknown" bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.

[0283] The term "variable sequence" as used herein refers to differences in nucleic acid sequence between two nucleic acids. For example, the genes of two different bacterial species may vary in sequence by the presence of single base substitutions and/or deletions or insertions of one or more nucleotides. These two forms of the structural gene are said to vary in sequence from one another. In the context of the present invention, "viral nucleic acid" includes, but is not limited to, DNA, RNA, or DNA that has been obtained from viral RNA, such as, for example, by performing a reverse transcription reaction. Viral RNA can either be singlestranded (of positive or negative polarity) or double-stranded. [0284] The term "virus" refers to obligate, ultramicroscopic, parasites that are incapable of autonomous replication (i.e., replication requires the use of the host cell's machinery). Viruses can survive outside of a host cell but cannot replicate.

[0285] The term "wild-type" refers to a gene or a gene product that has the characteristics of that gene or gene product when isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the "normal" or "wild-type" form of the gene. In contrast, the term "modified", "mutant" or "polymorphic" refers to a gene or gene product that displays modifications in sequence and or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.

[0286] As used herein, a "wobble base" is a variation in a codon found at the third nucleotide position of a DNA triplet. Variations in conserved regions of sequence are often found at the third nucleotide position due to redundancy in the amino acid code.

DETAILED DESCRIPTION OF EMBODIMENTS

A. Bioagent Identifying Amplicons

[0287] The present invention provides methods for detection and identification of unknown bioagents using bioagent identifying amplicons. Primers are selected to hybridize to conserved sequence regions of nucleic acids derived from a bioagent, and which bracket variable sequence regions to yield a bioagent identifying amplicon, which can be amplified and which is amenable to molecular mass determination. The molecular mass then provides a means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass or corresponding base composition signature of the amplification product is then matched against a database of molecular masses or base composition signatures. A match is obtained when an experimentally-determined molecular mass or base composition of an analyzed amplification product is compared with known molecular masses or base compositions of known bioagent identifying amplicons and the experimentally determined molecular mass or base composition is the same as the molecular mass or base composition of one of the known bioagent identifying amplicons. Alternatively, the experimentally-determined molecular mass or base composition may be within experimental error of the molecular mass or base composition of a known bioagent identifying amplicon and still be classified as a match. In some cases, the match may also be classified using a probability of match model such as the models described in U.S. Ser. No. 11/073,362, which is commonly owned and incorporated herein by reference in entirety. Furthermore, the method can be applied to rapid parallel multiplex analyses, the results of which can be employed in a triangulation identification strategy. The present method provides rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent detection and identification.

[0288] Despite enormous biological diversity, all forms of life on earth share sets of essential, common features in their genomes. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is necessary to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[0289] Unlike bacterial genomes, which exhibit conservation of numerous genes (i.e. housekeeping genes) across all organisms, viruses do not share a gene that is essential and conserved among all virus families. Therefore, viral identification is achieved within smaller groups of related viruses, such as members of a particular virus family or genus. For example, RNA-dependent RNA polymerase is present in all single-stranded RNA viruses and can be used for broad priming as well as resolution within the virus family.

[0290] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bacterial bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as bioagent identifying amplicons.

[0291] In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 150 nucleobases (i.e. from about 45 to about 200 linked nucleosides), although both longer and short regions may be used. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, and 150 nucleobases in length, or any range therewithin.

[0292] It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Thus, it can be said that a given bioagent identifying amplicon is "defined by" a given pair of primers.

[0293] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with chemical reagents, restriction enzymes or cleavage primers, for example. Thus, in some embodiments, bioagent identifying amplicons are larger than 150 nucleobases and are amenable to molecular mass determination following restriction digestion. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[0294] In some embodiments, amplification products corresponding to bioagent identifying amplicons are obtained using the polymerase chain reaction (PCR) that is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA). These methods are also known to those with ordinary skill.

B. Primers and Primer Pairs

[0295] In some embodiments, the primers are designed to bind to conserved sequence regions of a bioagent identifying amplicon that flank an intervening variable region and yield

amplification products which provide variability sufficient to distinguish each individual bioagent, and which are amenable to molecular mass analysis. In some embodiments, the highly conserved sequence regions exhibit between about 80-100%, or between about 90-100%, or between about 95-100% identity, or between about 90-100% identity. The molecular mass of a given amplification product provides a means of identifying the bioagent from which it was obtained, due to the variability of the variable region. Thus, design of the primers involves selection of a variable region with sufficient variability to resolve the identity of a given bioagent. In some embodiments, bioagent identifying amplicons are specific to the identity of the bioagent.

[0296] In some embodiments, identification of bioagents is accomplished at different levels using primers suited to resolution of each individual level of identification. Broad range survey primers are designed with the objective of identifying a bioagent as a member of a particular division (e.g., an order, family, genus or other such grouping of bioagents above the species level of bioagents). In some embodiments, broad range survey intelligent primers are capable of identification of bioagents at the species or sub-species level. Examples of broad range survey primers include, but are not limited to: primer pair numbers: 346 (SEQ ID NOs: 202:1110), 347 (SEQ ID NOs: 560:1278), 348 SEQ ID NOs: 706:895), and 361 (SEQ ID NOs: 697:1398) which target DNA encoding 16S rRNA, and primer pair numbers 349 (SEQ ID NOs: 401:1156) and 360 (SEQ ID NOs: 409:1434) which target DNA encoding 23S rRNA.

[0297] In some embodiments, drill-down primers are designed with the objective of identifying a bioagent at the sub-species level (including strains, subtypes, variants and isolates) based on sub-species characteristics which may, for example, include single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs), deletions, drug resistance mutations or any other modification of a nucleic acid sequence of a bioagent relative to other members of a species having different sub-species characteristics. Drilldown intelligent primers are not always required for identification at the sub-species level because broad range survey intelligent primers may, in some cases provide sufficient identification resolution to accomplishing this identification objective. Examples of drill-down primers include, but are not limited to: confirmation primer pairs such as primer pair numbers 351 (SEQ ID NOs: 355:1423) and 353 (SEQ ID NOs: 220:1394), which target the pX01 virulence plasmid of Bacillus anthracis. Other examples of drill-down primer pairs are found in sets of triangulation genotyping primer pairs such as, for example, the primer pair number 2146 (SEQ ID NOs: 437:1137) which targets the arcC gene (encoding carmabate kinase) and is included in an 8 primer pair panel or kit for use in genotyping Staphylococcus aureus, or in other panels or kits of primer pairs used for determining drugresistant bacterial strains, such as, for example, primer pair number 2095 (SEQ ID NOs: 456:1261) which targets the pv-luk gene (encoding Panton-Valentine leukocidin) and is included in an 8 primer pair panel or kit for use in identification of drug resistant strains of Staphylococcus aureus.

[0298] A representative process flow diagram used for primer selection and validation process is outlined in FIG. 1. For each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). Primers are then designed by selecting appropriate priming regions (230) to facilitate the selection of candidate primer pairs (240). The primer pairs are

then subjected to in silico analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as GenBank or other sequence collections (310) and checked for specificity in silico (320). Bioagent identifying amplicons obtained from GenBank sequences (310) can also be analyzed by a probability model which predicts the capability of a given amplicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are then stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by testing their ability to hybridize to target nucleic acid by an in vitro amplification by a method such as PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products thus obtained are analyzed by gel electrophoresis or by mass spectrometry to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[0299] Many of the important pathogens, including the organisms of greatest concern as biowarfare agents, have been completely sequenced. This effort has greatly facilitated the design of primers for the detection of unknown bioagents. The combination of broad-range priming with division-wide and drill-down priming has been used very successfully in several applications of the technology, including environmental surveillance for biowarfare threat agents and clinical sample analysis for medically important pathogens.

[0300] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed.

[0301] In some embodiments primers are employed as compositions for use in methods for identification of bacterial bioagents as follows: a primer pair composition is contacted with nucleic acid (such as, for example, bacterial DNA or DNA reverse transcribed from the rRNA) of an unknown bacterial bioagent. The nucleic acid is then amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as mass spectrometry for example, wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is then compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known viral bioagents. A match between the molecular mass or base composition of the amplification product and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known viral bioagent indicates the identity of the unknown bioagent. In some embodiments, the primer pair used is one of the primer pairs of Table 2. In some embodiments, the method is repeated using one or more different primer pairs to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[0302] In some embodiments, a bioagent identifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[0303] In some embodiments, the oligonucleotide primers are broad range survey primers which hybridize to conserved regions of nucleic acid encoding the hexon gene of all (or between 80% and 100%, between 85% and 100%, between 90% and 100% or between 95% and 100%) known bacteria and produce bacterial bioagent identifying amplicons.

[0304] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at or below the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional division-wide primer pair. The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as triangulation identification.

[0305] In other embodiments, the oligonucleotide primers are division-wide primers which hybridize to nucleic acid encoding genes of species within a genus of bacteria. In other embodiments, the oligonucleotide primers are drill-down primers which enable the identification of sub-species characteristics. Drill down primers provide the functionality of producing bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of viral infections. In some embodiments, sub-species characteristics are identified using only broad range survey primers and division-wide and drill-down primers are not used.

[0306] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, and DNA of bacterial plasmids.

[0307] In some embodiments, various computer software programs may be used to aid in design of primers for amplification reactions such as Primer Premier 5 (Premier Biosoft, Palo Alto, Calif.) or OLIGO Primer Analysis Software (Molecular Biology Insights, Cascade, Colo.). These programs allow the user to input desired hybridization conditions such as melting temperature of a primer-template duplex for example. In some embodiments, an in silico PCR search algorithm, such as (ePCR) is used to analyze primer specificity across a plurality of template sequences which can be readily obtained from public sequence databases such as GenBank for example. An existing RNA structure search algorithm (Macke et al., Nucl. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its

entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S. A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs. In some embodiments, the hybridization conditions applied to the algorithm can limit the results of primer specificity obtained from the algorithm. In some embodiments, the melting temperature threshold for the primer template duplex is specified to be 35° C. or a higher temperature. In some embodiments the number of acceptable mismatches is specified to be seven mismatches or less. In some embodiments, the buffer components and concentrations and primer concentrations may be specified and incorporated into the algorithm, for example, an appropriate primer concentration is about 250 nM and appropriate buffer components are 50 mM sodium or potassium and 1.5 mM Mg²⁺.

[0308] One with ordinary skill in the art of design of amplification primers will recognize that a given primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event. (e.g., for example, a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% sequence identity with any of the primers listed in Table 2. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is identical to another 20 nucleobase primer having two non-identical residues has 18 of 20 identical residues (18/20=0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have 15/20=0.75 or 75% sequence identity with the 20 nucleobase primer.

[0309] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for UNIX, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, complementarity of primers with respect to the conserved priming regions of viral nucleic acid is between about 70% and about 75% 80%. In other embodiments, homology, sequence identity or complementarity, is between about 75% and about 80%. In yet other embodiments, homology, sequence identity or complementarity, is at least 95%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or is 100%.

[0310] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein.

[0311] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.

[0312] In one embodiment, the primers are at least 13 nucleobases in length. In another embodiment, the primers are less than 36 nucleobases in length.

[0313] In some embodiments of the present invention, the oligonucleotide primers are 13 to 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin. The present invention contemplates using both longer and shorter primers. Furthermore, the primers may also be linked to one or more other desired moieties, including, but not limited to, affinity groups, ligands, regions of nucleic acid that are not complementary to the nucleic acid to be amplified, labels, etc. Primers may also form hairpin structures. For example, hairpin primers may be used to amplify short target nucleic acid molecules. The presence of the hairpin may stabilize the amplification complex (see e.g., TAQMAN MicroRNA Assays, Applied Biosystems, Foster City, Calif.).

[0314] In some embodiments, any oligonucleotide primer pair may have one or both primers with less then 70% sequence homology with a corresponding member of any of the primer pairs of Table 2 if the primer pair has the capability of producing an amplification product corresponding to a bioagent identifying amplicon. In other embodiments, any oligonucleotide primer pair may have one or both primers with a length greater than 35 nucleobases if the primer pair has the capability of producing an amplification product corresponding to a bioagent identifying amplicon.

[0315] In some embodiments, the function of a given primer may be substituted by a combination of two or more primers segments that hybridize adjacent to each other or that are linked by a nucleic acid loop structure or linker which allows a polymerase to extend the two or more primers in an amplification reaction.

[0316] In some embodiments, the primer pairs used for obtaining bioagent identifying amplicons are the primer pairs of Table 2. In other embodiments, other combinations of primer pairs are possible by combining certain members of the forward primers with certain members of the reverse primers. An example can be seen in Table 2 for two primer pair combinations of forward primer 16_S_EC_789_810_F (SEQ ID NO: 206), with the reverse primers 16S EC 880 894_R (SEQ ID NO: 796), or 16S_EC_882_899_R or (SEQ ID NO: 818). Arriving at a favorable alternate combination of primers in a primer pair depends upon the properties of the primer pair, most notably the size of the bioagent identifying amplicon that would be produced by the primer pair, which preferably is between about 45 to about 150 nucleobases in length. Alternatively, a bioagent identifying amplicon longer than 150 nucleobases in length could be cleaved into smaller segments by cleavage reagents such as chemical reagents, or restriction enzymes, for example.

[0317] In some embodiments, the primers are configured to amplify nucleic acid of a bioagent to produce amplification products that can be measured by mass spectrometry and from whose molecular masses candidate base compositions can be readily calculated.

[0318] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue does not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated adenosine residues as a result of the non-specific enzyme activity of Taq polymerase (Magnuson et al., Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass analysis.

[0319] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3^{rd} position) in the conserved regions among species is likely to occur in the third position of a DNA (or RNA) triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroindoles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 14, 1001-1003), the degenerate nucleotides dP or dK (Hill et al.), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 1053-1056) or the purine 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-caranalog boxamide (Sala et al., Nucl. Acids Res., 1996, 24, 3302-3306).

[0320] In some embodiments, to compensate for the somewhat weaker binding by the wobble base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs that bind with greater affinity than the unmodified nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil (also known as propynylated thymine) which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Pat. Nos. 5,645,985, 5,830,653 and 5,484, 908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S Pre-Grant Publication No. 2003-0170682, which is also commonly owned and incorporated herein by reference in its entirety. Phenoxazines are described in U.S. Pat. Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Pat. Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

[0321] In some embodiments, primer hybridization is enhanced using primers containing 5-propynyl deoxy-cytidine and deoxy-thymidine nucleotides. These modified primers offer increased affinity and base pairing selectivity.

[0322] In some embodiments, non-template primer tags are used to increase the melting temperature (T_m) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucle-otide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to an A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.

[0323] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynyluridine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.

[0324] In some embodiments, the primers contain massmodifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of de novo determination of base composition of a given bioagent identifying amplicon from its molecular mass.

[0325] In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxycytidine-5'-triphosphate, 5-iodo-2'-deoxycytidine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 4-thiothymidine-5'-triphosphate, 5-aza-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, O6-methyl-2'deoxyguanosine-5'-triphosphate, N2-methyl-2'-deoxyguanosine-5'-triphosphate, 8-oxo-2'-deoxyguanosine-5'-triphosphate thiothymidine-5'-triphosphate. In or some embodiments, the mass-modified nucleobase comprises ¹⁵N or ¹³C or both ¹⁵N and ¹³C.

[0326] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with a plurality of primer pairs. The advantages of multiplexing are that fewer reaction containers (for example, wells of a 96- or 384-well plate) are needed for each molecular mass measurement, providing time, resource and cost savings because additional bioagent identification data can be obtained within a single analysis. Multiplex amplification methods are well known to those with ordinary skill and can be developed without undue experimentation. However, in some embodiments, one useful and non-obvious step in selecting a plurality candidate bioagent identifying amplicons for multiplex amplification is to ensure that each strand of each amplification product will be sufficiently different in molecular mass that mass spectral signals will not overlap and lead to ambiguous analysis results. In some embodiments, a 10 Da difference in mass of two strands of one or more amplification products is sufficient to avoid overlap of mass spectral peaks.

[0327] In some embodiments, as an alternative to multiplex amplification, single amplification reactions can be pooled before analysis by mass spectrometry. In these embodiments, as for multiplex amplification embodiments, it is useful to select a plurality of candidate bioagent identifying amplicons to ensure that each strand of each amplification product will be sufficiently different in molecular mass that mass spectral signals will not overlap and lead to ambiguous analysis results.

C. Determination of Molecular Mass of Bioagent Identifying Amplicons

[0328] In some embodiments, the molecular mass of a given bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not

the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

[0329] In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[0330] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

D. Base Compositions of Bioagent Identifying Amplicons

[0331] Although the molecular mass of amplification products obtained using intelligent primers provides a means for identification of bioagents, conversion of molecular mass data to a base composition signature is useful for certain analyses. As used herein, "base composition" is the exact number of each nucleobase (A, T, C and G) determined from the molecular mass of a bioagent identifying amplicon. In some embodiments, a base composition provides an index of a specific organism. Base compositions can be calculated from known sequences of known bioagent identifying amplicons and can be experimentally determined by measuring the molecular mass of a given bioagent identifying amplicon, followed by determination of all possible base compositions which are consistent with the measured molecular mass within acceptable experimental error. The following example illustrates determination of base composition from an experimentally obtained molecular mass of a 46-mer amplification product originating at position 1337 of the 16S rRNA of Bacillus anthracis. The forward and reverse strands of the amplification product have measured molecular masses of 14208 and 14079 Da, respectively. The possible base compositions derived from the molecular masses of the forward and reverse strands for the B. anthracis products are listed in Table 1.

TABLE 1

Possible Base Compositions for B. anthracis 46mer Amplification Product					
Calc. Mass Forward Strand	Mass Error Forward Strand	Base Composition of Forward Strand	Calc. Mass Reverse Strand	Mass Error Reverse Strand	Base Composition of Reverse Strand
14208.2935	0.079520	A1 G17 C10 T18	14079.2624	0.080600	A0 G14 C13 T19
14208.3160	0.056980	A1 G20 C15 T10	14079.2849	0.058060	A0 G17 C18 T11
14208.3386	0.034440	A1 G23 C20 T2	14079.3075	0.035520	A0 G20 C23 T3
14208.3074	0.065560	A6 G11 C3 T26	14079.2538	0.089180	A5 G5 C1 T35
14208.3300	0.043020	A6 G14 C8 T18	14079.2764	0.066640	A5 G8 C6 T27
14208.3525	0.020480	A6 G17 C13 T10	14079.2989	0.044100	A5 G11 C11 T19
14208.3751	0.002060	A6 G20 C18 T2	14079.3214	0.021560	A5 G14 C16 T11
14208.3439	0.029060	A11 G8 C1 T26	14079.3440	0.000980	A5 G17 C21 T3
14208.3665	0.006520	A11 G11 C6 T18	14079.3129	0.030140	A10 G5 C4 T27
14208.3890	0.016020	A11 G14 C11 T10	14079.3354	0.007600	A10 G8 C9 T19
14208.4116	0.038560	A11 G17 C16 T2	14079.3579	0.014940	A10 G11 C14 T11
14208.4030	0.029980	A16 G8 C4 T18	14079.3805	0.037480	A10 G14 C19 T3
14208.4255	0.052520	A16 G11 C9 T10	14079.3494	0.006360	A15 G2 C2 T27
14208.4481	0.075060	A16 G14 C14 T2	14079.3719	0.028900	A15 G5 C7 T19
14208.4395	0.066480	A21 G5 C2 T18	14079.3944	0.051440	A15 G8 C12 T11
14208.4620	0.089020	A21 G8 C7 T10	14079.4170	0.073980	A15 G11 C17 T3
_	_	_	14079.4084	0.065400	A20 G2 C5 T19
_	_	_	14079.4309	0.087940	A20 G5 C10 T13

[0332] Among the 16 possible base compositions for the forward strand and the 18 possible base compositions for the reverse strand that were calculated, only one pair (shown in bold) are complementary base compositions, which indicates the true base composition of the amplification product. It should be recognized that this logic is applicable for determination of base compositions of any bioagent identifying amplicon, regardless of the class of bioagent from which the corresponding amplification product was obtained.

[0333] In some embodiments, assignment of previously unobserved base compositions (also known as "true unknown base compositions") to a given phylogeny can be accomplished via the use of pattern classifier model algorithms. Base compositions, like sequences, vary slightly from strain to strain within species, for example. In some embodiments, the pattern classifier model is the mutational probability model. On other embodiments, the pattern classifier is the polytope model. The mutational probability model and polytope model are both commonly owned and described in U.S. patent application Ser. No. 11/073,362 which is incorporated herein by reference in entirety.

[0334] In one embodiment, it is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[0335] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other embodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement. [0336] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

E. Triangulation Identification

[0337] In some cases, a molecular mass of a single bioagent identifying amplicon alone does not provide enough resolution to unambiguously identify a given bioagent. The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by determining the molecular masses of a plurality of bioag-

ent identifying amplicons selected within a plurality of housekeeping genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of B. anthracis (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the *B*. anthracis genome would suggest a genetic engineering event. [0338] In some embodiments, the triangulation identification process can be pursued by characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids. In other related embodiments, one PCR reaction per well or container may be carried out, followed by an amplicon pooling step wherein the amplification products of different wells are combined in a single well or container which is then subjected to molecular mass analysis. The combination of pooled amplicons can be chosen such that the expected ranges of molecular masses of individual amplicons are not overlapping and thus will not complicate identification of signals.

F. Codon Base Composition Analysis

[0339] In some embodiments of the present invention, one or more nucleotide substitutions within a codon of a gene of an infectious organism confer drug resistance upon an organism which can be determined by codon base composition analysis. The organism can be a bacterium, virus, fungus or protozoan.

[0340] In some embodiments, the amplification product containing the codon being analyzed is of a length of about 35 to about 200 nucleobases. The primers employed in obtaining the amplification product can hybridize to upstream and downstream sequences directly adjacent to the codon, or can hybridize to upstream and downstream sequence positions away from the codon. The primers may have between about 70% to 100% sequence complementarity with the sequence of the gene containing the codon being analyzed.

[0341] In some embodiments, the codon base composition analysis is undertaken

[0342] In some embodiments, the codon analysis is undertaken for the purpose of investigating genetic disease in an individual. In other embodiments, the codon analysis is undertaken for the purpose of investigating a drug resistance mutation or any other deleterious mutation in an infectious organism such as a bacterium, virus, fungus or protozoan. In some embodiments, the bioagent is a bacterium identified in a biological product.

[0343] In some embodiments, the molecular mass of an amplification product containing the codon being analyzed is measured by mass spectrometry. The mass spectrometry can be either electrospray (ESI) mass spectrometry or matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Time-of-flight (TOF) is an example of one mode of mass spectrometry compatible with the analyses of the present invention.

[0344] The methods of the present invention can also be employed to determine the relative abundance of drug resistant strains of the organism being analyzed. Relative abundances can be calculated from amplitudes of mass spectral signals with relation to internal calibrants. In some embodiments, known quantities of internal amplification calibrants can be included in the amplification reactions and abundances of analyte amplification product estimated in relation to the known quantities of the calibrants.

[0345] In some embodiments, upon identification of one or more drug-resistant strains of an infectious organism infecting an individual, one or more alternative treatments can be devised to treat the individual.

G. Determination of the Quantity of a Bioagent

[0346] In some embodiments, the identity and quantity of an unknown bioagent can be determined using the process illustrated in FIG. 2. Primers (500) and a known quantity of a calibration polynucleotide (505) are added to a sample containing nucleic acid of an unknown bioagent. The total nucleic acid in the sample is then subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (535). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[0347] A sample comprising an unknown bioagent is contacted with a pair of primers that provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2-8 nucleobase deletion or insertion within the variable region between the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

[0348] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.

[0349] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.

[0350] In some embodiments, the calibrant polynucleotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.

[0351] In some embodiments, the calibration sequence is comprised of DNA. In some embodiments, the calibration sequence is comprised of RNA.

[0352] In some embodiments, the calibration sequence is inserted into a vector that itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a calibrant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

H. Identification of Bacteria

[0353] In other embodiments of the present invention, the primer pairs produce bioagent identifying amplicons within stable and highly conserved regions of bacteria. The advantage to characterization of an amplicon defined by priming regions that fall within a highly conserved region is that there is a low probability that the region will evolve past the point of primer recognition, in which case, the primer hybridization of the amplification step would fail. Such a primer set is thus useful as a broad range survey-type primer. In another embodiment of the present invention, the intelligent primers produce bioagent identifying amplicons including a region which evolves more quickly than the stable region described above. The advantage of characterization bioagent identifying amplicon is present invention.

that it is useful for distinguishing emerging strain variants or the presence of virulence genes, drug resistance genes, or codon mutations that induce drug resistance.

[0354] The present invention also has significant advantages as a platform for identification of diseases caused by emerging bacterial strains such as, for example, drug-resistant strains of *Staphylococcus aureus*. The present invention eliminates the need for prior knowledge of bioagent sequence to generate hybridization probes. This is possible because the methods are not confounded by naturally occurring evolutionary variations occurring in the sequence acting as the template for production of the bioagent identifying amplicon. Measurement of molecular mass and determination of base composition is accomplished in an unbiased manner without sequence prejudice.

[0355] Another embodiment of the present invention also provides a means of tracking the spread of a bacterium, such as a particular drug-resistant strain when a plurality of samples obtained from different locations are analyzed by the methods described above in an epidemiological setting. In one embodiment, a plurality of samples from a plurality of different locations is analyzed with primer pairs which produce bioagent identifying amplicons, a subset of which contains a specific drug-resistant bacterial strain. The corresponding locations of the members of the drug-resistant strain subset indicate the spread of the specific drug-resistant strain to the corresponding locations.

I. Kits

[0356] The present invention also provides kits for carrying out the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 2.

[0357] In some embodiments, the kit comprises one or more broad range survey primer(s), division wide primer(s), or drill-down primer(s), or any combination thereof. If a given problem involves identification of a specific bioagent, the solution to the problem may require the selection of a particular combination of primers to provide the solution to the problem. A kit may be designed so as to comprise particular primer pairs for identification of a particular bioagent. A drill-down kit may be used, for example, to distinguish different genotypes or strains, drug-resistant, or otherwise. In some embodiments, the primer pair components of any of these kits may be additionally combined to comprise additional combinations of broad range survey primers and division-wide primers so as to be able to identify a bacterium.

[0358] In some embodiments, the kit contains standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Ser. No. 60/545,425 which is incorporated herein by reference in its entirety.

[0359] In some embodiments, the kit comprises a sufficient quantity of reverse transcriptase (if RNA is to be analyzed for example), a DNA polymerase, suitable nucleoside triphosphates (including alternative dNTPs such as inosine or modified dNTPs such as the 5-propynyl pyrimidines or any dNTP containing molecular mass-modifying tags such as those

described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.

[0360] Some embodiments are kits that contain one or more survey bacterial primer pairs represented by primer pair compositions wherein each member of each pair of primers has 70% to 100% sequence identity with the corresponding member from the group of primer pairs represented by any of the primer pairs of Table 5. The survey primer pairs may include broad range primer pairs which hybridize to ribosomal RNA, and may also include division-wide primer pairs which hybridize to housekeeping genes such as rplB, tufB, rpoB, rpoC, valS, and infB, for example.

[0361] In some embodiments, a kit may contain one or more survey bacterial primer pairs and one or more triangulation genotyping analysis primer pairs such as the primer pairs of Tables 8, 12, 14, 19, 21, 23, or 24. In some embodiments, the kit may represent a less expansive genotyping analysis but include triangulation genotyping analysis primer pairs for more than one genus or species of bacteria. For example, a kit for surveying nosocomial infections at a health care facility may include, for example, one or more broad range survey primer pairs, one or more division wide primer pairs, one or more Acinetobacter baumannii triangulation genotyping analysis primer pairs and one or more Staphylococcus aureus triangulation genotyping analysis primer pairs. One with ordinary skill will be capable of analyzing in silico amplification data to determine which primer pairs will be able to provide optimal identification resolution for the bacterial bioagents of interest.

[0362] In some embodiments, a kit may be assembled for identification of strains of bacteria involved in contamination of food. An example of such a kit embodiment is a kit comprising one or more bacterial survey primer pairs of Table 5 with one or more triangulation genotyping analysis primer pairs of Table 12 which provide strain resolving capabilities for identification of specific strains of *Campylobacter jejuni*. [0363] Some embodiments of the kits are 96-well or 384-well plates with a plurality of wells containing any or all of the following components: dNTPs, buffer salts, Mg²⁺, betaine, and primer pairs. In some embodiments, a polymerase is also included in the plurality of wells of the 96-well or 384-well plates.

[0364] Some embodiments of the kit contain instructions for PCR and mass spectrometry analysis of amplification products obtained using the primer pairs of the kits.

[0365] Some embodiments of the kit include a barcode which uniquely identifies the kit and the components contained therein according to production lots and may also include any other information relative to the components such as concentrations, storage temperatures, etc. The barcode may also include analysis information to be read by optical barcode readers and sent to a computer controlling amplifi-

cation, purification and mass spectrometric measurements. In some embodiments, the barcode provides access to a subset of base compositions in a base composition database which is in digital communication with base composition analysis software such that a base composition measured with primer pairs from a given kit can be compared with known base compositions of bioagent identifying amplicons defined by the primer pairs of that kit.

[0366] In some embodiments, the kit contains a database of base compositions of bioagent identifying amplicons defined by the primer pairs of the kit. The database is stored on a convenient computer readable medium such as a compact disk or USB drive, for example.

[0367] In some embodiments, the kit includes a computer program stored on a computer formatted medium (such as a compact disk or portable USB disk drive, for example) comprising instructions which direct a processor to analyze data obtained from the use of the primer pairs of the present invention. The instructions of the software transform data related to amplification products into a molecular mass or base composition which is a useful concrete and tangible result used in identification and/or classification of bioagents. In some embodiments, the kits of the present invention contain all of the reagents sufficient to carry out one or more of the methods described herein.

[0368] While the present invention has been described with specificity in accordance with certain of its embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same. In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner.

EXAMPLES

Example 1

Design and Validation of Primers that Define Bioagent Identifying Amplicons for Identification of Bacteria

[0369] For design of primers that define bacterial bioagent identifying amplicons, a series of bacterial genome segment sequences were obtained, aligned and scanned for regions

where pairs of PCR primers would amplify products of about 45 to about 150 nucleotides in length and distinguish subgroups and/or individual strains from each other by their molecular masses or base compositions. A typical process shown in FIG. **1** is employed for this type of analysis.

[0370] A database of expected base compositions for each primer region was generated using an in silico PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nucl. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S. A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

[0371] Table 2 represents a collection of primers (sorted by primer pair number) designed to identify bacteria using the methods described herein. The primer pair number is an inhouse database index number. Primer sites were identified on segments of genes, such as, for example, the 16S rRNA gene. The forward or reverse primer name shown in Table 2 indicates the gene region of the bacterial genome to which the primer hybridizes relative to a reference sequence. In Table 2, for example, the forward primer name 16S_EC_1077_ 1106_F indicates that the forward primer (_F) hybridizes to residues 1077-1106 of the reference sequence represented by a sequence extraction of coordinates 4033120 . . . 4034661 from GenBank gi number 16127994 (as indicated in Table 3). As an additional example: the forward primer name BONTA_ X52066 450 473 indicates that the primer hybridizes to residues 450-437 of the gene encoding Clostridium botulinum neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 2 are defined in Table 3. One with ordinary skill knows how to obtain individual gene sequences or portions thereof from genomic sequences present in GenBank. In Table 2, Tp=5-propynyluracil; Cp=5-propynylcytosine; *=phosphorothioate linkage; I=inosine. T. GenBank Accession Numbers for reference sequences of bacteria are shown in Table 3 (below). In some cases, the reference sequences are extractions from bacterial genomic sequences or complements thereof.

TABLE	2
-------	---

	Primer Pairs f	or Identification of Bacteria	
Prime Pair Numbe	-	Forward Sequence	Forward SEQ ID NO:
1	16S_EC_1077_1106_F	GTGAGATGTTGGGTTAAGTCCCGTAA CGAG	134
2	16S_EC_1082_1106_F	ATGTTGGGTTAAGTCCCGCAACGAG	38
3	16S_EC_1090_1111_F	TTAAGTCCCGCAACGATCGCAA	651
4	16S_EC_1222_1241_F	GCTACACGTGCTACAATG	114
5	16S_EC_1332_1353_F	AAGTCGGAATCGCTAGTAATCG	10
6	16S_EC_30_54_F	TGAACGCTGGTGGCATGCTTAACAC	429
7	16S_EC_38_64_F	GTGGCATGCCTAATACATGCAAGTCG	136

	TABLE 2-continued			
	Primer Pairs for Ident:		150	
8	16S_EC_49_68_F	TAACACATGCAAGTCGAACG	152	
9	16S_EC_683_700_F	GTGTAGCGGTGAAATGCG	137	
10	16S_EC_713_732_F	AGAACACCGATGGCGAAGGC	21	
11	16S_EC_785_806_F	GGATTAGAGACCCTGGTAGTCC	118	
12	16S_EC_785_810_F	GGATTAGATACCCTGGTAGTCCACGC	119	
13	16S_EC_789_810_F	TAGATACCCTGGTAGTCCACGC	206	
14	16S_EC_960_981_F	TTCGATGCAACGCGAAGAACCT	672	
15	16S_EC_969_985_F	ACGCGAAGAACCTTACC	19	
16	23S_EC_1826_1843_F	CTGACACCTGCCCGGTGC	80	
17	23S_EC_2645_2669_F	TCTGTCCCTAGTACGAGAGGACCGG	408	
18	23S_EC_2645_2669_2_F	CTGTCCCTAGTACGAGAGGACCGG	83	
19	23S_EC_493_518_F	GGGGAGTGAAAGAGATCCTGAAACCG	125	
20	23S_EC_493_518_2_F	GGGGAGTGAAAGAGATCCTGAAACCG	125	
21	23S_EC_971_992_F	CGAGAGGGAAACAACCCAGACC	66	
22	CAPC_BA_104_131_F	GTTATTTAGCACTCGTTTTTAATCAG CC	139	
23	CAPC_BA_114_133_F	ACTCGTTTTTAATCAGCCCG	20	
24	CAPC_BA_274_303_F	GATTATTGTTATCCTGTTATGCCATT TGAG	109	
25	CAPC_BA_276_296_F	TTATTGTTATCCTGTTATGCC	663	
26	CAPC_BA_281_301_F	GTTATCCTGTTATGCCATTTG	138	
27	CAPC_BA_315_334_F	CCGTGGTATTGGAGTTATTG	59	
28	CYA_BA_1055_1072_F	GAAAGAGTTCGGATTGGG	92	
29	CYA_BA_1349_1370_F	ACAACGAAGTACAATACAAGAC	12	
30	CYA_BA_1353_1379_F	CGAAGTACAATACAAGACAAAAGAAGG	64	
31	CYA_BA_1359_1379_F	ACAATACAAGACAAAAGAAGG	13	
32	CYA_BA_914_937_F	CAGGTTTAGTACCAGAACATGCAG	53	
33	CYA_BA_916_935_F	GGTTTAGTACCAGAACATGC	131	
34	INFB_EC_1365_1393_F	TGCTCGTGGTGCACAAGTAACGGATA TTA	524	
35	LEF_BA_1033_1052_F	TCAAGAAGAAAAAGAGC	254	
36	LEF_BA_1036_1066_F	CAAGAAGAAAAAGAGCTTCTAAAAAG AATAC	44	
37	LEF_BA_756_781_F	AGCTTTTGCATATTATATCGAGCCAC	26	
38	LEF_BA_758_778_F	CTTTTGCATATTATATCGAGC	90	
39	LEF_BA_795_813_F	TTTACAGCTTTATGCACCG	700	
40	LEF_BA_883_899_F	CAACGGATGCTGGCAAG	43	
41	PAG_BA_122_142_F	CAGAATCAAGTTCCCAGGGG	49	
42	PAG_BA_123_145_F	AGAATCAAGTTCCCAGGGGTTAC	22	

TABLE 2-continued

Primer Pairs for Identification of Bacteria			
43	PAG_BA_269_287_F	AATCTGCTATTTGGTCAGG	1:
44	PAG_BA_655_675_F	GAAGGATATACGGTTGATGTC	9:
45	PAG_BA_753_772_F	TCCTGAAAAATGGAGCACGG	34
46	PAG_BA_763_781_F	TGGAGCACGGCTTCTGATC	55
47	RPOC_EC_1018_1045_F	CAAAACTTATTAGGTAAGCGTGTTGA CT	3
48	RPOC_EC_1018_1045_2_F	CAAAACTTATTAGGTAAGCGTGTTGA CT	3
49	RPOC_EC_114_140_F	TAAGAAGCCGGAAACCATCAACTACCG	15
50	RPOC_EC_2178_2196_F	TGATTCTGGTGCCCGTGGT	47
51	RPOC_EC_2178_2196_2_F	TGATTCCGGTGCCCGTGGT	47
52	RPOC_EC_2218_2241_F	CTGGCAGGTATGCGTGGTCTGATG	8
53	RPOC_EC_2218_2241_2_F	CTTGCTGGTATGCGTGGTCTGATG	8
54	RPOC_EC_808_833_F	CGTCGGGTGATTAACCGTAACAACCG	7
55	RPOC_EC_808_833_2_F	CGTCGTGTAATTAACCGTAACAACCG	7
56	RPOC_EC_993_1019_F	CAAAGGTAAGCAAGGTCGTTTCCGTCA	4
57	RPOC_EC_993_1019_2_F	CAAAGGTAAGCAAGGACGTTTCCGTCA	4
58	SSPE_BA_115_137_F	CAAGCAAACGCACAATCAGAAGC	4
59	TUFB_EC_239_259_F	TAGACTGCCCAGGACACGCTG	20
60	TUFB_EC_239_259_2_F	TTGACTGCCCAGGTCACGCTG	67
61	TUFB_EC_976_1000_F	AACTACCGTCCGCAGTTCTACTTCC	
62	TUFB_EC_976_1000_2_F	AACTACCGTCCTCAGTTCTACTTCC	
63	TUFB_EC_985_1012_F	CCACAGTTCTACTTCCGTACTACTGA CG	5
66	RPLB_EC_650_679_F	GACCTACAGTAAGAGGTTCTGTAATG AACC	9
67	RPLB_EC_688_710_F	CATCCACACGGTGGTGGTGAAGG	5
68	RPOC_EC_1036_1060_F	CGTGTTGACTATTCGGGGCGTTCAG	7
69	RPOB_EC_3762_3790_F	TCAACAACCTCTTGGAGGTAAAGCTC AGT	24
70	RPLB_EC_688_710_F	CATCCACACGGTGGTGGTGAAGG	5
71	VALS_EC_1105_1124_F	CGTGGCGGCGTGGTTATCGA	7
72	RPOB_EC_1845_1866_F	TATCGCTCAGGCGAACTCCAAC	23
73	RPLB_EC_669_698_F	TGTAATGAACCCTAATGACCATCCAC ACGG	62
74	RPLB_EC_671_700_F	TAATGAACCCTAATGACCATCCACAC GGTG	16
75	SP101_SPET11_1_29_F	AACCTTAATTGGAAAGAAACCCAAGA AGT	
76	SP101_SPET11_118_147_F	GCTGGTGAAAATAACCCAGATGTCGT CTTC	11

TABLE 2-continued

TABLE 2-continued					
	Primer Pairs for Identification of Bacteria				
77	SP101_SPET11_216_243_F	AGCAGGTGGTGAAATCGGCCACATGA TT	24		
78	SP101_SPET11_266_295_F	CTTGTACTTGTGGCTCACACGGCTGT TTGG	89		
79	SP101_SPET11_322_344_F	GTCAAAGTGGCACGTTTACTGGC	132		
80	SP101_SPET11_358_387_F	GGGGATTCAGCCATCAAAGCAGCTAT TGAC	126		
81	SP101_SPET11_600_629_F	CCTTACTTCGAACTATGAATCTTTTG GAAG	62		
82	SP101_SPET11_658_684_F	GGGGATTGATATCACCGATAAGAAGAA	127		
83	SP101_SPET11_776_801_F	TCGCCAATCAAAACTAAGGGAATGGC	364		
84	SP101_SPET11_893_921_F	GGGCAACAGCAGCGGATTGCGATTGC GCG	123		
85	SP101_SPET11_1154_1179_F	CAATACCGCAACAGCGGTGGCTTGGG	47		
86	SP101_SPET11_1314_1336_F	CGCAAAAAAATCCAGCTATTAGC	68		
87	SP101_SPET11_1408_1437_F	CGAGTATAGCTAAAAAAATAGTTTAT GACA	67		
88	SP101_SPET11_1688_1716_F	CCTATATTAATCGTTTACAGAAACTG GCT	60		
89	SP101_SPET11_1711_1733_F	CTGGCTAAAACTTTGGCAACGGT	82		
90	SP101_SPET11_1807_1835_F	ATGATTACAATTCAAGAAGGTCGTCA CGC	33		
91	SP101_SPET11_1967_1991_F	TAACGGTTATCATGGCCCAGATGGG	155		
92	SP101_SPET11_2260_2283_F	CAGAGACCGTTTTATCCTATCAGC	50		
93	SP101_SPET11_2375_2399_F	TCTAAAACACCAGGTCACCCAGAAG	390		
94	SP101_SPET11_2468_2487_F	ATGGCCATGGCAGAAGCTCA	35		
95	SP101_SPET11_2961_2984_F	ACCATGACAGAAGGCATTTTGACA	15		
96	SP101_SPET11_3075_3103_F	GATGACTTTTTAGCTAATGGTCAGGC AGC	108		
97	SP101_SPET11_3386_3403_F	AGCGTAAAGGTGAACCTT	25		
98	SP101_SPET11_3511_3535_F	GCTTCAGGAATCAATGATGGAGCAG	116		
111	RPOB_EC_3775_3803_F	CTTGGAGGTAAGTCTCATTTTGGTGG GCA	87		
112	VALS_EC_1833_1850_F	CGACGCGCTGCGCTTCAC	65		
113	RPOB_EC_1336_1353_F	GACCACCTCGGCAACCGT	97		
114	TUFB_EC_225_251_F	GCACTATGCACACGTAGATTGTCCTGG	111		
115	DNAK_EC_428_449_F	CGGCGTACTTCAACGACAGCCA	72		
116	VALS_EC_1920_1943_F	CTTCTGCAACAAGCTGTGGAACGC	85		
117	TUFB_EC_757_774_F	AAGACGACCTGCACGGGC	6		
118	235_EC_2646_2667_F	CTGTTCTTAGTACGAGAGGACC	84		
119	165_EC_969_985_1P_F	ACGCGAAGAACCTTACpC	19		
120	165_EC_972_985_2P_F	CGAAGAACpCpTTACC	63		

TABLE 2-continued

TABLE 2-continued			
	Primer Pair	rs for Identification of Bacteria	
121	16S_EC_972_985_F	CGAAGAACCTTACC	63
122	TRNA_ILE- RRNH_EC_32_50.2_F	CCTGATAAGGGTGAGGTCG	61
123	23S_EC7_15_F	GTTGTGAGGTTAAGCGACTAAG	140
124	23S_EC7_15_F	GTTGTGAGGTTAAGCGACTAAG	141
125	235_EC_430_450_F	ATACTCCTGACTGACCGATAG	30
126	235_EC_891_910_F	GACTTACCAACCCGATGCAA	100
127	23S_EC_1424_1442_F	GGACGGAGAAGGCTATGTT	117
128	235_EC_1908_1931_F	CGTAACTATAACGGTCCTAAGGTA	73
129	23S_EC_2475_2494_F	ATATCGACGGCGGTGTTTGG	31
131	16S_EC6039_F	AGTCTCAAGAGTGAACACGTAA	28
132	16S_EC_326_345_F	GACACGGTCCAGACTCCTAC	95
133	16S_EC_705_724_F	GATCTGGAGGAATACCGGTG	107
134	16S_EC_1268_1287_F	GAGAGCAAGCGGACCTCATA	101
135	165_EC_969_985_F	ACGCGAAGAACCTTACC	19
137	165_EC_969_985_F	ACGCGAAGAACCTTACC	19
138	165_EC_969_985_F	ACGCGAAGAACCTTACC	19
139	165_EC_969_985_F	ACGCGAAGAACCTTACC	19
140	16S_EC_969_985_F	ACGCGAAGAACCTTACC	19
141	16S_EC_969_985_F	ACGCGAAGAACCTTACC	19
142	16S_EC_969_985_F	ACGCGAAGAACCTTACC	19
143	16S_EC_969_985_F	ACGCGAAGAACCTTACC	19
147	23S_EC_2652_2669_F	CTAGTACGAGAGGACCGG	79
158	16S_EC_683_700_F	GTGTAGCGGTGAAATGCG	137
159	16S_EC_1100_1116_F	CAACGAGCGCAACCCTT	42
215	SSPE_BA_121_137_F	AACGCACAATCAGAAGC	3
220	GROL_EC_941_959_F	TGGAAGATCTGGGTCAGGC	544
221	INFB_EC_1103_1124_F	GTCGTGAAAACGAGCTGGAAGA	133
222	HFLB_EC_1082_1102_F	TGGCGAACCTGGTGAACGAAGC	569
223	INFB_EC_1969_1994_F	CGTCAGGGTAAATTCCGTGAAGTTAA	74
224	GROL_EC_219_242_F	GGTGAAAGAAGTTGCCTCTAAAGC	128
225	VALS_EC_1105_1124_F	CGTGGCGGCGTGGTTATCGA	77
226	16S_EC_556_575_F	CGGAATTACTGGGCGTAAAG	70
227	RPOC_EC_1256_1277_F	ACCCAGTGCTGCAACCGTGC	16
228	16S_EC_774_795_F	GGGAGCAAACAGGATTAGATAC	122
229	RPOC_EC_1584_1604_F	TGGCCCGAAAGAAGCTGAGCG	567
230	16S_EC_1082_1100_F	ATGTTGGGTTAAGTCCCGC	37
231	16S_EC_1389_1407_F	CTTGTACACACCGCCCGTC	88

TABLE 2-continued

TABLE 2-continued			
Primer Pairs	for Identification of Bacteria		
232 16S_EC_1303_1323_F	CGGATTGGAGTCTGCAACTCG	71	
233 235_EC_23_37_F	GGTGGATGCCTTGGC	129	
234 23S_EC_187_207_F	GGGAACTGAAACATCTAAGTA	121	
235 23S_EC_1602_1620_F	TACCCCAAACCGACACAGG	184	
236 23S_EC_1685_1703_F	CCGTAACTTCGGGAGAAGG	58	
237 23S_EC_1827_1843_F	GACGCCTGCCCGGTGC	99	
238 235_EC_2434_2456_F	AAGGTACTCCGGGGGATAACAGGC	9	
239 235_EC_2599_2616_F	GACAGTTCGGTCCCTATC	96	
240 23S_EC_2653_2669_F	TAGTACGAGAGGACCGG	227	
241 23S_BS6844_F	AAACTAGATAACAGTAGACATCAC	1	
242 16S_EC_8_27_F	AGAGTTTGATCATGGCTCAG	23	
243 16S_EC_314_332_F	CACTGGAACTGAGACACGG	48	
244 16S_EC_518_536_F	CCAGCAGCCGCGGTAATAC	57	
245 16S_EC_683_700_F	GTGTAGCGGTGAAATGCG	137	
246 16S_EC_937_954_F	AAGCGGTGGAGCATGTGG	7	
247 16S_EC_1195_1213_F	CAAGTCATCATGGCCCTTA	46	
248 16S_EC_8_27_F	AGAGTTTGATCATGGCTCAG	23	
249 23S_EC_1831_1849_F	ACCTGCCCAGTGCTGGAAG	18	
250 16S_EC_1387_1407_F	GCCTTGTACACACCTCCCGTC	112	
251 16S_EC_1390_1411_F	TTGTACACCCCCCGTCATAC	693	
252 16S_EC_1367_1387_F	TACGGTGAATACGTTCCCGGG	191	
253 16S_EC_804_822_F	ACCACGCCGTAAACGATGA	14	
254 16S_EC_791_812_F	GATACCCTGGTAGTCCACACCG	106	
255 16S_EC_789_810_F	TAGATACCCTGGTAGTCCACGC	206	
256 16S_EC_1092_1109_F	TAGTCCCGCAACGAGCGC	228	
257 23S_EC_2586_2607_F	TAGAACGTCGCGAGACAGTTCG	203	
258 RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	103	
258 RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	103	
258 RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	103	
258 RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTCGC	104	
258 RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTCGC	104	
258 RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTCGC	104	
258 RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	105	
258 RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	105	
258 RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	105	
259 RNASEP_BS_43_61_F	GAGGAAAGTCCATGCTCGC	104	
260 RNASEP_EC_61_77_F	GAGGAAAGTCCGGGCTC	105	

TABLE 2-continued

TABLE 2-continued				
	Primer Pairs for Id	entification of Bacteria		
262	RNASEP_SA_31_49_F	GAGGAAAGTCCATGCTCAC	103	
263	16S_EC_1082_1100_F	ATGTTGGGTTAAGTCCCGC	37	
264	16S_EC_556_575_F	CGGAATTACTGGGCGTAAAG	70	
265	16S_EC_1082_1100_F	ATGTTGGGTTAAGTCCCGC	37	
266	165_EC_1082_1100_F	ATGTTGGGTTAAGTCCCGC	37	
268	YAED_EC_513_532_F_MOD	GGTGTTAAATAGCCTGGCAG	130	
269	165_EC_1082_1100_F_MOD	ATGTTGGGTTAAGTCCCGC	37	
270	235_EC_2586_2607_F_MOD	TAGAACGTCGCGAGACAGTTCG	203	
272	165_EC_969_985_F	ACGCGAAGAACCTTACC	19	
273	16S_EC_683_700_F	GTGTAGCGGTGAAATGCG	137	
274	165_EC_49_68_F	TAACACATGCAAGTCGAACG	152	
275	165_EC_49_68_F	TAACACATGCAAGTCGAACG	152	
277	CYA_BA_1349_1370_F	ACAACGAAGTACAATACAAGAC	12	
278	165_EC_1090_1111_2_F	TTAAGTCCCGCAACGAGCGCAA	650	
279	16S_EC_405_432_F	TGAGTGATGAAGGCCTTAGGGTTGTA AA	464	
280	GROL_EC_496_518_F	ATGGACAAGGTTGGCAAGGAAGG	34	
281	GROL_EC_511_536_F	AAGGAAGGCGTGATCACCGTTGAAGA	8	
288	RPOB_EC_3802_3821_F	CAGCGTTTCGGCGAAATGGA	51	
289	RPOB_EC_3799_3821_F	GGGCAGCGTTTCGGCGAAATGGA	124	
290	RPOC_EC_2146_2174_F	CAGGAGTCGTTCAACTCGATCTACAT GAT	52	
291	ASPS_EC_405_422_F	GCACAACCTGCGGCTGCG	110	
292	RPOC_EC_1374_1393_F	CGCCGACTTCGACGGTGACC	69	
293	TUFB_EC_957_979_F	CCACACGCCGTTCTTCAACAACT	55	
294	16S_EC_7_33_F	GAGAGTTTGATCCTGGCTCAGAACGAA	102	
295	VALS_EC_610_649_F	ACCGAGCAAGGAGACCAGC	17	
344	165_EC_971_990_F	GCGAAGAACCTTACCAGGTC	113	
346	16S_EC_713_732_TMOD_F	TAGAACACCGATGGCGAAGGC	202	
347	16S_EC_785_806_TMOD_F	TGGATTAGAGACCCTGGTAGTCC	560	
348	165_EC_960_981_TMOD_F	TTTCGATGCAACGCGAAGAACCT	706	
349	23S_EC_1826_1843_TMOD_F	TCTGACACCTGCCCGGTGC	401	
350	CAPC_BA_274_303_TMOD_F	TGATTATTGTTATCCTGTTATGCCAT TTGAG	476	
351	CYA_BA_1353_1379_TMOD_F	TCGAAGTACAATACAAGACAAAAGAA GG	355	
352	INFB_EC_1365_1393_TMOD_F	TTGCTCGTGGTGCACAAGTAACGGAT ATTA	687	
353	LEF_BA_756_781_TMOD_F	TAGCTTTTGCATATTATATCGAGCCAC	220	

TABLE 2-continued

	TABLE 2-continued			
	Primer Pairs for Iden	tification of Bacteria		
354	RPOC_EC_2218_2241_TMOD_F	TCTGGCAGGTATGCGTGGTCTGATG	405	
355	SSPE_BA_115_137_TMOD_F	TCAAGCAAACGCACAATCAGAAGC	255	
356	RPLB_EC_650_679_TMOD_F	TGACCTACAGTAAGAGGTTCTGTAAT GAACC	449	
357	RPLB_EC_688_710_TMOD_F	TCATCCACACGGTGGTGGTGAAGG	296	
358	VALS_EC_1105_1124_TMOD_F	TCGTGGCGGCGTGGTTATCGA	385	
359	RPOB_EC_1845_1866_TMOD_F	TTATCGCTCAGGCGAACTCCAAC	659	
360	23S_EC_2646_2667_TMOD_F	TCTGTTCTTAGTACGAGAGGACC	409	
361	165_EC_1090_1111_2_TMOD_F	TTTAAGTCCCGCAACGAGCGCAA	697	
362	RPOB_EC_3799_3821_TMOD_F	TGGGCAGCGTTTCGGCGAAATGGA	581	
363	RPOC_EC_2146_2174_TMOD_F	TCAGGAGTCGTTCAACTCGATCTACA TGAT	284	
364	RPOC_EC_1374_1393_TMOD_F	TCGCCGACTTCGACGGTGACC	367	
367	TUFB_EC_957_979_TMOD_F	TCCACACGCCGTTCTTCAACAACT	308	
423	SP101_SPET11_893_921_TMOD_F	TGGGCAACAGCAGCGGATTGCGATTG CGCG	580	
424	SP101_SPET11_1154_1179_TMOD_F	TCAATACCGCAACAGCGGTGGCTTGGG	258	
425	SP101_SPET11_118_147_TMOD_F	TGCTGGTGAAAATAACCCAGATGTCG TCTTC	528	
426	SP101_SPET11_1314_1336_TMOD_F	TCGCAAAAAAATCCAGCTATTAGC	363	
427	SP101_SPET11_1408_1437_TMOD_F	TCGAGTATAGCTAAAAAAATAGTTTA TGACA	359	
428	SP101_SPET11_1688_1716_TMOD_F	TCCTATATTAATCGTTTACAGAAACT GGCT	334	
429	SP101_SPET11_1711_1733_TMOD_F	TCTGGCTAAAACTTTGGCAACGGT	406	
430	SP101_SPET11_1807_1835_TMOD_F	TATGATTACAATTCAAGAAGGTCGTC ACGC	235	
431	SP101_SPET11_1967_1991_TMOD_F	TTAACGGTTATCATGGCCCAGATGGG	649	
432	SP101_SPET11_216_243_TMOD_F	TAGCAGGTGGTGAAATCGGCCACATG ATT	210	
433	SP101_SPET11_2260_2283_TMOD_F	TCAGAGACCGTTTTATCCTATCAGC	272	
434	SP101_SPET11_2375_2399_TMOD_F	TTCTAAAACACCAGGTCACCCAGAAG	675	
435	SP101_SPET11_2468_2487_TMOD_F	TATGGCCATGGCAGAAGCTCA	238	
436	SP101_SPET11_266_295_TMOD_F	TCTTGTACTTGTGGCTCACACGGCTG TTTGG	417	
437	SP101_SPET11_2961_2984_TMOD_F	TACCATGACAGAAGGCATTTTGACA	183	
438	SP101_SPET11_3075_3103_TMOD_F	TGATGACTTTTTAGCTAATGGTCAGG CAGC	473	
439	SP101_SPET11_322_344_TMOD_F	TGTCAAAGTGGCACGTTTACTGGC	631	
440	SP101_SPET11_3386_3403_TMOD_F	TAGCGTAAAGGTGAACCTT	215	
441	SP101_SPET11_3511_3535_TMOD_F	TGCTTCAGGAATCAATGATGGAGCAG	531	
442	SP101_SPET11_358_387_TMOD_F	TGGGGATTCAGCCATCAAAGCAGCTA TTGAC	588	

TABLE 2-continued

4 SP101_ 5 SP101_ 6 SP101_ 7 SP101_ 8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 0 SSPE_E 0 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E <th>Primer Pairs for SPET11_600_629_TMOD_F SPET11_658_684_TMOD_F SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F X52066_538_552_F X52066_538_552_F X52066_701_720_F X52066_701_720_F X52066_450_473_F X52066_450_473_F X52066_591_620_F A_156_168P_F A_75_89P_F</th> <th>Identification of Bacteria TCCTTACTTCGAACTATGAATCTTTT GGAAG TGGGGATTGATATCACCGATAAGAAG AA TTCGCCAATCAAAACTAAGGGAATGGC TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCAGCC TCCACCGGTGGTGGTGGAGGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC TGAGTCACTTGAAGTTGATACAAATC TGAGTCACTTGAAGTTGATACAAATC TCAAGTAATTAGGACCTTGAAGATTGATACAAATC</th> <th>348 589 673 154 276 216 309 239 143 94 91 393 142 463 616</th>	Primer Pairs for SPET11_600_629_TMOD_F SPET11_658_684_TMOD_F SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F X52066_538_552_F X52066_538_552_F X52066_701_720_F X52066_701_720_F X52066_450_473_F X52066_450_473_F X52066_591_620_F A_156_168P_F A_75_89P_F	Identification of Bacteria TCCTTACTTCGAACTATGAATCTTTT GGAAG TGGGGATTGATATCACCGATAAGAAG AA TTCGCCAATCAAAACTAAGGGAATGGC TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCAGCC TCCACCGGTGGTGGTGGAGGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC TGAGTCACTTGAAGTTGATACAAATC TGAGTCACTTGAAGTTGATACAAATC TCAAGTAATTAGGACCTTGAAGATTGATACAAATC	348 589 673 154 276 216 309 239 143 94 91 393 142 463 616
4 SP101_ 5 SP101_ 6 SP101_ 7 SP101_ 8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 0 SSPE_E 0 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E <th>SPET11_658_684_TMOD_F SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F</th> <th>GGAAG TGGGGATTGATATCACCGATAAGAAG AA TTCGCCAATCAAAACTAAGGGAATGGC TACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA GAATAGCAATTAATCCAAAT GAATAGCAATTAATCCAAAT GAATAGCAATTAATCCAAAT TCTAGTAATAGGACCCTCAGC TCCAGTAATAATAAGGACCCTCAGC TCCAGTAATAATAGGAACCP*CP *CP+TPACPAGC TGAGTCACTTGAAGTTGATACAAATC CGATPGCPTPAGCPATT</th> <th>589 673 154 276 216 309 239 143 94 91 393 142 463</th>	SPET11_658_684_TMOD_F SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	GGAAG TGGGGATTGATATCACCGATAAGAAG AA TTCGCCAATCAAAACTAAGGGAATGGC TACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA GAATAGCAATTAATCCAAAT GAATAGCAATTAATCCAAAT GAATAGCAATTAATCCAAAT TCTAGTAATAGGACCCTCAGC TCCAGTAATAATAAGGACCCTCAGC TCCAGTAATAATAGGAACCP*CP *CP+TPACPAGC TGAGTCACTTGAAGTTGATACAAATC CGATPGCPTPAGCPATT	589 673 154 276 216 309 239 143 94 91 393 142 463
5 SP101_ 6 SP101_ 7 SP101_ 8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 0 SSPE_E 0 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E <th>SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F</th> <th>AA TTCGCCAATCAAAACTAAGGGAATGGC TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA GAATAGCAATTAATCCAAAT GAA*TDAG*CDAA*TD*TDA*CD*TD*CDAA GAA*ADAGCACTCAGC *cpAAAT TCTAGTAATAATAGGACCCTCAGC TCTAGTAATAATAGGA*CD*CD CGAGTCACTTGAAGTTGATACAAATC TCGTDGCDTDAGCDATT</th> <th>673 154 276 216 309 239 143 94 91 393 142 463</th>	SPET11_776_801_TMOD_F SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	AA TTCGCCAATCAAAACTAAGGGAATGGC TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA GAATAGCAATTAATCCAAAT GAA*TDAG*CDAA*TD*TDA*CD*TD*CDAA GAA*ADAGCACTCAGC *cpAAAT TCTAGTAATAATAGGACCCTCAGC TCTAGTAATAATAGGA*CD*CD CGAGTCACTTGAAGTTGATACAAATC TCGTDGCDTDAGCDATT	673 154 276 216 309 239 143 94 91 393 142 463
6 SP101_ 7 SP101_ 8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E <td>SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F</td> <td>TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGA*Cp*Cp TGAGTCACTTGAAGTTGATACAAATC CTGGTpGCpTpAGCpATT</td> <td>154 276 216 309 239 143 94 91 393 142 463</td>	SPET11_1_29_TMOD_F SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	TAACCTTAATTGGAAAGAAACCCAAG AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGA*Cp*Cp TGAGTCACTTGAAGTTGATACAAATC CTGGTpGCpTpAGCpATT	154 276 216 309 239 143 94 91 393 142 463
7 SP101_ 8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 0 SSPE_E 1 SSPE_E 0 SSPE_E 0 SSPE_E 0 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 4 SSPE_E	SPET11_364_385_F SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	AAGT TCAGCCATCAAAGCAGCTATTG TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGGAGGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpACTATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC TGGTpGCpTpAGCpATT	276 216 309 239 143 94 91 393 142 463
8 SP101_ 9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 2 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 4 SSPE_E	SPET11_3085_3104_F C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	TAGCTAATGGTCAGGCAGCC TCCACACGGTGGTGGTGAAGG TATGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC TGGTpGCpTpAGCpATT	216 309 239 143 94 91 393 142 463
9 RPLB_E 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 0 SSPE_E 1 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 4 SSPE_E	C_690_710_F X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	ТССАСАСGGTGGTGGTGAAGG ТАТGGCTCTACTCAA ТА*ТрGGC*Тр*Ср*ТрА*Ср*Тр*СрАА GAATAGCAATTAATCCAAAT GAA*TPAG*CPAA*Tp*TpAA*Tp*Cp *CPAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CPAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCPATT	309 239 143 94 91 393 142 463
- 1 BONTA_ 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 1 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 3 SSPE_E 4 SSPE_E	X52066_538_552_F X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	ТАТGGCTCTACTCAA TA*TpGGC*Tp*Cp*TpA*Cp*Tp*CpAA GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCpATT	239 143 94 91 393 142 463
- 2 BONTA_ 3 BONTA_ 4 BONTA_ 5 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 1 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 1 SSPE_E 2 SSPE_E 1 SSPE_E 2 SSPE_E 4 SSPE_E	X52066_538_552P_F X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	ТА*ТрGGC*Тр*Ср*ТрА*Ср*Тр*СрАА GAATAGCAATTAATCCAAAT GAA*TPAG*CPAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCPATT	143 94 91 393 142 463
- 3 BONTA_ 4 BONTA_ 5 BONTA_ 6 BONTA_ 6 BONTA_ 7 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 1 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 1	X52066_701_720_F X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	GAATAGCAATTAATCCAAAT GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCpATT	94 91 393 142 463
4 BONTA_ 5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	X52066_701_720P_F X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	GAA*TpAG*CpAA*Tp*TpAA*Tp*Cp *CpAAAT TCTAGTAATAATAGGACCCTCAGC T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCpATT	91 393 142 463
5 BONTA_ 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	X52066_450_473_F X52066_450_473P_F X52066_591_620_F A_156_168P_F	* СрААТ ТСТАДТААТААТАДДАСССТСАДС Т*Ср*ТрАДТААТААТАДДА*Ср*Ср *Ср*Тр*СрАДС ТДАДТСАСТТДААДТТДАТАСАААТС СТСТ ТДЭТрЭСрТрАДСРАТТ	393 142 463
- 6 BONTA_ 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 9 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	X52066_450_473P_F X52066_591_620_F A_156_168P_F	T*Cp*TpAGTAATAATAGGA*Cp*Cp *Cp*Tp*CpAGC TGAGTCACTTGAAGTTGATACAAATC CTCT TGGTpGCpTpAGCpATT	142 463
 7 BONTA_ 8 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 9 SSPE_E 1 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E 	X52066_591_620_F A_156_168P_F	*Ср*Тр*СрАGС ТGAGTCACTTGAAGTTGATACAAATC СТСТ ТGGTpGCpTpAGCpATT	463
8 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_156_168P_F	CTCT TGGTpGCpTpAGCpATT	
9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E			616
 0 SSPE_E 1 SSPE_E 2 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E 	A_75_89P_F	TACpAGAGTpTpTpGCpGAC	
1 SSPE_E 2 SSPE_E 9 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E			192
2 SSPE_E 9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_150_168P_F	TGCTTCTGGTpGCpTpAGCpATT	533
9 SSPE_E 0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_72_89P_F	TGGTACpAGAGTpTpTpGCpGAC	602
0 SSPE_E 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_114_137P_F	TCAAGCAAACGCACAATpCpAGAAGC	255
- 1 SSPE_E 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_123_153_F	TGCACAATCAGAAGCTAAGAAAGCGC AAGCT	488
_ 2 SSPE_E 3 SSPE_E 4 SSPE_E	A_156_168_F	TGGTGCTAGCATT	612
3 SSPE_E 4 SSPE_E	A_75_89_F	TACAGAGTTTGCGAC	179
4 SSPE_E	A_150_168_F	TGCTTCTGGTGCTAGCATT	533
-	A_72_89_F	TGGTACAGAGTTTGCGAC	600
5 SSPE_E	A_146_168_F	TGCAAGCTTCTGGTGCTAGCATT	484
	A_63_89_F	TGCTAGTTATGGTACAGAGTTTGCGAC	518
6 SSPE_E	A_114_137_F	TCAAGCAAACGCACAATCAGAAGC	255
0 PLA_AF		TGACATCCGGCTCACGTTATTATGGT	442
1 PLA_AF	053945_7377_7402_F		
2 PLA_AF	053945_7377_7402_F 053945_7382_7404_F	TCCGGCTCACGTTATTATGGTAC	327
3 PLA_AF		TCCGGCTCACGTTATTATGGTAC TGCAAAGGAGGTACTCAGACCAT	
4 CAF1_A	053945_7382_7404_F		

TABLE 2-continued

	TABLE 2-continued			
	Primer Pairs for Identi	ification of Bacteria		
776	CAF1_AF053947_33435_33457_F	TGGAACTATTGCAACTGCTAATG	542	
777	CAF1_AF053947_33687_33716_F	TCAGGATGGAAATAACCACCAATTCA CTAC	286	
778	INV_U22457_515_539_F	TGGCTCCTTGGTATGACTCTGCTTC	573	
779	INV_U22457_699_724_F	TGCTGAGGCCTGGACCGATTATTTAC	525	
780	INV_U22457_834_858_F	TTATTTACCTGCACTCCCACAACTG	664	
781	INV_U22457_1558_1581_F	TGGTAACAGAGCCTTATAGGCGCA	597	
782	LL_NC003143_2366996_2367019_F	TGTAGCCGCTAAGCACTACCATCC	627	
783	LL_NC003143_2367172_2367194_F	TGGACGGCATCACGATTCTCTAC	550	
874	RPLB_EC_649_679_F	TGICCIACIGTIIGIGGTTCTGTAAT GAACC	620	
875	RPLB_EC_642_679P_F	TpCpCpTpTpGITpGICCIACIGTII GIGGTTCTGTAATGAACC	646	
876	MECIA_Y14051_3315_3341_F	TTACACATATCGTGAGCAATGAACTGA	653	
877	MECA_Y14051_3774_3802_F	TAAAACAAACTACGGTAACATTGATC GCA	144	
878	MECA_Y14051_3645_3670_F	TGAAGTAGAAATGACTGAACGTCCGA	434	
879	MECA_Y14051_4507_4530_F	TCAGGTACTGCTATCCACCCTCAA	288	
880	MECA_Y14051_4510_4530_F	TGTACTGCTATCCACCCTCAA	626	
881	MECA_Y14051_4669_4698_F	TCACCAGGTTCAACTCAAAAAATATT AACA	262	
882	MECA_Y14051_4520_4530P_F	ΤϹϼϹϼϹϼϹϼͳϼϹϼΑΑ	389	
883	MECA_Y14051_4520_4530P_F	ΤϹϼϹϼϹϼϹϼͳϼϹϼΑΑ	389	
902	TRPE_AY094355_1467_1491_F	ATGTCGATTGCAATCCGTACTTGTG	36	
903	TRPE_AY094355_1445_1471_F	TGGATGGCATGGTGAAATGGATATGTC	557	
904	TRPE_AY094355_1278_1303_F	TCAAATGTACAAGGTGAAGTGCGTGA	247	
905	TRPE_AY094355_1064_1086_F	TCGACCTTTGGCAGGAACTAGAC	357	
906	TRPE_AY094355_666_688_F	GTGCATGCGGATACAGAGCAGAG	135	
907	TRPE_AY094355_757_776_F	TGCAAGCGCGACCACATACG	483	
908	RECA_AF251469_43_68_F	TGGTACATGTGCCTTCATTGATGCTG	601	
909	RECA_AF251469_169_190_F	TGACATGCTTGTCCGTTCAGGC	446	
910	PARC_X95819_87_110_F	TGGTGACTCGGCATGTTATGAAGC	609	
911	PARC_X95819_87_110_F	TGGTGACTCGGCATGTTATGAAGC	609	
912	PARC_X95819_123_147_F	GGCTCAGCCATTTAGTTACCGCTAT	120	
913	PARC_X95819_43_63_F	TCAGCGCGTACAGTGGGTGAT	277	
914	OMPA_AY485227_272_301_F	TTACTCCATTATTGCTTGGTTACACT TTCC	655	
915	OMPA_AY485227_379_401_F	TGCGCAGCTCTTGGTATCGAGTT	509	
916	OMPA_AY485227_311_335_F	TACACAACAATGGCGGTAAAGATGG	178	
917	OMPA_AY485227_415_441_F	TGCCTCGAAGCTGAATATAACCAAGTT	506	

TABLE 2-continued

	TABLE 2-continued			
	Primer	Pairs for Identification of Bacteria		
918	OMPA_AY485227_494_520_F	TCAACGGTAACTTCTATGTTACTTCTG	252	
919	OMPA_AY485227_551_577_F	TCAAGCCGTACGTATTATTAGGTGCTG	257	
920	OMPA_AY485227_555_581_F	TCCGTACGTATTATTAGGTGCTGGTCA	328	
921	OMPA_AY485227_556_583_F	TCGTACGTATTATTAGGTGCTGGTCA CT	379	
922	OMPA_AY485227_657_679_F	TGTTGGTGCTTTCTGGCGCTTAA	645	
923	OMPA_AY485227_660_683_F	TGGTGCTTTCTGGCGCTTAAACGA	613	
924	GYRA_AF100557_4_23_F	TCTGCCCGTGTCGTTGGTGA	402	
925	GYRA_AF100557_70_94_F	TCCATTGTTCGTATGGCTCAAGACT	316	
926	GYRB_AB008700_19_40_F	TCAGGTGGCTTACACGGCGTAG	289	
927	GYRB_AB008700_265_292_F	TCTTTCTTGAATGCTGGTGTACGTAT CG	420	
928	GYRB_AB008700_368_394_F	TCAACGAAGGTAAAAACCATCTCAACG	251	
929	GYRB_AB008700_477_504_F	TGTTCGCTGTTTCACAAACAACATTC CA	641	
930	GYRB_AB008700_760_787_F	TACTTACTTGAGAATCCACAAGCTGC AA	198	
931	WAAA_Z96925_2_29_F	TCTTGCTCTTTCGTGAGTTCAGTAAA TG	416	
932	WAAA_Z96925_286_311_F	TCGATCTGGTTTCATGCTGTTTCAGT	360	
939	RPOB_EC_3798_3821_F	TGGGCAGCGTTTCGGCGAAATGGA	581	
940	RPOB_EC_3798_3821_F	TGGGCAGCGTTTCGGCGAAATGGA	581	
941	TUFB_EC_275_299_F	TGATCACTGGTGCTGCTCAGATGGA	468	
942	TUFB_EC_251_278_F	TGCACGCCGACTATGTTAAGAACATG AT	493	
949	GYRB_AB008700_760_787_F	TACTTACTTGAGAATCCACAAGCTGC AA	198	
958	RPOC_EC_2223_2243_F	TGGTATGCGTGGTCTGATGGC	605	
959	RPOC_EC_918_938_F	TCTGGATAACGGTCGTCGCGG	404	
960	RPOC_EC_2334_2357_F	TGCTCGTAAGGGTCTGGCGGATAC	523	
961	RPOC_EC_917_938_F	TATTGGACAACGGTCGTCGCGG	242	
962	RPOB_EC_2005_2027_F	TCGTTCCTGGAACACGATGACGC	387	
963	RPOB_EC_1527_1549_F	TCAGCTGTCGCAGTTCATGGACC	282	
964	INFB_EC_1347_1367_F	TGCGTTTACCGCAATGCGTGC	515	
965	VALS_EC_1128_1151_F	TATGCTGACCGACCAGTGGTACGT	237	
978	RPOC_EC_2145_2175_F	TCAGGAGTCGTTCAACTCGATCTACA TGATG	285	
1045	CJST_CJ_1668_1700_F	TGCTCGAGTGATTGACTTTGCTAAAT TTAGAGA	522	
1046	CJST_CJ_2171_2197_F	TCGTTTGGTGGTGGTAGATGAAAAAGG	388	
1047	CJST_CJ_584_616_F	TCCAGGACAAATGTATGAAAAATGTC CAAGAAG	315	

TABLE 2-continued

TABLE 2-continued				
Primer Pairs for Ide	ntification of Bacteria			
1048 CJST_CJ_360_394_F	TCCTGTTATCCCTGAAGTAGTTAATC AAGTTTGTT	346		
1049 CJST_CJ_2636_2668_F	TGCCTAGAAGATCTTAAAAATTTCCG CCAACTT	504		
1050 CJST_CJ_1290_1320_F	TGGCTTATCCAAATTTAGATCGTGGT TTTAC	575		
1051 CJST_CJ_3267_3293_F	TTTGATTTTACGCCGTCCTCCAGGTCG	707		
1052 CJST_CJ_5_39_F	TAGGCGAAGATATACAAAGAGTATTA GAAGCTAGA	222		
1053 CJST_CJ_1080_1110_F	TTGAGGGTATGCACCGTCTTTTTGAT TCTTT	681		
1054 CJST_CJ_2060_2090_F	TCCCGGACTTAATATCAATGAAAATT GTGGA	323		
1055 CJST_CJ_2869_2895_F	TGAAGCTTGTTCTTTAGCAGGACTTCA	432		
1056 CJST_CJ_1880_1910_F	TCCCAATTAATTCTGCCATTTTTCCA GGTAT	317		
1057 CJST_CJ_2185_2212_F	TAGATGAAAAGGGCGAAGTGGCTAAT GG	208		
1058 CJST_CJ_1643_1670_F	TTATCGTTTGTGGAGCTAGTGCTTAT GC	660		
1059 CJST_CJ_2165_2194_F	TGCGGATCGTTTGGTGGTTGTAGATG AAAA	511		
1060 CJST_CJ_599_632_F	TGAAAAATGTCCAAGAAGCATAGCAA AAAAAGCA	424		
1061 CJST_CJ_360_393_F	TCCTGTTATCCCTGAAGTAGTTAATC AAGTTTGT	345		
1062 CJST_CJ_2678_2703_F	TCCCCAGGACACCCTGAAATTTCAAC	321		
1063 CJST_CJ_1268_1299_F	AGTTATAAACACGGCTTTCCTATGGC TTATCC	29		
1064 CJST_CJ_1680_1713_F	TGATTTTGCTAAATTTAGAGAAATTG CGGATGAA	479		
1065 CJST_CJ_2857_2887_F	TGGCATTTCTTATGAAGCTTGTTCTT TAGCA	565		
1070 RNASEP_BKM_580_599_F	TGCGGGTAGGGAGCTTGAGC	512		
1071 RNASEP_BKM_616_637_F	TCCTAGAGGAATGGCTGCCACG	333		
1072 RNASEP_BDP_574_592_F	TGGCACGGCCATCTCCGTG	561		
1073 23S_BRM_1110_1129_F	TGCGCGGAAGATGTAACGGG	510		
1074 23S_BRM_515_536_F	TGCATACAAACAGTCGGAGCCT	496		
1075 RNASEP_CLB_459_487_F	TAAGGATAGTGCAACAGAGATATACC GCC	162		
1076 RNASEP_CLB_459_487_F	TAAGGATAGTGCAACAGAGATATACC GCC	162		
1077 ICD_CXB_93_120_F	TCCTGACCGACCCATTATTCCCTTTA TC	343		
1078 ICD_CXB_92_120_F	TTCCTGACCGACCCATTATTCCCTTT ATC	671		
1079 ICD_CXB_176_198_F	TCGCCGTGGAAAAATCCTACGCT	369		

TABLE 2-continued

tification of Bacteria TCAGTATGTATCCACCGTAGCCAGTC TGGGTGACATTCATCAATTTCATCGT TC TGGTAAGAGCGCACCGGTAAGTTGGT AACA TAAGAGCGCACCGGTAAGTTGG TCCACCAAGAGCAAGATCAAATAGGC TCTAAATGGTCGTGCAGTTGCGTG	290 594 599 159
TGGGTGACATTCATCAATTTCATCGT TC TGGTAAGAGCGCACCGGTAAGTTGGT AACA TAAGAGCGCACCGGTAAGTTGG TCCACCAAGAGCAAGATCAAATAGGC	594 599
TC TGGTAAGAGCGCACCGGTAAGTTGGT AACA TAAGAGCGCACCGGTAAGTTGG TCCACCAAGAGCAAGATCAAATAGGC	599
AACA TAAGAGCGCACCGGTAAGTTGG TCCACCAAGAGCAAGATCAAATAGGC	
TCCACCAAGAGCAAGATCAAATAGGC	159
TCTAAATGGTCGTGCAGTTGCGTG	310
	391
TGCATACCGGTAAGTTGGCAACA	497
TTACAGGAAGTTTAGGTGGTAATCTA AAAGG	654
TCTACTGATTTTGGTAATCTTGCAGC ACAG	392
TGCAAGTGGTACTTCAACATGGGG	485
TGGGACTTGAAGCTATCGCTCTTAAA GATG	576
TCTTCTCATCCTATGGCTATTATGCT TGC	413
TCCGTTCTTACAAATAGCAATAGAAC TTGAAGC	330
TGGAGCTTGAAGCTATCGCTCTTAAA GATG	553
TGGAACTTGAAGCTCTCGCTCTTAAA GATG	543
TCTTCTCATCCTATGGCTATTATGCT TGC	413
TCTTATGCCAAGAGGACAGAGTGAGT	410
TGTATTAGGGGCATACAGTCCTCATCC	630
TCCGCGGAGTTGACTGGGT	325
TCGATTAGGCAGCAACGAAAGCCG	362
TTGCTTAAAGTTGGTTTTATTGGTTG GCG	690
TCAGTTTTAATGTCTCGTATGATCGA ATCAAAAG	295
TTATCAGCTAGACCTTTTAGGTAAAG CTAAGC	658
TCAAAAAGCCCTAGGTAAAGAGATTC CATATC	245
TCCAAGGTACACTAAACTTACTTGAG CTAATG	306
TGAGGACCGTGTCGCGCTCA	458
TCCTTGACCGCCTTTCCGATAC	350
TCAGACCATGCTCGCAGAGAAACTT	271
TAAACCCCATCGGGAGCAAGACCGAA TA	147
	TCTAAATGGTCGTGCAGTTGCGTGTGCATACCGGTAAGTTGGCAACATTACAGGAAGTTTAGGTGGTAATCTA AAAGGTCTACTGATTTTGGTAATCTTGCAGC ACAGTGCAAGTGGTACTTCAACATGGGGTGGAGCTTGAAGCTATCGCTCTTAAA GATGTCTTCTCATCCTATGGCTATTATGCT TGCTGGAACTTGAAGCTATCGCTCTTAAA GATGTGGAACTTGAAGCTCTCGCTCTTAAA GATGTGGAACTTGAAGCTCTCGCTCTTAAA GATGTGTATTAGGGGCATACAGTCTCATCC TCGCTCTTATGCCAAGAGGGACAGAGTGAGTTGTATTAGGGGCATACAGTCCTCATCCTCGCTTAAAGTTGGTTTTATTGGTTG GCGTCACTTTTAAGTCTCGTATGATCGA ATCAAAAGTTATCAGCTAGACCTTTTAGGTAGAGATTC CATATCTCCAAGGTACACTAACTTACTGAGA TCAAAAGCTCCAAGGTACACTAAAGTTCC CATATCTGAGGACCGTGTCGCGCTCA TCAAGCCCTAGGCACCAAACTT CCATGCCCATCCCATCCTGAGGACCGTGTCGCGCTCA TCAAGCCCTTCCGATACTGAGGACCGTGTCGCGCTCA TCAAGCCCTTCCGATACTCAAGCCCTTCCGATAC TCAAGCCCTAGCCCTACCTGAGGACCGTGTCGCGCTCATCAAGCCCTTCCCGATACTCAAGCCCTAGGCACAGACAGACTTTAACCCCATCGCGAGAGACAGACCGAA

TABLE 2-continued

Primer Pairs for Iden	tification of Bacteria	
1112 RNASEP_BRM_325_347_F	TACCCCAGGGAAAGTGCCACAGA	185
1128 HUPB_CJ_113_134_F	TAGTTGCTCAAACAGCTGGGCT	230
1129 HUPB_CJ_76_102_F	TCCCGGAGCTTTTATGACTAAAGCAG AT	324
1130 HUPB_CJ_76_102_F	TCCCGGAGCTTTTATGACTAAAGCAG AT	324
1151 AB_MLST-11- OIF007_62_91_F	TGAGATTGCTGAACATTTAATGCTGA TTGA	454
1152 AB_MLST-11- OIF007_185_214_F	TATTGTTTCAAATGTACAAGGTGAAG TGCG	243
1153 AB_MLST-11- 0IF007_260_289_F	TGGAACGTTATCAGGTGCCCCAAAAA TTCG	541
1154 AB_MLST-11- OIF007_206_239_F	TGAAGTGCGTGATGATATCGATGCAC TTGATGTA	436
1155 AB_MLST-11- 0IF007_522_552_F	TCGGTTTAGTAAAAGAACGTATTGCT CAACC	378
1156 AB_MLST-11- 0IF007_547_571_F	TCAACCTGACTGCGTGAATGGTTGT	250
1157 AB_MLST-11- OIF007_601_627_F	TCAAGCAGAAGCTTTGGAAGAAGAAGA	256
1158 AB_MLST-11- 0IF007_1202_1225_F	TCGTGCCCGCAATTTGCATAAAGC	384
1159 AB_MLST-11- 0IF007_1202_1225_F	TCGTGCCCGCAATTTGCATAAAGC	384
1160 AB_MLST-11- OIF007_1234_1264_F	TTGTAGCACAGCAAGGCAAATTTCCT GAAAC	694
1161 AB_MLST-11- OIF007_1327_1356_F	TAGGTTTACGTCAGTATGGCGTGATT ATGG	225
1162 AB_MLST-11- OIF007_1345_1369_F	TCGTGATTATGGATGGCAACGTGAA	383
1163 AB_MLST-11- 0IF007_1351_1375_F	TTATGGATGGCAACGTGAAACGCGT	662
1164 AB_MLST-11- OIF007_1387_1412_F	TCTTTGCCATTGAAGATGACTTAAGC	422
1165 AB_MLST-11- OIF007_1542_1569_F	TACTAGCGGTAAGCTTAAACAAGATT GC	194
1166 AB_MLST-11- OIF007_1566_1593_F	TTGCCAATGATATTCGTTGGTTAGCA AG	684
1167 AB_MLST-11- OIF007_1611_1638_F	TCGGCGAAATCCGTATTCCTGAAAAT GA	375
1168 AB_MLST-11- OIF007_1726_1752_F	TACCACTATTAATGTCGCTGGTGCTTC	182
1169 AB_MLST-11- OIF007_1792_1826_F	TTATAACTTACTGCAATCTATTCAGT TGCTTGGTG	656
1170 AB_MLST-11- 0IF007_1792_1826_F	TTATAACTTACTGCAATCTATTCAGT TGCTTGGTG	656
1171 AB_MLST-11- OIF007_1970_2002_F	TGGTTATGTACCAAATACTTTGTCTG AAGATGG	618

TABLE 2-continued

	E 2-continued	
	Identification of Bacteria	
1172 RNASEP_BRM_461_488_F	TAAACCCCATCGGGAGCAAGACCGAA TA	147
2000 CTXB_NC002505_46_70_F	TCAGCGTATGCACATGGAACTCCTC	278
2001 FUR_NC002505_87_113_F	TGAGTGCCAACATATCAGTGCTGAAGA	465
2002 FUR_NC002505_87_113_F	TGAGTGCCAACATATCAGTGCTGAAGA	465
2003 GAPA_NC002505_533_560_F	TCGACAACACCATTATCTATGGTGTG AA	356
2004 GAPA_NC002505_694_721_F	TCAATGAACGACCAACAAGTGATTGA TG	259
2005 GAPA_NC002505_753_782_F	TGCTAGTCAATCTATCATTCCGGTTG ATAC	517
2006 GYRB_NC002505_2_32_F	TGCCGGACAATTACGATTCATCGAGT ATTAA	501
2007 GYRB_NC002505_123_152_F	TGAGGTGGTGGATAACTCAATTGATG AAGC	460
2008 GYRB_NC002505_768_794_F	TATGCAGTGGAACGATGGTTTCCAAGA	236
2009 GYRB_NC002505_837_860_F	TGGTACTCACTTAGCGGGTTTCCG	603
2010 GYRB_NC002505_934_956_F	TCGGGTGATGATGCGCGTGAAGG	377
2011 GYRB_NC002505_1161_1190_F	TAAAGCCCGTGAAATGACTCGTCGTA AAGG	148
2012 OMPU_NC002505_85_110_F	TACGCTGACGGAATCAACCAAAGCGG	190
2013 OMPU_NC002505_258_283_F	TGACGGCCTATACGGTGTTGGTTTCT	451
2014 OMPU_NC002505_431_455_F	TCACCGATATCATGGCTTACCACGG	266
2015 OMPU_NC002505_533_557_F	TAGGCGTGAAAGCAAGCTACCGTTT	223
2016 OMPU_NC002505_689_713_F	TAGGTGCTGGTTACGCAGATCAAGA	224
2017 OMPU_NC002505_727_747_F	TACATGCTAGCCGCGTCTTAC	181
2018 OMPU_NC002505_931_953_F	TACTACTTCAAGCCGAACTTCCG	193
2019 OMPU_NC002505_927_953_F	TACTTACTACTTCAAGCCGAACTTCCG	197
2020 TCPA_NC002505_48_73_F	TCACGATAAGAAAACCGGTCAAGAGG	269
2021 TDH_NC004605_265_289_F	TGGCTGACATCCTACATGACTGTGA	574
2022 VVHA_NC004460_772_802_F	TCTTATTCCAACTTCAAACCGAACTA TGACG	412
2023 23S_EC_2643_2667_F	TGCCTGTTCTTAGTACGAGAGGACC	508
2024 16S_EC_713_732_TMOD_F	TAGAACACCGATGGCGAAGGC	202
2025 16S_EC_784_806_F	TGGATTAGAGACCCTGGTAGTCC	560
2026 16S_EC_959_981_F	TGTCGATGCAACGCGAAGAACCT	634
2027 TUFB_EC_956_979_F	TGCACACGCCGTTCTTCAACAACT	489
2028 RPOC_EC_2146_2174_TMOD_F	TCAGGAGTCGTTCAACTCGATCTACA TGAT	284
2029 RPOB_EC_1841_1866_F	TGGTTATCGCTCAGGCGAACTCCAAC	617
2030 RPLB_EC_650_679_TMOD_F	TGACCTACAGTAAGAGGTTCTGTAAT GAACC	449

TABLE 2-continued

	11	ABLE 2-continued	
	Primer Pairs	for Identification of Bacteria	
2031	RPLB_EC_690_710_F	TCCACACGGTGGTGGTGAAGG	309
2032	INFB_EC_1366_1393_F	TCTCGTGGTGCACAAGTAACGGATAT TA	397
2033	VALS_EC_1105_1124_TMOD_F	TCGTGGCGGCGTGGTTATCGA	385
2034	SSPE_BA_113_137_F	TGCAAGCAAACGCACAATCAGAAGC	482
2035	RPOC_EC_2218_2241_TMOD_F	TCTGGCAGGTATGCGTGGTCTGATG	405
2056	MECI-R_NC003923- 41798-41609_33_60_F	TTTACACATATCGTGAGCAATGAACT GA	698
2057	AGR-III_NC003923- 2108074- 2109507_1_23_F	TCACCAGTTTGCCACGTATCTTCAA	263
2058	AGR-III_NC003923- 2108074- 2109507_569_596_F	TGAGCTTTTAGTTGACTTTTTCAACA GC	457
2059	AGR-III_NC003923- 2108074- 2109507_1024_1052_F	TTTCACACAGCGTGTTTATAGTTCTA CCA	701
2060	AGR- I_AJ617706_622_651_F	TGGTGACTTCATAATGGATGAAGTTG AAGT	610
2061	AGR- I_AJ617706_580_611_F	TGGGATTTTAAAAAACATTGGTAACA TCGCAG	579
2062	AGR-II_NC002745- 2079448- 2080879_620_651_F	TCTTGCAGCAGTTTATTTGATGAACC TAAAGT	415
2063	AGR-II_NC002745- 2079448- 2080879_649_679_F	TGTACCCGCTGAATTAACGAATTTAT ACGAC	624
2064	AGR- IV_AJ617711_931_961_F	TGGTATTCTATTTTGCTGATAATGAC CTCGC	606
2065	AGR- IV_AJ617711_250_283_F	TGGCACTCTTGCCTTTAATATTAGTA AACTATCA	562
2066	BLAZ_NC002952(1913827 1914672)_68_68_F	TCCACTTATCGCAAATGGAAAATTAA GCAA	312
2067	BLAZ_NC002952(1913827 1914672)_68_68_2_F	TGCACTTATCGCAAATGGAAAATTAA GCAA	494
2068	BLAZ_NC002952(1913827 1914672)_68_68_3_F	TGATACTTCAACGCCTGCTGCTTTC	467
2069	BLAZ_NC002952(1913827 1914672)_68_68_4_F	TATACTTCAACGCCTGCTGCTTTC	232
2070	BLAZ_NC002952(1913827 1914672)_1_33_F	TGCAATTGCTTTAGTTTTAAGTGCAT GTAATTC	487
2071	BLAZ_NC002952(1913827 1914672)_3_34_F	TCCTTGCTTTAGTTTTAAGTGCATGT AATTCAA	351
2072	BSA-A_NC003923- 1304065- 1303589_99_125_F	TAGCGAATGTGGCTTTACTTCACAATT	214
2073	BSA-A_NC003923- 1304065- 1303589_194_218_F	ATCAATTTGGTGGCCAAGAACCTGG	32

TABLE 2-continued

TABLE 2-continued				
	Primer Pairs for Iden	tification of Bacteria		
2074	BSA-A_NC003923- 1304065- 1303589_328_349_F	TTGACTGCGGCACAACACGGAT	679	
2075	BSA-A_NC003923- 1304065- 1303589_253_278_F	TGCTATGGTGTTACCTTCCCTATGCA	519	
2076	BSA-B_NC003923- 1917149- 1914156_953_982_F	TAGCAACAAATATATCTGAAGCAGCG TACT	209	
2077	BSA-B_NC003923- 1917149- 1914156_1050_1081_F	TGAAAAGTATGGATTTGAACAACTCG TGAATA	426	
2078	BSA-B_NC003923- 1917149- 1914156_1260_1286_F	TCATTATCATGCGCCAATGAGTGCAGA	300	
2079	BSA-B_NC003923- 1917149- 1914156_2126_2153_F	TTTCATCTTATCGAGGACCCGAAATC GA	703	
2080	ERMA_NC002952- 55890- 56621_366_392_F	TCGCTATCTTATCGTTGAGAAGGGATT	372	
2081	ERMA_NC002952- 55890- 56621_366_395_F	TAGCTATCTTATCGTTGAGAAGGGAT TTGC	217	
2082	ERMA_NC002952- 55890- 56621_374_402_F	TGATCGTTGAGAAGGGATTTGCGAAA AGA	470	
2083	ERMA_NC002952- 55890- 56621_404_427_F	TGCAAAATCTGCAACGAGCTTTGG	480	
2084	ERMA_NC002952- 55890- 56621_489_516_F	TCATCCTAAGCCAAGTGTAGACTCTG TA	297	
2085	ERMA_NC002952- 55890- 56621_586_614_F	TATAAGTGGGTAAACCGTGAATATCG TGT	231	
2086	ERMC_NC005908-2004- 2738_85_116_F	TCTGAACATGATAATATCTTTGAAAT CGGCTC	399	
2087	ERMC_NC005908-2004- 2738_90_120_F	TCATGATAATATCTTTGAAATCGGCT CAGGA	298	
2088	ERMC_NC005908-2004- 2738_115_139_F	TCAGGAAAAGGGCATTTTACCCTTG	283	
2089	ERMC_NC005908-2004- 2738_374_397_F	TAATCGTGGAATACGGGTTTGCTA	168	
2090	ERMC_NC005908-2004- 2738_101_125_F	TCTTTGAAATCGGCTCAGGAAAAGG	421	
2091	ERMB_Y13600-625- 1362_291_321_F	TGTTGGGAGTATTCCTTACCATTTAA GCACA	644	
	ERMB_Y13600-625- 1362_344_367_F	TGGAAAGCCATGCGTCTGACATCT	536	
2093	ERMB_Y13600-625- 1362_404_429_F	TGGATATTCACCGAACACTAGGGTTG	556	
2094	ERMB_Y13600-625- 1362_465_487_F	TAAGCTGCCAGCGGAATGCTTTC	161	

TABLE 2-continued

		ABLE 2-continued	
	Primer Pairs	5 for Identification of Bacteria	
2095	PVLUK_NC003923- 1529595- 1531285_688_713_F	TGAGCTGCATCAACTGTATTGGATAG	456
2096	PVLUK_NC003923- 1529595- 1531285_1039_1068_F	TGGAACAAAATAGTCTCTCGGATTTT GACT	539
2097	PVLUK_NC003923- 1529595- 1531285_908_936_F	TGAGTAACATCCATATTTCTGCCATA CGT	461
2098	PVLUK_NC003923- 1529595- 1531285_610_633_F	TCGGAATCTGATGTTGCAGTTGTT	373
2099	SA442_NC003923- 2538576- 2538831_11_35_F	TGTCGGTACACGATATTCTTCACGA	635
2100	SA442_NC003923- 2538576- 2538831_98_124_F	TGAAATCTCATTACGTTGCATCGGAAA	427
2101	SA442_NC003923- 2538576- 2538831_103_126_F	TCTCATTACGTTGCATCGGAAACA	395
2102	SA442_NC003923- 2538576- 2538831_166_188_F	TAGTACCGAAGCTGGTCATACGA	226
2103	SEA_NC003923- 2052219- 2051456_115_135_F	TGCAGGGAACAGCTTTAGGCA	495
2104	SEA_NC003923- 2052219- 2051456_572_598_F	TAACTCTGATGTTTTTGATGGGAAGGT	156
2105	SEA_NC003923- 2052219- 2051456_382_414_F	TGTATGGTGGTGTAACGTTACATGAT AATAATC	629
2106	SEA_NC003923- 2052219- 2051456_377_406_F	TTGTATGTATGGTGGTGTAACGTTAC ATGA	695
2107	SEB_NC002758- 2135540- 2135140_208_237_F	TTTCACATGTAATTTTGATATTCGCA CTGA	702
2108	SEB_NC002758- 2135540- 2135140_206_235_F	TATTTCACATGTAATTTTGATATTCG CACT	244
2109	SEB_NC002758- 2135540- 2135140_402_402_F	TAACAACTCGCCTTATGAAACGGGAT ATA	151
2110	SEB_NC002758- 2135540- 2135140_402_402_2_F	TTGTATGTATGGTGGTGTAACTGAGCA	696
2111	SEC_NC003923- 851678- 852768 546 575 F	TTAACATGAAGGAAACCACTTTGATA ATGG	648
2112	 SEC_NC003923- 851678- 852768 537 566 F	TGGAATAACAAAACATGAAGGAAACC ACTT	546

TABLE 2-continued

		TAE	BLE 2-co	ntinued	
	Primer	Pairs f	or Identii	fication of Bacteria	
2113	SEC_NC003923- 851678- 852768_720_749_F			TGAGTTTAACAGTTCACCATATGAAA CAGG	466
2114	SEC_NC003923- 851678- 852768_787_810_F			TGGTATGATATGATGCCTGCACCA	604
2115	SED_M28521_657_682_F			TGGTGGTGAAATAGATAGGACTGCTT	615
2116	SED_M28521_690_711_F			TGGAGGTGTCACTCCACACGAA	554
2117	SED_M28521_833_854_F			TTGCACAAGCAAGGCGCTATTT	683
2118	SED_M28521_962_987_F			TGGATGTTAAGGGTGATTTTCCCGAA	559
2119	SEA-SEE_NC002952- 2131289- 2130703_16_45_F			TTTACACTACTTTTATTCATTGCCCT AACG	699
2120	SEA-SEE_NC002952- 2131289- 2130703_249_278_F			TGATCATCCGTGGTATAACGATTTAT TAGT	469
2121	SEE_NC002952- 2131289- 2130703_409_437_F			TGACATGATAATAACCGATTGACCGA AGA	445
2122	SEE_NC002952- 2131289- 2130703_525_550_F			TGTTCAAGAGCTAGATCTTCAGGCAA	640
2123	SEE_NC002952- 2131289- 2130703_525_549_F			TGTTCAAGAGCTAGATCTTCAGGCA	639
2124	SEE_NC002952- 2131289- 2130703_361_384_F			TCTGGAGGCACACCAAATAAAACA	403
2125	SEG_NC002758- 1955100- 1954171_225_251_F			TGCTCAACCCGATCCTAAATTAGACGA	520
2126	SEG_NC002758- 1955100- 1954171_623_651_F			TGGACAATAGACAATCACTTGGATTT ACA	548
2127	SEG_NC002758- 1955100- 1954171_540_564_F			TGGAGGTTGTTGTATGTATGGTGGT	555
2128	SEG_NC002758- 1955100- 1954171_694_718_F			TACAAAGCAAGACACTGGCTCACTA	173
2129	SEH_NC002953-60024- 60977_449_472_F			TTGCAACTGCTGATTTAGCTCAGA	682
2130	SEH_NC002953-60024- 60977_408_434_F			TAGAAATCAAGGTGATAGTGGCAATGA	201
2131	SEH_NC002953-60024- 60977_547_576_F			TCTGAATGTCTATATGGAGGTACAAC ACTA	400
2132	SEH_NC002953-60024- 60977_546_575_F			TTCTGAATGTCTATATGGAGGTACAA CACT	677
2133	SEI_NC002758- 1957830- 1956949_324_349_F			TCAACTCGAATTTTCAACAGGTACCA	253

TABLE 2-continued

1297391_239_260_F

		E 2-CONTINUED	
0104			
2134	SEI_NC002758- 1957830- 1956949_336_363_F	TTCAACAGGTACCAATGATTTGATCT CA	666
2135	SEI_NC002758- 1957830- 1956949_356_384_F	TGATCTCAGAATCTAATAATTGGGAC GAA	471
2136	SEI_NC002758- 1957830- 1956949_223_253_F	TCTCAAGGTGATATTGGTGTAGGTAA CTTAA	394
2137	SEJ_AF053140_1307_1332_F	TGTGGAGTAACACTGCATGAAAACAA	637
2138	SEJ_AF053140_1378_1403_F	TAGCATCAGAACTGTTGTTCCGCTAG	211
2139	SEJ_AF053140_1431_1459_F	TAACCATTCAAGAACTAGATCTTCAG GCA	153
2140	SEJ_AF053140_1434_1461_F	TCATTCAAGAACTAGATCTTCAGGCA AG	301
2141	TSST_NC002758- 2137564- 2138293_206_236_F	TGGTTTAGATAATTCCTTAGGATCTA TGCGT	619
2142	TSST_NC002758- 2137564- 2138293_232_258_F	TGCGTATAAAAAACACAGATGGCAGCA	514
2143	TSST_NC002758- 2137564- 2138293_382_410_F	TCCAAATAAGTGGCGTTACAAATACT GAA	304
2144	TSST_NC002758- 2137564- 2138293_297_325_F	TCTTTTACAAAAGGGGAAAAAGTTGA CTT	423
2145	ARCC_NC003923- 2725050- 2724595_37_58_F	TCGCCGGCAATGCCATTGGATA	368
2146	ARCC_NC003923- 2725050- 2724595_131_161_F	TGAATAGTGATAGAACTGTAGGCACA ATCGT	437
2147	ARCC_NC003923- 2725050- 2724595_218_249_F	TTGGTCCTTTTTATACGAAAGAAGAA GTTGAA	691
2148	AROE_NC003923- 1674726- 1674277_371_393_F	TTGCGAATAGAACGATGGCTCGT	686
2149	AROE_NC003923- 1674726- 1674277_30_62_F	TGGGGCTTTAAATATTCCAATTGAAG ATTTTCA	590
2150	AROE_NC003923- 1674726- 1674277_204_232_F	TGATGGCAAGTGGATAGGGTATAATA CAG	474
2151	 GLPF_NC003923- 1296927- 1297391_270_301_F	TGCACCGGCTATTAAGAATTACTTTG CCAACT	491
2152	 GLPF_NC003923- 1296927- 1297391 27 51 F	TGGATGGGGATTAGCGGTTACAATG	558
2153	 GLPF_NC003923- 1296927-	TAGCTGGCGCGAAATTAGGTGT	218

TABLE 2-continued

		TABLE 2-cc	ontinued	
		Primer Pairs for Identi	fication of Bacteria	
2154	GMK_NC003923- 1190906- 1191334_91_122_F		TACTTTTTTTAAAACTAGGGATGCGTT TGAAGC	200
2155	GMK_NC003923- 1190906- 1191334_240_267_F		TGAAGTAGAAGGTGCAAAGCAAGTTA GA	435
2156	GMK_NC003923- 1190906- 1191334_301_329_F		TCACCTCCAAGTTTAGATCACTTGAG AGA	268
2157	PTA_NC003923- 628885- 629355_237_263_F		TCTTGTTTATGCTGGTAAAGCAGATGG	418
2158	PTA_NC003923- 628885- 629355_141_171_F		TGAATTAGTTCAATCATTTGTTGAAC GACGT	439
2159	PTA_NC003923- 628885- 629355_328_356_F		TCCAAACCAGGTGTATCAAGAACATC AGG	303
2160	TPI_NC003923- 830671- 831072_131_160_F		TGCAAGTTAAGAAAGCTGTTGCAGGT TTAT	486
2161	TPI_NC003923- 830671- 831072_1_34_F		TCCCACGAAACAGATGAAGAAATTAA CAAAAAAG	318
2162	TPI_NC003923- 830671- 831072_199_227_F		TCAAACTGGGCAATCGGAACTGGTAA ATC	246
2163	YQI_NC003923- 378916- 379431_142_167_F		TGAATTGCTGCTATGAAAGGTGGCTT	440
2164	YQI_NC003923- 378916- 379431_44_77_F		TACAACATATTATTAAAGAGACGGGT TTGAATCC	175
2165	YQI_NC003923- 378916- 379431_135_160_F		TCCAGCACGAATTGCTGCTATGAAAG	314
2166	YQI_NC003923- 378916- 379431 275 300 F		TAGCTGGCGGTATGGAGAATATGTCT	219
2167		. 1914672)_546_575_F	TCCACTTATCGCAAATGGAAAATTAA GCAA	312
168	BLAZ_(1913827	. 1914672)_546_575_2_F	TGCACTTATCGCAAATGGAAAATTAA GCAA	494
2169	BLAZ_(1913827	. 1914672)_507_531_F	TGATACTTCAACGCCTGCTGCTTTC	467
170	BLAZ_(1913827	. 1914672)_508_531_F	TATACTTCAACGCCTGCTGCTTTC	232
171	BLAZ_(1913827	. 1914672)_24_56_F	TGCAATTGCTTTAGTTTTAAGTGCAT GTAATTC	487
172	BLAZ_(1913827	. 1914672)_26_58_F	TCCTTGCTTTAGTTTTAAGTGCATGT AATTCAA	351
2173	BLAZ_NC002952- 1913827- 1914672_546_575_F		TCCACTTATCGCAAATGGAAAATTAA GCAA	312

TABLE 2-continued

		Brimor	Daira	for	Identia	idation of Pactoria	
		Primer	Pairs	IOT	ıaentii	fication of Bacteria	
2174	BLAZ_NC002952- 1913827- 1914672_546_575_2	_F				TGCACTTATCGCAAATGGAAAATTAA GCAA	494
2175	BLAZ_NC002952- 1913827- 1914672_507_531_F					TGATACTTCAACGCCTGCTGCTTTC	467
2176	BLAZ_NC002952- 1913827- 1914672_508_531_F					TATACTTCAACGCCTGCTGCTTTC	232
2177	BLAZ_NC002952- 1913827- 1914672_24_56_F					TGCAATTGCTTTAGTTTTAAGTGCAT GTAATTC	487
2178	BLAZ_NC002952- 1913827- 1914672_26_58_F					TCCTTGCTTTAGTTTTAAGTGCATGT AATTCAA	351
2247	TUFB_NC002758- 615038- 616222_693_721_F					TGTTGAACGTGGTCAAATCAAAGTTG GTG	643
2248	TUFB_NC002758- 615038- 616222_690_716_F					TCGTGTTGAACGTGGTCAAATCAAAGT	386
2249	TUFB_NC002758- 615038- 616222_696_725_F					TGAACGTGGTCAAATCAAAGTTGGTG AAGA	430
2250	TUFB_NC002758- 615038- 616222_488_513_F					TCCCAGGTGACGATGTACCTGTAATC	320
2251	TUFB_NC002758- 615038- 616222_945_972_F					TGAAGGTGGACGTCACACTCCATTCT TC	433
2252	TUFB_NC002758- 615038- 616222_333_356_F					TCCAATGCCACAAACTCGTGAACA	307
2253	NUC_NC002758- 894288- 894974_402_424_F					TCCTGAAGCAAGTGCATTTACGA	342
2254	NUC_NC002758- 894288- 894974_53_81_F					TCCTTATAGGGATGGCTATCAGTAAT GTT	349
2255	NUC_NC002758- 894288- 894974_169_194_F					TCAGCAAATGCATCACAAACAGATAA	273
2256	NUC_NC002758- 894288- 894974_316_345_F					TACAAAGGTCAACCAATGACATTCAG ACTA	174
2270	RPOB_EC_3798_3821	_1_F				TGGCCAGCGCTTCGGTGAAATGGA	566
2271	RPOB_EC_3789_3812	F				TCAGTTCGGCGGTCAGCGCTTCGG	294
2272	RPOB_EC_3789_3812	F				TCAGTTCGGCGGTCAGCGCTTCGG	294
	RPOB_EC_3789_3812					TCAGTTCGGCGGTCAGCGCTTCGG	294
	RPOB EC 3789 3812	-				TCAGTTCGGCGGTCAGCGCTTCGG	294
		_				TTCGGCGGTCAGCGCTTCGG	674
22/5							

TABLE 2-continued

TABLE 2-continued					
	Primer	Pairs for Identification of Bacteria			
2309	MUPR_X75439_1658_1689_F	TCCTTTGATATATTATGCGATGGAAG 35 GTTGGT	2		
2310	MUPR_X75439_1330_1353_F	TTCCTCCTTTTGAAAGCGACGGTT 66	9		
2312	MUPR_X75439_1314_1338_F	TTTCCTCCTTTTGAAAGCGACGGTT 70	4		
2313	MUPR_X75439_2486_2516_F	TAATTGGGCTCTTTCTCGCTTAAACA 17 CCTTA	2		
2314	MUPR_X75439_2547_2572_F	TACGATTTCACTTCCGCAGCCAGATT 18	8		
2315	MUPR_X75439_2666_2696_F	TGCGTACAATACGCTTTATGAAATTT 51 TAACA	3		
2316	MUPR_X75439_2813_2843_F	TAATCAAGCATTGGAAGATGAAATGC 16 ATACC	5		
2317	MUPR_X75439_884_914_F	TGACATGGACTCCCCCTATATAACTC 44 TTGAG	7		
2318	CTXA_NC002505- 1568114- 1567341_114_142_F	TGGTCTTATGCCAAGAGGACAGAGTG 60 AGT	8		
2319	CTXA_NC002505- 1568114- 1567341_117_145_F	TCTTATGCCAAGAGGACAGAGTGAGT 41 ACT	1		
2320	CTXA_NC002505- 1568114- 1567341_114_142_F	TGGTCTTATGCCAAGAGGACAGAGTG 60 AGT	8		
2321	CTXA_NC002505- 1568114- 1567341_117_145_F	TCTTATGCCAAGAGGACAGAGTGAGT 41 ACT	1		
2322	CTXA_NC002505- 1568114- 1567341_129_156_F	AGGACAGAGTGAGTACTTTGACCGAG 2 GT	7		
2323	CTXA_NC002505- 1568114- 1567341_122_149_F	TGCCAAGAGGACAGAGTGAGTACTTT 50 GA	0		
2324	INV_U22457-74- 3772_831_858_F	TGCTTATTTACCTGCACTCCCACAAC 53 TG	0		
2325	INV_U22457-74- 3772_827_857_F	TGAATGCTTATTTACCTGCACTCCCA 43 CAACT	8		
2326	INV_U22457-74- 3772_1555_1581_F	TGCTGGTAACAGAGCCTTATAGGCGCA 52	6		
2327	INV_U22457-74- 3772_1558_1585_F	TGGTAACAGAGCCTTATAGGCGCATA 59 TG	8		
2328	ASD_NC006570- 439714- 438608_3_37_F	TGAGGGTTTTATGCTTAAAGTTGGTT 45 TTATTGGTT	9		
2329	ASD_NC006570- 439714- 438608_18_45_F	TAAAGTTGGTTTATTGGTTGGCGCG 14 GA	9		
2330	ASD_NC006570- 439714- 438608_17_45_F	TTAAAGTTGGTTTATTGGTTGGCGC 64 GGA	7		
2331	ASD_NC006570- 439714- 438608_9_40_F	TTTTATGCTTAAAGTTGGTTTTATTG 70 GTTGGC	9		

TABLE 2-continued

	TABLE 2-continued				
	Primer Pairs for Identi	fication of Bacteria			
2332	GALE_AF513299_171_200_F	TCAGCTAGACCTTTTAGGTAAAGCTA AGCT	280		
2333	GALE_AF513299_168_199_F	TTATCAGCTAGACCTTTTAGGTAAAG CTAAGC	658		
2334	GALE_AF513299_168_199_F	TTATCAGCTAGACCTTTTAGGTAAAG CTAAGC	658		
2335	GALE_AF513299_169_198_F	TCCCAGCTAGACCTTTTAGGTAAAGC TAAG	319		
2336	PLA_AF053945_7371_7403_F	TTGAGAAGACATCCGGCTCACGTTAT TATGGTA	680		
2337	PLA_AF053945_7377_7403_F	TGACATCCGGCTCACGTTATTATGGTA	443		
2338	PLA_AF053945_7377_7404_F	TGACATCCGGCTCACGTTATTATGGT AC	444		
2339	CAF_AF053947_33412_33441_F	TCCGTTATCGCCATTGCATTATTTGG AACT	329		
2340	CAF_AF053947_33426_33458_F	TGCATTATTTGGAACTATTGCAACTG CTAATGC	499		
2341	CAF_AF053947_33407_33429_F	TCAGTTCCGTTATCGCCATTGCA	291		
2342	CAF_AF053947_33407_33431_F	TCAGTTCCGTTATCGCCATTGCATT	293		
2344	GAPA_NC_002505_1_28_F_1	TCAATGAACGATCAACAAGTGATTGA TG	260		
2472	OMPA_NC000117_68_89_F	TGCCTGTAGGGAATCCTGCTGA	507		
2473	OMPA_NC000117_798_821_F	TGATTACCATGAGTGGCAAGCAAG	475		
2474	OMPA_NC000117_645_671_F	TGCTCAATCTAAACCTAAAGTCGAAGA	521		
2475	OMPA_NC000117_947_973_F	TAACTGCATGGAACCCTTCTTTACTAG	157		
2476	OMPA_NC000117_774_795_F	TACTGGAACAAAGTCTGCGACC	196		
2477	OMPA_NC000117_457_483_F	TTCTATCTCGTTGGTTTATTCGGAGTT	676		
2478	OMPA_NC000117_687_710_F	TAGCCCAGCACAATTTGTGATTCA	212		
2479	OMPA_NC000117_540_566_F	TGGCGTAGTAGAGCTATTTACAGACAC	571		
2480	OMPA_NC000117_338_360_F	TGCACGATGCGGAATGGTTCACA	492		
2481	OMP2_NC000117_18_40_F	TATGACCAAACTCATCAGACGAG	234		
2482	OMP2_NC000117_354_382_F	TGCTACGGTAGGATCTCCTTATCCTA TTG	516		
2483	OMP2_NC000117_1297_1319_F	TGGAAAGGTGTTGCAGCTACTCA	537		
2484	OMP2_NC000117_1465_1493_F	TCTGGTCCAACAAAAGGAACGATTAC AGG	407		
2485	OMP2_NC000117_44_66_F	TGACGATCTTCGCGGTGACTAGT	450		
2486	OMP2_NC000117_166_190_F	TGACAGCGAAGAAGGTTAGACTTGTCC	441		
2487	GYRA_NC000117_514_536_F	TCAGGCATTGCGGTTGGGATGGC	287		
2488	GYRA_NC000117_801_827_F	TGTGAATAAATCACGATTGATTGAGCA	636		
2489	GYRA_NC002952_219_242_F	TGTCATGGGTAAATATCACCCTCA	632		
2490	GYRA_NC002952_964_983_F	TACAAGCACTCCCAGCTGCA	176		
2491	GYRA_NC002952_1505_1520_F	TCGCCCGCGAGGACGT	366		

TABLE 2-continued

	TABLE 2-continued				
	Primer Pairs for Identi	fication of Bacteria			
2492 GYR#	A_NC002952_59_81_F	TCAGCTACATCGACTATGCGATG	279		
2493 GYR#	A_NC002952_216_239_F	TGACGTCATCGGTAAGTACCACCC	452		
2494 GYR#	A_NC002952_219_242_2_F	TGTACTCGGTAAGTATCACCCGCA	625		
2495 GYR#	A_NC002952_115_141_F	TGAGATGGATTTAAACCTGTTCACCGC	453		
2496 GYR#	A_NC002952_517_539_F	TCAGGCATTGCGGTTGGGATGGC	287		
2497 GYRA	A_NC002952_273_293_F	TCGTATGGCTCAATGGTGGAG	380		
2498 GYRA	_NC000912_257_278_F	TGAGTAAGTTCCACCCGCACGG	462		
2725	NC003923- 050- 1595_135_161P_F	TAGT _P GAT _P AGAACpTpGTAGGC _P AC pAATpCpGT	229		
6288	NC003923- 385- 355_237_263P_F	TCTTGTpTpTpATGCpTpGGTAAAGC AGATGG	417		
2517 CJMI	.ST_ST1_1852_1883_F	TTTGCGGATGAAGTAGGTGCCTATCT TTTTGC	708		
2518 CJMI	.ST_ST1_2963_2992_F	TGAAATTGCTACAGGCCCTTTAGGAC AAGG	428		
2519 CJMI	JST_ST1_2350_2378_F	TGCTTTTGATGGTGATGCAGATCGTT TGG	535		
2520 CJMI	JST_ST1_654_684_F	TATGTCCAAGAAGCATAGCAAAAAAA GCAAT	240		
2521 CJMI	JST_ST1_360_395_F	TCCTGTTATTCCTGAAGTAGTTAATC AAGTTTGTTA	347		
2522 CJMI	JST_ST1_1231_1258_F	TGGCAGTTTTACAAGGTGCTGTTTCA TC	564		
2523 CJMI	.ST_ST1_3543_3574_F	TGCTGTAGCTTATCGCGAAATGTCTT TGATTT	529		
2524 CJMI	LST_ST1_1_17_F	TAAAACTTTTGCCGTAATGATGGGTG AAGATAT	145		
2525 CJMI	LST_ST1_1312_1342_F	TGGAAATGGCAGCTAGAATAGTAGCT AAAAT	538		
2526 CJMI	LST_ST1_2254_2286_F	TGGGCCTAATGGGCTTAATATCAATG AAAATTG	582		
2527 CJMI	LST_ST1_1380_1411_F	TGCTTTCCTATGGCTTATCCAAATTT AGATCG	534		
2528 CJMI	LST_ST1_3413_3437_F	TTGTAAATGCCGGTGCTTCAGATCC	692		
2529 CJMI	LST_ST1_1130_1156_F	TACGCGTCTTGAAGCGTTTCGTTATGA	189		
2530 CJMI	LST_ST1_2840_2872_F	TGGGGCTTTGCTTTATAGTTTTTTAC ATTTAAG	591		
2531 CJMI	LST_ST1_2058_2084_F	TATTCAAGGTGGTCCTTTGATGCATGT	241		
2532 CJMI	LST_ST1_553_585_F	TCCTGATGCTCAAAGTGCTTTTTTAG ATCCTTT	344		
1604	4_NC002163- 1930- 1529_306_338_F	TCATGTTGAGCTTAAACCTATAGAAG TAAAAGC	299		

		Primer Pairs for	r Identification of Bacteria	
565	UNCA_NC002163- 112166- 112647_80_113_F		TCCCCCACGCTTTAATTGTTTATGAT GATTTGAG	322
566	UNCA_NC002163- 112166- 112647_233_259_F		TAATGATGAATTAGGTGCGGGTTCTTT	170
567	PGM_NC002163- 327773- 328270_273_305_F		TCTTGATACTTGTAATGTGGGCGATA AATATGT	414
568	TKT_NC002163- 1569415- 1569873_255_284_F		TTATGAAGCGTGTTCTTTAGCAGGAC TTCA	661
570	GLTA_NC002163- 1604930- 1604529_39_68_F		TCGTCTTTTTGATTCTTTCCCTGATA ATGC	381
571	TKT_NC002163- 1569415- 1569903_33_62_F		TGATCTTAAAAATTTCCGCCAACTTC ATTC	472
572	TKT_NC002163- 1569415- 1569903_207_239_F		TAAGGTTTATTGTCTTTGTGGAGATG GGGATTT	164
573	TKT_NC002163- 1569415- 1569903_350_383_F		TAGCCTTTAACGAAAATGTAAAAATG CGTTTTGA	213
574	TKT_NC002163- 1569415- 1569903_60_92_F		TTCAAAAACTCCAGGCCATCCTGAAA TTTCAAC	665
575	GLTA_NC002163- 1604930- 1604529_39_70_F		TCGTCTTTTTGATTCTTTCCCTGATA ATGCTC	382
576	GLYA_NC002163- 367572- 368079_386_414_F		TCAGCTATTTTTCCAGGTATCCAAGG TGG	281
577	GLYA_NC002163- 367572- 368079_148_174_F		TGGTGCGAGTGCTTATGCTCGTATTAT	611
578	GLYA_NC002163- 367572- 368079_298_327_F		TGTAAGCTCTACAACCCACAAAACCT TACG	622
579	GLYA_NC002163- 367572- 368079_1_27_F		TGGTGGACATTTAACACATGGTGCAAA	614
580	PGM_NC002163- 327746- 328270_254_285_F		TGAGCAATGGGGCTTTGAAAGAATTT TTAAAT	455
581	PGM_NC002163- 327746- 328270_153_182_F		TGAAAAGGGTGAAGTAGCAAATGGAG ATAG	425
582	PGM_NC002163- 327746- 328270_19_50_F		TGGCCTAATGGGCTTAATATCAATGA AAATTG	568
583	UNCA_NC002163- 112166- 112647 114 141 F		TAAGCATGCTGTGGCTTATCGTGAAA TG	160

TABLE 2-continued

	Primer D	Pairs for Identification of Bacteria	
0.5.0.1			
2584	UNCA_NC002163- 112166- 112647_3_29_F	TGCTTCGGATCCAGCAGCACTTCAATA	532
2585	ASPA_NC002163- 96692- 97166_308_335_F	TTAATTTGCCAAAAATGCAACCAGGT AG	652
2586	ASPA_NC002163- 96692- 97166_228_258_F	TCGCGTTGCAACAAAACTTTCTAAAG TATGT	370
2587	GLNA_NC002163- 658085- 657609_244_275_F	TGGAATGATGATAAAGATTTCGCAGA TAGCTA	547
2588	TKT_NC002163- 1569415- 1569903_107_130_F	TCGCTACAGGCCCTTTAGGACAAG	371
2589	TKT_NC002163- 1569415- 1569903_265_296_F	TGTTCTTTAGCAGGACTTCACAAACT TGATAA	642
2590	GLYA_NC002163- 367572- 368095_214_246_F	TGCCTATCTTTTTGCTGATATAGCAC ATATTGC	505
2591	GLYA_NC002163- 367572- 368095_415_444_F	TCCTTTGATGCATGTAATTGCTGCAA AAGC	353
2592	PGM_NC002163_21_54_F	TCCTAATGGACTTAATATCAATGAAA ATTGTGGA	332
2593	PGM_NC002163_149_176_F	TAGATGAAAAAGGCGAAGTGGCTAAT GG	207
2594	GLNA_NC002163- 658085- 657609_79_106_F	TGTCCAAGAAGCATAGCAAAAAAAAGC AA	633
2595	ASPA_NC002163- 96685- 97196_367_402_F	TCCTGTTATTCCTGAAGTAGTTAATC AAGTTTGTTA	347
2596	ASPA_NC002163- 96685-97196_1_33_F	TGCCGTAATGATAGGTGAAGATATAC AAAGAGT	502
2597	ASPA_NC002163- 96685- 97196_85_117_F	TGGAACAGGAATTAATTCTCATCCTG ATTATCC	540
2598	PGM_NC002163- 327746- 328270_165_195_F	TGGCAGCTAGAATAGTAGCTAAAATC CCTAC	563
2599	PGM_NC002163- 327746- 328270_252_286_F	TGGGTCGTGGTTTTACAGAAAATTTC TTATATATG	593
2600	PGM_NC002163- 327746- 328270_1_30_F	TGGGATGAAAAAGCGTTCTTTTATCC ATGA	577
2601	PGM_NC002163- 327746- 328270_220_250_F	TAAACACGGCTTTCCTATGGCTTATC CAAAT	146
2602	UNCA_NC002163- 112166-	TGTAGCTTATCGCGAAATGTCTTTGA TTTT	628

TABLE 2-continued

	TABLE 2-continued				
	Primer Pairs for Identi	fication of Bacteria			
2603	UNCA_NC002163- 112166- 112647_333_365_F	TCCAGATGGACAAATTTTCTTAGAAA CTGATTT	313		
2734	GYRA_AY291534_237_264_F	TCACCCTCATGGTGATTCAGCTGTTT AT	265		
2735	GYRA_AY291534_224_252_F	TAATCGGTAAGTATCACCCTCATGGT GAT	167		
2736	GYRA_AY291534_170_198_F	TAGGAATTACGGCTGATAAAGCGTAT AAA	221		
2737	GYRA_AY291534_224_252_F	TAATCGGTAAGTATCACCCTCATGGT GAT	167		
2738	GYRA_NC002953-7005- 9668_166_195_F	TAAGGTATGACACCGGATAAATCATA TAAA	163		
2739	GYRA_NC002953-7005- 9668_221_249_F	TAATGGGTAAATATCACCCTCATGGT GAC	171		
2740	GYRA_NC002953-7005- 9668_221_249_F	TAATGGGTAAATATCACCCTCATGGT GAC	171		
2741	GYRA_NC002953-7005- 9668_234_261_F	TCACCCTCATGGTGACTCATCTATTT AT	264		
2842	CAPC_AF188935- 56074- 55628_271_304_F	TGGGATTATTGTTATCCTGTTATGCC ATTTGAGA	578		
2843	CAPC_AF188935- 56074- 55628_273_303P_F	ТGATTATTGTTATCCTGTTATGCpCp АТрТрТрGAG	476		
2844	CAPC_AF188935- 56074- 55628_268_303_F	TCCGTTGATTATTGTTATCCTGTTAT GCCATTTGAG	331		
2845	CAPC_AF188935- 56074- 55628_268_303_F	TCCGTTGATTATTGTTATCCTGTTAT GCCATTTGAG	331		
2846	PARC_X95819_33_58_F	TCCAAAAAAATCAGCGCGTACAGTGG	302		
2847	PARC_X95819_65_92_F	TACTTGGTAAATACCACCCACATGGT GA	199		
2848	PARC_X95819_69_93_F	TGGTAAATACCACCCACATGGTGAC	596		
2849	PARC_NC003997- 3362578- 3365001_181_205_F	TTCCGTAAGTCGGCTAAAACAGTCG	668		
2850	PARC_NC003997- 3362578- 3365001_217_240_F	TGTAACTATCACCCGCACGGTGAT	621		
2851	PARC_NC003997- 3362578- 3365001_217_240_F	TGTAACTATCACCCGCACGGTGAT	621		
2852	GYRA_AY642140 1_24_F	TAAATCTGCCCGTGTCGTTGGTGAC	150		
2853	GYRA_AY642140_26_54_F	TAATCGGTAAATATCACCCGCATGGT GAC	166		
2854	GYRA_AY642140_26_54_F	TAATCGGTAAATATCACCCGCATGGT GAC	166		
2860	CYA_AF065404_1348_1379_F	TCCAACGAAGTACAATACAAGACAAA AGAAGG	305		

TABLE 2-continued

	TABLE 2-co	ontinued	
	Primer Pairs for Identi	fication of Bacteria	
2861	LEF_BA_AF065404_751_781_F	TCGAAAGCTTTTGCATATTATATCGA GCCAC	354
2862	LEF_BA_AF065404_762_788_F	TGCATATTATATCGAGCCACAGCATCG	498
2917	MUTS_AY698802_106_125_F	TCCGCTGAATCTGTCGCCGC	326
2918	MUTS_AY698802_172_192_F	TACCTATATGCGCCAGACCGC	187
2919	MUTS_AY698802_228_252_F	TACCGGCGCAAAAAGTCGAGATTGG	186
2920	MUTS_AY698802_315_342_F	TCTTTATGGTGGAGATGACTGAAACC GA	419
2921	MUTS_AY698802_394_411_F	TGGGCGTGGAACGTCCAC	585
2922	AB_MLST-11- OIF007_991_1018_F	TGGGcGATGCTGCgAAATGGTTAAAA GA	583
2927	GAPA_NC002505_694_721_F	TCAATGAACGACCAACAAGTGATTGA TG	259
2928	GAPA_NC002505_694_721_2_F	TCGATGAACGACCAACAAGTGATTGA TG	361
2929	GAPA_NC002505_694_721_2_F	TCGATGAACGACCAACAAGTGATTGA TG	361
2932	INFB_EC_1364_1394_F	TTGCTCGTGGTGCACAAGTAACGGAT ATTAC	688
2933	INFB_EC_1364_1394_2_F	TTGCTCGTGGTGCAIAAGTAACGGAT ATIAC	689
2934	INFB_EC_80_110_F	TTGCCCGCGGTGCGGAAGTAACCGAT ATTAC	685
2949	ACS_NC002516- 970624- 971013 299 316 F	TCGGCGCCTGCTGATGA	376
			0.67
2950	ARO_NC002516-26883- 27380_4_26_F	TCACCGTGCCGTTCAAGGAAGAG	267
2951	ARO_NC002516-26883- 27380_356_377_F	TTTCGAAGGGCCTTTCGACCTG	705
2952	GUA_NC002516- 4226546- 4226174_23_41_F	TGGACTCCTCGGTGGTCGC	551
2953	GUA_NC002516- 4226546- 4226174_120_142_F	TGACCAGGTGATGGCCATGTTCG	448
2954	GUA_NC002516- 4226546- 4226174_155_178_F	TTTTGAAGGTGATCCGTGCCAACG	710
2955	GUA_NC002516- 4226546- 4226174_190_206_F	TTCCTCGGCCGCCTGGC	670
2956	GUA_NC002516- 4226546- 4226174_242_263_F	TCGGCCGCACCTTCATCGAAGT	374
2957	MUT_NC002516- 5551158- 5550717_5_26_F	TGGAAGTCATCAAGCGCCTGGC	545

TABLE 2-continued

	Primer Pai	rs for Identification of Bacteria	
0000	MUT NC002516-	TCGAGCAGCGCGCCG	358
2958	5551158- 5550717_152_168_F	ICAGLAGGUGUIGUUG	358
2959	NUO_NC002516- 2984589- 2984954_8_26_F	TCAACCTCGGCCCGAACCA	249
2960	NUO_NC002516- 2984589- 2984954_218_239_F	TACTCTCGGTGGAGAAGCTCGC	195
2961	PPS_NC002516- 1915014- 1915383_44_63_F	TCCACGGTCATGGAGCGCTA	311
2962	PPS_NC002516- 1915014- 1915383_240_258_F	TCGCCATCGTCACCAACCG	365
2963	TRP_NC002516- 671831- 672273_24_42_F	TGCTGGTACGGGTCGAGGA	527
2964	TRP_NC002516- 671831- 672273_261_282_F	TGCACATCGTGTCCAACGTCAC	490
2972	AB_MLST-11- OIF007_1007_1034_F	TGGGIGATGCTGCIAAATGGTTAAAA GA	592
2993	OMPU_NC002505- 674828- 675880_428_455_F	TTCCCACCGATATCATGGCTTACCAC GG	667
2994	GAPA_NC002505- 506780- 507937_691_721_F	TCCTCAATGAACGAICAACAAGTGAT TGATG	335
2995	GAPA_NC002505- 506780- 507937_691_721_2_F	TCCTCIATGAACGAICAACAAGTGAT TGATG	339
2996	GAPA_NC002505- 506780- 507937_692_721_F	TCTCGATGAACGACCAACAAGTGATT GATG	396
2997	GAPA_NC002505- 506780- 507937_691_721_3_F	TCCTCGATGAACGAICAACAAGTIAT TGATG	337
2998	GAPA_NC002505- 506780- 507937_691_721_4_F	TCCTCAATGAATGATCAACAAGTGAT TGATG	336
2999	GAPA_NC002505- 506780- 507937_691_721_5_F	TCCTCIATGAAIGAICAACAAGTIAT TGATG	340
3000	GAPA_NC002505- 506780- 507937_691_721_6_F	TCCTCGATGAATGAICAACAAGTIAT TGATG	338
3001	CTXB_NC002505- 1566967- 1567341_46_71_F	TCAGCATATGCACATGGAACACCTCA	275
3002	CTXB_NC002505- 1566967- 1567341_46_70_F	TCAGCATATGCACATGGAACACCTC	274
3003	CTXB_NC002505- 1566967- 1567341 46 70 F	TCAGCATATGCACATGGAACACCTC	274

TABLE 2-continued

		TABLE 2-continued	
	Primer	Pairs for Identification of Bacteria	
3004	TUFB_NC002758- 615038- 616222_684_704_F	TACAGGCCGTGTTGAACGTGG	180
3005	TUFB_NC002758- 615038- 616222_688_710_F	TGCCGTGTTGAACGTGGTCAAAT	503
3006	TUFB_NC002758- 615038- 616222_700_726_F	TGTGGTCAAATCAAAGTTGGTGAAGAA	638
3007	TUFB_NC002758- 615038- 616222_702_726_F	TGGTCAAATCAAAGTTGGTGAAGAA	607
3008	TUFB_NC002758- 615038- 616222_696_726_F	TGAACGTGGTCAAATCAAAGTTGGTG AAGAA	431
3009	TUFB_NC002758- 615038- 616222_690_716_F	TCGTGTTGAACGTGGTCAAATCAAAGT	386
3010	MECI-R_NC003923- 41798-41609_36_59_F	TCACATATCGTGAGCAATGAACTG	261
3011	MECI-R_NC003923- 41798-41609_40_66_F	TGGGCGTGAGCAATGAACTGATTATAC	584
3012	MECI-R_NC003923- 41798- 41609_33_60_2_F	TGGACACATATCGTGAGCAATGAACT GA	549
3013	MECI-R_NC003923- 41798-41609_29_60_F	TGGGTTTACACATATCGTGAGCAATG AACTGA	595
3014	MUPR_X75439_2490_2514_F	TGGGCTCTTTCTCGCTTAAACACCT	587
3015	MUPR_X75439_2490_2513_F	TGGGCTCTTTCTCGCTTAAACACC	586
3016	MUPR_X75439_2482_2510_F	TAGATAATTGGGCTCTTTCTCGCTTA AAC	205
3017	MUPR_X75439_2490_2514_F	TGGGCTCTTTCTCGCTTAAACACCT	587
3018	MUPR_X75439_2482_2510_F	TAGATAATTGGGCTCTTTCTCGCTTA AAC	205
3019	MUPR_X75439_2490_2514_F	TGGGCTCTTTCTCGCTTAAACACCT	587
3020	AROE_NC003923- 1674726- 1674277_204_232_F	TGATGGCAAGTGGATAGGGTATAATA CAG	474
3021	AROE_NC003923- 1674726- 1674277_207_232_F	TGGCGAGTGGATAGGGTATAATACAG	570
3022	AROE_NC003923- 1674726- 1674277_207_232P_F	TGGCPAAGTPGGATPAGGGTPATPAA TPACPAG	572
3023	ARCC_NC003923- 2725050- 2724595_124_155_F	TCTGAAATGAATAGTGATAGAACTGT AGGCAC	398
3024	ARCC_NC003923- 2725050- 2724595_131_161_F	TGAATAGTGATAGAACTGTAGGCACA ATCGT	437

TABLE 2-continued

	TABI	E 2-continued	
	Primer Pairs fo	r Identification of Bacteria	
3025	ARCC_NC003923- 2725050- 2724595_131_161_F	TGAATAGTGATAGAACTGTAGGCACA ATCGT	437
3026	PTA_NC003923- 628885- 629355_231_259_F	TACAATGCTTGTTTATGCTGGTAAAG CAG	177
3027	PTA_NC003923- 628885- 629355_231_259_F	TACAATGCTTGTTTATGCTGGTAAAG CAG	177
3028	PTA_NC003923- 628885- 629355_237_263_F	TCTTGTTTATGCTGGTAAAGCAGATGG	418
Primer	<u>.</u>		
Pair Number	rReverse Primer Name	Reverse Sequence	Reverse SEQ ID NO:
1	16S_EC_1175_1195_R	GACGTCATCCCCACCTTCCTC	809
2	16S_EC_1175_1197_R	TTGACGTCATCCCCACCTTCCTC	1398
3	16S_EC_1175_1196_R	TGACGTCATCCCCACCTTCCTC	1159
4	16S_EC_1303_1323_R	CGAGTTGCAGACTGCGATCCG	787
5	16S_EC_1389_1407_R	GACGGGCGGTGTGTACAAG	806
6	16S_EC_105_126_R	TACGCATTACTCACCCGTCCGC	897
7	16S_EC_101_120_R	TTACTCACCCGTCCGCCGCT	1365
8	16S_EC_104_120_R	TTACTCACCCGTCCGCC	1364
9	16S_EC_774_795_R	GTATCTAATCCTGTTTGCTCCC	839
10	16S_EC_789_809_R	CGTGGACTACCAGGGTATCTA	798
11	16S_EC_880_897_R	GGCCGTACTCCCCAGGCG	830
12	16S_EC_880_897_2_R	GGCCGTACTCCCCAGGCG	830
13	16S_EC_880_894_R	CGTACTCCCCAGGCG	796
14	16S_EC_1054_1073_R	ACGAGCTGACGACAGCCATG	735
15	16S_EC_1061_1078_R	ACGACACGAGCTGACGAC	734
16	23S_EC_1906_1924_R	GACCGTTATAGTTACGGCC	805
17	23S_EC_2744_2761_R	TGCTTAGATGCTTTCAGC	1252
18	23S_EC_2751_2767_R	GTTTCATGCTTAGATGCTTTCAGC	846
19	23S_EC_551_571_R	ACAAAAGGTACGCCGTCACCC	717
20	23S_EC_551_571_2_R	ACAAAAGGCACGCCATCACCC	716
21	23S_EC_1059_1077_R	TGGCTGCTTCTAAGCCAAC	1282
22	CAPC_BA_180_205_R	TGAATCTTGAAACACCATACGTAACG	1150
23	CAPC_BA_185_205_R	TGAATCTTGAAACACCATACG	1149
24	CAPC_BA_349_376_R	GTAACCCTTGTCTTTGAATTGTATTTGC	837
25	CAPC_BA_358_377_R	GGTAACCCTTGTCTTTGAAT	834
26	CAPC_BA_361_378_R	TGGTAACCCTTGTCTTTG	1298
27	CAPC_BA_361_378_R	TGGTAACCCTTGTCTTTG	1298

TABLE	2-continued

_

TABLE 2-continued				
	Primer Pairs for Ident	ification of Bacteria		
28	CYA_BA_1112_1130_R	TGTTGACCATGCTTCTTAG	1352	
29	CYA_BA_1447_1426_R	CTTCTACATTTTTAGCCATCAC	800	
30	CYA_BA_1448_1467_R	TGTTAACGGCTTCAAGACCC	1342	
31	CYA_BA_1447_1461_R	CGGCTTCAAGACCCC	794	
32	CYA_BA_999_1026_R	ACCACTTTTAATAAGGTTTGTAGCTAAC	728	
33	CYA_BA_1003_1025_R	CCACTTTTAATAAGGTTTGTAGC	768	
34	INFB_EC_1439_1467_R	TGCTGCTTTCGCATGGTTAATTGCTTCAA	1248	
35	LEF_BA_1119_1135_R	GAATATCAATTTGTAGC	803	
36	LEF_BA_1119_1149_R	AGATAAAGAATCACGAATATCAATTTGT AGC	745	
37	LEF_BA_843_872_R	TCTTCCAAGGATAGATTTATTTCTTGTT CG	1135	
38	LEF_BA_843_865_R	AGGATAGATTTATTTCTTGTTCG	748	
39	LEF_BA_883_900_R	TCTTGACAGCATCCGTTG	1140	
40	LEF_BA_939_958_R	CAGATAAAGAATCGCTCCAG	762	
41	PAG_BA_190_209_R	CCTGTAGTAGAAGAGGTAAC	781	
42	PAG_BA_187_210_R	CCCTGTAGTAGAAGAGGTAACCAC	774	
43	PAG_BA_326_344_R	TGATTATCAGCGGAAGTAG	1186	
44	PAG_BA_755_772_R	CCGTGCTCCATTTTTCAG	778	
45	PAG_BA_849_868_R	TCGGATAAGCTGCCACAAGG	1089	
46	PAG_BA_849_868_R	TCGGATAAGCTGCCACAAGG	1089	
47	RPOC_EC_1095_1124_R	TCAAGCGCCATTTCTTTTGGTAAACCAC AT	959	
48	RPOC_EC_1095_1124_2_R	TCAAGCGCCATCTCTTTCGGTAATCCAC AT	958	
49	RPOC_EC_213_232_R	GGCGCTTGTACTTACCGCAC	831	
50	RPOC_EC_2225_2246_R	TTGGCCATCAGGCCACGCATAC	1414	
51	RPOC_EC_2225_2246_2_R	TTGGCCATCAGACCACGCATAC	1413	
52	RPOC_EC_2313_2337_R	CGCACCGTGGGTTGAGATGAAGTAC	790	
53	RPOC_EC_2313_2337_2_R	CGCACCATGCGTAGAGATGAAGTAC	789	
54	RPOC_EC_865_889_R	GTTTTTCGTTGCGTACGATGATGTC	847	
55	RPOC_EC_865_891_R	ACGTTTTTCGTTTTGAACGATAATGCT	741	
56	RPOC_EC_1036_1059_R	CGAACGGCCTGAGTAGTCAACACG	785	
57	RPOC_EC_1036_1059_2_R	CGAACGGCCAGAGTAGTCAACACG	784	
58	SSPE_BA_197_222_R	TGCACGTCTGTTTCAGTTGCAAATTC	1201	
59	TUFB_EC_283_303_R	GCCGTCCATCTGAGCAGCACC	815	
60	TUFB_EC_283_303_2_R	GCCGTCCATTTGAGCAGCACC	816	
61	TUFB_EC_1045_1068_R	GTTGTCGCCAGGCATAACCATTTC	845	
62	TUFB_EC_1045_1068_2_R	GTTGTCACCAGGCATTACCATTTC	844	

TABLE 2-continued

	Primer Pairs for	Identification of Bacteria	
63	TUFB_EC_1033_1062_R	TCCAGGCATTACCATTTCTACTCCTTCT GG	1006
66	RPLB_EC_739_762_R	TCCAAGTGCTGGTTTACCCCATGG	999
67	RPLB_EC_736_757_R	GTGCTGGTTTACCCCATGGAGT	842
68	RPOC_EC_1097_1126_R	ATTCAAGAGCCATTTCTTTTGGTAAACC AC	754
69	RPOB_EC_3836_3865_R	TTTCTTGAAGAGTATGAGCTGCTCCGTA AG	1435
70	RPLB_EC_743_771_R	TGTTTTGTATCCAAGTGCTGGTTTACCCC	1356
71	VALS_EC_1195_1218_R	CGGTACGAACTGGATGTCGCCGTT	795
72	RPOB_EC_1909_1929_R	GCTGGATTCGCCTTTGCTACG	825
73	RPLB_EC_735_761_R	CCAAGTGCTGGTTTACCCCATGGAGTA	767
74	RPLB_EC_737_762_R	TCCAAGTGCTGGTTTACCCCATGGAG	1000
75	SP101_SPET11_92_116_R	CCTACCCAACGTTCACCAAGGGCAG	779
76	SP101_SPET11_213_238_R	TGTGGCCGATTTCACCACCTGCTCCT	1340
77	SP101_SPET11_308_333_R	TGCCACTTTGACAACTCCTGTTGCTG	1209
78	SP101_SPET11_355_380_R	GCTGCTTTGATGGCTGAATCCCCTTC	824
79	SP101_SPET11_423_441_R	ATCCCCTGCTTCTGCTGCC	753
80	SP101_SPET11_448_473_R	CCAACCTTTTCCACAACAGAATCAGC	766
81	SP101_SPET11_686_714_R	CCCATTTTTTCACGCATGCTGAAAATATC	772
82	SP101_SPET11_756_784_R	GATTGGCGATAAAGTGATATTTTCTAAAA	813
83	SP101_SPET11_871_896_R	GCCCACCAGAAAGACTAGCAGGATAA	814
84	SP101_SPET11_988_1012_R	CATGACAGCCAAGACCTCACCCACC	763
85	SP101_SPET11_1251_1277_R	GACCCCAACCTGGCCTTTTGTCGTTGA	804
86	SP101_SPET11_1403_1431_R	AAACTATTTTTTTAGCTATACTCGAACAC	711
87	SP101_SPET11_1486_1515_R	GGATAATTGGTCGTAACAAGGGATAGTG AG	828
88	SP101_SPET11_1783_1808_R	ATATGATTATCATTGAACTGCGGCCG	752
89	SP101_SPET11_1808_1835_R	GCGTGACGACCTTCTTGAATTGTAATCA	821
90	SP101_SPET11_1901_1927_R	TTGGACCTGTAATCAGCTGAATACTGG	1412
91	SP101_SPET11_2062_2083_R	ATTGCCCAGAAATCAAATCATC	755
92	SP101_SPET11_2375_2397_R	TCTGGGTGACCTGGTGTTTTAGA	1131
93	SP101_SPET11_2470_2497_R	AGCTGCTAGATGAGCTTCTGCCATGGCC	747
94	SP101_SPET11_2543_2570_R	CCATAAGGTCACCGTCACCATTCAAAGC	770
95	SP101_SPET11_3023_3045_R	GGAATTTACCAGCGATAGACACC	827
96	SP101_SPET11_3168_3196_R	AATCGACGACCATCTTGGAAAGATTTCTC	715
97	SP101_SPET11_3480_3506_R	CCAGCAGTTACTGTCCCCTCATCTTTG	769
98	SP101_SPET11_3605_3629_R	GGGTCTACACCTGCACTTGCATAAC	832
111	RPOB_EC_3829_3858_R	CGTATAAGCTGCACCATAAGCTTGTAAT GC	797

TABLE 2-continued

TABLE 2-continued			
	Primer Pairs for Ident:	ification of Bacteria	
112	VALS_EC_1920_1943_R	GCGTTCCACAGCTTGTTGCAGAAG	822
113	RPOB_EC_1438_1455_R	TTCGCTCTCGGCCTGGCC	1386
114	TUFB_EC_284_309_R	TATAGCACCATCCATCTGAGCGGCAC	930
115	DNAK_EC_503_522_R	CGCGGTCGGCTCGTTGATGA	792
116	VALS_EC_1948_1970_R	TCGCAGTTCATCAGCACGAAGCG	1075
117	TUFB_EC_849_867_R	GCGCTCCACGTCTTCACGC	819
118	23S_EC_2745_2765_R	TTCGTGCTTAGATGCTTTCAG	1389
119	165_EC_1061_1078_2P_R	ACGACACGAGCpTpGACGAC	733
120	16S_EC_1064_1075_2P_R	ACACGAGCpTpGAC	727
121	16S_EC_1064_1075_R	ACACGAGCTGAC	727
122	23S_EC_40_59_R	ACGTCCTTCATCGCCTCTGA	740
123	235_EC_430_450_R	CTATCGGTCAGTCAGGAGTAT	799
124	235_EC_891_910_R	TTGCATCGGGTTGGTAAGTC	1403
125	235_EC_1424_1442_R	AACATAGCCTTCTCCGTCC	712
126	235_EC_1908_1931_R	TACCTTAGGACCGTTATAGTTACG	893
127	23S_EC_2475_2494_R	CCAAACACCGCCGTCGATAT	765
128	235_EC_2833_2852_R	GCTTACACACCCGGCCTATC	826
129	TRNA_ASP- RRNH_EC_23_41.2_R	GCGTGACAGGCAGGTATTC	820
131	165_EC_508_525_R	GCTGCTGGCACGGAGTTA	823
132	16S_EC_1041_1058_R	CCATGCAGCACCTGTCTC	771
133	16S_EC_1493_1512_R	ACGGTTACCTTGTTACGACT	739
134	TRNA_ALA- RRNH_EC_30_46.2_R	CCTCCTGCGTGCAAAGC	780
135	165_EC_1061_1078.2_R	ACAACACGAGCTGACGAC	719
137	16S_EC_1061_1078.2_I14_R	ACAACACGAGCTGICGAC	721
138	165_EC_1061_1078.2_I12_R	ACAACACGAGCIGACGAC	718
139	165_EC_1061_1078.2_I11_R	ACAACACGAGITGACGAC	722
140	165_EC_1061_1078.2_I16_R	ACAACACGAGCTGACIAC	720
141	165_EC_1061_1078.2_21_R	ACAACACGAICTIACGAC	723
142	16S_EC_1061_1078.2_31_R	ACAACACIAICTIACGAC	724
143	16S_EC_1061_1078.2_4I_R	ACAACACIAICTIACIAC	725
147	23S_EC_2741_2760_R	ACTTAGATGCTTTCAGCGGT	743
158	165_EC_880_894_R	CGTACTCCCCAGGCG	796
159	16S_EC_1174_1188_R	TCCCCACCTTCCTCC	1019
215	SSPE_BA_197_216_R	TCTGTTTCAGTTGCAAATTC	1132
220	GROL_EC_1039_1060_R	CAATCTGCTGACGGATCTGAGC	759
221	INFB_EC_1174_1191_R	CATGATGGTCACAACCGG	764

TABLE 2-continued

TABLE 2-continued				
	Primer P	airs for Identification of Bacteria		
222	HFLB_EC_1144_1168_R	CTTTCGCTTTCTCGAACTCAACCAT	802	
223	INFB_EC_2038_2058_R	AACTTCGCCTTCGGTCATGTT	713	
224	GROL_EC_328_350_R	TTCAGGTCCATCGGGTTCATGCC	1377	
225	VALS_EC_1195_1214_R	ACGAACTGGATGTCGCCGTT	732	
226	16S_EC_683_700_R	CGCATTTCACCGCTACAC	791	
227	RPOC_EC_1295_1315_R	GTTCAAATGCCTGGATACCCA	843	
228	16S_EC_880_894_R	CGTACTCCCCAGGCG	796	
229	RPOC_EC_1623_1643_R	ACGCGGGCATGCAGAGATGCC	737	
230	16S_EC_1177_1196_R	TGACGTCATCCCCACCTTCC	1158	
231	16S_EC_1525_1541_R	AAGGAGGTGATCCAGCC	714	
232	16S_EC_1389_1407_R	GACGGGCGGTGTGTACAAG	808	
233	23S_EC_115_130_R	GGGTTTCCCCATTCGG	833	
234	23S_EC_242_256_R	TTCGCTCGCCGCTAC	1385	
235	23S_EC_1686_1703_R	CCTTCTCCCGAAGTTACG	782	
236	23S_EC_1828_1842_R	CACCGGGCAGGCGTC	760	
237	23S_EC_1929_1949_R	CCGACAAGGAATTTCGCTACC	775	
238	23S_EC_2490_2511_R	AGCCGACATCGAGGTGCCAAAC	746	
239	23S_EC_2653_2669_R	CCGGTCCTCTCGTACTA	777	
240	23S_EC_2737_2758_R	TTAGATGCTTTCAGCACTTATC	1369	
241	23S_BS_5_21_R	GTGCGCCCTTTCTAACTT	841	
242	16S_EC_342_358_R	ACTGCTGCCTCCCGTAG	742	
243	16S_EC_556_575_R	CTTTACGCCCAGTAATTCCG	801	
244	16S_EC_774_795_R	GTATCTAATCCTGTTTGCTCCC	839	
245	16S_EC_967_985_R	GGTAAGGTTCTTCGCGTTG	835	
246	16S_EC_1220_1240_R	ATTGTAGCACGTGTGTAGCCC	757	
247	16S_EC_1525_1541_R	AAGGAGGTGATCCAGCC	714	
248	16S_EC_1525_1541_R	AAGGAGGTGATCCAGCC	714	
249	23S_EC_1919_1936_R	TCGCTACCTTAGGACCGT	1080	
250	16S_EC_1494_1513_R	CACGGCTACCTTGTTACGAC	761	
251	16S_EC_1486_1505_R	CCTTGTTACGACTTCACCCC	783	
252	16S_EC_1485_1506_R	ACCTTGTTACGACTTCACCCCA	731	
253	16S_EC_909_929_R	CCCCCGTCAATTCCTTTGAGT	773	
254	16S_EC_886_904_R	GCCTTGCGACCGTACTCCC	817	
255	16S_EC_882_899_R	GCGACCGTACTCCCCAGG	818	
256	16S_EC_1174_1195_R	GACGTCATCCCCACCTTCCTCC	810	
257	23S_EC_2658_2677_R	AGTCCATCCCGGTCCTCTCG	749	
258	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCCATC	750	

TABLE 2-continued

TABLE 2-continued			
	Primer Pair	s for Identification of Bacteria	
258	RNASEP_EC_345_362_R	ATAAGCCGGGTTCTGTCG	751
258	RNASEP_BS_363_384_R	GTAAGCCATGTTTTGTTCCATC	838
258	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCCATC	750
258	RNASEP_EC_345_362_R	ATAAGCCGGGTTCTGTCG	751
258	RNASEP_BS_363_384_R	GTAAGCCATGTTTTGTTCCATC	838
258	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCCATC	750
258	RNASEP_EC_345_362_R	ATAAGCCGGGTTCTGTCG	751
258	RNASEP_BS_363_384_R	GTAAGCCATGTTTTGTTCCATC	838
259	RNASEP_BS_363_384_R	GTAAGCCATGTTTTGTTCCATC	838
260	RNASEP_EC_345_362_R	ATAAGCCGGGTTCTGTCG	751
262	RNASEP_SA_358_379_R	ATAAGCCATGTTCTGTTCCATC	750
263	16S_EC_1525_1541_R	AAGGAGGTGATCCAGCC	714
264	16S_EC_774_795_R	GTATCTAATCCTGTTTGCTCCC	839
265	16S_EC_1177_1196_10G_R	TGACGTCATGCCCACCTTCC	1160
266	16S_EC_1177_1196_10G_11G_R	TGACGTCATGGCCACCTTCC	1161
268	TRNA_ALA- RRNH_EC_30_49_F_MOD	AGACCTCCTGCGTGCAAAGC	744
269	16S_EC_1177_1196_R_MOD	TGACGTCATCCCCACCTTCC	1158
270	235_EC_2658_2677_R_MOD	AGTCCATCCCGGTCCTCTCG	749
272	16S_EC_1389_1407_R	GACGGGCGGTGTGTACAAG	807
273	16S_EC_1303_1323_R	CGAGTTGCAGACTGCGATCCG	788
274	16S_EC_880_894_R	CGTACTCCCCAGGCG	796
275	16S_EC_1061_1078_R	ACGACACGAGCTGACGAC	734
277	CYA_BA_1426_1447_R	CTTCTACATTTTTAGCCATCAC	800
278	16S_EC_1175_1196_R	TGACGTCATCCCCACCTTCCTC	1159
279	16S_EC_507_527_R	CGGCTGCTGGCACGAAGTTAG	793
280	GROL_EC_577_596_R	TAGCCGCGGTCGAATTGCAT	914
281	GROL_EC_571_593_R	CCGCGGTCGAATTGCATGCCTTC	776
288	RPOB_EC_3862_3885_R	CGACTTGACGGTTAACATTTCCTG	786
289	RPOB_EC_3862_3888_R	GTCCGACTTGACGGTCAACATTTCCTG	840
290	RPOC_EC_2227_2245_R	ACGCCATCAGGCCACGCAT	736
291	ASPS_EC_521_538_R	ACGGCACGAGGTAGTCGC	738
292	RPOC_EC_1437_1455_R	GAGCATCAGCGTGCGTGCT	811
293	TUFB_EC_1034_1058_R	GGCATCACCATTTCCTTGTCCTTCG	829
294	16S_EC_101_122_R	TGTTACTCACCCGTCTGCCACT	1345
295	VALS_EC_705_727_R	TATAACGCACATCGTCAGGGTGA	929
344	16S_EC_1043_1062_R	ACAACCATGCACCACCTGTC	726

TABLE 2-continued

	TABLE 2-c	continued	
	Primer Pairs for Ident	ification of Bacteria	
346	165_EC_789_809_TMOD_R	TCGTGGACTACCAGGGTATCTA	1110
347	16S_EC_880_897_TMOD_R	TGGCCGTACTCCCCAGGCG	1278
348	16S_EC_1054_1073_TMOD_R	TACGAGCTGACGACAGCCATG	895
349	235_EC_1906_1924_TMOD_R	TGACCGTTATAGTTACGGCC	1156
350	CAPC_BA_349_376_TMOD_R	TGTAACCCTTGTCTTTGAATTGTATTTGC	1314
351	CYA_BA_1448_1467_TMOD_R	TTGTTAACGGCTTCAAGACCC	1423
352	INFE_EC_1439_1467_TMOD_R	TTGCTGCTTTCGCATGGTTAATTGCTTC AA	1411
353	LEF_BA_843_872_TMOD_R	TTCTTCCAAGGATAGATTTATTTCTTGT TCG	1394
354	RPOC_EC_2313_2337_TMOD_R	TCGCACCGTGGGTTGAGATGAAGTAC	1072
355	SSPE_BA_197_222_TMOD_R	TTGCACGTCTGTTTCAGTTGCAAATTC	1402
356	RPLB_EC_739_762_TMOD_R	TTCCAAGTGCTGGTTTACCCCATGG	1380
357	RPLB_EC_736_757_TMOD_R	TGTGCTGGTTTACCCCATGGAGT	1337
358	VALS_EC_1195_1218_TMOD_R	TCGGTACGAACTGGATGTCGCCGTT	1093
359	RPOB_EC_1909_1929_TMOD_R	TGCTGGATTCGCCTTTGCTACG	1250
360	23S_EC_2745_2765_TMOD_R	TTTCGTGCTTAGATGCTTTCAG	1434
361	16S_EC_1175_1196_TMOD_R	TTGACGTCATCCCCACCTTCCTC	1398
362	RPOB_EC_3862_3888_TMOD_R	TGTCCGACTTGACGGTCAACATTTCCTG	1325
363	RPOC_EC_2227_2245_TMOD_R	TACGCCATCAGGCCACGCAT	898
364	RPOC_EC_1437_1455_TMOD_R	TGAGCATCAGCGTGCGTGCT	1166
367	TUFB_EC_1034_1058_TMOD_R	TGGCATCACCATTTCCTTGTCCTTCG	1276
423	SP101_SPET11_988_1012_TMOD_R	TCATGACAGCCAAGACCTCACCCACC	990
424	SP101_SPET11_1251_1277_TMOD_R	TGACCCCAACCTGGCCTTTTGTCGTTGA	1155
425	SP101_SPET11_213_238_TMOD_R	TTGTGGCCGATTTCACCACCTGCTCCT	1422
426	SP101_SPET11_1403_1431_TMOD_R	TAAACTATTTTTTAGCTATACTCGAAC AC	849
427	SP101_SPET11_1486_1515_TMOD_R	TGGATAATTGGTCGTAACAAGGGATAGT GAG	1268
428	SP101_SPET11_1783_1808_TMOD_R	TATATGATTATCATTGAACTGCGGCCG	932
429	SP101_SPET11_1808_1835_TMOD_R	TGCGTGACGACCTTCTTGAATTGTAATCA	1239
430	SP101_SPET11_1901_1927_TMOD_R	TTTGGACCTGTAATCAGCTGAATACTGG	1439
431	SP101_SPET11_2062_2083_TMOD_R	TATTGCCCAGAAATCAAATCATC	940
432	SP101_SPET11_308_333_TMOD_R	TTGCCACTTTGACAACTCCTGTTGCTG	1404
433	SP101_SPET11_2375_2397_TMOD_R	TTCTGGGTGACCTGGTGTTTTAGA	1393
434	SP101_SPET11_2470_2497_TMOD_R	TAGCTGCTAGATGAGCTTCTGCCATGGCC	918
435	SP101_SPET11_2543_2570_TMOD_R	TCCATAAGGTCACCGTCACCATTCAAAGC	1007
436	SP101_SPET11_355_380_TMOD_R	TGCTGCTTTGATGGCTGAATCCCCTTC	1249
437	SP101_SPET11_3023_3045_TMOD_R	TGGAATTTACCAGCGATAGACACC	1264

TABLE 2-continued

60	
02	

TABLE	2-continue	d
-------	------------	---

Primer Pairs for Identification of Bacteria						
438	SP101_SPET11_3168_3196_TMOD_R	TAATCGACGACCATCTTGGAAAGATTTC TC	875			
439	SP101_SPET11_423_441_TMOD_R	TATCCCCTGCTTCTGCTGCC	934			
440	SP101_SPET11_3480_3506_TMOD_R	TCCAGCAGTTACTGTCCCCTCATCTTTG	1005			
441	SP101_SPET11_3605_3629_TMOD_R	TGGGTCTACACCTGCACTTGCATAAC	1294			
442	SP101_SPET11_448_473_TMOD_R	TCCAACCTTTTCCACAACAGAATCAGC	998			
443	SP101_SPET11_686_714_TMOD_R	TCCCATTTTTTCACGCATGCTGAAAATA TC	1018			
444	SP101_SPET11_756_784_TMOD_R	TGATTGGCGATAAAGTGATATTTTCTAA AA	1189			
445	SP101_SPET11_871_896_TMOD_R	TGCCCACCAGAAAGACTAGCAGGATAA	1217			
446	SP101_SPET11_92_116_TMOD_R	TCCTACCCAACGTTCACCAAGGGCAG	1044			
447	SP101_SPET11_448_471_R	TACCTTTTCCACAACAGAATCAGC	894			
448	SP101_SPET11_3170_3194_R	TCGACGACCATCTTGGAAAGATTTC	1066			
449	RPLB_EC_737_758_R	TGTGCTGGTTTACCCCATGGAG	1336			
481	BONTA_X52066_647_660_R	TGTTACTGCTGGAT	1346			
482	BONTA_X52066_647_660P_R	TG*Tp*TpA*Cp*TpG*Cp*TpGGAT	1146			
483	BONTA_X52066_759_775_R	TTACTTCTAACCCACTC	1367			
484	BONTA_X52066_759_775P_R	ТТА*Ср*Тр*Тр*Ср*ТрАА*Ср*Ср*СрА *Ср*ТрС	1359			
485	BONTA_X52066_517_539_R	TAACCATTTCGCGTAAGATTCAA	859			
486	BONTA_X52066_517_539P_R	TAACCA*Tp*Tp*Tp*CpGCGTAAGA*Tp *Tp*CpAA	857			
487	BONTA_X52066_644_671_R	TCATGTGCTAATGTTACTGCTGGATCTG	992			
608	SSPE_BA_243_255P_R	TGCpAGCpTGATpTpGT	1241			
609	SSPE_BA_163_177P_R	TGTGCTpTpTpGAATpGCpT	1338			
610	SSPE_BA_243_264P_R	TGATTGTTTTGCpAGCpTGATpTpGT	1191			
611	SSPE_BA_163_182P_R	TCATTTGTGCTpTpTpGAATpGCpT	995			
612	SSPE_BA_196_222P_R	TTGCACGTCpTpGTTTCAGTTGCAAATTC	1401			
699	SSPE_BA_202_231_R	TTTCACAGCATGCACGTCTGTTTCAGTT GC	1431			
700	SSPE_BA_243_255_R	TGCAGCTGATTGT	1202			
701	SSPE_BA_163_177_R	TGTGCTTTGAATGCT	1338			
702	SSPE_BA_243_264_R	TGATTGTTTTGCAGCTGATTGT	1190			
703	SSPE_BA_163_182_R	TCATTTGTGCTTTGAATGCT	995			
704	SSPE_BA_242_267_R	TTGTGATTGTTTTGCAGCTGATTGTG	1421			
705	SSPE_BA_163_191_R	TCATAACTAGCATTTGTGCTTTGAATGCT	986			
706	SSPE_BA_196_222_R	TTGCACGTCTGTTTCAGTTGCAAATTC	1402			
770	PLA AF053945 7434 7462 R	TGTAAATTCCGCAAAGACTTTGGCATTAG	1313			
//0						

TABLE 2-continued									
Primer Pairs for Identification of Bacteria									
PLA_AF053945_7539_7562_R	TATTGGAAATACCGGCAGCATCTC	943							
PLA_AF053945_7257_7280_R	TAATGCGATACTGGCCTGCAAGTC	879							
CAF1_AF053947_33494_33514_R	TGCGGGCTGGTTCAACAAGAG	1235							
CAF1_AF053947_33595_33621_R	TCCTGTTTTATAGCCGCCAAGAGTAAG	1053							
CAF1_AF053947_33499_33517_R	TGATGCGGGCTGGTTCAAC	1183							
CAF1_AF053947_33755_33782_R	TCAAGGTTCTCACCGTTTACCTTAGGAG	962							
INV_U22457_571_598_R	TGTTAAGTGTGTTGCGGCTGTCTTTATT	1343							
INV_U22457_753_776_R	TCACGCGACGAGTGCCATCCATTG	976							
INV_U22457_942_966_R	TGACCCAAAGCTGAAAGCTTTACTG	1154							
INV_U22457_1619_1643_R	TTGCGTTGCAGATTATCTTTACCAA	1408							
LL_NC003143_2367073_2367097_R	TCTCATCCCGATATTACCGCCATGA	1123							
LL_NC003143_2367249_2367271_R	TGGCAACAGCTCAACACCTTTGG	1272							
RPLB_EC_739_762_TMOD_R	TTCCAAGTGCTGGTTTACCCCATGG	1380							
RPLB_EC_739_762_TMOD_R	TTCCAAGTGCTGGTTTACCCCATGG	1380							
MECIA_Y14051_3367_3393_R	TGTGATATGGAGGTGTAGAAGGTGTTA	1333							
MECA_Y14051_3828_3854_R	TCCCAATCTAACTTCCACATACCATCT	1015							
MECA_Y14051_3690_3719_R	TGATCCTGAATGTTTATATCTTTAACGC CT	1181							
MECA_Y14051_4555_4581_R	TGGATAGACGTCATATGAAGGTGTGCT	1269							
MECA_Y14051_4586_4610_R	TATTCTTCGTTACTCATGCCATACA	939							
MECA_Y14051_4765_4793_R	TAACCACCCCAAGATTTATCTTTTTGCCA	858							
MECA_Y14051_4590_4600P_R	ТрАСрТрСрАТрGСрСрА	1357							
MECA_Y14051_4600_4610P_R	ТрАТрТрСрТрТрСрGТрТ	1358							
TRPE_AY094355_1569_1592_R	TGCGCGAGCTTTTATTTGGGTTTC	1231							
TRPE_AY094355_1551_1580_R	TATTTGGGTTTCATTCCACTCAGATTCT GG	944							
TRPE_AY094355_1392_1418_R	TCCTCTTTTCACAGGCTCTACTTCATC	1048							
TRPE_AY094355_1171_1196_R	TACATCGTTTCGCCCAAGATCAATCA	885							
TRPE_AY094355_769_791_R	TTCAAAATGCGGAGGCGTATGTG	1372							
TRPE_AY094355_864_883_R	TGCCCAGGTACAACCTGCAT	1218							
RECA_AF251469_140_163_R	TTCAAGTGCTTGCTCACCATTGTC	1375							
RECA_AF251469_277_300_R	TGGCTCATAAGACGCGCTTGTAGA	1280							
PARC_X95819_201_222_R	TTCGGTATAACGCATCGCAGCA	1387							
PARC_X95819_192_219_R	GGTATAACGCATCGCAGCAAAAGATTTA	836							
PARC_X95819_232_260_R	TCGCTCAGCAATAATTCACTATAAGCCGA	1081							
PARC_X95819_143_170_R	TTCCCCTGACCTTCGATTAAAGGATAGC	1383							
OMPA_AY485227_364_388_R	GAGCTGCGCCAACGAATAAATCGTC	812							

TGCCGTAACATAGAAGTTACCGTTGATT

915 OMPA_AY485227_492_519_R

	Γ	TABLE 2-continued				
Primer Pairs for Identification of Bacteria						
916	OMPA_AY485227_424_453_R	TACGTCGCCTTTAACTTGGTTATATTCA GC	901			
917	OMPA_AY485227_514_546_R	TCGGGCGTAGTTTTTAGTAATTAAATCA GAAGT	1092			
918	OMPA_AY485227_569_596_R	TCGTCGTATTTATAGTGACCAGCACCTA	1108			
919	OMPA_AY485227_658_680_R	TTTAAGCGCCAGAAAGCACCAAC	1425			
920	OMPA_AY485227_635_662_R	TCAACACCAGCGTTACCTAAAGTACCTT	954			
921	OMPA_AY485227_659_683_R	TCGTTTAAGCGCCAGAAAGCACCAA	1114			
922	OMPA_AY485227_739_765_R	TAAGCCAGCAAGAGCTGTATAGTTCCA	871			
923	OMPA_AY485227_786_807_R	TACAGGAGCAGCAGGCTTCAAG	884			
924	GYRA_AF100557_119_142_R	TCGAACCGAAGTTACCCTGACCAT	1063			
925	GYRA_AF100557_178_201_R	TGCCAGCTTAGTCATACGGACTTC	1211			
926	GYRB_AB008700_111_140_R	TATTGCGGATCACCATGATGATATTCTT GC	941			
927	GYRB_AB008700_369_395_R	TCGTTGAGATGGTTTTTACCTTCGTTG	1113			
928	GYRB_AB008700_466_494_R	TTTGTGAAACAGCGAACATTTTCTTGGTA	1440			
929	GYRB_AB008700_611_632_R	TCACGCGCATCATCACCAGTCA	977			
930	GYRB_AB008700_862_888_R	ACCTGCAATATCTAATGCACTCTTACG	729			
931	WAAA_Z96925_115_138_R	CAAGCGGTTTGCCTCAAATAGTCA	758			
932	WAAA_Z96925_394_412_R	TGGCACGAGCCTGACCTGT	1274			
939	RPOB_EC_3862_3889_R	TGTCCGACTTGACGGTCAGCATTTCCTG	1326			
940	RPOB_EC_3862_3889_2_R	TGTCCGACTTGACGGTTAGCATTTCCTG	1327			
941	TUFB_EC_337_362_R	TGGATGTGCTCACGAGTCTGTGGCAT	1271			
942	TUFB_EC_337_360_R	TATGTGCTCACGAGTTTGCGGCAT	937			
949	GYRB_AB008700_862_888_2_R	TCCTGCAATATCTAATGCACTCTTACG	1050			
958	RPOC_EC_2329_2352_R	TGCTAGACCTTTACGTGCACCGTG	1243			
959	RPOC_EC_1009_1031_R	TCCAGCAGGTTCTGACGGAAACG	1004			
960	RPOC_EC_2380_2403_R	TACTAGACGACGGGTCAGGTAACC	905			
961	RPOC_EC_1009_1034_R	TTACCGAGCAGGTTCTGACGGAAACG	1362			
962	RPOB_EC_2041_2064_R	TTGACGTTGCATGTTCGAGCCCAT	1399			
963	RPOB_EC_1630_1649_R	TCGTCGCGGACTTCGAAGCC	1104			
964	INFB_EC_1414_1432_R	TCGGCATCACGCCGTCGTC	1090			
965	VALS_EC_1231_1257_R	TTCGCGCATCCAGGAGAAGTACATGTT	1384			
978	RPOC_EC_2228_2247_R	TTACGCCATCAGGCCACGCA	1363			
1045	CJST_CJ_1774_1799_R	TGAGCGTGTGGAAAAGGACTTGGATG	1170			
1046	CJST_CJ_2283_2313_R	TCTCTTTCAAAGCACCATTGCTCATTAT AGT	1126			
1047	CJST_CJ_663_692_R	TTCATTTTCTGGTCCAAAGTAAGCAGTA TC	1379			

TABLE 2-continued

TABLE :	2-continued	
Primer Pairs for Id	dentification of Bacteria	
1048 CJST_CJ_442_476_R	TCAACTGGTTCAAAAACATTAAGTTGTA ATTGTCC	955
1049 CJST_CJ_2753_2777_R	TTGCTGCCATAGCAAAGCCTACAGC	1409
1050 CJST_CJ_1406_1433_R	TTTGCTCATGATCTGCATGAAGCATAAA	1437
1051 CJST_CJ_3356_3385_R	TCAAAGAACCCGCACCTAATTCATCATT TA	951
1052 CJST_CJ_104_137_R	TCCCTTATTTTTCTTTCTACTACCTTCG GATAAT	1029
1053 CJST_CJ_1166_1198_R	TCCCCTCATGTTTAAATGATCAGGATAA AAAGC	1022
1054 CJST_CJ_2148_2174_R	TCGATCCGCATCACCATCAAAAGCAAA	1068
1055 CJST_CJ_2979_3007_R	TCCTCCTTGTGCCTCAAAACGCATTTTTA	1045
1056 CJST_CJ_1981_2011_R	TGGTTCTTACTTGCTTTGCATAAACTTT CCA	1309
1057 CJST_CJ_2283_2316_R	TGAATTCTTTCAAAGCACCATTGCTCAT TATAGT	1152
1058 CJST_CJ_1724_1752_R	TGCAATGTGTGCTATGTCAGCAAAAAGAT	1198
1059 CJST_CJ_2247_2278_R	TCCACACTGGATTGTAATTTACCTTGTT CTTT	1002
1060 CJST_CJ_711_743_R	TCCCGAACAATGAGTTGTATCAACTATT TTTAC	1024
1061 CJST_CJ_443_477_R	TACAACTGGTTCAAAAACATTAAGCTGT AATTGTC	882
1062 CJST_CJ_2760_2787_R	TGTGCTTTTTTTGCTGCCATAGCAAAGC	1339
1063 CJST_CJ_1349_1379_R	TCGGTTTAAGCTCTACATGATCGTAAGG ATA	1096
1064 CJST_CJ_1795_1822_R	TATGTGTAGTTGAGCTTACTACATGAGC	938
1065 CJST_CJ_2965_2998_R	TGCTTCAAAACGCATTTTTACATTTTCG TTAAAG	1253
1070 RNASEP_BKM_665_686_R	TCCGATAAGCCGGATTCTGTGC	1034
1071 RNASEP_BKM_665_687_R	TGCCGATAAGCCGGATTCTGTGC	1222
1072 RNASEP_BDP_616_635_R	TCGTTTCACCCTGTCATGCCG	1115
1073 23S_BRM_1176_1201_R	TCGCAGGCTTACAGAACGCTCTCCTA	1074
1074 23S_BRM_616_635_R	TCGGACTCGCTTTCGCTACG	1088
1075 RNASEP_CLB_498_526_R	TGCTCTTACCTCACCGTTCCACCCTTACC	1247
1076 RNASEP_CLB_498_522_R	TTTACCTCGCCTTTCCACCCTTACC	1426
1077 ICD_CXB_172_194_R	TAGGATTTTTCCACGGCGGCATC	921
1078 ICD_CXB_172_194_R	TAGGATTTTTCCACGGCGGCATC	921
1079 ICD_CXB_224_247_R	TAGCCTTTTCTCCGGCGTAGATCT	916
1080 IS1111A_NC002971_6928_6954_R	TAAACGTCCGATACCAATGGTTCGCTC	848
1081 IS1111A_NC002971_7529_7554_R	TCAACAACACCTCCTTATTCCCACTC	952
1082 RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	957
1083 RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	957

TABLE 2-continued

		TABLE 2-continued	
	Primer	Pairs for Identification of Bacteria	
1084	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	957
1085	RNASEP_RKP_295_321_R	TCTATAGAGTCCGGACTTTCCTCGTGA	1119
1086	RNASEP_RKP_542_565_R	TCAAGCGATCTACCCGCATTACAA	957
1087	OMPB_RKP_972_996_R	TCCTGCAGCTCTACCTGCTCCATTA	1051
1088	OMPB_RKP_1288_1315_R	TAGCAGCAAAAGTTATCACACCTGCAGT	910
1089	OMPB_RKP_3520_3550_R	TGGTTGTAGTTCCTGTAGTTGTTGCATT AAC	1310
1090	GLTA_RKP_1138_1162_R	TGAACATTTGCGACGGTATACCCAT	1147
1091	GLTA_RKP_499_529_R	TGGTGGGTATCTTAGCAATCATTCTAAT AGC	1305
1092	GLTA_RKP_1129_1156_R	TTGGCGACGGTATACCCATAGCTTTATA	1415
1093	GLTA_RKP_1138_1162_R	TGAACATTTGCGACGGTATACCCAT	1147
1094	GLTA_RKP_1138_1164_R	TGTGAACATTTGCGACGGTATACCCAT	1330
1095	GLTA_RKP_505_534_R	TGCGATGGTAGGTATCTTAGCAATCATT CT	1230
1096	CTXA_VBC_194_218_R	TGCCTAACAAATCCCGTCTGAGTTC	1226
1097	CTXA_VBC_441_466_R	TGTCATCAAGCACCCCAAAATGAACT	1324
1098	RNASEP_VBC_388_414_R	TGACTTTCCTCCCCCTTATCAGTCTCC	1163
1099	TOXR_VBC_221_246_R	TTCAAAACCTTGCTCTCGCCAAACAA	1370
1100	ASD_FRT_86_116_R	TGAGATGTCGAAAAAAACGTTGGCAAAA TAC	1164
1101	ASD_FRT_129_156_R	TCCATATTGTTGCATAAAACCTGTTGGC	1009
1102	GALE_FRT_241_269_R	TCACCTACAGCTTTAAAGCCAGCAAAATG	973
1103	GALE_FRT_901_925_R	TAGCCTTGGCAACATCAGCAAAACT	915
1104	GALE_FRT_390_422_R	TCTTCTGTAAAGGGTGGTTTATTATTCA TCCCA	1136
1105	IPAH_SGF_301_327_R	TCCTTCTGATGCCTGATGGACCAGGAG	1055
1106	IPAH_SGF_172_191_R	TTTTCCAGCCATGCAGCGAC	1441
1107	IPAH_SGF_522_540_R	TGTCACTCCCGACACGCCA	1322
1111	RNASEP_BRM_542_561_R	TGCCTCGCGCAACCTACCCG	1227
1112	RNASEP_BRM_402_428_R	TCTCTTACCCCACCCTTTCACCCTTAC	1125
1128	HUPB_CJ_157_188_R	TCCCTAATAGTAGAAATAACTGCATCAG TAGC	1028
1129	HUPB_CJ_157_188_R	TCCCTAATAGTAGAAATAACTGCATCAG TAGC	1028
1130	HUPB_CJ_114_135_R	TAGCCCAGCTGTTTGAGCAACT	913
1151	AB_MLST-11- OIF007_169_203_R	TTGTACATTTGAAACAATATGCATGACA TGTGAAT	1418
1152	AB_MLST-11- OIF007_291_324_R	TCACAGGTTCTACTTCATCAATAATTTC CATTGC	969
1153	AB_MLST-11- OIF007_364_393_R	TTGCAATCGACATATCCATTTCACCATG CC	1400

TABLE 2-continued

TABLE 2-continued				
	Primer Pairs for Ident.	ification of Bacteria		
1154	AB_MLST-11- OIF007_318_344_R	TCCGCCAAAAACTCCCCTTTTCACAGG	1036	
1155	AB_MLST-11- OIF007_587_610_R	TTCTGCTTGAGGAATAGTGCGTGG	1392	
1156	AB_MLST-11- OIF007_656_686_R	TACGTTCTACGATTTCTTCATCAGGTAC ATC	902	
1157	AB_MLST-11- OIF007_710_736_R	TACAACGTGATAAACACGACCAGAAGC	881	
1158	AB_MLST-11- 0IF007_1266_1296_R	TAATGCCGGGTAGTGCAATCCATTCTTC TAG	878	
1159	AB_MLST-11- 0IF007_1299_1316_R	TGCACCTGCGGTCGAGCG	1199	
1160	AB_MLST-11- 0IF007_1335_1362_R	TGCCATCCATAATCACGCCATACTGACG	1215	
1161	AB_MLST-11- 0IF007_1422_1448_R	TGCCAGTTTCCACATTTCACGTTCGTG	1212	
1162	AB_MLST-11- 0IF007_1470_1494_R	TCGCTTGAGTGTAGTCATGATTGCG	1083	
1163	AB_MLST-11- OIF007_1470_1494_R	TCGCTTGAGTGTAGTCATGATTGCG	1083	
1164	AB_MLST-11- OIF007_1470_1494_R	TCGCTTGAGTGTAGTCATGATTGCG	1083	
1165	AB_MLST-11- OIF007_1656_1680_R	TGAGTCGGGTTCACTTTACCTGGCA	1173	
1166	AB_MLST-11- OIF007_1656_1680_R	TGAGTCGGGTTCACTTTACCTGGCA	1173	
1167	AB_MLST-11- OIF007_1731_1757_R	TACCGGAAGCACCAGCGACATTAATAG	890	
1168	AB_MLST-11- OIF007_1790_1821_R	TGCAACTGAATAGATTGCAGTAAGTTAT AAGC	1195	
1169	AB_MLST-11- OIF007_1876_1909_R	TGAATTATGCAAGAAGTGATCAATTTTC TCACGA	1151	
1170	AB_MLST-11- OIF007_1895_1927_R	TGCCGTAACTAACATAAGAGAATTATGC AAGAA	1224	
1171	AB_MLST-11- 0IF007_2097_2118_R	TGACGGCATCGATACCACCGTC	1157	
1172	RNASEP_BRM_542_561_2_R	TGCCTCGTGCAACCCACCCG	1228	
2000	CTXB_NC002505_132_162_R	TCCGGCTAGAGATTCTGTATACGACAAT ATC	1039	
2001	FUR_NC002505_205_228_R	TCCGCCTTCAAAATGGTGGCGAGT	1037	
2002	FUR_NC002505_178_205_R	TCACGATACCTGCATCATCAAATTGGTT	974	
2003	GAPA_NC002505_646_671_R	TCAGAATCGATGCCAAATGCGTCATC	980	
2004	GAPA_NC002505_769_798_R	TCCTCTATGCAACTTAGTATCAACAGGA AT	1046	
2005	GAPA_NC002505_856_881_R	TCCATCGCAGTCACGTTTACTGTTGG	1011	
2006	GYRB_NC002505_109_134_R	TCCACCACCTCAAAGACCATGTGGTG	1003	
2007	GYRB_NC002505_199_225_R	TCCGTCATCGCTGACAGAAACTGAGTT	1042	

TABLE 2-continued

	TABLE 2-cc	ontinued	
	Primer Pairs for Identi	fication of Bacteria	
2008	GYRB_NC002505_832_860_R	TGGAAACCGGCTAAGTGAGTACCACCATC	1262
2009	GYRB_NC002505_937_957_R	TCCTTCACGCGCATCATCACC	1054
2010	GYRB_NC002505_982_1007_R	TGGCTTGAGAATTTAGGATCCGGCAC	1283
2011	GYRB_NC002505_1255_1284_R	TGAGTCACCCTCCACAATGTATAGTTCA GA	1172
2012	OMPU_NC002505_154_180_R	TGCTTCAGCACGGCCACCAACTTCTAG	1254
2013	OMPU_NC002505_346_369_R	TCCGAGACCAGCGTAGGTGTAACG	1033
2014	OMPU_NC002505_544_567_R	TCGGTCAGCAAAACGGTAGCTTGC	1094
2015	OMPU_NC002505_625_651_R	TAGAGAGTAGCCATCTTCACCGTTGTC	908
2016	OMPU_NC002505_725_751_R	TGGGGTAAGACGCGGCTAGCATGTATT	1291
2017	OMPU_NC002505_811_835_R	TAGCAGCTAGCTCGTAACCAGTGTA	911
2018	OMPU_NC002505_1033_1053_R	TTAGAAGTCGTAACGTGGACC	1368
2019	OMPU_NC002505_1033_1054_R	TGGTTAGAAGTCGTAACGTGGACC	1307
2020	TCPA_NC002505_148_170_R	TTCTGCGAATCAATCGCACGCTG	1391
2021	TDH_NC004605_357_386_R	TGTTGAAGCTGTACTTGACCTGATTTTA CG	1351
2022	VVHA_NC004460_862_886_R	TACCAAAGCGTGCACGATAGTTGAG	887
2023	23S_EC_2746_2770_R	TGGGTTTCGCGCTTAGATGCTTTCA	1297
2024	16S_EC_789_811_R	TGCGTGGACTACCAGGGTATCTA	1240
2025	16S_EC_880_897_TMOD_R	TGGCCGTACTCCCCAGGCG	1278
2026	16S_EC_1052_1074_R	TACGAGCTGACGACAGCCATGCA	896
2027	TUFB_EC_1034_1058_2_R	TGCATCACCATTTCCTTGTCCTTCG	1204
2028	RPOC_EC_2227_2249_R	TGCTAGGCCATCAGGCCACGCAT	1244
2029	RPOB_EC_1909_1929_TMOD_R	TGCTGGATTCGCCTTTGCTACG	1250
2030	RPLB_EC_739_763_R	TGCCAAGTGCTGGTTTACCCCATGG	1208
2031	RPLB_EC_737_760_R	TGGGTGCTGGTTTACCCCATGGAG	1295
2032	INFB_EC_1439_1469_R	TGTGCTGCTTTCGCATGGTTAATTGCTT CAA	1335
2033	VALS_EC_1195_1219_R	TGGGTACGAACTGGATGTCGCCGTT	1292
2034	SSPE_BA_197_222_TMOD_R	TTGCACGTCTGTTTCAGTTGCAAATTC	1402
2035	RPOC_EC_2313_2338_R	TGGCACCGTGGGTTGAGATGAAGTAC	1273
2056	MECI-R_NC003923-41798- 41609_86_113_R	TTGTGATATGGAGGTGTAGAAGGTGTTA	1420
2057	AGR-III_NC003923-2108074- 2109507_56_79_R	ACCTGCATCCCTAAACGTACTTGC	730
2058	AGR-III_NC003923-2108074- 2109507_622_653_R	TACTTCAGCTTCGTCCAATAAAAAATCA CAAT	906
2059	AGR-III_NC003923-2108074- 2109507_1070_1098_R	TGTAGGCAAGTGCATAAGAAATTGATACA	1319
2060	AGR-I_AJ617706_694_726_R	TCCCCATTTAATAATTCCACCTACTATC ACACT	1021

TABLE 2-continued

	Primer Pairs for Identi	fication of Bacteria	
2061	AGR-I_AJ617706_626_655_R	TGGTACTTCAACTTCATCCATTATGAAG TC	1302
2062	AGR-II_NC002745-2079448- 2080879_700_731_R	TTGTTTATTGTTTCCATATGCTACACAC TTTC	1424
2063	AGR-II_NC002745-2079448- 2080879_715_745_R	TCGCCATAGCTAAGTTGTTTATTGTTTC CAT	1077
2064	AGR- IV_AJ617711_1004_1035_R	TGCGCTATCAACGATTTTGACAATATAT GTGA	1233
2065	AGR-IV_AJ617711_309_335_R	TCCCATACCTATGGCGATAACTGTCAT	1017
2066	BLAZ_NC002952(1913827 1914672)_68_ 68_R	TGGCCACTTTTATCAGCAACCTTACAGTC	1277
2067	BLAZ_NC002952(1913827 1914672)_68_ 68_2_R		926
		AAGT	
2068	BLAZ_NC002952(1913827 1914672)_68_ 68_3_R	TGGAACACCGTCTTTAATTAAAGTATCT CC	1263
2069	BLAZ_NC002952(1913827 1914672)_68_ 68_4_R		1145
		GAT	
2070	BLAZ_NC002952(1913827 1914672)_34_ 67_R	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	1366
2071	BLAZ_NC002952(1913827 1914672)_40_ 68 R	TGGGGACTTCCTTACCACTTTTAGTATC	1289
		TAA	
2072	BSA-A_NC003923-1304065- 1303589_165_193_R	TGCAAGGGAAACCTAGAATTACAAACCCT	1197
2073	BSA-A_NC003923-1304065- 1303589_253_278_R	TGCATAGGGAAGGTAACACCATAGTT	1203
2074	BSA-A_NC003923-1304065- 1303589_388_415_R	TAACAACGTTACCTTCGCGATCCACTAA	856
2075	BSA-A_NC003923-1304065- 1303589_317_344_R	TGTTGTGCCGCAGTCAAATATCTAAATA	1353
2076	BSA-B_NC003923-1917149- 1914156_1011_1039_R	TGTGAAGAACTTTCAAATCTGTGAATCCA	1331
2077	BSA-B_NC003923-1917149- 1914156_1109_1136_R	TCTTCTTGAAAAATTGTTGTCCCGAAAC	1138
2078	BSA-B_NC003923-1917149- 1914156_1323_1353_R	TGGACTAATAACAATGAGCTCATTGTAC TGA	1267
2079	BSA-B_NC003923-1917149- 1914156_2186_2216_R	TGAATATGTAATGCAAACCAGTCTTTGT CAT	1148
2080	ERMA_NC002952-55890- 56621_487_513_R	TGAGTCTACACTTGGCTTAGGATGAAA	1174
2081	ERMA_NC002952-55890- 56621_438_465_R	TGAGCATTTTTATATCCATCTCCACCAT	1167
2082	 ERMA_NC002952-55890- 56621 473 504 R	TCTTGGCTTAGGATGAAAATATAGTGGT GGTA	1143

TABLE 2-continued

	Primer Pairs	for Identification of Bacteria	
084	ERMA_NC002952-55890- 56621_586_615_R	TGGACGATATTCACGGTTTACCCACTTA TA	1266
085	ERMA_NC002952-55890- 56621_640_665_R	TTGACATTTGCATGCTTCAAAGCCTG	1397
086	ERMC_NC005908-2004- 2738_173_206_R	TCCGTAGTTTTGCATAATTTATGGTCTA TTTCAA	1041
087	ERMC_NC005908-2004- 2738_160_189_R	TTTATGGTCTATTTCAATGGCAGTTACG AA	1429
088	ERMC_NC005908-2004- 2738_161_187_R	TATGGTCTATTTCAATGGCAGTTACGA	936
089	ERMC_NC005908-2004- 2738_425_452_R	TCAACTTCTGCCATTAAAAGTAATGCCA	956
090	ERMC_NC005908-2004- 2738_159_188_R	TGATGGTCTATTTCAATGGCAGTTACGA AA	1185
091	ERMB_Y13600-625- 1362_352_380_R	TCAACAATCAGATAGATGTCAGACGCATG	953
092	ERMB_Y13600-625- 1362_415_437_R	TGCAAGAGCAACCCTAGTGTTCG	1196
093	ERMB_Y13600-625- 1362_471_493_R	TAGGATGAAAGCATTCCGCTGGC	919
094	ERMB_Y13600-625- 1362_521_545_R	TCATCTGTGGTATGGCGGGTAAGTT	989
095	PVLUK_NC003923-1529595- 1531285_775_804_R	TGGAAAACTCATGAAATTAAAGTGAAAG GA	1261
096	PVLUK_NC003923-1529595- 1531285_1095_1125_R	TCATTAGGTAAAATGTCTGGACATGATC CAA	993
097	PVLUK_NC003923-1529595- 1531285_950_978_R	TCTCATGAAAAAGGCTCAGGAGATACAAG	1124
098	PVLUK_NC003923-1529595- 1531285_654_682_R	TCACACCTGTAAGTGAGAAAAAGGTTGAT	968
099	SA442_NC003923-2538576- 2538831_98_124_R	TTTCCGATGCAACGTAATGAGATTTCA	1433
100	SA442_NC003923-2538576- 2538831_163_188_R	TCGTATGACCAGCTTCGGTACTACTA	1098
101	SA442_NC003923-2538576- 2538831_161_187_R	TTTATGACCAGCTTCGGTACTACTAAA	1428
102	SA442_NC003923-2538576- 2538831_231_257_R	TGATAATGAAGGGAAACCTTTTTCACG	1179
103	SEA_NC003923-2052219- 2051456_173_200_R	TCGATCGTGACTCTCTTTATTTTCAGTT	1070
104	SEA_NC003923-2052219- 2051456_621_651_R	TGTAATTAACCGAAGGTTCTGTAGAAGT ATG	1315
105	SEA_NC003923-2052219- 2051456_464_492_R	TAACCGTTTCCAAAGGTACTGTATTTTGT	861
106	SEA_NC003923-2052219- 2051456_459_492_R	TAACCGTTTCCAAAGGTACTGTATTTTG TTTACC	862
107	SEB_NC002758-2135540- 2135140 273 298 R	TCATCTGGTTTAGGATCTGGTTGACT	988

TABLE 2-continued

	TABLE 2-continued			
	Primer Pai	rs for Identification of Bacteria		
2109	SEB_NC002758-2135540- 2135140_402_402_R	TGTGCAGGCATCATGTCATACCAA	1334	
2110	SEB_NC002758-2135540- 2135140_402_402_2_R	TTACCATCTTCAAATACCCGAACAGTAA	1361	
2111	SEC_NC003923-851678- 852768_620_647_R	TGAGTTTGCACTTCAAAAGAAATTGTGT	1177	
2112	SEC_NC003923-851678- 852768_619_647_R	TCAGTTTGCACTTCAAAAGAAATTGTGTT	985	
2113	SEC_NC003923-851678- 852768_794_815_R	TCGCCTGGTGCAGGCATCATAT	1078	
2114	SEC_NC003923-851678- 852768_853_886_R	TCTTCACACTTTTAGAATCAACCGTTTT ATTGTC	1133	
2115	SED_M28521_741_770_R	TGTACACCATTTATCCACAAATTGATTG GT	1318	
2116	SED_M28521_739_770_R	TGGGCACCATTTATCCACAAATTGATTG GTAT	1288	
2117	SED_M28521_888_911_R	TCGCGCTGTATTTTTCCTCCGAGA	1079	
2118	SED_M28521_1022_1048_R	TGTCAATATGAAGGTGCTCTGTGGATA	1320	
2119	SEA-SEE_NC002952-2131289- 2130703_71_98_R	TCATTTATTTCTTCGCTTTTCTCGCTAC	994	
2120	SEA-SEE_NC002952-2131289- 2130703_314_344_R	TAAGCACCATATAAGTCTACTTTTTTCC CTT	870	
2121	SEE_NC002952-2131289- 2130703_465_494_R	TCTATAGGTACTGTAGTTTGTTTTCCGT CT	1120	
2122	SEE_NC002952-2131289- 2130703_586_586_R	TTTGCACCTTACCGCCAAAGCT	1436	
2123	SEE_NC002952-2131289- 2130703_586_586_2_R	TACCTTACCGCCAAAGCTGTCT	892	
2124	SEE_NC002952-2131289- 2130703_444_471_R	TCCGTCTATCCACAAGTTAATTGGTACT	1043	
2125	SEG_NC002758-1955100- 1954171_321_346_R	TAACTCCTCTTCCAACAGGTGGA	863	
2126	SEG_NC002758-1955100- 1954171_671_702_R	TGCTTTGTAATCTAGTTCCTGAATAGTA ACCA	1260	
2127	SEG_NC002758-1955100- 1954171_607_635_R	TGTCTATTGTCGATTGTTACCTGTACAGT	1329	
2128	SEG_NC002758-1955100- 1954171_735_762_R	TGATTCAAATGCAGAACCATCAAACTCG	1187	
2129	SEH_NC002953-60024- 60977_547_576_R	TAGTGTTGTACCTCCATATAGACATTCA GA	927	
2130	SEH_NC002953-60024- 60977_450_473_R	TTCTGAGCTAAATCAGCAGTTGCA	1390	
2131	SEH_NC002953-60024- 60977_608_634_R	TACCATCTACCCAAACATTAGCACCAA	888	
2132	SEH_NC002953-60024- 60977_594_616_R	TAGCACCAATCACCCTTTCCTGT	909	
2133	SEI_NC002758-1957830- 1956949_419_446_R	TCACAAGGACCATTATAATCAATGCCAA	966	

TABLE 2-continued

		TABLE 2-continued	
	Primer Pa	irs for Identification of Bacteria	
2134	SEI_NC002758-1957830- 1956949_420_447_R	TGTACAAGGACCATTATAATCAATGCCA	1316
2135	SEI_NC002758-1957830- 1956949_449_474_R	TCTGGCCCCTCCATACATGTATTTAG	1129
2136	SEI_NC002758-1957830- 1956949_290_316_R	TGGGTAGGTTTTTATCTGTGACGCCTT	1293
2137	 SEJ_AF053140_1381_1404_R	TCTAGCGGAACAACAGTTCTGATG	1118
2138	SEJ_AF053140_1429_1458_R	TCCTGAAGATCTAGTTCTTGAATGGTTA CT	1049
2139	SEJ_AF053140_1500_1531_R	TAGTCCTTTCTGAATTTTACCATCAAAG GTAC	925
2140	SEJ_AF053140_1521_1549_R	TCAGGTATGAAACACGATTAGTCCTTTCT	984
2141	TSST_NC002758-2137564- 2138293_278_305_R	TGTAAAAGCAGGGCTATAATAAGGACTC	1312
2142	TSST_NC002758-2137564- 2138293_289_313_R	TGCCCTTTTGTAAAAGCAGGGCTAT	1221
2143	TSST_NC002758-2137564- 2138293_448_478_R	TACTTTAAGGGGCTATCTTTACCATGAA CCT	907
2144	TSST_NC002758-2137564- 2138293_347_373_R	TAAGTTCCTTCGCTAGTATGTTGGCTT	874
2145	ARCC_NC003923-2725050- 2724595_97_128_R	TGAGTTAAAATGCGATTGATTTCAGTTT CCAA	1175
2146	ARCC_NC003923-2725050- 2724595_214_245_R	TCTTCTTCTTTCGTATAAAAAGGACCAA TTGG	1137
2147	ARCC_NC003923-2725050- 2724595_322_353_R	TGGTGTTCTAGTATAGATTGAGGTAGTG GTGA	1306
2148	AROE_NC003923-1674726- 1674277_435_464_R	TCGAATTCAGCTAAATACTTTTCAGCAT CT	1064
2149	AROE_NC003923-1674726- 1674277_155_181_R	TACCTGCATTAATCGCTTGTTCATCAA	891
2150	AROE_NC003923-1674726- 1674277_308_335_R	TAAGCAATACCTTTACTTGCACCACCTG	869
2151	GLPF_NC003923-1296927- 1297391_382_414_R	TGCAACAATTAATGCTCCGACAATTAAA GGATT	1193
2152	GLPF_NC003923-1296927- 1297391_81_108_R	TAAAGACACCGCTGGGTTTAAATGTGCA	850
2153	GLPF_NC003923-1296927- 1297391_323_359_R	TCACCGATAAATAAAATACCTAAAGTTA ATGCCATTG	972
2154	GMK_NC003923-1190906- 1191334_166_197_R	TGATATTGAACTGGTGTACCATAATAGT TGCC	1180
2155	GMK_NC003923-1190906- 1191334_305_333_R	TCGCTCTCTCAAGTGATCTAAACTTGGAG	1082
2156	 GMK_NC003923-1190906- 1191334_403_432_R	TGGGACGTAATCGTATAAATTCATCATT TC	1284
2157	PTA_NC003923-628885- 629355 314 345 R	TGGTACACCTGGTTTCGTTTTGATGATT TGTA	1301
2158	PTA_NC003923-628885- 629355 211 239 R	TGCATTGTACCGAAGTAGTTCACATTGTT	1207
	029999_211_299_K		

	TABLE 2-c	ontinued	
	Primer Pairs for Ident:	ification of Bacteria	
2159	PTA_NC003923-628885- 629355_393_422_R	TGTTCTGGATTGATTGCACAATCACCAA AG	1349
2160	TPI_NC003923-830671- 831072_209_239_R	TGAGATGTTGATGATTTACCAGTTCCGA TTG	1165
2161	TPI_NC003923-830671- 831072_97_129_R	TGGTACAACATCGTTAGCTTTACCACTT TCACG	1300
2162	TPI_NC003923-830671- 831072_253_286_R	TGGCAGCAATAGTTTGACGTACAAATGC ACACAT	1275
2163	YQI_NC003923-378916- 379431_259_284_R	TCGCCAGCTAGCACGATGTCATTTTC	1076
2164	YQI_NC003923-378916- 379431_120_145_R	TTCGTGCTGGATTTTGTCCTTGTCCT	1388
2165	YQI_NC003923-378916- 379431_193_221_R	TCCAACCCAGAACCACATACTTTATTCAC	997
2166	YQI_NC003923-378916- 379431_364_396_R	TCCATCTGTTAAACCATCATATACCATG CTATC	1013
2167	BLAZ_(1913827 1914672)_655_683_R	TGGCCACTTTTATCAGCAACCTTACAGTC	1277
2168	BLAZ_(1913827 1914672)_628_659_R	TAGTCTTTTGGAACACCGTCTTTAATTA AAGT	926
2169	BLAZ_(1913827 1914672)_622_651_R	TGGAACACCGTCTTTAATTAAAGTATCT CC	1263
2170	BLAZ_(1913827 1914672)_553_583_R	TCTTTTCTTTGCTTAATTTTCCATTTGC GAT	1145
2171	BLAZ_(1913827 1914672)_121_154_R	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	1366
2172	BLAZ_(1913827 1914672)_127_157_R	TGGGGACTTCCTTACCACTTTTAGTATC TAA	1289
2173	BLAZ_NC002952-1913827- 1914672_655_683_R	TGGCCACTTTTATCAGCAACCTTACAGTC	1277
2174	BLAZ_NC002952-1913827- 1914672_628_659_R	TAGTCTTTTGGAACACCGTCTTTAATTA AAGT	926
2175	BLAZ_NC002952-1913827- 1914672_622_651_R	TGGAACACCGTCTTTAATTAAAGTATCT CC	1263
2176	BLAZ_NC002952-1913827- 1914672_553_583_R	TCTTTTCTTTGCTTAATTTTCCATTTGC GAT	1145
2177	BLAZ_NC002952-1913827- 1914672_121_154_R	TTACTTCCTTACCACTTTTAGTATCTAA AGCATA	1366
2178	BLAZ_NC002952-1913827- 1914672_127_157_R	TGGGGACTTCCTTACCACTTTTAGTATC TAA	1289
2247	TUFB_NC002758-615038- 616222_793_820_R	TGTCACCAGCTTCAGCGTAGTCTAATAA	1321
2248	TUFB_NC002758-615038- 616222_793_820_R	TGTCACCAGCTTCAGCGTAGTCTAATAA	1321
2249	TUFB_NC002758-615038- 616222_793_820_R	TGTCACCAGCTTCAGCGTAGTCTAATAA	1321
2250	TUFB_NC002758-615038- 616222_601_630_R	TGGTTTGTCAGAATCACGTTCTGGAGTT GG	1311
2251	TUFB_NC002758-615038- 616222_1030_1060_R	TAGGCATAACCATTTCAGTACCTTCTGG TAA	922

TABLE 2-continued

	г -	TABLE 2-continued	
	Primer Pair	s for Identification of Bacteria	
2252	TUFB_NC002758-615038- 616222_424_459_R	TTCCATTTCAACTAATTCTAATAATTCT TCATCGTC	1382
2253	NUC_NC002758-894288- 894974_483_509_R	TACGCTAAGCCACGTCCATATTTATCA	899
2254	NUC_NC002758-894288- 894974_165_189_R	TGTTTGTGATGCATTTGCTGAGCTA	1354
2255	NUC_NC002758-894288- 894974_222_250_R	TAGTTGAAGTTGCACTATATACTGTTGGA	928
2256	NUC_NC002758-894288- 894974_396_421_R	TAAATGCACTTGCTTCAGGGCCATAT	853
2270	RPOB_EC_3868_3895_R	TCACGTCGTCCGACTTCACGGTCAGCAT	979
2271	RPOB_EC_3860_3890_R	TCGTCGGACTTAACGGTCAGCATTTCCT GCA	1107
2272	RPOB_EC_3860_3890_2_R	TCGTCCGACTTAACGGTCAGCATTTCCT GCA	1102
2273	RPOB_EC_3862_3890_R	TCGTCGGACTTAACGGTCAGCATTTCCTG	1106
2274	RPOB_EC_3862_3890_2_R	TCGTCCGACTTAACGGTCAGCATTTCCTG	1101
2275	RPOB_EC_3865_3890_R	TCGTCGGACTTAACGGTCAGCATTTC	1105
2276	RPOB_EC_3865_3890_2_R	TCGTCCGACTTAACGGTCAGCATTTC	1100
2309	MUPR_X75439_1744_1773_R	TCCCTTCCTTAATATGAGAAGGAAACCA CT	1030
2310	MUPR_X75439_1413_1441_R	TGAGCTGGTGCTATATGAACAATACCAGT	1171
2312	MUPR_X75439_1381_1409_R	TATATGAACAATACCAGTTCCTTCTGAGT	931
2313	MUPR_X75439_2548_2574_R	TTAATCTGGCTGCGGAAGTGAAATCGT	1360
2314	MUPR_X75439_2605_2630_R	TCGTCCTCTCGAATCTCCGATATACC	1103
2315	MUPR_X75439_2711_2740_R	TCAGATATAAATGGAACAAATGGAGCCA CT	981
2316	MUPR_X75439_2867_2890_R	TCTGCATTTTTGCGAGCCTGTCTA	1127
2317	MUPR_X75439_977_1007_R	TGTACAATAAGGAGTCACCTTATGTCCC TTA	1317
2318	CTXA_NC002505-1568114- 1567341_194_221_R	TCGTGCCTAACAAATCCCGTCTGAGTTC	1109
2319	CTXA_NC002505-1568114- 1567341_194_221_R	TCGTGCCTAACAAATCCCGTCTGAGTTC	1109
2320	CTXA_NC002505-1568114- 1567341_186_214_R	TAACAAATCCCGTCTGAGTTCCTCTTGCA	855
2321	CTXA_NC002505-1568114- 1567341_186_214_R	TAACAAATCCCGTCTGAGTTCCTCTTGCA	855
2322	CTXA_NC002505-1568114- 1567341_180_207_R	TCCCGTCTGAGTTCCTCTTGCATGATCA	1027
2323	CTXA_NC002505-1568114- 1567341_186_214_R	TAACAAATCCCGTCTGAGTTCCTCTTGCA	855
2324	INV_U22457-74- 3772_942_966_R	TGACCCAAAGCTGAAAGCTTTACTG	1154
2325	INV_U22457-74- 3772_942_970_R	TAACTGACCCAAAGCTGAAAGCTTTACTG	864

TABLE 2-continued

	Drimer Dairs for	Identification of Bacteria	
2326	INV_U22457-74- 3772_1619_1647_R	TGGGTTGCGTTGCAGATTATCTTTACCAA	1296
2327	INV_U22457-74- 3772_1622_1652_R	TCATAAGGGTTGCGTTGCAGATTATCTT TAC	987
2328	ASD_NC006570-439714- 438608_54_84_R	TGATTCGATCATACGAGACATTAAAACT GAG	1188
2329	ASD_NC006570-439714- 438608_66_95_R	TCAAAATCTTTTGATTCGATCATACGAG AC	948
2330	ASD_NC006570-439714- 438608_67_95_R	TCCCAATCTTTTGATTCGATCATACGAGA	1016
2331	ASD_NC006570-439714- 438608_107_134_R	TCTGCCTGAGATGTCGAAAAAAACGTTG	1128
2332	GALE_AF513299_241_271_R	TCTCACCTACAGCTTTAAAGCCAGCAAA ATG	1122
2333	GALE_AF513299_245_271_R	TCTCACCTACAGCTTTAAAGCCAGCAA	1121
2334	GALE_AF513299_233_264_R	TACAGCTTTAAAGCCAGCAAAATGAATT ACAG	883
2335	GALE_AF513299_252_279_R	TTCAACACTCTCACCTACAGCTTTAAAG	1374
2336	PLA_AF053945_7434_7468_R	TACGTATGTAAATTCCGCAAAGACTTTG GCATTAG	900
2337	PLA_AF053945_7428_7455_R	TCCGCAAAGACTTTGGCATTAGGTGTGA	1035
2338	PLA_AF053945_7430_7460_R	TAAATTCCGCAAAGACTTTGGCATTAGG TGT	854
2339	CAF_AF053947_33498_33523_R	TAAGAGTGATGCGGGCTGGTTCAACA	866
2340	CAF_AF053947_33483_33507_R	TGGTTCAACAAGAGTTGCCGTTGCA	1308
2341	CAF_AF053947_33483_33504_R	TTCAACAAGAGTTGCCGTTGCA	1373
2342	CAF_AF053947_33494_33517_R	TGATGCGGGCTGGTTCAACAAGAG	1184
2344	GAPA_NC_002505_29_58_R_1	TCCTTTATGCAACTTGGTATCAACAGGA AT	1060
2472	OMPA_NC000117_145_167_R	TCACACCAAGTAGTGCAAGGATC	967
2473	OMPA_NC000117_865_893_R	TCAAAACTTGCTCTAGACCATTTAACTCC	947
2474	OMPA_NC000117_757_777_R	TGTCGCAGCATCTGTTCCTGC	1328
2475	OMPA_NC000117_1011_1040_R	TGACAGGACACAATCTGCATGAAGTCTG AG	1153
2476	OMPA_NC000117_871_894_R	TTCAAAAGTTGCTCGAGACCATTG	1371
2477	OMPA_NC000117_511_534_R	TAAAGAGACGTTTGGTAGTTCATTTGC	851
2478	OMPA_NC000117_787_816_R	TTGCCATTCATGGTATTTAAGTGTAGCA GA	1406
2479	OMPA_NC000117_649_672_R	TTCTTGAACGCGAGGTTTCGATTG	1395
2480	OMPA_NC000117_417_444_R	TCCTTTAAAATAACCGCTAGTAGCTCCT	1058
2481	OMP2_NC000117_71_91_R	TCCCGCTGGCAAATAAACTCG	1025
2482	OMP2_NC000117_445_471_R	TGGATCACTGCTTACGAACTCAGCTTC	1270
2483	OMP2_NC000117_1396_1419_R	TACGTTTGTATCTTCTGCAGAACC	903
2484	OMP2 NC000117 1541 1569 R	TCCTTTCAATGTTACAGAAAACTCTACAG	1062

TABLE 2-continued

	TABLE 2-continued			
	Primer Pairs for Identi	fication of Bacteria		
2485	OMP2_NC000117_120_148_R	TGTCAGCTAAGCTAATAACGTTTGTAGAG	1323	
2486	OMP2_NC000117_240_261_R	TTGACATCGTCCCTCTTCACAG	1396	
2487	GYRA_NC000117_640_660_R	TGCTGTAGGGAAATCAGGGCC	1251	
2488	GYRA_NC000117_871_893_R	TTGTCAGACTCATCGCGAACATC	1419	
2489	GYRA_NC002952_319_345_R	TCCATCCATAGAACCAAAGTTACCTTG	1010	
2490	GYRA_NC002952_1024_1041_R	TCGCAGCGTGCGTGGCAC	1073	
2491	GYRA_NC002952_1546_1562_R	TTGGTGCGCTTGGCGTA	1416	
2492	GYRA_NC002952_124_143_R	TGGCGATGCACTGGCTTGAG	1279	
2493	GYRA_NC002952_313_333_R	TCCGAAGTTGCCCTGGCCGTC	1032	
2494	GYRA_NC002952_308_330_R	TAAGTTACCTTGCCCGTCAACCA	873	
2495	GYRA_NC002952_220_242_R	TGCGGGTGATACTTACCGAGTAC	1236	
2496	GYRA_NC002952_643_663_R	TGCTGTAGGGAAATCAGGGCC	1251	
2497	GYRA_NC002952_338_360_R	TGCGGCAGCACTATCACCATCCA	1234	
2498	GYRA_NC000912_346_370_R	TCGAGCCGAAGTTACCCTGTCCGTC	1067	
2504	ARCC_NC003923-2725050- 2724595_214_239P_R	ТСрТрТрТрСрGTATAAAAAGGACpCpA АТрТрGG	1116	
2505	PTA_NC003923-628885- 629355_314_342P_R	ТАСРАСРСРТӨӨТРТРТРСРӨТРТРТР РGАТGАТРТРТРГРЭТА	904	
2517	CJMLST_ST1_1945_1977_R	TGTTTTATGTGTAGTTGAGCTTACTACA TGAGC	1355	
2518	CJMLST_ST1_3073_3097_R	TCCCCATCTCCGCAAAGACAATAAA	1020	
2519	CJMLST_ST1_2447_2481_R	TCTACAACACTTGATTGTAATTTGCCTT GTTCTTT	1117	
2520	CJMLST_ST1_725_756_R	TCGGAAACAAAGAATTCATTTTCTGGTC CAAA	1084	
2521	CJMLST_ST1_454_487_R	TGCTATATGCTACAACTGGTTCAAAAAC ATTAAG	1245	
2522	CJMLST_ST1_1312_1340_R	TTTAGCTACTATTCTAGCTGCCATTTCCA	1427	
2523	CJMLST_ST1_3656_3685_R	TCAAAGAACCAGCACCTAATTCATCATT TA	950	
2524	CJMLST_ST1_55_84_R	TGTTCCAATAGCAGTTCCGCCCAAATTG AT	1348	
2525	CJMLST_ST1_1383_1417_R	TTTCCCCGATCTAAATTTGGATAAGCCA TAGGAAA	1432	
2526	CJMLST_ST1_2352_2379_R	TCCAAACGATCTGCATCACCATCAAAAG	996	
2527	CJMLST_ST1_1486_1520_R	TGCATGAAGCATAAAAACTGTATCAAGT GCTTTTA	1205	
2528	CJMLST_ST1_3511_3542_R	TGCTTGCTCAAATCATCATAAACAATTA AAGC	1257	
2529	CJMLST_ST1_1203_1230_R	TAGGATGAGCATTATCAGGGAAAGAATC	920	
2530	CJMLST_ST1_2940_2973_R	TAGCGATTTCTACTCCTAGAGTTGAAAT TTCAGG	917	

TABLE 2-continued

	TABLE 2-continued				
	Primer Pairs for Identi	fication of Bacteria			
2531	CJMLST_ST1_2131_2162_R	TTGGTTCTTACTTGTTTTGCATAAACTT TCCA	1417		
2532	CJMLST_ST1_655_685_R	TATTGCTTTTTTTGCTATGCTTCTTGGA CAT	942		
2564	GLTA_NC002163-1604930- 1604529_352_380_R	TTTTGCTCATGATCTGCATGAAGCATAAA	1443		
2565	UNCA_NC002163-112166- 112647_146_171_R	TCGACCTGGAGGACGACGTAAAATCA	1065		
2566	UNCA_NC002163-112166- 112647_294_329_R	TGGGATAACATTGGTTGGAATATAAGCA GAAACATC	1285		
2567	PGM_NC002163-327773- 328270_365_396_R	TCCATCGCCAGTTTTTGCATAATCGCTA AAAA	1012		
2568	TKT_NC002163-1569415- 1569873_350_383_R	TCAAAACGCATTTTTACATCTTCGTTAA AGGCTA	946		
2570	GLTA_NC002163-1604930- 1604529_109_142_R	TGTTCATGTTTAAATGATCAGGATAAAA AGCACT	1347		
2571	TKT_NC002163-1569415- 1569903_139_162_R	TGCCATAGCAAAGCCTACAGCATT	1214		
2572	TKT_NC002163-1569415- 1569903_313_345_R	TACATCTCCTTCGATAGAAATTTCATTG CTATC	886		
2573	TKT_NC002163-1569415- 1569903_449_481_R	TAAGACAAGGTTTTGTGGATTTTTTAGC TTGTT	865		
2574	TKT_NC002163-1569415- 1569903_139_163_R	TTGCCATAGCAAAGCCTACAGCATT	1405		
2575	GLTA_NC002163-1604930- 1604529_139_168_R	TGCCATTTCCATGTACTCTTCTCTAACA TT	1216		
2576	GLYA_NC002163-367572- 368079_476_508_R	ATTGCTTCTTACTTGCTTAGCATAAATT TTCCA	756		
2577	GLYA_NC002163-367572- 368079_242_270_R	TGCTCACCTGCTACAACAAGTCCAGCAAT	1246		
2578	GLYA_NC002163-367572- 368079_384_416_R	TTCCACCTTGGATACCTGGAAAAATAGC TGAAT	1381		
2579	GLYA_NC002163-367572- 368079_52_81_R	TCAAGCTCTACACCATAAAAAAAGCTCT CA	961		
2580	PGM_NC002163-327746- 328270_356_379_R	TTTGCTCTCCGCCAAAGTTTCCAC	1438		
2581	PGM_NC002163-327746- 328270_241_267_R	TGCCCCATTGCTCATGATAGTAGCTAC	1219		
2582	PGM_NC002163-327746- 328270_79_102_R	TGCACGCAAACGCTTTACTTCAGC	1200		
2583	UNCA_NC002163-112166- 112647_196_225_R	TGCCCTTTCTAAAAGTCTTGAGTGAAGA TA	1220		
2584	UNCA_NC002163-112166- 112647_88_123_R	TGCATGCTTACTCAAATCATCATAAACA ATTAAAGC	1206		
2585	ASPA_NC002163-96692- 97166_403_432_R	TGCAAAAGTAACGGTTACATCTGCTCCA AT	1192		
2586	ASPA_NC002163-96692- 97166_316_346_R	TCATGATAGAACTACCTGGTTGCATTTT TGG	991		
2587	GLNA_NC002163-658085- 657609_340_371_R	TGAGTTTGAACCATTTCAGAGCGAATAT CTAC	1176		

TABLE 2-continued

TABLE 2-continued				
	Primer	Pairs for Identi	fication of Bacteria	
2588	TKT_NC002163-1569415- 1569903_212_236_R		TCCCCATCTCCGCAAAGACAATAAA	1020
2589	TKT_NC002163-1569415- 1569903_361_393_R		TCCTTGTGCTTCAAAACGCATTTTTACA TTTTC	1057
2590	GLYA_NC002163-367572- 368095_317_340_R		TCCTCTTGGGCCACGCAAAGTTTT	1047
2591	GLYA_NC002163-367572- 368095_485_516_R		TCTTGAGCATTGGTTCTTACTTGTTTTG CATA	1141
2592	PGM_NC002163_116_142_R		TCAAACGATCCGCATCACCATCAAAAG	949
2593	PGM_NC002163_247_277_R		TCCCCTTTAAAGCACCATTACTCATTAT AGT	1023
2594	GLNA_NC002163-658085- 657609_148_179_R		TCAAAAACAAAGAATTCATTTTCTGGTC CAAA	945
2595	ASPA_NC002163-96685- 97196_467_497_R		TCAAGCTATATGCTACAACTGGTTCAAA AAC	960
2596	ASPA_NC002163-96685- 97196_95_127_R		TACAACCTTCGGATAATCAGGATGAGAA TTAAT	880
2597	ASPA_NC002163-96685- 97196_185_210_R		TAAGCTCCCGTATCTTGAGTCGCCTC	872
2598	PGM_NC002163-327746- 328270_230_261_R		TCACGATCTAAATTTGGATAAGCCATAG GAAA	975
2599	PGM_NC002163-327746- 328270_353_381_R		TTTTGCTCATGATCTGCATGAAGCATAAA	1443
2600	PGM_NC002163-327746- 328270_95_123_R		TGATAAAAAGCACTAAGCGATGAAACAGC	1178
2601	PGM_NC002163-327746- 328270_314_345_R		TCAAGTGCTTTTACTTCTATAGGTTTAA GCTC	963
2602	UNCA_NC002163-112166- 112647_199_229_R		TGCTTGCTCTTTCAAGCAGTCTTGAATG AAG	1258
2603	UNCA_NC002163-112166- 112647_430_461_R		TCCGAAACTTGTTTGTAGCTTTAATTT GAGC	1031
2734	GYRA_AY291534_268_288_R		TTGCGCCATACGTACCATCGT	1407
2735	GYRA_AY291534_256_285_R		TGCCATACGTACCATCGTTTCATAAACA GC	1213
2736	GYRA_AY291534_268_288_R		TTGCGCCATACGTACCATCGT	1407
2737	GYRA_AY291534_319_346_R		TATCGACAGATCCAAAGTTACCATGCCC	935
2738	GYRA_NC002953-7005- 9668_265_287_R		TCTTGAGCCATACGTACCATTGC	1142
2739	GYRA_NC002953-7005- 9668_316_343_R		TATCCATTGAACCAAAGTTACCTTGGCC	933
2740	GYRA_NC002953-7005- 9668_253_283_R		TAGCCATACGTACCATTGCTTCATAAAT AGA	912
2741	GYRA_NC002953-7005- 9668_265_287_R		TCTTGAGCCATACGTACCATTGC	1142
2842	CAPC_AF188935-56074- 55628_348_378_R		TGGTAACCCTTGTCTTTGAATTGTATTT GCA	1299
2843	CAPC_AF188935-56074- 55628_349_377P_R		ТGTAACCCTTGTCTTTGAATpTpGTATp TpTpGC	1314

TABLE 2-continued

Prin			
	r Pairs for Id	dentification of Bacteria	
2844 CAPC_AF188935-56074- 55628_349_384_R		TGTTAATGGTAACCCTTGTCTTTGAATT GTATTTGC	1344
2845 CAPC_AF188935-56074- 55628_337_375_R		TAACCCTTGTCTTTGAATTGTATTTGCA ATTAATCCTGG	860
2846 PARC_X95819_121_153_R		TAAAGGATAGCGGTAACTAAATGGCTGA GCCAT	852
2847 PARC_X95819_157_178_R		TACCCCAGTTCCCCTGACCTTC	889
2848 PARC_X95819_97_128_R		TGAGCCATGAGTACCATGGCTTCATAAC ATGC	1169
2849 PARC_NC003997-3362578 3365001_256_283_R		TCCAAGTTTGACTTAAACGTACCATCGC	1001
2850 PARC_NC003997-3362578 3365001_304_335_R		TCGTCAACACTACCATTATTACCATGCA TCTC	1099
2851 PARC_NC003997-3362578 3365001_244_275_R		TGACTTAAACGTACCATCGCTTCATATA CAGA	1162
2852 GYRA_AY642140_71_100_1		TGCTAAAGTCTTGAGCCATACGAACAAT GG	1242
2853 GYRA_AY642140_121_146	٤	TCGATCGAACCGAAGTTACCCTGACC	1069
2854 GYRA_AY642140_58_89_R		TGAGCCATACGAACAATGGTTTCATAAA CAGC	1168
2860 CYA_AF065404_1448_147	R	TCAGCTGTTAACGGCTTCAAGACCC	983
2861 LEF_BA_AF065404_843_8	L_R	TCTTTAAGTTCTTCCAAGGATAGATTTA TTTCTTGTTCG	1144
2862 LEF_BA_AF065404_843_8	L_R	TCTTTAAGTTCTTCCAAGGATAGATTTA TTTCTTGTTCG	1144
2917 MUTS_AY698802_172_193	2	TGCGGTCTGGCGCATATAGGTA	1237
2918 MUTS_AY698802_228_252	٤	TCAATCTCGACTTTTTGTGCCGGTA	965
2919 MUTS_AY698802_314_342	٤	TCGGTTTCAGTCATCTCCACCATAAAGGT	1097
2920 MUTS_AY698802_413_433	2	TGCCAGCGACAGACCATCGTA	1210
2921 MUTS_AY698802_497_519	2	TCCGGTAACTGGGTCAGCTCGAA	1040
2922 AB_MLST-11- OIF007_1110_1137_R		TAGTATCACCACGTACACCCGGATCAGT	923
2927 GAPA_NC_002505_29_58_1	_1	TCCTTTATGCAACTTGGTATCAACAGGA AT	1060
2928 GAPA_NC002505_769_798	2_R	TCCTTTATGCAACTTGGTATCAACCGGA AT	1061
2929 GAPA_NC002505_769_798	3_R	TCCTTTATGCAACTTAGTATCAACCGGA AT	1059
2932 INFB_EC_1439_1468_R		TTGCTGCTTTCGCATGGTTAATCGCTTC AA	1410
2933 INFB_EC_1439_1468_R		TTGCTGCTTTCGCATGGTTAATCGCTTC AA	1410
2934 INFB_EC_1439_1468_R		TTGCTGCTTTCGCATGGTTAATCGCTTC AA	1410
2949 ACS_NC002516-970624- 971013_364_383_R		TGGACCACGCCGAAGAACGG	1265

TABLE 2-continued

	Primer H	Pairs for Identification of Bacteria	
2950	ARO_NC002516-26883- 27380_111_128_R	TGTGTTGTCGCCGCGCAG	1341
2951	ARO_NC002516-26883- 27380_459_484_R	TCCTTGGCATACATCATGTCGTAGCA	1056
2952	GUA_NC002516-4226546- 4226174_127_146_R	TCGGCGAACATGGCCATCAC	1091
2953	GUA_NC002516-4226546- 4226174_214_233_R	TGCTTCTCTTCCGGGTCGGC	1256
2954	GUA_NC002516-4226546- 4226174_265_287_R	TGCTTGGTGGCTTCTTCGTCGAA	1259
2955	GUA_NC002516-4226546- 4226174_288_309_R	TGCGAGGAACTTCACGTCCTGC	1229
2956	GUA_NC002516-4226546- 4226174_355_371_R	TCGTGGGCCTTGCCGGT	1111
2957	MUT_NC002516-5551158- 5550717_99_116_R	TCACGGGCCAGCTCGTCT	978
2958	MUT_NC002516-5551158- 5550717_256_277_R	TCACCATGCGCCCGTTCACATA	971
2959	NUO_NC002516-2984589- 2984954_97_117_R	TCGGTGGTGGTAGCCGATCTC	1095
2960	NUO_NC002516-2984589- 2984954_301_326_R	TTCAGGTACAGCAGGTGGTTCAGGAT	1376
2961	PPS_NC002516-1915014- 1915383_140_165_R	TCCATTTCCGACACGTCGTTGATCAC	1014
2962	PPS_NC002516-1915014- 1915383_341_360_R	TCCTGGCCATCCTGCAGGAT	1052
2963	TRP_NC002516-671831- 672273_131_150_R	TCGATCTCCTTGGCGTCCGA	1071
2964	TRP_NC002516-671831- 672273_362_383_R	TGATCTCCATGGCGCGGATCTT	1182
2972	AB_MLST-11- OIF007_1126_1153_R	TAGTATCACCACGTACICCIGGATCAGT	924
2993	OMPU_NC002505_544_567_R	TCGGTCAGCAAAACGGTAGCTTGC	1094
2994	GAPA_NC002505-506780- 507937_769_802_R	TTTTCCCTTTATGCAACTTAGTATCAAC IGGAAT	1442
2995	GAPA_NC002505-506780- 507937_769_803_R	TCCATACCTTTATGCAACTTIGTATCAA CIGGAAT	1008
2996	GAPA_NC002505-506780- 507937_785_817_R	TCGGAAATATTCTTTCAATACCTTTATG CAACT	1085
2997	GAPA_NC002505-506780- 507937_785_817_R	TCGGAAATATTCTTTCAATACCTTTATG CAACT	1085
2998	GAPA_NC002505-506780- 507937_784_817_R	TCGGAAATATTCTTTCAATICCTTTITG CAACTT	1087
2999	GAPA_NC002505-506780- 507937_784_817_2_R	TCGGAAATATTCTTTCAATACCTTTATG CAACTT	1086
3000	GAPA_NC002505-506780- 507937_769_805_R	TTTCAATACCTTTATGCAACTTIGTATC AACIGGAAT	1430
3001	CTXB_NC002505-1566967- 1567341 139 163 R	TCCCGGCTAGAGATTCTGTATACGA	1026

TABLE 2-continued

		TABLE 2-continued	
	Primer	Pairs for Identification of Bacteria	
3002	CTXB_NC002505-1566967- 1567341_132_162_R	TCCGGCTAGAGATTCTGTATACGAAAAT ATC	1038
3003	CTXB_NC002505-1566967- 1567341_118_150_R	TGCCGTATACGAAAATATCTTATCATTT AGCGT	1225
3004	TUFB_NC002758-615038- 616222_778_809_R	TCAGCGTAGTCTAATAATTTACGGAACA TTTC	982
3005	TUFB_NC002758-615038- 616222_783_813_R	TGCTTCAGCGTAGTCTAATAATTTACGG AAC	1255
3006	TUFB_NC002758-615038- 616222_778_807_R	TGCGTAGTCTAATAATTTACGGAACATT TC	1238
3007	TUFB_NC002758-615038- 616222_778_807_R	TGCGTAGTCTAATAATTTACGGAACATT TC	1238
3008	TUFB_NC002758-615038- 616222_785_818_R	TCACCAGCTTCAGCGTAGTCTAATAATT TACGGA	970
3009	TUFB_NC002758-615038- 616222_778_812_R	TCTTCAGCGTAGTCTAATAATTTACGGA ACATTTC	1134
3010	MECI-R_NC003923-41798- 41609_89_112_R	TGTGATATGGAGGTGTAGAAGGTG	1332
3011	MECI-R_NC003923-41798- 41609_81_110_R	TGGGATGGAGGTGTAGAAGGTGTTATCA TC	1287
3012	MECI-R_NC003923-41798- 41609_81_110_R	TGGGATGGAGGTGTAGAAGGTGTTATCA TC	1286
3013	MECI-R_NC003923-41798- 41609_81_113_R	TGGGGATATGGAGGTGTAGAAGGTGTTA TCATC	1290
3014	MUPR_X75439_2548_2570_R	TCTGGCTGCGGAAGTGAAATCGT	1130
3015	MUPR_X75439_2547_2568_R	TGGCTGCGGAAGTGAAATCGTA	1281
3016	MUPR_X75439_2551_2573_R	TAATCTGGCTGCGGAAGTGAAAT	876
3017	MUPR_X75439_2549_2573_R	TAATCTGGCTGCGGAAGTGAAATCG	877
3018	MUPR_X75439_2559_2589_R	TGGTATATTCGTTAATTAATCTGGCTGC GGA	1303
3019	MUPR_X75439_2554_2581_R	TCGTTAATTAATCTGGCTGCGGAAGTGA	1112
3020	AROE_NC003923-1674726- 1674277_309_335_R	TAAGCAATACCTTTACTTGCACCACCT	868
3021	AROE_NC003923-1674726- 1674277_311_339_R	TTCATAAGCAATACCTTTACTTGCACCAC	1378
3022	AROE_NC003923-1674726- 1674277_311_335P_R	ТААĞСААТАССРТРТРТРАСТРТРĞСРА СрСрАС	867
3023	ARCC_NC003923-2725050- 2724595_214_245_R	TCTTCTTCTTCGTATAAAAAGGACCAA TTGG	1137
3024	ARCC_NC003923-2725050- 2724595_212_242_R	TCTTCTTTCGTATAAAAAGGACCAATTG GTT	1139
3025	ARCC_NC003923-2725050- 2724595_232_260_R	TGCGCTAATTCTTCAACTTCTTCTTCGT	1232
3026	PTA_NC003923-628885- 629355_322_351_R	TGTTCTTGATACACCTGGTTTCGTTTTG AT	1350
3027	PTA_NC003923-628885- 629355_314_345_R	TGGTACACCTGGTTTCGTTTTGATGATT TGTA	1301

TABLE 2-continued			
Primer Pairs for Identification of Bacteria			
3028 PTA_NC003923-628885- 629355_322_351_R	TGTTCTTGATACACCTGGTTTCGTTTTG AT	1350	

[0372] Primer pair name codes and reference sequences are shown in Table 3. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name may include specific coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label "no extraction." Where "no extraction" is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the "Gene Name" column.

[0373] To determine the exact primer hybridization coordinates of a given pair of primers on a given bioagent nucleic acid sequence and to determine the sequences, molecular masses and base compositions of an amplification product to be obtained upon amplification of nucleic acid of a known bioagent with known sequence information in the region of interest with a given pair of primers, one with ordinary skill in bioinformatics is capable of obtaining alignments of the primers of the present invention with the GenBank gi number of the relevant nucleic acid sequence of the known bioagent. For example, the reference sequence GenBank gi numbers (Table 3) provide the identities of the sequences which can be obtained from GenBank. Alignments can be done using a bioinformatics tool such as BLASTn provided to the public by NCBI (Bethesda, Md.). Alternatively, a relevant GenBank sequence may be downloaded and imported into custom programmed or commercially available bioinformatics programs wherein the alignment can be carried out to determine the primer hybridization coordinates and the sequences, molecular masses and base compositions of the amplification product. For example, to obtain the hybridization coordinates of primer pair number 2095 (SEQ ID NOs: 456:1261), First the forward primer (SEQ ID NO: 456) is subjected to a BLASTn search on the publicly available NCBI BLAST

website. "RefSeq_Genomic" is chosen as the BLAST database since the gi numbers refer to genomic sequences. The BLAST query is then performed. Among the top results returned is a match to GenBank gi number 21281729 (Accession Number NC_003923). The result shown below, indicates that the forward primer hybridizes to positions 1530282 ... 1530307 of the genomic sequence of *Staphylococcus aureus* subsp. *aureus* MW2 (represented by gi number 21281729).

Staphylococcus aureus subsp. aureus MW2, complete genome

Length=2820462

[0374] Features in this part of subject sequence:

[0375] Panton-Valentine leukocidin chain F precursor Score=52.0 bits (26), Expect=2e-05

Identities=26/26 (100%), Gaps=0/26 (0%)

Strand=Plus/Plus

[0376]

Query	1	TGAGCTGCATCAACTGTATTGGATAG	26
Sbict	1530282	TGAGCTGCATCAACTGTATTGGATAG	1530307

[0377] The hybridization coordinates of the reverse primer (SEQ ID NO: 1261) can be determined in a similar manner and thus, the bioagent identifying amplicon can be defined in terms of genomic coordinates. The query/subject arrangement of the result would be presented in Strand=Plus/Minus format because the reverse strand hybridizes to the reverse complement of the genomic sequence. HThe preceding sequence analyses are well known to one with ordinary skill in bioinformatics and thus, Table 3 contains sufficient information to determine the primer hybridization coordinates of any of the primers of Table 2 to the applicable reference sequences described therein.

TABLE 3

	Primer Name Codes and Reference Sequence				
Primer name code	Gene Name	Organism	Reference GenBank gi number		
16S_EC	16S rRNA (16S ribosomal RNA gene)	Escherichia coli	16127994		
23S_EC	23S rRNA (23S ribosomal RNA gene)	Escherichia coli	16127994		
CAPC_BA	capC (capsule biosynthesis gene)	Bacillus anthracis	6470151		
CYA_BA	cya (cyclic AMP gene)	Bacillus anthracis	4894216		
DNAK_EC	dnaK (chaperone dnaK gene)	Escherichia coli	16127994		
GROL_EC	groL (chaperonin groL)	Escherichia coli	16127994		
HFLB_EC	hflb (cell division protein peptidase ftsH)	Escherichia coli	16127994		
INFB_EC	infB (protein chain initiation factor infB gene)	Escherichia coli	16127994		
LEF_BA	lef (lethal factor)	Bacillus anthracis	21392688		
PAG_BA	pag (protective antigen)	Bacillus anthracis	21392688		

TABLE 3-continued

Reference			
Primer name code	Gene Name	Organism	GenBank g number
RPLB_EC RPOB_EC	rplB (50S ribosomal protein L2) rpoB (DNA-directed RNA polymerase beta chain)	Escherichia coli Escherichia coli	16127994 6127994
RPOC_EC	rpoC (DNA-directed RNA polymerase beta' chain)	Escherichia coli	16127994
SP101ET_SPET_11	Artificial Sequence Concatenation comprising: gki (glucose kinase) gtr (glutamine transporter protein) murI (glutamate racemase) mutS (DNA mismatch repair protein) xpt (xanthine phosphoribosyl transferase) yqiL (acetyl-CoA-acetyl transferase) tkt (transketolase)	Artificial Sequence* - partial gene sequences of <i>Streptococcus</i> <i>pyogenes</i>	15674250
SSPE_BA	sspE (small acid-soluble spore protein)	Bacillus anthracis	30253828
IUFB_EC	tufB (Elongation factor Tu)	Escherichia coli	16127994
VALS_EC	valS (Valyl-tRNA synthetase)	Escherichia coli	16127994
ASPS_EC	aspS (Aspartyl-tRNA synthetase)	Escherichia coli	16127994
CAF1_AF053947	caf1 (capsular protein caf1)	Yersinia pestis Vancinia postia	2996286
NV_U22457 LL_NC003143	inv (invasin) Y. pestis specific chromosomal genes -	Yersinia pestis Yersinia pestis	1256565 16120353
	difference region	•	
30NTA_X52066	BoNT/A (neurotoxin type A)	Clostridium botulinum	40381
MECA_Y14051	mecA methicillin resistance gene	Staphylococcus aureus	2791983
FRPE_AY094355	trpE (anthranilate synthase (large component))	Acinetobacter baumanii	20853695
RECA_AF251469	recA (recombinase A)	Acinetobacter baumanii	9965210
GYRA_AF100557	gyrA (DNA gyrase subunit A)	Acinetobacter baumanii	4240540
GYRB_AB008700	gyrB (DNA gyrase subunit B)	Acinetobacter baumanii	4514436
WAAA_Z96925	waaA (3-deoxy-D-manno-octulosonic-acid transferase)	Acinetobacter baumanii	2765828
CJST_CJ	Artificial Sequence Concatenation	Artificial	15791399
	comprising:	Sequence* -	
	tkt (transketolase)	partial gene	
	glyA (serine hydroxymethyltransferase)	sequences of	
	gltA (citrate synthase)	Campylobacter	
	aspA (aspartate ammonia lyase)	jejuni	
	glnA (glutamine synthase)		
	pgm (phosphoglycerate mutase) uncA (ATP synthetase alpha chain)		
RNASEP_BDP	RNase P (ribonuclease P)	Bordetella	33591275
RNASEP_BKM	RNase P (ribonuclease P)	pertussis Burkholderia mallei	53723370
RNASEP_BS	RNase P (ribonuclease P)	mattet Bacillus subtilis	16077068
RNASEP_CLB	RNase P (ribonuclease P)	Clostridium perfringens	18308982
RNASEP_EC	RNase P (ribonuclease P)	Escherichia coli	16127994
RNASEP_RKP	RNase P (ribonuclease P)	Rickettsia	15603881
	×/	prowazekii	
NASEP_SA	RNase P (ribonuclease P)	Staphylococcus aureus	15922990
RNASEP_VBC	RNase P (ribonuclease P)	Vibrio cholerae	15640032
CD_CXB	icd (isocitrate dehydrogenase)	Coxiella burnetii	29732244
S1111A	multi-locus IS1111A insertion element	Acinetobacter	29732244
		baumannii	
OMPA_AY485227	ompA (outer membrane protein A)	Rickettsia prowazekii	40287451
OMPB_RKP	ompB (outer membrane protein B)	Rickettsia prowazekii	15603881

TABLE 3-continued

Primer name code	Gene Name	Organism	Reference GenBank g number
GLTA_RKP	gltA (citrate synthase)	Vibrio cholerae	15603881
TOXR_VBC	toxR (transcription regulator toxR)	Francisella tularensis	15640032
ASD_FRT	asd (Aspartate semialdehyde dehydrogenase)	Francisella tularensis	56707187
GALE_FRT IPAH_SGF	galE (UDP-glucose 4-epimerase) ipaH (invasion plasmid antigen)	Shigella flexneri Campylobacter jejuni	56707187 30061571
HUPB_CJ	hupB (DNA-binding protein Hu-beta)	Coxiella burnetii	15791399
AB_MLST	Artificial Sequence Concatenation comprising:	Artificial Sequence* -	Sequenced in-house
	trpE (anthranilate synthase component I))	partial gene sequences of	(SEQ ID NO: 1444)
	adk (adenylate kinase) mutY (adenine glycosylase) fumC (fumarate hydratase)	Acinetobacter baumannii	,
	efp (elongation factor p) ppa (pyrophosphate phospho-		
MUPR_X75439	hydratase mupR (mupriocin resistance gene)	Staphylococcus	438226
PARC_X95819	parC (topoisomerase IV)	aureus Acinetobacter	1212748
SED_M28521	sed (enterotoxin D)	baumannii Staphylococcus	1492109
PLA_AF053945	pla (plasminogen activator)	aureus Yersinia pestis	2996216
SEJ_AF053140	sej (enterotoxin J)	Staphylococcus aureus	3372540
GYRA_NC000912	gyrA (DNA gyrase subunit A)	Mycoplasma pneumoniae	13507739
ACS_NC002516	acsA (Acetyl CoA Synthase)	Pseudomonas aeruginosa	15595198
ARO_NC002516	aroE (shikimate 5-dehydrogenase	Pseudomonas aeruginosa	15595198
GUA_NC002516	guaA (GMP synthase)	Pseudomonas aeruginosa	15595198
MUT_NC002516	mutL (DNA mismatch repair protein)	Pseudomonas aeruginosa	15595198
NUO_NC002516	nuoD (NADH dehydrogenase I chain C, D)	Pseudomonas aeruginosa	15595198
PPS_NC002516	ppsA (Phosphoenolpyruvate synthase)	Pseudomonas aeruginosa	15595198
TRP_NC002516	trpE (Anthranilate synthetase component I)	Pseudomonas aeruginosa	15595198
OMP2_NC000117	ompB (outer membrane protein B)	Chlamydia trachomatis	15604717
OMPA_NC000117	ompA (outer membrane protein B)	Chlamydia trachomatis	15604717
GYRA_NC000117	gyrA (DNA gyrase subunit A)	Chlamydia trachomatis	15604717
CTXA_NC002505	ctxA (Cholera toxin A subunit)	Vibrio cholerae	15640032
CTXB_NC002505	ctxB (Cholera toxin B subunit)	Vibrio cholerae	15640032
FUR_NC002505 GAPA_NC_002505	fur (ferric uptake regulator protein) gapA (glyceraldehyde-3-phosphate dehydrogenase)	Vibrio cholerae Vibrio cholerae	15640032 15640032
GYRB_NC002505	gyrB (DNA gyrase subunit B)	Vibrio cholerae	15640032
OMPU_NC002505	ompU (outer membrane protein)	Vibrio cholerae	15640032
TCPA_NC002505 ASPA_NC002163	tcpA (toxin-coregulated pilus) aspA (aspartate ammonia lyase)	Vibrio cholerae Campylobacter	15640032 15791399
GLNA_NC002163	glnA (glutamine synthetase)	jejuni Campylobacter jojumi	15791399
GLTA_NC002163	gltA (glutamate synthase)	jejuni Campylobacter ioiumi	15791399
GLYA_NC002163	glyA (serine hydroxymethyltransferase)	jejuni Campylobacter jojumi	15791399
PGM_NC002163	pgm (phosphoglyceromutase)	jejuni Campylobacter jejuni	15791399
TKT_NC002163	tkt (transketolase)	jejuni Campylobacter jejuni	15791399

TABLE 3-continued

Primer name code	Gene Name	Organism	Reference GenBank g number
UNCA_NC002163	uncA (ATP synthetase alpha chain)	Campylobacter	15791399
AGR-III_NC003923	agr-III (accessory gene regulator-III)	jejuni Staphylococcus aureus	21281729
ARCC_NC003923	arcC (carbamate kinase)	staphylococcus aureus	21281729
AROE_NC003923	aroE (shikimate 5-dehydrogenase	Staphylococcus aureus	21281729
BSA-A_NC003923	bsa-a (glutathione peroxidase)	Staphylococcus aureus	21281729
BSA-B_NC003923	bsa-b (epidermin biosynthesis protein EpiB)	Staphylococcus aureus	21281729
GLPF_NC003923	glpF (glycerol transporter)	Staphylococcus aureus	21281729
GMK_NC003923	gmk (guanylate kinase)	Staphylococcus aureus	21281729
MECI-R_NC003923	mecR1 (truncated methicillin resistance protein)	Staphylococcus aureus	21281729
PTA_NC003923	pta (phosphate acetyltransferase)	Staphylococcus aureus	21281729
PVLUK_NC003923	pvluk (Panton-Valentine leukocidin chain F precursor)	Staphylococcus aureus	21281729
SA442_NC003923	sa442 gene	Staphylococcus aureus	21281729
SEA_NC003923	sea (staphylococcal enterotoxin A precursor)	Staphylococcus aureus	21281729
SEC_NC003923	sec4 (enterotoxin type C precursor)	Staphylococcus aureus	21281729
FPI_NC003923	tpi (triosephosphate isomerase)	staphylococcus aureus	21281729
YQI_NC003923	yqi (acetyl-CoA C-acetyltransferase homologue)	aureus Staphylococcus aureus	21281729
GALE_AF513299	galE (galactose epimerase)	Francisella tularensis	23506418
VVHA_NC004460 IDH_NC004605	vVhA (cytotoxin, cytolysin precursor) tdh (thermostable direct hemolysin A)	Vibrio vulnificus Vibrio	27366463 28899855
AGR-II_NC002745	agr-II (accessory gene regulator-II)	parahaemolyticus Staphylococcus	29165615
PARC_NC003997	parC (topoisomerase IV)	aureus Bacillus anthracis	30260195
GYRA_AY291534 AGR-I_AJ617706	gyrA (DNA gyrase subunit A) agr-I (accessory gene regulator-I)	Bacillus anthracis Staphylococcus	31323274 46019543
AGR-IV_AJ617711	agr-IV (accessory gene regulator-III)	aureus Staphylococcus	46019563
		aureus Staphylococcus	
BLAZ_NC002952	blaZ (beta lactamase III)	aureus	49482253
ERMA_NC002952	ermA (rRNA methyltransferase A)	Staphylococcus aureus	49482253
ERMB_Y13600	ermB (rRNA methyltransferase B)	Staphylococcus aureus	49482253
SEA-SEE_NC002952	sea (staphylococcal enterotoxin A precursor)	Staphylococcus aureus	49482253
SEA-SEE_NC002952	sea (staphylococcal enterotoxin A precursor)	Staphylococcus aureus	49482253
SEE_NC002952	sea (staphylococcal enterotoxin A precursor)	Staphylococcus aureus	49482253
SEH_NC002953	seh (staphylococcal enterotoxin H)	Staphylococcus aureus	49484912
ERMC_NC005908	ermC (rRNA methyltransferase C)	Staphylococcus aureus	49489772
MUTS_AY698802 NUC_NC002758	mutS (DNA mismatch repair protein) nuc (staphylococcal nuclease)	Shigella boydii Staphylococcus	52698233 57634611
SEB_NC002758	seb (enterotoxin type B precursor)	aureus Staphylococcus	57634611
SEG_NC002758	seg (staphylococcal enterotoxin G)	aureus Staphylococcus	57634611
SEI_NC002758	sei (staphylococcal enterotoxin I)	aureus Staphylococcus	57634611

TABLE 3-continued

	Primer Name Codes and Reference	Sequence	
Primer name code	Gene Name	Organism	Reference GenBank gi number
TSST_NC002758	tsst (toxic shock syndrome toxin-1)	Staphylococcus aureus	57634611
TUFB_NC002758	tufB (Elongation factor Tu)	Staphylococcus aureus	57634611

Note:

artificial reference sequences represent concatenations of partial gene extractions from the indicated reference gi number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design.

Example 2

Sample Preparation and PCR

[0378] Genomic DNA was prepared from samples using the DNeasy Tissue Kit (Qiagen, Valencia, Calif.) according to the manufacturer's protocols.

[0379] All PCR reactions were assembled in 50 µl, reaction volumes in a 96-well microtiter plate format using a Packard MPII liquid handling robotic platform and M.J. Dyad thermocyclers (MJ research, Waltham, Mass.) or Eppendorf Mastercycler thermocyclers (Eppendorf, Westbury, N.Y.). The PCR reaction mixture consisted of 4 units of Amplitaq Gold, $1 \times$ buffer II (Applied Biosystems, Foster City, Calif.), 1.5 mM MgCl₂, 0.4 M betaine, 800 µM dNTP mixture and 250 nM of each primer. The following typical PCR conditions were used: 95° C. for 10 min followed by 8 cycles of 95° C. for 30 seconds, 48° C. for 30 seconds, and 72° C. 30 seconds with the 48° C. annealing temperature increasing 0.9° C. with each of the eight cycles. The PCR was then continued for 37 additional cycles of 95° C. for 15 seconds, 56° C. for 20 seconds, and 72° C. 20 seconds.

Example 3

Purification of PCR Products for Mass Spectrometry with Ion Exchange Resin-Magnetic Beads

[0380] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, 25 μ l of a 2.5 mg/mL suspension of BioClone amine terminated superparamagnetic beads were added to 25 to 50 μ l of a PCR (or RT-PCR) reaction containing approximately 10 μ M of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed three times with 50 mM ammonium bicarbonate/50% MeOH or 100 mM ammonium bicarbonate/50% MeOH. The bound PCR ampliform was eluted with a solution of 25 mM piperidine, 25 mM imidazole, 35% MeOH which included peptide calibration standards.

Example 4

Mass Spectrometry and Base Composition Analysis

[0381] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, Mass.) Apex II 70e electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus, components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 µl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autosampler (LEAP Technologies, Carrboro, N.C.) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl/hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, Conn.) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capillary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A counter-current flow of dry N2 was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles greater than 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signal-to-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[0382] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOFTTM. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOFTTM ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source. Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve ionization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 μ s.

[0383] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow

rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/ carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equilibration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[0384] Raw mass spectra were post-calibrated with an internal mass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Ser. No. 60/545,425 which is incorporated herein by reference in entirety.

Example 5

De Novo Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosphates

[0385] Because the molecular masses of the four natural nucleobases have a relatively narrow molecular mass range (A=313.058, G=329.052, C=289.046, T=304.046-See Table 4), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands is $G \leftrightarrow A$ (-15.994) combined with C \leftrightarrow T (+15.000). For example, one 99-mer nucleic acid strand having a base composition of A27G30C21T21 has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of $A_{26}G_{31}C_{22}T_{20}$ has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

[0386] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged nucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).

[0387] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the $G \leftrightarrow A$ combined with $C \leftrightarrow T$ event (Table 4). Thus, the same the $G \leftrightarrow A$ (-15.994) event combined with 5-Iodo-C↔ T (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the base composition A₂₇G₃₀5-Iodo-C₂₁T₂₁ (33422.958) is compared with A₂₆G₃₁5-Iodo-C₂₂T₂₀, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is A₂₇G₃₀5-Iodo-C₂₁T₂₁. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

TABLE 4

Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions				
Nucleobase	Molecular Mass	Transition	Molecular Mass	
A	313.058	A>T	-9.012	
A	313.058	A>C	-24.012	
A	313.058	A>5-Iodo-C	101.888	
A	313.058	A>G	15.994	
Т	304.046	T>A	9.012	
Т	304.046	T>C	-15.000	
Т	304.046	T>5-Iodo-C	110.900	
Т	304.046	T>G	25.006	
С	289.046	C>A	24.012	
С	289.046	C>T	15.000	
С	289.046	C>G	40.006	
5-Iodo-C	414.946	5-Iodo-C>A	-101.888	
5-Iodo-C	414.946	5-Iodo-C>T	-110.900	
5-Iodo-C	414.946	5-Iodo-C>G	-85.894	
G	329.052	G>A	-15.994	
G	329.052	G>T	-25.006	
G	329.052	G>C	-40.006	
G	329.052	G>5-Iodo-C	85.894	

[0388] Mass spectra of bioagent-identifying amplicons were analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the input to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[0389] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probabilityof-false-alarm plots for conditions involving complex backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of a priori expectations of signal values given the set of primers used for each of the bioagents. A genomic sequence database is used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted. The maximum likelihood process is applied to this "cleaned up" data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[0390] The amplitudes of all base compositions of bioagent-identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of molecules of each base composition contained in the spectra. The quantity of amplification product corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

[0391] Base count blurring can be carried out as follows. "Electronic PCR" can be conducted on nucleotide sequences of the desired bioagents to obtain the different expected base counts that could be obtained for each primer pair. See for example, ncbi.nlm.nih.gov/sutils/e-pcr/; Schuler, Genome Res. 7:541-50, 1997. In one illustrative embodiment, one or more spreadsheets, such as Microsoft Excel workbooks contain a plurality of worksheets. First in this example, there is a worksheet with a name similar to the workbook name; this worksheet contains the raw electronic PCR data. Second, there is a worksheet named "filtered bioagents base count" that contains bioagent name and base count; there is a separate record for each strain after removing sequences that are not identified with a genus and species and removing all sequences for bioagents with less than 10 strains. Third, there is a worksheet, "Sheet1" that contains the frequency of substitutions, insertions, or deletions for this primer pair. This data is generated by first creating a pivot table from the data in the "filtered bioagents base count" worksheet and then executing an Excel VBA macro. The macro creates a table of differences in base counts for bioagents of the same species, but different strains. One of ordinary skill in the art may understand additional pathways for obtaining similar table differences without undo experimentation.

[0392] Application of an exemplary script, involves the user defining a threshold that specifies the fraction of the strains that are represented by the reference set of base counts for each bioagent. The reference set of base counts for each bioagent may contain as many different base counts as are needed to meet or exceed the threshold. The set of reference base counts is defined by taking the most abundant strain's base type composition and adding it to the reference set and then the next most abundant strain's base type composition is added until the threshold is met or exceeded. The current set of data was obtained using a threshold of 55%, which was obtained empirically.

[0393] For each base count not included in the reference base count set for that bioagent, the script then proceeds to determine the manner in which the current base count differs from each of the base counts in the reference set. This difference may be represented as a combination of substitutions, Si=Xi, and insertions, Ii=Yi, or deletions, Di=Zi. If there is more than one reference base count, then the reported difference is chosen using rules that aim to minimize the number of changes and, in instances with the same number of changes, minimize the number of insertions or deletions. Therefore, the primary rule is to identify the difference with the minimum sum (Xi+Yi) or (Xi+Zi), e.g., one insertion rather than two substitutions. If there are two or more differences with the minimum sum, then the one that will be reported is the one that contains the most substitutions.

[0394] Differences between a base count and a reference composition are categorized as one, two, or more substitutions, one, two, or more insertions, one, two, or more deletions, and combinations of substitutions and insertions or deletions. The different classes of nucleobase changes and their probabilities of occurrence have been delineated in U.S. Patent Application Publication No. 2004209260 (U.S. application Ser. No. 10/418,514) which is incorporated herein by reference in entirety.

Example 6

Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation

[0395] This investigation employed a set of 16 primer pairs which is herein designated the "surveillance primer set" and comprises broad range survey primer pairs, division wide primer pairs and a single *Bacillus* clade primer pair. The surveillance primer set is shown in Table 5 and consists of primer pairs originally listed in Table 2. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row. Primer pair 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

TABLE	5	

	Bacterial Pr	imer Pairs o	f the Surveillance Primer Set		
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
346	16S_EC_713_732_TMOD_F	202	16S_EC_789_809_TMOD_R	1110	16S rRNA
10	16S_EC_713_732_F	21	16S_EC_789_809	798	16S rRNA
347	16S_EC_785_806_TMOD_F	560	16S_EC_880_897_TMOD_R	1278	16S rRNA
11	16S_EC_785_806_F	118	16S_EC_880_897_R	830	16S rRNA
348	16S_EC_960_981_TMOD_F	706	16S_EC_1054_1073_TMOD_R	895	16S rRNA
14	16S_EC_960_981_F	672	16S_EC_1054_1073_R	735	16S rRNA
349	23S_EC_1826_1843_TMOD_F	401	23S_EC_1906_1924_TMOD_R	1156	23S rRNA
16	23S_EC_1826_1843_F	80	23S_EC_1906_1924_R	805	23S rRNA
352	INFB_EC_1365_1393_TMOD_F	687	INFB_EC_1439_1467_TMOD_R	1411	infB

TABLE 5-continued

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
34	INFB_EC_1365_1393_F	524	INFB_EC_1439_1467_R	1248	infB
354	RPOC_EC_2218_2241_TMOD_F	405	RPOC_EC_2313_2337_TMOD_R	1072	rpoC
52	RPOC_EC_2218_2241_F	81	RPOC_EC_2313_2337_R	790	rpoC
355	SSPE_BA_115_137_TMOD_F	255	SSPE_BA_197_222_TMOD_R	1402	sspE
58	SSPE_BA_115_137_F	45	SSPE_BA_197_222_R	1201	sspE
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	rplB
66	RPLB_EC_650_679_F	98	RPLB_EC_739_762_R	999	rplB
358	VALS_EC_1105_1124_TMOD_F	385	VALS_EC_1195_1218_TMOD_R	1093	valS
71	VALS_EC_1105_1124_F	77	VALS_EC_1195_1218_R	795	valS
359	RPOB_EC_1845_1866_TMOD_F	659	RPOB_EC_1909_1929_TMOD_R	1250	rpoB
72	RPOB_EC_1845_1866_F	233	RPOB_EC_1909_1929_R	825	rpoB
360	23S_EC_2646_2667_TMOD_F	409	23S_EC_2745_2765_TMOD_R	1434	23S rRNA
118	23S_EC_2646_2667_F	84	23S_EC_2745_2765_R	1389	23S rRNA
17	23S_EC_2645_2669_F	408	23S_EC_2744_2761_R	1252	23S rRNA
361	16S_EC_1090_1111_2_TMOD_F	697	16S_EC_1175_1196_TMOD_R	1398	16S rRNA
3	16S_EC_1090_1111_2_F	651	16S_EC_1175_1196_R	1159	16S rRNA
362	RPOB_EC_3799_3821_TMOD_F	581	RPOB_EC_3862_3888_TMOD_R	1325	rpoB
289	RPOB_EC_3799_3821_F	124	RPOB_EC_3862_3888_R	840	rpoB
363	RPOC_EC_2146_2174_TMOD_F	284	RPOC_EC_2227_2245_TMOD_R	898	rpoC
290	RPOC_EC_2146_2174_F	52	RPOC_EC_2227_2245_R	736	rpoC
367	TUFB_EC_957_979_TMOD_F	308	TUFB_EC_1034_1058_TMOD_R	1276	tufB
293	TUFB_EC_957_979_F	55	TUFB_EC_1034_1058_R	829	tufB
449	RPLB_EC_690_710_F	309	RPLB_EC_737_758_R	1336	rplB
357	RPLB_EC_688_710_TMOD_F	296	RPLB_EC_736_757_TMOD_R	1337	rplB
67	RPLB_EC_688_710_F	54	RPLB_EC_736_757_R	842	rplB

[0396] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from Streptococcus pyogenes can be amplified by nine of the sixteen surveillance primer pairs and Streptococcus pneumoniae can be amplified by ten of the sixteen surveillance primer pairs. The base compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[0397] Bacillus anthracis is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of Bacillus anthracis, additional drill-down analysis primers were designed to target genes present on virulence plasmids of Bacillus anthracis so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 2 and 6. In Table 6, the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row.

TABLE 6

	Drill-Down Primer Pairs for Confirmation of Identification of Bacillus anthracis					
		Forward		Reverse		
Primer Pair		Primer (SEQ ID		Primer (SEQ ID		
No.	Forward Primer Name	NO:)	Reverse Primer Name	NO:)	Target Gene	
350	CAPC_BA_274_303_TMOD_F	476	CAPC_BA_349_376_TMOD_R	1314	capC	
24	CAPC_BA_274_303_F	109	CAPC_BA_349_376_R	837	capC	
351	CYA_BA_1353_1379_TMOD_F	355	CYA_BA_1448_1467_TMOD_R	1423	cyA	
30	CYA_BA_1353_1379_F	64	CYA_BA_1448_1467_R	1342	cyA	

TABLE 6-	-continued
----------	------------

	Drill-Down Primer Pair	s for Confirm	ation of Identification of Bacillus anthr	acis	
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
	LEF_BA_756_781_TMOD_F LEF_BA_756_781_F		LEF_BA_843_872_TMOD_R LEF_BA_843_872_R	1394 1135	lef lef

[0398] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 5 and the three Bacillus anthracis drill-down primers of Table 6 is shown in FIG. 3 which lists common pathogenic bacteria. FIG. 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of FIG. 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for Chlamydia trachomatis by amplification with, for example, primer pairs 346-349, 360 and 361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from *Bacillus anthracis* (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon). Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[0399] In Tables 7A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

TABLE 7A

Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348					
Organism	Strain	Primer 346 [A G C T]	Primer 347 [A G C T]	Primer 348 [A G C T]	
Klebsiella	MGH78578	[29 32 25 13]	[23 38 28 26]	[26 32 28 30]	
pneumoniae		[29 31 25 13]*	[23 37 28 26]*	[26 31 28 30]*	
Yersinia pestis	CO-92 Biovar Orientalis	[29 32 25 13]	[22 39 28 26]	[29 30 28 29] [30 30 27 29]*	
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	[29 32 25 13]	[22 39 28 26]	[29 30 28 29]	
Yersinia pestis	91001	[29 32 25 13]	[22 39 28 26]	[29 30 28 29] [30 30 27 29]*	
Haemophilus influenzae	KW2 0	[28 31 23 17]	[24 37 25 27]	[29 30 28 29]	
Pseudomonas aeruginosa	PAO1	[30 31 23 15]	[26 36 29 24] [27 36 29 23]*	[26 32 29 29]	
Pseudomonas	Pf0-1	[30 31 23 15]	[26 35 29 25]	[28 31 28 29]	
fluorescens	110 1	[50 51 25 15]	[20 55 25 25]	[20 51 20 25]	
Pseudomonas putida	KT2440	[30 31 23 15]	[28 33 27 27]	[27 32 29 28]	
Legionella pneumophila	Philadelphia-1	[30 30 24 15]	[33 33 23 27]	[29 28 28 31]	
Francisella tularensis	schu 4	[32 29 22 16]	[28 38 26 26]	[25 32 28 31]	
Bordetella pertussis	Tohama I	[30 29 24 16]	[23 37 30 24]	[30 32 30 26]	
periussis Burkholderia cepacia	J2315	[29 29 27 14]	[27 32 26 29]	[27 36 31 24] [20 42 35 19]*	
Burkholderia pseudomallei	K96243	[29 29 27 14]	[27 32 26 29]	[27 36 31 24]	
Neisseria	FA 1090, ATCC 700825	[29 28 24 18]	[27 34 26 28]	[24 36 29 27]	
gonorrhoeae Neisseria meningitidis	MC58 (serogroup B)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]	
Neisseria meningitidis	serogroup C, FAM18	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]	

TABLE 7A-continued

	positions of Common R mplicons Corresponding			
Organism	Strain	Primer 346 [A G C T]	Primer 347 [A G C T]	Primer 348 [A G C T]
Veisseria	Z2491 (serogroup A)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
neningitidis Chlamydophila meumoniae	TW-183	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila meumoniae	AR39	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila meumoniae	CWL029	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila meumoniae	J138	[31 27 22 19]	NO DATA	[32 27 27 29]
Corynebacterium liphtheriae	NCTC13129	[29 34 21 15]	[22 38 31 25]	[22 33 25 34]
Mycobacterium wium	k 10	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium wium	104	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium uberculosis	CSU#93	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium uberculosis	CDC 1551	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium tuberculosis	H37Rv (lab strain)	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycoplasma oneumoniae	M129	[31 29 19 20]	NO DATA	NO DATA
Staphylococcus Stareus	MRSA252	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [29 31 30 29]*
Staphylococcus Tureus	MSSA476	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30] ⁴
Staphylococcus Starureus	COL	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
Staphylococcus Starureus	Mu50	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 30 29] [30 29 29 30]*
Staphylococcus nureus	MW2	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
Staphylococcus nureus	N315	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30] [*]
Staphylococcus	NCTC 8325	[27 30 21 21]	[25 35 30 26] [25 35 31 26]*	[30 29 30 29] [30 29 30 29] [30 29 29 30]
tureus Streptococcus	NEM316	[26 32 23 18]	[24 36 31 25]	[30 29 29 30] [25 32 29 30]
ngalactiae Streptococcus	NC_002955	[26 32 23 18]	[24 36 30 26]* [23 37 31 25]	[29 30 25 32]
equi Streptococcus	MGAS8232	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
oyogenes Streptococcus	MGAS315	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
oyogenes Streptococcus	SSI-1	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
oyogenes Streptococcus	MGAS10394	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
oyogenes Streptococcus	Manfredo (M5)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
oyogenes Streptococcus	SF370 (M1)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
streptococcus	670	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
meumoniae Streptococcus	R6	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
oneumoniae		. ,		
Streptococcus oneumoniae	TIGR4	[26 32 23 18]	[25 35 28 28]	[25 32 30 29]
Streptococcus zordonii	NCTC7868	[25 33 23 18]	[24 36 31 25]	[25 31 29 31]
Streptococcus nitis	NCTC 12261	[26 32 23 18]	[25 35 30 26]	[25 32 29 30] [24 31 35 29]*
Streptococcus nutans	UA159	[24 32 24 19]	[25 37 30 24]	[28 31 26 31]

TABLE 7B

		Primer 349	Primer 360	Primer 356
Organism	Strain	[AGCT]	[A G C T]	[AGCT]
Clebsiella meumoniae	MGH78578	[25 31 25 22]	[33 37 25 27]	NO DATA
ersinia pestis	CO-92 Biovar	[25 31 27 20]	[34 35 25 28]	NO DATA
ersinia pestis	Orientalis KIM5 P12 (Biovar Mediaevalis)	[25 32 26 20]* [25 31 27 20] [25 32 26 20]*	[34 35 25 28]	NO DATA
Yersinia pestis	91001	[25 31 27 20]	[34 35 25 28]	NO DATA
Iaemopĥilus nfluenzae	KW20	[28 28 25 20]	[32 38 25 27]	NO DATA
Pseudomonas Peruginosa	PAO1	[24 31 26 20]	[31 36 27 27] [31 36 27 28]*	NO DATA
Pseudomonas Juorescens	Pf0-1	NO DATA	[30 37 27 28] [30 37 27 28]	NO DATA
seudomonas vutida	KT2440	[24 31 26 20]	[30 37 27 28] [30 37 27 28]	NO DATA
egionella neumophila	Philadelphia-1	[23 30 25 23]	[30 39 29 24]	NO DATA
Francisella ularensis	schu 4	[26 31 25 19]	[32 36 27 27]	NO DATA
Bordetella Pertussis	Tohama I	[21 29 24 18]	[33 36 26 27]	NO DATA
Burkholderia Sepacia	J2315	[23 27 22 20]	[31 37 28 26]	NO DATA
Purkholderia seudomallei	K96243	[23 27 22 20]	[31 37 28 26]	NO DATA
Veisseria	FA 1090, ATCC 700825	[24 27 24 17]	[34 37 25 26]	NO DATA
onorrhoeae Ieisseria Aminaitidis	MC58 (serogroup B)	[25 27 22 18]	[34 37 25 26]	NO DATA
ieningitidis Jeisseria	serogroup C, FAM18	[25 26 23 18]	[34 37 25 26]	NO DATA
ieningitidis Ieisseria	Z2491 (serogroup A)	[25 26 23 18]	[34 37 25 26]	NO DATA
eningitidis hlamydophila neumoniae	TW-183	[30 28 27 18]	NO DATA	NO DATA
hlamydophila	AR39	[30 28 27 18]	NO DATA	NO DATA
neumoniae Hlamydophila	CWL029	[30 28 27 18]	NO DATA	NO DATA
meumoniae Chlamydophila	J138	[30 28 27 18]	NO DATA	NO DATA
neumoniae lorynebacterium iphtheriae	NCTC13129	NO DATA	[29 40 28 25]	NO DATA
Âycobacterium	k10	NO DATA	[33 35 32 22]	NO DATA
ivium Mycobacterium	104	NO DATA	[33 35 32 22]	NO DATA
ivium Mycobacterium	CSU#93	NO DATA	[30 36 34 22]	NO DATA
uberculosis Aycobacterium ubarculosis	CDC 1551	NO DATA	[30 36 34 22]	NO DATA
uberculosis Aycobacterium uberculosis	H37Rv (lab strain)	NO DATA	[30 36 34 22]	NO DATA
Aycoplasma	M129	[28 30 24 19]	[34 31 29 28]	NO DATA
neumoniae Taphylococcus ureus	MRSA252	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
itaphylococcus pureus	MSSA476	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
taphylococcus ureus	COL	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
taphylococcus ureus	Mu50	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
Staphylococcus pureus	MW2	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
taphylococcus ureus	N315	[26 30 25 20]	[31 38 24 29]	[33 30 31 2
taphylococcus ureus	NCTC 8325	[26 30 25 20]	[31 38 24 29]	[33 30 31]

TABLE	7B-continued
IADLE	/D-commucu

Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356						
Organism	Strain	Primer 349 [A G C T]	Primer 360 [A G C T]	Primer 356 [A G C T]		
Streptococcus agalactiae	NEM316	[28 31 22 20]	[33 37 24 28]	[37 30 28 26]		
Streptococcus equi	NC_002955	[28 31 23 19]	[33 38 24 27]	[37 31 28 25]		
Streptococcus pyogenes	MGAS8232	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]		
Streptococcus pyogenes	MGAS315	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]		
Streptococcus pyogenes	SSI-1	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]		
Streptococcus pyogenes	MGAS10394	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]		
Streptococcus pyogenes	Manfredo (M5)	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]		
Streptococcus pyogenes	SF370 (M1)	[28 31 23 19] [28 31 22 20]*	[33 37 24 28]	[38 31 29 23]		
Streptococcus pneumoniae	670	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]		
Streptococcus pneumoniae	R6	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]		
Streptococcus pneumoniae	TIGR4	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]		
Streptococcus gordonii	NCTC7868	[28 32 23 20]	[34 36 24 28]	[36 31 29 25]		
Streptococcus mitis	NCTC 12261	[28 31 22 20] [29 30 22 20]*	[34 36 24 28]	[37 30 29 25]		
Streptococcus mutans	UA159	[26 32 23 22]	[34 37 24 27]	NO DATA		

TABLE 7C

Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352						
Organism	Strain	Primer 449 [A G C T]	Primer 354 [A G C T]	Primer 352 [A G C T]		
Klebsiella pneumoniae	MGH78578	NO DATA	[27 33 36 26]	NO DATA		
Yersinia pestis	CO-92 Biovar Orientalis	NO DATA	[29 31 33 29]	[32 28 20 25]		
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	NO DATA	[29 31 33 29]	[32 28 20 25]		
Yersinia pestis	91001	NO DATA	[29 31 33 29]	NO DATA		
Haemophilus influenzae	KW20	NO DATA	[30 29 31 32]	NO DATA		
Pseudomonas aeruginosa	PAO1	NO DATA	[26 33 39 24]	NO DATA		
Pseudomonas fluorescens	Pf0-1	NO DATA	[26 33 34 29]	NO DATA		
Pseudomonas putida	KT2440	NO DATA	[25 34 36 27]	NO DATA		
Legionella pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA		
Francisella tularensis	schu 4	NO DATA	[33 32 25 32]	NO DATA		
Bordetella pertussis	Tohama I	NO DATA	[26 33 39 24]	NO DATA		
Burkholderia cepacia	J2315	NO DATA	[25 37 33 27]	NO DATA		
Burkholderia pseudomallei	K96243	NO DATA	[25 37 34 26]	NO DATA		
Neisseria gonorrhoeae	FA 1090, ATCC 700825	[17 23 22 10]	[29 31 32 30]	NO DATA		
Neisseria meningitidis	MC58 (serogroup B)	NO DATA	[29 30 32 31]	NO DATA		

TABLE 7C-continued

	Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352							
Organism	Strain	Primer 449 [A G C T]	Primer 354 [A G C T]	Primer 352 [A G C T]				
Neisseria	serogroup C, FAM18	NO DATA	[29 30 32 31]	NO DATA				
meningitidis Neisseria meningitidis	Z2491 (serogroup A)	NO DATA	[29 30 32 31]	NO DATA				
Chlamydophila	TW-183	NO DATA	NO DATA	NO DATA				
pneumoniae Chlamydophila pneumoniae	AR39	NO DATA	NO DATA	NO DATA				
Chlamydophila pneumoniae	CWL029	NO DATA	NO DATA	NO DATA				
Chlamydophila pneumoniae	J138	NO DATA	NO DATA	NO DATA				
Corynebacterium diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA				
Mycobacterium avium	k10	NO DATA	NO DATA	NO DATA				
Mycobacterium avium	104	NO DATA	NO DATA	NO DATA				
Mycobacterium tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA				
Mycobacterium tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA				
Mycobacterium tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA				
Mycoplasma pneumoniae	M129	NO DATA	NO DATA	NO DATA				
Staphylococcus aureus	MRSA252	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]				
Staphylococcus aureus	MSSA476	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]				
Staphylococcus aureus	COL	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]				
Staphylococcus aureus	Mu50	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]				
Staphylococcus aureus	MW2	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]				
Staphylococcus aureus	N315	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]				
Staphylococcus aureus	NCTC 8325	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]				
Streptococcus agalactiae	NEM316	[22 20 19 14]	[26 31 27 38]	[29 26 22 28]				
Streptococcus equi	NC_002955	[22 21 19 13]	NO DATA	NO DATA				
Streptococcus pyogenes	MGAS8232	[23 21 19 12]	[24 32 30 36]	NO DATA				
Streptococcus pyogenes	MGAS315	[23 21 19 12]	[24 32 30 36]	NO DATA				
Streptococcus pyogenes	SSI-1	[23 21 19 12]	[24 32 30 36]	NO DATA				
Streptococcus pyogenes	MGAS10394	[23 21 19 12]	[24 32 30 36]	NO DATA				
streptococcus pyogenes	Manfredo (M5)	[23 21 19 12]	[24 32 30 36]	NO DATA				
Streptococcus	SF370 (M1)	[23 21 19 12]	[24 32 30 36]	NO DATA				
pyogenes Streptococcus	670	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]				
pneumoniae Streptococcus	R6	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]				
pneumoniae Streptococcus	TIGR4	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]				
pneumoniae Streptococcus gordonii	NCTC7868	[21 21 19 14]	NO DATA	[29 26 22 28]				
Streptococcus	NCTC 12261	[22 20 19 14]	[26 30 32 34]	NO DATA				
mitis Streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA				

TABLE 7D

Organism		Primer 355	Primer 358	Primer 359
	Strain	[AGCT]	[A G C T]	[AGCT]
Klebsiella oneumoniae	MGH78578	NO DATA	[24 39 33 20]	[25 21 24 17]
Yersinia pestis	CO-92 Biovar	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis	Orientalis KIM5 P12 (Biovar Mediaevalis)	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis Haemophilus	91001 KW20	NO DATA NO DATA	[26 34 35 21] NO DATA	[23 23 19 22] NO DATA
nfluenzae Pseudomonas	PAO1	NO DATA	NO DATA	NO DATA
aeruginosa Pseudomonas	Pf0-1	NO DATA	NO DATA	NO DATA
luorescens Pseudomonas	KT2440	NO DATA	[21 37 37 21]	NO DATA
outida Legionella	Philadelphia-1	NO DATA	NO DATA	NO DATA
segionena oneumophila Francisella	schu 4			
cularensis		NO DATA	NO DATA	NO DATA
Bordetella pertussis	Tohama I	NO DATA	NO DATA	NO DATA
Burkholderia cepacia	J2315	NO DATA	NO DATA	NO DATA
Burkholderia oseudomallei	K96243	NO DATA	NO DATA	NO DATA
Veisseria zonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
Veisseria neningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Veisseria	serogroup C, FAM18	NO DATA	NO DATA	NO DATA
neningitidis Veisseria	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
neningitidis Chlamydophila	TW-183	NO DATA	NO DATA	NO DATA
oneumoniae Chlamydophila	AR39	NO DATA	NO DATA	NO DATA
oneumoniae Chlamydophila	CWL029	NO DATA	NO DATA	NO DATA
oneumoniae Chlamydophila	J138	NO DATA	NO DATA	NO DATA
oneumoniae Corynebacterium	NCTC13129	NO DATA	NO DATA	NO DATA
liphtheriae Mycobacterium	k10	NO DATA	NO DATA	NO DATA
ivium Mycobacterium	104	NO DATA	NO DATA	NO DATA
ivium Mycobacterium	CSU#93	NO DATA	NO DATA	NO DATA
uberculosis Mycobacterium	CDC 1551	NO DATA	NO DATA	NO DATA
uberculosis Mycobacterium	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
uberculosis	· · · ·			
Mycoplasma pneumoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus Tureus	MRSA252	NO DATA	NO DATA	NO DATA
Staphylococcus tureus	MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus Tureus	COL	NO DATA	NO DATA	NO DATA
Staphylococcus	Mu50	NO DATA	NO DATA	NO DATA
tureus Staphylococcus	MW2	NO DATA	NO DATA	NO DATA
tureus Staphylococcus	N315	NO DATA	NO DATA	NO DATA
ureus Staphylococcus	NCTC 8325	NO DATA	NO DATA	NO DATA

Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359						
Organism	Strain	Primer 355 [A G C T]	Primer 358 [A G C T]	Primer 359 [A G C T]		
Streptococcus agalactiae	NEM316	NO DATA	NO DATA	NO DATA		
Streptococcus equi	NC_002955	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	MGAS315	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	SSI-1	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	MGAS10394	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	Manfredo (M5)	NO DATA	NO DATA	NO DATA		
Streptococcus pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA		
Streptococcus pneumoniae	670	NO DATA	NO DATA	NO DATA		
Streptococcus pneumoniae	R6	NO DATA	NO DATA	NO DATA		
Streptococcus pneumoniae	TIGR4	NO DATA	NO DATA	NO DATA		
Streptococcus gordonii	NCTC7868	NO DATA	NO DATA	NO DATA		
Streptococcus mitis	NCTC 12261	NO DATA	NO DATA	NO DATA		
streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA		

TABLE 7D-continued

TABLE 7E

Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367						
Organism	Strain	Primer 362 [A G C T]	Primer 363 [A G C T]	Primer 367 [A G C T]		
Klebsiella pneumoniae	MGH78578	[21 33 22 16]	[16 34 26 26]	NO DATA		
Yersinia pestis	CO-92 Biovar Orientalis	[20 34 18 20]	NO DATA	NO DATA		
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	[20 34 18 20]	NO DATA	NO DATA		
Yersinia pestis Haemophilus influenzae	91001 KW20	[20 34 18 20] NO DATA	NO DATA NO DATA	NO DATA NO DATA		
Pseudomonas aeruginosa	PAO1	[19 35 21 17]	[16 36 28 22]	NO DATA		
Pseudomonas fluorescens	Pf0-1	NO DATA	[18 35 26 23]	NO DATA		
, Pseudomonas putida	KT2440	NO DATA	[16 35 28 23]	NO DATA		
Legionella pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA		
Francisella tularensis	schu 4	NO DATA	NO DATA	NO DATA		
Bordetella pertussis	Tohama I	[20 31 24 17]	[15 34 32 21]	[26 25 34 19]		
Burkholderia cepacia	J2315	[20 33 21 18]	[15 36 26 25]	[25 27 32 20]		
Burkholderia pseudomallei	K96243	[19 34 19 20]	[15 37 28 22]	[25 27 32 20]		
Neisseria gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA		
Neisseria meningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA		

TABLE 7E-continued

TABLE 7E-continued							
Base Compositions of Common Respiratory Pathogens for Bioagent Identifying Amplicons Corresponding to Primer Pair Nos: 362, 363, and 367							
Organism	Strain	Primer 362 [A G C T]	Primer 363 [A G C T]	Primer 367 [A G C T]			
Neisseria	serogroup C, FAM18	NO DATA	NO DATA	NO DATA			
meningitidis Neisseria	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA			
meningitidis Chlamydophila	TW-183	NO DATA	NO DATA	NO DATA			
pneumoniae Chlamydophila	AR39	NO DATA	NO DATA	NO DATA			
pneumoniae			NO DATA				
Chlamydophila pneumoniae	CWL029	NO DATA		NO DATA			
Chlamydophila pneumoniae	J138	NO DATA	NO DATA	NO DATA			
Corynebacterium diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA			
Mycobacterium avium	k10	[19 34 23 16]	NO DATA	[24 26 35 19]			
Mycobacterium	104	[19 34 23 16]	NO DATA	[24 26 35 19]			
avium Mycobacterium	CSU#93	[19 31 25 17]	NO DATA	[25 25 34 20]			
tuberculosis Mycobacterium	CDC 1551	[19 31 24 18]	NO DATA	[25 25 34 20]			
tuberculosis Mycobacterium	H37Rv (lab strain)	[19 31 24 18]	NO DATA	[25 25 34 20]			
tuberculosis							
Mycoplasma pneumoniae	M129	NO DATA	NO DATA	NO DATA			
Staphylococcus aureus	MRSA252	NO DATA	NO DATA	NO DATA			
Staphylococcus aureus	MSSA476	NO DATA	NO DATA	NO DATA			
Staphylococcus	COL	NO DATA	NO DATA	NO DATA			
aureus Staphylococcus	Mu50	NO DATA	NO DATA	NO DATA			
aureus Staphylococcus	MW2	NO DATA	NO DATA	NO DATA			
aureus Staphylococcus	N315	NO DATA	NO DATA	NO DATA			
aureus	NCTC 8325	NO DATA	NO DATA	NO DATA			
Staphylococcus aureus							
Streptococcus agalactiae	NEM316	NO DATA	NO DATA	NO DATA			
Streptococcus equi	NC_002955	NO DATA	NO DATA	NO DATA			
Streptococcus pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA			
Streptococcus	MGAS315	NO DATA	NO DATA	NO DATA			
pyogenes Streptococcus	SSI-1	NO DATA	NO DATA	NO DATA			
pyogenes Streptococcus	MGAS10394	NO DATA	NO DATA	NO DATA			
pyogenes Streptococcus	Manfredo (M5)	NO DATA	NO DATA	NO DATA			
pyogenes	· · /						
Streptococcus pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA			
Streptococcus pneumoniae	670	NO DATA	NO DATA	NO DATA			
Streptococcus	R6	[20 30 19 23]	NO DATA	NO DATA			
pneumoniae Streptococcus	TIGR4	[20 30 19 23]	NO DATA	NO DATA			
pneumoniae Streptococcus	NCTC7868	NO DATA	NO DATA	NO DATA			
gordonii							
Streptococcus mitis	NCTC 12261	NO DATA	NO DATA	NO DATA			
Streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA			

[0400] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to Dec. 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A Streptococcus in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A Streptococcus colonies. A second set of 15 original patient specimens was taken during the height of this group A Streptococcus-associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A Streptococcus, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[0401] Pure colonies isolated from group A *Streptococcus*selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of *Streptococcus pyogenes*. Shown in FIG. **4** is a 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples closely match the base compositions expected for *Streptococcus pyogenes* and are distinct from the expected base compositions of other organisms.

[0402] In addition to the identification of *Streptococcus pyogenes*, other potentially pathogenic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOS: 401:1156) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of *Streptococcus pyogenes* (A27 G32 C24 T18), *Neisseria meningitidis* (A25 G27 C22 T18), and *Haemophilus influenzae* (A28 G28 C25 T20) (see FIG. **5** and Table 7B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U.S. Patent Application Ser. No. 60/545, 425 which is incorporated herein by reference in its entirety.

[0403] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplicons for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 449:1380) primarily amplifies the nucleic acid of members of the classes Bacilli and Clostridia and is not expected to amplify proteobacteria such as Neisseria meningitidis and Haemophilus influenzae. As expected, analysis of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of Neisseria meningitidis and Haemophilus influenzae but does indicate the presence of Streptococcus pyogenes (FIGS. 3 and 6, Table 7B). Thus, these primers or types of primers can confirm the absence of particular bioagents from a sample.

[0404] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most common were Haemophilus influenza, Neisseria meningitides, and Streptococcus pyogenes. Staphylococcus epidermidis, Moraxella cattarhalis, Corynebacterium pseudodiphtheriticum, and Staphylococcus aureus were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial flora dominated by multiple, commensal non-beta-hemolytic Streptococcal species, including the viridans group streptococci (S. parasangunis, S. vestibularis, S. mitis, S. oralis and S. pneumoniae; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

Example 7

Triangulation Genotyping Analysis for Determination of emm-Type of *Streptococcus pyogenes* in *Epidemic Surveillance*

[0405] As a continuation of the epidemic surveillance investigation of Example 6, determination of sub-species characteristics (genotyping) of Streptococcus pyogenes, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. Infection and Immunity, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass, from which base composition can be determined, the challenge was to determine whether resolution of emm classification of strains of Streptococcus pyogenes could be determined.

[0406] For the purpose of development of a triangulation genotyping assay, an alignment was constructed of concatenated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murl), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqiL)) from each of the 212 previously emm-typed strains of Streptococcus pyogenes. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of emm-type of Streptococcus pyogenes. These six primer pairs are displayed in Table 8. This drill-down set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row.

	TABLE 8								
	Triangulation Genotyping Analysis Primer Pairs for Group A Streptococcus Drill-Down								
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene				
442	SP101 SPET11 358 387 TMOD F	588	SP101 SPET11 448 473 TMOD R	998	gki				
80	SP101_SPET11_358_387_F	126	SP101_SPET11_448_473_TMOD_R	766	gki				
443	SP101_SPET11_600_629_TMOD_F	348	SP101_SPET11_686_714_TMOD_R	1018	gtr				
81	SP101_SPET11_600_629_F	62	SP101_SPET11_686_714_R	772	gtr				
426	SP101_SPET11_1314_1336_TMOD_F	363	SP101_SPET11_1403_1431_TMOD_R	849	murI				
86	SP101_SPET11_1314_1336_F	68	SP101_SPET11_1403_1431_R	711	murI				
430	SP101_SPET11_1807_1835_TMOD_F	235	SP101_SPET11_1901_1927_TMOD_R	1439	mutS				
90	SP101_SPET11_1807_1835_F	33	SP101_SPET11_1901_1927_R	1412	mutS				
438	SP101_SPET11_3075_3103_TMOD_F	473	SP101_SPET11_3168_3196_TMOD_R	875	xpt				
96	SP101_SPET11_3075_3103_F	108	SP101_SPET11_3168_3196_R	715	xpt				
441	SP101_SPET11_3511_3535_TMOD_F	531	SP101_SPET11_3605_3629_TMOD_R	1294	yqiL				
98	SP101_SPET11_3511_3535_F	116	SP101_SPET11_3605_3629_R	832	yqiL				

[0407] The primers of Table 8 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplicons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[0408] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 9A-C rows 1-3), all except three samples were found to represent emm3, a Group A *Streptococcus* genotype previously associated with

high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 9A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and emm types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and emm gene sequencing were found to be concordant for the epidemic and historical samples.

TABLE 9A

Base Composition Analysis of Bioagent Identifying Amplicons of Group A <i>Streptococcus</i> samples from Six Military Installations Obtained with Primer Pair Nos. 426 and 430						
# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing		Year	murI (Primer Pair No. 426)	mutS (Primer Pair No. 430)
48	3	3	MCRD San	2002	A39 G25 C20 T34	A38 G27 C23 T33
2	6	6	Diego		A40 G24 C20 T34	A38 G27 C23 T33
1	28	28	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
15	3	ND			A39 G25 C20 T34	A38 G27 C23 T33
6	3	3	NHRC San	2003	A39 G25 C20 T34	A38 G27 C23 T33
3	5, 58	5	Diego-		A40 G24 C20 T34	A38 G27 C23 T33
6	6	6	Archive		A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
3	12	12			A40 G24 C20 T34	A38 G26 C24 T33
1	22	22			A39 G25 C20 T34	A38 G27 C23 T33
3	25, 75	75			A39 G25 C20 T34	A38 G27 C23 T33
4	44/61, 82, 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	53, 91	91			A39 G25 C20 T34	A38 G27 C23 T33
1	2	2	Ft.	2003	A39 G25 C20 T34	A38 G27 C24 T32
2	3	3	Leonard		A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	Wood		A39 G25 C20 T34	A38 G27 C23 T33
1	6	6	(Cultured)		A40 G24 C20 T34	A38 G27 C23 T33
11	25 or 75	75			A39 G25 C20 T34	A38 G27 C23 T33
1	25, 75, 33,	75			A39 G25 C20 T34	A38 G27 C23 T33
	34, 4, 52, 84					
1	44/61 or 82	44/61			A40 G24 C20 T34	A38 G26 C24 T33
	or 9					
2	5 or 58	5			A40 G24 C20 T34	A38 G27 C23 T33
3	1	1	Ft. Sill	2003	A40 G24 C20 T34	A38 G27 C23 T33
2	3	3	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	` ´		A39 G25 C20 T34	A38 G27 C23 T33
1	28	28			A39 G25 C20 T34	A38 G27 C23 T33
1	3	3	Ft.	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	Benning		A39 G25 C20 T34	A38 G27 C23 T33
3	6	6	(Cultured)		A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	(Linurea)		A39 G25 C20 T34	A38 G27 C23 T33
1	13	94**			A40 G24 C20 T34	A38 G27 C23 T33
1	1.5	74			2140 024 C20 1J4	1150 027 025 155

# of	emm-type by Mass	emm-Gene	T		murI	mutS
# of Instances	Spectrometry	Sequencing		Year	(Primer Pair No. 426)	(Primer Pair No. 430)
1	44/61 or 82 or 9	82			A40 G24 C20 T34	A38 G26 C24 T33
1	5 or 58	58			A40 G24 C20 T34	A38 G27 C23 T33
1	78 or 89	89			A39 G25 C20 T34	A38 G27 C23 T33
2	5 or 58	ND	Lackland	2003	A40 G24 C20 T34	A38 G27 C23 T33
1	2		AFB		A39 G25 C20 T34	A38 G27 C24 T32
1	81 or 90		(Throat		A40 G24 C20 T34	A38 G27 C23 T33
1	78		Swabs)		A38 G26 C20 T34	A38 G27 C23 T33
3***	No detection		í.		No detection	No detection
7	3	ND	MCRD San	2002	A39 G25 C20 T34	A38 G27 C23 T33
1	3	ND	Diego		No detection	A38 G27 C23 T33
1	3	ND	(Throat		No detection	No detection
1	3	ND	Swabs)		No detection	No detection
2	3	ND	,		No detection	A38 G27 C23 T33
3	No detection	ND			No detection	No detection

TABLE 9A-continued

TABLE 9B

Base Composition Analysis of Bioagent Identifying Amplicons of Group A *Streptococcus* samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing		Year	xpt (Primer Pair No. 438)	yqiL (Primer Pair No. 441)
48	3	3	MCRD San	2002	A30 G36 C20 T36	A40 G29 C19 T31
2	6	6	Diego		A30 G36 C20 T36	A40 G29 C19 T31
1	28	28	(Cultured)		A30 G36 C20 T36	A41 G28 C18 T32
15	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
6	3	3	NHRC San	2003	A30 G36 C20 T36	A40 G29 C19 T31
3	5, 58	5	Diego-		A30 G36 C20 T36	A40 G29 C19 T31
6	6	6	Archive		A30 G36 C20 T36	A40 G29 C19 T31
1	11	11	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
3	12	12			A30 G36 C19 T37	A40 G29 C19 T31
1	22	22			A30 G36 C20 T36	A40 G29 C19 T31
3	25, 75	75			A30 G36 C20 T36	A40 G29 C19 T31
4	44/61, 82, 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	53,91	91			A30 G36 C19 T37	A40 G29 C19 T31
1	2	2	Ft.	2003	A30 G36 C20 T36	A40 G29 C19 T31
2	3	3	Leonard		A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	Wood		A30 G36 C19 T37	A41 G28 C19 T31
1	6	6	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
11	25 or 75	75			A30 G36 C20 T36	A40 G29 C19 T31
1	25, 75, 33,	75			A30 G36 C19 T37	A40 G29 C19 T31
	34, 4, 52, 84					
1	44/61 or 82	44/61			A30 G36 C20 T36	A41 G28 C19 T31
	or 9	-				
2	5 or 58	5	-		A30 G36 C20 T36	A40 G29 C19 T31
3	1	1	Ft. Sill	2003	A30 G36 C19 T37	A40 G29 C19 T31
2	3	3	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
1	4	4			A30 G36 C19 T37	A41 G28 C19 T31
1	28	28	F .	2002	A30 G36 C20 T36	A41 G28 C18 T32
1	3 4	3 4	Ft. Benning	2003	A30 G36 C20 T36 A30 G36 C19 T37	A40 G29 C19 T31 A41 G28 C19 T31
1 3	4 6	4	(Cultured)		A30 G36 C19 T37 A30 G36 C20 T36	A41 G28 C19 T31 A40 G29 C19 T31
3 1	11	11	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31 A40 G29 C19 T31
1	13	11 94**			A30 G36 C20 T36	A40 G29 C19 T31 A41 G28 C19 T31
1	44/61 or 82	82			A30 G36 C20 T36	A41 G28 C19 T31 A41 G28 C19 T31
1	44/01 01 82 or 9	82			A30 G30 C20 130	A41 028 C19 131
1	5 or 58	58			A30 G36 C20 T36	A40 G29 C19 T31
1	78 or 89	89			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	ND	Lackland	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	2		AFB		A30 G36 C20 T36	A40 G29 C19 T31
1	81 or 90		(Throat		A30 G36 C20 T36	A40 G29 C19 T31
1	78		Swabs)		A30 G36 C20 T36	A41 G28 C19 T31
3***	No detection				No detection	No detection

TABLE 9B-continued

В					mplicons of Group A ith Primer Pair Nos. 4	
# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Beederen	Year	xpt (Primer Pair No. 438)	yqiL (Primer Pair No. 441)
7	3	ND	MCRD San	2002	A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND	Diego		A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND	(Throat		A30 G36 C20 T36	No detection
1	3	ND	Swabs)		No detection	A40 G29 C19 T31
2	3	ND			A30 G36 C20 T36	A40 G29 C19 T31
3	No detection	ND			No detection	No detection

TABLE 9C

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	gki (Primer Pair No. 442)	gtr ((Primer Pair No. 443)
48	3	3	MCRD San	2002	A32 G35 C17 T32	A39 G28 C16 T32
2	6	6	Diego		A31 G35 C17 T33	A39 G28 C15 T33
1	28	28	(Cultured)		A30 G36 C17 T33	A39 G28 C16 T32
15	3	ND	· · · · ·		A32 G35 C17 T32	A39 G28 C16 T32
6	3	3	NHRC San	2003	A32 G35 C17 T32	A39 G28 C16 T32
3	5,58	5	Diego-		A30 G36 C20 T30	A39 G28 C15 T33
6	6	6	Archive		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	(Cultured)		A30 G36 C20 T30	A39 G28 C16 T32
3	12	12	` ´		A31 G35 C17 T33	A39 G28 C15 T33
1	22	22			A31 G35 C17 T33	A38 G29 C15 T33
3	25,75	75			A30 G36 C17 T33	A39 G28 C15 T33
4	44/61, 82, 9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	53,91	91			A32 G35 C17 T32	A39 G28 C16 T32
1	2	2	Ft.	2003	A30 G36 C17 T33	A39 G28 C15 T33
2	3	3	Leonard		A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	Wood		A31 G35 C17 T33	A39 G28 C15 T33
1	6	6	(Cultured)		A31 G35 C17 T33	A39 G28 C15 T33
11	25 or 75	75	` '		A30 G36 C17 T33	A39 G28 C15 T33
1	25, 75, 33, 34, 4, 52, 84	75			A30 G36 C17 T33	A39 G28 C15 T33
1	44/61 or 82 or 9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	5			A30 G36 C20 T30	A39 G28 C15 T33
3	1	1	Ft. Sill	2003	A30 G36 C18 T32	A39 G28 C15 T33
2	3	3	(Cultured)		A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1	3	3	Ft.	2003	A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	Benning		A31 G35 C17 T33	A39 G28 C15 T33
3	6	6	(Cultured)		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11			A30 G36 C20 T30	A39 G28 C16 T32
1	13	94**			A30 G36 C19 T31	A39 G28 C15 T33
1	44/61 or 82 or 9	82			A30 G36 C18 T32	A39 G28 C15 T33
1	5 or 58	58			A30 G36 C20 T30	A39 G28 C15 T33
1	78 or 89	89			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	ND	Lackland	2003	A30 G36 C20 T30	A39 G28 C15 T33
1	2		AFB		A30 G36 C17 T33	A39 G28 C15 T33
1	81 or 90		(Throat		A30 G36 C17 T33	A39 G28 C15 T33
1	78		Swabs)		A30 G36 C18 T32	A39 G28 C15 T33
3***	No detection		-		No detection	No detection
7	3	ND	MCRD San	2002	A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	Diego		No detection	No detection
1	3	ND	(Throat		A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	Swabs)		A32 G35 C17 T32	No detection
2	3	ND	·		A32 G35 C17 T32	No detection
3	No detection	ND			No detection	No detection

Example 8

Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)

[0409] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 5) and the *Bacillus anthracis* drill-down set (Table 6).

[0410] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Tables 5 and 6 (primer names have the designation "TMOD"). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 10. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEQ ID NO: 1445. In Table 10, the forward (_F) or reverse (_R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S_EC_713_732_TMOD_F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an E. coli reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of *E. coli* K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 11. The designation "TMOD" in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (vide supra).

[0411] The 19 calibration sequences described in Tables 10 and 11 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 1464-which is herein designated a "combination calibration polynucleotide") which was then cloned into a pCR®-Blunt vector (Invitrogen, Carlsbad, Calif.). This combination calibration polynucleotide can be used in conjunction with the primers of Tables 5 or 6 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (16S rRNA) will be produced in an amplification reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (rpoC) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 1464) are indicated in Table 11.

TABLE 10

Ba	cterial Primer Pairs for Production of Bacteri	al Bioagent	Identifying Amplicons and Corresponding	Represent	ative Calibration Seq	uences
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
361	16S_EC_1090_1111_2_TMOD_F	697	16S_EC_1175_1196_TMOD_R	1398	Bacillus	1445
346	16S_EC_713_732_TMOD_F	202	16S_EC_789_809_TMOD_R	1110	anthracis Bacillus anthracis	1446
347	16S_EC_785_806_TMOD_F	560	16S_EC_880_897_TMOD_R	1278	Bacillus	1447
348	16S_EC_960_981_TMOD_F	706	16S_EC_1054_1073_TMOD_R	895	anthracis Bacillus anthracis	1448
349	238_EC_1826_1843_TMOD_F	401	23S_EC_1906_1924_TMOD_R	1156	Bacillus anthracis	1449
360	238_EC_2646_2667_TMOD_F	409	23S_EC_2745_2765_TMOD_R	1434	aninracis Bacillus anthracis	1450
350	CAPC_BA_274_303_TMOD_F	476	CAPC_BA_349_376_TMOD_R	1314	Bacillus anthracis	1451
351	CYA_BA_1353_1379_TMOD_F	355	CYA_BA_1448_1467_TMOD_R	1423	Bacillus anthracis	1452
352	INFB_EC_1365_1393_TMOD_F	687	INFB_EC_1439_1467_TMOD_R	1411	aninracis Bacillus anthracis	1453
353	LEF_BA_756_781_TMOD_F	220	LEF_BA_843_872_TMOD_R	1394	Bacillus	1454
356	RPLB_EC_650_679_TMOD_F	449	RPLB_EC_739_762_TMOD_R	1380	anthracis Clostridium botulinum	1455
449	RPLB_EC_690_710_F	309	RPLB_EC_737_758_R	1336	Clostridium	1456
359	RPOB_EC_1845_1866_TMOD_F	659	RPOB_EC_1909_1929_TMOD_R	1250	botulinum Yersinia Pestis	1457
362	RPOB_EC_3799_3821_TMOD_F	581	RPOB_EC_3862_3888_TMOD_R	1325	Burkholderia mallei	1458
363	RPOC_EC_2146_2174_TMOD_F	284	RPOC_EC_2227_2245_TMOD_R	898	mallei Burkholderia mallei	1459
354	RPOC_EC_2218_2241_TMOD_F	405	RPOC_EC_2313_2337_TMOD_R	1072	Bacillus anthracis	1460

TABLE 10-continued

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
355	SSPE_BA_115_137_TMOD_F	255	SSPE_BA_197_222_TMOD_R	1402	Bacillus anthracis	1461
367	TUFB_EC_957_979_TMOD_F	308	TUFB_EC_1034_1058_TMOD_R	1276	Burkholderia mallei	1462
358	VALS_EC_1105_1124_TMOD_F	385	VALS_EC_1195_1218_TMOD_R	1093	Yersinia Pestis	1463

TABLE 11

Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence Coordinates within the Combination Calibration Polynucleotide

168 E. coli 40331	204034661 204034661 204034661	16127994 (G)	346	1.6 1.00
16S E. coli 40331	204034661			16109
16S E. coli 40331	20 4034661	16127994 (G)	347	83 190
		16127994 (G)	348	246 353
16S E. coli 40331	204034661	16127994 (G)	361	368469
23S E. coli 41662	204169123	16127994 (G)	349	743 837
23S E. coli 41662	204169123	16127994 (G)	360	865 981
rpoB E. coli. 41788	23 4182851	16127994 (G)	359	1591 1672
(com	olement strand)	· · · ·		
rpoB E. coli 41788	23 4182851	16127994 (G)	362	2081 2167
(com	olement strand)			
rpoC E. coli 41829	28 4187151	16127994 (G)	354	1810 1926
rpoC E. coli 41829	284187151	16127994 (G)	363	2183 2279
infB E. coli 33136	55 3310983	16127994 (G)	352	1692 1791
(com	olement strand)			
tufB E. coli 41735	23 4174707	16127994 (G)	367	2400 2498
rplB E. coli 34490	01 3448180	16127994 (G)	356	1945 2060
rplB E. coli 34490	01 3448180	16127994 (G)	449	1986 2055
valS E. coli 44814	05 4478550	16127994 (G)	358	1462 1572
(com	olement strand)			
capC 560	74 55628	6470151 (P)	350	2517 2616
	plement strand)			
2	26154288	4894216 (P)	351	1338 1449
	plement strand)			
	42 129921	4894216 (P)	353	1121 1234
B. anthracis				
	96 226783	30253828 (G)	355	1007-1104
B. anthracis				

Example 9

Use of a Calibration Polynucleotide for Determining the Quantity of *Bacillus Anthracis* in a Sample Containing a Mixture of Microbes

[0412] The process described in this example is shown in FIG. **2**. The capC gene is a gene involved in capsule synthesis which resides on the pX02 plasmid of *Bacillus anthracis*. Primer pair number 350 (see Tables 10 and 11) was designed to identify *Bacillus anthracis* via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 8 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of *Bacillus anthracis*. Upon amplification of the bacterial bioagent nucleic acid and the

combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in FIG. 7. The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of Bacillus anthracis) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pX02 plasmid of the Ames strain of Bacillus anthracis. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[0413] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pX02 plasmid.

Example 10

Triangulation Genotyping Analysis of Campylobacter Species

[0414] A series of triangulation genotyping analysis primers were designed as described in Example 1 with the objective of identification of different strains of *Campylobacter jejuni*. The primers are listed in Table 12 with the designation "CJST_CJ." Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: tkt (transketolase), glyA (serine hydroxymethyl-transferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain).

 ${\rm TABLE} \ 12$

		Campylobacter C	Jenotyping Primer Pairs		
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	
1053	CJST CJ 1080 1110 F	681	CJST CJ 1166 1198 R	1022	gltA
1047	CJST_CJ_584_616_F	315	CJST_CJ_663_692_R	1379	glnA
1048	CJST_CJ_360_394_F	346	CJST_CJ_442_476_R	955	aspA
1049	CJST_CJ_2636_2668_F	504	CJST_CJ_2753_2777_R	1409	tkt
1054	CJST_CJ_2060_2090_F	323	CJST_CJ_2148_2174_R	1068	pgm
1064	CJST_CJ_1680_1713_F	479	CJST_CJ_1795_1822_R	938	glyA

[0415] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained *Campylobacter jejuni* and 25 of which contained *Campylobacter coli*. Primers used in this study were developed primarily for the discrimination of *Campylobacter jejuni* clonal complexes and for distinguishing *Campylobacter jejuni* from *Campylobacter coli*. Finer discrimination

between *Campylobacter coli* types is also possible by using specific primers targeted to loci where closely-related *Campylobacter coli* isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 13A-C.

TABLE 13A

	Resu	lts of Base C	omposition Analysis of 5	i0 Campylobacter S	amples with	Drill-down MLST Primer Pair N	los: 1048 and 1047
Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (aspA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
J-1	C. jejuni	Goose	ST 690/ 692/707/991	ST 991	RM3673	A30 G25 C16 T46	A47 G21 C16 T25
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A30 G25 C16 T46	A48 G21 C17 T23
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A30 G25 C15 T47	A48 G21 C18 T22
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A30 G25 C16 T46	A48 G21 C18 T22
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A30 G25 C16 T46	A48 G21 C17 T23
J-6	С.	Human	Complex 443	ST 51,	RM4275	A30 G25 C15 T47	A48 G21 C17 T23
	jejuni			complex 443	RM4279	A30 G25 C15 T47	A48 G21 C17 T23
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A30 G25 C15 T47	A48 G21 C18 T22
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A30 G25 C15 T47	A48 G21 C18 T22

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (aspA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A30 G25 C15 T47	A47 G21 C18 T23
	C. jejuni	Human	Consistent with 74	ST 828	RM4183	A31 G27 C20 T39	A48 G21 C16 T24
2-1	C. coli		closely	ST 832	RM1169	A31 G27 C20 T39	A48 G21 C16 T24
			related	ST 1056	RM1857	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry	sequence	ST 889	RM1166	A31 G27 C20 T39	A48 G21 C16 T24
		-	types (none	ST 829	RM1182	A31 G27 C20 T39	A48 G21 C16 T24
			belong to a	ST 1050	RM1518	A31 G27 C20 T39	A48 G21 C16 T24
			clonal	ST 1051	RM1521	A31 G27 C20 T39	A48 G21 C16 T24
			complex)	ST 1053	RM1523	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1055	RM1527	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1017	RM1529	A31 G27 C20 T39	A48 G21 C16 T24
				ST 860	RM1840	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1063	RM2219	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1066	RM2241	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1067	RM2243	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1068	RM2439	A31 G27 C20 T39	A48 G21 C16 T24
		Swine		ST 1016	RM3230	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1069	RM3231	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1061	RM1904	A31 G27 C20 T39	A48 G21 C16 T24
		Unknown		ST 825	RM1534	A31 G27 C20 T39	A48 G21 C16 T24
				ST 901	RM1505	A31 G27 C20 T39	A48 G21 C16 T24
-2	C. coli	Human	ST 895	ST 895	RM1532	A31 G27 C19 T40	A48 G21 C16 T24
-3	C. coli	Poultry	Consistent	ST 1064	RM2223	A31 G27 C20 T39	A48 G21 C16 T24
		-	with 63	ST 1082	RM1178	A31 G27 C20 T39	A48 G21 C16 T24
			closely	ST 1054	RM1525	A31 G27 C20 T39	A48 G21 C16 T24
			related	ST 1049	RM1517	A31 G27 C20 T39	A48 G21 C16 T24
		Marmoset	sequence	ST 891	RM1531	A31 G27 C20 T39	A48 G21 C16 T24
		Mannoset	types (none belong to a clonal	51 691	RWIIJJI	AST 027 020 139	A40 021 C10 124

TABLE 13A-continued

TABLE 13B

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
J-1	C. jejuni	Goose	ST 690/ 692/707/991	ST 991	RM3673	A24 G25 C23 T47	A40 G29 C29 T45
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A24 G25 C23 T47	A40 G29 C29 T45
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A24 G25 C23 T47	A40 G29 C29 T45
-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A24 G25 C23 T47	A40 G29 C29 T45
-5	Ċ. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A24 G25 C23 T47	A39 G30 C26 T48
-6	C. jejuni	Human	Complex 443	ST 51, complex 443	RM4275 RM4279	A24 G25 C23 T47 A24 G25 C23 T47	A39 G30 C28 T46 A39 G30 C28 T46
-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A24 G25 C23 T47	A39 G30 C26 T48
-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A24 G25 C23 T47	A38 G31 C28 T46
-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A24 G25 C23 T47	A38 G31 C28 T46
	C. jejuni	Human	Consistent with 74	ST 828	RM4183	A23 G24 C26 T46	A39 G30 C27 T47

				TABLE 13E	s-continued	1	
	Resul	ts of Base Co	mposition Analysis of 5	0 <i>Campylobacter</i> Sa	mples with Di	rill-down MLST Primer Pair N	os: 1053 and 1064
Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
C-1	C. coli	Poultry Swine	closely related sequence types (none belong to a clonal complex)	ST 832 ST 1056 ST 889 ST 829 ST 1050 ST 1051 ST 1053 ST 1055 ST 1017 ST 860 ST 1063 ST 1066 ST 1067 ST 1068 ST 1016	RM1169 RM1857 RM1166 RM1182 RM1518 RM1523 RM1527 RM1527 RM1529 RM1840 RM2219 RM2241 RM2243 RM2243 RM2439 RM3230	A23 G24 C26 T46 A23 G24 C26 T46	A39 G30 C27 T47 A39 G30 C27 T47
		Unknown		ST 1069 ST 1061 ST 825 ST 901	RM3231 RM1904 RM1534 RM1505	A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C26 T46	NO DATA A39 G30 C27 T47 A39 G30 C27 T47 A39 G30 C27 T47
C-2 C-3	C. coli C. coli	Human Poultry	ST 895 Consistent with 63 closely related	ST 895 ST 1064 ST 1082 ST 1054 ST 1049	RM1532 RM2223 RM1178 RM1525 RM1517	A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C26 T46 A23 G24 C25 T47 A23 G24 C26 T46	A39 G30 C27 T47 A39 G30 C27 T47
		Marmoset	sequence types (none belong to a clonal complex)	ST 891	RM1531	A23 G24 C26 T46	A39 G30 C27 T47

TABLE 13B-continued

TABLE 13C

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt)
I -1	C. jejuni	Goose	ST 690/ 692/707/991	ST 991	RM3673	A26 G33 C18 T38	A41 G28 C35 T38
J-2	C. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A26 G33 C19 T37	A41 G28 C36 T37
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A27 G32 C19 T37	A42 G28 C36 T36
[-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A27 G32 C19 T37	A41 G29 C35 T37
-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A26 G33 C18 T38	A41 G28 C36 T37
-6	C. jejuni	Human	Complex 443	ST 51, complex 443	RM4275 RM4279	A27 G31 C19 T38 A27 G31 C19 T38	A41 G28 C36 T37 A41 G28 C36 T37
-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A27 G32 C19 T37	A42 G28 C35 T37
-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A26 G33 C19 T37	A42 G28 C35 T37
-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A28 G31 C19 T37	A43 G28 C36 T35
	C. jejuni	Human	Consistent with 74	ST 828	RM4183	A27 G30 C19 T39	A46 G28 C32 T36
C-1	C. coli		closely related	ST 832 ST 1056	RM1169 RM1857	A27 G30 C19 T39 A27 G30 C19 T39	A46 G28 C32 T36 A46 G28 C32 T36
		Poultry	sequence types (none belong to a clonal	ST 889 ST 829 ST 1050 ST 1051	RM1166 RM1182 RM1518 RM1521	A27 G30 C19 T39 A27 G30 C19 T39 A27 G30 C19 T39 A27 G30 C19 T39 A27 G30 C19 T39	A46 G28 C32 T36 A46 G28 C32 T36 A46 G28 C32 T36 A46 G28 C32 T36 A46 G28 C32 T36
			complex)	ST 1051 ST 1053	RM1523	A27 G30 C19 T39	A46 G28 C32 T36

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (tkt)
				ST 1055	RM1527	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1017	RM1529	A27 G30 C19 T39	A46 G28 C32 T36
				ST 860	RM184 0	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1063	RM2219	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1066	RM2241	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1067	RM2243	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1068	RM2439	A27 G30 C19 T39	A46 G28 C32 T36
		Swine		ST 1016	RM3230	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1069	RM3231	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1061	RM1904	A27 G30 C19 T39	A46 G28 C32 T36
		Unknown		ST 825	RM1534	A27 G30 C19 T39	A46 G28 C32 T36
				ST 901	RM1505	A27 G30 C19 T39	A46 G28 C32 T36
-2	C. coli	Human	ST 895	ST 895	RM1532	A27 G30 C19 T39	A45 G29 C32 T36
-3	C. coli	Poultry	Consistent	ST 1064	RM2223	A27 G30 C19 T39	A45 G29 C32 T36
			with 63	ST 1082	RM1178	A27 G30 C19 T39	A45 G29 C32 T36
			closely	ST 1054	RM1525	A27 G30 C19 T39	A45 G29 C32 T36
			related	ST 1049	RM1517	A27 G30 C19 T39	A45 G29 C32 T36
		Marmoset	sequence types (none belong to a clonal complex)	ST 891	RM1531	A27 G30 C19 T39	A45 G29 C32 T36

TABLE 13C-continued

[0416] The base composition analysis method was successful in identification of 12 different strain groups. *Campylobacter jejuni* and *Campylobacter coli* are generally differentiated by all loci. Ten clearly differentiated *Campylobacter jejuni* isolates and 2 major *Campylobacter coli* groups were identified even though the primers were designed for strain typing of *Campylobacter jejuni*. One isolate (RM4183) which was designated as *Campylobacter jejuni* was found to group with *Campylobacter coli* and also appears to actually be *Campylobacter coli* by full MLST sequencing.

Example 11

Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance

[0417] To test the capability of the broad range survey and division-wide primer sets of Table 5 in identification of *Acine-tobacter* species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners. In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[0418] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 5) all produced bacterial bioagent amplicons which identified *Acinetobacter baumannii* in 215 of 217 samples. The organism *Klebsiella pneumoniae* was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of *Acinetobacter baumannii*) were identified and assigned arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

[0419] The epidemiology of strain type 7 of *Acinetobacter baumannii* was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The index patient infected with strain 7 was a prewar patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospital in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.

[0420] The epidemiology of strain type 3 of *Acinetobacter baumannii* was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and enemy prisoners) who were treated on the USNS Comfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of nosocomial infections.

[0421] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

Example 12

Selection and Use of Triangulation Genotyping Analysis Primer Pairs for *Acinetobacter baumanii*

[0422] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, an additional 21 primer pairs were selected based on analysis of housekeeping genes

of the genus Acinetobacter. Genes to which the drill-down triangulation genotyping analysis primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydratase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 14. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and amplify segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of mutY. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa. Primer pair numbers: 2846-2848 hybridize to and amplify segments of the parC gene of DNA topoisomerase which include a codon known to confer quinolone drug resistance upon sub-types of Acinetobacter baumannii. Primer pair numbers 2852-2854 hybridize to and amplify segments of the gyrA gene of DNA gyrase which include a codon known to confer quinolone drug resistance upon sub-types of Acinetobacter baumannii. Primer pair numbers 2922 and 2972 are speciating primers which are useful for identifying different species members of the genus Acinetobacter. The primer names given in Table 14A (with the exception of primer pair numbers 2846-2848, 2852-2854) indicate the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1151 is named AB MLST-11-OIF007 62 91 F because it hybridizes to the Acinetobacter primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (Off) at positions 62 to 91. DNA was sequenced from strain type 11 and from this sequence data and an artificial concatenated sequence of partial gene extractions was assembled for use in design of the triangulation genotyping analysis primers. The stretches of arbitrary residues "N"s in the concatenated sequence were added for the convenience of separation of the partial gene extractions (40N for AB_MLST (SEQ ID NO: 1444)).

[0423] The hybridization coordinates of primer pair numbers 2846-2848 are with respect to GenBank Accession number X95819. The hybridization coordinates of primer pair numbers 2852-2854 are with respect to GenBank Accession number AY642140. Sequence residue "I" appearing in the forward and reverse primers of primer pair number 2972 represents inosine.

TABLE 14A

	0 11 0		Pairs for Identification of Sub-species f the Bacterial Genus <i>Acinetobacter</i>	
Primer		Forward Primer	r	Reverse Primer
Pair No.	Forward Primer Name	(SEQ ID NO:)	Reverse Primer Name	(SEQ ID NO:)
1151	AB_MLST-11-OIF007_62_91_F	454	AB_MLST-11-OIF007_169_203_R	1418
1152	AB_MLST-11-OIF007_185_214_F	243	AB_MLST-11-OIF007_291_324_R	969
1153	AB_MLST-11-OIF007_260_289_F	541	AB_MLST-11-OIF007_364_393_R	1400
1154	AB_MLST-11-OIF007_206_239_F	436	AB_MLST-11-OIF007_318_344_R	1036
1155	AB_MLST-11-OIF007_522_552_F	378	AB_MLST-11-OIF007_587_610_R	1392
1156	AB_MLST-11-OIF007_547_571_F	250	AB_MLST-11-OIF007_656_686_R	902
1157	AB_MLST-11-OIF007_601_627_F	256	AB_MLST-11-OIF007_710_736_R	881
1158	AB_MLST-11-OIF007_1202_1225_F	384	AB_MLST-11-OIF007_1266_1296_R	878
1159	AB_MLST-11-OIF007_1202_1225_F	384	AB_MLST-11-OIF007_1299_1316_R	1199
1160	AB_MLST-11-OIF007_1234_1264_F	694	AB_MLST-11-OIF007_1335_1362_R	1215
1161	AB_MLST-11-OIF007_1327_1356_F	225	AB_MLST-11-OIF007_1422_1448_R	1212
1162	AB_MLST-11-OIF007_1345_1369_F	383	AB_MLST-11-OIF007_1470_1494_R	1083
1163	AB_MLST-11-OIF007_1351_1375_F	662	AB_MLST-11-OIF007_1470_1494_R	1083
1164	AB_MLST-11-OIF007_1387_1412_F	422	AB_MLST-11-OIF007_1470_1494_R	1083
1165	AB_MLST-11-OIF007_1542_1569_F	194	AB_MLST-11-OIF007_1656_1680_R	1173
1166	AB_MLST-11-OIF007_1566_1593_F	684	AB_MLST-11-OIF007_1656_1680_R	1173
1167	AB_MLST-11-OIF007_1611_1638_F	375	AB_MLST-11-OIF007_1731_1757_R	890
1168	AB_MLST-11-OIF007_1726_1752_F	182	AB_MLST-11-OIF007_1790_1821_R	1195
1169	AB_MLST-11-OIF007_1792_1826_F	656	AB_MLST-11-OIF007_1876_1909_R	1151
1170	AB MLST-11-OIF007 1792 1826 F	656	AB MLST-11-OIF007 1895 1927 R	1224
1171	AB_MLST-11-OIF007_1970_2002_F	618	AB_MLST-11-OIF007_2097_2118_R	1157
2846	PARC X95819 33 58 F	302	PARC X95819 121 153 R	852
2847	PARC_X95819_33_58_F	199	PARC_X95819_157_178_R	889
2848	PARC_X95819_33_58_F	596	PARC_X95819_97_128_R	1169
2852	GYRA_AY6421401_24_F	150	GYRA_AY642140_71_100_R	1242
2852	GYRA AY642140 26 54 F	166	GYRA AY642140 121 146 R	1069
2855	GYRA_AY642140_26_54_F	166	GYRA_AY642140_58_89_R	1168
2922	AB_MLST-11-OIF007_991_1018_F	583	AB_MLST-11-OIF007_1110_1137_R	923
2972	AB_MLST 11 OIF007_1007_1034_F	592	AB_MLST-11-OIF007_1126_1153_R	925
2012	100/_100/_100/_100/_1	572	.usussi ii 01100/_1120_1155_K	22-1

TABLE	14B
TUUUU	

Primer Pair No.	Forward Primer (SEQ ID NO:)	SEQUENCE	Reverse Primer (SEQ ID NO:)	
1151	454	TGAGATTGCTGAACATTTAATGCTGATTGA	1418	TTGTACATTTGAAACAATATGCATGACATGTGAAT
1152	243	TATTGTTTCAAATGTACAAGGTGAAGTGCG	969	TCACAGGTTCTACTTCATCAATAATTTCCATTGC
1153	541	TGGAACGTTATCAGGTGCCCCAAAAATTCG	1400	TTGCAATCGACATATCCATTTCACCATGCC
1154	436	TGAAGTGCGTGATGATATCGATGCACTTGATGTA	1036	TCCGCCAAAAACTCCCCTTTTCACAGG
1155	378	TCGGTTTAGTAAAAGAACGTATTGCTCAACC	1392	TTCTGCTTGAGGAATAGTGCGTGG
1156	250	TCAACCTGACTGCGTGAATGGTTGT	902	TACGTTCTACGATTTCTTCATCAGGTACATC
1157	256	TCAAGCAGAAGCTTTGGAAGAAGAAGG	881	TACAACGTGATAAACACGACCAGAAGC
1158	384	TCGTGCCCGCAATTTGCATAAAGC	878	TAATGCCGGGTAGTGCAATCCATTCTTCTAG
1159	384	TCGTGCCCGCAATTTGCATAAAGC	1199	TGCACCTGCGGTCGAGCG
1160	694	TTGTAGCACAGCAAGGCAAATTTCCTGAAAC	1215	TGCCATCCATAATCACGCCATACTGACG
1161	225	TAGGTTTACGTCAGTATGGCGTGATTATGG	1212	TGCCAGTTTCCACATTTCACGTTCGTG
1162	383	TCGTGATTATGGATGGCAACGTGAA	1083	TCGCTTGAGTGTAGTCATGATTGCG
1163	662	TTATGGATGGCAACGTGAAACGCGT	1083	TCGCTTGAGTGTAGTCATGATTGCG
1164	422	TCTTTGCCATTGAAGATGACTTAAGC	1083	TCGCTTGAGTGTAGTCATGATTGCG
1165	194	TACTAGCGGTAAGCTTAAACAAGATTGC	1173	TGAGTCGGGTTCACTTTACCTGGCA
1166	684	TTGCCAATGATATTCGTTGGTTAGCAAG	1173	TGAGTCGGGTTCACTTTACCTGGCA
1167	375	TCGGCGAAATCCGTATTCCTGAAAATGA	890	TACCGGAAGCACCAGCGACATTAATAG
1168	182	TACCACTATTAATGTCGCTGGTGCTTC	1195	TGCAACTGAATAGATTGCAGTAAGTTATAAGC
1169	656	TTATAACTTACTGCAATCTATTCAGTTGCTTGGTG	1151	TGAATTATGCAAGAAGTGATCAATTTTCTCACGA
1170	656	TTATAACTTACTGCAATCTATTCAGTTGCTTGGTG	1224	TGCCGTAACTAACATAAGAGAATTATGCAAGAA
1171	618	TGGTTATGTACCAAATACTTTGTCTGAAGATGG	1157	TGACGGCATCGATACCACCGTC
2846	302	TCCAAAAAAATCAGCGCGTACAGTGG	852	TAAAGGATAGCGGTAACTAAATGGCTGAGCCAT
2847	199	TACTTGGTAAATACCACCCACATGGTGA	889	TACCCCAGTTCCCCTGACCTTC
2848	596	TGGTAAATACCACCCACATGGTGAC	1169	TGAGCCATGAGTACCATGGCTTCATAACATGC
2852	150	TAAATCTGCCCGTGTCGTTGGTGAC	1242	TGCTAAAGTCTTGAGCCATACGAACAATGG
2853	166	TAATCGGTAAATATCACCCGCATGGTGAC	1069	TCGATCGAACCGAAGTTACCCTGACC
2854	166	TAATCGGTAAATATCACCCGCATGGTGAC	1168	TGAGCCATACGAACAATGGTTTCATAAACAGC
2922	583	TGGGCGATGCTGCGAAATGGTTAAAAGA	923	TAGTATCACCACGTACACCCGGATCAGT
2972	592	TGGGIGATGCTGCIAAATGGTTAAAAGA	924	TAGTATCACCACGTACICCIGGATCAGT

[0424] Analysis of bioagent identifying amplicons obtained using the primers of Table 14B for over 200 samples from Operation Iraqi Freedom resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28th Combat Support Hospital in Baghdad.

Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

significant epidemiological correlation/linkage. [0425] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, cephalosporins, carbepenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, anti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

Example 13

Triangulation Genotyping Analysis and Codon Analysis of *Acinetobacter baumannii* Samples from Two Health Care Facilities

[0426] In this investigation, 88 clinical samples were obtained from Walter Reed Hospital and 95 clinical samples were obtained from Northwestern Medical Center. All samples from both healthcare facilities were suspected of containing sub-types of *Acinetobacter baumannii*, at least some of which were expected to be resistant to quinolone drugs. Each of the 183 samples was analyzed by the method of the present invention. DNA was extracted from each of the samples and amplified with eight triangulation genotyping analysis primer pairs represented by primer pair numbers:

1151, 1156, 1158, 1160, 1165, 1167, 1170, and 1171. The DNA was also amplified with speciating primer pair number 2922 and codon analysis primer pair numbers 2846-2848 which interrogate a codon present in the parC gene, and primer pair numbers 2852-2854 which bracket a codon present in the gyrA gene. The parC and gyrA codon mutations are both responsible for causing drug resistance in Acinetobacter baumannii. During evolution of drug resistant strains, the gyrA mutation usually occurs before the parC mutation. Amplification products were measured by ESI-TOF mass spectrometry as indicated in Example 4. The base compositions of the amplification products were calculated from the average molecular masses of the amplification products and are shown in Tables 15-18. The entries in each of the tables are grouped according to strain type number, which is an arbitrary number assigned to Acinetobacter baumannii strains in the order of observance beginning from the triangulation genotyping analysis OIF genotyping study described in Example 12. For example, strain type 11 which appears in samples from the Walter Reed Hospital is the same strain as the strain type 11 mentioned in Example 12. Ibis# refers to the order in which each sample was analyzed. Isolate refers to the original sample isolate numbering system used at the location from which the samples were obtained (either Walter Reed Hospital or Northwestern Medical Center). ST=strain type. ND=not detected. Base compositions highlighted with bold type indicate that the base composition is a unique base composition for the amplification product obtained with the pair of primers indicated.

TABLE 15A

Species	Ibis#	Isolate	ST	PP No: 2852 gyrA	PP No: 2853 gyrA	PP No: 2854 gyrA
A. baumannii	20	1082	1	A25G23C22T31	A29G28C22T42	A17G13C14T20
A. baumannii	13	854	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	22	1162	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	27	1230	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	31	1367	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	37	1459	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	55	1700	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	64	1777	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	73	1861	10	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	74	1877	10	ND	A29G28C21T43	A17G13C13T2
A. baumannii	86	1972	10	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	3	684	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	6	720	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	7	726	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	19	1079	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	21	1123	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	23	1188	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	33	1417	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	34	1431	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	38	1496	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	40	1523	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	42	1640	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	50	1666	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	51	1668	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	52	1695	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	65	1781	11	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	44	1649	12	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	49A	1658.1	12	A25G23C22T31	A29G28C21T43	A17G13C13T2
A. baumannii	49B	1658.2	12	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	56	1707	12	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	80	1893	12	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	5	693	14	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. haumannii	8	749	14	A25G23C21T32	A29G28C21T43	A17G13C13T2
A. baumannii	10	839	14	A25G23C21T32	A29G28C21T43	A17G13C13T2

TABLE 15A-continued

				PP No: 2852	PP No: 2853	PP No: 2854
Species	Ibis#	Isolate	ST	gyrA	gyrA	gyrA
1. baumannii	14	865	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	16	888	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	29	1326	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	35	1440	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	41	1524	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	46	1652	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	47	1653	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	48	1657	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	57	1709	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	61	1727	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	63	1762	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	67	1806	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	75	1881	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	77	1886	14	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	1	649	46	A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	2	653	46	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	39	1497	16	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	24	1198	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	28	1243	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	43	1648	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	62	1746	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	4	689	15	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	68	1822	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	69	1823A	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	70	1823B	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	71	1826	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	72	1860	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	81	1924	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	82	1929	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	85	1966	3	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	11	841	3	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. baumannii	32	1415	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	45	1651	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	54	1697	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	58	1712	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	60	1725	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	66	1802	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	76	1883	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	78	1891	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	79	1892	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	83	1947	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	84	1964	24	A25G23C21T32	A29G28C21T43	A17G13C13T21
4. baumannii	53	1696	24	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. baumannii	36	1458	49	A25G23C21T32	A29G28C21T43	A17G13C13T21
1. baumannii	59	1716	9	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. baumannii	9	805	30	A25G23C22T31	A29G28C22T42	A17G13C14T20
1. baumannii	18	967	39	A25G23C22T31	A29G28C22T42	A17G13C14T20
1. baumannii	30	1322	48	A25G23C22T31	A29G28C22T42	A17G13C14T20
1. baumannii	26	1218	50	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. sp. 13TU	15	875	A1	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. sp. 13TU	17	895	A1	A25G23C22T31	A29G28C22T42	A17G13C14T20
4. sp. 3	12	853	B7	A25G22C22T32	A30G29C22T40	A17G13C14T20
4. johnsonii	25	1202	NEW1	A25G22C22T32	A30G29C22T40	A17G13C14T20
4. sp. 2082	87	2082	NEW2	A25G22C22T32	A31G28C22T40	A17G13C14T20

TABLE 15B

Base Compositions Determined from <i>A. baumannii</i> DNA Samples Obtained from Walter Reed Hospital and Amplified with Codon Analysis Primer Pairs Targeting the parC Gene										
Species	Ibis#	Isolate	ST	PP No: 2846 parC	PP No: 2847 parC	PP No: 2848 parC				
A. baumannii	20	1082	1	A33G26C29T33	A29G28C26T31	A16G14C15T15				
A. baumannii	13	854	10	A33G26C28T34	A29G28C25T32	A16G14C14T16				
A. baumannii	22	1162	10	A33G26C28T34	A29G28C25T32	A16G14C14T16				
A. baumannii	27	1230	10	A33G26C28T34	A29G28C25T32	A16G14C14T16				

TABLE 15B-continued

	Base Compositions Determined from <i>A. baumannii</i> DNA Samples Obtained from Walter Reed Hospital and Amplified with Codon Analysis Primer Pairs Targeting the parC Gene								
Species	Ibis#	Isolate	ST	PP No: 2846 parC	PP No: 2847 parC	PP No: 2848 parC			
4. baumannii	31	1367	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	37	1459	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	55	1700	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	64	1777	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	73	1861	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	74	1877	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	86	1972	10	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	3	684	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	6	720	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	7	726	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	19	1079	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	21	1123	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	23	1188	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	33	1417	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	34	1431	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	38	1496	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	40	1523	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	42	1640	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	50	1666	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	51	1668	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	52	1695	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	65	1781	11	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	44	1649	12	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	49A	1658.1	12	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	49B	1658.2	12	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	56	1707	12	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	80	1893	12	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	5	693	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	8	749	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	10	839	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	14	865	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	16	888	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	29	1326	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	35	1440	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii 4. baumannii	41	1524	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii 4. baumannii	46	1652	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
	40	1653	14		A29G28C25T32				
4. baumannii	47		14	A33G26C28T34		A16G14C14T16			
4. baumannii	40 57	1657		A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii		1709	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	61	1727	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	63	1762	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	67 75	1806	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	75	1881	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	77	1886	14	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	1	649	46	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	2	653	46	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	39	1497	16	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	24	1198	15	A33G26C28T34	A29G29C23T33	A16G14C14T16			
1. baumannii	28	1243	15	A33G26C28T34	A29G29C23T33	A16G14C14T16			
1. baumannii	43	1648	15	A33G26C28T34	A29G29C23T33	A16G14C14T16			
1. baumannii	62	1746	15	A33G26C28T34	A29G29C23T33	A16G14C14T16			
1. baumannii	4	689	15	A34G25C29T33	A30G27C26T31	A16G14C15T15			
1. baumannii	68	1822	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	69	1823A	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	70	1823B	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	71	1826	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	72	1860	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	81	1924	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	82	1929	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
1. baumannii	85	1966	3	A33G26C28T34	A29G28C25T32	A16G14C14T16			
4. baumannii	11	841	3	A33G26C29T33	A29G28C26T31	A16G14C15T15			
4. baumannii	32	1415	24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
4. baumannii	45	1651	24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
1. baumannii	54	1697	24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
1. baumannii	58	1712	24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
4. baumannii	60	1725	24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
			24	A33G26C29T33	A29G28C26T31	A16G14C15T15			
1. haumannii	66								
	66 76	1802 1883							
4. baumannii 4. baumannii 4. baumannii	66 76 78	1802 1883 1891	24 24 24	A33G26C29T33 A33G26C29T33 A34G25C29T33	A29G28C26T31 A30G27C26T31	A16G14C15T15 A16G14C15T15			

TABLE 15B-continued

Species	Ibis#	Isolate	ST	PP No: 2846 parC	PP No: 2847 parC	PP No: 2848 parC
A. baumannii	83	1947	24	A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	84	1964	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	53	1696	24	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	36	1458	49	A34G26C29T32	A30G28C24T32	A16G14C15T15
A. baumannii	59	1716	9	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	9	805	30	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	18	967	39	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	30	1322	48	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	26	1218	50	A33G26C29T33	A29G28C26T31	A16G14C15T15
A. sp. 13TU	15	875	A1	A32G26C28T35	A28G28C24T34	A16G14C15T15
A. sp. 13TU	17	895	A1	A32G26C28T35	A28G28C24T34	A16G14C15T15
A. sp. 3	12	853	B7	A29G26C27T39	A26G32C21T35	A16G14C15T15
A. johnsonii	25	1202	NEW1	A32G28C26T35	A29G29C22T34	A16G14C15T15
A. sp. 2082	87	2082	NEW2	A33G27C26T35	A31G28C20T35	A16G14C15T15

TABLE 16A

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs Targeting the gyrA Gene

Species	Ibis#	Isolate	PP No: 2852 ST gyrA	PP No: 2853 gyrA	PP No: 2854 gyrA
A. baumannii	54	536	3 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	87	665	3 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	8	80	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	9	91	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	10	92	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	11	131	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	12	137	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	21	218	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	26	242	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	94	678	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	1	9	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	2	13	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	3	19	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	4	24	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	5	36	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	6	39	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	13	139	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	15	165	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	16	170	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	17	186	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	20	202	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	22	221	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	24	234	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	25	239	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	33	370	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	34	389	10 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	19	201	14 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	27	257	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	29	301	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	31	354	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	36	422	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	37	424	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	38	434	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	39	473	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	40	482	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	44	512	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	45	516	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	47	522	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	48	526	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	50	528	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	52	531	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	53	533	51 A25G23C21T32	A29G28C21T43	A17G13C13T21
A. baumannii	56	542	51 A25G23C21T32	A29G28C21T43	A17G13C13T21

TABLE 16A-continued

	Base Compositions Determined from <i>A. baumannii</i> DNA Samples Obtained from Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs Targeting the gyrA Gene							
Species	Ibis#	Isolate	S	PP No: 2852 ΓgyrA	PP No: 2853 gyrA	PP No: 2854 gyrA		
A. baumannii	59	550	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	62	556	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	64	557	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	70	588	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	73	603	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	74	605	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	75	606	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	77	611	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	79	622	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	83	643	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	85	653	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	89	669	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	93	674	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	23	228	5	1 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	32	369	5	2 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	35	393	5	2 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	30	339	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	41	485	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	42	493	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	43	502	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	46	520	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	49	527	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	51	529	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	65	562	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	68	579	5	3 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	57	546	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	58	548	5-		A29G28C21T43	A17G13C13T21		
A. baumannii	60	552	5	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	61	555	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	63	557	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	66	570	5	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	67	578	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	69	584	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	71	593	5		A29G28C21T43	A17G13C13T21		
A. baumannii	72	602	5	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	76	609	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	78	621	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	80	625	5		A29G28C21T43	A17G13C13T21		
A. baumannii	81	628	54	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	82	632	5-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	84	649	54	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	86	655	5		A29G28C21T43	A17G13C13T21		
A. baumannii	88	668	-	4 A25G23C21T32	A29G28C21T43	A17G13C13T21		
A. baumannii	90	671	5		A29G28C21T43	A17G13C13T21		
л. ouumunntii	90	0/1	5,	T A23023C21132	A29020C21143	AI/015C15121		

	TABL	E 16B	
etermined	from A.	baumannii	DN/

54 A25G23C21T32

55 A25G23C22T31

27 A25G23C21T32

27 A25G23C22T31 B7 A25G22C22T32

- ND

91

92

18

55

28

14

7

A. baumannii

A. baumannii

A. baumannii

A. baumannii

A. baumannii

A. sp. 3

mixture

672

673

196

537

263

164

71

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs Targeting the parC Gene

54 A25G23C21T32 A29G28C21T43 A17G13C13T21

A29G28C21T43

A29G28C21T43

A29G28C21T43

A29G28C22T42

A30G29C22T40 ND A17G13C13T21

A17G13C13T21

A17G13C13T21

A17G13C14T20

A17G13C14T20

A17G13C15T19

Species	Ibis#	Isolate	PP No: 2846 ST parC	PP No: 2847 parC	PP No: 2848 parC
A. baumannii	54	536	3 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	87	665	3 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	8	80	10 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	9	91	10 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	10	92	10 A33G26C28T34	A29G28C25T32	ND

TABLE 16B-continued

Base Compositions Determined from A. baumannii DNA Samples Obtained from
Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs
Targeting the parC Gene

Species	Ibis#	Isolate	PP No: 2846 ST parC	PP No: 2847 parC	PP No: 2848 parC
A. baumannii	11	131	10 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	12	137	10 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	21 26	218 242	10 A33G26C28T34 10 A33G26C28T34	A29G28C25T32 A29G28C25T32	A16G14C14T16 A16G14C14T16
A. baumannii A. baumannii	20 94	242 678	10 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	1	9	10 A33G26C28T34	A29G28C25T32	A16G14C14T15
A. baumannii	2	13	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	3	19	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	4	24	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	5	36	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	6	39	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	13	139	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	15	165	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	16	170	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	17	186	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	20	202	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	22	221	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	24	234	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	25	239	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	33	370	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	34	389	10 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	19	201	14 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	27	257	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	29 31	301 354	51 A33G26C28T34 51 A33G26C28T34	A29G28C25T32 A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	36	422	51 A33G26C28T34	A29G28C25T32	A16G14C14T16 A16G14C14T16
A. baumannii A. baumannii	30	422	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	38	434	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	39	473	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	40	482	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	44	512	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	45	516	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	47	522	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	48	526	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	50	528	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	52	531	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	53	533	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	56	542	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	59	550	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	62	556	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	64	557	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	70	588	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	73	603	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	74	605	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	75	606	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	77 70	611	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	79 83	622 643	51 A33G26C28T34 51 A33G26C28T34	A29G28C25T32 A29G28C25T32	A16G14C14T16 A16G14C14T16
A. baumannii A. baumannii	85 85	653	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	89	669	51 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	93	674	51 A33G26C28T34	A29G28C25T32 A29G28C25T32	A16G14C14T16
A. baumannii	23	228	51 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	32	369	52 A34G25C28T34	A30G27C25T32	A16G14C14T16
A. baumannii	35	393	52 A34G25C28T34	A30G27C25T32	A16G14C14T16
A. baumannii	30	339	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	41	485	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	42	493	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	43	502	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	46	520	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	49	527	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	51	529	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	65	562	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	68	579	53 A34G25C29T33	A30G27C26T31	A16G14C15T15
A. baumannii	57	546	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	58	548	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	60	552	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	61	555	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
	63	557	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii A. baumannii	66	570	54 A33G26C28T34	A29G28C25T32	A16G14C14T16

TABLE 1	16B-continued
---------	---------------

Е	Base Compositions Determined from A. baumannii DNA Samples Obtained from
	Northwestern Medical Center and Amplified with Codon Analysis Primer Pairs
	Targeting the parC Gene
	1 2

Species	Ibis#	Isolate	PP No: 2846 ST parC	PP No: 2847 parC	PP No: 2848 parC
A. baumannii	67	578	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	69	584	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	71	593	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	72	602	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	76	609	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	78	621	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	80	625	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	81	628	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	82	632	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	84	649	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	86	655	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	88	668	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	90	671	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	91	672	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	92	673	54 A33G26C28T34	A29G28C25T32	A16G14C14T16
A. baumannii	18	196	55 A33G27C28T33	A29G28C25T31	A15G14C15T16
A. baumannii	55	537	27 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. baumannii	28	263	27 A33G26C29T33	A29G28C26T31	A16G14C15T15
A. sp. 3	14	164	B7 A35G25C29T32	A30G28C17T39	A16G14C15T15
mixture	7	71	— ND	ND	A17G14C15T14

TABLE 17A

Base Compositions Determined from A. baumannii DNA Samples Obtained from Walter
Reed Hospital and Amplified with Speciating Primer Pair No. 2922 and Triangulation
Genotyping Analysis Primer Pair Nos. 1151 and 1156

a i	TI 1 1	T 14	OT	PP No: 2922	PP No: 1151	PP No: 1156
Species	Ibis#	Isolate	ST	efp	trpE	Adk
A. baumannii	20	1082	1	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	13	854	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	22	1162	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	27	1230	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	31	1367	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	37	1459	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	55	1700	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	64	1777	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	73	1861	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	74	1877	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	86	1972	10	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	3	684	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	6	720	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	7	726	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	19	1079	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	21	1123	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	23	1188	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	33	1417	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	34	1431	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	38	1496	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	40	1523	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	42	1640	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	50	1666	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	51	1668	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	52	1695	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	65	1781	11	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	44	1649	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	49A	1658.1	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	49B	1658.2	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	56	1707	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	80	1893	12	A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	5	693	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	8	749	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	10	839	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	14	865	14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	16	888	14	A44G35C25T43	A44G35C22T41	A44G32C27T37

_

Base Compositions Determined from A. baumannii DNA Samples Obtained from Walter
Reed Hospital and Amplified with Speciating Primer Pair No. 2922 and Triangulation
Genotyping Analysis Primer Pair Nos. 1151 and 1156

A. baumannii 35 14 A. baumannii 41 15 A. baumannii 41 15 A. baumannii 47 16 A. baumannii 57 17 A. baumannii 57 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 2 6 A. baumannii 2 6 A. baumannii 2 6 A. baumannii 2 14 A. baumannii 6 18 A. baumannii 6 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 51 </th <th>olate ST</th> <th>PP No: 2922 efp</th> <th>PP No: 1151 trpE</th> <th>PP No: 1156 Adk</th>	olate ST	PP No: 2922 efp	PP No: 1151 trpE	PP No: 1156 Adk
A. baumannii 41 15 A. baumannii 46 16 A. baumannii 47 16 A. baumannii 57 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 63 17 A. baumannii 63 18 A. baumannii 16 6 A. baumannii 24 11 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 62 17 A. baumannii 63 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii	26 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 46 16 A. baumannii 47 16 A. baumannii 48 16 A. baumannii 57 17 A. baumannii 61 17 A. baumannii 61 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 63 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 1 6 A. baumannii 1 6 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii <td< td=""><td>40 14</td><td>A44G35C25T43</td><td>ND</td><td>A44G32C27T37</td></td<>	40 14	A44G35C25T43	ND	A44G32C27T37
A. baumannii 47 16 A. baumannii 48 16 A. baumannii 57 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 61 6 A. baumannii 2 6 A. baumannii 2 6 A. baumannii 2 11 A. baumannii 2 12 A. baumannii 2 12 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 71 18 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 16<	24 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 48 16 A. baumannii 57 17 A. baumannii 61 17 A. baumannii 63 17 A. baumannii 63 17 A. baumannii 7 18 A. baumannii 75 18 A. baumannii 7 18 A. baumannii 1 6 A. baumannii 2 6 A. baumannii 2 14 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 61 17 A. baumannii 61 17 A. baumannii 62 18 A. baumannii 70 18 A. baumannii 19	52 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 57 17 A. baumannii 61 17 A. baumannii 61 17 A. baumannii 61 17 A. baumannii 61 18 A. baumannii 75 18 A. baumannii 1 6 A. baumannii 2 6 A. baumannii 2 6 A. baumannii 24 11 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 61 18 A. baumannii 61 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 51 16 A. baumannii 54 16 A. baumannii 5	53 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 61 17 A. baumannii 63 17 A. baumannii 67 18 A. baumannii 17 18 A. baumannii 17 18 A. baumannii 1 6 A. baumannii 2 6 A. baumannii 24 11 A. baumannii 24 11 A. baumannii 24 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 61 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 51 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii <td< td=""><td>57 14</td><td>A44G35C25T43</td><td>A44G35C22T41</td><td>A44G32C27T37</td></td<>	57 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 63 17 A. baumannii 67 18 A. baumannii 67 18 A. baumannii 75 18 A. baumannii 76 18 A. baumannii 77 18 A. baumannii 16 6 A. baumannii 2 6 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 61 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii <t< td=""><td>09 14</td><td>A44G35C25T43</td><td>A44G35C22T41</td><td>A44G32C27T37</td></t<>	09 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 67 18 A. baumannii 75 18 A. baumannii 75 18 A. baumannii 77 18 A. baumannii 1 6 A. baumannii 29 14 A. baumannii 29 14 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 62 17 A. baumannii 63 18 A. baumannii 69 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 35 16 A. baumannii <	27 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 75 18 A. baumannii 77 18 A. baumannii 1 6 A. baumannii 39 14 A. baumannii 39 14 A. baumannii 24 11 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 61 17 A. baumannii 62 17 A. baumannii 63 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 58 17 A. baumannii 58 17 A. baumannii <	62 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 77 18 A. baumannii 1 6 A. baumannii 2 6 A. baumannii 24 11 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 61 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 71 18 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 76 18 A. baumannii 77 18 A. baumannii <td< td=""><td>06 14</td><td>A44G35C25T43</td><td>A44G35C22T41</td><td>A44G32C27T37</td></td<>	06 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 1 6 A. baumannii 2 6 A. baumannii 39 14 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 62 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 82 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii <td< td=""><td>81 14</td><td>A44G35C25T43</td><td>A44G35C22T41</td><td>A44G32C27T37</td></td<>	81 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 2 6 A. baumannii 39 14 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 63 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 83 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 74 18 A. baumannii 74 18 A. baumannii 75 18 A. baumannii <	86 14	A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 2 6 A. baumannii 39 14 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 61 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 52 16 A. baumannii 53 16 A. baumannii 54 16 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii <	49 46	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 39 14 A. baumannii 24 11 A. baumannii 28 12 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 46 17 A. baumannii 68 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 66 18 A. baumannii 78 18 A. baumannii 78 18 A. baumannii	53 46	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 24 11 A. baumannii 28 12 A. baumannii 43 16 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 62 17 A. baumannii 68 18 A. baumannii 68 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 73 16 A. baumannii		A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii 28 12 A. baumannii 43 16 A. baumannii 62 17 A. baumannii 62 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 82 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 58 17 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii	98 15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 43 16 A. baumannii 62 17 A. baumannii 68 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 52 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 54 16 A. baumannii 76 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii 54 16 A. baumannii		A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 62 17. A. baumannii 68 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 85 19 A. baumannii 84 14 A. baumannii 66 17 A. baumannii 66 18 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 31 9 A. baumannii 31 16 A. baumannii 32 16 A. baumannii		A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 4 6 A. baumannii 68 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 73 16 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii <	46 15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 68 18 A. baumannii 69 18 A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 66 18 A. baumannii 61 17 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 71 18 A. baumannii 53 19 A. baumannii 53 14 A. baumannii 59 17 A. baumannii 59 17 A. baumannii	89 15	A44G35C25T43	A44G35C22T41	A44G32C26T38
A. baumannii 69 18 A. baumannii 70 18 A. baumannii 71 18 A. baumannii 71 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 85 19 A. baumannii 53 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii 54 16 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii <td< td=""><td></td><td>A44G35C24T44</td><td>A44G35C22T41</td><td>A44G32C26T38</td></td<>		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 70 18 A. baumannii 71 18 A. baumannii 72 18 A. baumannii 19 9 A. baumannii 82 19 A. baumannii 11 8 A. baumannii 12 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 18 A. baumannii 76 18 A. baumannii 76 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 30 13 A. baumannii 36 14 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 9	23A 3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 71 18 A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 81 19 A. baumannii 11 8 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 30 13 A. baumannii <t< td=""><td>23B 3</td><td>A44G35C24T44</td><td>A44G35C22T41</td><td>A44G32C26T38</td></t<>	23B 3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 72 18 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 82 19 A. baumannii 81 19 A. baumannii 82 19 A. baumannii 11 8 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 26 12 A. baumannii <t< td=""><td></td><td>A44G35C24T44</td><td>A44G35C22T41</td><td>A44G32C26T38</td></t<>		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 81 19 A. baumannii 82 19 A. baumannii 85 19 A. baumannii 85 19 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 73 16 A. baumannii 53 19 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 13 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 82 19 A. baumannii 85 19 A. baumannii 11 85 19 A. baumannii 11 85 19 A. baumannii 11 14 A. baumannii 14 A. baumannii 32 14 A. baumannii 54 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 18 A. baumannii 61 18 A. baumannii 76 18 A. baumannii 76 18 8 19 A. baumannii 78 18 A. baumannii 78 18 8 19 A. baumannii 19 16 A. baumannii 78 18 19 17 18 14 14 15 16 14 14 14 15 16 14 15 16 15 16 15 16 15 17 15 16 15 17 17 16 16 <t< td=""><td></td><td>A44G35C24T44</td><td>A44G35C22T41</td><td>A44G32C26T38</td></t<>		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 85 19 A. baumannii 11 8 A. baumannii 32 14 A. baumannii 32 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 61 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 84 19 A. baumannii 36 14 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 11 8 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 32 14 A. baumannii 52 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 18 9 A. baumannii 18 9 A. baumannii 13 12 A. baumannii 26 12 A. sp. 13TU 15 8		A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 32 14 A. baumannii 45 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 66 18 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 83 19 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 54 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 17 8	41 3	A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii 45 16 A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 61 18 A. baumannii 76 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 54 16 A. baumannii 58 17 A. baumannii 60 17 A. baumannii 61 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 84 19 A. baumannii 36 14 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 58 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 60 17 A. baumannii 61 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 60 17 A. baumannii 66 18 A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 66 18 A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 13 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 76 18 A. baumannii 78 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 10 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 78 18 A. baumannii 79 18 A. baumannii 83 19 A. baumannii 84 19 A. baumannii 53 16 A. baumannii 36 14 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 8 A. baumannii 30 13 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 15 8		ND	A43G36C20T43	A44G32C27T37
A. baumannii 79 18 A. baumannii 83 19 A. baumannii 84 19 A. baumannii 53 16 A. baumannii 53 16 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 83 19 A. baumannii 84 19 A. baumannii 53 16 A. baumannii 53 17 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 84 19 A. baumannii 53 16 A. baumannii 36 14 A. baumannii 59 17 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 9 13 A. baumannii 26 12 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 53 16 A. baumannii 36 14 A. baumannii 59 17 A. baumannii 59 8 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 15 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 36 14 A. baumannii 59 17 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20T43	A44G32C27T37
A. baumannii 59 17 A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A43G36C20143 A44G35C22T41	A44G32C27T37
A. baumannii 9 8 A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8				
A. baumannii 18 9 A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8		A44G35C25T43	A44G35C21T42	A44G32C26T38
A. baumannii 30 13 A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8	05 30	A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii 26 12 A. sp. 13TU 15 8 A. sp. 13TU 17 8	67 39	A45G34C25T43	A44G35C22T41	A44G32C26T38
A. sp. 13TU 15 8 A. sp. 13TU 17 8	22 48	A44G35C25T43	A43G36C20T43	A44G32C27T37
A. sp. 13TU 17 8	18 50	A44G35C25T43	A44G35C21T42	A44G32C26T38
A. sp. 13TU 17 8	75 A1	A47G33C24T43	A46G32C20T44	A44G33C27T36
	95 A1	A47G33C24T43	A46G32C20T44	A44G33C27T36
A. sp. 3 12 8	53 B7	A46G35C24T42	A42G34C20T46	A43G33C24T40
	02 NEW		A42G35C21T44	A43G33C23T41
5		2 A46G36C22T43	A42G32C20T48	A42G34C23T41

TABLE 17B

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1158 and 1160 and 1165

Species	Ibis#	Isolate	ST	PP No: 1158 mutY	PP No: 1160 mutY	PP No: 1165 fumC
A. baumannii	20	1082	1	A27G21C25T22	A32G35C29T33	A40G33C30T36
A. baumannii	13	854	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	22	1162	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	27	1230	10	A27G21C26T21	A32G35C28T34	A40G33C30T36

TABLE 17B-continued

Base Compositions Determined from A. baumannii DNA Samples Obtained from Walter
Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1158 and
1160 and 1165

Species	Ibis#	Isolate	ST	PP No: 1158 mutY	PP No: 1160 mutY	PP No: 1165 fumC
4. baumannii	31	1367	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	37	1459	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	55	1700	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	64	1777	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	73	1861	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	74	1877	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	86	1972	10	A27G21C26T21	A32G35C28T34	A40G33C30T36
4. baumannii	3	684	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	6	720	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	7	726	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	19	1079	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	21	1123	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	23	1188	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	33	1417	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	34	1431	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	38	1496	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	40	1523	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	42	1640	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	50	1666	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	51	1668	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	52	1695	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
4. baumannii	65	1781	11	A27G21C25T22	A32G34C28T35	A40G33C30T36
1. baumannii	44	1649	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
4. baumannii	49A	1658.1	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
4. baumannii	49B	1658.2	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
4. baumannii	56	1707	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
1. baumannii	80	1893	12	A27G21C26T21	A32G34C29T34	A40G33C30T36
4. baumannii	5	693	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	8	749	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	10	839	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	14	865	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	16	888	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	29	1326	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	35	1440	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
4. baumannii	41	1524	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	46	1652	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
4. baumannii	47	1653	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	48	1657	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	57	1709	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	61	1727	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	63	1762	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	67	1806	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	75	1881	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
1. baumannii	77	1886	14	A27G21C25T22	A31G36C28T34	A40G33C29T37
t. baumannii	1	649	46	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	2	653	46	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	39	1497	16	A29G19C26T21	A31G35C29T34	A40G34C29T36
1. baumannii	24	1198	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	28	1243	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	43	1648	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
t. baumannii	62	1746	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	4	689	15	A29G19C26T21	A31G35C29T34	A40G33C29T37
1. baumannii	68	1822	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
t. baumannii	69	1823A	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
t. baumannii	70	1823B	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
1. baumannii	71	1826	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
t. baumannii	72	1860	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
t. baumannii	81	1924	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
1. baumannii	82	1929	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
1. baumannii	85	1966	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
t. baumannii	11	841	3	A27G20C27T21	A32G35C28T34	A40G33C30T36
1. baumannii	32	1415	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	45	1651	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	54	1697	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	58	1712	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	60	1725	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	66	1802	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
1. baumannii	76	1883	24	A27G21C26T21	A32G35C28T34	A40G33C30T36

_

TABLE 17B-continued

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1158 and 1160 and 1165

Species	Ibis#	Isolate	ST	PP No: 1158 mutY	PP No: 1160 mutY	PP No: 1165 fumC
A. baumannii	79	1892	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	83	1947	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	84	1964	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	53	1696	24	A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	36	1458	49	A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	59	1716	9	A27G21C25T22	A32G35C28T34	A39G33C30T37
A. baumannii	9	805	30	A27G21C25T22	A32G35C28T34	A39G33C30T37
A. baumannii	18	967	39	A27G21C26T21	A32G35C28T34	A39G33C30T37
A. baumannii	30	1322	48	A28G21C24T22	A32G35C29T33	A40G33C30T36
A. baumannii	26	1218	50	A27G21C25T22	A31G36C28T34	A40G33C29T37
A. sp. 13TU	15	875	A1	A27G21C25T22	A30G36C26T37	A41G34C28T36
A. sp. 13TU	17	895	A1	A27G21C25T22	A30G36C26T37	A41G34C28T36
A. sp. 3	12	853	B7	A26G23C23T23	A30G36C27T36	A39G37C26T37
A. johnsonii	25	1202	NEW1	A25G23C24T23	A30G35C30T34	A38G37C26T38
A. sp. 2082	87	2082	NEW2	A26G22C24T23	A31G35C28T35	A42G34C27T36

TABLE 17C

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167 and 1170 and 1171

Species	Ibis#	Isolate	ST	PP No: 1167 fumC	PP No: 1170 fumC	PP No: 1171 ppa
A. baumannii	20	1082	1	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	13	854	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	22	1162	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	27	1230	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	31	1367	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	37	1459	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	55	1700	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	64	1777	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	73	1861	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	74	1877	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	86	1972	10	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	3	684	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	6	720	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	7	726	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	19	1079	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	21	1123	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	23	1188	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	33	1417	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	34	1431	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	38	1496	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	40	1523	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	42	1640	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	50	1666	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	51	1668	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	52	1695	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. haumannii	65	1781	11	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	44	1649	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	49A	1658.1	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. haumannii	49B	1658.2	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	56	1707	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	80	1893	12	A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	5	693	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	8	749	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	10	839	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	14	865	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	14	888	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	29	1326	14	A40G35C34T38	A38G27C21T50	A35G37C30T47 A35G37C30T47
A. baumannii	35	1320	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	33 41		14 14		A38G27C21T50	
		1524		A40G35C34T38		A35G37C30T47
A. baumannii	46	1652	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	47	1653	14	A40G35C34T38	A38G27C21T50	A35G37C30T47

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Walter Reed Hospital and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167 and 1170 and 1171

Species	Ibis#	Isolate	ST	PP No: 1167 fumC	PP No: 1170 fumC	PP No: 1171 ppa
A. baumannii	48	1657	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	57	1709	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	61	1727	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	63	1762	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	67	1806	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	75	1881	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	77	1886	14	A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	1	649	46	A41G35C32T39	A37G28C20T51	A35G37C32T45
A. baumannii	2	653	46	A41G35C32T39	A37G28C20T51	A35G37C32T45
A. baumannii	39	1497	16	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	24	1198	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	28	1243	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	43	1648	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	62	1746	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	4	689	15	A41G35C32T39	A37G28C20T51	A35G37C30T47
A. baumannii	68	1822	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	69	1823A	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	70	1823B	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	71	1826	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	72	1860	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	81	1924	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	82	1929	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	85	1966	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	11	841	3	A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	32	1415	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	45	1651	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	54	1697	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	58	1712	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	60	1725	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	66	1802	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	76	1883	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	78	1891	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	70 79	1892	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	83	1947	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii	84	1964	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
A. baumannii A. baumannii	53	1696	24	A40G35C34T38	A39G26C22T49	A35G37C33T44
	36		24 49			
A. baumannii		1458		A40G35C34T38	A39G26C22T49	A35G37C30T47
A. baumannii	59	1716	9	A40G35C32T40	A38G27C20T51	A36G35C31T47
A. baumannii	9	805	30	A40G35C32T40	A38G27C21T50	A35G36C29T49
A. baumannii	18	967	39	A40G35C33T39	A38G27C20T51	A35G37C30T47
A. baumannii	30	1322	48	A40G35C35T37	A38G27C21T50	A35G37C30T47
A. baumannii	26	1218	50	A40G35C34T38	A38G27C21T50	A35G37C33T44
A. sp. 13TU	15	875	A1	A41G39C31T36	A37G26C24T49	A34G38C31T46
A. sp. 13TU	17	895	A1	A41G39C31T36	A37G26C24T49	A34G38C31T46
A. sp. 3	12	853	B7	A43G37C30T37	A36G27C24T49	A34G37C31T47
A. johnsonii	25	1202	NEW1	A42G38C31T36	A40G27C19T50	A35G37C32T45
A. sp. 2082	87	2082		A43G37C32T35	A37G26C21T52	A35G38C31T45
	07	2002	1112 11 2	113037034133	101020021132	100000001140

TABLE 1	.8A
---------	-----

Base Compositions Determined from A. baumannii DNA Samples Obtained from
Northwestern Medical Center and Amplified with Speciating Primer Pair No. 2922 and
Triangulation Genotyping Analysis Primer Pair Nos. 1151 and 1156

Species	Ibis#	Isolate	PP No: 2922 ST efp	PP No: 1151 trpE	PP No: 1156 adk
A. baumannii	54	536	3 A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	87	665	3 A44G35C24T44	A44G35C22T41	A44G32C26T38
A. baumannii	8	80	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	9	91	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	10	92	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	11	131	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	12	137	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	21	218	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	26	242	10 A45G34C25T43	A44G35C21T42	A44G32C26T38

TABLE 18A-continued

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Speciating Primer Pair No. 2922 and Triangulation Genotyping Analysis Primer Pair Nos. 1151 and 1156

Species	Ibis#	Isolate	PP No: 2922 ST efp	PP No: 1151 trpE	PP No: 1156 adk
A. baumannii	94	678	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	1	9	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
4. baumannii	2	13	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
4. baumannii	3	19	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
4. baumannii	4	24	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	5	36	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
4. baumannii	6	39	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	13	139	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	15	165	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	16	170	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	17	186	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	20	202	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	22	221	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	24	234	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	25	239	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	33	370	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	34	389	10 A45G34C25T43	A44G35C21T42	A44G32C26T38
A. baumannii	19	201	14 A44G35C25T43	A44G35C22T41	A44G32C27T37
A. baumannii	27	257	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	29	301	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	31	354	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	36	422	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	37	424	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	38	434	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	39	473	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	40	482	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii A. baumannii	40 44	482 512	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii A. baumannii	45	512	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii A. baumannii	43	522	51 A44G35C25T43		
				A43G36C20T43	A44G32C26T38
A. baumannii	48	526	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	50	528	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	52	531	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	53	533	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	56	542	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	59	550	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	62	556	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	64	557	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	70	588	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	73	603	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	74	605	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	75	606	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	77	611	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	79	622	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	83	643	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	85	653	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	89	669	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	93	674	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	23	228	51 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	32	369	52 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	35	393	52 A44G35C25T43	A43G36C20T43	A44G32C26T38
A. baumannii	30	339	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	41	485	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	42	493	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	43	502	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	46	520	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	49	527	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
4. baumannii	51	529	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
4. baumannii	65	562	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
4. baumannii	68	579	53 A44G35C25T43	A44G35C19T44	A44G32C27T37
4. baumannii	57	546	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	58	548	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	60	552	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
4. baumannii	61	555	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	63	557	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	66	570	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	67	578	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	69	584	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
	09	204	JA ATTOJJC2J143	11-1000020140	117002020100
A. baumannii	71	593	54 A44G35C25T43	A44G35C20T43	A44G32C26T38

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Speciating Primer Pair No. 2922 and Triangulation Genotyping Analysis Primer Pair Nos. 1151 and 1156

Species	Ibis#	Isolate	PP No: 2922 ST efp	PP No: 1151 trpE	PP No: 1156 adk
A. baumannii	76	609	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	78	621	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	80	625	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	81	628	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	82	632	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	84	649	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	86	655	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	88	668	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	90	671	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	91	672	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	92	673	54 A44G35C25T43	A44G35C20T43	A44G32C26T38
A. baumannii	18	196	55 A44G35C25T43	A44G35C20T43	A44G32C27T37
A. baumannii	55	537	27 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. baumannii	28	263	27 A44G35C25T43	A44G35C19T44	A44G32C27T37
A. sp. 3	14	164	B7 A46G35C24T42	A42G34C20T46	A43G33C24T40
mixture	7	71	? mixture	ND	ND

TABLE 18B

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1158, 1160 and 1165

Species	Ibis#	Isolate	PP No: 1158 ST mutY	PP No: 1160 mutY	PP No: 1165 fumC
A. baumannii	54	536	3 A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	87	665	3 A27G20C27T21	A32G35C28T34	A40G33C30T36
A. baumannii	8	80	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	9	91	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	10	92	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	11	131	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	12	137	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	21	218	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	26	242	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	94	678	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	1	9	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	2	13	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	3	19	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	4	24	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	5	36	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	6	39	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	13	139	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	15	165	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	16	170	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	17	186	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	20	202	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	22	221	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	24	234	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	25	239	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	33	370	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	34	389	10 A27G21C26T21	A32G35C28T34	A40G33C30T36
A. baumannii	19	201	14 A27G21C25T22	A31G36C28T34	A40G33C29T37
A. baumannii	27	257	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	29	301	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	31	354	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	36	422	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	37	424	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	38	434	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	39	473	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	40	482	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	44	512	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	45	516	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	47	522	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	48	526	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	50	528	51 A27G21C25T22	A32G35C28T34	A40G33C29T37

TABLE 18B-continued

Base Compositions Determined from A. baumannii DNA Samples Obtained from
Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis
Primer Pair Nos. 1158, 1160 and 1165

Species	Ibis#	Isolate	PP No: 1158 ST mutY	PP No: 1160 mutY	PP No: 1165 fumC
A. baumannii	52	531	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	53	533	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	56	542	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	59	550	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	62	556	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	64	557	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	70	588	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	73	603	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	74	605	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	75	606	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	77	611	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	79	622	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	83	643	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	85	653	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	89	669	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	93	674	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	23	228	51 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	32	369	52 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	35	393	52 A27G21C25T22	A32G35C28T34	A40G33C29T37
A. baumannii	30	339	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	41	485	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	42	493	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	43	502	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	46	520	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	49	527	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	51	529	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	65	562	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	68	579	53 A28G20C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	57	546	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	58	548	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	60	552	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	61	555	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	63	557	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	66	570	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	67	578	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	69	584	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	71	593	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	72	602	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	76	609	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	78	621	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	80	625	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	81	628	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	82	632	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	84	649	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	86	655	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii A. baumannii	88	668	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	90 01	671	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	91	672	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	92	673	54 A27G21C26T21	A32G34C29T34	A40G33C30T36
A. baumannii	18	196	55 A27G21C25T22	A31G36C27T35	A40G33C29T37
4. baumannii	55	537	27 A27G21C25T22	A32G35C28T34	A40G33C30T36
A. baumannii	28	263	27 A27G21C25T22	A32G35C28T34	A40G33C30T36
A. sp. 3	14	164	B7 A26G23C23T23	A30G36C27T36	A39G37C26T37
mixture	7	71	? ND	ND	ND

TABLE 18C

Base Compositions Determined from <i>A. baumannii</i> DNA Samples Obtained from Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167, 1170 and 1171 PP No: 1167 PP No: 1170 PP No: 1171 Species Ibis# Isolate ST fumC fumC ppa					
A. baumannii	87	665	3 A41G34C35T37	A38G27C20T51	A35G37C31T46
A. baumannii	8	80	10 A41G34C34T38	A38G27C21T50	A35G37C33T44

TABLE 18C-continued

Base Compositions Determined from *A. baumannii* DNA Samples Obtained from Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis Primer Pair Nos. 1167, 1170 and 1171

Species	Ibis#	Isolate	PP No: 1167 ST fumC	PP No: 1170 fumC	PP No: 1171 ppa
A. baumannii	9	91	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	10	92	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	11	131	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	12	137	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	21	218	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	26 94	242 678	10 A41G34C34T38 10 A41G34C34T38	A38G27C21T50 A38G27C21T50	A35G37C33T44 A35G37C33T44
A. baumannii A. baumannii	1	9	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii A. baumannii	2	13	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	3	19	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	4	24	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	5	36	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	6	39	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	13	139	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	15	165	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	16	170	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii A. baumannii	17 20	186 202	10 A41G34C34T38 10 A41G34C34T38	A38G27C21T50 A38G27C21T50	A35G37C33T44 A35G37C33T44
A. baumannii A. baumannii	20	202	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	24	234	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	25	239	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	33	370	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	34	389	10 A41G34C34T38	A38G27C21T50	A35G37C33T44
A. baumannii	19	201	14 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	27	257	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	29	301	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	31	354	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	36	422	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	37 38	424 434	51 A40G35C34T38 51 A40G35C34T38	A38G27C21T50 A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	39	434	51 A40G35C34T38 51 A40G35C34T38	A38G27C21T50	A35G37C30T47 A35G37C30T47
A. baumannii A. baumannii	40	482	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	44	512	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	45	516	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	47	522	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	48	526	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	50	528	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	52	531	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	53	533	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	56 59	542 550	51 A40G35C34T38 51 A40G35C34T38	A38G27C21T50 A38G27C21T50	A35G37C30T47 A35G37C30T47
A. baumannii A. baumannii	62	556	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	64	557	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	70	588	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	73	603	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	74	605	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	75	606	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	77	611	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	79	622	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	83	643	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii A. baumannii	85 89	653 669	51 A40G35C34T38 51 A40G35C34T38	A38G27C21T50 A38G27C21T50	A35G37C30T47 A35G37C30T47
A. baumannii A. baumannii	93	674	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	23	228	51 A40G35C34T38	A38G27C21T50	A35G37C30T47
A. baumannii	32	369	52 A40G35C34T38	A38G27C21T50	A35G37C31T46
A. baumannii	35	393	52 A40G35C34T38	A38G27C21T50	A35G37C31T46
A. baumannii	30	339	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	41	485	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	42	493	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	43	502	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	46	520	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii	49	527	53 A40G35C35T37	A38G27C21T50	A35G37C31T46
A. baumannii A. baumannii	51 65	529 562	53 A40G35C35T37 53 A40G35C35T37	A38G27C21T50 A38G27C21T50	A35G37C31T46 A35G37C31T46
A. baumannii A. baumannii	68	502 579	53 A40G35C35T37 53 A40G35C35T37	A38G27C21150 A38G27C21T50	A35G37C31T46 A35G37C31T46
A. baumannii A. baumannii	57	546	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	58	548	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
		552	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	60	552	JT ATVOJJCJTIJO	AJ7020C22147	AJJOJ/CJIITO

TABLE 18C-continued

Base Compositions Determined from A. baumannii DNA Samples Obtained from
Northwestern Medical Center and Amplified with Triangulation Genotyping Analysis
Primer Pair Nos. 1167, 1170 and 1171

Species	Ibis#	Isolate	PP No: 1167 ST fumC	PP No: 1170 fumC	PP No: 1171 ppa
A. baumannii	63	557	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	66	570	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	67	578	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	69	584	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	71	593	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	72	602	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	76	609	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	78	621	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	80	625	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	81	628	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	82	632	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	84	649	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	86	655	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	88	668	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	90	671	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	91	672	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	92	673	54 A40G35C34T38	A39G26C22T49	A35G37C31T46
A. baumannii	18	196	55 A42G34C33T38	A38G27C20T51	A35G37C31T46
A. baumannii	55	537	27 A40G35C33T39	A38G27C20T51	A35G37C33T44
A. baumannii	28	263	27 A40G35C33T39	A38G27C20T51	A35G37C33T44
A. sp. 3	14	164	B7 A43G37C30T37	A36G27C24T49	A34G37C31T47
mixture	7	71	— ND	ND	ND

[0427] Base composition analysis of the samples obtained from Walter Reed hospital indicated that a majority of the strain types identified were the same strain types already characterized by the Off study of Example 12. This is not surprising since at least some patients from which clinical samples were obtained in OIF were transferred to the Walter Reed Hospital (WRAIR). Examples of these common strain types include: ST10, ST11, ST12, ST14, ST15, ST16 and ST46. A strong correlation was noted between these strain types and the presence of mutations in the gyrA and parC which confer quinolone drug resistance.

[0428] In contrast, the results of base composition analysis of samples obtained from Northwestern Medical Center indicate the presence of 4 major strain types: ST10, ST51, ST53 and ST54. All of these strain types have the gyrA quinolone resistance mutation and most also have the parC quinolone resistance mutation, with the exception of ST35. This observation is consistent with the current understanding that the gyrA mutation generally appears before the parC mutation and suggests that the acquisition of these drug resistance mutations is rather recent and that resistant isolates are taking over the wild-type isolates. Another interesting observation was that a single isolate of ST3 (isolate 841) displays a triangulation genotyping analysis pattern similar to other isolates of ST3, but the codon analysis amplification product base

compositions indicate that this isolate has not yet undergone the quinolone resistance mutations in gyrA and parC.

[0429] The six isolates that represent species other than *Acinetobacter baumannii* in the samples obtained from the Walter Reed Hospital were each found to not carry the drug resistance mutations.

[0430] The results described above involved analysis of 183 samples using the methods and compositions of the present invention. Results were provided to collaborators at the Walter Reed hospital and Northwestern Medical center within a week of obtaining samples. This example highlights the rapid throughput characteristics of the analysis platform and the resolving power of triangulation genotyping analysis and codon analysis for identification of and determination of drug resistance in bacteria.

Example 14

Identification of Drug Resistance Genes and Virulence Factors in *Staphylococcus aureus*

[0431] An eight primer pair panel was designed for identification of drug resistance genes and virulence factors of *Staphylococcus aureus* and is shown in Table 19. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 19.

TABLE 19

Р	rimer Pairs for Identification of Drug F	Resistance C	Genes and Virulence Factors in Staphy	lococcus aut	reus
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
879 2056	MECA_Y14051_4507_4530_F MECI-R_NC003923-41798- 41609_33_60_F	288 698	MECA_Y14051_4555_4581_R MECI-R_NC003923-41798- 41609_86_113_R	1269 1420	mecA MecI-R

TABLE 19-continued

Primer Pair No.	rimer Pairs for Identification of Drug H Forward Primer Name	Cesistance C Forward Primer (SEQ ID NO:)	enes and Virulence Factors in <i>Staphyl</i> Reverse Primer Name	Reverse Primer (SEQ ID NO:)	<i>eus</i> Target Gene
2081	ERMA_NC002952-55890-	217	ERMA_NC002952-55890-	1167	ermA
	56621_366_395_F		56621_438_465_R		
2086	ERMC_NC005908-2004-	399	ERMC_NC005908-2004-	1041	ermC
2095	2738_85_116_F PVLUK NC003923-1529595-	456	2738_173_206_R PVLUK NC003923-1529595-	1261	Pv-luk
2093	1531285 688 713 F	450	1531285_775_804_R	1201	rv-luk
2249	TUFB NC002758-615038-	430	TUFB NC002758-615038-	1321	tufB
2213	616222 696 725 F	100	616222 793 820 R	1021	tuib
2256	NUC_NC002758-894288-	174	NUC_NC002758-894288-	853	Nuc
	894974_316_345_F		894974_396_421_R		
2313	MUPR_X75439_2486_2516_F	172	MUPR_X75439_2548_2574_R	1360	mupR

[0432] Primer pair numbers 2256 and 2249 are confirmation primers designed with the aim of high level identification of *Staphylococcus aureus*. The nuc gene is a *Staphylococcus aureus*-specific marker gene. The tufB gene is a universal housekeeping gene but the bioagent identifying amplicon defined by primer pair number 2249 provides a unique base composition (A43 G28 C19 T35) which distinguishes *Staphylococcus aureus* from other members of the genus *Staphylococcus*.

[0433] High level methicillin resistance in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair numbers 879 and 2056. Analyses have indicated that primer pair number 879 is not expected to prime *S. sciuri* homolog or *Enterococcus faeca-lis/*faciem ampicillin-resistant PBP5 homologs.

[0434] Macrolide and erythromycin resistance in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair numbers 2081 and 2086.

[0435] Resistance to mupriocin in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair number 2313.

[0436] Virulence in a given strain of *Staphylococcus aureus* is indicated by bioagent identifying amplicons defined by primer pair number 2095. This primer pair can simultaneously and identify the pvl (lukS-PV) gene and the lukD gene which encodes a homologous enterotoxin. A bioagent identifying amplicon of the lukD gene has a six nucleobase length difference relative to the lukS-PV gene.

[0437] A total of 32 blinded samples of different strains of Staphylococcus aureus were provided by the Center for Disease Control (CDC). Each sample was analyzed by PCR amplification with the eight primer pair panel, followed by purification and measurement of molecular masses of the amplification products by mass spectrometry. Base compositions for the amplification products were calculated. The base compositions provide the information summarized above for each primer pair. The results are shown in Tables 20A and B. One result noted upon un-blinding of the samples is that each of the PVL+ identifications agreed with PVL+ identified in the same samples by standard PCR assays. These results indicate that the panel of eight primer pairs is useful for identification of drug resistance and virulence sub-species characteristics for Staphylococcus aureus. It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

TABLE 20A

Drug Resistance and Virulence Identified in Blinded Samples of
Various Strains of Staphylococcus aureus with
Primer Pair Nos. 2081, 2086, 2095 and 2256

Sample Index No.	Primer Pair No. 2081 (ermA)	Primer Pair No. 2086 (ermC)	Primer Pair No. 2095 (pv-luk)	Primer Pair No. 2256 (nuc)
CDC0010	-	-	PVL-/lukD+	+
CDC0015	-	-	PVL+/lukD+	+
CDC0019	-	+	PVL-/lukD+	+
CDC0026	+	-	PVL-/lukD+	+
CDC0030	+	-	PVL-/lukD+	+
CDC004	-	-	PVL+/lukD+	+
CDC0014	-	+	PVL+/lukD+	+
CDC008	-	-	PVL-/lukD+	+
CDC001	+	-	PVL-/lukD+	+
CDC0022	+	-	PVL-/lukD+	+
CDC006	+	-	PVL-/lukD+	+
CDC007	-	-	PVL-/lukD+	+
CDCVRSA1	+	-	PVL-/lukD+	+
CDCVRSA2	+	+	PVL-/lukD+	+
CDC0011	+	-	PVL-/lukD+	+
CDC0012	-	-	PVL+/lukD-	+
CDC0021	+	-	PVL-/lukD+	+
CDC0023	+	-	PVL-/lukD+	+
CDC0025	+	-	PVL-/lukD+	+
CDC005	-	-	PVL-/lukD+	+
CDC0018	+	-	PVL+/lukD-	+
CDC002	-	-	PVL-/lukD+	+
CDC0028	+	_	PVL-/lukD+	+
CDC003	_	-	PVL-/lukD+	+
CDC0013	_	_	PVL+/lukD+	+
CDC0016	_	-	PVL-/lukD+	+
CDC0027	+	_	PVL-/lukD+	+
CDC0029	_	-	PVL+/lukD+	+
CDC0020	-	+	PVL-/lukD+	+
CDC0024	_	_	PVL-/lukD+	+
CDC0031	-	-	PVL-/lukD+	+

Drug Resistance and Virulence Identified in Blinded Samples of
Various Strains of Staphylococcus aureus with
Primer Pair Nos. 2249, 879, 2056, and 2313

Sample Index No.	Primer Pair No. 2249 (tufB)	Primer Pair No. 879 (mecA)	Primer Pair No. 2056 (mecI-R)	Primer Pair No. 2313 (mupR)
CDC0010	Staphylococcus aureus	+	+	_
CDC0015	Staphylococcus aureus	-	-	-
CDC0019	Staphylococcus aureus	+	+	-
CDC0026	Staphylococcus aureus	+	+	-
CDC0030	Staphylococcus aureus	+	+	-
CDC004	Staphylococcus aureus	+	+	-
CDC0014	Staphylococcus aureus	+	+	-
CDC008	Staphylococcus aureus	+	+	-
CDC001	Staphylococcus aureus	+	+	-
CDC0022	Staphylococcus aureus	+	+	-
CDC006	Staphylococcus aureus	+	+	+
CDC007	Staphylococcus aureus	+	+	-
CDCVRSA1	Staphylococcus aureus	+	+	-
CDCVRSA2	Staphylococcus aureus	+	+	-
CDC0011	Staphylococcus aureus	-	-	-
CDC0012	Staphylococcus aureus	+	+	-
CDC0021	Staphylococcus aureus	+	+	-
CDC0023	Staphylococcus aureus	+	+	-
CDC0025	Staphylococcus aureus	+	+	-
CDC005	Staphylococcus aureus	+	+	-
CDC0018	Staphylococcus aureus	+	+	-
CDC002	Staphylococcus aureus	+	+	-
CDC0028	Staphylococcus aureus	+	+	_
CDC003	Staphylococcus aureus	+	+	-

TABLE 20B-continued
Drug Resistance and Virulence Identified in Blinded Samples of

Various Strains of <i>Staphylococcus aureus</i> with Primer Pair Nos. 2249, 879, 2056, and 2313							
Sample Index No.	Primer Pair No. 2249 (tufB)	Primer Pair No. 879 (mecA)	Primer Pair No. 2056 (mecI-R)	Primer Pair No. 2313 (mupR)			
CDC0013	Staphylococcus aureus	+	+	-			
CDC0016	Staphylococcus aureus	+	+	-			
CDC0027	Staphylococcus aureus	+	+	-			
CDC0029	Staphylococcus aureus	+	+	-			
CDC0020	Staphylococcus aureus	-	-	-			
CDC0024	Staphylococcus aureus	+	+	-			
CDC0031	Staphylococcus scleiferi	-	-	-			

Example 15

Selection and Use of Triangulation Genotyping Analysis Primer Pairs for *Staphylococcus aureus*

[0438] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of eight triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within six different housekeeping genes which are listed in Table 21. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 21.

TABLE	21

	Primer Pairs for Triangula	tion Genoty	ping Analysis of Staphylococcus	aureus	
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
2146	ARCC_NC003923-2725050-	437	ARCC_NC003923-2725050-	1137	arcC
	2724595_131_161_F		2724595_214_245_R		
2149	AROE_NC003923-1674726-	530	AROE_NC003923-1674726-	891	aroE
	1674277_30_62_F		1674277_155_181_R		
2150	AROE_NC003923-1674726-	474	AROE_NC003923-1674726-	869	aroE
	1674277_204_232_F		1674277_308_335_R		
2156	GMK_NC003923-1190906-	268	GMK_NC003923-1190906-	1284	gmk
	1191334_301_329_F		1191334_403_432_R		
2157	PTA_NC003923-628885-	418	PTA_NC003923-628885-	1301	pta
	629355_237_263_F		629355_314_345_R		
2161	TPI_NC003923-830671-	318	TPI_NC003923-830671-	1300	tpi
	831072_1_34_F		831072_97_129_R		
2163	YQI_NC003923-378916-	440	YQI_NC003923-378916-	1076	yqi
	379431_142_167_F		379431_259_284_R		
2166	YQI_NC003923-378916-	219	YQI_NC003923-378916-	1013	yqi
	379431_275_300_F		379431_364_396_R		

[0439] The same samples analyzed for drug resistance and virulence in Example 14 were subjected to triangulation genotyping analysis. The primer pairs of Table 21 were used to produce amplification products by PCR, which were subsequently purified and measured by mass spectrometry. Base compositions were calculated from the molecular masses and are shown in Tables 22A and 22B.

TABLE 22A

Triangulation Genotyping Analysis of Blinded Samples of Various Strains of <i>Staphylococcus aureus</i> with Primer Pair Nos. 2146, 2149, 2150 and 2156						
Sample Index No.	Strain	Primer Pair No. 2146 (arcC)	Primer Pair No. 2149(aroE)	Primer Pair No. 2150 (aroE)	Primer Pair No. 2156 (gmk)	
CDC0010	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0015	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0019	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0026	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0030	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC004	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0014	COL	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC008	????	A44 G24 C18 T29	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC001	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31	
CDC0022	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31	
CDC006	Mu50	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31	
CDC0011	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31	
CDC0012	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31	
CDC0021	MRSA252	A45 G24 C18 T28	A58 G24 C19 T51	A41 G36 C12 T43	A51 G29 C21 T31	
CDC0023	ST:110	A45 G24 C18 T28	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0025	ST:110	A45 G24 C18 T28	A59 G24 C18 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC005	ST:338	A44 G24 C18 T29	A59 G23 C19 T51	A40 G36 C14 T42	A51 G29 C21 T31	
CDC0018	ST:338	A44 G24 C18 T29	A59 G23 C19 T51	A40 G36 C14 T42	A51 G29 C21 T31	
CDC002	ST:108	A46 G23 C20 T26	A58 G24 C19 T51	A42 G36 C12 T42	A51 G29 C20 T32	
CDC0028	ST:108	A46 G23 C20 T26	A58 G24 C19 T51	A42 G36 C12 T42	A51 G29 C20 T32	
CDC003	ST:107	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31	
CDC0013	ST:12	ND	A59 G24 C18 T51	A40 G36 C13 T43	A51 G29 C21 T31	
CDC0016	ST:120	A45 G23 C18 T29	A58 G24 C19 T51	A40 G37 C13 T42	A51 G29 C21 T31	
CDC0027	ST:105	A45 G23 C20 T27	A58 G24 C18 T52	A40 G36 C13 T43	A51 G29 C21 T31	
CDC0029	MSSA476	A45 G23 C20 T27	A58 G24 C19 T51	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0020	ST:15	A44 G23 C21 T27	A59 G23 C18 T52	A40 G36 C13 T43	A50 G30 C20 T32	
CDC0024	ST:137	A45 G23 C20 T27	A57 G25 C19 T51	A40 G36 C13 T43	A51 G29 C22 T30	
CDC0031	***	No product	No product	No product	No product	

Triangulation Genotyping Analysis of Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2146, 2149, 2150 and 2156							
Sample Index No.	Strain	Primer Pair No. 2157 (pta)	Primer Pair No. 2161 (tpi)	Primer Pair No. 2163 (yqi)	Primer Pair No. 2166 (yqi)		
CDC0010	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0015	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0019	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0026	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0030	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC004	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0014	COL	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC008	unknown	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC001	Mu50	A33 G25 C22 T29	A50 G28 C22 T29	A42 G36 C22 T43	A36 G31 C19 T36		
CDC0022	Mu50	A33 G25 C22 T29	A50 G28 C22 T29	A42 G36 C22 T43	A36 G31 C19 T36		
CDC006	Mu50	A33 G25 C22 T29	A50 G28 C22 T29	A42 G36 C22 T43	A36 G31 C19 T36		
CDC0011	MRSA252	A32 G25 C23 T29	A50 G28 C22 T29	A42 G36 C22 T43	A37 G30 C18 T37		
CDC0012	MRSA252	A32 G25 C23 T29	A50 G28 C22 T29	A42 G36 C22 T43	A37 G30 C18 T37		
CDC0021	MRSA252	A32 G25 C23 T29	A50 G28 C22 T29	A42 G36 C22 T43	A37 G30 C18 T37		
CDC0023	ST:110	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0025	ST:110	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC005	ST:338	A32 G25 C24 T28	A51 G27 C21 T30	A42 G36 C22 T43	A37 G30 C18 T37		
CDC0018	ST:338	A32 G25 C24 T28	A51 G27 C21 T30	A42 G36 C22 T43	A37 G30 C18 T37		
CDC002	ST:108	A33 G25 C23 T28	A50 G28 C22 T29	A42 G36 C22 T43	A37 G30 C18 T37		
CDC0028	ST:108	A33 G25 C23 T28	A50 G28 C22 T29	A42 G36 C22 T43	A37 G30 C18 T37		
CDC003	ST:107	A32 G25 C23 T29	A51 G28 C22 T28	A41 G37 C22 T43	A37 G30 C18 T37		
CDC0013	ST:12	A32 G25 C23 T29	A51 G28 C22 T28	A42 G36 C22 T43	A37 G30 C18 T37		

TABLE 22B-continued	
---------------------	--

Triangulation Genotyping Analysis of Blinded Samples of Various Strains of Staphylococcus aureus with Primer Pair Nos. 2146, 2149, 2150 and 2156							
Sample Index No.	Strain	Primer Pair No. 2157 (pta)	Primer Pair No. 2161 (tpi)	Primer Pair No. 2163 (yqi)	Primer Pair No. 2166 (yqi)		
CDC0016 CDC0027 CDC0029 CDC0020 CDC0024 CDC0031	ST:120 ST:105 MSSA476 ST:15 ST:137 ***	A32 G25 C24 T28 A33 G25 C22 T29 A33 G25 C22 T29 A33 G25 C22 T29 A33 G25 C22 T29 A33 G25 C22 T29 A34 G25 C25 T25	A50 G28 C21 T30 A50 G28 C22 T29 A50 G28 C22 T29 A50 G28 C22 T29 A50 G28 C21 T30 A51 G28 C22 T28 A51 G27 C24 T27	A42 G36 C22 T43 A43 G36 C21 T43 A42 G36 C22 T43 A42 G36 C22 T43 A42 G36 C22 T43 A42 G36 C22 T43 No product	A37 G30 C18 T37 A36 G31 C19 T36 A36 G31 C19 T36 A36 G31 C19 T36 A36 G31 C18 T37 A37 G30 C18 T37 No product		

Note:

*** The sample CDC0031 was identified as *Staphylococcus scleiferi* as indicated in Example 14. Thus, the triangulation genotyping primers designed for *Staphylococcus aureus* would generally not be expected to prime and produce amplification products of this organism. Tables 22A and 22B indicate that amplification products are obtained for this organism only with primer pair numbers 2157 and 2161.

[0440] A total of thirteen different genotypes of *Staphylococcus aureus* were identified according to the unique combinations of base compositions across the eight different bioagent identifying amplicons obtained with the eight primer pairs. These results indicate that this eight primer pair panel is useful for analysis of unknown or newly emerging strains of *Staphylococcus aureus*. It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

Example 16

Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Members of the Bacterial Genus Vibrio

[0441] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of eight triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within seven different housekeeping genes which are listed in Table 23. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 23.

teria were tested using this panel of primer pairs. Base compositions of amplification products obtained with these 8 primer pairs were used to distinguish amongst various species tested, including sub-species differentiation within *Vibrio cholerae* isolates. For instance, the non-O1/non-O139 isolates were clearly resolved from the O1 and the O139 isolates, as were several of the environmental isolates of *Vibrio cholerae* from the clinical isolates.

[0443] It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

Example 17

Selection and Use of Triangulation Genotyping Analysis Primer Pairs for Members of the Bacterial Genus *Pseudomonas*

[0444] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by triangulation genotyping analysis, a panel of twelve triangulation genotyping analysis primer pairs was selected. The primer pairs are designed to produce bioagent identifying amplicons within seven different housekeeping genes which

TABLE 23

	Primer Pairs for Triangulation Ge	enotyping A	nalysis of Members of the Bacterial Gen	us Vibrio	
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
1098 2000 2001 2011 2012 2014 2323	RNASEP_VBC_331_349_F CTXB_NC002505_46_70_F FUR_NC002505_87_113_F GYRB_NC002505_1161_1190_F OMPU_NC002505_85_110_F OMPU_NC002505_431_455_F CTXA_NC002505-1568114- 1567341_122_149_F	325 278 465 148 190 266 508	RNASEP_VBC_388_414_R CTXB_NC002505_132_162_R FUR_NC002505_205_228_R GYRB_NC002505_1255_1284_R OMPU_NC002505_154_180_R OMPU_NC002505_1544_567_R CTXA_NC002505-1568114- 1567341_186_214_R	1163 1039 1037 1172 1254 1094 1297	RNAse P ctxB fur gyrB ompU ompU ctxA
2927	GAPA_NC002505_694_721_F	259	GAPA_NC_002505_29_58_R	1060	gapA

[0442] A group of 50 bacterial isolates containing multiple strains of both environmental and clinical isolates of *Vibrio cholerae*, 9 other *Vibrio* species, and 3 species of *Photobac*-

are listed in Table 24. The primer sequences are found in Table 2 and are cross-referenced by the primer pair numbers, primer pair names or SEQ ID NOs listed in Table 24.

TABLE 24

Prim	Primer Pairs for Triangulation Genotyping Analysis of Members of the Bacterial Genus Pseudomonas							
Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene			
2949	ACS_NC002516-970624-	376	ACS_NC002516-970624-	1265	acsA			
2950	971013_299_316_F ARO_NC002516-26883- 27380_4_26_F	267	971013_364_383_R ARO_NC002516-26883- 27380_111_128_R	1341	aroE			
2951	ARO_NC002516-26883-	705	ARO_NC002516-26883-	1056	aroE			
2954	27380_356_377_F GUA_NC002516-4226546- 4226174 155 178 F	710	27380_459_484_R GUA_NC002516-4226546- 4226174_265_287_R	1259	guaA			
2956	GUA_NC002516-4226546-	374	GUA_NC002516-4226546-	1111	guaA			
2957	4226174_242_263_F MUT_NC002516-5551158- 5550717 5 26 F	545	4226174_355_371_R MUT_NC002516-5551158- 5550717 99 116 R	978	mutL			
2959	NUO_NC002516-2984589-	249	NUO_NC002516-2984589-	1095	nuoD			
2960	2984954_8_26_F NUO_NC002516-2984589- 2984954 218 239 F	195	2984954_97_117_R NUO_NC002516-2984589- 2984954 301 326 R	1376	nuoD			
2961	PPS_NC002516-1915014-	311	PPS_NC002516-1915014-	1014	pps			
2962	1915383_44_63_F PPS_NC002516-1915014- 1915383 240 258 F	365	1915383_140_165_R PPS_NC002516-1915014- 1915383 341 360 R	1052	pps			
2963	TRP_NC002516-671831-	527	TRP_NC002516-671831-	1071	trpE			
2964	672273_24_42_F TRP_NC002516-671831- 672273_261_282_F	490	672273_131_150_R TRP_NC002516-671831- 672273_362_383_R	1182	trpE			

[0445] It is expected that a kit comprising one or more of the members of this panel will be a useful embodiment of the present invention.

[0446] The present invention includes any combination of the various species and subgeneric groupings falling within the generic disclosure. This invention therefore includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.

[0447] While in accordance with the patent statutes, description of the various embodiments and examples have been provided, the scope of the invention is not to be limited

thereto or thereby. Modifications and alterations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the present invention.

[0448] Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims, rather than by the specific examples which have been presented by way of example.

[0449] Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank gi or accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 1464
<210> SEQ ID NO 1
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 1
aaactagata acagtagaca tcac
<210> SEQ ID NO 2
<211> LENGTH: 29
<212> TYPE: DNA
```

-continued	
-concinued	

	-continued
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 2	
aaccttaatt ggaaagaaac ccaagaagt	29
<210> SEQ ID NO 3	
<211> LENGTH: 17 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 3	
aacgcacaat cagaagc	17
<210> SEQ ID NO 4	
<211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 4	
aactaccgtc cgcagttcta cttcc	25
<210> SEQ ID NO 5	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 5	
aactaccgtc ctcagttcta cttcc	25
<210> SEQ ID NO 6	
<211> LENGTH: 18 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 6	
aagacgacct gcacgggc	18
-210- SEO ID NO 7	
<210> SEQ ID NO 7 <211> LENGTH: 18	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 7	
aagoggtgga gcatgtgg	18
<210> SEQ ID NO 8	
<211> LENGTH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	

-	C	or	пt	1	n	u	e	d

-0011	Linued	
<400> SEQUENCE: 8		
aaggaaggcg tgatcaccgt tgaaga	26	
<210> SEQ ID NO 9		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 9		
aaggtactcc ggggataaca ggc	23	
<210> SEQ ID NO 10		
<211> LENGTH: 22		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 10		
aagtoggaat ogotagtaat og	22	
<210> SEQ ID NO 11		
<211> LENGTH: 19		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 11		
aatctgctat ttggtcagg	19	
<210> SEQ ID NO 12		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 12		
acaacgaagt acaatacaag ac	22	
<210> SEQ ID NO 13		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 13		
acaatacaag acaaaagaag g	21	
<210> SEQ ID NO 14		
<211> LENGTH: 19		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 14		
accacgccgt aaacgatga	19	
<u></u>		

-continued

<210> SEQ ID NO 15 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 15 accatgacag aaggcatttt gaca 24 <210> SEQ ID NO 16 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 16 acccagtgct gctgaaccgt gc 22 <210> SEQ ID NO 17 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 17 19 accgagcaag gagaccagc <210> SEQ ID NO 18 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 18 acctgcccag tgctggaag 19 <210> SEQ ID NO 19 <211> LENGTH: 17 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 19 acgcgaagaa ccttacc 17 <210> SEQ ID NO 20 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 20 actcgttttt aatcagcccg 20 <210> SEQ ID NO 21 <211> LENGTH: 20 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
(223) OTHER INFORMATION: PITMET	
<400> SEQUENCE: 21	
agaacaccga tggcgaaggc	20
<210> SEQ ID NO 22	
<210> SEQ 1D NO 22 <211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
220> FEATURE: 223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 22	
agaatcaagt tcccaggggt tac	23
<210> SEQ ID NO 23	
<211> LENGTH: 20	
<212> TYPE: DNA	
<pre>213> ORGANISM: Artificial Sequence 220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 23	
agagtttgat catggeteag	20
<210> SEQ ID NO 24	
<211> LENGTH: 28 <212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 24	
agcaggtggt gaaatcggcc acatgatt	28
<210> SEQ ID NO 25	
<211> LENGTH: 18	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 25	
agcgtaaagg tgaacctt	18
010 (TO ID NO 0/	
<210> SEQ ID NO 26 <211> LENGTH: 26	
<211> LENGIH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 26	
agettttgea tattatateg ageeae	26
<210> SEQ ID NO 27	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

								-
-	CO	on	t	l	n	u	e	d

	concinaca
<400> SEQUENCE: 27	
aggacagagt gagtactttg accgaggt	28
<210> SEQ ID NO 28	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 28	
agteteaaga gtgaacaegt aa	22
<210> SEQ ID NO 29	
<211> LENGTH: 32 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 29	
agttataaac acggctttcc tatggcttat cc	32
<210> SEQ ID NO 30	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<220> FEALORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 30	
atacteetga etgaeegata g	21
<210> SEQ ID NO 31	
<211> LENGTH: 20 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 31	
atatcgacgg cggtgtttgg	20
<210> SEQ ID NO 32	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 32	
atcaatttgg tggccaagaa cctgg	25
<210> SEQ ID NO 33	
<211> LENGTH: 29 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 33	
atgattacaa ttcaagaagg tcgtcacgc	29

-continued

<210> SEQ ID NO 34 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 34 atggacaagg ttggcaagga agg 23 <210> SEQ ID NO 35 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 35 atggccatgg cagaagctca 20 <210> SEQ ID NO 36 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 36 25 atgtcgattg caatccgtac ttgtg <210> SEQ ID NO 37 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 37 atgttgggtt aagtcccgc 19 <210> SEQ ID NO 38 <211> LENGTH: 25 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 38 atgttgggtt aagtcccgca acgag 25 <210> SEQ ID NO 39 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 39 caaaacttat taggtaagcg tgttgact 28 <210> SEQ ID NO 40 <211> LENGTH: 27 <212> TYPE: DNA

	-continued
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 40	
caaaggtaag caaggacgtt tccgtca	27
<210> SEQ ID NO 41 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 41	
caaaggtaag caaggtcgtt tccgtca	27
<210> SEQ ID NO 42 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 42	
caacgagege aaccett	17
<210> SEQ ID NO 43 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 43	
caacggatgc tggcaag	17
<210> SEQ ID NO 44 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 44	
caagaagaaa aagagcttct aaaaagaata c	31
<pre><210> SEQ ID NO 45 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 45</pre>	
<400> SEQUENCE: 45 caagcaaacg cacaatcaga agc	23
<pre><210> SEQ ID NO 46 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	

	-continued
<400> SEQUENCE: 46	
caagtcatca tggccctta	19
<210> SEQ ID NO 47 <211> LENGTH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 47	
caataccgca acagcggtgg cttggg	26
<210> SEQ ID NO 48 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 48	
cactggaact gagacacgg	19
<210> SEQ ID NO 49 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 49	
cagaatcaag ttcccagggg	20
<210> SEQ ID NO 50 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 50	
cagagaccgt tttatcctat cagc	24
<210> SEQ ID NO 51 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 51	
cagcgtttcg gcgaaatgga	20
<210> SEQ ID NO 52 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 52	
caggagtcgt tcaactcgat ctacatgat	29

-cont	1 1110	a
COLLC	TITUC	9

<210> SEQ ID NO 53 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 53 caggtttagt accagaacat gcag 24 <210> SEQ ID NO 54 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 54 catccacacg gtggtggtga agg 23 <210> SEQ ID NO 55 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 55 ccacacgccg ttcttcaaca act 23 <210> SEQ ID NO 56 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 56 ccacagttct acttccgtac tactgacg 28 <210> SEQ ID NO 57 <211> LENGTH: 19 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 57 ccagcagccg cggtaatac 19 <210> SEQ ID NO 58 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 58 ccgtaacttc gggagaagg 19 <210> SEQ ID NO 59 <211> LENGTH: 20 <212> TYPE: DNA

-continued	

-cont	inued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: </pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 59		
ccgtggtatt ggagttattg	20	
<210> SEQ ID NO 60		
<211> LENGTH: 29 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 60		
cctatattaa togtttacag aaactggot	29	
<210> SEQ ID NO 61		
<211> LENGTH: 19 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 61		
cctgataagg gtgaggtcg	19	
<210> SEQ ID NO 62		
<211> LENGTH: 30 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 62		
ccttacttcg aactatgaat cttttggaag	30	
<210> SEQ ID NO 63		
<211> LENGTH: 14		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 63		
cgaagaacct tacc	14	
<210> SEQ ID NO 64		
<211> LENGTH: 27		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 64		
cgaagtacaa tacaagacaa aagaagg	27	
<210> SEQ ID NO 65		
<211> LENGTH: 18		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

	-continued
<400> SEQUENCE: 65	
cgacgcgctg cgcttcac	18
<210> SEQ ID NO 66	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 66	
cgagagggaa acaacccaga cc	22
<210> SEQ ID NO 67	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 67	
cgagtatagc taaaaaata gtttatgaca	30
<210> SEQ ID NO 68	
<211> LENGTH: 23 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 68	
cgcaaaaaaa tccagctatt agc	23
<210> SEQ ID NO 69	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 69	
cgccgacttc gacggtgacc	20
<210> SEQ ID NO 70	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 70	
cggaattact gggcgtaaag	20
<210> SEQ ID NO 71	
<211> LENGTH: 21 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 71	
cggattggag tctgcaactc g	21

-continued

<210> SEO ID NO 72 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 72 cggcgtactt caacgacagc ca 22 <210> SEQ ID NO 73 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 73 cgtaactata acggtcctaa ggta 24 <210> SEQ ID NO 74 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 74 26 cgtcagggta aattccgtga agttaa <210> SEQ ID NO 75 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 75 cgtcgggtga ttaaccgtaa caaccg 2.6 <210> SEQ ID NO 76 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 76 cgtcgtgtaa ttaaccgtaa caaccg 26 <210> SEQ ID NO 77 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 77 cgtggcggcg tggttatcga 20 <210> SEQ ID NO 78 <211> LENGTH: 25 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 78	
cgtgttgact attcggggcg ttcag	25
<210> SEQ ID NO 79	
<211> LENGTH: 18	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<2223> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 79	
ctagtacgag aggaccgg	18
<210> SEQ ID NO 80	
<211> LENGTH: 18	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 80	
ctgacacctg cccggtgc	18
<210> SEQ ID NO 81	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 81	
ctggcaggta tgcgtggtct gatg	24
<210> SEQ ID NO 82	
<211> LENGTH: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 82	
ctggctaaaa ctttggcaac ggt	23
<210> SEQ ID NO 83	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 83	
ctgtccctag tacgagagga ccgg	24
<210> SEQ ID NO 84	
<211> LENGTH: 22 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-con	t	n_{11}	00
-COII	レエ	шu	eu

- C(continued	
<400> SEQUENCE: 84		
ctgttcttag tacgagagga cc	22	
<210> SEQ ID NO 85		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 85		
cttctgcaac aagctgtgga acgc	24	
<210> SEQ ID NO 86		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 86		
cttgctggta tgcgtggtct gatg	24	
<210> SEQ ID NO 87		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 87		
cttggaggta agtctcattt tggtgggca	29	
<210> SEQ ID NO 88		
<211> LENGTH: 19		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 88		
cttgtacaca cegecegte	19	
<210> SEQ ID NO 89		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 89		
cttgtacttg tggctcacac ggctgtttgg	30	
<210> SEQ ID NO 90		
<211> LENGTH: 21		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<2213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre><220> FEALORE: <223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 90		
cttttgcata ttatatcgag c	21	

-continued

<210> SEQ ID NO 91 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 91 gaatagcaat taatccaaat 20 <210> SEQ ID NO 92 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 92 gaaagagttc ggattggg 18 <210> SEQ ID NO 93 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 93 21 gaaggatata cggttgatgt c <210> SEQ ID NO 94 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 94 gaatagcaat taatccaaat 2.0 <210> SEQ ID NO 95 <211> LENGTH: 20 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 95 gacacggtcc agactcctac 20 <210> SEQ ID NO 96 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 96 gacagttegg teeetate 18 <210> SEQ ID NO 97 <211> LENGTH: 18 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 97	
gaccacctcg gcaaccgt	18
<210> SEQ ID NO 98	
<211> LENGTH: 30	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 98	
gacctacagt aagaggttet gtaatgaace	30
<210> SEQ ID NO 99	
<211> LENGTH: 16 <212> TYPE: DNA	
<212> IIIE. DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 99	
	16
gacgeetgee eggtge	10
<210> SEQ ID NO 100	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 100	
gacttaccaa cccgatgcaa	20
<210> SEQ ID NO 101	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 101	
gagagcaagc ggacctcata	20
<210> SEQ ID NO 102	
<211> LENGTH: 27 <212> TYPE: DNA	
<212> INPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 102	
gagagtttga teetggetea gaaegaa	27
<210> SEQ ID NO 103	
<211> LENGTH: 19 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	

-001	ItIllied
<400> SEQUENCE: 103	
gaggaaagtc catgetcac	19
<210> SEQ ID NO 104	
<211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 104	
gaggaaagtc catgctcgc	19
<210> SEQ ID NO 105	
<211> LENGTH: 17 <212> TYPE: DNA	
<212> TIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 105	
gaggaaagtc cgggctc	17
<210> SEQ ID NO 106	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 106	
gataccctgg tagtccacac cg	22
<210> SEQ ID NO 107	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 107	
gatetggagg aataceggtg	20
<210> SEQ ID NO 108	
<211> LENGTH: 29	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 108	
gatgactttt tagctaatgg tcaggcagc	29
<210> SEQ ID NO 109	
<211> LENGTH: 30 <212> TYPE: DNA	
<212> IIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 109	
gattattgtt atcctgttat gccatttgag	30

-cont	

<210> SEQ ID NO 110 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 110 gcacaacctg cggctgcg 18 <210> SEQ ID NO 111 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 111 gcactatgca cacgtagatt gtcctgg 27 <210> SEQ ID NO 112 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 112 21 gcettgtaca cacetecegt e <210> SEQ ID NO 113 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 113 gcgaagaacc ttaccaggtc 2.0 <210> SEQ ID NO 114 <211> LENGTH: 20 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 114 gctacacacg tgctacaatg 20 <210> SEQ ID NO 115 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 115 gctggtgaaa ataacccaga tgtcgtcttc 30 <210> SEQ ID NO 116 <211> LENGTH: 25 <212> TYPE: DNA

<220> FEATURE:

<220> FEATURE:

<213> ORGANISM: Artificial Sequence

149

-continued

25

19

22

26

25

<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 116	
gcttcaggaa tcaatgatgg agcag	
<210> SEQ ID NO 117	
<211> LENGTH: 19 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 117	
ggacggagaa ggctatgtt	
<210> SEQ ID NO 118	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

<400> SEQUENCE: 118

ggattagaga ccctggtagt cc

<210> SEQ ID NO 119 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 119

ggattagata ccctggtagt ccacgc

<210> SEQ ID NO 120 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 120

ggctcagcca tttagttacc gctat

<210> SEQ ID NO 121 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer

<400> SEQUENCE: 121

gggaactgaa acatctaagt a

21

<210> SEQ ID NO 122 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer

-001.	ItIllued	
<400> SEQUENCE: 122		
gggagcaaac aggattagat ac	22	
<210> SEQ ID NO 123		
<211> LENGTH: 29		
<212> TYPE: DNA		
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 123		
gggcaacagc agcggattgc gattgcgcg	29	
<210> SEQ ID NO 124		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 124		
gggcagcgtt tcggcgaaat gga	23	
2220020200 002202000 220	23	
<210> SEQ ID NO 125		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 125		
ggggagtgaa agagateetg aaaceg	26	
<210> SEQ ID NO 126		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 126		
ggggattcag ccatcaaagc agctattgac	30	
<210> SEQ ID NO 127		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 127		
ggggattgat atcaccgata agaagaa	27	
<210> SEQ ID NO 128		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 128		
ggtgaaagaa gttgcctcta aagc	24	

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 129 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 129 ggtggatgcc ttggc 15 <210> SEQ ID NO 130 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 130 ggtgttaaat agcctggcag 20 <210> SEQ ID NO 131 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 131 20 ggtttagtac cagaacatgc <210> SEQ ID NO 132 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 132 gtcaaagtgg cacgtttact ggc 23 <210> SEQ ID NO 133 <211> LENGTH: 22 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 133 gtcgtgaaaa cgagctggaa ga 22 <210> SEQ ID NO 134 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 134 gtgagatgtt gggttaagtc ccgtaacgag 30 <210> SEQ ID NO 135 <211> LENGTH: 23 <212> TYPE: DNA

-cont	tinued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 135		
gtgcatgcgg atacagagca gag	23	
<210> SEQ ID NO 136 <211> LENGTH: 26		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 136		
gtggcatgcc taatacatgc aagtcg	26	
<210> SEQ ID NO 137 <211> LENGTH: 18		
<pre><li< td=""><td></td><td></td></li<></pre>		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 137		
gtgtagcggt gaaatgcg	18	
<210> SEQ ID NO 138		
<211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<pre><220> FRATURE: <220> CTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 138		
gttatcctgt tatgccattt g	21	
<210> SEQ ID NO 139 <211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 139		
gttatttagc actcgttttt aatcagcc	28	
<210> SEQ ID NO 140 <211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 140		
gttgtgaggt taagcgacta ag	22	
<210> SEQ ID NO 141 <211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-continue	ed

-001	ItIllued
<400> SEQUENCE: 141	
gttgtgaggt taagcgacta ag	22
<210> SEQ ID NO 142	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 142	
tctagtaata ataggaccct cagc	24
<210> SEQ ID NO 143	
<211> LENGTH: 15	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 143	
tatggeteta etcaa	15
<210> SEQ ID NO 144	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 144	
taaaacaaac tacggtaaca ttgatcgca	29
<210> SEQ ID NO 145	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 145	
taaaactttt gccgtaatga tgggtgaaga tat	33
<210> SEQ ID NO 146	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 146	
taaacacggc tttcctatgg cttatccaaa t	31
<210> SEQ ID NO 147	
<211> LENGTH: 28	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 147	
taaaccccat cgggagcaag accgaata	28
······›، -····، ال ····· ال الالات	-

-CC	nt	in	ue	d

<210> SEQ ID NO 148 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 148 taaagcccgt gaaatgactc gtcgtaaagg 30 <210> SEQ ID NO 149 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 149 taaagttggt tttattggtt ggcgcgga 28 <210> SEQ ID NO 150 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 150 25 taaatctgcc cgtgtcgttg gtgac <210> SEQ ID NO 151 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 151 taacaactcg ccttatgaaa cgggatata 29 <210> SEQ ID NO 152 <211> LENGTH: 20 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 152 taacacatgc aagtcgaacg 20 <210> SEQ ID NO 153 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 153 taaccattca agaactagat cttcaggca 29 <210> SEQ ID NO 154 <211> LENGTH: 30 <212> TYPE: DNA

	-continued
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 154	
taaccttaat tggaaagaaa cccaagaagt	30
<210> SEQ ID NO 155 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 155	
taacggttat catggcccag atggg	25
<210> SEQ ID NO 156 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 156	
taactctgat gtttttgatg ggaaggt	27
<pre><210> SEQ ID NO 157 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 157</pre>	
taactgcatg gaaccettet ttactag	27
<210> SEQ ID NO 158 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 158	
taagaageeg gaaaceatea actaeeg	27
<pre><210> SEQ ID NO 159 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 159	
taagagegea eeggtaagtt gg	22
<210> SEQ ID NO 160 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	CC	ont	11	n	ue	ed

-00	JIICIIIueu
<400> SEQUENCE: 160	
taagcatgct gtggcttatc gtgaaatg	28
<210> SEQ ID NO 161	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 161	
taagetgeea geggaatget tte	23
<210> SEQ ID NO 162	
<211> LENGTH: 29 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 162	
taaggatagt gcaacagaga tataccgcc	29
<210> SEQ ID NO 163	
<211> LENGTH: 30	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 163	
taaggtatga caccggataa atcatataaa	30
<210> SEQ ID NO 164	
<211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 164	
taaggtttat tgtctttgtg gagatgggga ttt	33
<210> SEQ ID NO 165	
<211> LENGTH: 31	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<2213 GREANISM: AICHICIAL Sequence	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 165	
taatcaagca ttggaagatg aaatgcatac c	31
<210> SEQ ID NO 166	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 166	
taatcggtaa atatcacccg catggtgac	29

-continued

<210> SEQ ID NO 167 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 167 taatcggtaa gtatcaccct catggtgat 29 <210> SEQ ID NO 168 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 168 taatcgtgga atacgggttt gcta 24 <210> SEQ ID NO 169 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 169 30 taatgaaccc taatgaccat ccacacggtg <210> SEQ ID NO 170 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 170 taatgatgaa ttaggtgcgg gttcttt 27 <210> SEQ ID NO 171 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 171 taatgggtaa atatcaccct catggtgac 29 <210> SEQ ID NO 172 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 172 taattgggct ctttctcgct taaacacctt a 31 <210> SEQ ID NO 173 <211> LENGTH: 25 <212> TYPE: DNA

				-
-	con	τı	nu	ea

-cont:	inued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: </pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 173		
tacaaagcaa gacactggct cacta	25	
<210> SEQ ID NO 174		
<211> LENGTH: 30 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 174		
tacaaaggtc aaccaatgac attcagacta	30	
<210> SEQ ID NO 175		
<211> LENGTH: 34 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 175		
tacaacatat tattaaagag acgggtttga atcc	34	
<210> SEQ ID NO 176		
<211> LENGTH: 20		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 176		
tacaagcact cccagctgca	20	
<210> SEQ ID NO 177		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 177		
tacaatgett gtttatgetg gtaaageag	29	
<210> SEQ ID NO 178		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 178		
tacacaacaa tggcggtaaa gatgg	25	
<210> SEQ ID NO 179		
<211> LENGTH: 15		
<212> TYPE: DNA <213> OPGINISM: Artificial Sequence		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

	-continued
<400> SEQUENCE: 179	
tacagagttt gcgac	15
<210> SEQ ID NO 180	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 180	
tacaggccgt gttgaacgtg g	21
<210> SEQ ID NO 181	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 181	
tacatgetag eegegtetta e	21
<210> SEQ ID NO 182	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 182	
taccactatt aatgtcgctg gtgcttc	27
<210> SEQ ID NO 183	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 183	
taccatgaca gaaggcattt tgaca	25
5 5 555	
<210> SEQ ID NO 184	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 184	
taccccaaac cgacacagg	19
<210> SEQ ID NO 185	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 185	
taccccaggg aaagtgccac aga	23
and by contraction and a	20

-cont	1 1110	a
COLLC	TITUC	9

<210> SEQ ID NO 186 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 186 taccggcgca aaaagtcgag attgg 25 <210> SEQ ID NO 187 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 187 tacctatatg cgccagaccg c 21 <210> SEQ ID NO 188 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 188 26 tacgatttca cttccgcagc cagatt <210> SEQ ID NO 189 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 189 tacgcgtctt gaagcgtttc gttatga 27 <210> SEQ ID NO 190 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 190 tacgctgacg gaatcaacca aagcgg 26 <210> SEQ ID NO 191 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 191 tacggtgaat acgttcccgg g 21 <210> SEQ ID NO 192 <211> LENGTH: 15 <212> TYPE: DNA

-continued					
<pre><213> ORGANISM: Artificial Sequence</pre>					
<220> FEATURE:					
<223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 192					
tacagagttt gcgac	15				
<210> SEQ ID NO 193					
<211> LENGTH: 23					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence					
<220> FEATURE:					
<223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 193					
tactacttca agccgaactt ccg	23				
<210> SEQ ID NO 194 <211> LENGTH: 28					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence					
<220> FEATURE:					
<223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 194					
tactagcggt aagcttaaac aagattgc	28				
<210> SEQ ID NO 195 <211> LENGTH: 22					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence					
<220> FEATURE: <223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 195					
tactctcggt ggagaagctc gc	22				
<210> SEQ ID NO 196					
<211> LENGTH: 22					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence <220> FEATURE:					
<223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 196					
tactggaaca aagtetgega ee	22				
<210> SEQ ID NO 197					
<211> LENGTH: 27					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence					
<220> FEATURE: <223> OTHER INFORMATION: Primer					
<400> SEQUENCE: 197					
tacttactac ttcaageega actteeg	27				
<210> SEQ ID NO 198					
<211> LENGTH: 28					
<212> TYPE: DNA					
<213> ORGANISM: Artificial Sequence <220> FEATURE:					
<223> OTHER INFORMATION: Primer					

-	С	on	t	1:	n	u	е	d

	-concinded
<400> SEQUENCE: 198	
tacttacttg agaatccaca agctgcaa	28
<210> SEQ ID NO 199	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 199	
tacttggtaa ataccaccca catggtga	28
<210> SEQ ID NO 200	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 200	
	20
tactttttta aaactaggga tgcgtttgaa gc	32
<210> SEQ ID NO 201	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 201	
tagaaatcaa ggtgatagtg gcaatga	27
<210> SEQ ID NO 202	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 202	
tagaacaccg atggcgaagg c	21
<210> SEQ ID NO 203	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 203	
tagaacgtcg cgagacagtt cg	22
<210> SEQ ID NO 204	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 204	
tagactgccc aggacacgct g	21

-CC	nt	in	ue	d

<210> SEQ ID NO 205 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 205 tagataattg ggctctttct cgcttaaac 29 <210> SEQ ID NO 206 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 206 tagataccct ggtagtccac gc 22 <210> SEQ ID NO 207 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 207 28 tagatgaaaa aggcgaagtg gctaatgg <210> SEQ ID NO 208 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 208 tagatgaaaa gggcgaagtg gctaatgg 28 <210> SEQ ID NO 209 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 209 tagcaacaaa tatatctgaa gcagcgtact 30 <210> SEQ ID NO 210 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 210 tagcaggtgg tgaaatcggc cacatgatt 29 <210> SEQ ID NO 211 <211> LENGTH: 26 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 211	
tagcatcaga actgttgttc cgctag	26
<210> SEQ ID NO 212 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 212	
tagcccagca caatttgtga ttca	24
<210> SEQ ID NO 213 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
2223 OTHER INFORMATION: FILMEI	
<400> SEQUENCE: 213	
tagcetttaa egaaaatgta aaaatgegtt ttga	34
<210> SEQ ID NO 214 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 214	
~ tagcgaatgt ggctttactt cacaatt	27
<210> SEQ ID NO 215 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 215	
tagcgtaaag gtgaacctt	19
<210> SEQ ID NO 216 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 216	
tagctaatgg tcaggcagcc	20
<pre><210> SEQ ID NO 217 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	

-	С	on	t	1:	n	u	е	d

-0011	Linded	
<400> SEQUENCE: 217		
tagctatctt atcgttgaga agggatttgc	30	
5 5 5 5 555 5		
<210> SEQ ID NO 218		
<211> LENGTH: 22		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 218		
tagetggege gaaattaggt gt	22	
<210> SEQ ID NO 219		
<211> LENGTH: 26		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 219		
tagetggegg tatggagaat atgtet	26	
<210> SEQ ID NO 220		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 220		
tagettttge atattatate gageeae	27	
<210> SEQ ID NO 221		
<211> LENGTH: 29 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 221		
taggaattac ggctgataaa gcgtataaa	29	
<210> SEQ ID NO 222		
<211> LENGTH: 35		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 222		
taggcgaaga tatacaaaga gtattagaag ctaga	35	
<210> SEQ ID NO 223		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 223		
taggcgtgaa agcaagctac cgttt	25	

-cont	1 1110	a
COLLC	TITUC	9

<210> SEQ ID NO 224 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 224 taggtgctgg ttacgcagat caaga 25 <210> SEQ ID NO 225 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 225 taggtttacg tcagtatggc gtgattatgg 30 <210> SEQ ID NO 226 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 226 23 tagtaccgaa gctggtcata cga <210> SEQ ID NO 227 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 227 tagtacgaga ggaccgg 17 <210> SEQ ID NO 228 <211> LENGTH: 18 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 228 tagtcccgca acgagcgc 18 <210> SEQ ID NO 229 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 229 tagtgataga actgtaggca caatcgt 27 <210> SEQ ID NO 230 <211> LENGTH: 22 <212> TYPE: DNA

-continued

-con	tinued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 230		
tagttgetea aacagetggg et	22	
<210> SEQ ID NO 231		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 231		
tataagtggg taaaccgtga atatcgtgt	29	
<210> SEQ ID NO 232		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 232		
tatacttcaa cgcctgctgc tttc	24	
<210> SEQ ID NO 233		
<211> LENGTH: 22		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 233		
tatcgctcag gcgaactcca ac	22	
<210> SEQ ID NO 234		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 234		
tatgaccaaa ctcatcagac gag	23	
<210> SEQ ID NO 235		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 235		
tatgattaca attcaagaag gtcgtcacgc	30	
<210> SEQ ID NO 236		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

						-	
-	C	on	t.	٦r	נור	ec	1

	-continued
<400> SEQUENCE: 236	
tatgcagtgg aacgatggtt tccaaga	27
<210> SEQ ID NO 237 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 237	
tatgctgacc gaccagtggt acgt	24
<210> SEQ ID NO 238 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 238	
tatggccatg gcagaagctc a	21
<210> SEQ ID NO 239 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 239	
tatggeteta etcaa	15
<210> SEQ ID NO 240 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 240	
tatgtccaag aagcatagca aaaaaagcaa t	31
<210> SEQ ID NO 241 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 241	
tattcaaggt ggtcctttga tgcatgt	27
<210> SEQ ID NO 242 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 242	
tattggacaa cggtcgtcgc gg	22

- C	ont	- 1	nı	10	
0	OIL		TTC		<u> </u>

<210> SEQ ID NO 243 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 243 tattgtttca aatgtacaag gtgaagtgcg 30 <210> SEQ ID NO 244 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 244 tatttcacat gtaattttga tattcgcact 30 <210> SEQ ID NO 245 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 245 32 tcaaaaagcc ctaggtaaag agattccata tc <210> SEQ ID NO 246 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 246 tcaaactggg caatcggaac tggtaaatc 29 <210> SEQ ID NO 247 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 247 tcaaatgtac aaggtgaagt gcgtga 26 <210> SEQ ID NO 248 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 248 tcaacaacct cttggaggta aagetcagt 29 <210> SEQ ID NO 249 <211> LENGTH: 19 <212> TYPE: DNA

-continued

	-concinded
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 249	
tcaacctcgg cccgaacca	19
ALA CEA IN NO DEA	
<210> SEQ ID NO 250 <211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 250	
·····	
tcaacctgac tgcgtgaatg gttgt	25
<210> SEQ ID NO 251	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
2232 STREA INFORMATION: FILMEL	
<400> SEQUENCE: 251	
tcaacgaagg taaaaaccat ctcaacg	27
5 - 55	
<210> SEQ ID NO 252	
<210> SEQ 1D NO 232 <211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 252	
tcaacggtaa cttctatgtt acttctg	27
<210> SEQ ID NO 253	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 253	
tcaactcgaa ttttcaacag gtacca	26
<210> SEQ ID NO 254	
<211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 254	
tcaagaagaa aaagagc	17
<210> SEQ ID NO 255 <211> LENGTH: 24	
<211> LENGTH: 24 <212> TYPE: DNA	
<212> TIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-cont	

	-concinded
<400> SEQUENCE: 255	
tcaagcaaac gcacaatcag aagc	24
component journering ange	
<210> SEQ ID NO 256	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
-400> SPONER, 256	
<400> SEQUENCE: 256	
tcaagcagaa gctttggaag aagaagg	27
<210> SEQ ID NO 257	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 257	
tcaagccgta cgtattatta ggtgctg	27
leaageegta egtattatta ggtgetg	21
<210> SEQ ID NO 258	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 258	
tcaataccgc aacagcggtg gcttggg	27
<210> SEQ ID NO 259	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 259	
tcaatgaacg accaacaagt gattgatg	28
lealyady accadeagt gallyaly	20
<210> SEQ ID NO 260	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 260	
	22
tcaatgaacg atcaacaagt gattgatg	28
<210> SEQ ID NO 261	
<211> LENGTH: 24	
<212> TYPE: DNA	
<212> IIFE. DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<220> FEATORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 261	
tcacatatcg tgagcaatga actg	24

-continued

<210> SEQ ID NO 262 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 262 tcaccaggtt caactcaaaa aatattaaca 30 <210> SEQ ID NO 263 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 263 tcaccagttt gccacgtatc ttcaa 25 <210> SEQ ID NO 264 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 264 28 tcaccctcat ggtgactcat ctatttat <210> SEQ ID NO 265 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 265 tcaccctcat ggtgattcag ctgtttat 28 <210> SEQ ID NO 266 <211> LENGTH: 25 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 266 tcaccgatat catggettac cacgg 25 <210> SEQ ID NO 267 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 267 tcaccgtgcc gttcaaggaa gag 23 <210> SEQ ID NO 268 <211> LENGTH: 29 <212> TYPE: DNA

-continued

	-continued
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 268	
tcacctccaa gtttagatca cttgagaga	29
<210> SEQ ID NO 269 <211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 269	
tcacgataag aaaaccggtc aagagg	26
<210> SEQ ID NO 270	
<211> LENGTH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 270	
tcactcttac atataaggaa ggcgctc	27
<210> SEQ ID NO 271	
<211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 271	
tcagaccatg ctcgcagaga aactt	25
<210> SEQ ID NO 272	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 272	
tcagagaccg ttttatccta tcagc	25
<210> SEQ ID NO 273 <211> LENGTH: 26	
<211> LENGIH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 273	
tcagcaaatg catcacaaac agataa	26
<210> SEQ ID NO 274	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	CC	ont	11	n	ue	ed

	ICIIIdea	
<400> SEQUENCE: 274		
tcagcatatg cacatggaac acctc	25	
<210> SEQ ID NO 275		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 275		
tcagcatatg cacatggaac acctca	26	
<210> SEQ ID NO 276		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 276		
tcagccatca aagcagctat tg	22	
<210> SEQ ID NO 277		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 277		
tcagcgcgta cagtgggtga t	21	
llagugugua laguggguga l	21	
<210> SEQ ID NO 278		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 278		
~ tcagcgtatg cacatggaac tcctc	25	
claylytaty calatyyaat teete	23	
<210> SEQ ID NO 279		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 279		
tcagctacat cgactatgcg atg	23	
<210> SEQ ID NO 280		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 280		
tcagctagac cttttaggta aagctaagct	30	

-continued

<210> SEQ ID NO 281 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 281 tcagctattt ttccaggtat ccaaggtgg 29 <210> SEQ ID NO 282 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 282 tcagctgtcg cagttcatgg acc 23 <210> SEQ ID NO 283 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 283 25 tcaggaaaag ggcattttac ccttg <210> SEQ ID NO 284 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 284 tcaggagtcg ttcaactcga tctacatgat 30 <210> SEQ ID NO 285 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 285 tcaggagtcg ttcaactcga tctacatgat g 31 <210> SEQ ID NO 286 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 286 tcaggatgga aataaccacc aattcactac 30 <210> SEQ ID NO 287 <211> LENGTH: 23 <212> TYPE: DNA

	-continued
- <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 287	
tcaggcattg cggttgggat ggc	23
<210> SEQ ID NO 288 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 288	
teaggtaetg etatecaece teaa	24
<210> SEQ ID NO 289 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 289	
tcaggtggct tacacggcgt ag	22
<pre><210> SEQ ID NO 290 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 290	
tcagtatgta tccaccgtag ccagtc	26
<pre><210> SEQ ID NO 291 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 291</pre>	
	23
<pre>ccagttccgt tatcgccatt gca <210> SEQ ID NO 292 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	23
<400> SEQUENCE: 292	
tcagttccgt tatcgccatt gcat	24
<210> SEQ ID NO 293 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-continue	ed

-	concinded
<400> SEQUENCE: 293	
tcagttccgt tatcgccatt gcatt	25
5 5 5 5	
<210> SEQ ID NO 294	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 294	
teagttegge ggteageget tegg	24
<210> SEQ ID NO 295	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 295	
tcagttttaa tgtctcgtat gatcgaatca aaag	34
<210> SEQ ID NO 296	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 296	
tcatccacac ggtggtggtg aagg	24
<210> SEQ ID NO 297	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 297	
	22
tcatcctaag ccaagtgtag actctgta	28
<210> SEQ ID NO 298	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 298	
tcatgataat atctttgaaa tcggctcagg a	31
<210> SEQ ID NO 299	
<210> SEQ 1D NO 299 <211> LENGTH: 33	
<211> HENGIN: 33 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 299	
tcatgttgag cttaaaccta tagaagtaaa agc	33

-cont	inued
COILC	LIIUCU

<210> SEQ ID NO 300 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 300 tcattatcat gcgccaatga gtgcaga 27 <210> SEQ ID NO 301 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 301 tcattcaaga actagatctt caggcaag 28 <210> SEQ ID NO 302 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 302 26 tccaaaaaaa tcagcgcgta cagtgg <210> SEQ ID NO 303 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 303 tccaaaccag gtgtatcaag aacatcagg 29 <210> SEQ ID NO 304 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 304 tccaaataag tggcgttaca aatactgaa 29 <210> SEQ ID NO 305 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 305 tccaacgaag tacaatacaa gacaaaagaa gg 32 <210> SEQ ID NO 306 <211> LENGTH: 32 <212> TYPE: DNA

		-
-cont	1 m	1100

-CO	ontinued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 306		
tccaaggtac actaaactta cttgagctaa tg	32	
<210> SEQ ID NO 307		
<211> LENGTH: 24		
212> TYPE: DNA		
213> ORGANISM: Artificial Sequence		
220> FEATURE: 223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 307		
tccaatgcca caaactcgtg aaca	24	
<210> SEQ ID NO 308		
<211> LENGTH: 24		
<pre><212> TYPE: DNA</pre>		
<pre><213> ORGANISM: Artificial Sequence</pre>		
220> FEATURE:		
223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 308		
tccacacgcc gttcttcaac aact	24	
<210> SEQ ID NO 309		
<211> LENGTH: 21		
212> TYPE: DNA		
213> ORGANISM: Artificial Sequence		
<pre>220> FEATURE: 223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 309		
- tccacacggt ggtggtgaag g	21	
<210> SEQ ID NO 310		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre><223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 310		
tccaccaaga gcaagatcaa ataggc	26	
<210> SEQ ID NO 311		
<pre><211> LENGTH: 20 </pre>		
212> TYPE: DNA 213> ORGANISM: Artificial Sequence		
2213> ORGANISM: Artificial sequence 2220> FEATURE:		
220> FEALORE: 223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 311		
	20	
tccacggtca tggagcgcta	20	
<210> SEQ ID NO 312		
<211> LENGTH: 30		
212> TYPE: DNA		
213> ORGANISM: Artificial Sequence		
220> FEATURE:		
223> OTHER INFORMATION: Primer		

-	С	on	t	1:	n	u	е	d

	Jiic Iiided	
<400> SEQUENCE: 312		
tccacttatc gcaaatggaa aattaagcaa	30	
<210> SEQ ID NO 313		
<211> LENGTH: 33		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 313		
tccagatgga caaattttct tagaaactga ttt	33	
<210> SEQ ID NO 314		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 314		
tccagcacga attgctgcta tgaaag	26	
<210> SEQ ID NO 315		
<211> LENGTH: 33		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 315		
tccaggacaa atgtatgaaa aatgtccaag aag	33	
<210> SEQ ID NO 316		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 316		
tccattgttc gtatggctca agact	25	
<210> SEQ ID NO 317		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 317		
teecaattaa ttetgeeatt ttteeaggta t	31	
<210> SEQ ID NO 318		
<211> LENGTH: 34		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 318		
toccacgaaa cagatgaaga aattaacaaa aaag	34	
yuuu vuguoguugu uuttuutuaa aaay	51	

-con		

<210> SEQ ID NO 319 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 319 tcccagctag accttttagg taaagctaag 30 <210> SEQ ID NO 320 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 320 tcccaggtga cgatgtacct gtaatc 26 <210> SEQ ID NO 321 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 321 26 teeccaggae accetgaaat tteaac <210> SEQ ID NO 322 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 322 tcccccacgc tttaattgtt tatgatgatt tgag 34 <210> SEQ ID NO 323 <211> LENGTH: 31 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 323 tcccggactt aatatcaatg aaaattgtgg a 31 <210> SEQ ID NO 324 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 324 tcccggagct tttatgacta aagcagat 28 <210> SEQ ID NO 325 <211> LENGTH: 19 <212> TYPE: DNA

-cont	inued

-cont	inued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 325		
tccgcggagt tgactgggt	19	
<210> SEQ ID NO 326		
<211> LENGTH: 20 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 326		
teegetgaat etgtegeege	20	
<210> SEQ ID NO 327		
<211> LENGTH: 23 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 327		
tccggctcac gttattatgg tac	23	
-010. CEO ID NO 200		
<210> SEQ ID NO 328 <211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 328		
tccgtacgta ttattaggtg ctggtca	27	
<210> SEQ ID NO 329		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 329		
tccgttatcg ccattgcatt atttggaact	30	
<210> SEQ ID NO 330		
<211> LENGTH: 33		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 330		
teegttetta caaatageaa tagaaettga age	33	
<210> SEQ ID NO 331		
<211> LENGTH: 36		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

	-continued
<400> SEQUENCE: 331	
tccgttgatt attgttatcc tgttatgcca tttgag	36
<210> SEQ ID NO 332 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 332	
tcctaatgga cttaatatca atgaaaattg tgga	34
<pre><210> SEQ ID NO 333 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer </pre>	
<400> SEQUENCE: 333 tcctagagga atggctgcca cg	22
<210> SEQ ID NO 334 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 334	
tootatatta atogtttaca gaaactggot	30
<pre><210> SEQ ID NO 335 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (15)(15) <223> OTHER INFORMATION: I <400> SEQUENCE: 335</pre>	
<pre>cyuu> sequence: sss tcctcaatga acgatcaaca agtgattgat g</pre>	31
<pre><210> SEQ ID NO 336 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 336</pre>	
<400> SEQUENCE: 336 teetcaatga atgatcaaca agtgattgat g	31
<pre><210> SEQ ID NO 337 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE:</pre>	

```
-continued
```

<221> NAME/KEY: modified_base <222> LOCATION: (15)...(15) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (24)...(24)
<223> OTHER INFORMATION: I <400> SEQUENCE: 337 tcctcgatga acgatcaaca agtgattgat g 31 <210> SEQ ID NO 338 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (15) ... (15) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (24)...(24) <223> OTHER INFORMATION: I <400> SEQUENCE: 338 teetegatga atgateaaca agtgattgat g 31 <210> SEQ ID NO 339 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (6)...(6) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (15)...(15) <223> OTHER INFORMATION: I <400> SEQUENCE: 339 tcctcgatga acgatcaaca agtgattgat g 31 <210> SEQ ID NO 340 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (6)...(6) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (12)...(12) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (15)...(15) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (24) ... (24) <223> OTHER INFORMATION: I

-	C	0	n	t.	٦.	n	11	e	d

= COIL .	liiuea	
<400> SEQUENCE: 340		
teetegatga acgateaaca agtgattgat g	31	
<210> SEQ ID NO 341		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 341		
teetgaaaaa tggageaegg	20	
<210> SEQ ID NO 342		
<211> LENGTH: 23		
<212> TYPE: DNA <212> OPCANISM, Artificial Sequence		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 342		
teetgaagea agtgeattta ega	23	
<210> SEQ ID NO 343		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 343		
teetgacega eccattatte cetttate	28	
<210> SEQ ID NO 344		
<211> LENGTH: 33 <212> TYPE: DNA		
<212> THES. DAA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 344		
teetgatget caaagtgett ttttagatee ttt	33	
<210> SEQ ID NO 345		
<211> LENGTH: 34		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 345		
teetgttate eetgaagtag ttaateaagt ttgt	34	
<210> SEQ ID NO 346		
<211> LENGTH: 35		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 346		
teetgttate eetgaagtag ttaateaagt ttgtt	35	

-cont	

<210> SEO ID NO 347 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 347 tcctgttatt cctgaagtag ttaatcaagt ttgtta 36 <210> SEQ ID NO 348 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 348 teettaette gaactatgaa tettttggaa g 31 <210> SEQ ID NO 349 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 349 29 teettatagg gatggetate agtaatgtt <210> SEQ ID NO 350 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 350 teettgaceg cettteegat ac 22 <210> SEQ ID NO 351 <211> LENGTH: 33 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 351 tccttgcttt agttttaagt gcatgtaatt caa 33 <210> SEQ ID NO 352 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 352 teetttgata tattatgega tggaaggttg gt 32 <210> SEQ ID NO 353 <211> LENGTH: 30 <212> TYPE: DNA

-CO	ontinued	
<pre><213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 353		
tcetttgatg catgtaattg etgeaaaage	30	
coccegary cacgeaaceg cegeaaage		
<210> SEQ ID NO 354 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 354		
tcgaaagctt ttgcatatta tatcgagcca c	31	
<210> SEQ ID NO 355		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 355		
togaagtaca atacaagaca aaagaagg	28	
cogaageaca acacaagaca aaagaagg	20	
<210> SEQ ID NO 356 <211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 356		
tcgacaacac cattatctat ggtgtgaa	28	
<210> SEQ ID NO 357		
<211> LENGTH: 23 <212> TYPE: DNA		
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 357		
-	23	
tcgacctttg gcaggaacta gac	23	
<210> SEQ ID NO 358		
<211> LENGTH: 17		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 358		
tegageagge getgeeg	17	
<210> SEQ ID NO 359 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	С	on	t	1:	n	u	е	d

	contributed
<400> SEQUENCE: 359	
togagtatag otaaaaaaat agtttatgao a	31
<210> SEQ ID NO 360	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 360	
tegatetggt tteatgetgt tteagt	26
legalelge treatgerge treage	20
<210> SEQ ID NO 361	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 361	
tcgatgaacg accaacaagt gattgatg	28
<210> SEQ ID NO 362	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 362	
tcgattaggc agcaacgaaa gccg	24
<210> SEQ ID NO 363	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 363	
tcgcaaaaaa atccagctat tagc	24
<210> SEQ ID NO 364	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<2205 FEATORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 364	
tcgccaatca aaactaaggg aatggc	26
<210> SEQ ID NO 365	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 365	
tegecategt caceaaceg	19
j-subbye subbundey	±.,

-continued

<210> SEQ ID NO 366 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 366 tcgcccgcga ggacgt 16 <210> SEQ ID NO 367 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 367 tcgccgactt cgacggtgac c 21 <210> SEQ ID NO 368 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 368 22 tcgccggcaa tgccattgga ta <210> SEQ ID NO 369 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 369 tcgccgtgga aaaatcctac gct 23 <210> SEQ ID NO 370 <211> LENGTH: 31 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 370 tcgcgttgca acaaaacttt ctaaagtatg t 31 <210> SEQ ID NO 371 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 371 tcgctacagg ccctttagga caag 24 <210> SEQ ID NO 372 <211> LENGTH: 27 <212> TYPE: DNA

May 17, 2012

-continu	led

-cont	tinued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 372		
tcgctatctt atcgttgaga agggatt	27	
<210> SEQ ID NO 373		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 373		
toggaatotg atgttgoagt tgtt	24	
<210> SEQ ID NO 374		
<211> LENGTH: 22 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 374		
teggeegeae etteategaa gt	22	
<210> SEQ ID NO 375		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 375		
tcggcgaaat ccgtattcct gaaaatga	28	
<210> SEQ ID NO 376 <211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 376		
tcggcgcctg cctgatga	18	
<210> SEQ ID NO 377		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<220> FEATORE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 377		
tcgggtgatg atgcgcgtga agg	23	
<210> SEQ ID NO 378 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
223/ STHER INFORMATION. FILMEL		

_	C	or	١t	п	n	11	ρ	а
	\sim	~1	тc	-	**	S.	-	S.

	IC IIIdea	
<400> SEQUENCE: 378		
tcggtttagt aaaagaacgt attgctcaac c	31	
<210> SEQ ID NO 379		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 379		
togtaogtat tattaggtgo tggtoaot	28	
<210> SEQ ID NO 380		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 380		
tcgtatggct caatggtgga g	21	
<210> SEQ ID NO 381		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 381		
tcgtcttttt gattctttcc ctgataatgc	30	
<210> SEQ ID NO 382		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 382		
tegtetttt gattetttee etgataatge te	32	
<210> SEQ ID NO 383		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 383		
tegtgattat ggatggeaac gtgaa	25	
<210> SEQ ID NO 384		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 384		
tcgtgcccgc aatttgcata aagc	24	

-continued

<210> SEQ ID NO 385 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 385 tcgtggcggc gtggttatcg a 21 <210> SEQ ID NO 386 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 386 tcgtgttgaa cgtggtcaaa tcaaagt 27 <210> SEQ ID NO 387 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 387 23 tcgttcctgg aacacgatga cgc <210> SEQ ID NO 388 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 388 tcgtttggtg gtggtagatg aaaaagg 27 <210> SEQ ID NO 389 <211> LENGTH: 11 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 389 tccaccctca a 11 <210> SEQ ID NO 390 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 390 tctaaaacac caggtcaccc agaag 25 <210> SEQ ID NO 391 <211> LENGTH: 24 <212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 391	
tctaaatggt cgtgcagttg cgtg	24
<210> SEQ ID NO 392	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 392	
tctactgatt ttggtaatct tgcagcacag	30
colacigate teggeaatet tgeageatag	50
<210> SEQ ID NO 393	
<211> LENGTH: 24 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
ADD CEDIENCE, 202	
<400> SEQUENCE: 393	
tctagtaata ataggaccct cagc	24
210. CEO ID NO 204	
<210> SEQ ID NO 394 <211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 394	
tctcaaggtg atattggtgt aggtaactta a	31
<210> SEQ ID NO 395	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 395	
teteattaeg ttgeategga aaca	24
<210> SEQ ID NO 396 <211> LENGTH: 30	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 396	
·····	
tctcgatgaa cgaccaacaa gtgattgatg	30
<210> SEQ ID NO 397	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
the second data data and the second data and t	

-	С	on	t	1:	n	u	е	d

	concentrated
<400> SEQUENCE: 397	
	22
tetegtggtg cacaagtaac ggatatta	28
<210> SEQ ID NO 398	
<211> LENGTH: 32	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 398	
<400> SEQUENCE: 398	
tctgaaatga atagtgatag aactgtaggc ac	32
<210> SEQ ID NO 399	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 399	
tetgaacatg ataatatett tgaaategge te	32
<210> SEQ ID NO 400 <211> LENGTH: 30	
<211> HENGIN: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 400	
tctgaatgtc tatatggagg tacaacacta	30
<210> SEQ ID NO 401	
<211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 401	
(100) DEQUENCE. 101	
tetgacaeet geeeggtge	19
<210> SEO ID NO 402	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
2232 OTHER INFORMATION: FILMEI	
<400> SEQUENCE: 402	
tctgcccgtg tcgttggtga	20
3-202020022024	2.
210. CEO ID NO 402	
<210> SEQ ID NO 403 <211> LENGTH: 24	
<211> LENGIH: 24 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 403	
	24
tctggaggca caccaaataa aaca	24

-cont	

<210> SEQ ID NO 404 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 404 tctggataac ggtcgtcgcg g 21 <210> SEQ ID NO 405 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 405 tctggcaggt atgcgtggtc tgatg 25 <210> SEQ ID NO 406 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 406 24 tctggctaaa actttggcaa cggt <210> SEQ ID NO 407 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 407 tctggtccaa caaaaggaac gattacagg 29 <210> SEQ ID NO 408 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 408 tctgtcccta gtacgagagg accgg 25 <210> SEQ ID NO 409 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 409 tetgttetta gtaegagagg ace 23 <210> SEQ ID NO 410 <211> LENGTH: 26 <212> TYPE: DNA

-continued

	concinaca
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 410	
tcttatgcca agaggacaga gtgagt	26
<210> SEQ ID NO 411 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 411	
tcttatgcca agaggacaga gtgagtact	29
<210> SEQ ID NO 412 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 412	
tettatteca actteaaace gaactatgae g	31
<210> SEQ ID NO 413 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 413	
tetteteate etatggetat tatgettge	29
<210> SEQ ID NO 414 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 414	
tettgataet tgtaatgtgg gegataaata tgt	33
<210> SEQ ID NO 415 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 415	
tettgeagea gtttatttga tgaacetaaa gt	32
<210> SEQ ID NO 416 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-continue	ed

<400> SEQUENCE: 416 tcttgctctt tcgtgagttc agtaaatg 28 <210> SEQ ID NO 417 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 417
<210> SEQ ID NO 417 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer
<220> FEATURE: <223> OTHER INFORMATION: Primer
<223> OTHER INFORMATION: Primer
<400> SECUENCE: 417
tettgtaett gtggeteaca eggetgtttg g 31
<210> SEQ ID NO 418
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 418
tcttgtttat gctggtaaag cagatgg 27
<210> SEQ ID NO 419
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 419
tctttatggt ggagatgact gaaaccga 28
<210> SEQ ID NO 420
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 420
tctttcttga atgctggtgt acgtatcg 28
<210> SEQ ID NO 421
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 421
tctttgaaat cggctcagga aaagg 25
<210> SEQ ID NO 422
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: <223> OTHER INFORMATION: Primer
<400> SEQUENCE: 422
tetttgeeat tgaagatgae ttaage 26

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 423 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 423 tcttttacaa aaggggaaaa agttgactt 29 <210> SEQ ID NO 424 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 424 tgaaaaatgt ccaagaagca tagcaaaaaa agca 34 <210> SEQ ID NO 425 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 425 30 tgaaaagggt gaagtagcaa atggagatag <210> SEQ ID NO 426 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 426 tgaaaagtat ggatttgaac aactcgtgaa ta 32 <210> SEQ ID NO 427 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 427 tgaaatctca ttacgttgca tcggaaa 27 <210> SEQ ID NO 428 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 428 tgaaattgct acaggccctt taggacaagg 30 <210> SEQ ID NO 429 <211> LENGTH: 25 <212> TYPE: DNA

- CO:	ntinued
<pre><213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 429	
tgaacgctgg tggcatgctt aacac	25
<210> SEQ ID NO 430	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 430	
tgaacgtggt caaatcaaag ttggtgaaga	30
<210> SEQ ID NO 431	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 431	
tgaacgtggt caaatcaaag ttggtgaaga a	31
<210> SEQ ID NO 432	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 432	
tgaagcttgt tctttagcag gacttca	27
<210> SEQ ID NO 433	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<2220> FLAIGRE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 433	
tgaaggtgga cgtcacactc cattette	28
<210> SEQ ID NO 434	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 434	
-	
tgaagtagaa atgactgaac gtccga	26
<210> SEQ ID NO 435	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	

	n			

-001	nemueu	
<400> SEQUENCE: 435		
tgaagtagaa ggtgcaaagc aagttaga	28	
<210> SEQ ID NO 436 <211> LENGTH: 34		
<211> HENGIN: 34 <212> TYPE: DNA		
<pre><213> ORGANISM: Artificial Sequence</pre>		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 436		
tgaagtgcgt gatgatatcg atgcacttga tgta	34	
<210> SEQ ID NO 437		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 437		
tgaatagtga tagaactgta ggcacaatcg t	31	
<210> SEQ ID NO 438		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 438		
tgaatgetta tttaeetgea eteecaeaae t	31	
<210> SEQ ID NO 439		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 439		
tgaattagtt caatcatttg ttgaacgacg t	31	
<210> SEQ ID NO 440		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 440		
tgaattgctg ctatgaaagg tggctt	26	
<210> SEQ ID NO 441		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 441		
tgacagcgaa gaaggttaga cttgtcc	27	

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 442 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 442 tgacatccgg ctcacgttat tatggt 26 <210> SEQ ID NO 443 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 443 tgacatccgg ctcacgttat tatggta 27 <210> SEQ ID NO 444 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 444 28 tgacateegg etcaegttat tatggtae <210> SEQ ID NO 445 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 445 tgacatgata ataaccgatt gaccgaaga 29 <210> SEQ ID NO 446 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 446 tgacatgctt gtccgttcag gc 22 <210> SEQ ID NO 447 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 447 tgacatggac teccectata taactettga g 31 <210> SEQ ID NO 448 <211> LENGTH: 23 <212> TYPE: DNA

	-continued
<pre><213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 448	
tgaccaggtg atggccatgt tcg	23
<210> SEQ ID NO 449 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 449	
tgacctacag taagaggttc tgtaatgaac c	31
<pre><210> SEQ ID NO 450 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 450	
tgacgatett egeggtgaet agt	23
<210> SEQ ID NO 451 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 451	
tgacggccta tacggtgttg gtttct	26
<210> SEQ ID NO 452 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 452	
tgacgtcatc ggtaagtacc accc	24
<210> SEQ ID NO 453 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 453	
tgagatggat ttaaacctgt tcaccgc	27
<210> SEQ ID NO 454 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

-00101	Indea
<400> SEQUENCE: 454	
tgagattgct gaacatttaa tgctgattga	30
<210> SEQ ID NO 455	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 455	
tgagcaatgg ggctttgaaa gaatttttaa at	32
ogagoaaogg ggooodaaa gaacooodaa ac	
<210> SEQ ID NO 456	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 456	
~~~~	
tgagctgcat caactgtatt ggatag	26
<210> SEQ ID NO 457	
<210> SEQ ID NO 457 <211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 457	
tgagctttta gttgactttt tcaacagc	28
<210> SEQ ID NO 458	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 458	
	20
tgaggaccgt gtcgcgctca	20
<210> SEQ ID NO 459	
<211> LENGTH: 35	
<211> HENGIN: 35 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 459	
tgagggtttt atgcttaaag ttggttttat tggtt	35
uyayyyuuu auyuuaaay uuyyuulat uyyu	30
<210> SEQ ID NO 460	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 460	
taadataata gataactcaa ttaataaaga	30
tgaggtggtg gataactcaa ttgatgaagc	30

-cont	

<210> SEQ ID NO 461 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 461 tgagtaacat ccatatttct gccatacgt 29 <210> SEQ ID NO 462 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 462 tgagtaagtt ccacccgcac gg 22 <210> SEQ ID NO 463 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 463 30 tgagtcactt gaagttgata caaatcctct <210> SEQ ID NO 464 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 464 tgagtgatga aggccttagg gttgtaaa 28 <210> SEQ ID NO 465 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 465 tgagtgccaa catatcagtg ctgaaga 27 <210> SEQ ID NO 466 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 466 tgagtttaac agttcaccat atgaaacagg 30 <210> SEQ ID NO 467 <211> LENGTH: 25 <212> TYPE: DNA

205

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 467	
tgatacttca acgcctgctg ctttc	25
<210> SEQ ID NO 468	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
(223) OTHER INFORMATION: FILMET	
<400> SEQUENCE: 468	
tgatcactgg tgctgctcag atgga	25
<210> SEQ ID NO 469	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 469	
tgatcatccg tggtataacg atttattagt	30
<210> SEQ ID NO 470	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 470	
tgatcgttga gaagggattt gcgaaaaga	29
<210> SEQ ID NO 471	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 471	
tgatctcaga atctaataat tgggacgaa	29
-210- CEO TO NO 472	

30

<210> SEQ ID NO 472 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 472

tgatettaaa aattteegee aaetteatte

<210> SEQ ID NO 473 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer

-	С	on	t	1:	n	u	е	d

-00	One muea	
<400> SEQUENCE: 473		
tgatgacttt ttagctaatg gtcaggcagc	30	
<210> SEQ ID NO 474		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 474		
tgatggcaag tggatagggt ataatacag	29	
<210> SEQ ID NO 475		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 475		
tgattaccat gagtggcaag caag	24	
<210> SEQ ID NO 476		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 476		
tgattattgt tatcctgtta tgccatttga g	31	
<210> SEQ ID NO 477		
<211> LENGTH: 19		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 477		
tgatteeggt geeegtggt	19	
<210> SEQ ID NO 478		
<211> LENGTH: 19		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<2213> ORGANISM: ATTITICIAI Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 478		
tgattetggt geeegtggt	19	
<210> SEQ ID NO 479		
<211> LENGTH: 34		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 479		
~ tgattttgct aaatttagag aaattgcgga tgaa	34	
-33		

-cont	

<210> SEQ ID NO 480 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 480 tgcaaaatct gcaacgagct ttgg 24 <210> SEQ ID NO 481 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 481 tgcaaaggag gtactcagac cat 23 <210> SEQ ID NO 482 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 482 25 tgcaagcaaa cgcacaatca gaagc <210> SEQ ID NO 483 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 483 tgcaagcgcg accacatacg 2.0 <210> SEQ ID NO 484 <211> LENGTH: 23 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 484 tgcaagcttc tggtgctagc att 23 <210> SEQ ID NO 485 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 485 tgcaagtggt acttcaacat gggg 24 <210> SEQ ID NO 486 <211> LENGTH: 30 <212> TYPE: DNA

-continued
------------

-cont	inued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 486		
tgcaagttaa gaaagctgtt gcaggtttat	30	
<210> SEQ ID NO 487		
<211> LENGTH: 33		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 487		
	22	
tgcaattgct ttagttttaa gtgcatgtaa ttc	33	
<210> SEQ ID NO 488		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 488		
	21	
tgcacaatca gaagctaaga aagcgcaagc t	31	
<210> SEQ ID NO 489		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 489		
tgcacacgcc gttcttcaac aact	24	
<210> SEQ ID NO 490		
<211> LENGTH: 22		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 490		
tgcacatcgt gtccaacgtc ac	22	
<210> SEQ ID NO 491		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<220> FEALORE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 491		
tgcaccggct attaagaatt actttgccaa ct	32	
<210> SEQ ID NO 492 <211> LENGTH: 23		
<211> LENGTH: 23 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	С	on	t	1:	n	u	е	d

	-concinded
<400> SEQUENCE: 492	
tgcacgatgc ggaatggttc aca	23
<210> SEQ ID NO 493	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 493	
tgcacgccga ctatgttaag aacatgat	28
<210> SEQ ID NO 494	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 494	
tgcacttatc gcaaatggaa aattaagcaa	30
<210> SEQ ID NO 495	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 495	
tgcagggaac agctttaggc a	21
<210> SEQ ID NO 496	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 496	
tgcatacaaa cagtcggagc ct	22
<210> SEQ ID NO 497	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 497	
tgcataccgg taagttggca aca	23
<210> SEQ ID NO 498	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 498	
tgcatattat atcgagccac agcatcg	27

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 499 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 499 tgcattattt ggaactattg caactgctaa tgc 33 <210> SEQ ID NO 500 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 500 tgccaagagg acagagtgag tactttga 28 <210> SEQ ID NO 501 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 501 31 tgccggacaa ttacgattca tcgagtatta a <210> SEQ ID NO 502 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 502 tgccgtaatg ataggtgaag atatacaaag agt 33 <210> SEQ ID NO 503 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 503 tgccgtgttg aacgtggtca aat 23 <210> SEQ ID NO 504 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 504 tgeetagaag atettaaaaa ttteegeeaa ett 33 <210> SEQ ID NO 505 <211> LENGTH: 33 <212> TYPE: DNA

-cont	in	led	

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 505	
tgcctatctt tttgctgata tagcacatat tgc	33
<210> SEQ ID NO 506 <211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 506	
tgcctcgaag ctgaatataa ccaagtt	27
<210> SEQ ID NO 507	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<2205 FEATORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 507	
tgcctgtagg gaatcctgct ga	22
<210> SEQ ID NO 508	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 508	
tgcctgttct tagtacgaga ggacc	25
<210> SEQ ID NO 509	
<211> LENGTH: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 509	
tgegeagete ttggtatega gtt	23
<210> SEQ ID NO 510	
<210> SEQ 1D NO 510 <211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 510	
tgcgcggaag atgtaacggg	20
<210> SEQ ID NO 511	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	ınu	ed

	concinaca
<400> SEQUENCE: 511	
	30
tgcggatcgt ttggtggttg tagatgaaaa	30
<210> SEQ ID NO 512	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
(220) OTMAK INFORMATION. TELMOT	
<400> SEQUENCE: 512	
tgcgggtagg gagettgage	20
<210> SEQ ID NO 513	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 513	
tgcgtacaat acgctttatg aaattttaac a	31
<210> SEQ ID NO 514	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
(223) OTHER INFORMATION: FILMET	
<400> SEQUENCE: 514	
tgcgtataaa aaacacagat ggcagca	27
<210> SEQ ID NO 515	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 515	
tgcgtttacc gcaatgcgtg c	21
, <u>,</u> , <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
<210> SEQ ID NO 516	
<210> SEQ 1D NO 516 <211> LENGTH: 29	
<211> HENGIA: 29 <212> TYPE: DNA	
<212> IIIE. DAA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 516	
-	20
tgctacggta ggatctcctt atcctattg	29
210, SEO ID NO E17	
<210> SEQ ID NO 517 <211> LENGTH: 30	
<211> LENGIH: 30 <212> TYPE: DNA	
<212> TIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 517	
tgctagtcaa tctatcattc cggttgatac	30

-continued

<210> SEQ ID NO 518 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 518 tgctagttat ggtacagagt ttgcgac 27 <210> SEQ ID NO 519 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 519 tgctatggtg ttaccttccc tatgca 26 <210> SEQ ID NO 520 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 520 tgetcaacce gateetaaat tagaega 27 <210> SEQ ID NO 521 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 521 tgctcaatct aaacctaaag tcgaaga 27 <210> SEQ ID NO 522 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 522 tgctcgagtg attgactttg ctaaatttag aga 33 <210> SEQ ID NO 523 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 523 tgetegtaag ggtetggegg atae 24 <210> SEQ ID NO 524 <211> LENGTH: 29 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 524	
tgctcgtggt gcacaagtaa cggatatta	29
<210> SEQ ID NO 525 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 525	
tgctgaggcc tggaccgatt atttac	26
<210> SEQ ID NO 526 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 526	
tgctggtaac agagccttat aggcgca	27
<pre>&lt;210&gt; SEQ ID NO 527 &lt;211&gt; LENGTH: 19 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 527</pre>	
tgctggtacg ggtcgagga	19
<210> SEQ ID NO 528 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 528	
tgctggtgaa aataacccag atgtcgtctt c	31
<210> SEQ ID NO 529 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 529	
tgctgtagct tatcgcgaaa tgtctttgat tt	32
<210> SEQ ID NO 530 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-contin	.ued

	-concinded
<400> SEQUENCE: 530	
tgettattta eetgeactee cacaaetg	28
<210> SEQ ID NO 531 <211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 531	
tgcttcagga atcaatgatg gagcag	26
<210> SEQ ID NO 532	
<211> LENGTH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 532	
tgcttcggat ccagcagcac ttcaata	27
<210> SEQ ID NO 533	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 533	
tgettetggt getageatt	19
<210> SEQ ID NO 534	
<211> LENGTH: 32	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 534	
tgettteeta tggettatee aaatttagat eg	32
<210> SEQ ID NO 535 <211> LENGTH: 29	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<2223> OTHER INFORMATION: Primer	
tgettttgat ggtgatgcag atcgtttgg	29
cyceecyae yycyaeyeay accyceeyy	22
<210> SEQ ID NO 536	
<211> LENGTH: 24 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 536	
tggaaagcca tgcgtctgac atct	24

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 537 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 537 tggaaaggtg ttgcagctac tca 23 <210> SEQ ID NO 538 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 538 tggaaatggc agctagaata gtagctaaaa t 31 <210> SEQ ID NO 539 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 539 30 tggaacaaaa tagtctctcg gattttgact <210> SEQ ID NO 540 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 540 tggaacagga attaattete ateetgatta tee 33 <210> SEQ ID NO 541 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 541 tggaacgtta tcaggtgccc caaaaattcg 30 <210> SEQ ID NO 542 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 542 tggaactatt gcaactgcta atg 23 <210> SEQ ID NO 543 <211> LENGTH: 30 <212> TYPE: DNA

	-continued
<pre>&lt;213 &gt; ORGANISM: Artificial Sequence &lt;220 &gt; FEATURE: &lt;223 &gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 543	
	20
tggaacttga agctctcgct cttaaagatg	30
<210> SEQ ID NO 544	
<211> LENGTH: 19 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 544	
tggaagatct gggtcaggc	19
<210> SEQ ID NO 545	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 545	
tggaagtcat caagcgcctg gc	22
<210> SEQ ID NO 546	
<211> LENGTH: 30	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 546	
tggaataaca aaacatgaag gaaaccactt	30
<210> SEQ ID NO 547	
<211> LENGTH: 32 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 547	
tggaatgatg ataaagattt cgcagatagc ta	32
<210> SEQ ID NO 548	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 548	
tggacaatag acaatcactt ggatttaca	29
<210> SEQ ID NO 549	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	

- C	ont	ın	ued

	-concinded
<400> SEQUENCE: 549	
tggacacata tcgtgagcaa tgaactga	28
<210> SEQ ID NO 550	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 550	
tggacggcat cacgattete tae	23
<210> SEQ ID NO 551	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 551	
tggacteete ggtggtege	19
<210> SEQ ID NO 552	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 552	
tggagcacgg cttctgatc	19
<210> SEQ ID NO 553	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 553	
tggagcttga agctatcgct cttaaagatg	30
210 CEA ID NO FEA	
<210> SEQ ID NO 554 <211> LENGTH: 22	
<211> LENGIH: 22 <212> TYPE: DNA	
<212> IIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 554	
tggaggtgtc actccacacg aa	22
<210> SEQ ID NO 555	
<210> SEQ ID NO 555 <211> LENGTH: 25	
<211> HENGIN: 25 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 555	
tggaggttgt tgtatgtatg gtggt	25

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 556 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 556 tggatattca ccgaacacta gggttg 26 <210> SEQ ID NO 557 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 557 tggatggcat ggtgaaatgg atatgtc 27 <210> SEQ ID NO 558 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 558 25 tggatgggga ttagcggtta caatg <210> SEQ ID NO 559 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 559 tggatgttaa gggtgatttt cccgaa 2.6 <210> SEQ ID NO 560 <211> LENGTH: 23 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 560 tggattagag accctggtag tcc 23 <210> SEQ ID NO 561 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 561 tggcacggcc atctccgtg 19 <210> SEQ ID NO 562 <211> LENGTH: 34 <212> TYPE: DNA

-conti	nued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 562		
tggcactctt gcctttaata ttagtaaact atca	34	
<210> SEQ ID NO 563 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 563		
tggcagctag aatagtagct aaaatcccta c	31	
<210> SEQ ID NO 564		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 564		
tggcagtttt acaaggtgct gtttcatc	28	
<210> SEQ ID NO 565		
<211> LENGTH: 31 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 565		
tggcatttet tatgaagett gttetttage a	31	
<210> SEQ ID NO 566		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 566		
tggccagcgc ttcggtgaaa tgga	24	
<210> SEQ ID NO 567		
<211> LENGTH: 21 <212> TYPE: DNA		
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 567		
tggcccgaaa gaagctgagc g	21	
<210> SEQ ID NO 568 <211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	cont	ınu	ed

	-concinded
<400> SEQUENCE: 568	
tggcctaatg ggcttaatat caatgaaaat tg	32
<210> SEQ ID NO 569	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 569	
tggcgaacct ggtgaacgaa gc	22
<210> SEQ ID NO 570	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 570	
tggcgagtgg atagggtata atacag	26
<210> SEQ ID NO 571	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 571	
tggcgtagta gagctattta cagacac	27
<210> SEQ ID NO 572	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 572	
	a.c.
tggcaagtgg atagggtata atacag	26
<210> SEQ ID NO 573	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 573	
tggctccttg gtatgactct gcttc	25
<210> SEQ ID NO 574	
<211> LENGTH: 25 <212> TYPE: DNA	
<212> IIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 574	
tggctgacat cctacatgac tgtga	25

continued

	-continued
<210> SEQ ID NO 575 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 575	
tggcttatcc aaatttagat cgtggtttta c	31
<210> SEQ ID NO 576 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 576	
tgggacttga agctatcgct cttaaagatg	30
<210> SEQ ID NO 577 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 577	
tgggatgaaa aagcgttett ttateeatga	30
<210> SEQ ID NO 578 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 578	
tgggattatt gttatcctgt tatgccattt gaga	34
<210> SEQ ID NO 579 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 579	
tgggatttta aaaaacattg gtaacatcgc ag	32
<210> SEQ ID NO 580 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 580	
tgggcaacag cagcggattg cgattgcgcg	30
<210> SEQ ID NO 581 <211> LENGTH: 24 <212> TYPE: DNA	

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 581	
tgggcagcgt ttcggcgaaa tgga	24
<210> SEQ ID NO 582 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 582	
tgggcctaat gggcttaata tcaatgaaaa ttg	33
<210> SEQ ID NO 583 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 583	
tgggcgatgc tgcgaaatgg ttaaaaga	28
<pre>&lt;210&gt; SEQ ID NO 584 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 584</pre>	
tgggcgtgag caatgaactg attatac	27
<210> SEQ ID NO 585 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 585	
tgggcgtgga acgtccac	18
<210> SEQ ID NO 586 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 586	
tgggetettt etegettaaa eaee	24
<210> SEQ ID NO 587 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

- C	ont	ın	ued

	-concinded
<400> SEQUENCE: 587	
tgggctcttt ctcgcttaaa cacct	25
<210> SEQ ID NO 588	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 588	
tggggattca gccatcaaag cagctattga c	31
<210> SEQ ID NO 589	
<211> LENGTH: 28 <212> TYPE: DNA	
<212> THE. DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 589	
<400> SEQUENCE: 589	
tggggattga tatcaccgat aagaagaa	28
110. CEO ID NO FOO	
<210> SEQ ID NO 590 <211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 590	
·····	
tggggcttta aatattccaa ttgaagattt tca	33
<210> SEQ ID NO 591	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 591	
	22
tggggctttg ctttatagtt ttttacattt aag	33
<210> SEQ ID NO 592	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (5)(5) <223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (14) (14)	
<223> OTHER INFORMATION: I	
<400> SEQUENCE: 592	
~	
tgggtgatgc tgctaaatgg ttaaaaga	28
<210> SEQ ID NO 593	
<211> LENGTH: 35	
<212> TYPE: DNA	

-continued	
concinaca	

-cont	inued	
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 593		
tgggtcgtgg ttttacagaa aatttettat atatg	35	
<210> SEQ ID NO 594 <211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 594		
tgggtgacat tcatcaattt catcgttc	28	
<210> SEQ ID NO 595 <211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 595		
tgggtttaca catatcgtga gcaatgaact ga	32	
<210> SEQ ID NO 596		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 596		
tggtaaatac cacccacatg gtgac	25	
<210> SEQ ID NO 597		
<211> LENGTH: 24 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 597		
	24	
tggtaacaga goottatagg ogca	23	
<210> SEQ ID NO 598		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 598		
tggtaacaga goottatagg ogoatatg	28	
<210> SEQ ID NO 599		
<211> LENGTH: 30 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		

-	cont	าทบ	ed

	-concinded
<400> SEQUENCE: 599	
tggtaagagc gcaccggtaa gttggtaaca	30
<210> SEQ ID NO 600	
<211> LENGTH: 18	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 600	
tggtacagag tttgcgac	18
<210> SEQ ID NO 601	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 601	
tggtacatgt geetteattg atgetg	26
<210> SEQ ID NO 602	
<211> LENGTH: 18	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 602	
tggtacagag tttgcgac	18
<210> SEQ ID NO 603	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 603	
tggtactcac ttagcgggtt tccg	24
<210> SEQ ID NO 604	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 604	
tggtatgata tgatgcctgc acca	24
<210> SEQ ID NO 605	
<2105 SEQ 1D NO 805 <2115 LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 605	
~ tggtatgcgt ggtctgatgg c	21
eggeaegege ggeeegaegg C	21

<210> SEQ ID NO 606 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 606 tggtattcta ttttgctgat aatgacctcg c 31 <210> SEQ ID NO 607 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 607 tggtcaaatc aaagttggtg aagaa 25 <210> SEQ ID NO 608 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 608 29 tggtcttatg ccaagaggac agagtgagt <210> SEQ ID NO 609 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 609 tggtgactcg gcatgttatg aagc 24 <210> SEQ ID NO 610 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 610 tggtgacttc ataatggatg aagttgaagt 30 <210> SEQ ID NO 611 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 611 tggtgcgagt gcttatgctc gtattat 27 <210> SEQ ID NO 612 <211> LENGTH: 13 <212> TYPE: DNA

			-
-	cont	ın	ued

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 612	
tggtgctagc att	13
<210> SEQ ID NO 613 <211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 613	
tggtgctttc tggcgcttaa acga	24
<210> SEQ ID NO 614 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 614	
tggtggacat ttaacacatg gtgcaaa	27
<pre>&lt;210&gt; SEQ ID NO 615 &lt;211&gt; LENGTH: 26 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer <400> SEQUENCE: 615	
tggtggtgaa atagatagga ctgctt	26
<210> SEQ ID NO 616 <211> LENGTH: 13 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 616	
tggtgctagc att	13
<210> SEQ ID NO 617 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 617	
tggttatcgc tcaggcgaac tccaac	26
<210> SEQ ID NO 618 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

_	C	$\cap$	nt	٠i	n	11	Р	Ы
	0		ццс			u	$\sim$	u

-conc	IIIueu
<400> SEQUENCE: 618	
tggttatgta ccaaatactt tgtctgaaga tgg	33
lyyttatyta ceaaataett tytetyaaya tyy	33
<210> SEQ ID NO 619	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 619	
tggtttagat aatteettag gatetatgeg t	31
<210> SEQ ID NO 620	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (3)(3)	
<223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (6)(6)	
<223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (9)(9)	
<223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (12)(13)	
<223> OTHER INFORMATION: I	
<220> FEATURE: <221> NAME/KEY: modified_base	
<222> LOCATION: (15)(15)	
<223> OTHER INFORMATION: I	
<400> SEQUENCE: 620	
tgtectaetg tttgtggtte tgtaatgaae e	31
<210> SEQ ID NO 621	
<2115 SEQ 1D NO 821 <2115 LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 621	
tgtaactatc accegeaegg tgat	24
<210> SEQ ID NO 622	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 622	
tgtaagctct acaacccaca aaaccttacg	30
<210> SEQ ID NO 623	
<211> SEQ 1D NO 623 <211> LENGTH: 30	
<212> TYPE: DNA	

	-continued
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 623	
tgtaatgaac cctaatgacc atccacacgg	30
<210> SEQ ID NO 624	
<211> LENGTH: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 624	
tgtacccgct gaattaacga atttatacga c	31
<210> SEQ ID NO 625 <211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 625	
tgtactcggt aagtatcacc cgca	24
<210> SEQ ID NO 626	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 626	
tgtactgcta tccaccctca a	21
<210> SEQ ID NO 627	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 627	
tgtageeget aageaetaee atee	24
<210> SEQ ID NO 628	
<211> LENGTH: 30 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 628	
tgtagettat egegaaatgt etttgatttt	30
<210> SEQ ID NO 629	
<211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	С	on	t	1	n	u	е	d

	onemaca	
<400> SEQUENCE: 629		
tgtatggtgg tgtaacgtta catgataata atc	33	
<210> SEQ ID NO 630		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 630		
tgtattaggg gcatacagtc ctcatcc	27	
<210> SEQ ID NO 631		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 631		
tgtcaaagtg gcacgtttac tggc	24	
<210> SEQ ID NO 632		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 632		
tgtcatgggt aaatatcacc ctca	24	
<210> SEQ ID NO 633		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 633		
tgtccaagaa gcatagcaaa aaaagcaa	28	
<210> SEQ ID NO 634		
<211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 634		
	23	
tgtcgatgca acgcgaagaa cct	23	
<210> SEQ ID NO 635		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 635		
tgtcggtaca cgatattett caega	25	
-JJJ-ada dyadadddd dadya	20	

<210> SEQ ID NO 636 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 636 tgtgaataaa tcacgattga ttgagca 27 <210> SEQ ID NO 637 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 637 tgtggagtaa cactgcatga aaacaa 26 <210> SEQ ID NO 638 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 638 27 tgtggtcaaa tcaaagttgg tgaagaa <210> SEQ ID NO 639 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 639 tgttcaagag ctagatette aggea 25 <210> SEQ ID NO 640 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 640 tgttcaagag ctagatcttc aggcaa 26 <210> SEQ ID NO 641 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 641 tgttcgctgt ttcacaaaca acattcca 28 <210> SEQ ID NO 642 <211> LENGTH: 32 <212> TYPE: DNA

-conti	nued

	-continued
<pre><li>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</li></pre>	
<400> SEQUENCE: 642	
gttetttag caggaettea caaaettgat aa	32
<210> SEQ ID NO 643 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 643	
tgttgaacgt ggtcaaatca aagttggtg	29
<pre>&lt;210&gt; SEQ ID NO 644 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer </pre>	
<400> SEQUENCE: 644	21
tgttgggagt attoottaco atttaagoao a	31
<pre>&lt;210&gt; SEQ ID NO 645 &lt;211&gt; LENGTH: 23 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 645	
tgttggtgct ttctggcgct taa	23
<pre>&lt;210&gt; SEQ ID NO 646 &lt;211&gt; LENGTH: 38 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 646</pre>	
teettgttgt eetactgttt gtggttetgt aatgaace	38
<pre>&lt;210&gt; SEQ ID NO 647 &lt;211&gt; LENGTH: 29 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (7)(7) &lt;223&gt; OTHER INFORMATION: I &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (10)(10) &lt;223&gt; OTHER INFORMATION: I &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (13)(13) &lt;223&gt; OTHER INFORMATION: I &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (13)(13) &lt;223&gt; OTHER INFORMATION: I &lt;220&gt; FEATURE:</pre>	

-continued

<221> NAME/KEY: modified_base <222> LOCATION: (16)...(16) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (19)...(20)
<223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (22)...(22) <223> OTHER INFORMATION: I <400> SEQUENCE: 647 ttaaagttgg ttttattggt tggcgcgga 29 <210> SEQ ID NO 648 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 648 ttaacatgaa ggaaaccact ttgataatgg 30 <210> SEQ ID NO 649 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 649 ttaacggtta tcatggccca gatggg 26 <210> SEQ ID NO 650 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 650 ttaagtcccg caacgagcgc aa 22 <210> SEQ ID NO 651 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 651 ttaagtcccg caacgatcgc aa 22 <210> SEQ ID NO 652 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 652 28 ttaatttgcc aaaaatgcaa ccaggtag

-cont	inι	ued

<210> SEQ ID NO 653 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 653 ttacacatat cgtgagcaat gaactga 27 <210> SEQ ID NO 654 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 654 ttacaggaag tttaggtggt aatctaaaag g 31 <210> SEQ ID NO 655 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 655 30 ttactccatt attgcttggt tacactttcc <210> SEQ ID NO 656 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 656 ttataactta ctgcaatcta ttcagttgct tggtg 35 <210> SEQ ID NO 657 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 657 ttataccgga aacttcccga aaggag 26 <210> SEQ ID NO 658 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 658 ttatcagcta gaccttttag gtaaagctaa gc 32 <210> SEQ ID NO 659 <211> LENGTH: 23 <212> TYPE: DNA

-continued

	-concinaed
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 659	
ttatcgctca ggcgaactcc aac	23
210> SEQ ID NO 660	
211> LENGTH: 28	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 660	
	28
tategtttg tggagetagt gettatge	28
210> SEQ ID NO 661	
211> LENGTH: 30	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 661	
tatgaagcg tgttctttag caggacttca	30
210> SEQ ID NO 662	
:211> LENGTH: 25	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 662	
tatggatgg caacgtgaaa cgcgt	25
210> SEQ ID NO 663	
211> LENGTH: 21	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE: 223> OTHER INFORMATION: Primer	
400> SEQUENCE: 663	
tattgttat cctgttatgc c	21
210> SEQ ID NO 664	
:211> LENGTH: 25	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 664	
tatttacct gcactcccac aactg	25
210> SEQ ID NO 665	
211> LENGTH: 33	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	

-contin	.ued

	-cont indea
<400> SEQUENCE: 665	
	33
ttcaaaaact ccaggccatc ctgaaatttc aac	33
ADIAN SEC ID NO 666	
<210> SEQ ID NO 666 <211> LENGTH: 28	
<211> LENGIH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 666	
ttcaacaggt accaatgatt tgatctca	28
<210> SEQ ID NO 667	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 667	
tteecacega tateatgget taceaegg	28
<210> SEQ ID NO 668	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 668	
ttccgtaagt cggctaaaac agtcg	25
AND CEO ID NO. CCO	
<210> SEQ ID NO 669	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 669	
ttcctccttt tgaaagcgac ggtt	24
<210> SEQ ID NO 670	
<211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 670	
tteeteggee geetgge	17
<210> SEQ ID NO 671	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 671	
tteetgaceg acceattatt ceetttate	29
construct contract	23

-continued

<210> SEQ ID NO 672 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 672 ttcgatgcaa cgcgaagaac ct 22 <210> SEQ ID NO 673 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 673 ttcgccaatc aaaactaagg gaatggc 27 <210> SEQ ID NO 674 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 674 20 ttcggcggtc agcgcttcgg <210> SEQ ID NO 675 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 675 ttctaaaaca ccaggtcacc cagaag 2.6 <210> SEQ ID NO 676 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 676 ttctatctcg ttggtttatt cggagtt 27 <210> SEQ ID NO 677 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 677 ttctgaatgt ctatatggag gtacaacact 30 <210> SEQ ID NO 678 <211> LENGTH: 21 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 678	
ttgactgccc aggtcacgct g	21
<210> SEQ ID NO 679 <211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 679	
ttgactgcgg cacaacacgg at	22
<210> SEQ ID NO 680	
<211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 680	
ttgagaagac atccggctca cgttattatg gta	33
<210> SEQ ID NO 681	
<211> LENGTH: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 681	
ttgagggtat gcaccgtctt tttgattctt t	31
<210> SEQ ID NO 682	
<211> LENGTH: 24 <212> TYPE: DNA	
<212> IIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 682	
ttgcaactgc tgatttagct caga	24
<210> SEQ ID NO 683 <211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 683	
ttgcacaagc aaggcgctat tt	22
<210> SEQ ID NO 684	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	C	0	n	t.	٦.	n	11	e	d

	-concineed
<400> SEQUENCE: 684	
ttgccaatga tattcgttgg ttagcaag	28
<210> SEQ ID NO 685	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 685	
ttgcccgcgg tgcggaagta accgatatta c	31
<210> SEQ ID NO 686	
<211> LENGTH: 23	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 686	
ttgcgaatag aacgatggct cgt	23
<210> SEQ ID NO 687	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 687	
ttgctcgtgg tgcacaagta acggatatta	30
<210> SEQ ID NO 688	
<2103 SEQ 1D NO 888 <211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 688	
ttgctcgtgg tgcacaagta acggatatta c	31
<210> SEQ ID NO 689	
<211> LENGTH: 31 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<220> FEATURE:	
<221> NAME/KEY: modified_base <222> LOCATION: (15)(15)	
<222> LOCATION: (15)(15) <223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (29)(29) <223> OTHER INFORMATION: I	
<400> SEQUENCE: 689	
- ttgctcgtgg tgcacaagta acggatatta c	31
<210> SEQ ID NO 690	
<211> LENGTH: 29	
<212> TYPE: DNA	

	-
-continue	d

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 690	
ttgcttaaag ttggttttat tggttggcg	29
<210> SEQ ID NO 691 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 691	
ttggtccttt ttatacgaaa gaagaagttg aa	32
<210> SEQ ID NO 692 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 692	
ttgtaaatgc cggtgcttca gatcc	25
<210> SEQ ID NO 693 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 693 ttgtacacac cgcccgtcat ac	22
<pre>&lt;210&gt; SEQ ID NO 694 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	~ ~ ~
<400> SEQUENCE: 694	
ttgtagcaca gcaaggcaaa tttcctgaaa c	31
<pre>&lt;210&gt; SEQ ID NO 695 &lt;211&gt; LENGTH: 30 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 695</pre>	
ttgtatgtat ggtggtgtaa cgttacatga	30
<210> SEQ ID NO 696 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-cont	tin	ued

-0011	Linded
<400> SEQUENCE: 696	
ttgtatgtat ggtggtgtaa ctgagca	27
<210> SEQ ID NO 697	
<211> LENGTH: 23	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 697	
tttaagtccc gcaacgagcg caa	23
<210> SEQ ID NO 698	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 698	
tttacacata tcgtgagcaa tgaactga	28
<210> SEQ ID NO 699	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 699	
tttacactac ttttattcat tgccctaacg	30
<210> SEQ ID NO 700	
<211> LENGTH: 19	
<212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 700	
tttacagctt tatgcaccg	19
<210> SEQ ID NO 701 <211> LENGTH: 29	
<211> HENGIA: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 701	
tttcacacag cgtgtttata gttctacca	29
<210> SEQ ID NO 702	
<211> LENGTH: 30	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 702	
tttcacatgt aattttgata ttcgcactga	30

-CC	nt	in	ue	d

<210> SEO ID NO 703 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEOUENCE: 703 tttcatctta tcgaggaccc gaaatcga 28 <210> SEQ ID NO 704 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 704 tttcctcctt ttgaaagcga cggtt 25 <210> SEQ ID NO 705 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 705 22 tttcgaaggg cctttcgacc tg <210> SEQ ID NO 706 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 706 tttcgatgca acgcgaagaa cct 23 <210> SEQ ID NO 707 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 707 tttgatttta cgccgtcctc caggtcg 27 <210> SEQ ID NO 708 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 708 tttgcggatg aagtaggtgc ctatctttt gc 32 <210> SEQ ID NO 709 <211> LENGTH: 32 <212> TYPE: DNA

	- continued
<pre>&lt;213 &gt; ORGANISM: Artificial Sequence &lt;220 &gt; FEATURE: &lt;223 &gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 709	
ttttatgctt aaagttggtt ttattggttg gc	32
<210> SEQ ID NO 710	
<211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre>&lt;213&gt; ORGANISM: AFTIIICIAL Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 710	
ttttgaaggt gatccgtgcc aacg	24
<210> SEQ ID NO 711 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 711	
aaactatttt tttagctata ctcgaacac	29
<210> SEQ ID NO 712 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 712	
aacatageet teteegtee	19
<210> SEQ ID NO 713 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 713	
aacttegeet teggteatgt t	21
<210> SEQ ID NO 714 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 714	
aaggaggtga tccagcc	17
<210> SEQ ID NO 715 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	ınu	.ed

- COIR	Linued	
<400> SEQUENCE: 715		
aatcgacgac catcttggaa agatttctc	29	
<210> SEQ ID NO 716 <211> LENGTH: 21		
<211> LENGIH: 21 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 716		
acaaaaggca cgccatcacc c	21	
<210> SEQ ID NO 717		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 717		
acaaaaggta cgccgtcacc c	21	
<210> SEQ ID NO 718		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<220> FEATURE:		
<221> NAME/KEY: modified_base		
<222> LOCATION: (12)(12) <223> OTHER INFORMATION: I		
<400> SEQUENCE: 718		
acaacacgag ctgacgac	18	
ALA		
<210> SEQ ID NO 719 <211> LENGTH: 18		
<211> LENGIN: 10 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 719		
acaacacgag ctgacgac	18	
<210> SEQ ID NO 720		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<220> FEATURE:		
<221> NAME/KEY: modified_base		
<222> LOCATION: (16)(16) <223> OTHER INFORMATION: I		
<400> SEQUENCE: 720		
acaacacgag ctgacgac	18	
<210> SEQ ID NO 721		
<211> SEQ ID NO 721 <211> LENGTH: 18		
<212> TYPE: DNA		

```
-continued
```

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (14)...(14)
<223> OTHER INFORMATION: I <400> SEQUENCE: 721 acaacacgag ctgacgac 18 <210> SEQ ID NO 722 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (11) ... (11) <223> OTHER INFORMATION: I <400> SEQUENCE: 722 acaacacgag ctgacgac 18 <210> SEQ ID NO 723 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (10) ... (10) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (13)...(13) <223> OTHER INFORMATION: I <400> SEQUENCE: 723 acaacacgag ctgacgac 18 <210> SEQ ID NO 724 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (8) ... (8) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (10) ... (10) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (13)...(13) <223> OTHER INFORMATION: I <400> SEQUENCE: 724 acaacacgag ctgacgac 18 <210> SEQ ID NO 725 <211> LENGTH: 18 <212> TYPE: DNA

-continued <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base
<222> LOCATION: (8)...(8)
<223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (10)...(10) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (13)...(13) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (16)...(16) <223> OTHER INFORMATION: I <400> SEQUENCE: 725 acaacacgag ctgacgac 18 <210> SEQ ID NO 726 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 726 20 acaaccatgc accacctgtc <210> SEQ ID NO 727 <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 727 acacgagctg ac 12 <210> SEQ ID NO 728 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 728 accactttta ataaggtttg tagctaac 28 <210> SEQ ID NO 729 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 729 acctgcaata tctaatgcac tcttacg 27 <210> SEQ ID NO 730 <211> LENGTH: 24 <212> TYPE: DNA

-conti	nued

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 730	
acctgcatcc ctaaacgtac ttgc	24
<210> SEQ ID NO 731	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 731	
accttgttac gacttcaccc ca	22
<210> SEQ ID NO 732	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 732	
acgaactgga tgtcgccgtt	20
<210> SEQ ID NO 733	
<211> LENGTH: 18 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 733	
acgacacgag ctgacgac	18
<210> SEQ ID NO 734	
<211> LENGTH: 18 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 734	
acgacacgag ctgacgac	18
<210> SEQ ID NO 735	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 735	
acgagetgae gacageeatg	20
<210> SEQ ID NO 736	
<211> LENGTH: 19 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	

		ed

	concinaca	
<400> SEQUENCE: 736		_
acgccatcag gccacgcat	19	
acyceateag gecacycat	19	
-210, CEO ID NO 727		
<210> SEQ ID NO 737 <211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 737		
acgcgggcat gcagagatgc c	21	
<210> SEQ ID NO 738		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 738		
acggcacgag gtagtcgc	18	
<210> SEQ ID NO 739		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 739		
acggttacct tgttacgact	20	
<210> SEQ ID NO 740		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 740		
acgteettea tegeetetga	20	
J		
<210 > SEO ID NO 741		
<210> SEQ ID NO 741 <211> LENGTH: 27		
<211> HENGIN: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 741		
	27	
acgtttttcg ttttgaacga taatgct	27	
<210> SEQ ID NO 742		
<211> LENGTH: 17		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 742		
actgctgcct cccgtag	17	

-continued

<210> SEQ ID NO 743 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 743 acttagatgc tttcagcggt 20 <210> SEQ ID NO 744 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 744 agacctcctg cgtgcaaagc 20 <210> SEQ ID NO 745 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 745 31 agataaagaa tcacgaatat caatttgtag c <210> SEQ ID NO 746 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 746 agccgacatc gaggtgccaa ac 22 <210> SEQ ID NO 747 <211> LENGTH: 28 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 747 agetgetaga tgagettetg ceatggee 28 <210> SEQ ID NO 748 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 748 aggatagatt tatttettgt teg 23 <210> SEQ ID NO 749 <211> LENGTH: 20 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 749	
agtecatece ggteeteteg	20
<210> SEQ ID NO 750 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 750	
ataagccatg ttctgttcca tc	22
<210> SEQ ID NO 751 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 751	
ataageeggg ttetgteg	18
<pre>&lt;210&gt; SEQ ID NO 752 &lt;211&gt; LENGTH: 26 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 752	
atatgattat cattgaactg cggccg	26
<210> SEQ ID NO 753 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 753	
atcccctgct tctgctgcc	19
<210> SEQ ID NO 754 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 754	
attcaagagc catttettt ggtaaaceac	30
<210> SEQ ID NO 755 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

	concentrated
<400> SEQUENCE: 755	
attgcccaga aatcaaatca tc	22
<210> SEQ ID NO 756	
<211> LENGTH: 33 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 756	
attgettett acttgettag cataaatttt eea	33
<210> SEQ ID NO 757	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 757	
attgtagcac gtgtgtagcc c	21
<210> SEQ ID NO 758	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 758	
caagcggttt gcctcaaata gtca	24
<210> SEQ ID NO 759	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 759	
caatctgctg acggatctga gc	22
<210> SEQ ID NO 760	
<211> LENGTH: 15	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 760	
caccgggcag gcgtc	15
<210> SEQ ID NO 761	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 761	
cacggctacc ttgttacgac	20

-continued

<210> SEQ ID NO 762 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 762 cagataaaga atcgctccag 20 <210> SEQ ID NO 763 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 763 catgacagee aagaeeteae ceace 25 <210> SEQ ID NO 764 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 764 18 catgatggtc acaaccgg <210> SEQ ID NO 765 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 765 ccaaacaccg ccgtcgatat 2.0 <210> SEQ ID NO 766 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 766 ccaacctttt ccacaacaga atcagc 26 <210> SEQ ID NO 767 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 767 ccaagtgctg gtttacccca tggagta 27 <210> SEQ ID NO 768 <211> LENGTH: 23 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 768	
ccacttttaa taaggtttgt agc	23
<pre>&lt;210&gt; SEQ ID NO 769 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 769	
ccagcagtta ctgtcccctc atctttg	27
<210> SEQ ID NO 770 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 770	
ccataaggtc accgtcacca ttcaaagc	28
<210> SEQ ID NO 771 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 771	
ccatgcagca cctgtctc	18
<pre>&lt;210&gt; SEQ ID NO 772 &lt;211&gt; LENGTH: 29 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 772	
cccattttt cacgcatgct gaaaatatc	29
<210> SEQ ID NO 773 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 773	
cccccgtcaa ttcctttgag t	21
<210> SEQ ID NO 774 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

_	$\sim$	$\sim$	n	<b>-</b>	٦.	n	11	$\frown$	d
	$\sim$	$\sim$	чт	<u> </u>	ᆂ	тт	u	C	u

	-concinded
<400> SEQUENCE: 774	
ccctgtagta gaagaggtaa ccac	24
5 5 5 5 55	
<210> SEQ ID NO 775	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 775	
ccgacaagga atttcgctac c	21
<210> SEQ ID NO 776	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 776	
ccgcggtcga attgcatgcc ttc	23
<210> SEQ ID NO 777	
<211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 777	
ccggtcctct cgtacta	17
<210> SEQ ID NO 778	
<211> LENGTH: 18	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 778	
ccgtgctcca tttttcag	18
<210> SEQ ID NO 779	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 779	
cctacccaac gttcaccaag ggcag	25
<210> SEQ ID NO 780	
<210> SEQ ID NO 780 <211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 780	
cctcctgcgt gcaaagc	17

-cont	

<210> SEQ ID NO 781 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 781 cctgtagtag aagaggtaac 20 <210> SEQ ID NO 782 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 782 ccttctcccg aagttacg 18 <210> SEQ ID NO 783 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 783 20 ccttgttacg acttcacccc <210> SEQ ID NO 784 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 784 cgaacggcca gagtagtcaa cacg 24 <210> SEQ ID NO 785 <211> LENGTH: 24 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 785 cgaacggcct gagtagtcaa cacg 24 <210> SEQ ID NO 786 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 786 cgacttgacg gttaacattt cctg 24 <210> SEQ ID NO 787 <211> LENGTH: 21 <212> TYPE: DNA

-continued
------------

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 787	
	21
cgagttgcag actgcgatcc g	21
<pre>&lt;210&gt; SEQ ID NO 788 &lt;211&gt; LENGTH: 21 &lt;212&gt; TYPE: DNA &lt;211&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 788	
cgagttgcag actgcgatcc g	21
<pre>&lt;210&gt; SEQ ID NO 789 &lt;211&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 789	
cgcaccatgc gtagagatga agtac	25
<pre>&lt;210&gt; SEQ ID NO 790 &lt;211&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 790</pre>	
cgcaccgtgg gttgagatga agtac	25
<pre>&lt;210&gt; SEQ ID NO 791 &lt;211&gt; LENGTH: 18 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 791</pre>	
cgcatttcac cgctacac	18
<pre>&lt;210&gt; SEQ ID NO 792 &lt;211&gt; LENGTH: 20 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 792</pre>	
<400> SEQUENCE: 792	20
cgcggtcggc tcgttgatga	20
<210> SEQ ID NO 793 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

cont	c mueu	
<400> SEQUENCE: 793		
cggctgctgg cacgaagtta g	21	
<210> SEQ ID NO 794		
<211> LENGTH: 15		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 794		
cggcttcaag acccc	15	
<210> SEQ ID NO 795 <211> LENGTH: 24		
<211> BENGIN: 24 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 795		
	24	
cggtacgaac tggatgtcgc cgtt	24	
<210> SEQ ID NO 796		
<211> LENGTH: 15		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 796		
cgtactcccc aggcg	15	
<210> SEQ ID NO 797		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 797		
cgtataagct gcaccataag cttgtaatgc	30	
<210> SEQ ID NO 798 <211> LENGTH: 21		
<211> LENGTH: 21 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<pre>&lt;2207 011111 1110001111001 1111001 </pre>		
	21	
cgtggactac cagggtatct a	21	
<210> SEQ ID NO 799		
<211> LENGTH: 21 <212> TYPE: DNA		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 799		
ctatcggtca gtcaggagta t	21	

-continued

<210> SEQ ID NO 800 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 800 cttctacatt tttagccatc ac 22 <210> SEQ ID NO 801 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 801 ctttacgccc agtaattccg 20 <210> SEQ ID NO 802 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 802 25 ctttcgcttt ctcgaactca accat <210> SEQ ID NO 803 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 803 gaatatcaat ttgtagc 17 <210> SEQ ID NO 804 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 804 gaccccaacc tggccttttg tcgttga 27 <210> SEQ ID NO 805 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 805 gaccgttata gttacggcc 19 <210> SEQ ID NO 806 <211> LENGTH: 19 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 806	
gacgggcggt gtgtacaag	19
<210> SEQ ID NO 807 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 807	
gacgggcggt gtgtacaag	19
<210> SEQ ID NO 808 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 808	
gacgggcggt gtgtacaag	19
<210> SEQ ID NO 809 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 809	
gacgtcatcc ccaccttcct c	21
<210> SEQ ID NO 810 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 810	
gacgtcatec ceacetteet ee	22
<210> SEQ ID NO 811 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 811	
gagcatcagc gtgcgtgct	19
<210> SEQ ID NO 812 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

_	C	or	١t	п	n	11	ρ	а
	$\sim$	~1	тc	-	**	S.	-	S.

	-concinded
<400> SEQUENCE: 812	
gagetgegee aacgaataaa tegte	25
gagoogogoo aaogaacaaa cogoo	20
<210> SEQ ID NO 813	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 813	
gattggcgat aaagtgatat tttctaaaa	29
<210> SEQ ID NO 814	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 814	
gcccaccaga aagactagca ggataa	26
<210> SEQ ID NO 815	
<211> SEQ 1D NO 815 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 815	
gccgtccatc tgagcagcac c	21
210. CEO ID NO 016	
<210> SEQ ID NO 816 <211> LENGTH: 21	
<211> HENGIA: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 816	
gccgtccatt tgagcagcac c	21
<210> SEQ ID NO 817	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 817	
gccttgcgac cgtactccc	19
-210- CEO ID NO 010	
<210> SEQ ID NO 818 <211> LENGTH: 18	
<211> HENGIN: 18 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 818	
gcgaccgtac tccccagg	18

-continued

<210> SEQ ID NO 819 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 819 gcgctccacg tcttcacgc 19 <210> SEQ ID NO 820 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 820 gcgtgacagg caggtattc 19 <210> SEQ ID NO 821 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 821 28 gcgtgacgac cttcttgaat tgtaatca <210> SEQ ID NO 822 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 822 gcgttccaca gcttgttgca gaag 24 <210> SEQ ID NO 823 <211> LENGTH: 18 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 823 gctgctggca cggagtta 18 <210> SEQ ID NO 824 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 824 getgetttga tggetgaate eeette 26 <210> SEQ ID NO 825 <211> LENGTH: 21 <212> TYPE: DNA

<220> FEATURE:

<223> OTHER INFORMATION: Primer

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 825	
gctggattcg cctttgctac g	21
<210> SEQ ID NO 826	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 826	
gettacacae ceggeetate	20
<210> SEQ ID NO 827	
<211> LENGTH: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 827	
ggaatttacc agcgatagac acc	23
<210> SEQ ID NO 828	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 828	
ggataattgg tcgtaacaag ggatagtgag	30
<210> SEQ ID NO 829	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 829	
~ ggcatcacca tttccttgtc cttcg	25
<210> SEQ ID NO 830	
<211> LENGTH: 18 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre>&lt;220&gt; FEALORE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 830	
ggccgtactc cccaggcg	18
<210> SEQ ID NO 831	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

		ed

	concentrated
<400> SEQUENCE: 831	
	20
ggcgcttgta cttaccgcac	20
<210> SEQ ID NO 832 <211> LENGTH: 25	
<211> HENGIN: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 832	
gggtctacac ctgcacttgc ataac	25
<210> SEQ ID NO 833	
<211> LENGTH: 16 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 833	
gggtttcccc attcgg	16
555 55	
<210> SEQ ID NO 834	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 834	
ggtaaccott gtotttgaat	20
<210> SEQ ID NO 835	
<211> LENGTH: 19	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 835	
ggtaaggttc ttcgcgttg	19
<210> SEQ ID NO 836	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
(225) office information. Iffice	
<400> SEQUENCE: 836	
ggtataacgc atcgcagcaa aagattta	28
<210> SEQ ID NO 837	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 837	
gtaaccettg tetttgaatt gtatttge	28
JJJ	

-continued

<210> SEQ ID NO 838 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 838 gtaagccatg ttttgttcca tc 22 <210> SEQ ID NO 839 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 839 gtatctaatc ctgtttgctc cc 22 <210> SEQ ID NO 840 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 840 27 gtccgacttg acggtcaaca tttcctg <210> SEQ ID NO 841 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 841 gtgcgccctt tctaactt 18 <210> SEQ ID NO 842 <211> LENGTH: 22 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 842 gtgctggttt accccatgga gt 22 <210> SEQ ID NO 843 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 843 gttcaaatgc ctggataccc a 21 <210> SEQ ID NO 844 <211> LENGTH: 24 <212> TYPE: DNA

-continued
------------

-cont	inued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: 202 FUEL DEPOINT ON Primer</pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 844		
gttgtcacca ggcattacca tttc	24	
<210> SEQ ID NO 845 <211> LENGTH: 24		
<pre>&lt;211&gt; DEMGIN: 24 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence</pre>		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 845		
gttgtcgcca ggcataacca tttc	24	
<210> SEQ ID NO 846		
<211> LENGTH: 24 <212> TYPE: DNA		
<pre><li><li><pre><cli><pre>ORGANISM: Artificial Sequence</pre></cli></pre></li></li></pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 846		
gtttcatgct tagatgcttt cagc	24	
<210> SEQ ID NO 847		
<211> LENGTH: 25 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 847		
gtttttcgtt gcgtacgatg atgtc	25	
<210> SEQ ID NO 848		
<211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 848		
taaacgtccg ataccaatgg ttcgctc	27	
<210> SEQ ID NO 849		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 849		
taaactattt ttttagctat actcgaacac	30	
<210> SEQ ID NO 850		
<211> LENGTH: 28 <212> TYPE: DNA		
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>		
<220> FEATURE: <223> OTHER INFORMATION: Primer		

-	cont	าทบ	ed

- (	Jone mueu	
<400> SEQUENCE: 850		
taaagacacc gctgggttta aatgtgca	28	
210. CEO ID NO 051		
<210> SEQ ID NO 851 <211> LENGTH: 27		
<211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 851		
taaagagacg tttggtagtt catttgc	27	
<210> SEQ ID NO 852		
<211> LENGTH: 33		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 852		
taaaggatag cggtaactaa atggctgagc cat	33	
<210> SEQ ID NO 853		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 853		
taaatgcact tgcttcaggg ccatat	26	
010 JPO TO NO 054		
<210> SEQ ID NO 854		
<211> LENGTH: 31		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<2213 SORGANISM: AICHICIAI Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 854		
taaatteege aaagaetttg geattaggtg t	31	
<210> SEQ ID NO 855		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 855		
taacaaatce cgtetgagtt eetettgea	29	
<210> SEQ ID NO 856		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 856		
taacaacgtt accttcgcga tccactaa	28	

-cont	

<210> SEQ ID NO 857 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 857 taaccatttc gcgtaagatt caa 23 <210> SEQ ID NO 858 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 858 taaccacccc aagatttatc tttttgcca 29 <210> SEQ ID NO 859 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 859 23 taaccatttc gcgtaagatt caa <210> SEQ ID NO 860 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 860 taaccettgt ctttgaattg tatttgcaat taateetgg 39 <210> SEQ ID NO 861 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 861 taaccgtttc caaaggtact gtattttgt 29 <210> SEQ ID NO 862 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 862 taaccgtttc caaaggtact gtattttgtt tacc 34 <210> SEQ ID NO 863 <211> LENGTH: 26 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 863	
taacteetet teetteaaca ggtgga	26
<210> SEQ ID NO 864	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 864	
taactgaccc aaagctgaaa gctttactg	29
<210> SEQ ID NO 865	
<211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 865	
taagacaagg ttttgtggat tttttagctt gtt	33
<210> SEQ ID NO 866	
<211> LENGTH: 26	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 866	
taagagtgat gcgggctggt tcaaca	26
<210> SEQ ID NO 867	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 867	
taagcaatac ctttacttgc accac	25
<210> SEQ ID NO 868	
<211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 868	
taagcaatac ctttacttgc accacct	27
<210> SEQ ID NO 869	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

	-concinded
<400> SEQUENCE: 869	
taagcaatac ctttacttgc accacctg	28
<210> SEQ ID NO 870	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 870	
taagcaccat ataagtctac ttttttccct t	31
<210> SEQ ID NO 871	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 871	
taagccagca agagctgtat agttcca	27
-210- SEO ID NO 872	
<210> SEQ ID NO 872 <211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 872	
taageteeeg tatettgagt egeete	26
<210> SEQ ID NO 873	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 873	
taagttacct tgcccgtcaa cca	23
<210> SEQ ID NO 874	
<211> LENGTH: 27	
<211> HENGIN: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 874	
taagtteett egetagtatg ttggett	27
AND SEA IN NO STE	
<210> SEQ ID NO 875	
<211> LENGTH: 30 <212> TYPE: DNA	
<212> IIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 875	
taatcgacga ccatcttgga aagatttctc	30

<210> SEQ ID NO 876 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 876 taatctggct gcggaagtga aat 23 <210> SEQ ID NO 877 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 877 taatctggct gcggaagtga aatcg 25 <210> SEQ ID NO 878 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 878 31 taatgeeggg tagtgeaate cattetteta g <210> SEQ ID NO 879 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 879 taatgcgata ctggcctgca agtc 24 <210> SEQ ID NO 880 <211> LENGTH: 33 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 880 tacaaccttc ggataatcag gatgagaatt aat 33 <210> SEQ ID NO 881 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 881 tacaacgtga taaacacgac cagaagc 27 <210> SEQ ID NO 882 <211> LENGTH: 35 <212> TYPE: DNA

-continued	

-continued	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 882	
tacaactggt tcaaaaacat taagctgtaa ttgtc	35
<210> SEQ ID NO 883 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 883	
tacagcttta aagccagcaa aatgaattac ag	32
<210> SEQ ID NO 884 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 884	
tacaggagca gcaggcttca ag	22
<pre>&lt;210&gt; SEQ ID NO 885 &lt;211&gt; LENGTH: 26 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 885</pre>	
tacatcgttt cgcccaagat caatca	26
<210> SEQ ID NO 886 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 886	
tacateteet tegatagaaa ttteattget ate	33
<210> SEQ ID NO 887 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 887	
taccaaageg tgeacgatag ttgag	25
<210> SEQ ID NO 888 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	ınu	ed

	concinaca
<400> SEQUENCE: 888	
taccatctac ccaaacatta gcaccaa	27
<210> SEQ ID NO 889	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 889	
taccccagtt cccctgacct tc	22
<210> SEQ ID NO 890	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 890	
taccggaagc accagcgaca ttaatag	27
<210> SEQ ID NO 891	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 891	
tacctgcatt aatcgcttgt tcatcaa	27
5 5 5	
<210> SEQ ID NO 892	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 892	
taccttaccg ccaaagctgt ct	22
carried of country of	
-210- CEO ID NO 002	
<210> SEQ ID NO 893 <211> LENGTH: 24	
<211> HENGIN: 24 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 893	
taccttagga ccgttatagt tacg	24
tacettagga cogetatagt tacg	21
<210> SEQ ID NO 894 <211> LENGTH: 24	
<211> LENGIH: 24 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 894	
	24
taccttttcc acaacagaat cagc	24

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 895 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 895 tacgagctga cgacagccat g 21 <210> SEQ ID NO 896 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 896 tacgagetga egacageeat gea 23 <210> SEQ ID NO 897 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 897 22 tacgcattac tcacccgtcc gc <210> SEQ ID NO 898 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 898 tacgccatca ggccacgcat 2.0 <210> SEQ ID NO 899 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 899 tacgctaagc cacgtccata tttatca 27 <210> SEQ ID NO 900 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 900 tacgtatgta aatteegeaa agaetttgge attag 35 <210> SEQ ID NO 901 <211> LENGTH: 30 <212> TYPE: DNA

-cont	in	led	

- C	continued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 901		
tacgtcgcct ttaacttggt tatattcagc	30	
<210> SEQ ID NO 902		
<211> LENGTH: 31 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 902		
tacgttctac gatttcttca tcaggtacat c	31	
<210> SEQ ID NO 903		
<211> LENGTH: 24 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 903		
tacgtttgta tcttctgcag aacc	24	
<210> SEQ ID NO 904 <211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 904		
tacacctggt ttcgttttga tgatttgta	29	
<210> SEQ ID NO 905		
<211> LENGTH: 24 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 905		
-		
tactagacga cgggtcaggt aacc	24	
<210> SEQ ID NO 906		
<211> LENGTH: 32 <212> TYPE: DNA		
<212> IIPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 906		
tacttcagct tcgtccaata aaaaatcaca at	32	
<210> SEQ ID NO 907 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-cont	inued	L

=001	licinided	
<400> SEQUENCE: 907		
tactttaagg ggctatcttt accatgaacc t	31	
<210> SEQ ID NO 908		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 908		
tagagagtag ccatcttcac cgttgtc	27	
210. CEO TE NO 000		
<210> SEQ ID NO 909 <211> LENGTH: 23		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 909		
tagcaccaat caccetttee tgt	23	
<210> SEQ ID NO 910		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 910		
tagcagcaaa agttatcaca cctgcagt	28	
<210> SEQ ID NO 911		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 911		
tagcagctag ctcgtaacca gtgta	25	
<210> SEQ ID NO 912		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 912		
tagccatacg taccattgct tcataaatag a	31	
<210> SEQ ID NO 913		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 913		
tagcccagct gtttgagcaa ct	22	

-cont	1	~
-conc	Turne	u

<210> SEQ ID NO 914 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 914 20 tagccgcggt cgaattgcat <210> SEQ ID NO 915 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 915 tagccttggc aacatcagca aaact 25 <210> SEQ ID NO 916 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 916 24 tageetttte teeggegtag atet <210> SEQ ID NO 917 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 917 tagcgatttc tactcctaga gttgaaattt cagg 34 <210> SEQ ID NO 918 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 918 tagetgetag atgagettet gecatggee 29 <210> SEQ ID NO 919 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 919 taggatgaaa gcattccgct ggc 23 <210> SEQ ID NO 920 <211> LENGTH: 28 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 920	
taggatgagc attatcaggg aaagaatc	28
<210> SEQ ID NO 921 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 921	
taggattttt ccacggcggc atc	23
<210> SEQ ID NO 922 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 922	
taggcataac catttcagta ccttctggta a	31
<pre>&lt;210&gt; SEQ ID NO 923 &lt;211&gt; LENGTH: 28 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 923</pre>	
tagtatcacc acgtacaccc ggatcagt	28
<pre>&lt;210&gt; SEQ ID NO 924 &lt;211&gt; LENGTH: 28 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (17)(17) &lt;223&gt; OTHER INFORMATION: I &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (20)(20) &lt;223&gt; OTHER INFORMATION: I &lt;400&gt; SEQUENCE: 924</pre>	
tagtatcacc acgtacaccc ggatcagt	28
<210> SEQ ID NO 925 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 925	
tagtcctttc tgaattttac catcaaaggt ac	32

-continued

<210> SEQ ID NO 926 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 926 tagtettttg gaacacegte tttaattaaa gt 32 <210> SEQ ID NO 927 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 927 tagtgttgta cctccatata gacattcaga 30 <210> SEQ ID NO 928 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 928 29 tagttgaagt tgcactatat actgttgga <210> SEQ ID NO 929 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 929 tataacgcac atcgtcaggg tga 23 <210> SEQ ID NO 930 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 930 tatagcacca tccatctgag cggcac 26 <210> SEQ ID NO 931 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 931 tatatgaaca ataccagttc cttctgagt 29 <210> SEQ ID NO 932 <211> LENGTH: 27 <212> TYPE: DNA

-cont	inued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence</pre>		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 932		
tatatgatta tcattgaact gcggccg	27	
<210> SEQ ID NO 933		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 933		
tatccattga accaaagtta ccttggcc	28	
<210> SEQ ID NO 934		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 934		
	20	
tatecetge ttetgetgee	20	
<210> SEQ ID NO 935		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 935		
tategacaga tecaaagtta ceatgeee	28	
energinengin eenningeen eenegeee		
<210> SEQ ID NO 936		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 936		
tatggtctat ttcaatggca gttacga	27	
<210> SEQ ID NO 937		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 937		
tatgtgctca cgagtttgcg gcat	24	
<210> SEQ ID NO 938		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

_	C	$\cap$	nt	٠i	n	11	Р	Ы
	0		ццс			u	$\sim$	u

	-concineed
<400> SEQUENCE: 938	
tatgtgtagt tgagettaet acatgage	28
<210> SEQ ID NO 939	
<211> LENGTH: 25	
<212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 939	
tattettegt tacteatgee ataca	25
<210> SEQ ID NO 940	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 940	
tattgcccag aaatcaaatc atc	23
<210> SEQ ID NO 941	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 941	
tattgeggat caccatgatg atattettge	30
<210> SEQ ID NO 942	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 942	
tattgetttt tttgetatge ttettggaca t	31
<210> SEQ ID NO 943	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 943	
tattggaaat accggcagca tctc	24
<210> SEQ ID NO 944	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 944	
	~~
tatttgggtt tcattccact cagattctgg	30

-continued

<210> SEQ ID NO 945 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 945 tcaaaaacaa agaattcatt ttctggtcca aa 32 <210> SEQ ID NO 946 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 946 tcaaaacgca tttttacatc ttcgttaaag gcta 34 <210> SEQ ID NO 947 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 947 29 tcaaaacttg ctctagacca tttaactcc <210> SEQ ID NO 948 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 948 tcaaaatctt ttgattcgat catacgagac 30 <210> SEQ ID NO 949 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 949 tcaaacgatc cgcatcacca tcaaaag 27 <210> SEQ ID NO 950 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 950 tcaaagaacc agcacctaat tcatcattta 30 <210> SEQ ID NO 951 <211> LENGTH: 30 <212> TYPE: DNA

-cont	1 1 1 1	1ed

-conti	nued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 951		
tcaaagaacc cgcacctaat tcatcattta	30	
<210> SEQ ID NO 952		
<211> LENGTH: 26 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 952		
tcaacaacac ctccttattc ccactc	26	
<210> SEQ ID NO 953		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 953		
tcaacaatca gatagatgtc agacgcatg	29	
<210> SEQ ID NO 954		
<211> LENGTH: 28 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 954		
tcaacaccag cgttacctaa agtacctt	28	
<210> SEQ ID NO 955 <211> LENGTH: 35		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 955		
tcaactggtt caaaaacatt aagttgtaat tgtcc	35	
<210> SEQ ID NO 956 <211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<2205 FEALURE: <2235 OTHER INFORMATION: Primer		
<400> SEQUENCE: 956		
tcaacttctg ccattaaaag taatgcca	28	
<210> SEQ ID NO 957		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	cont	ınu	ed

-con	ltinued
<400> SEQUENCE: 957	
tcaagcgatc tacccgcatt acaa	24
<210> SEQ ID NO 958 <211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 958	
tcaagegeca tetetttegg taatecacat	30
<210> SEQ ID NO 959	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 959	
tcaagegeea tttettttgg taaaceaeat	30
<210> SEQ ID NO 960	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 960	
tcaagctata tgctacaact ggttcaaaaa c	31
<210> SEQ ID NO 961	
<211> LENGTH: 30	
<212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 961	
tcaagctcta caccataaaa aaagctctca	30
<210> SEQ ID NO 962	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 962	
tcaaggttct caccgtttac cttaggag	28
<210> SEQ ID NO 963	
<211> LENGTH: 32	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 963	
tcaagtgett ttacttetat aggtttaage te	32

-CC	nt	in	ue	d

<210> SEQ ID NO 964 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 964 tcaatacaga gtctacactt ggcttaggat 30 <210> SEQ ID NO 965 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 965 tcaatctcga ctttttgtgc cggta 25 <210> SEQ ID NO 966 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 966 28 tcacaaggac cattataatc aatgccaa <210> SEQ ID NO 967 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 967 tcacaccaag tagtgcaagg atc 23 <210> SEQ ID NO 968 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 968 tcacacctgt aagtgagaaa aaggttgat 29 <210> SEQ ID NO 969 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 969 tcacaggttc tacttcatca ataatttcca ttgc 34 <210> SEQ ID NO 970 <211> LENGTH: 34 <212> TYPE: DNA

- C	continued	
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 970		
tcaccagett cagegtagte taataattta egga	34	
concernence careful ca	51	
<210> SEQ ID NO 971		
<211> LENGTH: 22 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 971		
tcaccatgcg cccgttcaca ta	22	
<210> SEQ ID NO 972		
<211> LENGTH: 37		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 972		
tcaccgataa ataaaatacc taaagttaat gccattg	37	
<210> SEQ ID NO 973		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 973		
tcacctacag ctttaaagcc agcaaaatg	29	
<210> SEQ ID NO 974		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 974		
tcacgatacc tgcatcatca aattggtt	28	
<210> SEQ ID NO 975		
<211> LENGTH: 32		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<213> ORGANISM: ATTILICIAI Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 975		
tcacgatcta aatttggata agccatagga aa	32	
<210> SEQ ID NO 976		
<211> LENGTH: 24		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<213> ORGANISM: AICHICIAI Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	С	on	t	1	n	u	е	d

-001	Linueu	
<400> SEQUENCE: 976		
tcacgcgacg agtgccatcc attg	24	
<210> SEQ ID NO 977		
<211> LENGTH: 22		
<212> TYPE: DNA		
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>		
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 977		
tcacgcgcat catcaccagt ca	22	
<210> SEQ ID NO 978		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 978		
tcacgggcca gctcgtct	18	
<210> SEQ ID NO 979		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 979		
tcacgtcgtc cgacttcacg gtcagcat	28	
<210> SEQ ID NO 980		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 980		
tcagaatcga tgccaaatgc gtcatc	26	
<210> SEQ ID NO 981		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 981		
tcagatataa atggaacaaa tggagccact	30	
<210> SEQ ID NO 982		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<pre>&lt;220&gt; FEATORE: &lt;223&gt; OTHER INFORMATION: Primer</pre>		
<400> SEQUENCE: 982		
~ tcagcgtagt ctaataattt acggaacatt tc	32	
	52	

-continued

<210> SEQ ID NO 983 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 983 tcagctgtta acggcttcaa gaccc 25 <210> SEQ ID NO 984 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 984 tcaggtatga aacacgatta gtcctttct 29 <210> SEQ ID NO 985 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 985 29 tcagtttgca cttcaaaaga aattgtgtt <210> SEQ ID NO 986 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 986 tcataactag catttgtgct ttgaatgct 29 <210> SEQ ID NO 987 <211> LENGTH: 31 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 987 tcataagggt tgcgttgcag attatcttta c 31 <210> SEQ ID NO 988 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 988 tcatctggtt taggatctgg ttgact 26 <210> SEQ ID NO 989 <211> LENGTH: 25 <212> TYPE: DNA

-continued
------------

-	continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<2235 OTHER INFORMATION: FILMET	
	25
tcatctgtgg tatggcgggt aagtt	25
<210> SEQ ID NO 990 <211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 990	
tcatgacage caagaeetca eccaee	26
<210> SEQ ID NO 991	
<211> LENGTH: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 991	
tcatgataga actacctggt tgcatttttg g	31
<210> SEQ ID NO 992	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 992	
tcatgtgcta atgttactgc tggatctg	28
<210> SEQ ID NO 993	
<211> LENGTH: 31	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 993	
tcattaggta aaatgtctgg acatgatcca a	31
<210> SEQ ID NO 994	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 994	
cattatt cttcgcttt ctcgctac	28
	20
<210> SEQ ID NO 995 <211> LENGTH: 20	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	

-continue	ed

	-continued
<400> SEQUENCE: 995	
tcatttgtgc tttgaatgct	20
<210> SEQ ID NO 996	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 996	
tccaaacgat ctgcatcacc atcaaaag	28
<210> SEQ ID NO 997	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 997	
tccaacccag aaccacatac tttattcac	29
<210> SEQ ID NO 998	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 998	
tecaacettt tecacaacag aatcage	27
<210> SEQ ID NO 999	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 999	
tccaagtgct ggtttacccc atgg	24
<210> SEQ ID NO 1000	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1000	
tccaagtgct ggtttacccc atggag	26
<210> SEQ ID NO 1001	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1001	
tccaagtttg acttaaacgt accatcgc	28

<210> SEQ ID NO 1002 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1002 tccacactgg attgtaattt accttgttct tt 32 <210> SEQ ID NO 1003 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1003 tccaccacct caaagaccat gtggtg 26 <210> SEQ ID NO 1004 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1004 23 tccagcaggt tctgacggaa acg <210> SEQ ID NO 1005 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1005 tccagcagtt actgtcccct catctttg 28 <210> SEQ ID NO 1006 <211> LENGTH: 30 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1006 tccaggcatt accatttcta ctccttctgg 30 <210> SEQ ID NO 1007 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1007 tccataaggt caccgtcacc attcaaagc 29 <210> SEQ ID NO 1008 <211> LENGTH: 35 <212> TYPE: DNA

-continued

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (21)(21)	
<223> OTHER INFORMATION: I	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (30) (30)	
<223> OTHER INFORMATION: I	
<400> SEQUENCE: 1008	
tccatacctt tatgcaactt tgtatcaact ggaat	35
<210> SEQ ID NO 1009	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1009	
tccatattgt tgcataaaac ctgttggc	28
<210> SEQ ID NO 1010	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1010	
tccatccata gaaccaaagt taccttg	27
<210> SEQ ID NO 1011	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre>&lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1011	
tccatcgcag tcacgtttac tgttgg	26
<210> SEQ ID NO 1012	
<211> LENGTH: 32 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1012	
tccatcgcca gtttttgcat aatcgctaaa aa	32
<210> SEQ ID NO 1013	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1013	
tccatctgtt aaaccatcat ataccatgct atc	33
	55

-continued

<210> SEQ ID NO 1014 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1014 tccatttccg acacgtcgtt gatcac 26 <210> SEQ ID NO 1015 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1015 teccaateta acttecaeat accatet 27 <210> SEQ ID NO 1016 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1016 29 teccaatett ttgattegat catacgaga <210> SEQ ID NO 1017 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1017 tcccatacct atggcgataa ctgtcat 27 <210> SEQ ID NO 1018 <211> LENGTH: 30 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1018 tcccattttt tcacgcatgc tgaaaatatc 30 <210> SEQ ID NO 1019 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1019 tccccacctt cctcc 15 <210> SEQ ID NO 1020 <211> LENGTH: 25 <212> TYPE: DNA

-cont	inued

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1020	
tccccatctc cgcaaagaca ataaa	25
<210> SEQ ID NO 1021 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1021	
tecceattta ataatteeac etaetateae act	33
<210> SEQ ID NO 1022 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1022	
tcccctcatg tttaaatgat caggataaaa agc	33
<pre>&lt;210&gt; SEQ ID NO 1023 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1023</pre>	
tcccctttaa agcaccatta ctcattatag t	31
<210> SEQ ID NO 1024 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1024	
tcccgaacaa tgagttgtat caactatttt tac	33
<pre>&lt;210&gt; SEQ ID NO 1025 &lt;211&gt; LENGTH: 21 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1025	
teeegetgge aaataaacte g	21
<210> SEQ ID NO 1026 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	ınu	ed

	-continued
<400> SEQUENCE: 1026	
teeeggetag agattetgta taega	25
<210> SEQ ID NO 1027	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1027	
tecegtetga gtteetettg catgatea	28
<210> SEQ ID NO 1028	
<211> LENGTH: 32	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1028	
tccctaatag tagaaataac tgcatcagta gc	32
<210> SEQ ID NO 1029 <211> LENGTH: 34	
<211> HENGIN: 34 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1029	
tcccttattt ttctttctac taccttcgga taat	34
<210> SEQ ID NO 1030	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1030	
tcccttcctt aatatgagaa ggaaaccact	30
<210> SEQ ID NO 1031	
<211> LENGTH: 32 <212> TYPE: DNA	
<212> TIFE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1031	
teegaaaett gttttgtage tttaatttga ge	32
<210> SEQ ID NO 1032	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<2213> ORGANISM: AICHICIAI Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1032	
teegaagttg ceetggeegt e	21

-cont	

<210> SEQ ID NO 1033 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1033 tccgagacca gcgtaggtgt aacg 24 <210> SEQ ID NO 1034 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1034 teegataage eggattetgt ge 22 <210> SEQ ID NO 1035 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1035 28 tccgcaaaga ctttggcatt aggtgtga <210> SEQ ID NO 1036 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1036 tccgccaaaa actccccttt tcacagg 27 <210> SEQ ID NO 1037 <211> LENGTH: 24 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1037 tccgccttca aaatggtggc gagt 24 <210> SEQ ID NO 1038 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1038 teeggetaga gattetgtat aegaaaatat e 31 <210> SEQ ID NO 1039 <211> LENGTH: 31 <212> TYPE: DNA

-con	ltinued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1039		
tccggctaga gattctgtat acgacaatat c	31	
<210> SEQ ID NO 1040		
<211> LENGTH: 23 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1040		
tccggtaact gggtcagctc gaa	23	
<210> SEQ ID NO 1041		
<211> LENGTH: 34		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1041		
tccgtagttt tgcataattt atggtctatt tcaa	34	
<210> SEQ ID NO 1042		
<211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1042		
tccgtcatcg ctgacagaaa ctgagtt	27	
<210> SEQ ID NO 1043		
<211> LENGTH: 28 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1043		
tccgtctatc cacaagttaa ttggtact	28	
	20	
<210> SEQ ID NO 1044		
<211> LENGTH: 26		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1044		
tectacecaa egtteaceaa gggeag	26	
<210> SEQ ID NO 1045		
<211> LENGTH: 29		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-	cont	าทบ	ed

	concinaca
<400> SEQUENCE: 1045	
teeteettgt geeteaaaac geattttta	29
<210> SEQ ID NO 1046 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1046	
tcetetatge aacttagtat caacaggaat	30
<pre>&lt;210&gt; SEQ ID NO 1047 &lt;211&gt; LENGTH: 24 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1047	
tcctcttggg ccacgcaaag tttt	24
<210> SEQ ID NO 1048 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1048	
teetettte acaggeteta etteate	27
<pre>&lt;210&gt; SEQ ID NO 1049 &lt;211&gt; LENGTH: 30 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1049	
teetgaagat etagttettg aatggttaet	30
<pre>&lt;210&gt; SEQ ID NO 1050 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1050	
teetgeaata tetaatgeae tettaeg	27
<210> SEQ ID NO 1051 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1051	
teetgeaget etacetgete catta	25

-continued

<210> SEQ ID NO 1052 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1052 tcctggccat cctgcaggat 20 <210> SEQ ID NO 1053 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1053 tcctgtttta tagccgccaa gagtaag 27 <210> SEQ ID NO 1054 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1054 teetteacge geateateae e 21 <210> SEQ ID NO 1055 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1055 tccttctgat gcctgatgga ccaggag 27 <210> SEQ ID NO 1056 <211> LENGTH: 26 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1056 tccttggcat acatcatgtc gtagca 26 <210> SEQ ID NO 1057 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1057 tccttgtgct tcaaaacgca tttttacatt ttc 33 <210> SEQ ID NO 1058 <211> LENGTH: 28 <212> TYPE: DNA

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1058	
taattaasa taagaataa taadaat	28
teetttaaaa taacegetag tageteet	20
<210> SEQ ID NO 1059	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1059	
tcctttatgc aacttagtat caaccggaat	30
eccentry accordent carcoggant	
<210> SEQ ID NO 1060	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1060	
teetttatge aacttggtat caacaggaat	30
<210> SEQ ID NO 1061	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1061	
tcctttatgc aacttggtat caaccggaat	30
contrary accorytat caaceyyaat	50
<210> SEQ ID NO 1062	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1062	
tcctttcaat gttacagaaa actctacag	29
<210> SEQ ID NO 1063	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1063	
tcgaaccgaa gttaccctga ccat	24
<210> SEQ ID NO 1064 <211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	CC	ont	1 n	110	d
	~~				~

	-concined
<400> SEQUENCE: 1064	
tcgaattcag ctaaatactt ttcagcatct	30
<210> SEQ ID NO 1065 <211> LENGTH: 26	
<211> HENGIN: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1065	
tcgacctgga ggacgacgta aaatca	26
<210> SEQ ID NO 1066	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1066	
tcgacgacca tcttggaaag atttc	25
<210> SEQ ID NO 1067	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1067	
tegageegaa gttaceetgt eegte	25
<210> SEQ ID NO 1068	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1068	
tcgatccgca tcaccatcaa aagcaaa	27
<210> SEQ ID NO 1069	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1069	
tcgatcgaac cgaagttacc ctgacc	26
<210> SEQ ID NO 1070	
<211> LENGTH: 28 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1070	
tcgatcgtga ctctctttat tttcagtt	28

-continued

<210> SEQ ID NO 1071 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1071 tcgatctcct tggcgtccga 20 <210> SEQ ID NO 1072 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1072 tcgcaccgtg ggttgagatg aagtac 26 <210> SEQ ID NO 1073 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1073 18 tcgcagcgtg cgtggcac <210> SEQ ID NO 1074 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1074 tcgcaggctt acagaacgct ctccta 2.6 <210> SEQ ID NO 1075 <211> LENGTH: 23 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1075 tcgcagttca tcagcacgaa gcg 23 <210> SEQ ID NO 1076 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1076 tegecageta geacgatgte atttte 26 <210> SEQ ID NO 1077 <211> LENGTH: 31 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1077	
tcgccatagc taagttgttt attgtttcca t	31
<210> SEQ ID NO 1078	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1078	
tcgcctggtg caggcatcat at	22
<210> SEQ ID NO 1079	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1079	
tegegetgta ttttteetee gaga	24
<210> SEQ ID NO 1080	
<211> LENGTH: 18 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1080	
tcgctacctt aggaccgt	18
<210> SEQ ID NO 1081	
<211> LENGTH: 29	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1081	
tcgctcagca ataattcact ataagccga	29
<210> SEQ ID NO 1082	
<211> LENGTH: 29	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1082	
tcgctctctc aagtgatcta aacttggag	29
<210> SEQ ID NO 1083	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	C	O	n	t	1	n	u	е	d

	-continued
<400> SEQUENCE: 1083	
tegettgagt gtagteatga ttgeg	25
<210> SEQ ID NO 1084	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1084	
tcggaaacaa agaattcatt ttctggtcca aa	32
<210> SEQ ID NO 1085	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1085	
toggaaatat totttoaata ootttatgoa act	33
<210> SEQ ID NO 1086	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1086	
toggaaatat totttoaata ootttatgoa aott	34
<210> SEQ ID NO 1087	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<220> FEATURE:	
<221> NAME/KEY: modified_base	
<222> LOCATION: (20)(20)	
<223> OTHER INFORMATION: I	
<220> FEATURE: <221> NAME/KEY: modified_base	
<2221> NAME/REY: modified_base <222> LOCATION: (26)(26)	
<pre>&lt;222&gt; HOCATION: (20)(20) &lt;223&gt; OTHER INFORMATION: I</pre>	
<400> SEQUENCE: 1087	
toggaaatat totttoaata ootttatgoa aott	34
<210> SEQ ID NO 1088	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1088	
~ tcggactcgc tttcgctacg	20
<210> SEQ ID NO 1089	
<211> LENGTH: 20	
<212> TYPE: DNA	

-continued

<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1089		
CHOOP SEQUENCE. 1089		
tcggataagc tgccacaagg	20	
<210> SEQ ID NO 1090		
<211> LENGTH: 19		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1090		
	19	
teggeateae geegtegte	19	
<210> SEQ ID NO 1091		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
2223 OTHER INFORMATION: FILMEI		
<400> SEQUENCE: 1091		
tcggcgaaca tggccatcac	20	
<210> SEQ ID NO 1092		
<211> LENGTH: 33		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1092		
tcgggcgtag tttttagtaa ttaaatcaga agt	33	
<210> SEQ ID NO 1093		
<211> LENGTH: 25 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1093		
	25	
toggtaogaa otggatgtog oogtt	25	
<210> SEQ ID NO 1094		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1094		
(100) bigolikel. 1094		
tcggtcagca aaacggtagc ttgc	24	
<210> SEQ ID NO 1095		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		

-continue	ed

	-continued
<400> SEQUENCE: 1095	
tcggtggtgg tagccgatct c	21
<210> SEQ ID NO 1096	
<211> LENGTH: 31	
<212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1096	
tcggtttaag ctctacatga tcgtaaggat a	31
<210> SEQ ID NO 1097	
<211> LENGTH: 29	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1097	
tcggtttcag tcatctccac cataaaggt	29
<210> SEQ ID NO 1098	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1098	
tcgtatgacc agcttcggta ctacta	26
<210> SEQ ID NO 1099	
<211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1099	
tcgtcaacac taccattatt accatgcatc tc	32
<210> SEQ ID NO 1100	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1100	
tcgtccgact taacggtcag catttc	26
<210> SEQ ID NO 1101	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1101	
tegteegact taaeggteag cattteetg	29

-continued

<210> SEQ ID NO 1102 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1102 tcgtccgact taacggtcag catttcctgc a 31 <210> SEQ ID NO 1103 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1103 tcgtcctctc gaatctccga tatacc 26 <210> SEQ ID NO 1104 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1104 20 tcgtcgcgga cttcgaagcc <210> SEQ ID NO 1105 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1105 tcgtcggact taacggtcag catttc 2.6 <210> SEQ ID NO 1106 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1106 tcgtcggact taacggtcag catttcctg 29 <210> SEQ ID NO 1107 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1107 tegteggaet taaeggteag cattteetge a 31 <210> SEQ ID NO 1108 <211> LENGTH: 28 <212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1108	
tcgtcgtatt tatagtgacc agcaccta	28
<210> SEQ ID NO 1109	
211> LENGTH: 28	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 1109	
cgtgcctaa caaatcccgt ctgagttc	28
cycyceraa caaareeeyr eryayrre	20
210> SEQ ID NO 1110	
211> LENGTH: 22	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 1110	
agtagoato gaoggatota to	22
ccgtggacta ccagggtatc ta	22
210> SEQ ID NO 1111	
211> LENGTH: 17	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400. CEOUENCE 1111	
400> SEQUENCE: 1111	
cgtgggcet tgeeggt	17
210> SEQ ID NO 1112	
211> LENGTH: 28	
:212> TYPE: DNA :213> ORGANISM: Artificial Sequence	
<pre>&lt;213&gt; ORGANISM: ATTILICIAL Sequence &lt;220&gt; FEATURE:</pre>	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 1112	
cgttaatta atctggctgc ggaagtga	28
210. CEO ID NO 1112	
210> SEQ ID NO 1113	
:211> LENGTH: 27 :212> TYPE: DNA	
212> TYPE: DNA 213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 1113	
cgttgagat ggtttttacc ttcgttg	27
210. CEO ID NO 1114	
:210> SEQ ID NO 1114 :211> LENGTH: 25	
211> LENGIH: 25 212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
<223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

	-concineed
<400> SEQUENCE: 1114	
tcgtttaagc gccagaaagc accaa	25
<210> SEQ ID NO 1115	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1115	
tcgtttcacc ctgtcatgcc g	21
<210> SEQ ID NO 1116	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1116	
	26
tctttcgtat aaaaaggacc aattgg	20
<210> SEQ ID NO 1117	
<211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1117	
tctacaacac ttgattgtaa tttgccttgt tcttt	35
<210> SEQ ID NO 1118	
<211> LENGTH: 24	
<211> HENGIN: 24 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1118	
tctagcggaa caacagttct gatg	24
<210> SEQ ID NO 1119	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1119	
tctatagagt ccggactttc ctcgtga	27
<210> SEQ ID NO 1120	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1120	
~ tctataggta ctgtagtttg ttttccgtct	30
contragged obgedgeteg tettocytet	50

-con		

<210> SEQ ID NO 1121 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1121 tctcacctac agctttaaag ccagcaa 27 <210> SEQ ID NO 1122 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1122 tctcacctac agctttaaag ccagcaaaat g 31 <210> SEQ ID NO 1123 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1123 25 tetcateeeg atattacege catga <210> SEQ ID NO 1124 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1124 tctcatgaaa aaggctcagg agatacaag 29 <210> SEQ ID NO 1125 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1125 tetettacce caccetttea ceettac 27 <210> SEQ ID NO 1126 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1126 tetettteaa ageaceattg eteattatag t 31 <210> SEQ ID NO 1127 <211> LENGTH: 24 <212> TYPE: DNA

-continued	

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1127	
totgoatttt tgogagootg tota	24
<210> SEQ ID NO 1128 <211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1128	
tctgcctgag atgtcgaaaa aaacgttg	28
<210> SEQ ID NO 1129 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1129	
tctggcccct ccatacatgt atttag	26
<pre>&lt;210&gt; SEQ ID NO 1130 &lt;211&gt; LENGTH: 23 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1130</pre>	
tctggctgcg gaagtgaaat cgt	23
<210> SEQ ID NO 1131 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1131	
tctgggtgac ctggtgtttt aga	23
<210> SEQ ID NO 1132 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1132	
tctgtttcag ttgcaaattc	20
<210> SEQ ID NO 1133 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

## -continued

<400> SEQUENCE: 1133	
tetteacaet tttagaatea acegttttat tgte	34
<210> SEQ ID NO 1134 <211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1134	
tcttcagcgt agtctaataa tttacggaac atttc	35
<210> SEQ ID NO 1135	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1135	
tetteeaagg atagatttat ttettgtteg	30
<210> SEQ ID NO 1136	
<211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1136	
tettetgtaa agggtggttt attatteate eea	33
<210> SEQ ID NO 1137	
<211> LENGTH: 32 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1137	
tettettett tegtataaaa aggaccaatt gg	32
<210> SEQ ID NO 1138	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1138	
tcttcttgaa aaattgttgt cccgaaac	28
<210> SEQ ID NO 1139	
<211> LENGTH: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1139	
tettetteg tataaaaagg accaattggt t	31

-con		

<210> SEQ ID NO 1140 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1140 tcttgacagc atccgttg 18 <210> SEQ ID NO 1141 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1141 tettgageat tggttettae ttgttttgea ta 32 <210> SEQ ID NO 1142 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1142 tettgageea taegtaeeat tge 23 <210> SEQ ID NO 1143 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1143 tettggetta ggatgaaaat atagtggtgg ta 32 <210> SEQ ID NO 1144 <211> LENGTH: 39 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1144 tetttaagtt ettecaagga tagatttatt tettgtteg 39 <210> SEQ ID NO 1145 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1145 tetttettt gettaatttt ceatttgega t 31 <210> SEQ ID NO 1146 <211> LENGTH: 14 <212> TYPE: DNA

led	
14	
25	
21	
31	
21	
26	
34	

-	С	on	t	lľ	ıu	ed	L.

-00.	Inclined	
<400> SEQUENCE: 1152		
	24	
tgaattettt caaageacea ttgeteatta tagt	34	
<210> SEQ ID NO 1153		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1153		
tgacaggaca caatctgcat gaagtctgag	30	
210. CEO TO NO 1154		
<210> SEQ ID NO 1154		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1154		
tgacccaaag ctgaaagctt tactg	25	
<210> SEQ ID NO 1155		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1155		
tgaccccaac ctggcctttt gtcgttga	28	
<210> SEQ ID NO 1156		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1156		
tgaccgttat agttacggcc	20	
<210> SEQ ID NO 1157		
<211> LENGTH: 22		
<211> HENGIN: 22 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<2213> ORGANISM: AICHICIAI Sequence <220> FEATURE:		
<223> FEALORE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1157		
tgacggcatc gataccaccg tc	22	
<210> SEQ ID NO 1158		
<211> LENGTH: 20		
<212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<2213> ORGANISM: AICHICIAI Sequence <220> FEATURE:		
<220> FEATORE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1158		
NICON DEQUENCE. IINC		
tgacgtcatc cccaccttcc	20	

-continued

<210> SEQ ID NO 1159 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1159 tgacgtcatc cccaccttcc tc 22 <210> SEQ ID NO 1160 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1160 tgacgtcatg cccaccttcc 20 <210> SEQ ID NO 1161 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1161 20 tgacgtcatg gccaccttcc <210> SEQ ID NO 1162 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1162 tgacttaaac gtaccatcgc ttcatataca ga 32 <210> SEQ ID NO 1163 <211> LENGTH: 27 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1163 tgactttcct cccccttatc agtctcc 27 <210> SEQ ID NO 1164 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1164 tgagatgtcg aaaaaacgt tggcaaaata c 31 <210> SEQ ID NO 1165 <211> LENGTH: 31 <212> TYPE: DNA

	-concinded
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1165	
tgagatgttg atgatttacc agttccgatt g	31
<210> SEQ ID NO 1166	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1166	
tgagcatcag cgtgcgtgct	20
<210> SEQ ID NO 1167	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1167	
tgagcatttt tatatccatc tccaccat	28
<210> SEQ ID NO 1168	
<211> LENGTH: 32 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1168	
tgagccatac gaacaatggt ttcataaaca gc	32
<210> SEQ ID NO 1169	
<211> LENGTH: 32 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1169	
tgagccatga gtaccatggc ttcataacat gc	32
<210> SEQ ID NO 1170	
<211> LENGTH: 26 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1170	
tgagcgtgtg gaaaaggact tggatg	26
<210> SEQ ID NO 1171	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	ınu	.ed

- (	Jone mued	
<400> SEQUENCE: 1171		
tgagctggtg ctatatgaac aataccagt	29	
-210, CEO ID NO 1172		
<210> SEQ ID NO 1172 <211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1172		
tgagtcaccc tccacaatgt atagttcaga	30	
<210> SEQ ID NO 1173		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1173		
tgagtegggt teactttace tggea	25	
010 GRO TO VIO 1154		
<210> SEQ ID NO 1174		
<211> LENGTH: 27 <212> TYPE: DNA		
<212> TIFE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1174		
tgagtctaca cttggcttag gatgaaa	27	
<210> SEQ ID NO 1175		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1175		
tgagttaaaa tgcgattgat ttcagtttcc aa	32	
<210> SEQ ID NO 1176		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1176		
tgagtttgaa ccatttcaga gcgaatatct ac	32	
<210> SEQ ID NO 1177		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1177		
tgagtttgca cttcaaaaga aattgtgt	28	

-cont	

<210> SEQ ID NO 1178 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1178 tgataaaaag cactaagcga tgaaacagc 29 <210> SEQ ID NO 1179 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1179 tgataatgaa gggaaacctt tttcacg 27 <210> SEQ ID NO 1180 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1180 32 tgatattgaa ctggtgtacc ataatagttg cc <210> SEQ ID NO 1181 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1181 tgatcctgaa tgtttatatc tttaacgcct 30 <210> SEQ ID NO 1182 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1182 tgatctccat ggcgcggatc tt 22 <210> SEQ ID NO 1183 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1183 tgatgcgggc tggttcaac 19 <210> SEQ ID NO 1184 <211> LENGTH: 24 <212> TYPE: DNA

-con	tinued	
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1184		
tgatgcgggc tggttcaaca agag	24	
<210> SEQ ID NO 1185 <211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1185		
tgatggtcta tttcaatggc agttacgaaa	30	
<210> SEQ ID NO 1186		
<211> LENGTH: 19 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1186		
tgattatcag cggaagtag	19	
<210> SEQ ID NO 1187		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1187		
tgattcaaat gcagaaccat caaactcg	28	
<210> SEQ ID NO 1188		
<211> LENGTH: 31 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1188		
tgattcgatc atacgagaca ttaaaactga g	31	
<210> SEQ ID NO 1189 <211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1189		
tgattggcga taaagtgata ttttctaaaa	30	
<210> SEQ ID NO 1190		
<211> LENGTH: 22 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		

						-	
-	C	on	t.	٦r	נור	ec	1

	-continued
<400> SEQUENCE: 1190	
tgattgtttt gcagctgatt gt	22
<210> SEQ ID NO 1191	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1191	
tgattgtttt gcagctgatt gt	22
<210> SEQ ID NO 1192	
<211> LENGTH: 30 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1192	
tgcaaaagta acggttacat ctgctccaat	30
-210- SEO TO NO 1102	
<210> SEQ ID NO 1193 <211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1193	
tgcaacaatt aatgctccga caattaaagg att	33
<210> SEQ ID NO 1194	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1194	
	~
tgcaactcat ctggtttagg atct	24
<210> SEQ ID NO 1195	
<211> LENGTH: 32	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<2213> ORGANISM: ATTILICIAI Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1195	
tgcaactgaa tagattgcag taagttataa gc	32
<210> SEQ ID NO 1196	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> FEATORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1196	
tgcaagagca accctagtgt tcg	23

-cont	inued

<210> SEQ ID NO 1197 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1197 tgcaagggaa acctagaatt acaaaccct 29 <210> SEQ ID NO 1198 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1198 tgcaatgtgt gctatgtcag caaaaagat 29 <210> SEQ ID NO 1199 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1199 18 tgcacctgcg gtcgagcg <210> SEQ ID NO 1200 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1200 tgcacgcaaa cgctttactt cagc 24 <210> SEQ ID NO 1201 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1201 tgcacgtctg tttcagttgc aaattc 26 <210> SEQ ID NO 1202 <211> LENGTH: 13 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1202 tgcagctgat tgt 13 <210> SEQ ID NO 1203 <211> LENGTH: 26 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1203	
tgcataggga aggtaacacc atagtt	26
<210> SEQ ID NO 1204	
<211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1204	
tgcatcacca tttccttgtc cttcg	25
	20
<210> SEQ ID NO 1205 <211> LENGTH: 35	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1205	
tgcatgaagc ataaaaactg tatcaagtgc tttta	35
<210> SEQ ID NO 1206	
<211> LENGTH: 36	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1206	
tgcatgctta ctcaaatcat cataaacaat taaagc	36
<210> SEQ ID NO 1207	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1207	
tgcattgtac cgaagtagtt cacattgtt	29
<210> SEQ ID NO 1208 <211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1208	
tgccaagtgc tggtttaccc catgg	25
<210> SEQ ID NO 1209	
<211> LENGTH: 26 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
223> OTHER INFORMATION: FILMEI	

-	C	0	n	t	1	n	u	е	d

	-continued
<400> SEQUENCE: 1209	
tgccactttg acaactcctg ttgctg	26
<210> SEQ ID NO 1210 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1210	
tgccagcgac agaccatcgt a	21
<210> SEQ ID NO 1211 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1211	
tgccagctta gtcatacgga cttc	24
<210> SEQ ID NO 1212 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1212	
tgccagtttc cacatttcac gttcgtg	27
<210> SEQ ID NO 1213 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1213	
tgccatacgt accatcgttt cataaacagc	30
<210> SEQ ID NO 1214 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1214	
tgccatagca aagcctacag catt	24
<210> SEQ ID NO 1215 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1215	
tgccatccat aatcacgcca tactgacg	28

-cont	inι	ued

<210> SEQ ID NO 1216 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1216 tgccatttcc atgtactctt ctctaacatt 30 <210> SEQ ID NO 1217 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1217 tgcccaccag aaagactagc aggataa 27 <210> SEQ ID NO 1218 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1218 20 tgcccaggta caacctgcat <210> SEQ ID NO 1219 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1219 tgccccattg ctcatgatag tagctac 27 <210> SEQ ID NO 1220 <211> LENGTH: 30 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1220 tgccctttct aaaagtcttg agtgaagata 30 <210> SEQ ID NO 1221 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1221 tgcccttttg taaaagcagg gctat 25 <210> SEQ ID NO 1222 <211> LENGTH: 23 <212> TYPE: DNA

-cont	1 1116	D 4

	-continued
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1222	
geegataag eeggattetg tge	23
210> SEQ ID NO 1223	
<211> LENGTH: 28	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE: 223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1223	
tgeegtaaca tagaagttae egttgatt	28
<210> SEQ ID NO 1224	
<211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1224	
tgoogtaact aacataagag aattatgoaa gaa	33
210> SEQ ID NO 1225	
<211> LENGTH: 33	
<212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1225	
tgccgtatac gaaaatatct tatcatttag cgt	33
<210> SEQ ID NO 1226	
<211> LENGTH: 25	
<212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
223> OTHER INFORMATION: Primer	
400> SEQUENCE: 1226	
gootaacaa atocogtotg agtto	25
<210> SEQ ID NO 1227	
<210> SEQ 1D NO 1227 <211> LENGTH: 20	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1227	
tgeetegege aacetaeeeg	20
<210> SEQ ID NO 1228	
<211> LENGTH: 20	
<212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

	-concinded
<400> SEQUENCE: 1228	
tgcctcgtgc aacccacccg	20
<210> SEQ ID NO 1229	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1229	
tgcgaggaac ttcacgtcct gc	22
<210> SEQ ID NO 1230	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1230	
tgcgatggta ggtatettag caateattet	30
<210> SEQ ID NO 1231	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1231	
tgcgcgagct tttatttggg tttc	24
5 5 5 5 555	
<210> SEQ ID NO 1232	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1232	
tgegetaatt etteaaette ttetttegt	29
-	
<210> SEQ ID NO 1233	
<211> LENGTH: 32	
<211> HENGIN: 32 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1233	
tgcgctatca acgattttga caatatatgt ga	32
-210- SEO ID NO 1224	
<210> SEQ ID NO 1234 <211> LENGTH: 23	
<211> LENGIH: 23 <212> TYPE: DNA	
<212> IIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1234	
tgeggeagea etateaceat eea	23
egeggeagea coaccac coa	20

-continued

<210> SEQ ID NO 1235 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1235 tgcgggctgg ttcaacaaga g 21 <210> SEQ ID NO 1236 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1236 tgcgggtgat acttaccgag tac 23 <210> SEQ ID NO 1237 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1237 22 tgcggtctgg cgcatatagg ta <210> SEQ ID NO 1238 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1238 tgcgtagtct aataatttac ggaacatttc 30 <210> SEQ ID NO 1239 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1239 tgcgtgacga ccttcttgaa ttgtaatca 29 <210> SEQ ID NO 1240 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1240 tgcgtggact accagggtat cta 23 <210> SEQ ID NO 1241 <211> LENGTH: 13 <212> TYPE: DNA

-conti	nued	

-conti	nued	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence</pre>		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1241		
tgcagctgat tgt	13	
<210> SEQ ID NO 1242		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1242		
tgctaaagtc ttgagccata cgaacaatgg	30	
<210> SEQ ID NO 1243 <211> LENGTH: 24		
<211> LENGIH: 24 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1243		
tgctagacct ttacgtgcac cgtg	24	
rgeragaeet tracgrycae cyty	24	
<210> SEQ ID NO 1244		
<211> LENGTH: 23		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1244		
tgctaggcca tcaggccacg cat	23	
<210> SEQ ID NO 1245		
<211> LENGTH: 34		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1245		
tgctatatgc tacaactggt tcaaaaacat taag	34	
<210> SEQ ID NO 1246		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1246		
tgctcacctg ctacaacaag tccagcaat	29	
<210> SEQ ID NO 1247		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
A257 STHER INFORMATION. FILMET		

-	С	on	t	1:	n	u	е	d

-	concinded	
<400> SEQUENCE: 1247		
tgetettace teacegttee accettace	29	
	23	
<210> SEQ ID NO 1248		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1248		
tgctgctttc gcatggttaa ttgcttcaa	29	
<210> SEQ ID NO 1249		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1249		
tgctgctttg atggctgaat ccccttc	27	
<210> SEQ ID NO 1250		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1250		
tgctggattc gcctttgcta cg	22	
	22	
<210> SEQ ID NO 1251		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1251		
- tgctgtaggg aaatcagggc c	21	
cycryrayyy aaaroayyyo o	21	
<210> SEQ ID NO 1252		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1252		
tgettagatg ettteage	18	
<210> SEQ ID NO 1253		
<211> LENGTH: 34		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1253		
tgetteaaaa egeattttta eattttegtt aaag	34	
and and		

-cont	

<210> SEQ ID NO 1254 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1254 tgcttcagca cggccaccaa cttctag 27 <210> SEQ ID NO 1255 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1255 tgcttcagcg tagtctaata atttacggaa c 31 <210> SEQ ID NO 1256 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1256 20 tgettetett cegggtegge <210> SEQ ID NO 1257 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1257 tgcttgctca aatcatcata aacaattaaa gc 32 <210> SEQ ID NO 1258 <211> LENGTH: 31 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1258 tgcttgctct ttcaagcagt cttgaatgaa g 31 <210> SEQ ID NO 1259 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1259 tgettggtgg ettettegte gaa 23 <210> SEQ ID NO 1260 <211> LENGTH: 32 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1260	
tgetttgtaa tetagtteet gaatagtaac ca	32
<pre>&lt;210&gt; SEQ ID NO 1261 &lt;211&gt; LENGTH: 30 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1261	
tggaaaactc atgaaattaa agtgaaagga	30
<210> SEQ ID NO 1262 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1262	
tggaaaccgg ctaagtgagt accaccatc	29
<210> SEQ ID NO 1263 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1263	
tggaacaccg tctttaatta aagtatctcc	30
<210> SEQ ID NO 1264 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1264	
tggaatttac cagcgataga cacc	24
<210> SEQ ID NO 1265 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1265	
tggaccacgc cgaagaacgg	20
<210> SEQ ID NO 1266 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	С	on	t	1:	n	u	е	d

	concinaca
<400> SEQUENCE: 1266	
tggacgatat tcacggttta cccacttata	30
<210> SEQ ID NO 1267	
<211> LENGTH: 31	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1267	
tggactaata acaatgagct cattgtactg a	31
<210> SEQ ID NO 1268	
<211> LENGTH: 31	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1268	
tggataattg gtcgtaacaa gggatagtga g	31
<210> SEQ ID NO 1269	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1269	
tggatagacg tcatatgaag gtgtgct	27
<210> SEQ ID NO 1270	
<211> LENGTH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1270	
tggatcactg cttacgaact cagcttc	27
<210> SEQ ID NO 1271	
<2115 SEQ 1D NO 1271 <2115 LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1271	
tggatgtgct cacgagtctg tggcat	26
<210> SEQ ID NO 1272	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1272	
tggcaacagc tcaacacctt tgg	23

-CC	nt	in	ue	d

<210> SEQ ID NO 1273 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1273 tggcaccgtg ggttgagatg aagtac 26 <210> SEQ ID NO 1274 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1274 tggcacgagc ctgacctgt 19 <210> SEQ ID NO 1275 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1275 tggcagcaat agtttgacgt acaaatgcac acat 34 <210> SEQ ID NO 1276 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1276 tggcatcacc atttccttgt ccttcg 2.6 <210> SEQ ID NO 1277 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1277 tggccacttt tatcagcaac cttacagtc 29 <210> SEQ ID NO 1278 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1278 tggccgtact ccccaggcg 19 <210> SEQ ID NO 1279 <211> LENGTH: 20 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1279	
tggcgatgca ctggcttgag	20
<210> SEQ ID NO 1280 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1280	
tggctcataa gacgcgcttg taga	24
<210> SEQ ID NO 1281 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1281	
tggctgcgga agtgaaatcg ta	22
<210> SEQ ID NO 1282 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1282	
tggctgcttc taagccaac	19
<210> SEQ ID NO 1283 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1283	
tggcttgaga atttaggatc cggcac	26
<210> SEQ ID NO 1284 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1284	
tgggacgtaa tcgtataaat tcatcatttc	30
<210> SEQ ID NO 1285 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

## -continued

<400> SEQUENCE: 1285		
tgggataaca ttggttggaa tataagcaga aacatc	36	
<210> SEQ ID NO 1286 <211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1286		
tgggatggag gtgtagaagg tgttatcatc	30	
<210> SEQ ID NO 1287 <211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1287		
tgggatggag gtgtagaagg tgttatcatc	30	
<210> SEQ ID NO 1288 <211> LENGTH: 32		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1288		
tgggcaccat ttatccacaa attgattggt at	32	
<210> SEQ ID NO 1289 <211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1289		
tggggacttc cttaccactt ttagtatcta a	31	
<210> SEQ ID NO 1290		
<211> LENGTH: 33 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1290		
tggggatatg gaggtgtaga aggtgttatc atc	33	
<210> SEQ ID NO 1291		
<211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1291		
tggggtaaga cgcggctagc atgtatt	27	

-continued

<210> SEQ ID NO 1292 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1292 tgggtacgaa ctggatgtcg ccgtt 25 <210> SEQ ID NO 1293 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1293 tgggtaggtt tttatctgtg acgcctt 27 <210> SEQ ID NO 1294 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1294 26 tgggtctaca cctgcacttg cataac <210> SEQ ID NO 1295 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1295 tgggtgctgg tttaccccat ggag 24 <210> SEQ ID NO 1296 <211> LENGTH: 29 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1296 tgggttgcgt tgcagattat ctttaccaa 29 <210> SEQ ID NO 1297 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1297 tgggtttcgc gcttagatgc tttca 25 <210> SEQ ID NO 1298 <211> LENGTH: 18 <212> TYPE: DNA

	-continued
<213 > ORGANISM: Artificial Sequence <220 > FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1298	
tggtaaccct tgtctttg	18
<210> SEQ ID NO 1299 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1299	
tggtaaccct tgtctttgaa ttgtatttgc a	31
<210> SEQ ID NO 1300 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1300	
tggtacaaca tcgttagctt taccactttc acg	33
<210> SEQ ID NO 1301 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1301	
tggtacacct ggtttcgttt tgatgatttg ta	32
<pre>&lt;210&gt; SEQ ID NO 1302 &lt;211&gt; LENGTH: 30 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1302	
tggtacttca acttcatcca ttatgaagtc	30
<210> SEQ ID NO 1303 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1303	
tggtatattc gttaattaat ctggctgcgg a	31
<210> SEQ ID NO 1304 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-continue	ed

<pre>x400&gt; SEQUENCE: 1304 tgptotgsgt actocottg c 21 c200&gt; SEQUENCE: 1304 c200&gt; SEQUENCE: 1305 c201&gt; CONSUMARY Initial Sequence c202&gt; CONSUMARY INITIAL Sequence c202&gt; CONSUMARY INITIAL Sequence c203&gt; CONSUMARY INITIAL SEQUENCE c203&gt;</pre>		-concinded
<pre>clip Set Do 100 clip Set</pre>	<400> SEQUENCE: 1304	
<ul> <li>2.2.0. SQ JD NO 1306</li> <li>2.2.1. ENWTH: 31</li> <li>2.2.2.0 GRGANIGM: Artificial Sequence</li> <li>2.2.2.0 FURN NOVEMATION: Primer</li> <li>2.2.2.0 GRGANIGM: Artificial Sequence</li> <li>2.2.2.0 FURN NOVEMATION: Primer</li> <li>2.2.2.0 FURN</li></ul>	tggtctgagt acctcctttg c	21
<pre>clist.LHNOTH: 31 clist.LHNOTH: 31 clist.CHNOTHE: 0NA clist.CHNOTHE: 0NA clist.CHNOTHE: Clist.Chick.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clist.clis</pre>		
<ul> <li>-212- JTPE, NRA</li> <li>-213- GRANINES: Artificial Sequence</li> <li>-225- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1305</li> <li>-210- SEQ ID NO 1306</li> <li>-211- LENGTH: 28</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1305</li> <li>-210- SEQ ID NO 1307</li> <li>-211- LENGTH: 24</li> <li>-212- TTER: NNA</li> <li>-213- GRANISM: Artificial Sequence</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1307</li> <li>LENGTH: 25</li> <li>-210- SEQ ID NO 1308</li> <li>-211- LENGTH: 26</li> <li>-222- FEATURE:</li> <li>-222- FEATURE:</li> <li>-222- SEQUENCE: 1307</li> <li>LENGTH: 25</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1308</li> <li>LENGTH: 25</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1308</li> <li>LENGTH: 25</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-400- SEQUENCE: 1308</li> <li>LENGTH: 25</li> <li>-223- OTHER INFORMATION: Primer</li> <li>-220- FEATURE:</li> <li>-220- FEATURE:</li> <li>-220- SEQUENCE: 1308</li> <li>LENGTH: 25</li> <li>-220- SEQUENCE: 1309</li> <li>LENGTH: 25</li> <li>-220- FEATURE:</li> <li>-220- SEQUENCE: 1309</li> <li>LENGTH: 25</li> <li>-220- SEQUENCE: 1309</li> <li>-230- SEQUENCE: 1300</li> <li>-240- SEQUE</li></ul>	<210> SEQ ID NO 1305	
<ul> <li>cllib ORGANIEW. initialities Sequence</li> <li>cllib Sequence:</li> <li>cllib Sequence:</li></ul>	<211> LENGTH: 31	
<ul> <li>2230 PERTURE:</li> <li>2230 PERTURE: INFORMATION: Primer</li> <li>4400 SEQUENCE: 1305</li> <li>tggtgggfat cttagcaate attetaatag e 31</li> <li>2110 SEQ ID No 1306</li> <li>2111 LENDER: 32</li> <li>2220 PERTURE:</li> <li>2220 PERTURE:</li> <li>2220 PERTURE:</li> <li>2220 PERTURE:</li> <li>2220 PERTURE:</li> <li>2220 OTHER INFORMATION: Primer</li> <li>400 SEQUENCE: 1306</li> <li>tggtgticta gtatagattg aggtagtggt ga 32</li> <li>210 SEQ ID No 1307</li> <li>2112 DENDER:</li> <li>2210 SEQ ID No 1307</li> <li>2120 SEQ ID NO 1308</li> <li>2121 DENDER:</li> <li>2223 OTHER INFORMATION: Primer</li> <li>400 SEQUENCE: 1307</li> <li>214 STER INFORMATION: Primer</li> <li>400 SEQUENCE: 1307</li> <li>2220 PERTURE:</li> <li>2230 PERTURE:</li> <li>2230 PERTURE:</li> <li>2230 PERTURE:</li> <li>2230 PERTURE:</li> <li>2240 PERTURE:</li> <li>225 OTHER INFORMATION: PRIME</li> <li>226 PERTURE:</li> <li>227 PERTURE:</li> <li>228 PERTURE:</li> <li>229 PERTURE:</li> <li>220 PERTURE:</li> <li>221 PERTURE:</li> <li>222 PERTURE:</li> <li>223 PERTURE:</li> <li>224 PERTURE:</li> <li>225 PERTURE:</li> <li>226 PERTURE:</li> <li>227 PERTURE:</li> <li>228 PERTURE:</li> <li>229 PERTURE:</li> <li>220 PERTURE:</li> <li>220 PERTURE:</li> <li>220 PERTURE:</li> <li>220 PERTURE:</li> <li>220 PERTURE:</li> <li>220 PERTUR</li></ul>	<212> TYPE: DNA	
<ul> <li>2230 PERTURE:</li> <li>2230 PERTURE: INFORMATION: Primer</li> <li>4400 SEQUENCE: 1306</li> <li>110 DIS6</li> <li>211 DENOM: 32</li> <li>212 DENOM: 32</li> <li>2230 PERTURE:</li> <li>2310 PERTURE:</li> <li>2320 PERTURE:</li> <li>2330 PERTURE:</li> <li>234 PERTURE:</li> <li>235 PERTURE:</li> <li>235 PERTURE:</li> <li>235 PERTURE:</li> <li>235 PERTURE:</li> <li>235 PERTURE:</li> <li>235 PERTURE:</li> <li>230 PERTURE:</li></ul>	<213> ORGANISM: Artificial Sequence	
<ul> <li>4000 SEQUENCE: 1305</li> <li>tggtgggat cttagoaat attotatag i 31</li> <li>4210 SEQUENCE: 108</li> <li>4211 LENNTH: 32</li> <li>4222 TPE: DNA</li> <li>4223 OTHER INFORMATION: Primer</li> <li>4400 SEQUENCE: 1306</li> <li>tggtgttata gtatagatg agtagtggt ga 22</li> <li>4210 SEQUENCE: 1307</li> <li>tggttagaag togtaacgtg gacs</li> <li>4211 LENNTH: 71</li> <li>4200 SEQUENCE: 1307</li> <li>tggttagaag togtaacgt g agas</li> <li>4211 SENTE: 24</li> <li>4212 PTE: DNA</li> <li>4213 OKANISH: Artificial Sequence</li> <li>4213 OKANISH: Artificial Sequence</li> <li>4214 PTE: DNA</li> <li>4215 PARTURE:</li> <li>4215 PARTURE:</li> <li>4216 PARTURE:</li> <li>4217 PTE: DNA</li> <li>4218 PARTURE:</li> <li>4219 PARTURE:</li> <li>4210 SEQUENCE: 1307</li> <li>tggttagaag togtaacgt g gacs</li> <li>4210 SEQUENCE: 1307</li> <li>tggttagaag togtaacgt g gacs</li> <li>4210 SEQUENCE: 1307</li> <li>tggttagaag togtaacgt g gacs</li> <li>4210 SEQUENCE: 1308</li> <li>4211 LENTE: DNA</li> <li>4212 PTE: DNA</li> <li>4222 OTHER INFORMATION: Primer</li> <li>4223 OTHER INFORMATION: Primer</li> <li>4220 SEQUENCE: 1308</li> <li>tggttagaag togtaacgt gac</li> <li>4210 SEQUENCE: 1308</li> <li>tggttagaag togtaacgt gac</li> <li>4220 SEQUENCE: 1308</li> <li>tggttagaag togtaacgt gac</li> <li>4220 SEQUENCE: 1308</li> <li>tggttagaag togtaacgt gac</li> <li>4220 SEQUENCE: 1308</li> <li>tggttagaag theotaacgt gac</li> <li>tggtt</li></ul>	<220> FEATURE:	
tggtgggtat cttagcaat attotatag c312210- SSO ID NO 13062212- TYPE; IMA2230- SEQUENCE: 1306tggtgttcta gtatagattg aggtagtggt ga322210- SSO ID NO 13072111- LEDNOTE: 142120- SSO ID NO 13072121- STRUE: INFORMATION: Primer2230- SSO ID NO 13072111- LEDNOTE: 242112- LEDNOTE: 242121- STRUE: 252230 OFER INFORMATION: Primer2400- SSQUENCE: 1307tggttagaag togtaacgtg gac2400- SSQUENCE: 1308tggttaacaa agagttgcog ttgca250- SSQUENCE: 1308tggttaacaa agagttgcog ttgca251- STRUE:2220- SSQUENCE: 13092220- SEQUENCE: 1309tggtttta t ttgctttgot taaactttcc a31211- SSQUENCE: 1308tggtttta t ttgctttgot taactttcc a31211- SSQUENCE: 1308223- OTHER INFORMATION: Primer2200- SEQUENCE: 13092200- SEQUENCE: 13092200- SEQUENCE: 13092200- SEQUENCE: 13052200- SEQUENCE: 13052200- SEQUENCE: 13052200- SEQUENCE: 13052200- SEQUENCE: 13052200- SEQUENCE: 13052200- SEQUENCE: 130	<223> OTHER INFORMATION: Primer	
<pre>clib turb turb turb turb turb turb turb tur</pre>	<400> SEQUENCE: 1305	
<pre>-11.5 LENGTH: 32 -21.5 NGKANTSH: ATIFICIAL Sequence -22.5 FEATURE: -22.3 OTHER INFORMATION: Primer -400.5 SEQUENCE: 1306 Lggtgttcta gtatagattg aggtagtggt ga 32 -21.0 SEQ ID NO 1307 -21.1 LENGTH: 24 -21.5 NGKANTSH: ATIFICIAL Sequence -22.5 FEATURE: -22.5 OTHER INFORMATION: Primer -400.5 SEQUENCE: 1307 Lggttagaag togtaacgtg gacc 24 -21.0 SEQUENCE: 1308 Lggttcaaca agagttgog ttgoa 25 -21.1 SEQUENCE: 1308 Lggttcaaca agagttgog ttgoa 25 -21.1 SEQUENCE: 1308 Lggttctacc tigttigaa taacatttc a 31 -21.2 SEQUENCE: 1309 Lggttcttac ttgcttgga taacatttc a 31 -21.2 SEQUENCE: 1308 -21.3 SEQUENCE: 1308 Lggttcttac ttgcttgga taacatttc a 31 -21.2 SEQUENCE: 1308 -21.3 SEQUENCE: 1308 -21.3 SEQUENCE: 1308 -21.3 SEQUENCE: 1308 Lggttcttac ttgcttgga taacatttc a 31 -21.2 SEQUENCE: 1308 -21.3 SEQUENCE:</pre>	tggtgggtat cttagcaatc attctaatag c	31
<pre>-11.5 LENGTH: 32 -21.5 NGKANISH: Attificial Sequence -22.5 FEATURE: -22.3 OTHER INFORMATION: Primer -400.5 SEQUENCE: 1306 Lggtgttcta gtatagattg aggtagtggt ga 32 -21.0 SEQUENCE: 1307 Lggttagaag togtaacgtg gac 24 -21.0 SEQUENCE: 1308 Lggttagaag togtaacgtg gac 35 -21.0 SEQUENCE: 1308 Lggttcaaca aggstgoeg ttgaa -21.1 SEQUENCE: 1308 Lggttotaaca aggstgoeg ttgaa -22.3 OTHER INFORMATION: Primer -4000 SEQUENCE: 1308 Lggttottac tugottgaa taacttoc a 31 -21.0 SEQUENCE: 1308 Lggttottac tugottga taacttoc a 31 -21.0 SEQUENCE: 1308 -21.0 SEQUENCE: 1308 Lggttottac tugottga taacttoc a 31 -21.0 SEQUENCE: 1308 -21.0 SEQUENCE: 1308 -21.0 SEQUENCE: 1308 -21.0 SEQUENCE: 1308 Lggttottac tugottga taacttoc a 31 -21.0 SEQUENCE: 1308 -21.0 SEQUENCE:</pre>		
<pre>-212 TYPE: DNA -213 ORGANISM: Artificial Sequence -220 PENTURE: -223 OTHER INFORMATION: Primer -400. SEQUENCE: 1306 tggtgttcta gtatagattg aggtagtggt ga 32 -211. LENGTH: 24 -212. TYPE: DNA -213. ORGANISM: Artificial Sequence -220. PENTURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1307 tggttagaag togtaacgtg gacc 24 -210. SEQ ID NO 1308 -211. LENGTH: 25 -212. TYPE: DNA -213. ORGANISM: Artificial Sequence -220. PENTURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1308 tggttcaaca agagttgcg ttgca 25 -210. SEQ ID NO 1309 -211. LENGTH: 31 -212. TYPE: DNA -213. ORGANISM: Artificial Sequence -220. PENTURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1308 tggttctaact agagttgcg ttgca 25 -210. SEQ ID NO 1309 -211. LENGTH: 31 -212. TYPE: NA -213. ORGANISM: Artificial Sequence -220. FERTURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1309 tggttcttac ttgctttgca taacatttcc a 31 -210. SEQ ID NO 1310 -211. LENGTH: 51 -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1309 tggttcttac ttgctttgca taacatttcc a 31 -212. TYPE: NA -213. ORGANISM: Artificial Sequence -220. FERTURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1309 tggttcttac ttgctttgca taacatttcc a 31 -210. SEQ ID NO 1310 -211. LENGTH: 51 -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1300</pre>		
<pre>clis. ORCANIEM: Artificial Sequence clis. ORCANIEM: Artificial Sequence clis. ORCANIEM: 136 tggtgttcta gtatagattg aggtagtggt ga 32 clib. SEQUENCE: 136 tggtgttcta gtatagattg aggtagtggt ga 32 clib. SEQUENCE: DND 1307 clib. LENGTH: 24 clib. SEQUENCE: DND 1307 clib. LENGTH: 24 clib. SEQUENCE: 1307 tggttagaag togtaacgtg gac 25 clib. SEQUENCE: 1308 tggttcaaca agagttgcog ttgca 25 clib. SEQUENCE: 1309 tggttaaca agagttgcog ttgca 25 clib. SEQUENCE: 1309 tggttaaca agagttgcog ttgca 31 clib. SEQUENCE: 1309 tggttatt ttgcttgca taaactttoc a 31 clib. SEQUENCE: 1309 tggttatt ttgcttgca taactttoc a 31 clib. SEQUENCE: 1309 tggttatt ttgcttgca taactttoc a 31 clib. SEQUENCE: 1309 tggttatta ttgcttgca taactttoc a 31 clib. SEQUENCE: 1309 tggttattatta ttgcttgca taactttoc a 31 clib. SEQUENCE: 1309 tggttattattgca ttgca ttgca ttgca ttgca ttgca tt</pre>		
<pre>-220. PEATURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1306 tgdtgttcta gtatagattg aggtagtggt ga 32 -210. SEQ ID N0 1307 -211. LEENTRH: 24 -212. TYPE: DNA -212. ORGANISM: Artificial Sequence -220. FEATURE: -223. OTHER INFORMATION: Primer -400. SEQUENCE: 1307 tggttagaag tcgtaacgtg gac 24 -210. SEQ ID N0 1308 -211. LENGTH: 25 -212. TYPE: DNA -213. ORGANISM: Artificial Sequence -220. PEATURE: -220. OFEATURE: -220. SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 -212. FYPE: DNA -213. ORGANISM: Artificial Sequence -220. SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 -212. SEQUENCE: 1308 tggttctaac ttgcttgca taactttcc a 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taactttcc a 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taactttcc a 31 -210. SEQUENCE: 1308 tggttcttac ttgcttgca taactttcc a 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taacttcca 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taacttcca 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taacttcca 31 -210. SEQUENCE: 1309 tggttcttac ttgcttgca taactttcca 31 -210. SEQUENCE: 1300 -210. SEQUENCE: 1300 -210. SEQ</pre>		
<pre>&lt;223&gt; OTHER INFORMATION: Frimer &lt;400. SEQUENCE: 1306 tggtqttcta gtatagattg aggtagtggt ga 32 &lt;210. 6EQ ID NO 1307 &lt;211. LENGTH: 24 &lt;212. TYEE UNA &lt;213. ORGANISM: Artificial Sequence &lt;220. FEATURE: &lt;222. OTHER INFORMATION: Frimer &lt;400. SEQUENCE: 1307 tggttagaag togtaacgtg gac 24 &lt;210. SEQ ID NO 1308 &lt;211. LENGTH: 25 &lt;223. OTHER INFORMATION: Primer &lt;400. SEQUENCE: 1307 tggttagaag togtaacgtg gac 24 &lt;210. SEQ ID NO 1308 &lt;211. LENGTH: 25 &lt;223. OTHER INFORMATION: Primer &lt;400. SEQUENCE: 1307 tggttagaag togtaacgtg gac 25 &lt;210. SEQ ID NO 1308 tggttagaag aggtgggg ttgga 25 &lt;210. SEQ ID NO 1308 tggttagaag togtaacgt gac 25 &lt;210. SEQ ID NO 1309 &lt;211. LENGTH: 31 &lt;211. Sequence &lt;220. FEATURE: &lt;400. SEQUENCE: 1309 tggttagtag tagattggat gac 31 <!--211. Sequence <220. FEATURE: <400. SEQUENCE: 1309 tggttagta 31 </211. LENGTH: 31 <211. LENGTH: 31 <212. TYEE DNA <213. ORGANISM: Artificial Sequence <220. FEATURE: <220. OTHER INFORMATION: Primer <400. SEQUENCE: 1309 tggttagttagt tagattggat gat aggtagt gat 31 </pre--></pre>		
tggtgttta gtaagatg aggtagtgg ga 22 <li>210&gt; SEQ ID NO 1307 &lt;221&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1307 <pre>tggttagaag tcgtacgtg gac 24</pre> <pre>clil&gt; elmorth: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttagaag aggtgcg ttgca <pre>sequence: 300 <pre>sequence: 300 <pre>seq</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></li>		
tggtgttta gtaagatg aggtagtgg ga 22 <li>210&gt; SEQ ID NO 1307 &lt;221&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1307 <pre>tggttagaag tcgtacgtg gac 24</pre> <pre>clil&gt; elmorth: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttagaag aggtgcg ttgca <pre>sequence: 300 <pre>sequence: 300 <pre>seq</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></li>	ADD SECTIONCE, 1206	
<pre>clib b b b b b b b b b b b b b b b b b b</pre>		
<pre>clls LENGTH: 24 clls TUPE: DNA clls Content INFORMATION: Primer close Features: clls Content Information: Primer close Sequence: 1307 tggttagaag togtaacgtg gacc 24 clls LENGTH: 25 clls LENGTH: 25 clls Content Information: Primer close Sequence: 1308 tggttcaaca agagttgccg ttgca 25 clls SEQ ID No 1308 clls LENGTH: 31 clls Content: 31 clls Co</pre>	tggtgttcta gtatagattg aggtagtggt ga	32
<pre>clls LENGTH: 24 clls TUPE: DNA clls Content INFORMATION: Primer close Features: clls Content Information: Primer close Sequence: 1307 tggttagaag togtaacgtg gacc 24 clls LENGTH: 25 clls LENGTH: 25 clls Content Information: Primer close Sequence: 1308 tggttcaaca agagttgccg ttgca 25 clls SEQ ID No 1308 clls LENGTH: 31 clls Content: 31 clls Co</pre>	<210> SEQ ID NO 1307	
<pre>-212&gt; TYPE: DNA -213&gt; ORGANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INPORNATION: Primer -400&gt; SEQUENCE: 1307 tggttagaag tcgtaacgtg gac 24 -210&gt; SEQ ID NO 1308 -211&gt; LENGTH: 25 -212&gt; TYPE: DNA -213&gt; ORGANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INPORNATION: Primer -400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORGANISM: Artificial Sequence -2200 FEATURE: -223&gt; OTHER INPORNATION: Primer -400&gt; SEQUENCE: 1309 tggttctac ttgcttgca taaacttcc a 31 -210&gt; SEQ ID NO 1310 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORGANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INPORNATION: Primer -400&gt; SEQUENCE: 1309 tggttcttac ttgcttgca taaacttcc a 31 -210&gt; SEQ ID NO 1310 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORGANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1309 tggttcttac ttgcttgca taaacttcc a 31</pre>		
<pre>-213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -223 &gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1307 tggttagaag tcgtaacgtg gac 24 -210 &gt; SEQ ID NO 1308 -211 &gt; LENOTT: 25 -212 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -223 &gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1308 tggtcaaca agagtgccg ttgca 25 -210 &gt; SEQ ID NO 1309 -211 &gt; LENOTT: 31 -212 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -220 &gt; FEATURE: -221 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -221 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -221 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -221 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -221 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -223 &gt; OTHER INFORMATION: Primer -400 &gt; SEQUENCE: 1309 tggtcttac ttgcttgca taaactttcc a 31 -210 &gt; SEQ ID NO 1310 -211 &gt; LENOTH: 31 -212 &gt; TYPE: DNA -213 &gt; ORGANISM: Artificial Sequence -220 &gt; FEATURE: -223 &gt; OTHER INFORMATION: Primer -220 &gt; FEATURE: -223 &gt; OTHER INFORMATION: Primer -224 &gt; FEATURE: -225 &gt; FEATURE: -225 &gt; FEATURE: -225 &gt; FEATURE: -225 &gt; FEATURE: -226 &gt; FEATURE: -227 &gt; FEATURE: -228 &gt; FEATURE: -229 &gt; FEATURE: -220 &gt; FEATURE: -220</pre>		
<pre>-220&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1307 tggttagaag tggtaacgtg gac 24 -210&gt; SEQ ID NO 1308 -211&gt; LENGTH: 75 -212&gt; TYPE: DNA -212&gt; ORCANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1308 tggttcaaca agagtgccg ttgca 25 -210&gt; SEQ ID NO 1309 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORCANISM: Artificial Sequence -200&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORCANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 -210&gt; SEQ ID NO 1310 -211&gt; LENGTH: 31 -212&gt; TYPE: DNA -213&gt; ORCANISM: Artificial Sequence -220&gt; FEATURE: -223&gt; OTHER INFORMATION: Primer -400&gt; SEQUENCE: 1310</pre>		
<pre>&lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1307 tggttagaag tcgtaacgtg gac 24 &lt;210&gt; SEQ ID N0 1308 &lt;211&gt; LENGTH: 25 &lt;221&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggtcaaca agagttgccg ttgca 25 &lt;210&gt; SEQ ID N0 1309 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGNISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;400&gt; SEQUENCE: 1309 tggttcttac ttgcttgca taaactttcc a 31 </pre>		
tggttagaāg tcgtaacgtg gacc 24 <210 > SEQ ID NO 1308 <211 > LENGTH: 25 <212 > TFPE : DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer <400 > SEQUENCE: 1308 tggttcaaca agagtgccg ttgca 25 <210 > SEQ ID NO 1309 <211 > LENGTH: 31 <212 > TFPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer <400 > SEQUENCE: 1309 tggttctac ttgcttgca taaacttcc a 31 <210 - SEQ ID NO 1310 <211 > LENGTH: 31 <212 > TFPE: DNA <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Primer <400 > SEQUENCE: 1309 tggttctac ttgcttgca taaacttcc a 31 		
<pre>&lt;210&gt; SEQ ID NO 1308 &lt;211&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>	<400> SEQUENCE: 1307	
<pre>&lt;210&gt; SEQ ID NO 1308 &lt;211&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>		24
<pre>&lt;11&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>	cygeragaag cograacycy gaee	21
<pre>&lt;12-&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>	<210> SEQ ID NO 1308	
<pre>&lt;12-&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>		
<pre>&lt;13&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>	<212> TYPE: DNA	
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>		
<pre>&lt;400&gt; SEQUENCE: 1308 tggttcaaca agagttgccg ttgca 25 </pre>		
tggttcaaca agagttgoog ttgca 25 <li>&lt;210&gt; SEQ ID NO 1309 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 </li>	<223> OTHER INFORMATION: Primer	
<pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><li><pre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre><lpre>&lt;</lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></lpre></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre></li></pre>	<400> SEQUENCE: 1308	
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 	tggttcaaca agagttgccg ttgca	25
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 		
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 	<210> SEO ID NO 1309	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 <210> SEQ ID NO 1310 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 <210> SEQ ID NO 1310 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 </pre>		
<223> OTHER INFORMATION: Primer <400> SEQUENCE: 1309 tggttcttac ttgctttgca taaactttcc a 31 <210> SEQ ID NO 1310 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
tggttcttac ttgctttgca taaactttcc a 31 <210> SEQ ID NO 1310 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<pre>&lt;210&gt; SEQ ID NO 1310 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1310</pre>	<400> SEQUENCE: 1309	
<pre>&lt;210&gt; SEQ ID NO 1310 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1310</pre>	tggttettae ttgetttgea taaactttee a	31
<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310		
<220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310	<212> TYPE: DNA	
<223> OTHER INFORMATION: Primer <400> SEQUENCE: 1310	<213> ORGANISM: Artificial Sequence	
<400> SEQUENCE: 1310		
tggttgtagt teetgtagtt gttgeattaa e 31	<400> SEQUENCE: 1310	
	tggttgtagt teetgtagtt gttgeattaa e	31

- C	ont	- 1	nı	10	
0	OII.		TTC		<u> </u>

<210> SEQ ID NO 1311 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1311 tggtttgtca gaatcacgtt ctggagttgg 30 <210> SEQ ID NO 1312 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1312 tgtaaaagca gggctataat aaggactc 28 <210> SEQ ID NO 1313 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1313 29 tgtaaattcc gcaaagactt tggcattag <210> SEQ ID NO 1314 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1314 tgtaaccctt gtctttgaat tgtatttgc 29 <210> SEQ ID NO 1315 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1315 tgtaattaac cgaaggttct gtagaagtat g 31 <210> SEQ ID NO 1316 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1316 tgtacaagga ccattataat caatgcca 28 <210> SEQ ID NO 1317 <211> LENGTH: 31 <212> TYPE: DNA

-continued	

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1317	
tgtacaataa ggagtcacct tatgtccctt a	31
<210> SEQ ID NO 1318 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1318	
tgtacaccat ttatccacaa attgattggt	30
<210> SEQ ID NO 1319 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1319	
tgtaggcaag tgcataagaa attgataca	29
<pre>&lt;210&gt; SEQ ID NO 1320 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1320</pre>	
tgtcaatatg aaggtgctct gtggata	27
<210> SEQ ID NO 1321 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1321	
tgtcaccagc ttcagcgtag tctaataa	28
<pre>&lt;210&gt; SEQ ID NO 1322 &lt;211&gt; LENGTH: 19 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1322	
tgtcactccc gacacgcca	19
<210> SEQ ID NO 1323 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	cont	าทบ	ed

C	Jone mueu	
<400> SEQUENCE: 1323		
tgtcagctaa gctaataacg tttgtagag	29	
<210> SEQ ID NO 1324		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1324		
tgtcatcaag caccccaaaa tgaact	26	
<210> SEQ ID NO 1325		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1325		
tgtccgactt gacggtcaac atttcctg	28	
<210> SEQ ID NO 1326		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1326		
tgtccgactt gacggtcagc atttcctg	28	
<210> SEQ ID NO 1327		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1327		
tgtccgactt gacggttagc atttcctg	28	
<210> SEQ ID NO 1328		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1328		
tgtegeagea tetgtteetg e	21	
<210> SEQ ID NO 1329		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1329		
~ tgtctattgt cgattgttac ctgtacagt	29	
cycecacy cyartyreac erytacayr	4.2	

<210> SEQ ID NO 1330 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1330 tgtgaacatt tgcgacggta tacccat 27 <210> SEQ ID NO 1331 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1331 tgtgaagaac tttcaaatct gtgaatcca 29 <210> SEQ ID NO 1332 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1332 24 tgtgatatgg aggtgtagaa ggtg <210> SEQ ID NO 1333 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1333 tgtgatatgg aggtgtagaa ggtgtta 27 <210> SEQ ID NO 1334 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1334 tgtgcaggca tcatgtcata ccaa 24 <210> SEQ ID NO 1335 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1335 tgtgctgctt tcgcatggtt aattgcttca a 31 <210> SEQ ID NO 1336 <211> LENGTH: 22 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: </pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1336	
tgtgctggtt taccccatgg ag	22
<210> SEQ ID NO 1337 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1337	
tgtgctggtt taccccatgg agt	23
<210> SEQ ID NO 1338 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1338	
tgtgctttga atgct	15
<210> SEQ ID NO 1339 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1339	
tgtgcttttt ttgctgccat agcaaagc	28
<210> SEQ ID NO 1340 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1340	
tgtggccgat ttcaccacct gctcct	26
<210> SEQ ID NO 1341 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1341	
tgtgttgtcg ccgcgcag	18
<210> SEQ ID NO 1342 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	С	on	t	1	n	u	е	d

	-continued
<400> SEQUENCE: 1342	
tgttaacggc ttcaagaccc	20
<210> SEQ ID NO 1343	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1343	
tgttaagtgt gttgcggctg tetttatt	28
<210> SEQ ID NO 1344	
<211> LENGTH: 36	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1344	
tgttaatggt aaccettgte tttgaattgt atttge	36
5 55 5 5 5 5	
<210> SEQ ID NO 1345	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1345	
tgttactcac ccgtctgcca ct	22
<210> SEQ ID NO 1346	
<211> LENGTH: 14	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1346	
tgttactgct ggat	14
<210> SEQ ID NO 1347	
<211> LENGTH: 34	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1347	
	34
tgttcatgtt taaatgatca ggataaaaag cact	51
<210> SEQ ID NO 1348	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<220> FEALORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1348	
~ tgttccaata gcagttccgc ccaaattgat	30
-jaca goagooogo ooddacogac	

zinued	

<210> SEQ ID NO 1349 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1349 tgttctggat tgattgcaca atcaccaaag 30 <210> SEQ ID NO 1350 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1350 tgttcttgat acacctggtt tcgttttgat 30 <210> SEQ ID NO 1351 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1351 30 tgttgaaget gtacttgace tgattttacg <210> SEQ ID NO 1352 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1352 tgttgaccat gcttcttag 19 <210> SEQ ID NO 1353 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1353 tgttgtgccg cagtcaaata tctaaata 28 <210> SEQ ID NO 1354 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1354 tgtttgtgat gcatttgctg agcta 25 <210> SEQ ID NO 1355 <211> LENGTH: 33 <212> TYPE: DNA

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1355	
tgttttatgt gtagttgagc ttactacatg agc	33
<210> SEQ ID NO 1356 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1356	
tgttttgtat ccaagtgctg gtttacccc	29
<210> SEQ ID NO 1357 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1357	
tactcatgcc a	11
<210> SEQ ID NO 1358 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1358	
tattettegt t	11
<210> SEQ ID NO 1359 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1359	17
<pre>ttacttctaa cccactc &lt;210&gt; SEQ ID NO 1360 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1360</pre>	L /
ttaatctggc tgcggaagtg aaatcgt	27
<pre>&lt;210&gt; SEQ ID NO 1361 &lt;211&gt; LENGTH: 28 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	

-	cont	ınu	ed

-0	Olicinded
<400> SEQUENCE: 1361	
ttaccatctt caaatacccg aacagtaa	28
<210> SEQ ID NO 1362	
<211> LENGTH: 26	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1362	
ttaccgagca ggttctgacg gaaacg	26
<210> SEQ ID NO 1363	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1363	
ttacgccatc aggccacgca	20
<210> SEQ ID NO 1364	
<211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> FLATORE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1364	
ttactcaccc gtccgcc	17
<210> SEQ ID NO 1365	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1365	
ttactcaccc gtccgccgct	20
-	
<210> SEQ ID NO 1366	
<211> LENGTH: 34	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<2213> ORGANISM: Altilicial sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1366	
ttacttcctt accactttta gtatctaaag cata	34
<210> SEQ ID NO 1367	
<211> LENGTH: 17	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1367	
	17
ttacttctaa cccactc	17

-continued

<210> SEQ ID NO 1368 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1368 ttagaagtcg taacgtggac c 21 <210> SEQ ID NO 1369 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1369 ttagatgctt tcagcactta tc 22 <210> SEQ ID NO 1370 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1370 26 ttcaaaacct tgctctcgcc aaacaa <210> SEQ ID NO 1371 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1371 ttcaaaagtt gctcgagacc attg 24 <210> SEQ ID NO 1372 <211> LENGTH: 23 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1372 ttcaaaatgc ggaggcgtat gtg 23 <210> SEQ ID NO 1373 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1373 ttcaacaaga gttgccgttg ca 22 <210> SEQ ID NO 1374 <211> LENGTH: 28 <212> TYPE: DNA

-cont:	inued
--------	-------

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1374	
ttcaacactc tcacctacag ctttaaag	28
<210> SEQ ID NO 1375 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1375	
ttcaagtgct tgctcaccat tgtc	24
<210> SEQ ID NO 1376 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1376	
ttcaggtaca gcaggtggtt caggat	26
<pre>&lt;210&gt; SEQ ID NO 1377 &lt;211&gt; LENGTH: 23 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1377</pre>	
ttcaggtcca tcgggttcat gcc	23
<210> SEQ ID NO 1378 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1378	
ttcataagca atacctttac ttgcaccac	29
<210> SEQ ID NO 1379 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1379	
ttcattttct ggtccaaagt aagcagtatc	30
<210> SEQ ID NO 1380 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

						-	
-	C	on	t.	٦r	נור	ec	1

	-continued
<400> SEQUENCE: 1380	
ttccaagtgc tggtttaccc catgg	25
<210> SEQ ID NO 1381	
<210> SEQ 1D NO 1381 <211> LENGTH: 33	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1381	
ttccaccttg gatacctgga aaaatagctg aat	33
<210> SEQ ID NO 1382	
<211> LENGTH: 36	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1382	
ttccatttca actaattcta ataattcttc atcgtc	36
<210> SEQ ID NO 1383	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1383	
ttcccctgac cttcgattaa aggatagc	28
<210> SEQ ID NO 1384	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1384	
ttcgcgcatc caggagaagt acatgtt	27
<210> SEQ ID NO 1385	
<211> LENGTH: 15 <212> TYPE: DNA	
<212> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1385	
ttegetegee getae	15
<210> SEQ ID NO 1386	
<211> LENGTH: 18	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1386	
	10
ttegeteteg geetggee	18

-con	⊢ i	nu	ed
0011		II G	cu

<210> SEQ ID NO 1387 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1387 ttcggtataa cgcatcgcag ca 22 <210> SEQ ID NO 1388 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1388 ttcgtgctgg attttgtcct tgtcct 26 <210> SEQ ID NO 1389 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1389 ttcgtgctta gatgctttca g 21 <210> SEQ ID NO 1390 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1390 ttctgagcta aatcagcagt tgca 24 <210> SEQ ID NO 1391 <211> LENGTH: 23 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1391 ttctgcgaat caatcgcacg ctg 23 <210> SEQ ID NO 1392 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1392 ttctgcttga ggaatagtgc gtgg 24 <210> SEQ ID NO 1393 <211> LENGTH: 24 <212> TYPE: DNA

		-
-cont	nu	ed

	-continued
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1393	
ttetgggtga eetggtgttt taga	24
<pre>&lt;210&gt; SEQ ID NO 1394 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1394	
ttetteeaag gatagattta tttettgtte g	31
<210> SEQ ID NO 1395 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1395	
ttcttgaacg cgaggtttcg attg	24
<210> SEQ ID NO 1396 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1396	
ttgacatcgt ccctcttcac ag	22
<210> SEQ ID NO 1397 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1397	
ttgacatttg catgcttcaa agcctg	26
<210> SEQ ID NO 1398 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1398	
ttgacgtcat ccccaccttc ctc	23
<210> SEQ ID NO 1399 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	

-	C	0	n	t.	٦.	n	11	e	d

	-concinded
<400> SEQUENCE: 1399	
ttgacgttgc atgttcgagc ccat	24
<210> SEQ ID NO 1400 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1400	
ttgcaatcga catatccatt tcaccatgcc	30
<pre>&lt;210&gt; SEQ ID NO 1401 &lt;211&gt; LENGTH: 27 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer &lt;400&gt; SEQUENCE: 1401</pre>	
ttgcacgtct gtttcagttg caaattc	27
<210> SEQ ID NO 1402 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1402	
ttgcacgtct gtttcagttg caaattc	27
<210> SEQ ID NO 1403 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1403	
ttgcatcggg ttggtaagtc	20
<210> SEQ ID NO 1404 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1404	
ttgccacttt gacaactcct gttgctg	27
<210> SEQ ID NO 1405 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1405	
ttgccatagc aaagcctaca gcatt	25

-continued

<210> SEQ ID NO 1406 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1406 ttgccattca tggtatttaa gtgtagcaga 30 <210> SEQ ID NO 1407 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1407 ttgcgccata cgtaccatcg t 21 <210> SEQ ID NO 1408 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1408 25 ttgcgttgca gattatcttt accaa <210> SEQ ID NO 1409 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1409 ttgctgccat agcaaagcct acagc 25 <210> SEQ ID NO 1410 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1410 ttgctgcttt cgcatggtta atcgcttcaa 30 <210> SEQ ID NO 1411 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1411 ttgctgcttt cgcatggtta attgcttcaa 30 <210> SEQ ID NO 1412 <211> LENGTH: 27 <212> TYPE: DNA

-00	ontinued
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1412	
ttggacctgt aatcagctga atactgg	27
<210> SEQ ID NO 1413	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1413	
	22
ttggccatca gaccacgcat ac	22
<210> SEQ ID NO 1414	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1414	
ttggccatca ggccacgcat ac	22
<210> SEQ ID NO 1415 <211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1415	
ttggcgacgg tatacccata gctttata	28
<210> SEQ ID NO 1416	
<211> LENGTH: 17 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1416	
ttggtgcgct tggcgta	17
<210> SEQ ID NO 1417	
<211> LENGTH: 32 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1417	
ttggttetta ettgttttge ataaaettte ea	32
<210> SEQ ID NO 1418	
<211> LENGTH: 35 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	

<400> SEQUENCE: 1418	
ttgtacattt gaaacaatat gcatgacatg tgaat	35
<210> SEQ ID NO 1419 <211> LENGTH: 23 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1419	
ttgtcagact catcgcgaac atc	23
<210> SEQ ID NO 1420 <211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre>&lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer</pre>	
<400> SEQUENCE: 1420	
	28
ttgtgatatg gaggtgtaga aggtgtta	20
<210> SEQ ID NO 1421 <211> LENGTH: 26	
<211> HENGIA: 20 <212> TYPE: DNA	
<pre>&lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE:</pre>	
<223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1421	
ttgtgattgt tttgcagetg attgtg	26
<210> SEQ ID NO 1422	
<211> LENGTH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1422	
ttgtggccga tttcaccacc tgctcct	27
<210> SEQ ID NO 1423	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1423	
ttgttaacgg cttcaagacc c	21
<210> SEQ ID NO 1424	
<211> LENGTH: 32 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Primer	
<400> SEQUENCE: 1424	
ttgtttattg tttccatatg ctacacactt tc	32

-cont	inued
COILC	LIIUCU

<210> SEO ID NO 1425 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1425 tttaagcgcc agaaagcacc aac 23 <210> SEQ ID NO 1426 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1426 tttacctcgc ctttccaccc ttacc 25 <210> SEQ ID NO 1427 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1427 29 tttagctact attctagctg ccatttcca <210> SEQ ID NO 1428 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1428 tttatgacca gcttcggtac tactaaa 27 <210> SEQ ID NO 1429 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1429 tttatggtct atttcaatgg cagttacgaa 30 <210> SEQ ID NO 1430 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (23)...(23) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (32)...(32) <223> OTHER INFORMATION: I

<400> SEQUENCE: 1430		
tttcaatacc tttatgcaac tttgtatcaa ctggaat	37	
<210> SEQ ID NO 1431 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1431		
tttcacagca tgcacgtctg tttcagttgc	30	
<210> SEQ ID NO 1432 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1432		
tttccccgat ctaaatttgg ataagccata ggaaa	35	
<210> SEQ ID NO 1433 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1433		
tttccgatgc aacgtaatga gatttca	27	
<210> SEQ ID NO 1434 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1434		
tttcgtgctt agatgctttc ag	22	
<210> SEQ ID NO 1435 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1435		
tttettgaag agtatgaget geteegtaag	30	
<210> SEQ ID NO 1436 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer		
<400> SEQUENCE: 1436		
tttgcacctt accgccaaag ct	22	

-cont	1 1110	a
COLLC	TITUC	9

<210> SEQ ID NO 1437 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1437 tttgctcatg atctgcatga agcataaa 28 <210> SEQ ID NO 1438 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1438 tttgctctcc gccaaagttt ccac 24 <210> SEQ ID NO 1439 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1439 28 tttggacctg taatcagctg aatactgg <210> SEQ ID NO 1440 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1440 tttgtgaaac agcgaacatt ttcttggta 29 <210> SEQ ID NO 1441 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 1441 ttttccagcc atgcagcgac 20 <210> SEQ ID NO 1442 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (29) ... (29) <223> OTHER INFORMATION: I <400> SEQUENCE: 1442 ttttcccttt atgcaactta gtatcaactg gaat 34

```
-continued
```

<210> SEO ID NO 1443 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEOUENCE: 1443 ttttgctcat gatctgcatg aagcataaa 29 <210> SEQ ID NO 1444 <211> LENGTH: 2118 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Concatenation of A. baumannii genes <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 447-486, 778-817, 1162-1201, 1495-1534, 1928-1967, 2115-2118 <223> OTHER INFORMATION: n = A, T, C or G <400> SEQUENCE: 1444 cgcgcggtaa aactaaagaa gaagatatag cattagaaaa agatttgctg tctgatgaaa 60 aagagattgc tgaacattta atgctgattg atcttgggcg aaacgatgta gggcgtgtat 120 cgaaaatagg taaagtccaa gtcacggatc aaatggtgat cgagcgttat tcacatgtca 180 tgcatattgt ttcaaatgta caaggtgaag tgcgtgatga tatcgatgca cttgatgtat 240 ttaaagccac ctttccagca ggaacgttat caggtgcccc aaaaattcgt gcaatggaaa 300 ttattgatga agtagaacct gtgaaaaggg gagtttttgg cggggctgtt ggttatttgg 360 gatggcatgg tgaaatggat atgtcgattg caatccgtac ttgtgttatc cgtgataaaa 420 aggtgtatgt acaggctggt gcagggnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn 480 nnnnnnggaa tetggeggtt tagttteaga tgaacteatt ateggtttag taaaagaacg 540 tattgetcaa cetgactgeg tgaatggttg tattttegae ggetteceae geactattee 600 tcaagcagaa gctttggaaa aagaagggat cagcattgat catgtaattg aaattgatgt 660 acctgatgaa gaaatcgtaa aacgtctttc tggtcgtcgt cagcatcctg cttctggtcg 720 tgtttatcac gttgtataca atccacctaa agtggaaggt aaagatgatg tcacaggnnn 780 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnncgt tcaaccgtgt aaaattacgt 840 aaccttaaaa ctggtaaagt tttagaaaaa acttttaaat ctggtgatac tttagaagct 900 gctgacatcg tagaagtaga aatgaactac ctatacaacg atggcgaaat gtggcacttc 960 atggacccag aaagcttcga acaaattgca gctgacaaaa ctgcaatggg tgatgctgct 1020 aaatggttaa aagacgactc aaatgaaaca tgtacaatca tgttattcaa cggcgttcct 1080 ttaaacgtaa atgcacctaa cttcgttgta ttgaaagttg ttgaaactga tccgggcgta 1140 1200 ntcgtgcccg yaatttgcat aaagctgccg gccttgtagc acagcaaggc aaatttcctg 1260 aaactctaga agaatggatt gcactacccg gcattggtcg ctcgaccgca ggtgcactca 1320 tgtctttagg tttacgtcag tatggcgtga ttatggatgg caacgtgaaa cgcgttttag 1380 cccgtttctt tgccattgaa gatgacttaa gcaaaccaca gcacgaacgt gaaatgtgga 1440 aactggctga agagctttgt cccacccaac gcaatcatga ctacactcaa gcgannnnn 1500

nnnnnnnnn nnnnnnnnn nnnnnnnn nnnnttaaaa acactagogg taagottaaa	1560
caagattgcc aatgatattc gttggttagc aagtggtcca cgttgcggct tcggcgaaat	1620
ccgtattcct gaaaatgaac ctggttcaag tatcatgcca ggtaaagtga acccgactca	1680
aagtgaagcc atgaccatgg ttgttgctca agtacttggc aacgatacca ctattaatgt	1740
cgctggtgct tctggtaact tcgagctcaa tgtatttatg ccagtgattg cttataactt	1800
actgcaatct attcagttgc ttggtgatgc atgtaatagt tttaatgatc actgtgcagt	1860
agggatcgag ccaaatcgtg agaaaattga tcatttcttg cataattctc ttatgttagt	1920
tacggcannn nnnnnnnnn nnnnnnnnn nnnnnnnccc ggttatgtac	1980
caaatacttt gtctgaagat ggtgacccat tagacgtact tgttgtaact ccacatcctg	2040
ttgctgccgg ttctgtaatt cgttgccgcc cagtgggcaa attaaacatg gaagacgacg	2100
gtggtatcga tgccnnnn	2118
<pre>&lt;210&gt; SEQ ID NO 1445 &lt;211&gt; LENGTH: 102 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Calibration Polynucleotide </pre>	
<400> SEQUENCE: 1445	
tttaagtccc gcaacgagcg caaccettga tettagttgt ttagttggge actetaaggt	60
gactgeeggt gacaaacegg aggaaggtgg ggatgaegte aa	102
<210> SEQ ID NO 1446 <211> LENGTH: 94 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	
<400> SEQUENCE: 1446	
tagaacaccg atggcgaagg cgactttctg gtctgtaact gacactgaga aagcgtgggg	60
agcaaacagg attagatacc ctggtagtcc acga	94
<210> SEQ ID NO 1447 <211> LENGTH: 108 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	
<400> SEQUENCE: 1447	
tggattagag accctggtag tccacgccgt aaacgatgag tgctaagtgt tagaggcctt	60
tagtgetgaa gttaacgeat taageaetee geetgggggag taeggeea	108
<pre>&lt;210&gt; SEQ ID NO 1448 &lt;211&gt; LENGTH: 108 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Calibration Polynucleotide </pre>	
<400> SEQUENCE: 1448	<u></u>
tttcgatgca acgcgaagaa ccttaccagg tcttgacatc ctctgacaac cctagcttct	60

ccttcgggag cagagtgaca ggtggtgcat ggctgtcgtc agctcgta	108
<210> SEQ ID NO 1449 <211> LENGTH: 95 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	
<400> SEQUENCE: 1449	
tctgacacct gcccggtgct ggaaggttaa ggagaggggt tagcgtaact ctgaactgaa	60
gccccagtaa acggcggccg taactataac ggtca	95
<210> SEQ ID NO 1450 <211> LENGTH: 117 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1450	
totgttotta gtacgagagg accgggatgg acgcaccggt accagttgtt otgccaaggg	60
catagctggg tagctatgtg cggaagggat aagtgctgaa agcatctaag cacgaaa	117
<210> SEQ ID NO 1451 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	
<400> SEQUENCE: 1451	
<400> SEQUENCE: 1451 tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgttc	60
	60 100
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgttc caggattaat tgcaaataca attcaaagac aagggttaca <210> SEQ ID NO 1452 <211> LENGTH: 112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgttc caggattaat tgcaaataca attcaaagac aagggttaca <210> SEQ ID NO 1452 <211> LENGTH: 112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
tgattattgt tateetgtta tgeeatttga gattttgag tggtattgga gttattgtte caggattaat tgeaaataca atteaaagae aagggttaea <210> SEQ ID NO 1452 <211> LENGTH: 112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1452	100
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgtc caggattaat tgcaaataca attcaaagac aagggttaca <210> SEQ ID NO 1452 <211> LENGTH: 112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1452 tcgaagtaca atacaagaca aaagaaggta aaattactgt tttaggggaa aaattcaaga	100
tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgtc caggattaat tgcaaataca attcaaagac aagggttaca <211> SEQ ID NO 1452 <211> LENGTH: 112 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1452 tcgaagtaca atacaagaca aaagaaggta aaattactgt tttaggggaa aaattcaaga aatatagaag tgatggctaa aaatgtagaa ggggtcttga agccgttaac aa <210> SEQ ID NO 1453 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide	100
<pre>tgattattgt tatcctgtta tgccatttga gatttttgag tggtattgga gttattgtc caggattaat tgcaaataca attcaaagac aagggttaca &lt;&lt;10&gt; SEQ ID NO 1452 &lt;11&gt; LENGTH: 112 &lt;12&gt; TYPE: DNA &lt;13&gt; ORGANISM: Artificial Sequence 220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Calibration Polynucleotide &lt;400&gt; SEQUENCE: 1452 tcgaagtaca atacaagaca aaagaaggta aaattactgt tttaggggaa aaattcaaga aatatagaag tgatggctaa aaatgtagaa ggggtcttga agccgttaac aa </pre>	100 60 112

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1454 tagettttge atattatate gageeacage ategtgatgt tttacagett tatgeacegg 60 aagcttttaa tggataaatt taacgaacaa gaaataaatc tatccttgga agaa 114 <210> SEQ ID NO 1455 <211> LENGTH: 116 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1455 tgacctacag taagaggttc tgtaatgaac cctaatgacc atccacacgg tggtggtgaa 60 ggtagatete etateggaaa gteeacgtae teeatggggt aaaccageae ttggaa 116 <210> SEQ ID NO 1456 <211> LENGTH: 70 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1456 tccacacggt ggtggtgaag gtagatetee tateggaaag tecaegtaet eeatggggta 60 70 aaccaqcaca <210> SEQ ID NO 1457 <211> LENGTH: 82 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1457 ttatcgctca ggcgaactcc aacctggatg atgaaggccg ctttttagaa ggtgacttgt 60 82 cgtagcaaag gcgaatccag ca <210> SEQ ID NO 1458 <211> LENGTH: 87 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1458 tgggcagcgt ttcggcgaaa tggaagtggc tcgaagcgta tggcgcttcg tacgtgctgc 60 aggaaatgtt gaccgtcaag tcggaca 87 <210> SEQ ID NO 1459 <211> LENGTH: 97 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1459

tcaggagtcg ttcaactcga tctacatgat ggccgaccgc ccgggggttcg gcggtgcaga	60											
ttegteaget ggeeggeatg egtggeetga tggegta	97											
<210> SEQ ID NO 1460 <211> LENGTH: 117 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide												
<400> SEQUENCE: 1460												
tetggeaggt atgegtggte tgatggeeaa teeatetggt egtateateg aaetteeaat	60											
caagtttccg tgaaggttta acagtacttg agtacttcat ctcaacccac ggtgcga	117											
<210> SEQ ID NO 1461 <211> LENGTH: 98 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide												
<400> SEQUENCE: 1461												
tcaagcaaac gcacaatcag aagctaagaa agcgcaagct tctggaaagc acaaatgcta	60											
gttatggtac agaatttgca actgaaacag acgtgcaa	98											
<210> SEQ ID NO 1462 <211> LENGTH: 99 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Polynucleotide <400> SEQUENCE: 1462												
tccacacgcc gttcttcaac aactaccgtg ttctacttcc gtacgacgga cgtgacgggc	60											
tcgatcgagc tgccgaagga caaggaaatg gtgatgcca	99											
<210> SEQ ID NO 1463 <211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence												
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:												
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence	60											
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence <400> SEQUENCE: 1463	60 111											
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence <400> SEQUENCE: 1463 tcgtggcggc gtggttatcg aacccatgct gaccgatcaa tggtacgtgc acaccgcccc ccaaagtcgc gattgaagcc gtagagaacg gcgacatcca gttcgtaccg a <210> SEQ ID NO 1464 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Combination Calibration Polynucleotide												
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence <400> SEQUENCE: 1463 tcgtggcggc gtggttatcg aacccatgct gaccgatcaa tggtacgtgc acaccgcccc ccaaagtcgc gattgaagcc gtagagaacg gcgacatcca gttcgtaccg a <210> SEQ ID NO 1464 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Combination Calibration Polynucleotide <400> SEQUENCE: 1464	111											
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence <400> SEQUENCE: 1463 tcgtggcggc gtggttatcg aacccatgct gaccgatcaa tggtacgtgc acaccgcccc ccaaagtcgc gattgaagcc gtaggagaacg gcgacatcca gttcgtaccg a <210> SEQ ID NO 1464 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Combination Calibration Polynucleotide <400> SEQUENCE: 1464 gaagtagaga tatggaggaa caccagtggc gaaggcgact ttctggtctg taactgacac	60											
<211> LENGTH: 111 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Calibration Sequence <400> SEQUENCE: 1463 tcgtggcggc gtggttatcg aacccatgct gaccgatcaa tggtacgtgc acaccgcccc ccaaagtcgc gattgaagcc gtagagaacg gcgacatcca gttcgtaccg a <210> SEQ ID NO 1464 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Combination Calibration Polynucleotide <400> SEQUENCE: 1464	111											

agtnoggoog caaggotga actoacagga attgacoggg geactaggi gengentigi       240         gtttaattog aageacagg aagacetta eeaggotgi geatgagt getoegge       300         cttoteette gegagoagg tgacoggig tgaciggit geatggit getoegge       300         atgtigget aageeeagg tgacoggig tgaciggit gestoggit getoegge       420         ctaagitgee tgeoggigae aaceeggig aagiggigg tgacigaaag gateetgaaa       640         cegtacogi gaggaaagg tgaaaggeae eegitaaegg geatgaagg gategaagga gategaagga       640         getgigtet agtoegga getgiaagge eegitaaeg geatgaagg       640         getgigtet agtoegga getgiaagge eegitaaegg gategaagga       640         getgigtet agtoegga getgiaagge eegitaaegg gedetgaagg       720         ceadategg gegetge eegitaaegg gegetgee eegitaaegg gegetgee       900         getaaggeta eefitaaeg geggetgee tagtoegga getaagge       900         egitacogit tgetoege aggeetgee eegitaaegg gegetaget geggaga gataagge       900         egitacogit tgetoege aggeetgee eegitaaegge gegatageg       900         egitacogit tgetoege aggeetgee eegitaaegge gegatageg       900         egitacogit tgetoege aggeetgee eegitage gegatageg       900         tergaacet tageotge gedeagge gegatage       900         tergaaage taggeagae eegitage gegatage       900         tergaaage taggeetge eeagge gegatege       900         tergaaage taggeetge eeaggee gegegage       900 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
ctttctortt gyggagaag tgacaggig tgacaggitg tootgatt tootagt gytggaga atgitgggit agtocogna acgagogaa contract tagttgitta gitgggaat (caaggiga tgooggiga aggigggag gaoggigga tgacgicaa toatoatgoo (caagtacog gaoggaaag tgaaagga contgatot tagttgitta gatggaacog cooptigoca tagtnagag toaaaggig gatggaggi gacgicaag accordgaa gitggitti gaaaggatg tgaaaggig gitgaggog gotgaaggig gatgaagga gitggitti gaaaggatg tgaaaggig gotgooggi gottitgga aggigaaggi gitgggaa dtofgaatg gitggaggi googgo gottitgt aggigaaggi gitgggaa dtofgaatg aggococag accordga ta aggocogo gotgatata agatooga gyggggaaggi tgaggogi gotaggaggi taggagga gitggitti gaaaggatg tgagggiga aggoggga gygaaggi aggagoco gytaocag tigttofgaatg aggococag accocagi taggogaaggi taggagoco gytaocag tigttofgaatg aggococag acgocoggi atggaaggi aggagoco gytaocag tigttofgaatg aggococag aaggogga gygaacag gaaaacaa gaaaggaa looo tiggaagaa gaattigg gaggigta taggagga gytaaacaa goaaggaa laacagaag taggaaggi gococota agatggaga agtaaacaa gaaaggaa looo titgoaacg aagaaggi gococota agatggaga agtaaacaa gaaaggaa laacagaag tagaaago gaagtacot atgoogga aggacogaa laacagaag tagaaago gaagtacot agatgaaga agtaaacaa gaaaggaa laacagaag tagaaaga gaataata tagaagta tagaacga gotatta tagaagaa laacagaaa tagaaaga gaataaat tatootigg agaactaa agataga gytggaag laaggogaa laaaaa cagaactaa cagaactaa agaagtga gytagaaggi gotggaag laaggagaa ttaagaagta codggogg gitggitat gagagagg gytggaaga laaggagaaa taagaaagt gocogigggi giggitata gaacoacga togtgaaga laaggacaa gaataaat tagaagtga tgotaaaa tgagagaac gagagaac laaggaaaa tagaaaaa aagaagt gotggaag ggaacag goggaaca lisoo agticgicc taacagaac gocaactac acatggag gigaacag goggaacc lisoo agticgicc taacagaac gigaactag gigaagag ciggaacaag cordigaag lisoo cacaactai gigtecogig sigaacaa gaggaac gaagaaca goggaacca lisoo cacaactai gigtecogig aggigac taaccacg gaagaaca gagagaaca lisoo cittaactaa gittaaaca gigaaggi taacgaactaa cactagga gigaacaaca lisoo acticaac aagticogi gaaggiaag taaccatacaacatgig gigaacaaca gaagcaaca aggigaatag tigaagga taacacat caacacaaca lisoo cittaaccaa citiggagg agagataac tacgaaggig	agtacggccg	caaggctgaa	actcaaagga	attgacgggg	cacaagcggt	ggagcatgtg	240		
argtryggtt agtoccqca acggoggaa cocttgatot tagttgtta gttggoatt 420 ctaaggtgat tgooggtgae aaxooggagg aggtgggg gagtgaagg gatcatage cogtgtgoca tagtoagag cogttaacgg gtgatggog gagtgaagg gatcatage gegagtata agatocgtag tcaaaggg acagcocgc acctggt aaggtoccaa agtgtgtat gaaaggatg tggatget tagacaca googcoagt aaggtagaa ggtgggatat agatocgtag tcaaaggg acagcocgg cogtacta aggtoccaa agtgtgtat gaaaggatg tggatget tagacaca googcoagt aaggtagaa ggtaggaaa gaaattag ggggtgaca ctgocoggt ctggaaggt aaggacgg ggtagcaa ctetgaacg aggcocagt aaggogg ggtaggag ggatagag ggtagcgaa gaaattaga aggcocagt aaggogg cgtaactat acggtoctaa atcagaagc tagacaga ggaagtgg caggtagg cgtaacaa cogsaagga ggtagcaag gaaattag aggcatge tagacaca aggtagagg ggatagag ttggaagca gaaattaga aggcatge tagacaca acgtaggag ggataagt gaacagaa gaaattaga aggacaga taggtaga cgtaaaacaa gcaaacga ttggaaggca caagacg gaagtggg aagttgga aggttgga gagtatagag ttggaagga gaaattaga ggococcta agatgagga gataatacaa gcaaagga 1000 ttgaaagcat taagaagg gaaagttg taagaagg aggtaaga gtaaaacaa gaagacga gaaataaac taccttgg aggacaga aggtatag gi gaaggcaa gaaataaac taccttgga agaccaa aggtatga ggtgaaga 1220 aatcagaaa taagaacaa gaagtacat aacacgga ggtatgataa 1220 gaaggogaa gaaataaac taccttga agaccaa gaagtatta ggataaat 1220 ataggaacaa gaaataaac taccttga agaccaa agacaacag tacgga ggtatgata 1220 gaagagcat gaaacaacg agtacata caagacaaa gaaggtaaa ttactgttt 1380 agggagaaaa taagaacaa dagactaa caagacaaa gacgaacg ggagaac gi 1520 atggaagcog tgtatgg accetcg ccaaaga gcgaactoc aacctggatg 1620 atggaagcog cattataaga gggacttg cgtagcaaag ccgtagagac 1640 cgtaacag tgtatggo accgtgog cgtgttat gaaccaactg thgtgaag 1620 atggaagcog ctittagaa ggtgacttg cgtagcaaa gcgaactog acctggaag 1620 atggaagcog ctittaga ggtgacttg cgtagcaa accggaac ggagaac 1640 caaaactag cgtgotcgf gtgaccaag aaggacag gcgaactoc aacctggatg 1620 atggaagcog tataaaac gtgaagga taaccacg gaagaac cotgttag 1620 atgaagcog tataaaaca gtgaagga taaccacg gaagacaa 1640 caaaactag cgtgotcgf gtgagac taaccacg gaagacaa 1640 caaaactag cgtgotcgf gaggtaca caactacg gaagacaa 1640 caaactag cgtgotgga ggagta taccaca	gtttaattcg	aagcaacgcg	aagaacctta	ccaggtcttg	acatcctctg	acaaccctag	300		
ctaaggigac igocogigac aacogogag aaggigggga igacgaaa caacagoo 480 coagtacogi gaggaaaggi gaaaagoo cooggaaggi gagigaaaga gatotigaaa 540 cogigogoo aagtoogiga cogitaacogi gigaiggoo gootogaa gagicooga aaggicooga gogagitata agatoogia gaggaaggig daacagoooga cogocoagoi aaggigooga 660 agigigitata agatoogia gaggigagoo cigocoogi cigaaagacoogi aaggicooca 660 agigigitat gaaaaggat gigagitigoi tagacaata ggaigitigoi tagaagacoogi gigaaggaa cootogaaci gaaggooogo cigaacata aggicoogi aaggagaggi 700 gitagogaaa gaaattaga gaggacgigo cigaacaca gaggacoogi atggaaggoo 900 cigaacaag tigttociga aggicacagi taggagago gigaaaada gagaacaga 900 tigaangcato taagcatga goococcoo agatgagago agtaaaacaa gcaaacgcac 900 cigaaagaat taagaagag coagottoig gaaggacaa atgotagita tigigagaagaa 1000 titgaangcat taagaagag coagottoig gaaggacaa atgotagita tigigagaagaa 1000 titgaaaga taagaagag caagottoig gaagacaa atgotagita tigigagaagaa 1000 titgaaaga taagaaaga caagacagi goococco agatgaaga gaataatata 1140 gagcoacago atogigagi titacagoti tatgoacogi aggitaagag gigataagita 1200 taacgaacaa gaaataaato tatootiga agacataa gaagtaaagaa 1200 aatagaaaa taagaagag caagtacaa caagacaaa gaagtaaa ttacigatti 1380 aggigagaaa attaaac caacaaca caagacaaa gaagtaaa tacigaagaa 120 gaagaqogat gaaacaacag aggicacaa tagaaaga gigagaaga gifaaaga 120 gagagootaa ticagaaaa atagaagig cigigitato gaaccaag gaaggigaaag 120 atgigaacag tigatagoo cocaagtog cigigitato gaaccaag cigacgaaga 120 atgigaagoo taacaagaa gigaacata caagacaaa gaaggiaaa ticatgaaga 120 atgigaacgig cacacego cocaaagtog cigigitato gaaccaag cigacgaaca 1500 atgigaacgig cigidagaag aggaactag cigaagaac gigagaaaca 1600 caaaacatai cigicacoig cigaagaa acagaaga gigaagaaca 2000 agaaqoog tittitagaa gigaactig tiatogoo giaagaacaa googaaccaa 1600 cattooaac aggitaga gigaagaca atagaaga gicacaaga gigaaccaa 1600 acttooaac aagttogoi gigagaagac acagaagaga gicacaaga gigaaccaa 1600 acttooaac aagttogoi gigagaagaca acagaagaaga gicacaaga giaaccaaa 1600 acttooaac acgigaga gitaagaca acagaagaga gicacaaga gicaccaaga gigaaccaaa 1600 acttooaac acgigaga gitaagaca acagaagaga	cttctccttc	gggagcagag	tgacaggtgg	tgcatggttg	tcgtcagctc	gtgtcgtgag	360		
ccagtacogt gagggaaagg tgaaaagca ccoggaaggg gagtgaagg gatcotgaa cogtgtgoca tagtcagag cogttaacg gtgatggogt goctttgta gaatgaacog gogagttata agatcogtag tcaaaagggatgaacacta ggatgtgogt tagaagacg gotgagtata agatcogtag tcaaaagggatgacac tigocoggt otggaaggt aaggaaggg gttagogta ctotgaactg agococagt aagoggog ogtaatata aggtacgag 720 ccaccattt aaggatatag ggggtgaca otgocoggt otggaaggt aaggaaggg gttagogta ctotgaactg aagococagt acogocagt aggagcogg atggaagga gttagogta ctotgaactg aagococagt acogocagt otggaaggt aggaagogg gttagogta ctotgaactg aggagotgto ottagtacga gaggacogg atggaagga ggtaccagt tyttotgoca agggcatago tgggtagac atgaacaca gcaacogcac lo20 aatcagaagg taagaagog caagottotg gaaggacaa atgocaga tggaagaat tugoaacat taagaaggg gotgotgta aattigoga aggttata tggacagaa tatggaaca gaaataaato tatoottgga agaacttaa gatcacagga tggtaggag gaaggogat gaaaacaacg aagtacaat caagacaaa gaaggtaaat tacig gaagggaaaa ttaagaagga agatcaat caagacaaa gaaggtaaa ttacig gaaggagat gaaaacaacg aagtacaat caagacaaa gaaggtaaaa tacigtgag gaaggogat gaaaacaacg aagtacaat caagacaaa gaaggtaaa tacigtgaag itugaagac tgtatagga agtacaat caagacaaa gaaggtaaa tacigtgag igutagogta gaaaacaacg aagtacaat caagacaaa gaagtaaaa tacigtga igutagoga tgaaaacaacg aagtacaat caagacaaa gaaggtaaa tacigti igugggaaaa ttcaagaaa atgaagtga tgotgocag ogtagaac gi atggaaggo gttatagga gogacatgo gatgatga cgtagaaga gi atggaaggo ctittaga gigaactig cgtagaaga gogaaccaa ifoo atggtacgt gaaaacaacg ggaactig cgtagaaga gogaacaa goggaacaa ifao atgaaggo citttaga gigactig cgtagcaag gogaacaag cotgittaga ifao cacaactatg cgtactogig gigacagi aacgatata caatacatgi gaagacaga gogagtacaa ifao cacaactatg cgtactgig tigaagga taacatac gagagacag gogaatacag ifao cattacaa agtitcogi gaagtaga tacoatgi gaagacaga gogagtacaa ifao acttocaac aagtitcogi gaagtaga tacaatgi gaagcaga gigagaccaa ifao acttocaac aagtitcogi gaagtaga tacoatgi gaagacaga gigaagcaca ifao acttocaac aagtitcogi gaagtaga tacaatgi gaagcaca gaaccaca ifao acttocaac aagtitcogi gaagataga tcocagaag gitciga gaaccaca ifao	atgttgggtt	aagtcccgca	acgagcgcaa	cccttgatct	tagttgttta	gttgggcact	420		
ccgtgtgoca tagtcagage ccgttaacgg gtgatggoct geettttgta gaatgaaceg 600 gegagttata agateegtag teaaaaggga acageeegg acegeeaget aaggteeega 660 agtgtgtatt gaaaaggatg tggagttget tagacaacta ggatgttgge ttagaageag 720 ecaceattta aagattatag ggggtgaeae etgeeeggt etggaaggt aaggtagegga 780 gttageegtaa etetgaacegt aageeeegg etggaaggt aaggaeegg 780 gttageegtaa etetgaaegt aageeeegg etggaaggt aaggaeegg 960 eggtaeegga gaaattgag aggagetge ettagtaega gaggaeegg atggaegeae 900 eggtaeegaa gaaattgag aggagetge ettagtaega gaggaeeegg atggaegeae 900 eggtaeegaa gaaattgag aggagetge ettagtaega gaggaeegg atggaeegae 960 tgaaageat taageatgaa geeeeeeta agatgagge agtaaacaa geeaacegea 1020 aateegaage taggaageg eagettetg gaaageae agetatge atgtaeagaa 1080 ettigeaacga ateggaage geatgetgg aaattgega agetttge atattate 1140 gageeecaeg ateggaggt geatgetgt aaattgega agetttee atattate 1140 gagegeagat gaaacaaeg agaeettee gaegage eggtettet atggaaggag 1260 atatgaaaaa taggataaa eageeetae aacaeegga egateetta tetgaagag 1220 gaagaegeg gaaacaaeg aageteetae aacaeegga egateetta tetgaagag 1260 atggaagaa tteaagaat atagaagga ggetagetae gaaceeag tgaegaae 1500 aggeggataa atee gegaaettee taeeeetgga eggeaaee ggegaatee 1500 atggtaeegt gaaacaaeg ageeette gegegaaee ggegaatee 1560 agttegteee taaeeage ggeaeteeg eggagettee gaeegagae 1660 eecaaetaeg eggeaetteg ttategee ggegaaetee aceetggae 1660 eecaaetaeg eggeaette getageaga gegaateag eetgaegae 1740 tgatgaegge gtataaaa aggagetge taaeegaaa gegaaceag eeggagatee 1660 eecaaetaeg eggeaette getageega taaeetae gaageega gagataeeag 1740 tgatgaegge gtataaaae gttgaageega taaeetae eacetgg gagataeeag 1860 eetteeteg etgetgetg gaagetta eagtaega gaageeag gagataeeag 1860 eetteeteg etgetgetg gaagetta aeagtaega gaageega gagataeetag 1860 eetteeteg etgetggt gaagetta eagtaetga gaageeag gagataeetag 1860 eetteeteg etgetggtg gaagette gaageega teaetteete tetaeegaag 1920 gtgeegetaa aggteatgg gaagetage taeettaee gaageeag gagataeetaga 1860	ctaaggtgac	tgccggtgac	aaaccggagg	aaggtgggga	tgacgtcaaa	tcatcatgcc	480		
gegagtitata agatoogtag toaanaggga aacagoocag acogocagot aaggtococaa 660 agigigigitati gaaaggatg iggagtigot tagaacacta ggatgtiggo ttagaagcag 720 coaccattita aagattag ggggtgacac cigocoggi cigaaagtat aaggaagagg 780 gitagoogtaa ototgaactig aagoocoag aacogoogo cigaactata acogicocaa 840 gitagoogtaa dottgaactig aagoocoag aacogoogo cigaactata acogicocaa 840 gigtagoogaa gaaattigag aggagotigo citagitacga gaggacoggi atggaogoao 900 ciggtaccagt igitotigoca aggootago tiggitagota tigigoogaag ggataagtigo 960 tigaaagoot taagoatga goocococoa agatgagago agtaaaacaa gooaacogoao 1020 aatoogaac taagaaagog caagottotig gaaagcacaa atgotagita tigigoogaag 1020 taacgaacag acogiggatgi titacogoti tagoocog aagottigo atattatat 1140 gagoocacago atogigagi goatgotigi aaattigoga agottito atattatat 1140 gagoocacago atogigagi titacogoti tagoocog aagottaga tigigagaagi 1220 taacgaacaa gaaataaac cagoocato acootigga cigattoti tigaagaag 1220 gaagagogat gaaacaacg aagtacaata caagacaaa gaaggtaaaa tiacigitti 1380 aggggaaaa toaagaatag aggacotigo gotiggitato gaaccatig tagoogaac 1500 atagaacag tigitatgoga acogiggog ciggigitato gaaccaag cigagagaac ggogaatco agtoogo ciccaaagta gigaactig cigaagoag gogaacoca acoolgaag 1620 atgaagoog cittitaga ggigactigi cigaagoag gogaacoa acoolgaag 1620 atgaagoog cittitaga ggigactigi cigagoaga goggaacoa googaacoc aacoolgaa 1620 ciccaactaig cigooco cocaaagto gotagoaga goggaacag codigitago 1740 tigatgacogo gitataaaa cigoacati ciacactigi cigaagoaga goggaacca 1600 cictaaccag cigotogi gigocaaga acogigaat acaatoti tigigitogoag 1740 tigatgacogo giaataaaca gitagaagoa tiaaccatig cigaagoag gagatacaag 1800 cittaactoa gotgoogi gaagaagat acogi aagataa ciacoogi gigotacaag 1820 gigoogitaa aggicatgog agaagata caadaagag gitactaat ciacoociga 1920 gigoogitaa aggicatgog agtaagact acogitagag gitactaa cigaacocaga gigataccaa 1980 acticocat aagitoagga agatagaac acogitagag gitactaa cigaacocaga gigataccaa 1980	ccagtaccgt	gagggaaagg	tgaaaagcac	cccggaaggg	gagtgaaaga	gatcctgaaa	540		
agtgtgtatt gaaaaggatg tggagttgt tagaaacta ggatgtgge ttagaagcag720ccaccattta aagagtatag ggggtgacac ctgeceggig etggaaggt aaggagagg780gttagegtaa etetggaatg aagecegat aacggeege egtaactata aeggtecta840ggtacegaa gaatttgag aggagttge etggatgee tgggaagge ggatgagegee900cggtaceagt tyttetgeea aggeetage tgggtaget atggegggat aggaeggee960tggaaaget taageatgga gecagetteg gaagaege agtaaaacaa gecaacegee1020aatcagaage taagaageg caagettetg gaaageacaa atgetagta tggtacagaa1140gagcacaage ategtgatg ttateagett tatgeacegg aagetttaa tggtaaaat1200taatgaaaat taagataaa cageacte aacatggag egatettaa tggaagag1200aatagaaaa taagataaa cageacta aacatggag egatettaa tggaagaag1200gaggeggata gaaacaaeg aagtacaat caacatgga egatettaa tggaagaag1200gaagaeggat gaaacaaeg aagtacaat caacatgga egatettaa tggaagaag1200gaagaeggat gaaacaaeg aagtacaat caagacaaa gacgaagta getgtegeag1200gaagaeggat gaaacaaeg aagtacaat caagacaaa gaagtaaa ttatggtta1300gagggaaaaa ttaagataa tagaagtg tggetaaaa tgaagagag gecttgaage1400cgttaacgge tgttatgge accgtggeg cgtggtaae egtagaagae ggegagatee1500atggaagege ttttaga ggeactteg ttategetea ggegaace gacgagatee1600atgaaggeeg ettttagaa gggaactge gaagataa accatget gaegaace ggegaace1620atgaageege tttttaga gggactge gtagaeaga gaagacaa gaegaace1620atgaageege gtattagaag gtagaegga ttaceeteg gaagaeae ggegaatee1600ccacaactatg egtgetegg ggaactge gaagacaa caccateg tggtageaga1800ccttaaceag etgetagga gtgaagge ttaceeteg gaagaeae gagagaccaa1800ctttaacteag etgetag	ccgtgtgcca	tagtcagagc	ccgttaacgg	gtgatggcgt	gccttttgta	gaatgaaccg	600		
ccaccattta aagagatatag ggggtgacac ctgcccggg ctggaaggt aagagaggg780gttagcgtaa ctctgaactg aagcccagt aacggggg cgtaactata acggtcctaa840ggtagcgaaa gaatttga aggagctgc cttagtacga gaggaccggg atggacgcac900cggtaccagt tgttctgcca agggcatage tgggtagct atgtgcggaag ggataagtgc960tggaagcatc taagcatgaa gccccccta agatgagagc agtaaaccaa gccaacgcac1020aatcagaagc taagaatage g catgcttctg gaagcacaa atgctagtt tggtacgaaa1080tttgcaactg aacagaagt gcatgctgtg aaatttgcga aagttttgc atattatac1140gagcaccage atcgtgatgt tttacagctt tatgcacgg aggataagtg tggtagcag1200taacgaacaa gaaataaat tatccttgga agacttaa gatcaacgga tgctggcaag1200taacgaacaa gaaataaat caccattg agagacag cgatgttta tggaaggg1200gaggggaaaatatccaagaag tgctgga agacttaa gatcaacgga tgctggcaaggagggaaaatatccatgga agactaa agacaaa gaagtaaaa ttatggaagg1200aatgaaaa taagataaa cagcactat caacactgga gagtaaa ttactgttt1380aggggaaaattacagaat atagaagtga tggctaaaa tgtagaagg gtcttgaag1440cgttaacgge tgttatgge acgtggcg cgtgttate gaaccaag cgcagatce1560agttegtee taacagta ggcaactteg ttategetca ggcgaacteg acctgtagg1620atgaaggeg gttattgaa gggaactgt cgtagacaag gcgaactag cgtgttag1740tgatgacgge tgttatgaa gttaagag ttaaccatg cgaaggaca ggagtaccaa1800cttactcag ctgtgtgt tggaggtet gatggccaat ccatctgge ggagtaccaa1800cgttaccage tgtteggg aggaggat taccat ggacatta caatcattg tgttgcaag1800cgtaacatg cgtgctgtg tgaaggga ttaaccatg cgaaggac ggagtaccaa1800cacacattg cgtgctgtg tggaggg ttagggg ttaggagga gtacttag gaacctaac1800<	gcgagttata	agatccgtag	tcaaaaggga	aacagcccag	accgccagct	aaggtcccaa	660		
gttagegtaa etetgaaetg aageeeegg eggaaetaet aeggaeegg egtaaetaeta aeggteetaa ggtagegaa gaatttgaa ggagetgte ettagtaega gaggaeegga dggaeegea ggtaeegaa gaatttgaa ggeeetetg ggaagee tggegaeet tggeeggaag ggataagtee ggtaeegaae taagaaage caagettetg gaaageeaea atgetagta tggeaegaea aateagaage taagaaage caagettetg gaaageeaea atgetagta tggeaegaea tttgeeaetg aaeeagaegt geetgetgtg aaattegega aagetttee tattaatae gageeeeaeg ateegtgatg tttacagett tatgeeegg aagetteta tggataaat taegaaeae gaaataaee taecetgga agaetteaa gateaaeag gaaggaa atagaagaa taegataaa eageeatae taegeaegg eggettetta teggataaat taegaaeae gaaataaee taecetgga agaettaa gateaaeagga tgetggeaag aaggggaaaa taeagataaa eageeatae caagaeaga ggettetta teegaagaag gagageget gaaaacaaeg aagtaeaata caagaeaaa tgaaggtaaaa ttaetgttt 1380 aggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgtagaaggg gtetgaage 1440 egttaacage tgttatgge acegtggeg egtggtate gaaceeatge tgaeegate 1560 agtegteee taaacagtae ggeaacteg tgategee gtagaage egtagaaae ggegagatee 1560 agtegteee taaacagta ggeaacteg tgategee gtagaage egtagaaa geeggagate 1680 eacaactag egtgetegtg gtgeacaagt aeeggatat acaateetg ttgttegea 1740 tgatgaegge gtaataaea gttgaagea taaceage gaageaca ggegateeaa 1860 actteeaate aagtteegg agegtetg gatggeeat ceatetgge gaagtaeeaa 1860 actteeaate aagtteegg agegtetg aceateg gaageae ceatea gaagetaeaa 1920 gtgeegtaa aggteatgg tgaaggta teeeateg gaaageeea gaagtaeeaa 1920	agtgtgtatt	gaaaaggatg	tggagttgct	tagacaacta	ggatgttggc	ttagaagcag	720		
ggtagcgaaa gaaattgag aggagctgte ettagtaega gaggaeeggg atggaegea 900 eggtaecagt tgttetgeea agggeatage tgggtageta tgtgeggaag ggataagtge 960 tgaaagcate taageatga geceecetea agatgagage agtaaaacaa gecaaaegeae 1020 aateagaage taagaaageg eaagettetg gaaageacaa atgetagtta tggtaeagaa 1080 tttgeaactg aaacagaegt geatgetgt aaattgeeg aagetttge atattatate 1140 gageecacage ategtgatgt tttaeagett tatgeeacgg aagetttaa tggataaatt 1200 taacgaacaa gaaataaate tateettgga agaactaaa gateaaegga tgetggeag 1260 atatgaaaaa taagataaa cagecactate aacaetggag egattetta tetgaagaag gaggggaaaa tteaagaata tagaagtga tggetaaaaa tgaaggg gettgaag 1320 gaagagegg gaaaacaaeg aagtacaata caagacaaa tgaaggtgaaaa tteatgttt 1380 aggggaaaa tteaagaaat atagaagtga tggetgatae gaacecatge tgaeegga 1500 atggtagege caceegee cecaaagteg egstggtate gaacecatge tgaeeggaa 1560 atggtagege tuttagaa ggtgaettgt egtageaaa tgaagge egstagate 1560 aggtegtege caceegee cecaaagteg egstggtate gaacecatge tgaeeggate 1560 aggtegtege tutttagaa ggtgaettge tgtaeggea agegaateag egsgaatee 1560 atgatgaegg egtaettaga ggtgaettge tgtaeggea ggagatee afeeggaag effeggaag 1740 tgatgaegge gtaataaaa gtgagega ttaaceatge gaaageaga ggagtaecaa 1800 etttaeeg ettgetgg tggedged tgaegeeat ecaetegge ggagatee 1560 agtegtege taataaaa gtgagega ttaaceatge gaaageag eggagatee 1560 agtgegeeg taataaaa gtgagega ttaaceatge gaaageaga effegga 1620 atgaaggeeg tutttagaa gtgaagega taaceage eggagaate agetgaage 1740 tgatgaegge gtaataaaa gtgagega taaceage aggaeteaga 1860 eccaactaeg ettgetggt tgedggett gatggeeaat ecaetegge ggataecaa 1800 ettateeag ettgetgga aggtaagaet acagtaaga gtetgtaat gaaceetaa 1800 ettateeag aggteatgg aggaegga tecaatgag ggataeaga 1860 accaaceata aggteatgg aggaegta acagtagga egtaeggaae ggagaecaa 1800 ettateeag aaggtegg aggaegga tecaatgag gtetgtaat gaaceetaga 1800 ettateeag ettgetgg aggaegga tecaatgag gtetgtaat gaaceetaga 180	ccaccattta	aagagtatag	ggggtgacac	ctgcccggtg	ctggaaggtt	aaggagaggg	780		
cggtaccagt tgttctgcca agggcatagc tgggtagcta tgtgcggaag ggataagtgc 960 tgaaagcatc taagcatga gocococtca agatgagagc agtaaaacaa gcaaacgcac 1020 aatcagaagc taagaaagog caagcttctg gaaagcacaa atgctagtta tggtacagaa 1080 tttgcaactg aaacagacgt gcatgctgtg aaattagoga aagottttgo atattatat 1140 gagcocacagc atcgtgatgt tttacagctt tatgcaccgg aagctttaa tggataaat 1200 taacgaacaa gaaataaac tatccttgga agaactaaa gatcaacgga tgctggcaag 1260 atatgaaaaa taagataaac cagcactatc aacactggag cgattctta tcgaagaag 1320 gaaggagcat gaaacaacg aagtcaata caagacaaa gaaggtaaaa ttactgttt 1380 aggggaaaaa ttcaagaaat atagaatga tggctgag cgttgttac gaaccagg tgctggaag 1440 cgttaacagc tgttatggcg accgtgggg cgtggttatc gaaccatgc tgaccgatca 1560 atgtagacgc tuttagaa ggcaacttcg ttatcgcca ggcgaactc aacctggag 1620 atgataggcg ttataacag agtgacatg cgtaggaag cgtagagac gfaggagac 1560 agttcgtccc taaacagtac ggcaacttg ttatcgcca ggcgaactc aacctggag 1620 atgataggcg tgtataaaa gtggaagtga taacaatg cgaggaac ggaggatca 1860 cacaactatg cgtgctggt gtgcacaag aacggatat acaatcatg tgtgtgcaga 1880 ctttactcag cttgctggt gtgcacaag acaggagat caatcatg cgaaggaac ggaggatcaa 1800 ctttactcag ctgctggt ggaagttag cgatggaca ccatcgg gaaggacca 1860 acttccaat aagttcogt gaaggttaa cagtactg gatactcat ccatcggca gaagtaccaa 1800 ctttactcag ctgctggt gtgaagat gatgagact accatcgg gaagtaccaa 1800 acttccaat aggttcogt gagggttaa cagtactgg gtacttcat ctacagcag 1920 gtgcgcgtaa aggtcatgg gaagatta caatgatagg gtacttgat gaacctaa 1980 acttccaat cagttcogt gaggttaa cagtactgg gtactcat ctactggca 1920	gttagcgtaa	ctctgaactg	aagccccagt	aaacggcggc	cgtaactata	acggtcctaa	840		
tgaaagcatc taagcatgaa geececeta agatgagage agtaaaacaa geaaacgac 1020 aatcagaage taagaaageg caagettetg gaaagcacaa atgetagtta tggtacaga 1080 tttgcaactg aaacagaegt geatgetgtg aaatttgega aagetttge atattate 1140 gageeacaag aaataaate tateettgga agaacttaa gateaaegga tgetggeag 1260 atatgaaaaa taagataaaa cageectate aacaetggg egateettta teggaagaag 1320 gaagagegat gaaacaaeg agtacaata caagacaaa gaaggtaaaa ttaetgttt 1380 aggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgtagaaggg gtettgaag 1440 egttaacege tgttatggeg acegtggeg egtggtate gaaceetage ggeagatee 1560 atgtaacge tgttatggeg acegtggeg egtggtate gaageacege ggeagatee 1560 agttegteee taaacagtae ggeaactteg tategeete gaegeagae egtagagaa geegagate 1620 atgaagageg ttttaga ggtaettg egtageaag egtagaaga egegagatee 1560 agttegteee taaacagtae ggeaactteg tategeete gaegeagae egtagagaae geegagate 1620 atgaagagee ettttaga ggtaettg egtageaag egtagagaa egegagatee 1660 egtaacage gtgetegg ggeacetteg tategeeta ggegaactee aacetggat g 1740 tgatgaegge gtaataaaca gtgaagega taaceatge gaaagcagea ggagtaecaa 1800 eettaeteag ettgetggta tgegtggtet gatggeeta ceatetggte gtateaceatge 1920 gtgegegtaa aggteetgg tgaaggettg acagtaegg gteettgaa gaecetaat 1980 actteecaate aggtteegg aggattaa cagtaetga gteetteate tetaeceatg 1920 gtgegegtaa aggteatgg gaagatet acagtaegg gteettgaa gaecetaat 1980	ggtagcgaaa	gaaatttgag	aggagctgtc	cttagtacga	gaggaccggg	atggacgcac	900		
aatcagaage taagaaageg caagettetg gaaageacaa atgetagtta tggtacagaa tutgeaactg aaacagaegg geatgetgg aaattegega aagetttege atattatae gageeacaag aaataaate tateettgga agaacttaaa gateaaegga tgetggeaag taaegaacaa gaaataaate tateettgga agaacttaaa gateaaegga tgetggeaag taaegaacaa gaaataaate tateettgga agaacttaaa gateaaegga tgetggeaag atatgaaaaa taagataaaa cageeactate aacaetggag egattetta tetgaagaag gaaggegat gaaaacaaeg aagtacaata caagacaaaa gaaggtaaaa ttaetgtttt 1380 aggggaaaaa tteeaagaaat atagaagtga tggetaaaa tgtagaaggg gtettgaage 1440 egttaaeeage tgttatggeg acegtggegg egtggttate gaaceeatge tgaeegatea 1560 atggtaegtg cacaeegee ceeaaageg egtggttate gaaceeatge tgaeegatea 1560 aggtegetee taaacagtae ggeaactteg ttategeeag egtagagaae ggegagatee 1560 aggteggeeg taataaea ggtgaettgt egtageaaag gegaateaag eetgttage 1620 atggaegge gtaataaae ggegaetteg tategeeaga eetgttage 1620 atgaaggeeg ettttagaa ggtgaettgt egtageaaag gegaateaag eetgttage 1680 cacaaeetag egtgetegtg gtgeacaag aacggatat acaateattg ttgttgeage 1740 tgatgaegge gtaataaaca gttgaagega ttaaceateg gaaageagea ggagtaceaa 1860 aetteeaate aagtteegt gaaggteta eegtaggteeat eetettge gaaageaca gaagteeate 1920 gtegegetaa aggteetggg ggaagaeet acegtagaga gteetgaa gaaceetaat 1980	cggtaccagt	tgttctgcca	agggcatagc	tgggtagcta	tgtgcggaag	ggataagtgc	960		
tttgcaactg aaacagacgt gcatgctgtg aaattgcga aagcttttgc atattatatc 1140 gagccacagc ategtgatgt tttacagctt tatgcacegg aagcttttaa tggataaatt 1200 taacgaacaa gaaataaatc tateettgga agaacttaaa gateaaegga tgetggeaag 1260 atatgaaaaa taagataaaa cageactate aacaetggag egattetta tetgaagaag gaagagegat gaaaacaaeg aagtacaata caagacaaaa gaaggtaaaa ttaetgttt 1380 aggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgaagagg gettgaage 1440 egttaacage tgttatggeg acegtggegg egtggttate gaacecaage tggeegagate 1560 attggtaegtg cacaeegee eccaaagteg egattgaage egtagagaae ggegagatee 1560 agttegteee taaacagtae ggeaaetteg ttategetea ggegaaetee aaeetgggg 1620 atgatagageeg ettttagaa ggtgaettge egtageaag eggagatee 1680 eacaeaetatg egtgetegg gtggacaagt aaeggatatt acaateattg ttgttgeage 1740 tgatgaegge gtaataaaea gttgaagega taaeeatge gaageagea ggagtaeea 1880 ecttaeteag ettgetggta tgegtggtet gatggeeaat ecaatetggte gtateatega 1860 acteeaate aagttteegt gaaggttaa cagtaettga gtaetteet tetaeega 1920 gtgegegtaa aggetattgeg aggataga teteetateg gaaagteee gtaeecaata 1980 gaceateea aegtteegg agaagtaga teteetateg gaaagteee gtaeceata 1980	tgaaagcatc	taagcatgaa	gcccccctca	agatgagagc	agtaaaacaa	gcaaacgcac	1020		
gagccacagc atcgtgatgt tttacagctt tatgcaccgg aagctttaa tggataaatt 1200 taacgaacaa gaaataatc tatccttgga agaacttaaa gatcaacgga tgctggcaag 1260 atatgaaaaa taagataaaa cagcactatc aacactggag cgattettta tetgaagaag 1320 gaagageggat gaaaacaacg aagtacaata caagacaaaa gaaggtaaaa ttactgtttt 1380 aggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgtagaaggg gtettgaage 1440 egttaacage tgttatggeg accgtggegg egtggttate gaacecatge tgaecgatea 1560 atggtaegtg cacaeegeee eccaaagteg egattgaage egtagagaae ggegagatee 1560 agttegteee taaacagtae ggeaaetteg ttategetea ggegaaetee aacetggatg 1620 atggaaggeeg etttttagaa ggtgaettgt egtagcaaag eggagaace acetggatg 1680 eacaaetatg egtgetegtg gtgeacaagt aacggatatt acaateattg ttgttgeage 1740 tggatgaegge gtaataaaca gttgaagget taaceateg gaaageagea ggagateecaa 1860 etttaeteag ettgetggta tgegtggtet gatggeeaat ceatetgget gtateateega 1860 actteeaate aagtteegt gaaggtttaa cagtaettga gtaetteate tetaegeatg 1920 gtgegegtaa aggteatggg agtaagaeet acegtaagag gttetgtaat gaaeeetaat 1980 gaeeateee acggtggtgg tgaaggtaga teteetateg gaaagteee gtaeteetag 2040	aatcagaagc	taagaaagcg	caagcttctg	gaaagcacaa	atgctagtta	tggtacagaa	1080		
taacgaacaa gaaataaatc tatcettgga agaacttaaa gatcaacgga tgetggeaag atatgaaaaa taagataaaa cagcactatc aacactggag cgattetta tetgaagaag agagagegat gaaaacaacg aagtacaata caagacaaaa gaaggtaaaa ttaetgtttt 1380 agggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgtagaaggg gtettgaage 1440 egttaacage tgttatggeg acegtggegg egtggttate gaacecatge tgacegatea 1500 atggtaegtg cacacegeee eccaaagteg egattgaage egtagagaae ggegagatee 1560 agttegteee taaacagtae ggeaactteg ttategetea ggegaactee aacetggatg 1620 atgaagggeeg ettttagaa ggtgaettgt egtageaaag gegaateag ectgttage 1680 cacaactatg egtgetegg gtggaeatga taaceatge gaaageagea ggegagtacea 1800 etttaeteag etgetegtg tgeagaget gatggeeat ecatetggte gtateateaga 1800 etttaeteag etgetegtg agggettaa eagtaettga gtaetteate tetaecgeatg 1920 gtgegegtaa aggteetgg gatgaagaeet acagtaagag gteetgaat gaaceetaat 1980 gtgegegtaa aggteetgg gtgaaggetag teteetateg gaaagteee gtaeceata 1980	tttgcaactg	aaacagacgt	gcatgctgtg	aaatttgcga	aagcttttgc	atattatatc	1140		
atatgaaaaa taagataaaa cagcactatc aacactggag cgattettta tetgaagaag gaagagegat gaaaacaacg aagtacaata caagacaaaa gaaggtaaaa ttaetgtttt 1380 agggggaaaaa tteaagaaat atagaagtga tggetaaaaa tgtagaaggg gtettgaage 1440 egttaacage tgttatggeg acegtggegg egtggttate gaacecatge tgaeegatea 1500 atggtaegtg caeecegeee ceeeaagteg egatgaage egtaggagae ggegagatee 1560 agttegteee taaacagtae ggeaactteg ttategetea ggegaactee aacetggatg 1620 atgaaggeeg etttttagaa ggtgaettg egtagcaaag eggaateaag eetgttagee 1740 eqaaacatatg egtgetegtg gtgeacaagt aacggatatt acaateattg ttgttgeage 1740 tgatgaeegge gtaataaaca gttgaagega taaccatge gaaageagea ggagtaeeaa 1800 etttaeteag ettgetggta tgegtggtet gatggeeaat ceatetggte gtateatega 1860 actteeeaate aagtteeegt gaaggtttaa cagtaettga gtaetteate tetaegeatg 1920 gtgegegtaa aggteatggg ggaaggttaa cagtaagag gttetgtaat gaaceetaat 1980 gaeeateeea acegtggtgg tgaaggtaga teteetae gaaagteee gtaeteeatg 2040	gagccacagc	atcgtgatgt	tttacagctt	tatgcaccgg	aagcttttaa	tggataaatt	1200		
gaagagcgat gaaaacaacg aagtacaata caagacaaaa gaaggtaaaa ttactgtttt 1380 aggggaaaaa ttcaagaaat atagaagtga tggctaaaaa tgtagaaggg gtcttgaagc 1440 cgttaacage tgttatggeg accgtggegg cgtggttate gaacecatge tgacegatea 1500 atggtacgtg cacacegeee cecaaagteg egattgaage egtagagaac ggegagatee 1560 agttegteee taaacagtae ggeaactteg ttategetea ggegaactee aacetggatg 1620 atgaaggeeg ettttagaa ggtgacttgt egtageaaag gegaateaag ectgttage 1680 cacaactatg egtgetegtg gtgeacaagt aacggatatt acaateattg ttgttgeage 1740 tgatgaeegge gtaataaaca gttgaagega ttaaceatge gaaageagea ggagtaceaa 1800 etttaeteag ettgetegta tgegtggtet gatggeeaat ecatetggte gtateateega 1860 actteeaate aagtteegt gaaggttaa cagtaettga gteetteate tetaegeatg 1920 gtgegeegtaa aggteatggg gtaaagaeet acagtaagag gttetgtaat gaaceetat 1980	taacgaacaa	gaaataaatc	tatccttgga	agaacttaaa	gatcaacgga	tgctggcaag	1260		
aggggaaaaa ttcaagaaat atagaagtga tggctaaaaa tgtagaaggg gtcttgaagc 1440 cgttaacage tgttatggeg acegtggegg egtggttate gaacecatge tgaeegatea 1500 atggtaegtg cacaeegeee eccaaagteg egatgaage egtagagaae ggegagatee 1560 agttegteee taaacagtae ggeaaetteg ttategetea ggegaaetee aaeetggatg 1620 atgaaggeeg etttttagaa ggtgaettgt egtageaaag gegaateaag eetgttage 1680 cacaaaetatg egtgetegtg gtgeaeaagt aaeggatatt acaateattg ttgttgeage 1740 tgatgaegge gtaataaaea gttgaagega ttaaceatge gaaageagea ggagtaeeaa 1800 etttaeteag ettgetggta tgegtggtet gatggeeaat eeatetggte gtateatega 1860 aetteeaate aagtteegt gaaggttaa eagtaettga gtaetteate tetaegeatg 1920 gtgeegegtaa aggteatggg tgaaggaet eeetaegaagg gteetgtaat gaaeeetaat 1980 gaeeateeea acggtggtgg tgaaggtaga teteetateg gaaagteee gtaeteetag 2040	atatgaaaaa	taagataaaa	cagcactatc	aacactggag	cgattcttta	tctgaagaag	1320		
cgttaacagc tgttatggcg accgtggcgg cgtggttatc gaacccatgc tgaccgatca 1500 atggtacgtg cacaccgccc cccaaagtcg cgattgaagc cgtagagaac ggcgagatcc 1560 agttcgtccc taaacagtac ggcaacttcg ttatcgctca ggcgaactcc aacctggatg 1620 atgaaggccg ctttttagaa ggtgacttgt cgtagcaaag gcgaatcaag cctgtttagc 1680 cacaactatg cgtgctcgtg gtgcacaagt aacggatatt acaatcattg ttgttgcagc 1740 tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa 1800 ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga 1860 acttccaatc aagtttccgt gaaggttaa cagtacttga gtacttcatc tctacgcatg 1920 gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	gaagagcgat	gaaaacaacg	aagtacaata	caagacaaaa	gaaggtaaaa	ttactgtttt	1380		
atggtacgtg cacaccgccc cccaaagtcg cgattgaagc cgtagagaac ggcgagatcc1560agttcgtccc taaacagtac ggcaactcg ttatcgctca ggcgaactcc aacctggatg1620atgaaggccg ctttttagaa ggtgacttgt cgtagcaaag gcgaatcaag cctgtttagc1680cacaactatg cgtgctcgtg gtgcacaagt aacggatatt acaatcattg ttgttgcagc1740tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa1800ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga1920gtgcgcgtaa aggtcatgg agtaagacct acagtaagag gttctgtaat gaaccctaat1980gaccatccac acggtggtgg tgaaggtaga tctccctatcg gaaagtccac gtactccatg2040	aggggaaaaa	ttcaagaaat	atagaagtga	tggctaaaaa	tgtagaaggg	gtcttgaagc	1440		
agttegteee taaacagtae ggeaactteg ttategetea ggegaactee aacetggatg 1620 atgaaggeeg etttttagaa ggtgacttgt egtageaaag gegaateaag eetgttagee 1680 cacaactatg egtgetegtg gtgeacaagt aaeggatatt acaateattg ttgttgeage 1740 tgatgaegge gtaataaaca gttgaagega ttaaceatge gaaageagea ggagtaecaa 1800 etttaeteag ettgetggta tgegtggtet gatggeeaat eeatetggte gtateatega 1860 actteeaate aagtteegt gaaggttaa eagtaettga gtaetteate tetaegeatg 1920 gtgegegtaa aggteatggg agtaagaeet acagtaagag gttetgtaat gaaecetaat 1980 gaeeateea eeggtggtgg tgaaggtaga teteetateg gaaagteeae gtaeteetag 2040	cgttaacagc	tgttatggcg	accgtggcgg	cgtggttatc	gaacccatgc	tgaccgatca	1500		
atgaaggeeg etttttagaa ggtgaettgt egtageaaag gegaateaag eetgtttage 1680 cacaaetatg egtgetegtg gtgeaeaagt aaeggatatt acaateattg ttgttgeage 1740 tgatgaegge gtaataaaea gttgaagega ttaaecatge gaaageagea ggagtaecaa 1800 etttaeteag ettgetggta tgegtggtet gatggeeaat eeatetggte gtateatega 1860 aetteeaate aagtteegt gaaggtttaa eagtaettga gtaetteate tetaegeatg 1920 gtgeegegtaa aggteatggg agtaagaeet acagtaagag gttetgtaat gaaecetaat 1980 gaeeateea eeggtggtgg tgaaggtaga teteetateg gaaagteeae gtaeteetag 2040	atggtacgtg	cacaccgccc	cccaaagtcg	cgattgaagc	cgtagagaac	ggcgagatcc	1560		
cacaactatg cgtgctcgtg gtgcacaagt aacggatatt acaatcattg ttgttgcagc1740tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa1800ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga1860acttccaatc aagtttccgt gaaggtttaa cagtacttga gtacttcatc tctacgcatg1920gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat1980gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg2040	agttcgtccc	taaacagtac	ggcaacttcg	ttatcgctca	ggcgaactcc	aacctggatg	1620		
tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa 1800 ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga 1860 acttccaatc aagtttccgt gaaggtttaa cagtacttga gtacttcatc tctacgcatg 1920 gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	atgaaggccg	ctttttagaa	ggtgacttgt	cgtagcaaag	gcgaatcaag	cctgtttagc	1680		
ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga 1860 acttccaatc aagtttccgt gaaggtttaa cagtacttga gtacttcatc tctacgcatg 1920 gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	cacaactatg	cgtgctcgtg	gtgcacaagt	aacggatatt	acaatcattg	ttgttgcagc	1740		
acttccaatc aagtttccgt gaaggtttaa cagtacttga gtacttcatc tctacgcatg 1920 gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	tgatgacggc	gtaataaaca	gttgaagcga	ttaaccatgc	gaaagcagca	ggagtaccaa	1800		
gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980 gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	ctttactcag	cttgctggta	tgcgtggtct	gatggccaat	ccatctggtc	gtatcatcga	1860		
gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040	acttccaatc	aagtttccgt	gaaggtttaa	cagtacttga	gtacttcatc	tctacgcatg	1920		
	gtgcgcgtaa	aggtcatggg	agtaagacct	acagtaagag	gttctgtaat	gaaccctaat	1980		
gggtaaacca gcacttggat acaaaacaag cgcagttcgg cggccagcgc ttcggtgaaa 2100	gaccatccac	acggtggtgg	tgaaggtaga	tctcctatcg	gaaagtccac	gtactccatg	2040		
	gggtaaacca	gcacttggat	acaaaacaag	cgcagttcgg	cggccagcgc	ttcggtgaaa	2100		

What is claimed is:

1. An oligonucleotide primer pair comprising a forward and a reverse primer, each comprising between 13 and 35 linked nucleotides in length, designed to generate an amplicon that is between about 45 and about 200 linked nucleotides in length, wherein said forward primer comprises at least 80% complementarity to a first region within nucleotides 2482-2890 of a reference sequence, said reference sequence being Genbank gi number 438226, and wherein said reverse primer comprises at least 80% complementarity to a second region within nucleotides 2482-2890 of said reference sequence.

**2**. The oligonucleotide primer pair of claim **1** wherein said forward primer comprises at least 90% complementarity to said first region, and wherein said first region is within nucleotides 2482-2572 of said reference sequence.

**3**. The oligonucleotide primer pair of claim **2** wherein said forward primer comprises at least 95% complementarity to said first region.

4. The oligonucleotide primer pair of claim 3 wherein said forward primer comprises 100% complementarity to said first region.

**5**. The oligonucleotide primer pair of claim **1** wherein said reverse primer comprises at least 90% complementarity to said second region, and wherein said second region is within nucleotides 2547-2630 of said reference sequence.

**6**. The oligonucleotide primer pair of claim **5** wherein said reverse primer comprises at least 95% complementarity to said second region.

7. The oligonucleotide primer pair of claim 6 wherein said reverse primer comprises 100% complementarity to said second region.

**8**. The oligonucleotide primer pair of claim **1** wherein said forward primer comprises at least 70% sequence identity with SEQ ID NO: 205.

**9**. The oligonucleotide primer pair of claim **8** wherein said forward primer is SEQ ID NO: 205.

**10**. The oligonucleotide primer pair of claim **1** wherein said reverse primer comprises at least 70% sequence identity with SEQ ID NO: 876.

**11**. The oligonucleotide primer pair of claim **10** wherein said reverse primer is SEQ ID NO: 876.

**12.** The oligonucleotide primer pair of claim **1** wherein at least one of said forward primer and said reverse primer comprises at least one modified nucleobase.

13. The oligonucleotide primer pair of claim 12 wherein at least one of said at least one modified nucleobase is a mass modified nucleobase.

14. The oligonucleotide primer pair of claim 13 wherein said mass modified nucleobase is 5-Iodo-C.

**15**. The composition of claim **13** wherein said mass modified nucleobase comprises a molecular mass modifying tag.

**16**. The oligonucleotide primer pair of claim **12** wherein at least one of said at least one modified nucleobase is a universal nucleobase.

**17**. The oligonucleotide primer pair of claim **16** wherein said universal nucleobase is inosine.

**18**. The oligonucleotide primer pair of claim **1** wherein at least one of said forward primer and said reverse primer comprises a non-templated T residue at its 5' end.

**19**. A kit for identifying, determining one or more characteristics of, or detecting a *Staphylococcus aureus* bioagent comprising the oligonucleotide primer pair of claim **1** and at least one additional primer pair designed to hybridize to a *Staphylococcus aureus* gene encoding mecA, mecR1, ermA, ermC, pvluk, tufB, nuc, or a combination thereof.

NOs: 698:1420, or a combination thereof.
21. A kit for identifying, determining one or more characteristics of, or detecting a *Staphylococcus aureus* bioagent comprising eight oligonucleotide primer pairs having at least 70% sequence identity with the primer pairs represented by: SEQ ID NOs: 217:1167, SEQ ID NOs: 399:1041, SEQ ID

NOs: 456:1261, SEQ ID NOs: 174:853, SEQ ID NOs: 430: 1321, SEQ ID NOs: 288:1269, SEQ ID NOs: 698:1420, and SEQ ID NOs: 205:876.

**22.** A method for identifying, determining one or more characteristics of, or detecting a *Staphylococcus aureus* bioagent in a sample comprising:

- a) amplifying a nucleic acid from said sample using an oligonucleotide primer pair targeted to a *Staphylococcus aureus* mupR gene comprising a forward and a reverse primer, each being between 13 and 35 linked nucleotides in length, wherein said forward primer comprises at least 70% complementarity to a first region within nucleotides 2482-2890 of a reference sequence, said reference sequence being Genbank gi number 438226, and wherein said reverse primer comprises at least 70% complementarity to a second region within nucleotides 2482-2890 of said reference sequence, wherein said amplifying generates at least one amplification product that comprises between about 45 and about 200 linked nucleotides; and
- b) determining the molecular mass of said at least one amplification product by mass spectrometry.

23. The method of claim 22 further comprising comparing said determined molecular mass to a plurality of molecular masses of bioagent identifying amplicons, each indexed to said oligonucleotide primer pair, wherein a match between said determined molecular mass and one of said plurality of molecular masses identifies, determines one or more characteristic of, or detects said *Staphylococcus aureus* bioagent in said sample.

24. The method of claim 22 further comprising calculating a base composition of said at least one amplification product using said molecular mass.

25. The method of claim 24 further comprising comparing said calculated base composition to a database comprising a plurality of base compositions of bioagent identifying amplicons that are indexed to said oligonucleotide primer pair, wherein a match between said calculated base composition and a base composition in said database identifies, determines one or more characteristics of, or detects said *Staphylococcus aureus* bioagent in said sample.

**26**. The method of claim **22** wherein said forward primer comprises at least 70% sequence identity with SEQ ID NO: 205.

**27**. The method of claim **22** wherein said reverse primer comprises at least 70% sequence identity with SEQ ID NO: 876.

**28**. The method of claim **22** further comprising repeating said amplifying and determining steps using at least one additional oligonucleotide primer pair designed to hybridize to a *Staphylococcus aureus* gene encoding mecA, mecR1, ermA, ermC, pvluk, tufB, nuc, mupR, or a combination thereof.

* * * * * *