Title: HIGH PENETRATION COMPOSITIONS AND THEIR APPLICATIONS

Abstract: High penetration compositions (HPC) of a parent compound, which are capable of crossing biological barriers with high penetration efficiency. The HPCs are capable of being converted to parent drugs or parent drug-related compounds such as metabolites after crossing one or more biological barriers and thus can render treatments for the conditions that the parent drugs or parent drug-related compounds can. Additionally, the HPCs are capable of reaching areas that their parent drugs or parent drug-related compounds may not be able to access or to render a sufficient concentration at the target areas HPCs of NSAIA, for example, have demonstrated indications such as treating hair loss. A HPC can be administered to a subject through various administration routes, e.g., locally delivered to an action site of a condition with a high concentration or systematically administered to a biological subject and enter the general circulation with a faster rate.
High Penetration Compositions and their Applications

PRIORITY CLAIM

[0001] The present application claims priority to U.S. Provisional Application 61/120,052, filed December 4, 2008, which is incorporated herein by reference.

Field of the invention

[0002] This invention relates to the field of compositions and pharmaceutical compositions that are capable of penetrating across one or more biological barriers and methods of using the pharmaceutical compositions for preventing, diagnosing and/or treating condition or disease in human, animals and plants.

Background

[0003] Active agents or drugs that are effective in vitro may not be as effective in vivo due to the delivery difficulties in vivo, in particular, their limited penetration ability across one or more biological barriers before reaching the site of action where diseases occur in vivo.

[0004] Currently many drugs are administered through systematic route, such as oral or parenteral administration, to reach an action site of a condition or disease. Since higher dosage of drugs is required to reach a distal location in the systematic administration, drugs delivered by such route may cause adverse reactions.

[0005] For example, non-steroidal anti-inflammatory agents (NSAIAs) are widely used for treatment of acute or chronic conditions where pain and inflammation are present. Although NSAIAs are absorbed in the stomach and intestinal mucosa, oral administration usually accompanies adverse drug reactions such as gastrointestinal (GI) effects and renal effects. For instance, aspirin is known to cause gastric mucosal cell damage. The side effects of NSAIAs appear to be dose-dependent, and in many cases severe enough to pose the risk of dyspepsia, gastroduodenal bleeding, gastric ulcerations, gastritis, ulcer perforation, and even death.
Modifications of known NSAIAAs have been reported to improve their efficacy and decrease their side effects. However, to treat inflammation or pain at distal areas, a much higher plasma concentration of an NSAIA is required when the drug is administered orally than when the drug is administered at the particular site of pain or injury (Fishman; Robert, U.S. Pat. No. 7,052,715).

Fishman and many others (Van Engelen et al. U.S. Pat. No. 6,411,772; Macrides et al. U.S. Pat. No. 6,346,278; Kirby et al. U.S. Pat. No. 6,444,234, Pearson et al. U.S. Pat. No. 6,528,040, and Botknecht et al. U.S. Pat. No. 5,885,597) have attempted to develop a delivery system for transdermal application through drug formulation to reduce the side effects associated with oral administration and achieve localized drug administration with reduced systematic exposure. It is very difficult, however, to deliver therapeutically effective plasma levels of these drugs by the formulation.

Prostaglandins and prostaglandin analogs have a wide variety of physiological functions and effects, and therefore have many medicinal uses. For example, prostaglandins and prostaglandin analogs can be used to induce childbirth or abortion; prevent closure of patent ductus arteriosus in newborns with particular cyanotic heart defects; prevent and treat peptic ulcers; as a vasodilator to treat severe Raynaud's phenomenon or ischemia of a limb or to treat pulmonary hypertension, which are treated traditionally via intravenous, subcutaneous or inhalation administration routes; treat glaucoma (e.g., in form of analogs such as bimatoprost ophthalmic solution, which is a synthetic prostamid analog with ocular hypotensive activity); and treat erectile dysfunction or in penile rehabilitation following surgery (e.g., PGE1 as alprostadil). However, prostaglandins and prostaglandin analogs are rapidly metabolized and inactivated by various oxidative and reductive pathways. For example, when taken orally, the drugs can be destroyed and/or inactivated in a few minutes by the first pass metabolism.

Mustards and mustard-related compounds have been used for treatment of various types of cancers and tumors. However, mustards and mustard-related compounds also cause adverse side effects such as nausea, vomiting, diarrhea, loss of
appetite, hair loss and increased susceptibility to infection. Such side effects are often
dose-dependent.

[0010] Peptides play various roles in a biological subject. For example, peptides and peptide-related compounds may be used to treat conditions such as obesity, infections, pain and sexual dysfunctions. However, peptides and peptide related compounds are rapidly proteolysized by proteolytic enzymes. When peptides and peptide related compounds are taken orally, they will be proteolysized in a few minutes. Other systematic administrations of peptides and peptide related compounds are painful, and in many cases require frequent and costly office visits to treat chronic conditions.

[0011] Beta-lactam and related compounds are widely used antibiotics. Oral administration has disadvantage of poor absorption of the antibiotics from GI tract. Intravenous, subcutaneous and intramuscular routes are not only painful, but also require administration by trained individuals and may incur other risks such as needle injury, infection, and other trauma. Along with the extensive use of antimicrobials, drug resistance becomes a common and serious problem as the pathogens mutate over time.

[0012] Therefore, there is a need to develop novel compositions that are capable of being delivered efficiently and effectively to an action site of a condition (e.g., a disease) to prevent, reduce or treat the condition in a biological subject with minimum side effects. Furthermore, new indications may be discovered due to the efficient and effective delivery of compositions or pharmaceutical compositions across biological barriers which have been difficult to cross.

SUMMARY OF THE INVENTION

[0013] One aspect of the present disclosure relates to a high penetration composition (HPC) comprising a functional unit covalently linked to a transportational unit through a linker.

[0014] In certain embodiments, a HPC of a parent drug comprises a functional unit that comprises a moiety of an agent wherein the delivery of the agent into a biological subject and/or transportation across one or more biological barrier are/is desired. The agent comprises the parent drug or a parent drug-related compound. The parent drug-
related compound is a metabolite of the parent drug, a mimic/analog of the parent drug, or a compound that can be metabolized into the parent drug, a metabolite or a mimic/analog of the parent drug.

[0015] In certain embodiments, a parent drug or a parent drug-related compound comprises at least a functional group such as carboxyl, hydroxyl, thiol, amino, phosphate/phosphonate, carbonyl, or guanidino group. In certain embodiments, a parent drug or a parent drug-related compound comprises more than one functional group. In certain embodiments, a parent drug of a HPC is a non-steroidal anti-inflammatory agent (NSAIA). In certain embodiments, a parent drug of a HPC is a steroid, such as progesterone, desogestrel, and ethinylestradiol. In certain embodiments, a parent drug of a HPC is a peptide. In certain embodiments, a parent drug of a HPC is a mustard. In certain embodiments, a parent drug of a HPC is a beta-lactam antibiotics. In certain embodiments, a parent drug of a HPC is an antidiabetic drug such as glibornuinde. In certain embodiments, a parent drug of a HPC is atenolol.

[0016] In certain embodiments, a functional unit may be hydrophilic, lipophilic, or amphiphilic (hydrophilic and lipophilic). The lipophilic moiety of the function unit may be inherent or achieved by converting its hydrophilic moieties to lipophilic moieties. For example, a lipophilic moiety of a functional unit is produced by converting one or more hydrophilic groups of the functional unit to lipophilic groups via traditional organic synthesis. Examples of the hydrophilic groups include, without limitation, carboxylic, hydroxyl, thiol, amine, phosphate/phosphonate and carbonyl groups. The lipophilic moieties produced via the modification of these hydrophilic groups include, without limitation, ethers, thioethers, esters, thioesters, carbonates, carbamates, amides, phosphates and oximes.

[0017] Examples of NSAIA include, but are not limited to, aspirin, diflunisal, salsalate, salicylic acid, ibuprofen, ketoprofen, fenoprofen, naproxen, suprofen, acetaminophen, α-methyl-(p-chlorobenzoyl)-5-methoxy-2-methylindole 3-acetic acid, flurbiprofen, carprofen, pranoprofen, benoxaprofen, alminoprofen, tiaprofenic acid, pirprofen, zaltoprofen, bermoprofen, loxoprofen, indoprofen, fenclorac, oxaprozin, fenbufen, orpanoxin, ketorolac, clidanac, tolmetin, zomepirac, etodolac, amfenac,
bromofenac, alclofenac, fenclofenac, acemetacin, fentiazac, indomethacin, sulindac, Ionazolac, bendazac, 6MNA, diclofenac, mefenamic acid, flufenamic acid, niflumic acid, flunixin, piroxicam, sudoxicam, lornoxicam, tenoxicam, ampiroxicam, lomoxicam, isoxicam, cinnoxicam, and meloxicam.

[0018] Examples of prostaglandins and prostaglandin analogs include, but are not limited to, PGA₁, PGA₂, PGA₃, PGB₁, PGB₂, PGB₃, PGD₁, PGD₂, PGD₃, PGE₁, PGE₂, PGE₃, PGF₁α, PGF₁β, PGF₂α, PGF₂β, PGF₃α, PGG₂, PGH₁, PGH₂, PGI₂ (prostacyclin), PGI₃, PGJ₂, PGK₁, PGK₂, carboprost, prostalene, misoprostol, sulprostone, fluprostenol cloprostenol, bimatoprost \((Z)-7-[(1R,2R,3R,5S)-3,5-Dihydroxy-2-[1E,3S]-3-hydroxy-5-phenyl-1-pentenyl]cyclopentyl]-5-N-ethylheptenamide\), latanoprost \((13,14\text{-dihydro-17-phenyl-1,8,19,20-trinor PGF}_{2\alpha} \text{ isopropyl ester})\), travoprost \((1Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxy-4-[(\alpha,\alpha,\alpha\text{-trifluoro-m-tolyl})oxy]-1-buteny]cyclopentyl]-5-heptenoate\), and unoprostone \((13,14\text{-dihydro-15-keto-20-ethyl Prostaglandin F}_{2\alpha})\).

[0019] Examples of mustards include, but are not limited to, nitrogen mustards, nitrobenzyl mustards, phosphoramide mustard, isophosphoramide mustards and aldophosphamide.

[0020] Examples of peptides include, but are not limited to, peptide hormones (e.g. hyrotropin-releasing hormone, tuftsin \((\text{Thr-Lys-Pro-Arg)}\), met-enkephaline \((\text{Tyr-Gly-Gly-Phe-Met)}\), oxytocin, angiotensin, gastrin, somatostatin, dynorphin, endothelin, secretin, calcitonin, and insulin), enterostatins (e.g. Val-Pro-Asp-Pro-Arg \((\text{VPDPR)}\), Val-Pro-Gly-Pro-Arg \((\text{VPGPR)}\), and Ala-Pro-Gly-Pro-Arg \((\text{APGPR)}\)), Melanocortin \(\text{II (cyclo(1,6)-AcNle-Asp-His-Phe-Arg-Trp-Lys-OH)}\), opioid peptides (e.g. Met-enkephalin \((\text{H-Tyr-Gly-Gly-Phe-Met-OH)}\), Leu-enkephalin \((\text{H-Tyr-Gly-Gly-Phe-Leu-OH)}\), H-Tyr-D-Ala-Gly-N-Me-Phe-Met(O)-OL, and H-Tyr-D-Ala-Gly-Phe-Leu-OH)), antimicrobial peptides (e.g. tachyplesins, histatin peptides and the derivatives), calcium binding peptides, competence stimulating peptides, peptide vaccines, and peptide mimics (e.g. \(\alpha\text{-helix mimics and }\beta\text{-sheet mimics)}.

[0021] Examples of beta-lactam antibiotics include, but are not limited to, penicillin derivatives, cephalosporins, penems, monobactams, carbapenems, beta-
lactamase inhibitors and combinations thereof. Examples of penicillin derivatives include, but are not limited to, aminopenicillins (e.g. amoxicillin, ampicillin, and meticillin); carboxypenicillins (e.g. carbenicillin, ticarcillin, and temocillin); ureidopenicillins (e.g. azlocillin, piperacillin and mezlocillin); meccillinam, sulbenicillin, benzathine penicillin, penicillin G (benzylpenicillin), penicillin V (phenoxymethylpenicillin), penicillin O (allylmercaptomethylpenicillinic), procaine penicillin, oxacillin, methicillin, nafillin, cloxacillin, dicloxacillin, pivampicillin, hetacillin, metampicillin, talampicillin, co-amoxiclav (amoxicillin plus clavulanic acid), and piperacillion. Examples of cephalosporins include, but are not limited to, cephalaxin, cephalothin, cefazolin, cefaclor, cefuroxime, cefamandole, cefotetan, cefoxitin, ceforanide, ceftriaxone, cefotaxime, cefpodoxime proxetil, ceftazidime, cefepime, cefoperazone, cefotizoxime, cefixime and cefpirome. Examples of monobactams include, but are not limited to, biapenem, ertapenem, meropenem, and panipenem. Examples of beta-lactamase inhibitors include, but are not limited to, tazobactam ([2S-(2alpha,3beta,5alpha)]-3-Methyl-7-oxo-3-1H,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide sodium salt), sulbactam (2S,5f?)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide sodium), and clavulanic acid ((2f?,5f?,Z)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-aza-bicyclo[3.2.0]heptane-2-carboxylic acid). Other examples of antibiotics include, without limitation, [(N-benzyloxycarbonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt, [(N-benzyloxycarbonylamino)methyl]-phosphonic acid mono-(3-pyridimyl) ester sodium salt, sulfanilamide (4-aminobenzensulfonamide), sulfasalazine (6-oxo-3-(2-[4-(Λ-pyridin-2-ylsulfamoyl)phenyl]hydrazono)cyclohexa-1,4-dienecarboxylic acid), 1-cyclopropyl-6-fluoro-4-oxo-7-piperazin-1-yl-quinoline-3-carboxylic acid, nalidixic acid (1-ethyl-7-methyl-4-oxo-[1,8]naphthyridine-3-carboxylic acid), [0022] In certain embodiments, a transportational unit of a HPC comprises a protonatable amine group that is capable of facilitating the transportation or crossing of the HPC through one or more biological barriers (e.g., > about 10 times, > about 50 times, > about 100 times, > about 300 times, > about 500 times, > about 1,000 times, >
about 10,000 times faster than the parent drug. In certain embodiments, the protonatable amine group is substantially protonated at the pH of the biological barriers the HPC penetrates through. In certain embodiment, the amine group can be reversibly protonated.

[0023] In certain embodiments, a linker covalently linking a functional unit and a transportational unit of a HPC comprises a bond that is capable of being cleaved after the HPC penetrates across one or more biological barriers. The cleavable bond comprises, for example, a covalent bond, an ether, thioether, amide, ester, thioester, carbonate, carbamate, phosphate or oxime bond.

[0024] Another aspect of the present disclosure relates to a pharmaceutical composition comprising one HPC and a pharmaceutically acceptable carrier.

[0025] Another aspect of the present disclosure relates to the use of a composition of the present disclosure in penetrating a biological barrier, such as skin, blood-brain barrier, blood-milk barrier, blood-cerebrospinal fluid (CSF) barrier, and blood-synovial fluid (SF) barrier.

[0026] Another aspect of the present disclosure relates to method for diagnosing the onset, development, or remission of a condition in a biological subject by using a HPC of the present disclosure. In certain embodiments, the HPC or the functional unit of the HPC of the composition is detectable. In certain embodiments, the HPC or the functional unit of the HPC is inherently labeled, or labeled or conjugated to a detectable agent.

[0027] Another aspect of the present disclosure relates methods for screening a test functional unit, a test linker, or a test transportational unit with desired characters.

[0028] Another aspect of the present disclosure relates to a method for treating a condition in a biological subject by administering to the subject a composition in accordance with the present disclosure. In certain embodiments, the method relates to treating a condition in a subject treatable by a parent drug by administering to the subject a therapeutically effective amount of a HPC of the parent drug, or a pharmaceutical composition thereof. In certain embodiments, the HPC or the
pharmaceutical composition of the HPC is administrated to a biological subject via various routes including, but not limited to, oral, enteral, buccal, nasal, topical, rectal, vaginal, aerosol, transmucosal, epidermal, transdermal, dermal, ophthalmic, pulmonary, subcutaneous, and/or parenteral routes. In certain embodiments, the HPC or the pharmaceutical composition of the HPC is administered orally, transdermally, topically, subcutaneously and/or parenterally.

[0029] In certain embodiments, conditions treatable by a HPC of a parent drug of the present disclosure or a pharmaceutical composition thereof include, treating conditions in a site that the parent drug is difficult to reach due to its lack of penetration ability. Examples of such conditions include, without limitation, spinal cord injury, myelin infection and related conditions (e.g. muscle disorders such as amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM) and inclusion body myositis (IBM)). In certain embodiments, conditions treatable by a HPC include autoimmune disorders (e.g. psoriasis, Crohn's disease, lupus erythematosus, discoid lupus erythematosus, systemic lupus erythematosus, multiple sclerosis, fibrosis (e.g. cystic fibrosis, liver fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and fibrosis in other organ)), metabolite disorders (e.g. diabetes (type II), abnormal blood lipid level), thrombosis related conditions (e.g. stroke), neurodegenerative disease (e.g. Alzheimer's diseases and Parkinson's disease), cirrhosis, liver inflammation, hyperthyroidism, gallstones, ageing, undesired skin conditions (e.g. vitiligo, actinic keratosis, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, sagging skin, wrinkles, crow's feet, flesh-colored skin spots, rosacea, post-treatment skin), macular degeneration and age-related macular degeneration (AMD), cough, organ transplant rejection, cancer and tumor (e.g. gastric cancer, multiple myeloma, brain tumor, prostate cancer and bone cancer), grey and/or white hair, hair loss, bold, insufficient hair or eyelashes, pregnancy in women, embryo implantation, brain trama, and conditions in plants that are related to viral, fungus or insect infections.
In certain embodiments, conditions treatable by a NSAIA HPC or a pharmaceutical composition thereof include, but are not limited to, myelin infection and related conditions, cirrhosis, liver inflammation, hyperthyroidism, gallstones, ageing, undesired skin conditions (e.g. actinic keratosis, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin), cough, organ transplant rejection, cancer and tumor (e.g. prostate cancer and bone cancer), grey and/or white hair, hair loss, bold, ageing, and conditions in plants that are related to viral, fungus or insect infections.

In accordance with the advantages of the present disclosure, without intending to be limited by any particular mechanism, a therapeutically effective amount of a HPC can be administered locally to a site of condition with a less dosage to achieve a higher local concentration. The advantages include, for example, avoidance of systematic administration and reduction of adverse effects (e.g., pain of injection, gastrointestinal/renal effects, and other side effect), possible novel treatment due to high local concentration of a HPC or the corresponding parent drug or an active metabolite thereof. HPCs can penetrate skin, blood-brain, blood-milk, and other membrane barriers many times faster and have a pharmacological effect many times stronger than their parent drugs. The present disclosure further includes, for example, systematic administration of a HPC to a biological subject to achieve faster and more efficient bioavailability, penetration of biological barriers (e.g., the blood brain barrier) which have not been crossed by parent agents significantly, and new indications thereof.

DESCRIPTION OF THE DRAWINGS

Figure 1: Exemplary structures of functional unit F1.
Figure 2: Exemplary structures of functional unit F2.
Figure 3: Exemplary structures of functional unit F3.
Figure 4: Exemplary structures of functional unit F4.
Figure 5: Exemplary structures of HPC having functional units of F1, F2, and F4.

Figure 6: Exemplary structures of HPC.

Figure 7: Exemplary structures of transportational unit T.

Figure 8: Cumulative amounts of diethylaminoethyl N-acetyl-3-(3,4-diacetyloxy-phenyl-L-alanine ester.HCl salt (A), diethylaminopropyl N-acetyl-D-3,5,3',5'-tetraiodothyronine.HCl salt(B), 1-piperidineethyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl-propionate. HCl salt(C), 3-piperidinemethyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate.HCl salt(D), diethylaminoethyl (S)-3-(benzoylaminomethyl)-5-methylhexanoate.HCl salt(E), N-acetyl-3-(3,4-diacetyloxy-phenyl-L-alanine sodium salt(F), N-acetyl-D-3,5,3',5'-tetraiodothyronine sodium salt(G), 2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl-propionic acid sodium salt(H), 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid sodium salt(I), and (S)-3-(benzoylaminomethyl)-5-methylhexanoic acid sodium salt(J) crossing isolated human skin tissue in Franz cells (n=5). In each case, the vehicle was pure water.

Figure 9: The HE stained tissues (picture 1: brain, picture 2: muscle, picture 3: liver) 15 minutes after 30mg of the HPC, N-2-diethylaminoethyl 5-dimethylamino-1-naphthalenesulfonamide.HCl salt in 0.5 ml of 75% ethanol was applied to the back of rats; The HE stained tissues (picture 4: brain, picture 5: muscle, picture 6: liver) 3 hours after 30mg of the HPC, N-2-diethylaminoethyl 5-dimethylamino-1-naphthalenesulfonamide.HCl salt in 0.5 ml of 75% ethanol was applied to the back of rats; HE stained tissues (picture 7: brain, picture 8: muscle, picture 9: liver) 3 hours after 30mg of 5-(dimethylamino)naphthalene-1-sulfonic acid in 0.5 ml of 75% ethanol was applied to the back of rats.

Figure 10: Rate of swelling (%) after a carrageenin injection. 1 hour before the carrageenin injection, 100 mg/kg of ibuprofen (B) 100mg/kg (G) and 50 mg/kg (H) of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid were administered orally (B), 1 mg/kg (C), 2 mg/kg, 5 mg/kg (D), 10 mg/kg (E), and 20 mg/kg (F) of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid were administered transdermally. A was the control group.
DETAILED DESCRIPTION OF THE INVENTION

1. Structures of high penetration composition (HPC) of a parent drug.

[0043] One aspect of the present disclosure is directed to a high penetration composition (HPC). The term "high penetration composition" or "HPC" as used herein refers to a composition comprising a functional unit covalently linked to a transportational unit through a linker. The term "high penetration composition of a parent drug" or "HPC of a parent drug" or "a parent drug HPC" as used herein refers to a HPC wherein a functional unit of the HPC comprises a moiety of a parent drug or a parent drug-related compound. The term "parent drug-related compound" as used herein refers to a compound comprises a moiety of a parent drug, or a metabolite/mimic/analog of the parent drug, or a compound that can metabolized into the parent drug or a metabolite/mimic/analog of the parent drug. In certain embodiments, a parent drug of a HPC comprises at least a functional group such as carboxyl, hydroxyl, thiol, amino, phosphate/phosphonate, carbonyl, or guanidino group. In certain embodiments, a parent drug or a parent drug-related compound comprises more than one functional group. In certain embodiments, a parent drug of a HPC is a non-steroidal anti-inflammatory agent (NSAIA), and the HPC is a NSAIA HPC. In certain embodiments, a parent drug of a HPC is a peptide, and the HPC is a peptide HPC. In certain embodiments, a parent drug of a HPC is a mustard, and the HPC is a mustard HPC. In certain embodiments, a parent drug of a HPC is a beta-lactam antibiotics, and the HPC is a beta-lactam antibiotics HPC. In certain embodiments, a parent drug of a HPC is glibornuide, and the HPC is a glibornuide HPC. In certain embodiments, a parent drug of a HPC is a steroid, such as progesterone, desogestrel
and ethinylestradiol, and the HPC is a steroid HPC, such as a progesterone HPC, a desogestrel HPC and a ethinylestradiol HPC. In certain embodiments, a parent drug of a HPC is atenolol, and the HPC is an atenolol HPC.

[0044] A functional unit of a HPC of a parent drug has the following properties: 1) that the parent drug, a parent drug-related compound or the HPC can be delivered into a biological subject and/or the transportation of the parent drug/a parent drug-related compound across a biological barrier is desired, 2) that the HPC is capable of penetrating or crossing one or more biological barriers, and 3) the HPC is capable of, but may or may not necessarily, being cleaved so as to turn the functional unit into the parent drug or a parent drug-related compound.

[0045] In certain embodiments, a functional unit may be hydrophilic, lipophilic, or amphiphilic (hydrophilic and lipophilic). The lipophilic moiety of the function unit may be inherent or achieved by converting its hydrophilic moieties to lipophilic moieties. For example, a lipophilic moiety of a functional unit is produced by converting one or more hydrophilic groups of the functional unit to lipophilic groups via traditional organic synthesis. Examples of the hydrophilic groups include, without limitation, carboxyl, hydroxyl, thiol, amino, phosphate/phosphonate, carbonyl, and guanidino group. The lipophilic moieties produced via the modification of these hydrophilic groups include, without limitation, ethers, thioethers, esters, thioesters, carbonates, carbamates, amides, phosphates and oximes comprising a lipophilic structure such as alkyl, alkylendyl, alkenyl, perfluoroalkyl, alkyl halide, alkynyl, aryl, or heteroary group.

[0046] In certain embodiments, a parent drug of a HPC has a carboxyl group or a phosphate/phosphonate group. Examples of parent drugs that have a carboxyl group include, without limitation, Methallenestril, Aminosalicylic acid, Methallenestril, Aminosalicylic acid, Baclofen, Carbidopa, Levodopa, Aminobenzoic acid, Captopril [1-[(2S)-3-mercaptop-2-methylpropionyl]-L-proline], Cilastatin[(Z)-7-[[[(R)-2-amino-2-carboxyethyl][thio]-2-[(S)-2,2-dimethylcyclo-propanecarboxamido]-2-heptenoic acid], Levothyroxine [D-3,5,3',5'-tetraiodothyronine], Amphotericin B, Etretinate, Efornithine, 10-undecenoic acid, Cinoxacin, Clorazepate, Ciprofloxacin^ -cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperaziny)-3-quinolinecarboxylic acid], Cromolyn,
Dehydrocholic acid, Enalapril [(S)-I-[N-(I-carboxy-3-phenylpropyl)-L-alanyl]-L-proline],
Enoxacin, Ethacrynic acid, Furosemide, Gemfibrozil, Oleic acid, 2-[4-(4-chlorobenzoyl)-
phenoxy]-2-methyl-propionic acid (Fenofibric acid), 7-{[(1 S,3R,7S,8S,8aR)-1-(2S)-2-
methybutyryloxy-3,7-dimethyl-1,2,3,7,8,8a-hexahydropyridalen-1-y]][(3R,5R)-3,4-
dihydroxyheptanoic acid, Gabapentin, Fosinopril, Pravastatin, Argatroban,
Theophyllineacetic acid, lopanoic acid, Liothyronine, lothalamate, Lodoxamide [N, N'-(2-
chloro-5-cyano-m-phenylene)dioxamic acid], Probenecid, Lisinopril [(S)-I-[N-(I-
carboxy-3-phenylpropyl)-L-lysyl]-L-proline], Methotrexate, Acetyaminopropionate
sulfonate, Nedocromil, Thiosalicylic acid, Quinapril, Ramipril, Norfloxacin, Ioxaglate,
Sulfasalazine, Pravastatin, Valproic acid, Olmesartan, Ambrisantin (Letairis),
Darusentan, Nonanediolic acid (Azelaic Acid), Ursodiol, Ofloxacin, TAK-044 {cyclo[D-
Aspartyl-3-[(4-phenylpiperazin-1-yl)carbonyl]-L-alanyl-L-aspartyl-D-2-(thienyl)glycyl]-L-
leucyl-D-tryptophyl]}, BQ1 23 {cyclo[D-Trp-D-Asp-Pro-D-Val-Leu]}, Atorvastatin (Lipitor),
Fluticasone furoate, Lubiprostone (Amitiza), Pregabalin (Lyrica), Pemetrexed (Alimta),
Treprostinil, Rosuvastatin (Creator), Methyldopa, Valsartan, Telmisartan, (E)-5-[(4-(2-
carboxyethyl) aminocarbonyl] phenyl]azo]-2-hydroxybenzoic acid, Eprosartan,
Eprosartan, Fluvasatin (Lescol), (E)-5-[(4-(2-carboxyethyl) aminocarbonyl] phenyl]azo]-
2-hydroxybenzoic acid, Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln, 2-Naphthaleneacetic acid,
Suprofen, 3-(2-thiencylcarbonyl)-benzeneacetic acid, Ibuprofen, Flurbiprofen, Aspirin,
Carprofen, Pranoprofen, Alminoprofen, Benoxaprofen, Indoprofen, Hexaprofen, 10,1-
Dihydro-1 0-oxo-dibenzo[b,f]thiepin-2-carboxylic acid, [4-(2-Oxocyclo-pentyl)-
methyl]benzoic acid, [5-phenyl-2-thiényl]-carboxylic acid, (3-Phenoxypyrenyl)acetic
acid, 4-(4-Chlorophenyl)-2-phenyl-5-thiazoleacetic acid, 4-(2,5-dihydropyrrol-1-yl)-
benzeneacetic acid, 4,5-Diphenyl-2-oxazolepropionic acid, [4-2-Oxocyclopentyl]-
methyl]benzeneacetic acid, 10.1 1-Dihydro-1 0-oxo-dibenzo[b,f]thiepin-2-acetic acid, 5-
Cyclohexyl-2,3-dihydro-1 H-indene-1-carboxylic acid, 5-Phenyl-2-furanpropionic acid,
gamma-Oxo-(1,1'-biphenyl)-4-butanolic acid, 5-Benzoyl-2,3-dihydro-1 H-pyrrolizine
carboxylic acid, Phenylnmethylen-1 H-indene-3-acetic acid, 1-Benzoyl-5-methoxy-
methyl-1 H-indole-3-acetic acid, 4-Benzoyl-1 H-pyrrole-2-acetic acid, 1,3,4,9-
Tetrahydroprano-[3,4-b]indole-1-acetic acid, 3-Phenylamino-benzeneacetic acid, 2-
Phenylamino-benzeneacetic acid, 3-(4-Chlorophenyl)-1-phenyl-1 H-pyrazole-4-acetic
acid, 4-(2-propenyloxy)benzene-acetic acid, 2-Phenyl-5-thiazole-acetic acid, 4-(6-Methoxy-2-naphthalene-3-propionic acid, Acetylsalicylic acid, 3-Phenylbenzoic acid, Salicylsalicylic acid, [(1-Benzyl-1 H-indazol-3-yl)oxy]acetic acid, Salicylsalicylsalicylic acid, Sulfasalazine, 2-Phenylaminopyridine-3-carboxylic acid, Promacta(eltrombopag), Montelukast, Treanda (bendamustine), Prostaglandin E₂, Prostaglandin F₂alpha, Carboprost (15-methyl PGF₂alpha), Prostaglandin D₂, Prostaglandin E₁ (Alprostadil), Prostaglandin F₁alpha, (Z)-7-[(1 R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxy-5-phenyl-1-pentenyl]cyclopentyl]-5-heptenoic acid, (E)-7-[(1 R,2R,3R,5S)-3,5-dihydroxy-2-[(3R)-3-hydroxy-5-phenylpentyl]cyclopentyl]-5-heptenoic acid, Prostaglandin G₂(prostacyclin), (Z)-7-[(1 R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxy-4-[3-(trifluoromethoxy)phenoxylbut-1- enyl]cyclopentyl]-5-heptenoic acid, (E)-7-[(1 R,2R,3R,5S)-3,5-dihydroxy-2-[(3-oxodecyl)cyclopentyl]-5-heptenoic acid, Misoprostol, Gemeprost, 7-[3-Hydroxy-2-3(3-hydroxy-4-phenoxy-1 -butenyl)-5-oxocyclopentyl]-5-heptenoic acid, Fenprostalene, Prostaglandin A₁, Prostaglandin A₂, Prostaglandin B₁, Prostaglandin A₂, Retinoic acid, Bexarotene, 9-cis-retinoic acid (alitretinoin), Retinoid analogs, 13-cis -Retinoic acid (isotretinoin), Bexarotene analogs, Benzylpenicillin, Phenoxybenzylpenicillin, Methicillin, Oxacillin, Piperacillin, Mezlocillin, Carbenicillin, Ticarcillin, Ampicillin, Mecillinam, Cephalothin, Cephalpirin, Cefazolin, Cefadroxil, Cephradine, Cefonicid, Cefamandole, Cefuroxime, Cefoxitin, Ceforanide, Cefotetan, Cefuroxime, Loracarbef, Cefotaxime, Ceftriaxone, Cefoperazone, Moxalactam, LIVALO (pitavastatin), Tyvaso (Treprostinil), Folotyn(Pralatrexate), TAMIFLU (oseltamivir), beraprost.

[0047] In certain embodiments, a parent drug of a HPC having a following Structure P-F₁:

\[
F₁-OH \quad (\text{Structure P-F₁})
\]

Including stereoisomers and salts thereof.

[0048] As used herein, the term "F₁" or "F₁" comprises a structure selected from the group consisting of Structure F₁, Structure F₂, Structure F₃, Structure F₄, Structure F₅, Structure F₆, Structure F₇, Structure F₈, Structure F₉, Structure F₁₀, Structure F₁₁, Structure F₁₂, Structure F₁₃, Structure F₁₄, Structure F₁₅, Structure
As used herein, unless otherwise specified:

each Y and Yi-Y-i is independently selected from the group consisting of H, Cl, F, Br, I, CN, R10, CH3C≡C, CR6≡C, P(O)OR6, CF3, CF3O, CH3, CF3F2, R5, R6, R7, R8, CF3CF2O, CH3CH2, CH3CH2CH2, (CH3)CH, (CH3)CHCH2, CH3CH2CH(CH3), (CH3)3C, C4H9, C5H11, CH3CO, CH3CH2CO, R5CO, CH3OC(=O), CH3CH2OC(=O), R5OC(=O), R6C(=NOR5), R6C(=NR5), CH3COO, R5COO, R5COOCH2, R6NHCOOCH2, CH3COS, CH3O, R5O, HO, R10O, CF3CH2SCH2, CHCl2, CH2COOR6, CH3S, R6S, HS, R10S, CH3OCH2CH2, R9OCH2, R10OCH2CH2, R5O(=O), C2H5CONH, CH2NHR8, CH3OCONH, CH3SO2, CH3SO, R5SO2, R5SO, NH2SO2, C6H5CH2, NH2, NHR10, cyclobutyl, cyclopropyl, 4-chlorophenyl, 4-fluorophenyl, CH2=CH, CH2=CHCH2, CH3CH=CH, NHR5SO2, N(R5)2SO2, R5OCH2CH2CH2, and NO2.

each X, X1-X6 is independently selected from the group consisting of H, CH3, R5, CH2, CHR6, S, O, NR6, CO, CH, CR6, P(O)OR6, N, CH2=C, CH=CH, C≡C, CONH, CSNH, COO, CO, COS, COCH2, and CH2CO;

each R1 and R2 is independently selected from the group consisting of nothing, H, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxyl, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with O, S, P, NR6, or any other pharmaceutically acceptable groups;
each R_3, R_4, R_5, R_6, R_7, R_s and R_9 is independently selected from the group consisting of H, OH, Cl, F, Br, i. substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, and substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with O, S, N, P(O)L$_7$, CH=CH, C≡C, CHL$_7$, CL$_5$L$_7$, aryl, heteroaryl, or cyclic groups;

each R_i, R-11-R-16 is independently selected from the group consisting of nothing, H, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylamino, substituted and unsubstituted alkyl halo, wherein any carbon or hydrogen may be further independently replaced with O, S, P, NR$_5$, or any other pharmaceutically acceptable groups;

L_1 is selected from the group consisting of nothing, O, S, -N(L$_3$)-, -N(L$_3$)-CH$_2$-O, -N(Ls)-CH$_2$-N(L$_5$)-, -0-CH$_2$-O-, -O-CH(L$_3$)-O, and -S-CH(L$_3$)-O-;

each L_2, L_8, L_9, and L_{10} is independently selected from the group consisting of nothing, -O-, -S-, -N(L$_3$)-, -0-N(L$_3$)-, -N(L$_3$)-CH$_2$-O-, -N(L$_3$)-CH$_2$-N(L$_5$)-, -0-CH$_2$-O-, -0-CH(Ls)-O-, -S-CH(L$_3$)-O-, -0-L$_3$-, -S-L$_3$-, -N(L$_3$)-U-, and L$_3$;

L_4 is selected from the group consisting of nothing, C=O, C=S, and

and
each $L_{1,1}$, $L_{1,2}$, and $L_{1,3}$ is independently selected from the group consisting of nothing, $-\text{C}(=\text{O})-$, $-\text{C}(=\text{S})-$, $-\text{C}(=\text{N}(L_{3}))-$, and

\[
\begin{align*}
\text{O} & \quad \text{OL}_{3} \quad \text{L}_{5} \\
\text{P} & \quad \text{O} \quad \text{L}_{5}
\end{align*}
\]

for each L_{1}, L_{2}, L_{4}, L_{8}, L_{9}, L_{10}, L_{11}, L_{12}, and L_{13}, each L_{3} and L_{5} is independently selected from the group consisting of nothing, H, $\text{CH}_{2}\text{COOL}_{6}$, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with O, S, P, NL_{3}, or any other pharmaceutically acceptable groups;

L_{6} is independently selected from the group consisting of H, OH, Cl, F, Br, I, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, and substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with O, S, N, P(O)OL_{7}, CH=CH, $\text{C}=$ C, CHL_{7}, $\text{CL}_{5}L_{7}$, aryl, heteroaryl, or cyclic groups;

L_{7} is independently selected from the group consisting of H, OH, Cl, F, Br, I, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, and substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl
halide, wherein any carbon or hydrogen may be further independently replaced with O, S, N, P(O)OL₆, CH=CH, C≡C, CHL₆, ClL₅, aryl, heteroaryl, or cyclic groups;

each R₁₀, R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈ and R₂₉ is independently selected from the group consisting of nothing, H, R₁, R₂, R₃, R₄, R₅, Re, R₇, Rs, ReCO, R₆NHC(=O), R₆OC(=O), R₆C(=NOR₅), R₆C(=NR₅), R₆C(=S), CNR₆, and R₆OC(=O)(CH₂)nC(=O), R₆(O=)CO(CH₂)nC(=O);

each m and n is independently selected from the group consisting of O and integer, for example, m or n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...;

W is selected from the group consisting of NH, NR₅, O, S; CH₂, and NH;

Z is H, or

each -AA- and -AA₁-represents one or more natural or non-natural amino acid residues or a related residue wherein one or more hydrophilic groups such as carboxyl, hydroxyl, thiol, amino, phosphate/phosphonate, carbonyl, or guanidino group is/are converted to a lipophilic group as described in paragraph 0045, example of a -AA- include, without limitation, a structure comprising one of the following structures:

- \(\text{AA} \)

represents amino acid residues comprising a carboxyl group side chain, examples include, without limitation, the following structures:
is an amino acid residue having a hydroxyl, amino, guanidine, or thiol group side chain, examples include, without limitation, the following structures:

is an amino acid group comprising an amino group side chain, examples include, without limitation, one of the following structures:

each Bx- and By- is independently selected from the group consisting of DNA bases and RNA bases wherein any hydrophilic groups can be converted to a lipophilic
As described in paragraph 0045, examples of DNA bases and RNA bases include, without limitation, Adenine, Guanine, Cytosine, Thymine, Uracil and related compounds having the following structures:

Adenine and related compound

Guanine and related compound

Cytosine and related compound

Thymine and related compound

Uracil and related compound.

Each \(-B_1\) or \(-B\) independently represents Adenine, Guanine, or Cytosine residues having the following structures:

Adenine and related compound

Guanine and related compound

Cytosine and related compound

The term "HA" or "AH" is an acid. In certain embodiments, an acid is a pharmaceutically acceptable acid.

In certain embodiments, a parent drug of a HPC comprises a functional group such as amino group, hydroxyl group, phenol group, thiol group or guanidino group. Examples of a parent drug comprising an amino group, hydroxyl group, phenol group, thiol group or guanidino group include, without limitation, Acetohydroxamic acid, Acyclovir \((2\text{-amino-1,9-dihydro-9-}[(2\text{-hydroxyethoxy})\text{-methyl}]\text{-6H-purin-6-one})\), Allopurinol, Adenosine \((6\text{-amino-9-beta-D-ribofuranosyl-9-H-purine})\), Prednisolone, Prednisone, Triamcinolone acetonide, Cortisol(hydrocortisone), Adenosine \((6\text{-amino-9-beta-D-ribofuranosyl-9-H-purine})\), Cortisone, Estradiol, Estrone, Estratriol, 16-
hydroxyestrone, Equilin, Equilenin, Dienestrol, Hexestrol, Diethylstilbestrol, Benzestrol, 4-Hydroxyandrostenedione, ICI 164384, Aminoglutethimide, ICI 182780, 7-Aminophenylthioandrost-4-ene-3,1 7-dione, Megestrol, Chlormadinone, Norgestrel, Lynestrenol, Methandrostenolone, Mifepristone, Onapristone, Danazol, Methenolone, Stanozolol, Amikacin (D-Streptamine), 9-Aminoacidine, Aminooacidine, Atovaquone, Baclofen, Calcifiediol, Calcitriol, Phenylpropanolamine, Captopril [1-{[2S]-3-mercapto-2-methylpropionyl]-L-proline], Butobarbital, Carbamazepine, Carbidopa, Theophylline, Levodopa, Pseudoephedrine, Chloramphenicol, Chloroxine, Cliaquin, Chloroxylanol, Chloraphenine carbamate, Clithalidone, Phenylpropanolamine, Clonidine [2-(2,6-dichlorophenylamino)-2-imidazoline], Cladribine, Phenylephrine, Clonazepam, Cytarabine [4-amino-1-beta-D-arabinofuranosyl-2-(1 H)-pyrimidinone], Danazol, Dexamethasone, Guanethidine, Daunorubicin, Doxorubicin, Idarubicin, Dextrothyroxine [D3,5,3',5'-tetraiodothyronine], Didanosine, Didacrine, Dapamine, Dihydrotachysterol, Dimarol, Dropanabol, Dyphylline, Enoxacin, Enalapril [(S)-1-[N-(1-carboxy-3-phenylpropyl)-L-alanyl]-L-proline], Dienestrol, Calcipotriene [(5Z,7E,22E,24S)-24-cyclopropyl-9,10-secochola-5,7,10(19),22-tetrane-1 alpha, 3beta,24-triol], Ergocalciferol [9,10-secoergosta-5,7,10(19),22-tetraene-3-ol,(3beta,5Z,7E,22E)], Levonorgestrel, norgestrel, Norethindrone, Procarbazine, Famciclovir, Felodipine, Norgestimate, Floxuridine, idoxuridine, Etoposide, Monobenzone, Fludarabine phosphate, Dihydrotachysterol, Finasteride, Fluconazole, Fludarabine, Fluorouracil, Flucytosine, Ethchlorvynol, Fluorometholone, Halobetasol, Mometasone, Fluvoxamine, Flurandrenolide, Ganciclovir, Fluticasone, Desogestrel, Ethinyl estradiol, Ethinyl estradiol, Mestranol, Desoximetasone, Dexamethasone, Gentamicin, Hydroxyprogesterone, Medroxyprogesterone, Indapamide, Levodopa, Methyldopa, Hydralazine, Hydrochlorothiazide, Hydroflumethiazide, Iodoquinol, Kanamycin, Lovastatin, Masoprocol, Lorazepam, Oxazepam, Medrysone, Mephobarbital, Metolazone, Metaxalone, Methocarbamol, Methyclothiazide, Metronidazole, Mercaptopurine, Methimazole, Methotrexate, Milrinone, Nandrolone, Naphazoline, Mexiletine, Nitrofurantoin, Niclosamide, Nifedipine, Nimodipine, Norepinephrine, Novobiocin, Omeprazole, Oxandrolone, Pemoline, Pentamidine, Oxymetholone, Omeprazole, Oxandrolone, Nordihydroguaiaretic acid, Zafirlukast, Banzel (rufinamide),...
Phenacemide, Phenelzine, Phenazopyridine, Phenobarbital, Sulfisoxazole, Phentolamine, Phenytoin, Podofilox, Procarbazine, Polythiazide, Trichlormethiazide, Primidone, Probucol, Propofol, Propylthiouracil, Procarbazine, Procarbazine, Sulfadoxine, Quinethazone, Propylthiouracil, Ribavirin, Streptozocin, Rimexolone, Simvastatin, Staticin, Stanozolol, Sulfamethizole, Sulfamethoxazole, Sulfisoxazole, Sulfanilamide, Sulfadiazine, Sulfasalazine, Temazepam, Terazosin, Tacrine, Thiabendazole, Thiopental, Tolazoline, Thioguanine, Olmesartan Medoxomil [(5-methyl-2-0X0-1,3-dioxol-4-yl)methyl5-(1-hydroxy-1-methyl-ethyl)-2-propyl-3-[[4-[2-(3H-tetrazol-5-yl)-phenyl]-phenyl[methyl]-3H-imidazole-4-carboxylate], Teniposide, Torsemide, Triamterene, Trifluridine, Trimethoprim, Trimetrexate, Uracil mustard, Tropicamide, Vidarabine, Warfarin, Zalcitabine, Zidovudine, Fluticasone furoate, Rosuvastatin, Bosentan, Clazosentan, Telbivudine (Tyzeka), Olmesartan Medoxomil [(5-methyl-2-0X0-1,3-dioxol-4-yl)methyl5-(1-hydroxy-1-methyl-ethyl)-2-propyl-3-[[4-[2-(3H-tetrazol-5-yl)-phenyl]-phenyl[methyl]-3H-imidazole-4-carboxylate], Teniposide, Torsemide, Triamterene, Trifluridine, Trimethoprim, Trimetrexate, Uracil mustard, Tropicamide, Vidarabine, Warfarin, Zalcitabine, Zidovudine, Efavirenz, Dextroamphetamine, Finasteride, Armodafinil, Eraxis (Anidulafungin), Prezista (Darunavir), Tipranavir, Amprenavir, Brecanavir, Telbivudine (Tyzeka), Lenalidomide, Thalidomide, Entecavir, Conivaptan, Sorafenib (Nexavar), Entecavir (Baraclude), Azacitidine (Vidaza), Pemetrexed (Alimta), Ramelteon, Ezetimibe, Clofarabine (Clolar), Nelarabine (Arnon), Erlotinib (Tarceva), Tadalafil (Cialis), Amrenavir, Atazanavir (Reyataz), Ezetimibe, Acetaminophen, Gilbournuride, Etravirine, Abacavir (Ziagen), N-[2R,3R,4S,5R]-3,4-dihydroxy-5-methyloxolan-2-yl]-3-fluoro-oxypyrimidin-4-yl]amine, Tenofovir, voriconazole, Hydrochlorothiazide, Zoledronic acid, Melatonin, 3-amino propane-1-sulfonic acid, Fulvestrant, Voriconazole, Resveratrol, Lovastatin, Tenofovir disoproxil, Tenofovir, Simvastatin, Penty1 N-[2R,3R,4S,5R]-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-2-oxypyrimidin-4-yl]carbonate (Capecitabine), Ergocalciferol (Vitamin D2), Cholecalciferol (Vitamin D3), 1,25 dihydroxycholecalciferol, Lamivudine, Dovencalciferol (1a-2-hydroxyvitamin D2), Dihydrotachysterol (Vitamin D4), Lopinavir, 3-[4-(4-chlorophenyl)cyclohexyl]-4-hydroxynaphthalene-1,2-dione, Cidofovir, Ritonavir, Entacapone, Tadalafil (Cialis), Finasteride, Zileuton, Melatonin, TAMIFLU
(oseltamivir), Paricalcitol, Metronidazole, Diflunisal, Aspirin, Oxicams, Januvia (Sitagliptin), Emtricitabine (5-fluoro-1-(2R,5S)-[2-(hydroxymethyl)]-1,3-oxathiolan-5-yl)cytosine, Propofol, Vitamin A analogs, Afinitor [everolimus, \((\text{1}R,9\text{S},1\text{2S},1\text{5R},1\text{8R},1\text{9R},2\text{1R,23S,24E,26E,28E,30S,32S,35R})-\text{1},1\text{8-dihydroxy-12-[[1 S,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]1-methylethyl]-19,30-dimethoxy-15,1,7,21,23,29,35-hexamethyl-1,3,6-dioxo-4-aza-tricyclo[30.3.1.0^4,9]hexatriaconta-1,6,24,26,28-tetraene-2,3,1,0,1,4,20-pentaone}], Curcumin, Aptivus (Tipranavir), Intelence (Etravirine), Adcirca (tadalafil), Samsca (Tolvaptan), Peptides, DNAs, RNAs, Adenine, Guanine, Cytosine, Thymine, and Uracil.

[0051] In certain embodiments, a parent drug of a HPC having the following Structure P-F2:

\[
\text{F2-H} \quad \text{(Structure P-F2)}
\]

Including stereoisomers and salts thereof.

[0053] In certain embodiments, a parent drug of a HPC comprises both an amino group, and further comprises a carboxylic or phosphate/phosphonate group. Examples of a parent drug of a HPC comprising both amino group and carboxyl/phosphate/phosphonate group include, without limitation, Moxifloxacin, Acrivastine, Moexipril, (4-Amino-1-hydroxy-butylidene)bisphosphonic acid, Benzepril [3-[[1-(ethoxy-carbonyl)-3-phenyl-(1S)-propyl]amino]-2,3,4,5-tetrahydro-2-oxo-1H-1-(3S)-benzazepine-1-acetic acid], Enoxacin, Ciprofloxacin [1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline-carboxylic acid], Levocabastine, Levodopa, Enalapril [(S)-N-[N-(1-carboxy-3-phenylpropyl)-L-alanyl]-L-proline], Nystatin, Lomefloxacin, Norfloxicin, Amphotericin B, Ofloxacin, Quinapril, Ramipril, (2-[1-[(chlorophenyl)-2-methoxy-2-oxoethyl]-4-sulfanyl-3-piperidinylidene]-acetic acid), R-138727, 2-Oxo-clopidogrel, Zoledronic acid, Methyldopa, levocetirizine (Xyzal), Cetirizine (Zyrtec), Levofloxacin, Gatifloxacin, Olopatadine, Ibandronate (Boniva), Gabapentin, 3-aminopropane-1-sulfonic acid, peptides, amino acids, H-Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln-OH, H-Val-Pro-Gly-Pro-Arg-OH, H-Val-Pro-Gly-Pro-Arg(NO2)-OH, H-Trp-Ala-Gly-Gly-Asp(OBz)-Ala-Ser(Ac)-Gly-Glu(OEt)-OH, Bepreve (beopotastine besilate), Besivance (besifloxacin),
Enterog {alvimopan, [[2(S)-[[4(R)-(3-hydroxyphenyl)-3(R),4-dimethyl-1-piperidinyl]methyl]-1-oxo-3-phenylpropyl]amino]acetic acid dehydrate, and Sabril (vigabatrin).

[0054] In certain embodiments, a parent drug of a HPC comprises following Structure P-F3:

F3-0H (Structure P-F3)

including stereoisomers and salts thereof.

[0055] As used herein, the term "F3" or "F_3" is a structure selected from the group consisting of Structure F3-1, Structure F3-2, Structure F3-3, Structure F3-4, Structure F3-5, Structure F3-6, Structure F3-7, Structure F3-8, Structure F3-9, Structure F3-10, Structure F3-11, Structure F3-12, Structure F3-13, Structure F3-14, Structure F3-15, Structure F3-16, Structure F3-17, Structure F3-18, Structure F3-19, Structure F3-20, Structure F3-21, Structure F3-22, Structure F3-23, Structure F3-24, Structure F3-25, Structure F3-26, Structure F3-27, Structure F3-28, Structure F3-29, Structure F3-30, Structure F3-31, Structure F3-32, Structure F3-33, Structure F3-34, Structure F3-35, Structure F3-36, Structure F3-37, Structure F3-38, Structure F3-39, Structure F3-40, Structure F3-41, Structure F3-42, Structure F3-43, and Structure F3-44 (Figure 3), including stereoisomers and salts thereof.

[0056] In certain embodiments, a parent drug of a HPC comprises a carbonyl group. Example of a parent drug comprising a carbonyl group include, without limitation, Vitamin A aldehyde, Androstenedione, Progesterone, 1-Methylandrosta-1,4-diene-3,17-dione, 10ß-Propynylest-4-ene-3,1 7-dione, 6-Methyleneandrost-4-ene-3,1 7-dione, 7a-Aminophenylthioandrost-4-ene-3,1 7-dione, and 7a-Aminophenylthioandrost-1,4-diene-3,1 7-dione.

[0057] In certain embodiments, a parent drug of a HPC having the following Structure P-F4:

F4=O (Structure P-F4)

including stereoisomers and salts thereof.
As used herein, the term "F4" or "F₄" is a structure selected from the group consisting of Structure F4-1, Structure F4-2, Structure F4-3, Structure F4-4, Structure F4-5, Structure F4-6, Structure F4-7, Structure F4-8, Structure F4-9, Structure F4-10, Structure F4-11, Structure F4-12, Structure F4-13, Structure F4-14, Structure F4-15, Structure F4-16, Structure F4-17, and Structure F4-18 (Figure 4), including stereoisomers and salts thereof.

The term "non-steroidal anti-inflammatory agent" or "NSAIA" is well known in the art and is a non-steroidal agent used to treat inflammation related conditions. NSAIA has anti-inflammatory effect, and some examples of NSAIA also have analgesic and/or antipyretic effects. Examples of NSAIA include, but are not limited to, acetylsalicylic acid (aspirin), 5-(2,4-difluorophenyl) salicylic acid (diflunisal), salicylsalicylic acid (salsalate), salicylic acid, N-Acetyl-p-aminophenol (acetaminophen), 2-(p-isobutylphenyl) propionic acid (ibuprofen), 2-(3-benzyloxyphenyl) propionic acid (ketoprofen), 2-(3-phenoxyphenyl) propionic acid (fenoprofen), 2-(6-methoxy-2-naphthyl) propionic acid (naproxen), α-methyl-4-(2-thienylcarbonyl) benzeneacetic acid (suprofen), α-methyl-(p-chlorobenzoyl)-5-methoxy-2-methylindole 3-acetic acid, 2-(2-fluoro-4-biphenylyl)propionic acid (flurbiprofen), 6-chloro-α-methyl-9H-carbazole-2-acetic acid (carprofen), α-methyl-5H-[1]benzopyrano[2,3-b]pyridine-7-acetic acid (pranoprofen), 2-(4-chlorophenyl)-α-methyl-5-benzoxazolacetic acid (benoxaprofen), α-methyl-4-[[(2-methyl-2-propenyl)amino]benzeneacetic acid (alminoprofen), 5-benzoyl-α-methyl-2-thiopheneacetic acid (tiaprofenic acid), 3-chloro-4-(2,5-dihydro-1 H-pyrrol-1 -yl)-α-methyl benzeneacetic acid (pirprofen), 2-(1 0, 11-dihydro-1 0-oxodibenzo(b,f)thiepin-2-yl)propionic acid (zaltoprofen), 2-(8-methyl-1 0, 11-dihydro-1 0-oxodibenzo(b,f)oxepin-2-yl)propionic acid (bermoprofen), 2-[4-(2-oxocyclopentyl-methyl)phenyl]propionic acid (loxoprofen), 4-(1,3-dihydro-1 -oxo-2H-isooindol-2-yl)-α-methylbenzeneacetic acid (indoprofen), α,3-dichloro-4-cyclohexylbenzeneacetic acid (fenclorac), 2-aryl and heteroarylpropionic acids, 4,5-Diphenyl-2-oxazole propionic acid (oxaprozin), 3-(4-biphenylcarbonyl)propionic acid (fenbufen), 5-(4-chlorophenyl)-beta-hydroxy-2-furanpropionic acid (orpanoxin), 3-aryl and heteroarylpropionic acids, 5-benzoyl-2,3-dihydro-1 H-pyrrolizine-1 -carboxylic acid (ketorolac), 6-chloro-5-cyclohexyl-2,3-dihydro-1H-indene-1 -carboxylic acid (clidanac), 1-Methyl-5-(4-methylbenzoyl)-1 H-pyrrole-2-
acetic acid (tolmetin), 5-(4-Chlorobenzoyl)-1,4-dimethyl-1H-pyrrole-2-acetic acid (zomepirac), 1,8-diethyl-1,3,4,9-tetrahydropyran-3,4-b]indole-1-acetic acid (etodolac), 2-amino-3-benzoyle benzeneacetic acid (amfenac), 2-amino-3-(4-bromo-benzoyl) benzeneacetic acid (bromofenac), 3-chloro-4-(2-propenyloxy) benzeneacetic acid (alclofenac), 2-(2,4-dichlorophenoxy) benzeneacetic acid (fenclofenac), 1-(4-chlorobenzoyl)-5-methoxy^-methyl-I H-indole-S-acetic acid carboxymethyl ester (acemetacin), 4-(4-chlorophenyl)-2-phenyl-5-thiazoleacetic acid (fentiazac), 1-(p-chlorobenzoyl)-5-methoxy-2-methylindo 3-acetic acid (indomethacin), (Z)-5-fluoro-2-methyl-1-[(4-methylsulfinyl) phenylmethylene]-1H-indene-3-acetic acid (sulindac), 3-(4-chlorophenyl)-1-phenyl-1H-pyrazole-4-acetic acid (lonazolac), [(1-benzyl-1H-indazol-3-yl)oxy]acetic acid (bendazac), 6-methoxy-2-naphthalene-2-acetic acid (6MNA), 2[(2,6-dichlorophenyl) amino] benzene acetic acid (diclofenac), 2-[(2,3-Dimethylphenyl) amino]benzoic acid (mefenamic acid), 2-[(2,6-dichloro-3-methylphenyl) amino]benzoic acid (meclomenamic acid), 2-[(3-trifluoromethyl)phenyl]amino]benzoic acid (flufenamic acid), 2-[(3-trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid (niflumic acid), 2-[(2-methyl-3-(trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid (flunixin), 4-hydroxy-2-methyl-N-2-pyrindin-2H,1,2-benzothiazine-3-carboxamide 1,1-dioxide (piroxicam), sudoxiam, 6-chloro-4-hydroxy-2-methyl-N-2-pyrindinyl-2H-thieno[2,3-e]-1,2-thiazine-3-carboxamide 1,1-dioxide (lornoxicam), 4-hydroxy-2-methyl-N-2-pyrindinyl-2H-thieno[2,3-e]-1,2-thiazine-3-carboxamide 1,1-dioxide (tenoxicam), ethyl 1-[2-methyl-1,1-dioxo-3-(pyrindin-2-ylcarbamoyl)]benzo[e]thiazin-4-yl]oxyethyl carbonate (ampiroxicam), 8-chloro-(4-hydroxy-4-pyridine-2-ylamino-methylidene)-3-methyl-2,2-dioxo-2,67-dithia-3-azabicyclo[4,3,0]hena-8,10-dien-5-one (lornoxicam), 4-hydroxy-2-methyl-1,5-[5-Methyl-3-oxo2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide] (isoxicam), cinnamicam and N-(2-thiazolyl)-4-hydroxy-2-methyl-2H,1,2-benzothiazine-3-arboxamide 1,1-dioxide (meloxicam).

[0060] In certain embodiments, a functional unit of a NSAIA HPC comprises a moiety having a structure selected from the group consisting of Structure F-2, Structure F-82 to Structure F-125, and Structure F2-360 to Structure F2-403.
As used herein, a prostaglandin or "a prostaglandin analog" is a compound comprising a five-member ring and a fatty acid group, wherein the five-member ring may be part of a multiple ring structure. Examples of prostaglandins and prostaglandin analogs include, but are not limited to, PGA₁, PGA₂, PGA₃, PGB₁, PGB₂, PGB₃, PGD₁, PGD₂, PGD₃, PGE₁, PGE₂, PGE₃, PGF₁α, PGF₁β, PGF₂α, PGF₂β, PGF₃₀, PGG₂, PGG₃, PGG₄, PGH₁, PGH₂, PGI₂ (prostacyclin), PGI₃, PGJ₂, PGK₁, PGK₂, carboprost, prostalene, misoprostol, gemeprost, sulprostone, fluoprostenol cloprostenol, bimatoprost \(((Z)-7-[(1\,R,2R,3R,5S)-3,5\text{-dihydroxy}-2-[1\,E,3S]-3\text{-hydroxy}-5\text{-phenyl}-1\text{-pentenyl}]\text{cyclopentyl})\text{-5-N-ethylheptenamide})\), latanoprost \((1,3,1\text{, 4-dihydro-1\text{-7-phenyl-1\text{, 8,1, 9,20-trinor PGF}2₀ \text{isopropyl ester}}})\), travoprost \(((Z)-7-\{[1\,R,2\,R,3\,R,5\,S]\text{-3, 5-dihydroxy-2-[(1\,E,3\text{fl})-3-\text{hydroxy-4-}[(\alpha,\alpha,\alpha\text{-trifluoro-m-tolyl}]\text{oxy}]\text{-1\text{-butenyl}}\text{ cyclopentyl}]\text{-5-heptenoate})\), and unoprostone \((1,3,1\text{, 4-dihydro-1\text{-5-keto-20-ethyl Prostaglandin F}2₀})\).

In certain embodiments, a functional unit of a prostaglandin HPC comprises a moiety having a structure selected from the group consisting of Structure F-132 to Structure F-151.

Mustards are well known in the art and are used in connection with various conditions. Examples of mustards include, but are not limited to, nitrogen mustards, nitrobenzyl mustards, phosphoramide mustard, isophosphoramide mustards and aldophosphamide.

In certain embodiments, a functional unit of a HPC of a mustard and mustard-related compound comprises a moiety having a structure selected from the group consisting of Structure F-MA and Structure F-MB:

```
Structure F-MA
```

```
Structure F-MB
```

-31-
including stereoisomers and salts thereof, wherein:

\[\text{is selected from the group consisting of Structure Ym-a, Structure Ym-b, Structure Ym-c, Structure Ym-d, and Structure Ym-e:} \]

\[\text{is selected from the group consisting of substituted and unsubstituted aryl, Structure Ar-ma, Structure Ar-mb, Structure Ar-mc, Structure Ar-md, Structure Ar-me, Structure Ar-mf, Structure Ar-mg, Structure Ar-mh and Structure Ar-mi:} \]
each X_{m1} and X_{m2} is independently selected from the group consisting of Cl, Br, F, I, and $\text{OSO}_2\text{R}_{m4}$;

each R_{m4} and R_{m6} is independently selected from the group consisting of substituted and unsubstituted alkyl, substituted and unsubstituted alkoxy, substituted and unsubstituted perfluoroalkyl, substituted and unsubstituted alkyl halide, substituted and unsubstituted aryl, and substituted and unsubstituted heteroaryl groups;

each X_{m3}-X_{m7} is independently selected from the group consisting of NHCOR_{m4}, OR_{m4}, SR_{m4}, NHR_{m4}, OCOR_{m4}, Rm4, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and
unsubstituted alkyl halide, H, F, Cl, Br, I, NO₂, CN, CF₃, NHCOCH₃, OCH₃, SCH₃, NH₂, NHCH₃, OCOCH₃, OOC₂H₅, OC₂H₅, OC₃H₇, CH₃, C₂H₅, and C₃H₇;

n is an integer;

Yₘ₁ is selected from the group consisting of CH₂, O, S, and NH;

Yₘ₂ and Yₘ₃ are either independently selected from the group consisting of NHCORₘ₄, H, OH, NHCOCH₃, NHOC₂H₅, Cl, F, Br, and I, or taken together is =0;

Yₘ₄ is selected from the group consisting of Rₘ₄, CH₂, (CH₂)ₙ, O, S, and NH;

Aₘ is selected from the group consisting of α-amino acids, β-amino acids, and amino acids residues;

any CH₂ groups may be replaced with O, S, or NH; and

when a bond is not linked with any atom of an aryl or heteroaryl ring, the bond can be put into any position of the ring.

[0065] Peptides and amino acids are well known in the art and are used in connection with various conditions. As used herein, a peptide means a compound formed by connecting more than one amino acid via amide bonds. Examples of peptides include, but are not limited to, peptide hormones (e.g. hyrotropin-releasing hormone, tuftsin (Thr-Lys-Pro-Arg), met-enkephaline (Tyr-Gly-Gly-Phe-Met), oxytocin, angiotensin, gastrin, somatostatin, dynorphin, endothelin, secretin, calcitonin, and insulin), enterostatins (e.g. Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR)), Melanocortin II (cyclo(1,6)-Ac-Nle-Asp-His-Phe-Arg-Trp-Lys-OH), opioid peptides (e.g. Met-enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH), Leu-enkephalin (H-Tyr-Gly-Gly-Phe-Leu-OH), H-Tyr-D-Ala-Gly-N-Me-Phe-Met(O)-OL, and H-Tyr-D-Ala-Gly-Phe-Leu-OH), antimicrobial peptides (e.g. tachyplesins, histatin peptides and the derivatives), calcium binding peptides, competence stimulating peptides, peptide vaccines, and peptide mimics (e.g. α-helix mimics and β-sheet mimics).

[0066] In certain embodiments, a functional unit of a peptide HPC comprises a moiety having a structure selected from the group consisting of Structure F-79 to Structure F-81, Structure F2-418, Structure F2-419, Structure F3-35 to Structure F3-40 as defined supra.
RNA, DNA, nucleosides and nucleotides are well known in the art and are used in connection with various conditions. As used herein, a RNA or DNA means a compound formed by connecting more than one nucleotides via covalent bonds.

In certain embodiments, a functional unit of a RNA HPC or a DNA HPC comprises a moiety having a structure selected from the group consisting of Structure F2-420 to Structure F2-427.

As used herein, a beta-lactam antibiotics refers to a compound that comprises a beta-lactam nucleus. Examples of beta-lactam antibiotics include, but are not limited to, penicillin derivatives, cephalosporins, penems, monobactams, carbapenems, beta-lactamase inhibitors and combinations thereof. Examples of penicillin derivatives include, but are not limited to, aminopenicillins (e.g. amoxicillin, ampicillin, and ticillin); carboxypenicillins (e.g. carbenicillin, ticarcillin, and temocillin); ureidopenicillins (e.g. azlocillin, piperacillin and mezlocillin); mecillinam, sulbencillin, benzathine penicillin, penicillin G (benzylpenicillin), penicillin V (phenoxymethylpenicillin), penicillin O (allylmercaptomethylpenicillinic), procaine penicillin, oxacillin, methicillin, nafcillin, cloxacillin, dicloxacillin, flucloxacillin, pivampicillin, hetacillin, bepcampicillin, metampicillin, talampicillin, co-amoxiclave (amoxicillin plus clavulanic acid), and piperacilline. Examples of cephalosporins include, but are not limited to, cephalexin, cephalothin, cefazolin, cefaclor, cefuroxime, cefamandole, cefotetan, cefoxitin, ceforanide, ceftriaxone, cefotaxime, cefpodoxime proxetil, cefazidime, cefepime, cefoperazone, ceftizoxime, cefixime and cepirome. Examples of penems include, without limitation, faropenem. Examples of monobactams include, without limitation, aztreonam and migemonam. Examples of carbapenens include, but are not limited to, biapenem, ertapenem, imipenem, meropenem, and panipenem. Examples of beta-lactamase inhibitors include, but are not limited to, tazobactam ([2S-(2alpha,3beta,5alpha)]-3-Methyl-7-oxo-3-(1 H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide sodium salt), sulbactam (2S,5f?)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide sodium), and clavulanic acid ((2f?,5f?,Z)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-aza-bicyclo[3.2.0]heptane-2-carboxylic acid). Other examples of antibiotics include, without limitation, ([N-benzyloxy carbonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)
ester sodium salt, [(N-benzyloxycarbonylamino)methyl]-phosphonic acid mono-(3-pyridinyl) ester sodium salt, sulfanilamide (4-aminobenzenesulfonamide), sulfasalazine (6-oxo-3-(2-[4-([N-pyridin-2-ylsulfamoyl]phenyl)hydrazono)cyclohexa-1,4-dienecarboxylic acid), 1-cyclopropyl- 6-fluoro- 4-oxo- 7-piperazin-1-yl- quinoline-3-carboxylic acid, nalidixic acid (1-ethyl-7-methyl-4-oxo-[1,8]naphthyridine-3-carboxylic acid),

[0070] In certain embodiments, a functional unit of a beta-lactam antibiotics HPC comprises a moiety having a structure selected from the group consisting of Structure T-1 6, Structure T-1 7 and Structure T-1 8 as shown in Figure 7, including stereoisomers and salts thereof.

[0071] In certain embodiments, a moiety of a parent drug or parent drug-related compound in a HPC can be further converted to a lipophilic moiety as described supra.

[0072] In certain embodiments, a transportational unit of a HPC comprises a protonatable amine group that is capable of facilitating the transportation or crossing of the HPC through one or more biological barriers (e.g., > about 10 times, > about 50 times, > about 100 times, > about 300 times, > about 500 times, > about 1,000 times, > about 10,000 times faster than the parent drug). In certain embodiments, a protonatable amine group is substantially protonated at the pH of one or more biological barriers the HPC penetrates. In certain embodiments, the amine group can be reversibly protonated and deprotonated. In certain embodiments, the transportational unit may or may not be cleaved from the functional unit after the penetration of HPC through one or more biological barriers.

[0073] In certain embodiments, a protonatable amine group is selected from the group consisting of substituted and unsubstituted primary amine groups, substituted and unsubstituted secondary amine groups, and substituted and unsubstituted tertiary amine groups.

[0074] In certain embodiments, an amine group is selected from the group consisting of Structure T-1, Structure T-2, Structure T-3, Structure T-4, Structure T-5, Structure T-6, Structure T-7, Structure T-8, Structure T-9, Structure T-10, Structure T-11, Structure T-12, Structure T-13, Structure T-14, Structure T-15, Structure T-16, Structure T-17 and Structure T-18 as shown in Figure 7, including stereoisomers and salts thereof.
In certain embodiments, a linker covalently linking a functional unit and a transportational unit of a HPC comprises a bond that is capable of being cleaved after the HPC penetrates across one or more biological barriers. The cleavable bond comprises, for example, a covalent bond, an ether, thioether, amide, ester, thioester, carbonate, carbamate, phosphate or oxime bond.

In certain embodiments, a HPC of a parent drug has the following general Structure L:

```
      Fg
     /\   /
    /   / \
   L_1- L_2- T
     \  /    \
      \_/     \
```

Structure L

including stereoisomers and salts thereof, wherein:

T is a transportational unit of a HPC. For example, T is selected from the group consisting of Structure T-1, Structure T-2, Structure T-3, Structure T-4, Structure T-5, Structure T-6, Structure T-7, Structure T-8, Structure T-9, Structure T-10, Structure T-11, Structure T-12, Structure T-13, Structure T-14, Structure T-15, Structure T-16, Structure T-17 and Structure T-18; and

F_g is a functional unit of a HPC of a parent drug. Examples of F_g include structures selected from the group consisting of F_1, F_2, F-MA and F-MB.

In certain embodiments, a HPC comprises the structure of Structure L, including stereoisomers and salts thereof, wherein F_g is F_1, and L_1 and L_4 are nothing.

In certain embodiments, a HPC comprises the structure of Structure L, including stereoisomers and salts thereof, wherein F_g is F_2, and L_1 is nothing.

In certain embodiments, a HPC comprises a structure of Structure L-3:

```
F3-L_2-R   (Structure L-3)
```

including stereoisomers and salts thereof.
In certain embodiments, a functional unit comprising a carbonyl group (e.g. ketone and aldehyde) is linked to a transportational unit through an imine bond, oxime bond, or hydrazon bond to form a HPC having the following Structure L-4:

![Structure L-4](image)

Structure L-4

including stereoisomers and salts thereof, wherein:

L_{41} is selected from the group consisting of nothing, N, N-O, N-N(L$_3$), N-S, N-O-CH$_2$O, N-S-CH$_2$O, N-L$_3$, N-O-L$_3$, N-N(L$_3$)J-L$_5$, and L$_3$; and

T is defined as in paragraph 0076.

In certain embodiments, a HPC is selected from the group consisting of Structure P-44, P2-428, Structure P2-429, Structure P2-430, Structure P2-431, Structure P2-432, Structure P-4-1, Structure P4-2, Structure P4-3, Structure P4-4, Structure P4-5, Structure P4-6, Structure P4-7, Structure P4-8, Structure P4-9, Structure P4-10, Structure P4-11, Structure P4-12, Structure P4-13, Structure P4-14, Structure P4-15, Structure P4-16, P4-17, Structure P4-18, Structure P4-19, Structure P4-20, Structure P4-21, Structure P4-22, Structure P4-23, Structure P4-24, Structure P4-25, and Structure P4-26, P4-27, Structure P4-28, Structure P4-29, Structure P4-30, Structure P4-31, and Structure P4-32 as shown in Figure 5, including stereoisomers and salts thereof, wherein:

T is defined as in paragraph 0076; and

L_{41} is defined as in paragraph 0080.

In certain embodiments, a parent drug of HPC already comprises both a lipophilic portion and a primary, secondary or tertiary amine group that can be protonated and deprotonated at a pH of one or more biological barriers. Examples of parent drugs that comprise both a lipophilic portion and a primary, secondary or tertiary amine group include, without limitation, beta blockers (e.g. propranolol, atenolol, acebutolol, bisoprolol, esmolol, nadolol, pindolol, sotalol, salmeterol, timolol), local
anesthetic (procaine, mepivacaine, chloroprocaine, etidocaine),
antianxiety/antipsychotic agents (e.g. chlorpromazine, methotrimeprazine, triflupromazine, and trimeprazine), anti-schizophrenia (e.g. perphenazine, prochlorperazine, trifluoperazine), skeletal muscle relaxant (e.g. cyclobenzaprine), and platelet aggregation inhibitor (e.g. ticlopidine).

Structure D5-1 12, Structure D5-1 13, Structure D5-1 14, Structure D5-1 15, Structure D5-1 16, Structure D5-1 17, Structure D5-1 18, Structure D5-1 19, Structure D5-1 20, Structure D5-1 21, Structure D5-1 22, Structure D5-1 23, Structure D5-1 24, Structure D5-1 25, Structure D5-1 26, Structure D5-1 27, Structure D5-1 28, Structure D5-1 29, Structure D5-1 30, Structure D5-1 31, Structure D5-1 32, Structure D5-1 33, Structure D5-1 34, Structure D5-1 35, Structure D5-1 36, Structure D5-1 37, Structure D5-1 38, Structure D5-1 39, Structure D5-1 40, Structure D5-1 41, Structure D5-1 42, Structure D5-1 43, Structure D5-1 44, Structure D5-1 45, Structure D5-1 46, Structure D5-1 47, Structure D5-1 48, Structure D5-1 49, Structure D5-1 50, Structure D5-1 51, Structure D5-1 52, Structure D5-1 53, Structure D5-1 54, Structure D5-1 55, Structure D5-1 56, Structure D5-1 57, Structure D5-1 58, Structure D5-1 59, Structure D5-1 60, Structure D5-1 61, Structure D5-1 62, Structure D5-1 63, Structure D5-1 64, Structure D5-1 65, Structure D5-1 66, Structure D5-1 67, Structure D5-1 68, Structure D5-1 69, Structure D5-1 70, Structure D5-1 71, Structure D5-1 72, Structure D5-1 73, Structure D5-1 74, Structure D5-1 75, Structure D5-1 76, Structure D5-1 77, Structure D5-1 78, Structure D5-1 79, Structure D5-1 80, Structure D5-1 81, Structure D5-1 82, Structure D5-1 83, Structure D5-1 84, Structure D5-1 85, Structure D5-1 86, Structure D5-1 87, Structure D5-1 88, Structure D5-1 89, Structure D5-1 90, Structure D5-1 91, Structure D5-1 92, Structure D5-1 93, Structure D5-1 94, Structure D5-1 95, Structure D5-1 96, Structure D5-1 97, Structure D5-1 98, Structure D5-1 99, Structure D5-1 100, Structure D5-1 101, Structure D5-1 102, Structure D5-1 103, Structure D5-1 104, Structure D5-1 105, Structure D5-1 106, Structure D5-1 107, Structure D5-1 108, Structure D5-1 109, Structure D5-1 110, Structure D5-1 111, Structure D5-1 112, Structure D5-1 113, Structure D5-1 114, Structure D5-1 115, Structure D5-1 116, Structure D5-1 117, Structure D5-1 118, Structure D5-1 119, Structure D5-1 120, Structure D5-1 121, Structure D5-1 122, Structure D5-1 123, Structure D5-1 124, Structure D5-1 125, Structure D5-1 126, Structure D5-1 127, Structure D5-1 128, Structure D5-1 129, Structure D5-1 130, Structure D5-1 131, Structure D5-1 132, Structure D5-1 133, Structure D5-1 134, Structure D5-1 135, Structure D5-1 136, Structure D5-1 137, Structure D5-1 138, Structure D5-1 139, Structure D5-1 140, Structure D5-1 141, Structure D5-1 142, Structure D5-1 143, Structure D5-1 144, Structure D5-1 145, Structure D5-1 146, Structure D5-1 147, Structure D5-1 148, Structure D5-1 149, Structure D5-1 150, Structure D5-1 151, Structure D5-1 152, Structure D5-1 153, Structure D5-1 154, Structure D5-1 155, Structure D5-1 156, Structure D5-1 157, Structure D5-1 158, Structure D5-1 159, Structure D5-1 160, Structure D5-1 161, Structure D5-1 162, Structure D5-1 163, Structure D5-1 164, Structure D5-1 165, Structure D5-1 166, Structure D5-1 167, Structure D5-1 168, Structure D5-1 169, Structure D5-1 170, Structure D5-1 171, Structure D5-1 172, Structure D5-1 173, Structure D5-1 174, Structure D5-1 175, Structure D5-1 176, Structure D5-1 177, Structure D5-1 178, Structure D5-1 179, Structure D5-1 180, Structure D5-1 181, Structure D5-1 182, Structure D5-1 183, Structure D5-1 184, Structure D5-1 185, Structure D5-1 186, Structure D5-1 187, Structure D5-1 188, Structure D5-1 189, Structure D5-1 190, Structure D5-1 191, Structure D5-1 192, Structure D5-1 193, Structure D5-1 194, Structure D5-1 195, Structure D5-1 196, Structure D5-1 197, Structure D5-1 198, Structure D5-1 199, Structure D5-1 200, Structure D5-1 201, Structure D5-1 202, Structure D5-1 203, Structure D5-1 204, Structure D5-1 205, Structure D5-1 206, Structure D5-1 207, Structure D5-1 208, Structure D5-1 209, Structure D5-1 210, Structure D5-1 211, Structure D5-1 212, Structure D5-1 213, Structure D5-1 214, Structure D5-1 215, Structure D5-1 216, Structure D5-1 217, Structure D5-1 218, Structure D5-1 219, Structure D5-1 220, Structure D5-1 221, Structure D5-1 222, Structure D5-1 223, Structure D5-1 224, Structure D5-1 225, Structure D5-1 226, Structure D5-1 227, Structure D5-1 228, Structure D5-1 229, Structure D5-1 230, Structure D5-1 231, Structure D5-1 232, Structure D5-1 233, Structure D5-1 234, Structure D5-1 235, Structure D5-1 236, Structure D5-1 237, Structure D5-1 238, Structure D5-1 239, Structure D5-1 240, Structure D5-1 241, Structure D5-1 242, and Structure D5-1 243, (Figure 6), including stereoisomers and salts thereof.

[0084] In certain embodiments, a salt of a HPC is a pharmaceutically acceptable salt.
[0085] As used herein, the term "pharmaceutically acceptable salt" means those salts of compounds of the present disclosure that are safe for application in a subject. Pharmaceutically acceptable salts include salts of acidic or basic groups present in compounds of the present disclosure. Pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate, p-toluenesulfonate and pamoate (i.e., 1,1-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Certain compounds of the present disclosure can form pharmaceutically acceptable salts with various amino acids. Suitable base salts include, but are not limited to, aluminum, calcium, lithium, magnesium, potassium, sodium, zinc, and diethanolamine salts. For a review on pharmaceutically acceptable salts see BERGE ET AL, 66 J. PHARM. SCI. 1 - 19 (1977), incorporated herein by reference.

[0086] As used herein, the term "pharmaceutically acceptable acid" means acids that can form salts with compounds of the present disclosure that are safe for application in a subject. Examples of pharmaceutically acceptable acid include, but are not limited to, e.g. hydrochloride, hydrobromide, hydroiodide, nitric acid, sulfic acid, bisulfic acid, phosphoric acid, phosphorous acid, phosphonic acid, isonicotinic acid, acetic acid, lactic acid, salicylic acid, citric acid, tartaric acid, pantothenic acid, bitartaric acid, ascorbic acid, succinic acid, maleic acid, gentisinic acid, fumaric acid, gluconic acid, glucaronic acid, saccharic acid, formic acid, benzoic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzensulfonic acid, p-toluenesulfonic acid and pamoic acid.

[0087] As used herein, unless specified otherwise, the term "alkyl" means a branched or unbranched, saturated or unsaturated, monovalent or multivalent hydrocarbon group, including saturated alkyl groups, alkenyl groups and alkynyl groups. Examples of alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, ethenyl, propenyl, butenyl, isobutenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl,
undecenyl, dodecenyl, ethynyl, propynyl, butynyl, isobutynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, t-butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene and dodecylene. In certain embodiments, the hydrocarbon group contains 1 to 30 carbons. In certain embodiments, the hydrocarbon group contains 1 to 20 carbons. In certain embodiments, the hydrocarbon group contains 1 to 12 carbons. In certain embodiments, the hydrocarbon group contains 1 to 6 carbons.

[0088] As used herein, unless specified otherwise, the term "cycloalkyl" means an alkyl which contains at least one ring and no aromatic rings. In certain embodiments, a cycloalkyl is a saturated cycloalkyl groups. In certain embodiments, a cycloalkyl group comprises unsaturated bonds. Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl. In certain embodiments, the hydrocarbon chain contains 1 to 30 carbons. In certain embodiments, the hydrocarbon group contains 1 to 20 carbons. In certain embodiments, the hydrocarbon group contains 1 to 12 carbons. In certain embodiments, the hydrocarbon group contains 1 to 6 carbons.

[0089] As used herein, unless specified otherwise, the term "heterocycloalkyl" means a cycloalkyl wherein at least one ring atom is a non-carbon atom. Examples of the non-carbon ring atom include, but are not limited to, S, O and N.

[0090] As used herein, unless specified otherwise, the term "alkoxyl" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more oxygen atoms. Examples of alkoxyl include, but are not limited to, -CH₂-OH, -OCH₃, -O-alkyl, -alkyl-OH, -alkyl-O-alkyl-, wherein the two alkyls can be the same or different.

[0091] As used herein, unless specified otherwise, the term "alkyl halide" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more halogen atoms, wherein the halogen atoms can be the same or different. The term "halogen" means fluorine, chlorine, bromine or iodine. Examples of alkyl halide include, but are not limited to, -alkyl-F, -alkyl-Cl, -alkyl-Br, -alkyl-I, -alkyl(F)-, -alkyl(Cl)-, -alkyl(Br)- and -alkyl(I)-.
As used herein, unless specified otherwise, the term "alkylthio" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more sulfur atoms. Examples of alkylthio include, but are not limited to, -CH₂-SH, -SCH₃, -S-alkyl, -alkyl-SH, -alkyl-S-alkyl-, wherein the two alkyls can be the same or different.

As used herein, unless specified otherwise, the term "alkylamino" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more nitrogen atoms. Examples of alkylamino include, but are not limited to, -CH₂-NH, -NCH₃, -N(alkyl)-alkyl, -N-alkyl, -alkyl-NH₂, -alkyl-N-alkyl and -alkyl-N(alkyl)-alkyl wherein the alkyls can be the same or different.

As used herein, unless specified otherwise, the term "alkylcarbonyl" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more carbonyl groups. Examples of alkylcarbonyl group include, but are not limited to, aldehyde group (-R'-C(O)-H), ketone group (-R'-C(O)-R''), carboxylic acid group (R'-COOH), ester group (-R''-COO-R'), carboxamide, (-R''''-COO-N(R')R''), enone group (-R''''-C(O)-C(R')=C(R'')R'''), acyl halide group (-R'-C(O)-X) and acid anhydride group (-R''-C(O)-O-C(O)-R''), wherein R', R'', R''' and R'''' are the same or different alkyl, cycloalkyl, or heterocycloalkyl.

As used herein, unless specified otherwise, the term "perfluoroalkyl" means an alkyl, cycloalkyl or heterocycloalkyl, which contains one or more fluoro group, including, without limitation, perfluoromethyl, perfluoroethyl, perfluoropropyl.

As used herein, unless specified otherwise, the term "aryl" means a chemical structure comprising one or more aromatic rings. In certain embodiments, the ring atoms are all carbon. In certain embodiments, one or more ring atoms are non-carbon, e.g. oxygen, nitrogen, or sulfur ("heteroaryl"). Examples of aryl include, without limitation, phenyl, benzyl, naphthalenyl, anthracenyl, pyridyl, quinoyl, isoquinoyl, pyrazinyl, quinoxalinyl, acridinyl, pyrimidinyl, quinazolinyl, pyridazinyl, cinnolinyl, imidazoyl, benzimidazoyl, purinyl, indolyl, furanyl, benzofuranyl, isobenzofuranyl, pyrrolyl, indolyl, isoindolyl, thiophenyl, benzothiophenyl, pyrazolyl, indazolyl, oxazolyl, benzoazoyl, isoxazolyl, benzisoxazolyl, thiazolyl, quinidino and benzothiazolyl.
Examples of HPC of Aspirin and related compounds.

[0097] In certain embodiments, a HPC has the following Structure P-NSAIA-1 or Structure P-NSAIA-2:

Structure P-NSAIA-1

Structure P-NSAIA-2

including stereoisomers and salts thereof.

[0098] In certain embodiments, a HPC has Structure P-NSAIA1 or Structure P-NSAIA-2, including stereoisomers and salts thereof wherein:

Z₃ is selected from the group consisting of O, S, NOR₅, and NR₅;

Xₐ is selected from the group consisting of nothing, O, P(O)ORₐ₁, NH, NRₐ, and S;

Rₐ is selected from the group consisting of nothing, alkyl, cycloalkyl, alkyloxyl, cycloalkyloxyl, alkenyl, cycloalkenyl, perfluoroalkyl, cycloperfluoroalkyl, alkyl halide, cycloalkyl halide, alkynyl, cycloalkynyl, aryl and heteroaryl moieties, wherein, any CH₂ may be independently replaced with O, S, CH=CH, C≡C, CHR₅, CR₅R₆, ary1 or heteroaryl moieties, any other moieties which are pharmaceutically acceptable;

Rₐ₁ and R₃₂ are independently selected from the group consisting of H, alkyl, cycloalkyl, alkyloxyl, cycloalkyloxyl, alkenyl, cycloalkenyl, perfluoroalkyl, cycloperfluoroalkyl, alkyl halide, cycloalkyl halide, alkynyl, cycloalkynyl, aryl and heteroaryl residues, wherein, any CH₂ may be independently replaced with O, S,
CH=CH, C=C, CHR₅₅, CRₐ₅Ra₅, aryl or heteroaryl moieties, any other moieties which are pharmaceutically acceptable;

Rₐ₅ and Rₐ₆ are independently selected from the group consisting of H, OH, Cl, F, Br, alkyl, cycloalkyl, alkylxyl, cycloalkyloxyl, alkenyl, cycloalkenyl, perfluoroalkyl, cycloperfluoroalkyl, alkyl halide, cycloalkyl halide, alkynyl, cycloalkynyl residues, aryl and heteroaryl moieties;

Rₐ₇ is selected from the group consisting of alkyl, cycloalkyl, alkylxyl, cycloalkyloxyl, alkenyl, cycloalkenyl, perfluoroalkyl, cycloperfluoroalkyl, alkyl halide, cycloalkyl halide, alkynyl, and cycloalkynyl residues having aryl or heteroaryl moieties;

T is defined the same as in paragraph 0076;

Xₐ₁ is selected from the group consisting of O, and the following structures:

![Structure 1](image1)

![Structure 2](image2)

each Yₐ₁, Yₐ₂, Ya₃, Ya₄, Ya₅, Ya₆, Ya₇, and Yₐ₅ is independently selected from the group consisting of H, HO, CH₃COO, R₈COO, HS, NO₂, CN, CH₃COS, NH₂, CH₃CONH, R₈CONH, CH₃, CH₃CH₂, C₃H₇, C₄H₉, CH₃O, CH₃CH₂O, C₃H₇O, Cl, F, Br, alkyl, CH₃S, CHF₂O, CF₃O, CF₃CF₂O, C₃F₇O, CF₃, CF₃CF₂, C₃F₇, C₄F₉, CH₃SO₂, R₈SO₂, CH₃SO, R₃₈SO, CH₃CO, and CH₃CH₂CO;

R₃₈ is selected from the group consisting of alkyl, cycloalkyl, alkylxyl, cycloalkyloxyl, alkenyl, cycloalkenyl, perfluoroalkyl, cycloperfluoroalkyl, alkyl halide, cycloalkyl halide, alkynyl, and cycloalkynyl residues having aryl or heteroaryl moieties.
In certain embodiments, a HPC of aspirin has the following Structure P-NSAIA-1:

\[
\begin{align*}
\text{Structure P-NSAIA-1 a} & \\
\end{align*}
\]

including stereoisomers and salts thereof.

In certain embodiments, a HPC has Structure P-NSAIA-1, including stereoisomers and salts thereof wherein:

- \(R_1, R_{11} \) and \(R_{12} \) are defined the same as \(R, R_1 \) and \(R_2 \) respectively as in paragraph 0049;
- \(R_{17} \) represents \(\text{CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \) or other lower alkyl groups; and
- \(X \) represents \(\text{O}, \text{S}, \text{NOR}_4, \) or \(\text{NR}_4 \).

HPC of ibuprofen and related compounds

In certain embodiments, a HPC has the following Structure P-NSAIA-5:

\[
\begin{align*}
\text{Structure P-NSAIA-5} & \\
\end{align*}
\]
including stereoisomers and pharmaceutically acceptable salts thereof.

[00102] In certain embodiments, a HPC has Structure P-NSAIA-5, including stereoisomers and pharmaceutically acceptable salts thereof, wherein:

T is defined the same as in paragraph 0076;

YA-i, YA2, YA3, and YA4 are defined the same as in paragraph 98; and

YA is defined the same as YA-i, YA2, YA3, and YA4.

II. Pharmaceutical compositions comprising HPCs

[00103] Another aspect of the present disclosure relates to a pharmaceutical composition comprising at least a HPC. The pharmaceutical composition further comprises a pharmaceutically acceptable carrier.

[00104] The term "pharmaceutically acceptable carrier" as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a HPC from one location, body fluid, tissue, organ (interior or exterior), or portion of the body, to another location, body fluid, tissue, organ, or portion of the body.

[00105] Each carrier is "pharmaceutically acceptable" in the sense of being compatible with the other ingredients, e.g., a HPC, of the formulation and suitable for use in contact with the tissue or organ of a biological subject without excessive toxicity, irritation, allergic response, immunogenicity, or other problems or complications, commensurate with a reasonable benefit/risk ratio.

[00106] Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide
and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer’s solution; (19) alcohol, such as ethyl alcohol and propane alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations such as acetone.

[00107] The pharmaceutical compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.

[00108] In one embodiment, the pharmaceutically acceptable carrier is an aqueous carrier, e.g. buffered saline and the like. In certain embodiments, the pharmaceutically acceptable carrier is a polar solvent, e.g. acetone and alcohol.

[00109] The concentration of HPC in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the biological subject’s needs. For example, the concentration can be 0.0001 % to 100%, 0.01 % - 100%, 0.1 % to 100%, 1 % to 50%, 1% to 30%, 1% to 20%, 5% to 10%, 6% to 8% wt.

[00110] The compositions of the present disclosure can be administered for prophylactic, therapeutic, and/or hygienic use. Such administration can be topical, mucosal, e.g., oral, nasal, vaginal, rectal, parenteral, transdermal, subcutaneous, intramuscular, intravenous, via inhalation, ophthalmic and other convenient routes. The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include powder, tablets, pills, capsules and lozenges.

[00111] Thus, a typical pharmaceutical composition for intravenous administration would be about 10⁻⁹ g to about 100 g, about 10⁻⁶ g to about 100 g, about 0.001 g to about 100 g, about 0.01 g to about 10 g, or about 0.01 g to about 1 g per subject per day. Dosages from about 0.01 mg, to about 5 g, per subject per day may be used. Actual methods for preparing parenterally administrable compositions will be known or

III. Applications of HPCs

[001 12] \textit{i) Methods for penetrating a biological barrier.}

[001 13] Another aspect of the present disclosure relates to a method of using a composition of the present disclosure in penetrating one or more biological barriers in a biological subject. The method comprises a step of administering to a biological subject a HPC, or a pharmaceutical composition thereof. In one embodiment, a HPC exhibits more than 10 times or higher, more than about 50 times or higher, more than about 100 times or higher, more than about 200 time higher, more than about 300 times or higher, more than about 500 times or higher, more than about 1,000 times or higher, more than about 10,000 times or higher penetration rate through one or more biological barriers than its parent drug.

[001 14] The term "biological barrier" as used herein refers to a biological layer that separates an environment into different spatial areas or compartments, which separation is capable of modulating (e.g. restricting, limiting, enhancing or taking no action in) the passing through, penetrating or translocation of substance or matter from one compartment/area to another. The different spatial areas or compartments as referred to herein may have the same or different chemical or biological environment(s). The biological layer as referred herein includes, but is not limited to, a biological membrane, a cell layer, a biological structure, an inner surface of subjects, organisms, organs or body cavities, an external surface of subjects, organisms, organs or body cavities, or any combination or plurality thereof.

[001 15] Examples of a biological membrane include a lipid bilayer structure, eukaryotic cell membrane, prokaryotic cell membrane, and intracellular membrane (e.g., nucleus or organelle membrane, such as membrane or envelope of Golgi apparatus, rough and smooth endoplasmic reticulum (ER), ribosomes, vacuoles, vesicles, liposomes, mitochondria, lysosome, nucleus, chloroplasts, plastids, peroxisomes or microbodies).
The lipid bilayer referred to herein is a double layer of lipid-class molecules, including, but not limited to, phospholipids and cholesterol. In a particular embodiment, lipids for bilayer are amphiphilic molecules consisting of polar head groups and non-polar fatty acid tails. The bilayer is composed of two layers of lipids arranged so that their hydrocarbon tails face one another to form an oily core held together by the hydrophobic effect, while their charged heads face the aqueous solutions on either side of the membrane. In another particular embodiment, the lipid bilayer may contain one or more embedded protein and/or sugar molecule(s).

Examples of a cell layer include a lining of eukaryotic cells (e.g., epithelium, lamina propria and smooth muscle or muscularis mucosa (in gastrointestinal tract)), a lining of prokaryotic cells (e.g., surface layer or S-layer which refers to a two dimensional structure monomolecular layer composed of identical proteins or glycoproteins, specifically, an S-layer refers to a part of a cell envelope commonly found in bacteria and archaia), a biofilm (a structured community of microorganisms encapsulated within a self-developed polymeric matrix and adherent to a living or inert surface), and a plant cell layer (e.g., empidermis). The cells may be normal cells or pathological cells (e.g. disease cells, cancer cells).

Examples of biological structures include structures sealed by tight or occluding junctions which provide a barrier to the entry of toxins, bacteria and viruses, e.g. blood milk barrier, blood-cerebrospinal fluid (CSF) barrier, blood-synovial fluid (SF) barrier and blood brain barrier (BBB). In particular, BBB is composed of an impermeable class of endothelium, which presents both a physical barrier through tight junctions adjoining neighboring endothelial cells and a transport barrier comprised of efflux transporters. The biological structure may also include a mixture of cells, proteins and sugars (e.g. blood clots), for example, a myelin sheath, which is a layer around the axon of a neuron formed by a dielectric material, myelin.

Examples of the inner surface of subjects, organisms, organs or body cavities include buccal mucosa, esophageal mucosa, gastric mucosa, intestinal mucosa, olfactory mucosa, oral mucosa, bronchial mucosa, uterine mucosa and endometrium.
(the mucosa of the uterus, inner layer of the wall of a pollen grain or the inner wall layer of a spore), or a combination or plurality thereof.

[00120] Examples of the external surface of subjects, organisms, organs or body cavities include capillaries (e.g. capillaries in the heart tissue), mucous membranes that are continuous with skin (e.g. such as at the nostrils, the lips, the ears, the genital area, and the anus), outer surface of an organ (e.g. liver, lung, stomach, brain, kidney, heart, ear, eye, nose, mouth, tongue, colon, pancreas, gallbladder, duodenum, rectum stomach, colonrectum, intestine, vein, respiratory system, vascular, the anorectum and pruritus ani), skin, cuticle (e.g., dead layers of epidermal cells or keratinocytes or superficial layer of overlapping cells covering the hair shaft of an animal, a multi-layered structure outside the epidermis of many invertebrates, plant cuticles or polymers cutin and/or cutan), external layer of the wall of a pollen grain or the external wall layer of a spore), and a combination or plurality thereof.

[00121] In addition, a biological barrier further includes a sugar layer, a protein layer or any other biological layer, or a combination or plurality thereof. For example, skin is a biological barrier that has a plurality of biological layers. A skin comprises an epidermis layer (outer surface), a demis layer and a subcutaneous layer. The epidermis layer contains several layers including a basal cell layer, a spinous cell layer, a granular cell layer, and a stratum corneum. The cells in the epidermis are called keratinocytes. The stratum corneum ("horny layer") is the outmost layer of the epidermis, wherein cells here are flat and scale-like ("squamous") in shape. These cells contain a lot of keratin and are arranged in overlapping layers that impart a tough and oilproof and waterproof character to the skin's surface.

[00123] Another aspect of the present disclosure relates to a method of using a composition of the present disclosure in diagnosing a condition in a biological subject. The method comprises the following steps:

1) administrating a composition comprising a HPC to the biological subject;
2) detecting the presence, location or amount of the HPC, the functional unit of the HPC or a metabolite thereof in the biological subject; and
3) determining a condition in the biological subject.
In certain embodiments, a HPC (or an agent cleaved from the HPC) aggregates in the site of action where a condition occurs. In certain embodiments, the presence, location or amount of a functional unit of a HPC is also detected. In certain embodiments, the onset, development, progress, or remission of a condition (e.g., cancer) associated is also determined.

In certain embodiments, a HPC is labeled with or conjugated to a detectable agent. Alternatively, the HPC is prepared to include radioisotopes for detection.

Numerous detectable agents are available which can be generally grouped into the following categories:

(a) Radioisotopes, such as 35S, 14C, 13C, 15N, 125I, 3H, and 131I. The diagnostic agent can be labeled with the radioisotope using the techniques known in the art and radioactivity can be measured using scintillation counting; in addition, the diagnostic agent can be spin labeled for electron paramagnetic resonance for carbon and nitrogen labeling.

(b) Fluorescent agents such as BODIPY, BODIPY analogs, rare earth chelates (europium chelates), fluorescein and its derivatives, FITC, 5,6 carboxyfluorescein, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin, green fluorescent protein, yellow fluorescent protein, red fluorescent protein and Texas Red. Fluorescence can be quantified using a fluorometer.

(c) Various enzyme-substrate agents, such luciferases (e.g., firefly luciferase and bacterial luciferase), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Examples of enzyme-substrate combinations include, for example: (i) Horseradish peroxidase (HRPO) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3',5,5'-tetramethyl benzidine hydrochloride (TMB)); (ii) alkaline phosphatase (AP) with para-
Nitrophenyl phosphate as chromogenic substrate; and (iii) β-D-galactosidase (β-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-β-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-β-D-galactosidase.

[00127] In certain embodiments, a detectable agent is not necessarily conjugated to the diagnostic agent but is capable of recognizing the presence of the diagnostic agent and the diagnostic agent can be detected.

[00128] In certain embodiments, a HPC of the present disclosure can be provided in a kit, i.e., a packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the HPC is labeled with an enzyme, the kit will include substrates and cofactors required by the enzyme (e.g., a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g., a block buffer or lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients which on dissolution will provide a reagent solution having the appropriate concentration.

[00129] iii) Methods for screening a substance for a desired character

[00130] Another aspect of the present disclosure relates to a method of screening a HPC for a desired character.

[00131] In certain embodiments, the method comprises:

1) covalently linking a test functional unit to a transportational unit through a linker to form a test composition (or covalently linking a functional unit to a test transportational unit through a linker, or covalently linking a functional unit to a transportational unit through a test linker)

2) administrating the test composition to a biological subject; and

3) determining whether the test composition has the desired nature or character.
In one embodiment, a desired character may include, for example, 1) the ability of a test functional unit to form a high penetration composition or convert back to a parent drug, 2) the penetration ability and/or rate of a test composition, 3) the efficiency and/or efficacy of a test composition, 4) the transportational ability of a test transportational unit, and 5) the cleavability of a test linker.

iv) Methods for treating a condition in a biological subject

Another aspect of the present disclosure relates to a method of using a composition of the present disclosure in treating a condition in a biological subject. The method comprises administrating the pharmaceutical composition to the biological subject.

The term "treating" as used herein means curing, alleviating, inhibiting, or preventing. The term "treat" as used herein means cure, alleviate, inhibit, or prevent. The term "treatment" as used herein means cure, alleviation, inhibition or prevention.

The term "biological subject" or "subject" as used herein means an organ, a group of organs that work together to perform a certain task, an organism, or a group of organisms. The term "organism" as used herein means an assembly of molecules that function as a more or less stable whole and has the properties of life, such as animal, plant, fungus, or micro-organism.

The term "animal" as used herein means an eukaryotic organism characterized by voluntary movement. Examples of animal include, without limitation, vertebrata (e.g. human, mammals, birds, reptiles, amphibians, fishes, marsipobranchiata and leptocardia), tunicata (e.g. thaliacea, appendicularia, sorberacea and ascidioidea), articulata (e.g. insecta, myriapoda, malacapoda, arachnida, pycnogonida, merostomata, Crustacea and annelida), gehyrea (anarthropoda), and helminthes (e.g. rotifera).

The term "plant" as used herein means organisms belonging to the kindom Plantae. Examples of plant include, without limitation, seed plants, bryophytes, ferns and fern allies. Examples of seed plants include, without limitation, cycads, ginkgo, conifers, gnetophytes, angiosperms. Examples of bryophytes include, without limitation,
liverworts, hornworts and mosses. Examples of ferns include, without limitation, ophioglossales (e.g. adders-tongues, moonworts, and grape-ferns), marattiaceae and leptosporangiate ferns. Examples of fern allies include, without limitation, lycopsida (e.g. clubmosses, spikemosses and quillworts), psilotaceae (e.g. lycopodiophyta and whisk ferns) and equisetaceae (e.g. horsetails).

[00139] The term "fungus" as used herein means a eukaryotic organism that is a member of the kingdom Fungi. Examples of fungus include, without limitation, chytrids, blastocladiomycota, neocallimastigomycota, zygomycota, ascomycota and basidiomycota.

[00140] The term "micro-organism" as used herein means an organism that is microscopic (e.g. with length scale of micrometer). Examples of micro-organism include, without limitation, bacteria, fungi, archaea, protists and microscopic plants (e.g. green algae) and microscopic animals (e.g. plankton, planarian and amoeba).

[00141] Some examples of the conditions the method can treat include conditions that can be treated by the parent drug of the HPC.

[00143] Another aspect of the present disclosure relates to a method of using a HPC, of a parent drug or pharmaceutical compositions thereof in treating a condition in a biological subject or subject by administrating a HPC of a parent drug or a pharmaceutical compositions thereof to the biological subject or subject. In certain embodiments, the parent drug of the HPC used in the method is a NSAIA. In certain embodiments, the parent drug of the HPC used in the method is a prostaglandin. In certain embodiments, the parent drug of the HPC used in the method is a mustard. In certain embodiments, the parent drug of the HPC used in the method is a peptide. In certain embodiments, the parent drug of the HPC used in the method is a beta-lactam.

[00144] Conditions that can be treated by a method using a HPC of a parent drug or a pharmaceutical composition thereof include conditions that are treatable by the parent drug or a parent drug-related compound. In certain embodiments, a HPC of a parent
drug also have new indications due to their enhanced ability to cross biological barrier(s) that the parent drug has difficulties to cross.

[00145] In certain embodiments, conditions treatable by a HPC of a parent drug or a pharmaceutical composition thereof include, treating conditions in a site that the parent drug is difficult to reach due to its lack of penetration ability. Examples of such conditions include, without limitation, spinal cord injury, myelin infection and related conditions (e.g. muscle disorders such as amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM) and inclusion body myositis (IBM)). In certain embodiments, conditions treatable by a HPC include autoimmune disorders (e.g. psoriasis, Crohn's disease, lupus erythematosus, discoid lupus erythematosus, systematic lupus erythematosus, multiple sclerosis, fibrosis (e.g. cystic fibrosis, liver fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and fibrosis in other organ)), metabolite disorders (e.g. diabetes (type II), abnormal blood lipid level), thrombosis related conditions (e.g. stroke), neurodegenerative disease (e.g. Alzheimer's diseases and Parkinson's disease), cirrhosis, liver inflammation, hyperthyroidism, gallstones, ageing, undesired skin conditions (e.g. vitiligo, actinic keratosis, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin), macular degeneration and age-related macular degeneration (AMD), cough, organ transplant rejection, cancer and tumor (e.g. gastric cancer, multiple myeloma, brain tumor, prostate cancer and bone cancer), grey and/or white hair, hair loss, bold, insufficient hair or eyelashes, pregnancy in women, embryo implantation, brain tramara, and conditions in plants that are related to viral, fungus or insect infections.

[00146] Examples of the conditions that can be treated by the method using a HPC of a NSAIA include:
1) metabolism disorder, e.g. abnormal blood glucose level, abnormal blood lipid level, diabetes mellitus (type I or/and type II) and diabetes-induced complications, including diabetic retinopathy, necrobiotic ulcers, and diabetic proteinuria;
2) abnormal blood pressure, e.g. hypertension and hypotension;
3) tumor, e.g. benign tumor, breast cancer, colon-rectum cancer, oral cancer, lung or other respiratory system cancers, skin cancers, uterus cancer, pancreatic cancer, prostate cancer, genital cancer, urinary organs cancers, leukemia or other blood and lymph tissues cancer.
4) cardiovascular diseases, e.g. heart attack, unstable angina, peripheral occlusive arterial disease and stroke;
5) neurodegenerative disease, e.g. Alzheimer's diseases and Parkinson's disease;
6) skin condition, e.g. psoriasis and psoriatic disorders, acne, cystic acne, pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, scleroderma, vitiligo and related diseases, or aging spots (liver spots);
7) autoimmune disease, e.g. discoid lupus erythematous, systemic lupus erythematosus (SLE), autoimmune hepatitis, cleroderma, Sjogren's syndrome, rheumatoid arthritis, polymyositis, scleroderma, Hashimoto's thyroiditis, juvenile diabetes mellitus, Addison disease, vitiligo, pernicious anemia, glomerulonephritis, pulmonary fibrosis, multiple sclerosis (MS) and Crohn's disease;
8) eye disease, e.g. glaucoma, ocular hypertension, loss of vision after ophthalmic surgery, vision of a warm-blooded animal impaired by cystoid macular edema and cataract;
9) pain;
10) injuries;
11) inflammation related conditions, e.g. prostate gland inflammation (prostatitis), prostatocystitis, prostate enlarge fibrosis, hemorrhoids, Kawasaki syndrome,
gastroenteritis, type-1 membranoproliferative glomerulonephritis, Bartter's syndrome, chronic uveitis, ankylosing spondylitis, hemophilic arthropathy, inflamed hemorrhoids, post irradiation (factitial) proctitis, chronic ulcerative colitis, inflammatory bowel disease, cryptitis, periodontitis, arthritis, and an inflammatory condition in an organ selected from the group consisting of liver, lung, stomach, brain, kidney, heart, ear, eye, nose, mouth, tongue, colon, pancreas, gallbladder, duodenum, rectum stomach, colonrectum, intestine, vein, respiratory system, vascular, the anorectum and pruritus ani;

12) fever;

13) conditions related to platelet aggregation, e.g. thromboembolis after surgery, carotid endarterectomy, the recurrence of stenosis after coronary angioplasty, thromboembolis complications in chronic arterial fibrillation, aortocoronary-artery-bypass graft occlusion, heart attack, stroke, multi-infract dementia, dementia, hemodialysis shunt thrombosis and arterial embolic complications in patients' prosthetic heart valves;

14) dysmenorrheal;

15) allergy;

16) asthma;

17) preeclamptic toxemia in high-risk women,

18) IUD-associated uterine bleeding,

19) radiation-induced conditions, and

20) bone disease, e.g. osteoporosis, Paget's disease and bone metastases.

[00147] In certain embodiments, conditions that can be treated by a method of using a HPC of a NSAIA or a pharmaceutical composition thereof further include injuries at locations in a biological subject where a NSAIA has difficulties to reach, e.g. spine cord injury, myelin infection and related conditions such as muscle disorders, e.g. amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM),
dermatomyositis (DM) and inclusion body myositis (IBM); gray hair, white hair, hair loss and bald; aging, and conditions related to viral, fungus and/or insect in plants.

[00148] In certain embodiments, conditions treatable by a NSAIA HPC or a pharmaceutical composition thereof include, but are not limited to, myelin infection and related conditions, cirrhosis, liver inflammation, hyperthyroidism, gallstones, ageing, undesired skin conditions (e.g. actinic keratosis, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin), cough, organ transplant rejection, cancer and tumor (e.g. prostate cancer and bone cancer), grey and/or white hair, hair loss, bold, aging, and conditions related to viral, fungus, and/or insect infection in plants.

[00149] Examples of conditions or diseases that can be treated by a method using a HPC of a prostaglandin include, without limitation,:

1) abnormal birth or reproduction of a human or animal, e.g., inducing childbirth (parturition) or abortion (e.g., PGE₂ or PGF₂, used with or without mifepristone, which is a progesterone antagonist) and treating egg binding in small birds;

2) peptic ulcers (PGEs and analogs);

3) severe Raynaud's phenomenon or ischemia of a limb (e.g., iloprost, cisaprost);

4) abnormal blood pressure, e.g. hypertension, hypotension, and pulmonary hypertension;

5) cardiovascular conditions or dysfunction, e.g., inhibiting aggregation of platelets, closure of patent ductus arteriosus in newborns with particular cyanotic heart defects (PGE1), heart attack, unstable angina, peripheral occlusive arterial disease and stroke;

6) eye disease, e.g., glaucoma (e.g., in form of bimatoprost ophthalmic solution, which is a synthetic prostamide analog with ocular hypotensive activity),
ocular hypertension, loss of vision after ophthalmic surgery, vision of a warm-blooded animal impaired by cystoid macular edema and cataract;

7) sexual dysfunctions, e.g., erectile dysfunction, penile rehabilitation following surgery (e.g., PGE, as alprostadil) or female sexual dysfunction;

8) bone diseases, e.g. osteoporosis, Paget's disease and bone metastases,

9) gastrointestinal conditions,

10) inflammation,

11) shock,

12) infertility;

13) stimulate hair growth.

14) stimulate eyelash growth.

[00150] Conditions that can be treated by a method of using a HPC of a prostaglandin or a pharmaceutical composition thereof further include brain trauma, stroke, supporting embryo implantation and early pregnancy, treatment of discoid or systemic lupus erythematosus and MS.

[00151] Examples of conditions that can be treated by a method of using a HPC of a mustard or a pharmaceutical composition thereof include psoriasis and tumor, e.g., benign tumor, brain tumor, breast cancer, colon-rectum cancer, gastric cancer, oral cancer, lung or other respiratory system cancers, skin cancers, uterus cancer, pancreatic cancer, prostate cancer, genital cancer, urinary organs cancers, myeloma, leukemia or other blood and lymph tissues cancer.

[00152] Peptides and amino acids play important roles in all living matter. Any conditions may be treated by amino acid and peptides. Examples of conditions that can be treated by a method of using a HPC of a peptide or a pharmaceutical composition thereof include, without limitation, obesity, pain, and male and female sexual dysfunction.
Conditions that can be treated by a method of using a HPC of a peptide or a pharmaceutical composition thereof further include Alzheimer’s disease.

RNA, DNA, nucleosides and nucleotides play an enormous variety of roles in all living matter. Examples of conditions that may be treated by a HPC of RNA, DNA, nucleoside or nucleotide include, without limitation, cancers, tumors, hypertension, obesity, genetic diseases or disorders such as achondroplasia, huntington's disease, neurofibromatosis 1, marfan syndrome, hereditary nonpolyposis colorectal cancer, and hereditary multiple exostoses, congenital anomalies cystic fibrosis, sickle-cell disease, partial sickle-cell disease, Tay-Sachs disease, Niemann-Pick disease, spinal muscular atrophy, tett syndrome, incontinentia pigmenti type 2, aicardi syndrome, Klinefelter syndrome, hemophilia A, duchenne muscular dystrophy, red-green color blindness, muscular dystrophy, androgenetic alopecia, male infertility and hypertrichosis pinnae, and Leber’s hereditary optic neuropathy.

Examples of conditions that can be treated by a method of using a HPC of a beta-lactam or a pharmaceutical composition thereof include, without limitation, infections related to microorganism and infections related to beta-lactam resistant microorganism, e.g. methicillin-resistant Staphylococcus aureus (MRSA).

Examples of conditions that can be treated by a method of using a HPC of a steroid (e.g. progesterone, desogestrel, ethinylestradiol, cholesterol, adrenocorticoids, and sex hormones) or a pharmaceutical composition thereof include, without limitation, rheumatic arthritis, breast cancer, prostate cancer, and other cancers, hypoadrenalism, adrenalectomy, hypophysectomy, rheumatoid diseases, allergic manifestations, bursitis, spontaneous hypoglycemia, gout, sprue, allergy ulcerative colitis, dermatomyositis, periarteritis nodosa, idiopathic pulmonary fibrosis, idiopathic thrombocytopenic purpura, regional ileitis, female contraceptives and abortifacients, progestin antagonists, birth control, acquired hemolytic anemia, nephrosis, cirrhotic ascites, neurodermtitis, psoriasis, pneumonia, peritonitis, typhoid fever, and meningococcemia.

Examples of conditions that can be treated by a method using a HPC of a glibornuride or a pharmaceutical composition thereof include, without limitation, diabetes (type I and II) and related conditions.
Examples of conditions that can be treated by a method using a HPC of Atanolol or a pharmaceutical composition thereof include, without limitation, hypertension and related conditions.

In certain embodiments, a method of treating a condition in a subject using a HPC comprises administering a therapeutic effective amount of the HPC, or a pharmaceutical composition thereof to the subject.

A HPC or a pharmaceutical composition thereof can be administered to a biological subject by any administration route known in the art, including without limitation, oral, enteral, buccal, nasal, topical, rectal, vaginal, aerosol, transmucosal, epidermal, transdermal, dermal, ophthalmic, pulmonary, subcutaneous, and/or parenteral administration. The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration.

A parenteral administration refers to an administration route that typically relates to injection which includes but is not limited to intravenous, intramuscular, intrarterial, intrathecal, intracapsular, intraorbital, intra cardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intrarticular, subcapsular, subarachnoid, intraspinal, and/or intrasternal injection and/or infusion.

A HPC or a pharmaceutical composition thereof can be given to a subject in the form of formulations or preparations suitable for each administration route. The formulations useful in the methods of the present disclosure include one or more HPCs, one or more pharmaceutically acceptable carriers therefor, and optionally other therapeutic ingredients. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated and the particular mode of administration. The amount of a HPC which can be combined with a carrier material to produce a pharmaceutically effective dose will generally be that amount of a HPC which produces a therapeutic effect. Generally, out of one hundred percent by weight, this amount of HPC will range from about 0.0001 percent to about 100 percent, from about 0.001 percent to about 99 percent of the HPC, from about
0.001 percent to about 50 percent, from about 0.01 percent to about 30 percent, from about 0.1 percent to about 99.5 percent, from about 0.1 percent to about 50 percent, from about 0.1 percent to about 10 percent, from about 1 percent to about 50 percent, from about 1 percent to about 30 percent, from about 1 percent to about 10 percent, from about 10 percent to about 70 percent, from about 5 percent to about 20 percent, from about 5 percent to about 10 percent, and from about 6 percent to about 8 percent.

[00163] Methods of preparing these formulations or compositions include the step of bringing into association a HPC with one or more pharmaceutically acceptable carriers and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a HPC with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

[00164] Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a HPC as an active ingredient. A compound may also be administered as a bolus, electuary, or paste.

[00165] In solid dosage forms for oral administration (e.g., capsules, tablets, pills, dragees, powders, granules and the like), the HPC is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (5) solution retarding agents, such as paraffin, (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9)
lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

[00166] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropyl methyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent. Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of a HPC therein using, for example, hydroxypropyl methyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain pacifying agents and may be of a composition that they release the HPC(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The HPC can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

[00167] Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the HPC, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and
emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

[00168] Suspensions, in addition to the HPC, may contain suspending agents as, for example, ethoxylated isostearlyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

[00169] Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more HPCs with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent. Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

[00170] Formulations for the topical or transdermal or epidermal or dermal administration of a HPC composition include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active component may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required. The ointments, pastes, creams and gels may contain, in addition to the HPC composition, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays can contain, in addition to the HPC composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can
additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

[00171] A HPC or a pharmaceutical composition thereof can be alternatively administered by aerosol. This can be accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the HPCs. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers can also be used. An aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols. Aerosols generally are prepared from isotonic solutions.

[00172] Transdermal patches can also be used to deliver HPC compositions to a tumor site. Such formulations can be made by dissolving or dispersing the agent in the proper medium. Absorption enhancers can also be used to increase the flux of the HPC across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the HPC in a polymer matrix or gel.

[00173] Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.

[00174] Formulations suitable for parenteral administration comprise a HPC in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacterostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

[00175] Examples of suitable aqueous and nonaqueous carriers which may be employed in the formulations suitable for parenteral administration include water, ethanol, polyols (e.g., such as glycerol, propylene glycol, polyethylene glycol, and the
like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

[00176] Formulations suitable for parenteral administration may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

[00177] Injectable depot forms are made by forming microencapsule matrices of a HPC or in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of the HPC to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly (anhydrides). Depot injectable formulations are also prepared by entrapping the HPC in liposomes or microemulsions which are compatible with body tissue.

[00178] In certain embodiments, a HPC, or a pharmaceutical composition thereof is delivered to a disease or tumor site in a therapeutically effective dose. As is known in the art of pharmacology, the precise amount of the pharmaceutically effective dose of a HPC that will yield the most effective results in terms of efficacy of treatment in a given patient will depend upon, for example, the activity, the particular nature, pharmacokinetics, pharmacodynamics, and bioavailability of a particular HPC, physiological condition of the subject (including race, age, sex, weight, diet, disease type and stage, general physical condition, responsiveness to a given dosage and type of medication), the nature of pharmaceutically acceptable carriers in a formulation, the route and frequency of administration being used, and the severity or propensity of a disease caused by pathogenic target microbial organisms, to name a few. However,
the above guidelines can be used as the basis for fine-tuning the treatment, e.g., determining the optimum dose of administration, which will require no more than routine experimentation consisting of monitoring the subject and adjusting the dosage. Remington: The Science and Practice of Pharmacy (Gennaro ed. 20.sup.th edition, Williams & Wilkins PA, USA) (2000).

iv. ADVANTAGES

[00179] In certain embodiments, since a HPC of the present disclosure has enhanced ability of crossing one or more biological barriers, the HPC can be administered locally (e.g., topically or transdermally) to reach a location where a condition occurs without the necessity of a systematic administration (e.g., oral or parenteral administration). A local administration and penetration of a HPC allows the HPC to reach the same level of local concentration of an agent or drug with much less amount or dosage of HPC in comparison to a systematic administration of a parent agent or drug; alternatively, a higher level of local concentration which may not be afforded in the systematic administration, or if possible, requires significantly higher dosage of an agent in the systematic administration. The high local concentration of the HPC or its parent agent if being cleaved enables the treatment of a condition more effectively or much faster than a systematically delivered parent agent and the treatment of new conditions that may not be possible or observed before. The local administration of the HPC may allow a biological subject to reduce potential sufferings from a systemic administration, e.g., adverse reactions associated with the systematic exposure to the agent, gastrointestinal/renal effects. Additionally, the local administration may allow the HPC to cross a plurality of biological barriers and reach systematically through, for example, general circulation and thus avoid the needs for systematic administration (e.g., injection) and obviate the pain associated with the parenteral injection.

[00180] In certain embodiments, a HPC or a pharmaceutical composition according to the present disclosure can be administered systematically (e.g., orally or parenterally). The HPC or the active agent (e.g., drug or metabolite) of the HPC may enter the general circulation with a faster rate than the parent agent and gain faster access to the
action site a condition. Additionally, the HPC can cross a biological barrier (e.g., blood brain barrier) which has not been penetrated if a parent agent is administered alone and thus offer novel treatment of conditions that may not be possible or observed before.

In certain embodiments, HPCs of NSAIA in the present disclosure demonstrated high penetration rate through a biological barrier (e.g., >about 20 times, >about 100 times, >about 200 times, >about 300 times higher than the NSAIA alone). No gastroduodenal bleeding was observed from the subjects that were orally administered with a HPC of a NSAIA, while gastroduodenal bleeding was observed from the subjects that took the parent NSAIA at the similar dosage.

In certain embodiments, HPCs of prostaglandin of the present disclosure exhibited high penetration rate through a biological barrier (e.g., about >10 times, about >50 times, >about 100 times, about >200 times, about >300 times, about >500 times, about >1,000 times, about >10,000 times or higher than the penetration rate of prostaglandins or prostaglandin analogs if administered alone). No side effect was observed from the subjects to which were administered a HPC of a prostaglandin, while side effects were observed from the subjects to which the parent prostaglandin or a related compound or analog thereof was administered at the similar dosage.

In certain embodiments, HPCs of mustards in the present disclosure demonstrated high penetration rate through a biological barrier (e.g., > about 10 times, > about 50 times, >about 100 times, >about 200 times, >about 300 times higher than if the mustards or mustard-related compounds are administered alone). No or few adverse side effect was observed from the subjects that were administered with a HPC of mustard, while side effects (such as nausea, hair loss, and increased susceptibility to infection) were observed from the subjects that took the parent mustards at the similar dosage.

In certain embodiments, HPCs of peptides in the present disclosure demonstrated penetration rate through a biological barrier (e.g., > about 10 times, > about 50 times, >about 100 times, >about 200 times, >about 500 times, >about 1000 times, >about 10000 times higher than if the peptides or peptide-related compounds are administered alone). No or few adverse side effect was observed from the subjects that
took HPC of peptides, while side effects (such as nausea, and increased susceptibility to infection) were observed from the subjects that took the parent peptides at the similar dosage.

[00185] In certain embodiments, HPCs of beta-lactam antibiotics in the present disclosure demonstrated high penetration rate through a biological barrier (e.g., > about 10 times, > about 50 times, > about 100 times, > about 200 times, > about 300 times, > about 1000 times higher than if the beta-lactam antibiotics or beta-lactam antibiotics-related compounds are administered alone). No or few adverse side effect was observed from the subjects that took HPC of beta-lactam antibiotics, while side effects were observed from the subjects that took the parent beta-lactam antibiotics at the similar dosage.

[00186] In certain embodiments, a HPC of a parent drug is therapeutically effective at a lower dosage comparing to the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 50% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 25% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 10% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 5% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 25% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 2% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 1% or lower of the applicable dosage of the parent drug. In certain embodiments, a HPC of a parent drug is therapeutically effective at about 0.1% or lower of the applicable dosage of the parent drug.

V. EXAMPLES

[00187] The following examples are provided to better illustrate the claimed invention and are not to be interpreted in any way as limiting the scope of the invention. All specific compositions, materials, and methods described below, in whole or in part,
fall within the scope of the invention. These specific compositions, materials, and methods are not intended to limit the invention, but merely to illustrate specific embodiments falling within the scope of the invention. One skilled in the art may develop equivalent compositions, materials, and methods without the exercise of inventive capacity and without departing from the scope of the invention. It will be understood that many variations can be made in the procedures herein described while still remaining within the bounds of the invention. It is the intention of the inventors that such variations are included within the scope of the invention.

Example 1. Preparation of a HPC from a parent drug

Preparation of a HPC from a parent drug which contains at least one carboxyl group.

[00188] In certain embodiments, a parent compound having Structure F₁-OH is converted to a HPC having Structure L₁-

\[F₁L₂-T \]

Structure L₁

including stereoisomers and pharmaceutically acceptable salts thereof, wherein T is defined as in paragraph 0076.

[00189] In certain embodiments, a HPC having Structure L₁ (F₁L₂-T) is prepared according to organic synthesis by reacting the parent compounds or derivatives of the parent compounds having a structure of F₁-W₁ (e.g. acid halides, mixed anhydrides of the parent compounds, etc.) with a compound having a structure of T-L₂-H as shown in Scheme 1, wherein W₁ is selected from the group consisting of OH, halogen, alkylcarbonyloxy, arylcarbonyloxy, alkoxy carbonyloxy and aryloxycarbonyloxy; and T is defined as in paragraph 0076:

\[T-L₂-H + F₁-W₁ + \text{base} \rightarrow F₁L₂-T + \text{base} + HW₁ \]

Scheme 1. Preparation of a HPC from a parent compound

[00190] In certain embodiments, a HPC having Structure L₁ is prepared according to organic synthesis by reacting a salt of a parent compound or a derivative of the parent compound having a structure of F-O⁻ Bₐ⁺ (e.g. sodium salt, potassium salt,
triethylamine salt, or polymer bond organic or inorganic base salt, etc.) with a compound having a structure of T-L₂⁻Wb-HWb as shown in Scheme 2, wherein W𝑏 is selected from the group consisting of p-toluenesulphonyl, halogen, alkylcarbonyl, arylcarbonyl, alkoxy carbonyl and aryl oxycarbonyloxy; and T is defined as in paragraph 0076:

\[
F_1\cdot O^- B_{a^+} + T-L_2-Wb-HWb \rightarrow F_1\cdot L_2-T + HW_b + BaW_b
\]

Scheme 2. Preparation of a HPC from a parent compound

Preparation of N,N-diethylaminocetyl 9-cis-retinoate-HBr.

[00191] 30 g (0.1 mol) of sodium 9-cis-retinoate was dissolved in 100 ml of acetonitrile. 26.1 g (0.1 mol) of 2-Bromo-N,N-diethylethylamine •HBr was added into the reaction mixture. The mixture was stirred for overnight at RT. The solvents were evaporated off. 200 ml of ethanol was added into the residue. The solid was removed by filtration. The solution was evaporated to dryness. 100 ml of ethyl acetate was added into the reaction mixture. Hexane (100 ml) was added. The solid product was collected by filtration. After drying, it yielded 36 g of the desired product (75%). Hygroscopic product; solubility in water: 30 mg/ml; elementary analysis: C₂₆H₄₂BrNO₂; MW: 480.52; calculated % C: 64.99; H: 8.81; Br: 16.63; N: 2.91; O: 6.66; found % C: 65.03; H: 8.80; Br: 16.60; N: 2.89; O: 6.68.

Preparation of a HPC from a parent drug which contains at least one hydroxyl group, or amino group.

[00192] In certain embodiments, a parent compound having Structure F₂⁻H is converted to a HPC having Structure L-2

\[
F_2\cdot L_4\cdot L_2\cdot T
\]

Structure L-2

including stereoisomers and pharmaceutically acceptable salts thereof, wherein T is defined as in paragraph 0076.

[00193] In certain embodiments, a HPC having Structure L-2 (F₂⁻L₄⁻L₂⁻T) is prepared according to organic synthesis by reacting a parent compound having a structure of F₂⁻H (e.g. an alcohol or amine) with a compound having a structure of T-L₂⁻L₄⁻W_c as shown in Scheme 3, wherein W_c is selected from the group consisting of OH,
halogen, alkylcarbonyloxy, arylcarbonyoxy, alkoxycarbonyloxy and aryloxycarbonyloxy; and T is defined as in paragraph 0076:

\[T-L_2^\cdot L_4^\cdot W_c + F_2^\cdot H + \text{base} \rightarrow F_2^\cdot L_4^\cdot L_2^\cdot T + \text{base} + HW_C \]

Scheme 3. Preparation of a HPC from a parent compound

Preparation of retinyl N,N-dimethyl-2-aminoacetate HCl.

[00194] 28.6 g (0.1 mol) of retinol was dissolved in 300 ml of acetonitrile. 25 ml of triethylamine was added into the reaction mixture. 16 g of N,N-dimethylaminoacetyl chloride hydrochloride was added into the reaction mixture. The mixture was stirred for 5 h at RT. The solid was removed by filtration. The solution was evaporated to dryness. 500 ml of ethyl acetate was added into the residue. 200 ml of 5% of sodium carbonate solution was added into the mixture with stirring. The organic solution was collected and washed with water. After drying, it yielded 31 g of the desired product (75.5%). Hygroscopic product; elementary analysis: C H CINO; MW: 408.02; calculated % C: 70.65; H: 9.39; Cl: 8.69; N: 3.43; O: 7.84; found % Q70.60; H: 9.46; Cl: 8.71; N: 3.42; O: 7.81.

Preparation of a HPC from a parent drug which contains both an amino group and a carboxyl group.

[00195] In certain embodiments, a parent compound having Structure F_3^-OH is converted to a HPC having Structure L-3

\[F_3^\cdot L_2^\cdot R \]

Structure L-3

including stereoisomers and pharmaceutically acceptable salts thereof.

[00196] In certain embodiments, a HPC having Structure L-3 (F_3^-L_2^\cdot R) is prepared according to organic synthesis by reacting a parent compound having a structure of F_3^-W_d (e.g. acid halides, mixed anhydrides of the parent compounds, etc.) with a compound having a structure of R-L_2^-H (e.g. an alcohol or amine) as shown in Scheme 4, wherein W_d is selected from the group consisting of OH, halogen, alkylcarbonyloxy, arylcarbonyoxy, alkoxycarbonyloxy and aryloxycarbonyloxy:

\[R-L_2^-H + F_3^-W_d + \text{base/acid} \rightarrow F_3^-L_2^-R + \text{base/acid} + HW_d \]
Scheme 4. Preparation of a HPC from a parent compound

Preparation of 3-fluoro-L-phenylalanine isopropyl ester.HCl

[00197] 18.3 g (0.1 mol) of 3-fluoro-L-phenylalanine was suspended in 150 ml of isopropanol. 25 g of p-toluensulfonic acid monohydrate and 100 ml of benzene were added into the mixture. The mixture was refluxed until no more water was formed (more fresh benzene and isopropanol may be needed). After cooling to RT, 500 ml of ethyl acetate and 5% NaHCO$_3$ (600 ml) were added into the reaction mixture with stirring. The ethyl acetate layer was collected and washed with 5% NaHCO$_3$ (1 x 200 ml) and water (3 x 100 ml). The solution was dried over anhydrous Na$_2$SO$_4$ and sodium sulfate was removed by filtration and washed with ethyl acetate. The solution was evaporated to dryness. HCl gas (4 g) in ethyl acetate (100 ml) was added into the residue. The solid was collected by filtration and washed with ethyl acetate. After drying, it yielded 23 g of the desired product (87.9%). Elementary analysis: Cl$_2$H$_7$CIFNO$_2$; MW: 261.73; calculated % C: 55.07; H: 6.55; Cl: 13.54; F: 7.26; N: 5.35; O: 12.23; found % C: 55.02; H: 6.57; Cl: 13.57; F: 7.24; N: 5.33; O: 12.27.

Preparation of a HPC from a parent drug which has a carbonyl groups such as a ketone or aldehyde.

[00198] In another embodiment, the parent drugs have carbonyl groups such as ketones or aldehydes and a parent drug is linked with transporting unit (T) through an imine bond, oxime bond, or hydrazon bond.

[00199] In certain embodiments, a parent compound having Structure F$_4$=O is converted to a HPC having Structure L-4

$$F_4=L_{41}^{-1}, T$$

Structure L-4

including stereoisomers and pharmaceutically acceptable salts thereof, wherein:

L$_{41}$ is defined as in paragraph 0041 ; and T is defined as in paragraph 0076;

[00200] In certain embodiments, a HPC having Structure L-4 (F$_4$=L$_{41}^{-1}$, T) is prepared according to organic synthesis by reacting a parent compound having a structure of
F₄=O (e.g. an aldehyde or ketone) with a compound having a structure of H₂⁻L₁⁻T as shown in Scheme 5, wherein T is defined as in paragraph 0076:

$$T-L_1-H_2 + F_4=O = F_4=L_1-T + H_2O$$

Scheme 5. Preparation of a HPC from a parent compound

Preparation of N-diethylaminoethyl progesterone imine.acetic acid salt

[00201] 11.7 g of N,N-Diethylethylenediamine, 8 g of acetic acid, and 31.5 g of progesterone were dissolved in 500 ml toluene. The mixture was refluxed to remove water. After water was removed, the mixture was evaporated to dryness and yielded 40 g of N-diethylaminoethyl progesterone imine acetic acid salt (85%). C̃₂⁹H₄₈N₂O₃. Elementary analysis: C₂₉H₄₈N₂O₃; MW: 472.71; calculated C: 73.68; H: 10.23; N: 5.93; O: 10.15; found C: 73.62; H: 10.27; N: 5.91; O: 10.28.

Preparation of N-(N',N'-dimethylaminopropionoxyl progesterone imine.acetic acid salt

[00202] 13.2 g of N-(N',N'-dimethylaminopropionoxyl)amine, acetic acid [(CH₃)₂NCH₂CH₂COONH₂·CH₃COOH] and 31.5 g of progesterone were dissolved in 200 ml of acetonitrile. 100 g of dried molecular sieves was added into the mixture. The mixture was stirred for overnight at RT. Molecular sieves were removed and the solution was evaporated to dryness. Yield was 42 g of N-(N,N-dimethylaminopropionoxyl progesterone imine.acetic acid (85.9%). Elementary analysis: C₂₈H₄₄N₂O₅; MW: 488.66; calculated C: 68.82; H: 9.07; N: 5.73; O: 16.37; found C: 68.78; H: 9.09; N: 5.71; O: 16.42.

Preparation of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt

[00203] 25 g of 4-aminobenzoate N,N-diethylaminoethyl ester.HCl salt [4-(CH₃CH₂)₂NCH₂CH₂OCOC₆H₄NH₂·HCl] and 31.5 g of progesterone were dissolved in 200 ml of acetonitrile. 100 g of dried molecular sieves was added into the mixture. The mixture was stirred for overnight at RT. Molecular sieves were removed and the
solution was evaporated to dryness. Yield was 48 g of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine. HCl salt (84%); Elementary analysis: C_{34}H_{49}ClN_{2}O_{3}; MW: 569.22; calculated % C: 71.74; H: 8.68; N: 4.92; O: 8.43; Cl: 6.23; found % C: 71.70; H: 8.70; N: 4.89; O: 8.46; Cl: 6.25.

Example 2. HPCs are capable of penetrating biological barriers.

[00204] Penetration rates of HPCs through human skin were measured in vitro by Franz cells. A Franz cell has two chambers, a top sample chamber and a bottom receptor chamber. A human skin tissue (360-400 µm thick) that separates the top and the receptor chambers is isolated from the anterior or posterior thigh areas.

[00205] Test compounds were diethylaminoethyl N-acetyl-3-(3,4-diacyloxy-phenyl-L-alanine ester. HCl salt (A), diethylaminopropyl N-acetyl-D-3,5,3',5'-tetraiodothyronine. HCl salt (B), 1-piperidineethyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl-propinate. HCl salt (C), 3-piperidinemethyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate. HCl salt (D), diethylaminoethyl (S)-3-(benzoylaminomethyl)-5-methylhexanoate. HCl salt (E), N-acetyl-3-(3,4-diacyloxy-phenyl-L-alanine sodium salt, N-acetyl-D-3,5,3',5'-tetraiodothyronine sodium salt (G), 2-[A-(A-chlorobenzoyl)phenoxy]-2-methyl-propinic acid sodium salt (H), 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid sodium salt (I), and (S)-3-(benzoylaminomethyl)-5-methylhexanoic acid sodium salt (J).

[00206] 10% solution of the test compound in water was used. The amount of a HPC or its parent drug penetrating a skin was determined by high-performance liquid chromatography method. The results were shown in Figure 8 and apparent flux values of the HPCs and their corresponding parent drugs were summarized in Table 2.

Table 2. In vitro Penetration Rate of HPCs and their Parent Compounds

<table>
<thead>
<tr>
<th>HPCs</th>
<th>µg/cm²/h</th>
<th>Parent compounds</th>
<th>µg/cm²/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl N-acetyl-3-(3,4-</td>
<td>550</td>
<td>N-acetyl-3-(3,4-diacyloxy-</td>
<td>1</td>
</tr>
<tr>
<td>diacetoxy-phenyl-L-alanine</td>
<td></td>
<td>phenyl-L-alanine sodium salt (F)</td>
<td></td>
</tr>
</tbody>
</table>
ester. HCl salt (A)
diethylaminopropyl N-acetyl-D- 480 N-acetyl-D-3,5,3',5'-
3,5,3',5'-tetraiodothyronine.HCl tetraiodothyronine sodium salt (G)
salt (B)
1-piperidineethyl 2-[4-(4- 590 2-[4-(4-chlorobenzoyl)phenoxy]- 1
chlorobenzoyl)phenoxy]-2-methyl- 2-methyl-propinic acid sodium
propinate. HCl salt (C) salt (H)
3-piperidinemethyl 5-(2,5- 400 5-(2,5-dimethylphenoxy)-2,2-
dimethylphenoxy)-2,2- dimethylpentanoic acid sodium
dimethylpentanoate.HCl salt (D) salt (I)
diethylaminoethyl (S)-3- 650 (S)-3-(benzoylaminomethyl)-5- 1
(benzoylaminomethyl)-5- methylhexanoic acid sodium salt
methylhexanoate.HCl salt (E) (J)

[00207] The results suggested that the HPCs diffused through human skin more than 400 times faster than their respective parent drug.

Example 3: Transdermal administrations of HPC resulted in in vivo distribution of the parent drug and related compounds.

[00208] The HPC of ibuprofen used in this example was diethylaminoethyl 2-(p-
isobutylphenyl)propionate. citric acid. A HPC changed quickly to its parent drug in vivo, so the concentration was the concentration of its parent drug or related compound.

3.1. Transdermal administrations of HPC of ibuprofen resulted in in vivo distribution of the parent drug and related compound in rats

[00209] 0.3 mmol/kg HPC of ibuprofen (10% aqueous solution) was applied to the shaved back (10 cm²) of male rats. Table 3 showed the distribution of ibuprofen and diethylaminoethyl 2-(p-isobutylphenyl)propionate.HCl (ibuprofenamine) in the rats' organs at 2 hr after the application.
Table 3.1. The distribution of ibuprofen and ibuprofenamine in the organs of rats.

<table>
<thead>
<tr>
<th></th>
<th>liver</th>
<th>kidney</th>
<th>stomach</th>
<th>pancreas</th>
<th>heart</th>
<th>brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen (nmol/g)</td>
<td>17±11</td>
<td>25±8</td>
<td>32±9</td>
<td>18±7</td>
<td>21±7</td>
<td>2±0.5</td>
</tr>
<tr>
<td>Ibuprofenamine(nmol/g)</td>
<td>0.2±0.2</td>
<td>0.4±0.2</td>
<td>0.3±0.1</td>
<td>0.5±0.3</td>
<td>0.5±0.2</td>
<td>0.1±0.05</td>
</tr>
</tbody>
</table>

3.2 Transdermal administrations of HPC of ibuprofen resulted in distribution of the parent drug and related compounds in the organs of rabbits.

0.3mol/kg of HPC of ibuprofen (10% aqueous solution) was applied to the shaved back (30 cm²) of male rabbits (2.5-3.0 kg). Table 3.2 showed the amounts of ibuprofen and ibuprofenamine in the rabbits' organs 2hr after the application.

Table 3.2. The distribution of ibuprofen and ibuprofenamine in the organs of rabbits.

<table>
<thead>
<tr>
<th></th>
<th>brain</th>
<th>Myelin</th>
<th>prostate gland</th>
<th>cartilage pads</th>
<th>testis</th>
<th>heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen(nmol/g)</td>
<td>5±1</td>
<td>25±8</td>
<td>18±7</td>
<td>8±2</td>
<td>11±4</td>
<td>10±5</td>
</tr>
<tr>
<td>Ibuprofenamine(nmol/g)</td>
<td>0.4±0.2</td>
<td>0.60±0.2</td>
<td>0.5±0.3</td>
<td>0.4±0.2</td>
<td>0.5±0.3</td>
<td>0.3±0.1</td>
</tr>
</tbody>
</table>

The results show that a HPC penetrated biological barriers to reach prostate, cartilage pads, testis, and myelin and other organs. Therefore, a HPC should be very useful for the treatments of arthritis, prostatitis and prostate enlarge fibrosis, and other conditions such as myelin inflammation related muscle disorders, in a biological subject.

Example 4. A HPC could penetrate biological barriers such as blood-milk barrier, blood-brain barrier, blood-CSF barrier, and blood-synovial fluid (SF) barrier,

A HPC changed quickly to its parent drug in vivo, so the concentration was the concentration of its parent drug or related compound.
4.1. Transdermal administrations of HPC of ibuprofen resulted in distribution of the parent drug and related compounds in milk of sheep.

[00213] 0.3mmol/kg of diethylaminoethyl 2-(p-isobutylphenyl)propionate. citric acid salt (10% aqueous solution) was applied to the back (100 cm²) of female sheep. 30±8 nmol/ml of ibuprofen and 5±3 nmol/ml of ibuprofenamine were found in the milk after 2 hr after the application. The result demonstrated that the HPC could penetrate milk-blood barrier clearly.

4.2: Studies of penetration of rat blood-brain barrier of HPC and its parent drug.

[00214] 20 male rats were divided into 4 groups (n=5). 0.5 mmol/kg of diethylaminoethyl acetylsalicylate.HCl salt was administrated into rats intramuscularly (20% in 70% ethanol) or transdermal (10% in 70% ethanol, on the shaved back, 10cm²) and 0.5 mmol/kg of aspirin was administrated into rats intramuscularly(20% in 70% ethanol) or transdermal (10% in 70% ethanol, on the shaved back, 10cm²). 30, 60, 120, 240, 480 minutes after the test compound was administrated, rats were decapitated and were perfused with normal Krebs-Henseleit buffer (with Heparin Sodium, pH7.4) (10 mL/min) to remove blood. The brain tissue was homogenized immediately in 3-5 ml of methanol, using a tissue tearor at 30,000 rpm (about 2 min.). The mixture was centrifuged for 5 minutes at 16,000 rpm. The supernatant (2 ml) was collected and evaporated to dryness. The residue was diluted to the appropriate concentrations and the amounts of salicylic acid were determined by LS-MS-MS. The results were shown in Table 4.2a. The results show that HPC of aspirin penetrated blood-brain barrier very efficiently, but aspirin could not.

Table 4.2a. The amount of salicylic acid in rat brain tissue.
20 male rats were divided into 4 groups (n=5). 0.3mmol/kg of diethylaminoethyl acetylsalicylate.HCl salt was administrated into rats intramuscularly(20% in 70% ethanol) or transdermally^ (10% in 70% ethanol, on the shaved back of rat, 10cm²) and 0.3 mmol/kg of aspirin was administrated into rats intramuscularly(20% in 70% ethanol) or transdermally(10% in 70% ethanol, on the shaved back of rat, 10cm²). 1, 8, and 18 hours after the test compound was administrated, the rat was killed and 1 ml of plasma and brain were taken out. The plasma or brain tissue (the whole brain was washed with pH 7.4 buffer for 3 times) was homogenized immediately in 3-5 ml of methanol, using a tissue tearor at 30,000 rpm (about 2 min.). Amounts of salicylic acid in rat plasma and brain were determined by LS-MS-MS. The results were shown in Table 4.2b. 1 Hour after aspirin was administrated, most of aspirin stayed in blood system. However, the HPC of aspirin was distributed into other tissues much faster than aspirin. Furthermore, the results show that the HPC of aspirin penetrated blood-brain barrier efficiently, but aspirin could not.

Table 4.2b. The amount of salicylic acid in rat plasma and brain.

<table>
<thead>
<tr>
<th>Test compounds</th>
<th>Plasma (1 hr)</th>
<th>Brain (1 hr)</th>
<th>Plasma (8 hr)</th>
<th>Brain (8 hr)</th>
<th>Plasma (18 hr)</th>
<th>Brain (18 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl acetylsalicylic acid (intramuscularly)</td>
<td>378±34 (nmol/ml)</td>
<td>20.2±4.2 (nmol/g)</td>
<td>123±25 (nmol/ml)</td>
<td>9.2±3.5 (nmol/g)</td>
<td>0.9±0.2 (nmol/ml)</td>
<td>4.2±1.3 (nmol/g)</td>
</tr>
<tr>
<td>diethylaminoethyl acetylsalicylic acid</td>
<td>158±21 (nmol/ml)</td>
<td>10.2±3.1 (nmol/ml)</td>
<td>103±28 (nmol/ml)</td>
<td>18.4±3.4 (nmol/g)</td>
<td>1.1±0.2 (nmol/ml)</td>
<td>11.2±2.1 (nmol/g)</td>
</tr>
</tbody>
</table>
0.3 mmol/kg of diethylaminoethyl 2-(p-isobutylphenyl)propionate HCl salt was administrated into male rats intramuscularly (20% in 70% ethanol) or transdermally (on the shaved back, 10% in 70% ethanol) and 0.3 mmol/kg of 2-(p-isobutylphenyl)propionic acid (ibuprofen) was administrated into male rats intramuscularly (20% in 70% ethanol) or transdermally (10% in 70% ethanol). 1, 8, and 18 hours after the test compound was administrated, the rats were killed and 1 ml of plasma and brain were taken out. The plasma or brain tissue (the whole brain was washed with pH 7.4 buffer for 3 times) was homogenized immediately in 3-5 ml of methanol, using a tissue tearor at 30,000 rpm (about 2 min.). Amounts of ibuprofen in rat plasma and brain were determined by LS-MS-MS. The results were shown in Table 4.2c. 1 Hour after ibuprofen was administrated, most of ibuprofen stayed in blood system. However, the HPC of ibuprofen was distributed into other tissues much faster than ibuprofen. Furthermore, the results show that the HPC of ibuprofen penetrated blood-brain barrier efficiently, but ibuprofen could not.

Table 4.2c. The amount of ibuprofen in rat plasma and brain.

<table>
<thead>
<tr>
<th>Test compounds</th>
<th>Plasma (1 hr) (nmol/ml)</th>
<th>Brain (1 hr) (nmol/g)</th>
<th>Plasma (8 hr) (nmol/ml)</th>
<th>Brain (8 hr) (nmol/g)</th>
<th>Plasma (18 hr) (nmol/ml)</th>
<th>Brain (18 hr) (nmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl 2-(p-isobutyl-phenyl)propionate</td>
<td>438±38</td>
<td>18.2±4.3</td>
<td>153±29</td>
<td>8.7±2.5</td>
<td>0.5±0.2</td>
<td>2.8±0.4</td>
</tr>
</tbody>
</table>
4.3. HPC penetrated rat blood-CSF barrier

[00217] 27 male rats were divided into 4 groups (n=7). 0.3mmol/kg of diethylaminoethyl acetylsalicylate HCl salt was administrated into rats intramuscularly (20% in 70% ethanol) or transdermally (10% in 70% ethanol, on the shaved back of rat, 10cm²) and 0.3 mmol/kg of aspirin was administrated into rats intramuscularly (20% in 70% ethanol) or transdermally (10% in 70% ethanol, on the shaved back of rat, 10 cm²). 1, 8 and 18 hours after the test compound was administrated, the rat was killed and Cerebrospinal fluid (CSF) was taken out. Amounts of salicylic acid in rat CSF were determined. The results were shown in Table 4.3. The results show that a HPC of aspirin penetrated blood-CSF barrier efficiently, but aspirin could not.

Table 4.3. The amount of salicylic acid in rat cerebrospinal fluid (CSF)

<table>
<thead>
<tr>
<th>Test compounds</th>
<th>1 hour</th>
<th>8 hours</th>
<th>18 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl acetylsalicylate</td>
<td>36.4±4.3 (nmol/g)</td>
<td>28.2±6.5 (nmol/g)</td>
<td>15.1±4.7 (nmol/g)</td>
</tr>
<tr>
<td>2-(p-isobutyl-phenyl)propionate</td>
<td>Not detectable</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>acid (intramuscularly)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(p-isobutyl-phenyl)propionic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acid (intramuscularly)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(p-isobutyl-phenyl)propionic acid</td>
<td>Not detectable</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>acid (transdermally)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(p-isobutyl-phenyl)propionic acid</td>
<td>Not detectable</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>acid (transdermally)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4: HPC penetrated Beagle dogs blood-synovial fluid (SF) barrier

[00218] 12 male Beagle dogs were divided into 4 groups (n=3). 0.3mmol/kg of diethylaminoethyl 2-(p-isobutyl-phenyl)propionate.HCl salt was administrated into Beagle dogs intramuscularly (20% in 70% ethanol) or transdermally (on the back of dogs, 100cm², 10% in 70% ethanol) and 0.3 mmol/kg of 2-(p-isobutyl-phenyl)propionic acid (ibuptofen) was administrated into Beagle dogs intramuscularly (20% in 70% ethanol) or transdermally (on the back of dogs, 100cm², 10% in 70% ethanol). 1, 8, and 18 hours after the test compound was administrated, synovial fluid (CF) was taken out and amounts of ibuprofen in Beagle dogs CF were determined respectively. The results were shown in Table 4.4a. The results show that the HPC of ibuprofen penetrated blood-CF barrier efficiently, but ibuprofen could not.

Table 4.4a. The amount of ibuprofen in Beagle dogs synovial fluid (CF).

<table>
<thead>
<tr>
<th>Test compounds</th>
<th>1 hour</th>
<th>8 hours</th>
<th>18 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl 2-(p-isobutyl-phenyl)propionate (intramuscularly)</td>
<td>28.1±8.1 (nmol/g)</td>
<td>22.1±4.2 (nmol/g)</td>
<td>4.2±1.1 (nmol/g)</td>
</tr>
<tr>
<td>diethylaminoethyl 2-(p-isobutyl-phenyl)propionate (transdermally)</td>
<td>11.6±4.2 (nmol/g)</td>
<td>28.2±4.7 (nmol/g)</td>
<td>11.2±3.2 (nmol/g)</td>
</tr>
<tr>
<td>2-(p-isobutyl-phenyl)propionic acid (intramuscularly)</td>
<td>3.2±0.3 (nmol/g)</td>
<td>0.3±0.1 (nmol/g)</td>
<td>Not detectable</td>
</tr>
</tbody>
</table>
18 hours after the administration of ibuprofen or a HPC of ibuprofen, Beagle dogs were killed and the joint cartilage tissue (the whole joint was washed with pH 7.4 buffer for 3 times) was taken out and homogenized immediately in methanol, using a tissue tearor at 30,000 rpm (about 5 min.). Amounts of ibuprofen in Beagle dog joint cartilage were determined by LS-MS-MS. The results were shown in Table 4.4b.

Table 4.4b. Amounts of ibuprofen in Beagle dogs cartilage tissue

<table>
<thead>
<tr>
<th></th>
<th>diethylaminoethyl 2-(p-isobutyl-phenyl)propionate (intramuscularly)</th>
<th>diethylaminoethyl 2-(p-isobutyl-phenyl)propionate (transdermally)</th>
<th>2-(p-isobutyl-phenyl)propionic acid (intramuscularly)</th>
<th>2-(p-isobutyl-phenyl)propionic acid (transdermally)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of ibuprofen (nmol/g)</td>
<td>17.2±6.1</td>
<td>22.5±4.5</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
</tbody>
</table>

Example 5 Fluorescence microscopy studies of HPC crossing rat skin, brain and other organs

For fluorescence microscopy studies, 30mg of 5-(dimethylamino)naphthalene-1-sulfonic acid or its HPC, N-2-diethylaminoethyl 5-dimethylamino-1-naphthalenesulfonamide.HCl salt was dissolved in 0.5 ml of 75% ethanol and applied to the shaved back of rats (3x3 cm). 15 minutes or 3 hours later, the rat was killed and organs were taken out and frozen. The frozen tissues (brain, liver, and muscle) were sliced and stained with Haematoxylin and eosin (H&E) staining. Results were shown picture 1-9 in Figure 9.
The results show that only 15 minutes after 30 mg of N-2-diethylaminoethyl 5-dimethylamino-1-naphthalenesulfonamide.HCl salt in 0.5 ml of 70% ethanol, large amount of the fluorescence chemical had entered the brain, muscle, and liver, but even 3 hours after 30 mg of 5-(dimethylamino)naphthalene-1-sulfonic acid in 0.5 ml of 70% ethanol was applied to the back of rats, none of the fluorescence chemical had entered the brain, muscle, and liver. The HPC showed an enhanced ability than its parent drug to penetrate skin, blood-brain, and other biological barriers.

Example 6: Transdermal administrations of compositions comprising a HPC result in whole body distribution of the HPC and related compounds in the absence of general circulation.

0.3 mmol/kg of diethylaminoethyl acetylsalicylate HCl salt (10% in pure water) was applied to the back of rats (10cm2) which were killed with CO$_2$. The rats were shaken for 5 hrs, then the HPCs and parent drugs in organs of rats were determined. The results (Table 6) show that the HPCs distributed to the whole body of a biological subject through the intercellular and intracellular fluids and not necessary through the general circulation.

Table 6. The distribution of diethylaminoethyl acetylsalicylate and metabolites in the organs of rats which were killed with CO$_2$(in vivo, the HPC will change to parent drug in a very short time, so the concentration is the concentration of parent drug).
Example 7: Transdermal or oral administrations of a HPC of ibuprofen or aspirin showed stronger antipyretic activities than its corresponding parent drug.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Leg muscle</th>
<th>Liver</th>
<th>Kidney</th>
<th>Stomach</th>
<th>Pancreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethylaminoethyl acetylsalicylic acid</td>
<td>5.2±3.2 (nmol/g)</td>
<td>1.2±1.1 (nmol/g)</td>
<td>3.1±1.4 (nmol/g)</td>
<td>4.3±1.1 (nmol/g)</td>
<td>2.7±1.3 (nmol/g)</td>
</tr>
<tr>
<td>diethylaminoethyl salicylic acid</td>
<td>6.2±3.2 (nmol/g)</td>
<td>1.5±1.2 (nmol/g)</td>
<td>3.1±1.6 (nmol/g)</td>
<td>3.2±1.3 (nmol/g)</td>
<td>3.1±1.1 (nmol/g)</td>
</tr>
<tr>
<td>acetylsalicylic acid</td>
<td>6.7±2.1 (nmol/g)</td>
<td>2.1±1.0 (nmol/g)</td>
<td>3.5±2.1 (nmol/g)</td>
<td>4.7±2.5 (nmol/g)</td>
<td>4.1±1.3 (nmol/g)</td>
</tr>
<tr>
<td>salicylic acid</td>
<td>41.4±11.2 (nmol/g)</td>
<td>12.2±6.1 (nmol/g)</td>
<td>21.2±7.6 (nmol/g)</td>
<td>25.1±2.4 (nmol/g)</td>
<td>14.1±1.2 (nmol/g)</td>
</tr>
</tbody>
</table>

The results in the present disclosure showed that the HPCs that penetrated skin very efficiently also penetrated blood-brain, blood-milk, and other biological barriers efficiently. The membrane penetration rates of drugs were increased hundreds of times, the pharmacological effect and the clinical response of drugs could be increased dramatically, thus reducing required drug dosage and the side effects dramatically and providing new indications.

Study A: Rats received a sterilized *E. coli* suspension as a pyrogen. 2 hours later, ibuprofen (100mg/kg, orally, group B), diethylaminoethyl 2-(p-isobutylphenyl) propionate.HCl salt (the HPC of ibuprofen, 100 mg/kg, orally, group C), ibuprofen (50mg/kg, orally, group D), diethylaminoethyl 2-(p-isobutylphenyl) propionate.HCl salt (50 mg/kg, orally, group E), ibuprofen (20mg/kg, orally, group F), diethylaminoethyl 2-(p-isobutylphenyl) propionate.HCl salt (20 mg/kg, orally, group G), ibuprofen (100mg/kg, transdermally, group H), diethylaminoethyl 2-(p-isobutylphenyl) propionate.HCl salt (100 mg/kg, transdermally, group I), ibuprofen (50mg/kg, transdermally, group J), diethylaminoethyl 2-(p-isobutylphenyl) propionate.HCl salt (50 mg/kg, transdermally, group K), ibuprofen (20mg/kg, transdermally, group L), and diethylaminoethyl 2-(p-
isobutylphenyl) propionate. HCl salt (20 mg/kg, transdermally, group M) were administered. Group A was the control group. The body temperature of rats was taken at 90 min. intervals before and after the administration of the test compounds. The results are shown in Table 7a.

Table 7a. Antipyretic Activity of ibuprofen and its HPC.

<table>
<thead>
<tr>
<th>Compound</th>
<th>t=0 min.</th>
<th>t=90 min.</th>
<th>t=180 min.</th>
<th>t=270 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Control group)</td>
<td>37.5±0.4</td>
<td>37.7±0.3</td>
<td>37.8±0.4</td>
<td>37.9±0.3</td>
</tr>
<tr>
<td>B (100mg/kg, orally)</td>
<td>37.5±0.3</td>
<td>37.4±0.4</td>
<td>36.8±0.3</td>
<td>36.7±0.3</td>
</tr>
<tr>
<td>C (100mg/kg, orally)</td>
<td>37.5±0.4</td>
<td>36.5±0.3</td>
<td>36.4±0.3</td>
<td>36.4±0.2</td>
</tr>
<tr>
<td>D (50mg/kg, orally)</td>
<td>37.5±0.3</td>
<td>37.6±0.3</td>
<td>37.2±0.3</td>
<td>37.1±0.3</td>
</tr>
<tr>
<td>E (50mg/kg, orally)</td>
<td>37.6±0.3</td>
<td>36.6±0.3</td>
<td>36.5±0.3</td>
<td>36.4±0.2</td>
</tr>
<tr>
<td>F (20mg/kg, orally)</td>
<td>37.5±0.2</td>
<td>37.6±0.3</td>
<td>37.5±0.3</td>
<td>37.4±0.3</td>
</tr>
<tr>
<td>G (20mg/kg, orally)</td>
<td>37.6±0.3</td>
<td>37.1±0.3</td>
<td>36.9±0.3</td>
<td>36.8±0.2</td>
</tr>
<tr>
<td>H (100mg/kg, transdermally)</td>
<td>37.6±0.4</td>
<td>37.9±0.4</td>
<td>37.8±0.3</td>
<td>37.8±0.2</td>
</tr>
<tr>
<td>I (100mg/kg, transdermally)</td>
<td>37.5±0.3</td>
<td>36.5±0.2</td>
<td>36.4±0.3</td>
<td>36.5±0.2</td>
</tr>
<tr>
<td>J (50mg/kg, transdermally)</td>
<td>37.6±0.3</td>
<td>37.8±0.3</td>
<td>37.9±0.3</td>
<td>38.1±0.3</td>
</tr>
<tr>
<td>K (50mg/kg, transdermally)</td>
<td>37.5±0.4</td>
<td>36.5±0.3</td>
<td>36.4±0.3</td>
<td>36.5±0.2</td>
</tr>
<tr>
<td>L (20mg/kg, transdermally)</td>
<td>37.5±0.3</td>
<td>37.5±0.5</td>
<td>37.8±0.4</td>
<td>37.9±0.3</td>
</tr>
<tr>
<td>M (20mg/kg, transdermally)</td>
<td>37.6±0.2</td>
<td>36.7±0.4</td>
<td>36.6±0.5</td>
<td>36.5±0.3</td>
</tr>
</tbody>
</table>

The results show that the HPCs demonstrated stronger antipyretic activity than the corresponding parent drug, ibuprofen. In oral administration, 20 mg/kg of the HPC of ibuprofen (equal to 12 mg of ibuprofen) had almost the same effect as 100 mg/kg of ibuprofen. In transdermal administration, ibuprofen did not show any antipyretic activity because ibuprofen could penetrate skin; but the HPC of ibuprofen had stronger antipyretic activity when it was administrated transdermally than orally.
Study B: Rats received a sterilized E. coli suspension as a pyrogen. 2 hours later, aspirin (100mg/kg, orally, group B), diethylaminoethyl acetylsalicylate.HCl salt (the HPC of aspirin, 100 mg/kg, orally, group C), aspirin (50mg/kg, orally, group D), diethylaminoethyl acetylsalicylate.HCl salt (50 mg/kg, orally, group E), aspirin (20mg/kg, orally, group F), diethylaminoethyl acetylsalicylate.HCl salt (20 mg/kg, orally G), aspirin (50mg/kg, transdermally, group H), diethylaminoethyl acetylsalicylate.HCl salt (50 mg/kg, transdermally, group I), aspirin (20mg/kg, transdermally, group J), diethylaminoethyl acetylsalicylate.HCl salt (20 mg/kg, transdermally, group K), aspirin (10mg/kg, transdermally, group L), and diethylaminoethyl acetylsalicylate.HCl salt (10 mg/kg, transdermally, group M) were administered. Group A was the control group. The body temperature of rats was taken at 90 min. intervals before and after the administration of the test compounds. The results were shown in Table 7b.

Table 7b. Antipyretic Activity of Aspirin and Its HPC.

<table>
<thead>
<tr>
<th>Compound</th>
<th>t=0 min.</th>
<th>t=90 min.</th>
<th>t=180 min.</th>
<th>t=270 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Control group)</td>
<td>37.4±0.5</td>
<td>37.8±0.3</td>
<td>37.7±0.4</td>
<td>37.9±0.4</td>
</tr>
<tr>
<td>B (100mg/kg, orally)</td>
<td>37.5±0.2</td>
<td>37.3±0.4</td>
<td>36.7±0.3</td>
<td>36.8±0.4</td>
</tr>
<tr>
<td>C (100mg/kg, orally)</td>
<td>37.6±0.4</td>
<td>36.6±0.4</td>
<td>36.5±0.3</td>
<td>36.4±0.3</td>
</tr>
<tr>
<td>D (50mg/kg, orally)</td>
<td>37.5±0.3</td>
<td>37.7±0.3</td>
<td>37.1±0.3</td>
<td>37.0±0.4</td>
</tr>
<tr>
<td>E (50mg/kg, orally)</td>
<td>37.6±0.3</td>
<td>36.7±0.3</td>
<td>36.5±0.2</td>
<td>36.4±0.3</td>
</tr>
<tr>
<td>F (20mg/kg, orally)</td>
<td>37.5±0.2</td>
<td>37.7±0.3</td>
<td>37.4±0.3</td>
<td>37.4±0.4</td>
</tr>
<tr>
<td>G (20mg/kg, orally)</td>
<td>37.6±0.3</td>
<td>37.1±0.4</td>
<td>36.8±0.2</td>
<td>36.5±0.3</td>
</tr>
<tr>
<td>H (50mg/kg, transdermally)</td>
<td>37.6±0.3</td>
<td>37.9±0.3</td>
<td>37.8±0.4</td>
<td>37.7±0.5</td>
</tr>
<tr>
<td>I (50mg/kg, transdermally)</td>
<td>37.5±0.3</td>
<td>36.5±0.2</td>
<td>36.3±0.3</td>
<td>36.4±0.2</td>
</tr>
<tr>
<td>J (20mg/kg, transdermally)</td>
<td>37.6±0.3</td>
<td>37.8±0.4</td>
<td>37.7±0.4</td>
<td>38.0±0.3</td>
</tr>
<tr>
<td>K (20mg/kg, transdermally)</td>
<td>37.5±0.4</td>
<td>36.7±0.2</td>
<td>36.4±0.2</td>
<td>36.4±0.2</td>
</tr>
<tr>
<td>L (20mg/kg, transdermally)</td>
<td>37.5±0.3</td>
<td>37.6±0.5</td>
<td>37.8±0.3</td>
<td>37.9±0.3</td>
</tr>
<tr>
<td>M (20mg/kg, transdermally)</td>
<td>37.6±0.2</td>
<td>36.5±0.4</td>
<td>36.4±0.3</td>
<td>36.5±0.2</td>
</tr>
</tbody>
</table>

In oral administration, 20 mg/kg of the HPC of aspirin (equal to 11.4 mg of aspirin) showed almost the same antipyretic activity as 100 mg/kg of aspirin. In transdermal administration, aspirin did not show any antipyretic activity because aspirin...
could not penetrate skin; but the HPC of aspirin showed stronger antipyretic activity when it was administrated transdermal than orally.

Example 8: Transdermal or oral administrations of HPC of ibuprofen showed stronger anti-inflammatory activities than its parent drug ibuprofen.

[00228] Aqueous solutions of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid are administered transdermal to the foot pads of the rats in group C (2 mg/kg of the HPC), D (5 mg/kg of the HPC), E (10 mg/kg of the HPC), and F (20 mg/kg of the HPC) respectively and 100 mg/kg of ibuprofen (group B), 100mg/kg (group G) and 50 mg/kg (group H) of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid were administered orally. 1 Hour later, 0.05 ml of a carrageenin solution was administered subcutaneously to the foot pads of the rats. 1 Hour later, aqueous solutions of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid were administered transdermal to the foot pads of the rats in group C (2 mg/kg of the HPC), D (5 mg/kg of the HPC), E (10 mg/kg of the HPC), and F (20 mg/kg of the HPC) respectively.

[00229] The volume of the hind paw was measured at every hour after the administration of the carrageenin and the rate of increase in the volume of the paw was calculated and designated as the rate of swelling (%). The results were shown in Figure 10.

[00230] The anti-inflammatory activity of 20 mg/kg(2 × 10 mg) of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid (MW:497.5, transdermally) [equates to ~8mg/kg of ibuprofen(MW: 206.2)] and 50 mg/kg of diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid (orally) [equates to ~20mg/kg of ibuprofen] were much stronger than that of 100mg/kg of ibuprofen (oral). Similar results have been demonstrated in other animal models.

[00231] Transdermal or oral administrations of compositions comprising a HPC of ibuprofen showed more than 5 times stronger anti-inflammatory activities than its parent drug, ibuprofen.
Example 9. HPC of aspirin showed stronger anti-diabetic activities than aspirin.

Studies of the hypoglycemic effects of aspirin and its HPC, diethylaminoethyl acetylsalicylate.HCl salt, were carried out in type 2 diabetes rat models [SLAC/GK(Goto and Kakisaki)]. 300mg/kg, 200 mg/kg, 100 mg/kg, and 50 mg/kg of aspirin and diethylaminoethyl acetylsalicylate.HCl salt (HPC) were administered into the GK rats (n=5 x 8) orally and 100 mg/kg, 50mg/kg, and 30 mg/kg (10% in 70% ethanol) of aspirin and diethylaminoethyl acetylsalicylate.HCl salt were administered transdermally to the backs (about 7 cm²) of rats [(n=5 x 6) fur was shaved off] once per day for 6 weeks. The blood glucose levels were measured three times every week (no fasting) from the third week to the sixth week. The results were shown in Table 9.

Table 9. Anti-diabetes (type II) activity of aspirin and diethylaminoethyl acetylsalicylate.HCl salt in GK rats (12-14 weeks old).

<table>
<thead>
<tr>
<th>Test compounds</th>
<th>Blood Glucose Levels at day 1 (mg/dL, no fasting, n=5)</th>
<th>Blood Glucose Levels at day 42 (mg/dL, no fasting, n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>212.4±28.5</td>
<td>252.4±23.6</td>
</tr>
<tr>
<td>Aspirin (300mg/kg, orally)</td>
<td>215.6±22.4</td>
<td>165.4±22.1</td>
</tr>
<tr>
<td>HPC (300mg/kg, orally)</td>
<td>217.4±25.5</td>
<td>115.4±18.2</td>
</tr>
<tr>
<td>Aspirin (200mg/kg, orally)</td>
<td>213.5±21.5</td>
<td>195.4±23.4</td>
</tr>
<tr>
<td>HPC (200mg/kg, orally)</td>
<td>214.4±26.5</td>
<td>125.4±26.8</td>
</tr>
<tr>
<td>Aspirin (100mg/kg, orally)</td>
<td>211.3±21.5</td>
<td>219.4±19.9</td>
</tr>
<tr>
<td>HPC (100mg/kg, orally)</td>
<td>216.4±18.5</td>
<td>133.4±23.1</td>
</tr>
<tr>
<td>Aspirin (50mg/kg, orally)</td>
<td>213.7±20.5</td>
<td>243.4±26.7</td>
</tr>
<tr>
<td>HPC (50mg/kg, orally)</td>
<td>215.6±19.5</td>
<td>172.4±21.5</td>
</tr>
<tr>
<td>Aspirin(200mg/kg, transdermally)</td>
<td>216.4±21.9</td>
<td>247.4±27.8</td>
</tr>
<tr>
<td>HPC (200mg/kg, transdermally)</td>
<td>219.4±23.5</td>
<td>111.4±23.2</td>
</tr>
<tr>
<td>Aspirin(100mg/kg, transdermally)</td>
<td>217.4±18.9</td>
<td>255.4±24.6</td>
</tr>
</tbody>
</table>
The results show that the HPC of aspirin had much stronger (more than 5 times in oral administration) anti-diabetic effect than that of aspirin. Aspirin did not show any anti-diabetic effect in transdermal administration, but the transdermal administration of HPC was more effective than oral administration for HPC.

Example 10. Anti-diabetes (type II) activity of the HPCs of NSAIDs

A HPC in the present disclosure lowered blood glucose levels in rat models (SLAC/GK, type 2 diabetes, n=7). 30 mg/kg of 8% diethylaminoethyl acetylsalicylate.HCl salt (P-1, in 25% ethanol); 4-acetamidophenyl salicylyldimethylaminobutyrate.HCl (P-6, in 25% ethanol), diethylaminoethyl 5-(2,4-difluorophenyl) acetylsalicylate.5-(2,4-difluorophenyl) acetylsalicylic acid salt (P-8, in 25% ethanol), diethylaminoethyl salicylsalicylate.HCl salt (P-9, in 25% ethanol), diethylaminoethyl salicylsalicylate.AcOH (P-10, in 25% ethanol), diethylaminoethyl 5-acetamido-acetylsalicylate .HCl(P-58, in 25% ethanol), diethylaminoethyl acetylsalicylsalicylate. HCl salt (P-59, in 25% ethanol), diethylaminoethyl acetylsalicylsalicylsalicylate. HCl salt (P-60, in 25% ethanol) were administered transdermally to the backs (6 cm², fur was shaved) of GK rats(SLAC/GK, 14-16 weeks old) and normal SD rats (SLAC/SD, 14-16 weeks old) once per day (at 8 am) for 6 weeks.

The blood glucose levels were measured once every 3 days at 4:30 pm (no fasting) from the third week to the sixth week as shown in Table 10a and 10b. The results showed that the HPC of NSAIDs lowered blood glucose levels in diabetes rats effectively and did not affect the blood glucose levels in normal rats. Moreover, the blood glucose levels of the rats stayed at normal level (6-9 mmol/L, no fasting) after the treatment was stopped for 40 days. It suggested that the HPC may also have cured diabetes in the rats.

<table>
<thead>
<tr>
<th></th>
<th>Blood Glucose Level (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC (100mg/kg, transdermally)</td>
<td>219.8±20.4</td>
</tr>
<tr>
<td>Aspirin (50mg/kg, transdermally)</td>
<td>216.6±17.3</td>
</tr>
<tr>
<td>HPC (50mg/kg, transdermally)</td>
<td>217.3±19.7</td>
</tr>
</tbody>
</table>

Table 10a Anti-diabetes (type II) activity of the HPCs of NSAIDs
Table 10b. Anti-diabetes (type II) activity of the HPCs of NSAIAs

<table>
<thead>
<tr>
<th></th>
<th>HPCs</th>
<th>Control (mmol/L)</th>
<th>P-1 (mmol/L)</th>
<th>P-6 (mmol/L)</th>
<th>P-8 (mmol/L)</th>
<th>P-9 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GK rats</td>
<td>Day 1</td>
<td>16.7±3.2</td>
<td>17.1±2.8</td>
<td>16.8±3.0</td>
<td>16.9±2.8</td>
<td>16.4±2.3</td>
</tr>
<tr>
<td></td>
<td>Average (Week 2-5)</td>
<td>18.9±2.2</td>
<td>6.4±2.4</td>
<td>9.2±2.7</td>
<td>8.3±2.1</td>
<td>9.4±2.7</td>
</tr>
<tr>
<td>SD rats</td>
<td>Day 1</td>
<td>5.6±1.4</td>
<td>5.8±1.5</td>
<td>5.7±1.3</td>
<td>5.6±1.5</td>
<td>5.5±1.3</td>
</tr>
<tr>
<td></td>
<td>Average (Week 2-5)</td>
<td>5.5±1.3</td>
<td>5.7±1.3</td>
<td>5.8±1.1</td>
<td>5.7±1.2</td>
<td>5.6±1.2</td>
</tr>
</tbody>
</table>

HPCs in the present disclosure lowered blood glucose levels and blood lipid levels in mice models (SLAC/DB/DB, obese mice, n=7). 30 mg/kg of 8% diethylaminoethyl acetylsalicylate.HCl salt (P-1, in 25% ethanol); 4-acetamidophenyl salicylyldimethylaminobutyrate.HCl (P-6, in 25% ethanol), diethylaminoethyl 5-(2,4-difluorophenyl) acetylsalicylate.5-(2,4-difluorophenyl) acetylsalicylic acid salt (P-8, in 25% ethanol), diethylaminoethyl salicylsalicylate.HCl salt (P-9, in 25% ethanol), diethylaminoethyl salicylsalicylate.AcOH (P-10, in 25% ethanol), diethylaminoethyl 5-acetamido-acetylsalicylate.HCl(P-58, in 25% ethanol), diethylaminoethyl acetylsalicylsalicylate.HCl salt (P-59, in 25% ethanol), diethylaminoethyl acetylsalicylsalicylate.HCl salt (P-60, in 25% ethanol) were administered transdermal to the backs (4 cm², fur was shaved) of DB/DB mice(SLAC/DB/DB, 10-12
weeks old) once per day (at 8 am) for 5 weeks. The blood glucose levels were measured once per week and blood lipid levels were measured once every other week. The results are shown in table 10c, 10d, 10e, and 10f.

Table 10c Anti-diabetes activity of the HPCs of NSAIAs in DB/DB mice.

<table>
<thead>
<tr>
<th>HPCs</th>
<th>Control (mmol/L)</th>
<th>P-1 (mmol/L)</th>
<th>P-6 (mmol/L)</th>
<th>P-8 (mmol/L)</th>
<th>P-9 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>14.5±2.5</td>
<td>14.1±2.6</td>
<td>14.2±2.0</td>
<td>14.5±2.7</td>
<td>14.1±2.5</td>
</tr>
<tr>
<td>Week 5</td>
<td>17.1±3.0</td>
<td>6.8±2.8</td>
<td>9.5±2.8</td>
<td>8.4±2.1</td>
<td>8.7±2.3</td>
</tr>
</tbody>
</table>

Table 10d. Anti-diabetes activity of the HPCs of NSAIAs in DB/DB mice.

<table>
<thead>
<tr>
<th>HPCs</th>
<th>P-10 (mmol/L)</th>
<th>P-58 (mmol/L)</th>
<th>P-59 (mmol/L)</th>
<th>P-60 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>15.1±3.7</td>
<td>15.6±2.9</td>
<td>14.2±2.2</td>
<td>14.8±2.7</td>
</tr>
<tr>
<td>Week 5</td>
<td>9.2±2.3</td>
<td>9.3±2.1</td>
<td>8.1±2.4</td>
<td>9.0±2.1</td>
</tr>
</tbody>
</table>

Table 10e. Blood lipid-lowering activity of the HPCs of NSAIAs in DB/DB mice.

<table>
<thead>
<tr>
<th>HPCs</th>
<th>Control (mmol/L)</th>
<th>P-1 (mmol/L)</th>
<th>P-6 (mmol/L)</th>
<th>P-8 (mmol/L)</th>
<th>P-9 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (total) Day 1</td>
<td>7.4±0.5</td>
<td>7.1±0.4</td>
<td>7.0±0.4</td>
<td>6.8±0.4</td>
<td>7.7±0.5</td>
</tr>
<tr>
<td>Week 5</td>
<td>8.6±0.7</td>
<td>4.1±0.4</td>
<td>4.9±0.5</td>
<td>5.0±0.2</td>
<td>4.9±0.5</td>
</tr>
<tr>
<td>Triglycerides Day 1</td>
<td>4.1±0.4</td>
<td>4.1±0.5</td>
<td>4.4±0.5</td>
<td>4.4±0.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Week 5</td>
<td>5.6±0.3</td>
<td>1.5±0.3</td>
<td>2.5±0.3</td>
<td>2.2±0.4</td>
<td>2.1±0.3</td>
</tr>
</tbody>
</table>

Table 10f. Blood lipid-lowering activity of the HPCs of NSAIAs in DB/DB mice.

<table>
<thead>
<tr>
<th>HPCs</th>
<th>P-10 (mmol/L)</th>
<th>P-58 (mmol/L)</th>
<th>P-59 (mmol/L)</th>
<th>P-60 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (total) Day 1</td>
<td>6.8±0.4</td>
<td>7.1±0.3</td>
<td>6.6±0.4</td>
<td>7.0±0.8</td>
</tr>
<tr>
<td>Week 5</td>
<td>4.7±0.5</td>
<td>5.1±0.6</td>
<td>4.7±0.4</td>
<td>5.0±0.4</td>
</tr>
<tr>
<td>Triglycerides Day 1</td>
<td>4.8±0.9</td>
<td>4.9±0.4</td>
<td>4.6±0.4</td>
<td>4.3±0.5</td>
</tr>
<tr>
<td>Week 5</td>
<td>2.3±0.3</td>
<td>4.3±0.5</td>
<td>4.6±0.5</td>
<td>4.3±0.5</td>
</tr>
</tbody>
</table>
The results show that the HPCs of NSAIA s can lower blood glucose level and blood lipid levels (total cholesterol and triglycerides) in obese mice models (SLAC/DB/DB) very effectively.

Example 11. Anti-diabetes (type I) activity of the HPCs of NSAIA s

HPCs showed strong anti-diabetes (type 1) activities in rat models (SLAC:NOD-IDDM, type 1 diabetes, n=7). 10% aqueous solution of diethylaminoethyl acetylsalicylate.acetylsalicylic acid salt (P-1 , in acetone); 4-acetamidophenyl salicylyldimethylaminobutyrate. HCl (P-6), diethylaminoethyl 5-(2,4-difluorophenyl) acetylsalicylate.5-(2,4-difluorophenyl) acetylsalicylic acid salt (P-8), diethylaminoethyl salicylsalicylate.AcOH (P-9), diethylaminoethyl 5-acetamido-acetylsalicylate.HCl (P-58), diethylaminoethyl 2-(p-isobutylphenyl) propionate.citric acid (P-59), diethylaminoethyl acetylsalicylsalicylate. acetylsalicylsalicylic acid salt (P-60) (equal to of 20 mg/kg of NSAIA s) were administered transdermal^ to the shaved back (about 1.5 cm^2) of mice twice per day (at 8 am and 5 pm) for 7 weeks.

The blood glucose levels were measured once every 3 days at 4:30 pm (no fasting) from the fourth week to the seventh week as shown in Table 11. The results showed that the HPC of NSAIA s lowered blood glucose levels in diabetic (type I) mouse models effectively.

Table 11. Anti-diabetes (type I) activity of the HPCs of NSAIA s

<table>
<thead>
<tr>
<th>HPC</th>
<th>Control mmol/ L</th>
<th>P-1 mmol/ L</th>
<th>P-6 mmol/ L</th>
<th>P-8 mmol/ L</th>
<th>P-9 mmol/ L</th>
<th>P-10 mmol/ L</th>
<th>P-58 mmol/ L</th>
<th>P-59 mmol/ L</th>
<th>P-60 mmol/ L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.6±4.2</td>
<td>18.1±4.5</td>
<td>18.9±3.1</td>
<td>19.4±3.6</td>
<td>16.5±3.4</td>
<td>18.8±3.2</td>
<td>17.9±3.2</td>
<td>19.1±3.3</td>
<td>17.5±3.3</td>
</tr>
<tr>
<td>Average</td>
<td>32.9±5.5*</td>
<td>7.5±1.8</td>
<td>9.5±2.1</td>
<td>9.7±1.4</td>
<td>8.4±1.9</td>
<td>8.6±1.8</td>
<td>8.1±1.9</td>
<td>8.9±1.7</td>
<td>8.8±1.9</td>
</tr>
</tbody>
</table>
The data are from the fourth week. All mice in the control groups died before the sixth week.

Example 12. Treatment of diabetes (type II).

[00240] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until the diabetes is cured (maybe lifelong).

Example 13. Prevention of diabetes (type II).

[00241] For people with high risk to get diabetes (type II), such as overweight people, people who have family history of diabetes (type II), people with mutant genes related to diabetes (type II), about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 14. Treatment of diabetes (type I).

[00242] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until the diabetes is cured (maybe lifelong).

Example 15. Prevention of diabetes (type I).

[00243] For people with high risk to get diabetes (type I), such as people having a twin sister, or brother with diabetes (type I), people who have family history of diabetes (type II), people with mutant genes related to diabetes (type II), about 0.4 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 16. Treatment of abnormal blood lipid levels (abnormal blood cholesterol levels and/or abnormal blood triglycerides levels).

[00244] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until the abnormal blood lipid levels is cured (maybe lifelong).
Example 17. Prevention of abnormal blood lipid levels (abnormal blood cholesterol levels and/or abnormal blood triglycerides levels).

For people with high risk to get abnormal blood lipid levels, such as people having a twin sister, or brother with abnormal blood lipid levels, people who have family history of abnormal blood lipid levels, people with mutant genes related to abnormal blood lipid levels, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 18. Anti-psoriasis activity of the HPCs of NSAIAs.

[00245] Without being bound by a particular mechanism, COX-1 and COX-2 play a very important role in animal immune-responses. NSAIAs inhibit COX-1 and COX-2. HPCs of NSAIAs may be very useful for treating psoriasis, discoid lupus erythematosus, systemic lupus erythematosus (SLE), and other autoimmune diseases.

[00246] Heavy suspensions of Malassezia [Rosenberg, E.W., et al., Mycopathologia, 72, 147-154 (1980)] were applied to the shaved skin on the backs of Chinese white rabbits (n=4 x 6) twice (at 8 am and 5 pm) per day for 2 weeks to generate lesions similar to psoriasis. HPCs (5%, aq.) were applied to the same areas 3 hours (10 am and 6 pm) after the application of Malassezia (7am and 3pm). The lesions healed 10 days after the application of one HPC selected from the group of 3-piperidinemethyl 2-(p-isobutylphenyl) propionate.HCl, diethylaminoethyl 1-methyl-5-(4-methylbenzoyl)-1 H-pyrrole-2-acetate.HCl, diethylaminoethyl 5-(4-Chlorobenzoyl)-1,4-dimethyl-1 H-pyrrole-2-acetate.HCl, diethylaminoethyl 1,8-diyethyl-1,3,4,9-tetrahydropyrano-[3,4-bjindole-1-acetate.HCl, diethylaminoethyl 2-amino-3-(4-bromo-benzoyl)benzeneacetate.HCl, diethylaminoethyl 3-chloro-4-(2-propenyloxy)benzeneacetate.HCl, diethylaminoethyl 1-(4-chlorobenzoyl-5-methoxy-2-methyl-1 H-indole-3-acetoxyacetate.HCl, diethylaminoethyl 4-(4-chlorophenyl)-2-phenyl-5-thiazoleacetate.HCl, and diethylaminoethyl 3-(4-chlorophenyl)-1-phynyl-1 H-pyrazole-4-acetate.HCl.

[00247] About 1.5 ml (dependes on the area size of psoriasis) of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin with...
psoriasis or around the psoriasis areas twice per day. The treatment is continued until
the psoriasis disappeared (that may be lifelong).

Example 20. Treatment of acne vulgaris and other skin disorders.

[00248] About 1 ml (depended on the affected area size) of 8 % N,N-diethylaminoethyl acetylsalicylate HCl in 25% ethanol is applied to the skin with acne vulgaris or around the acne vulgaris areas twice per day. The treatment is continued until the acne vulgaris disappeared.

Example 21. Prevention of psoriasis and/or any other skin disorders.

[00249] For people with high risk to get psoriasis and/or any other skin disorders, such as people having a twin sister or brother with psoriasis and/or any other skin disorders, people who have family history of psoriasis and/or any other skin disorders, about 0.3 ml of 8 % diethylaminoethyl acetylsalicylate HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 22. Use of HPCs of NSAIAAs to soften and shrink scars in rabbits.

[00250] 25 Chinese white rabbits were cut on the shaved back to generate wounds of the same size. The rabbits were divided into two groups, one group was treated with the HPCs and the other group was the control group with no treatment. For the treated group, the HPCs (5%, aq.) were applied to the nearby area of the wounds (5 x 5 cm²). The average scar area of the treated rabbits as one-third of that of the untreated rabbits, and the scars were as soft as normal unscarred tissues.

[00251] The HPCs tested were 3-piperidinemethyl 2-(p-isobutylphenyl) propionate HCl, diethylaminoethyl 1-methyl-5-(4-methylbenzoyl)-1 H-pyrrole-2-acetate HCl, diethylaminoethyl 5-(4-Chlorobenzoyl)-1,4-dimethyl-1 H-pyrrole-2-acetate HCl, diethylaminoethyl 1,8-diethyl-1,3,4,9-tetrahydropyran-[3,4-b]indole-1-acetate HCl, diethylaminoethyl 2-amino-3-(4-bromo-benzoyl)benzeneacetate HCl, diethylaminoethyl 3-chloro-4-(2-propenyoxy)benzeneacetate HCl, diethylaminoethyl 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1 H-indole-3-acetoxyacetate HCl, diethylaminoethyl 4-(4-chlorophenyl)-2-phenyl-5-thiazoleacetate HCl, and diethylaminoethyl 3-(4-chlorophenyl)-1-phenyl-1 H-pyrazole-4-acetate HCl.
Example 23. Treatment of wound (cuts, burns, or other injuries).

[00252] About 0.7ml (depended on the affected area size) of 5 % diethylaminoethyl 1-methyl-5-(4-methylbenzoyl)-1 H-pyrrole-2-acetate.HCl in 25% ethanol is applied to the skin around the wound twice per day. The treatment is continued until the condition disappeared.

Example 24. Application of HPCs to treat a spinal cord injury.

[00253] Most NSAIDs cannot penetrate the scar barrier in a therapeutic effective amount, but HPCs in the present disclosure can penetrate the scar barrier, have anti-inflammatory activity, and can help wound healing.

[00254] A paralyzed rat was produced by anesthetizing with chloral hydrate first, and then hitting at its spinal cord to induce spinal cord injuries. On the next day, 20 completely paralyzed rats were divided into 2 groups. In group A (n=10), 0.2 ml of pure water was applied transdermal to the area of injury (~2 x 3cm²) twice per day for 1 months. In group B (n=10), 5 mg of diethylaminopropyl acetylsalicylate.HCl in 0.2 ml of pure water was applied to the area of injury (~2 x 3cm²) twice per day for 1 months. After the treatment, all rats (10/10) in group A were still completely paralyzed. While all rats (10/10) in group B could walk. 4 Rats of group B acted completely normal and the other 6 rats walked more slowly and less confidently than before their injury.

Example 25. Treatment of a spinal cord injury.

[00255] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck, face, or any part skin of the body twice per day. The process is continued until the spinal cord injury is cured (maybe lifelong).

[00256] Inflammation —where the body's immune system attacks its own cells—is linked to discoid lupus erythematosus, systemic lupus erythematosus (SLE), multiple sclerosis (MS), psoriasis, and other autoimmune diseases.

[00257] A HPC, diethylaminoethyl acetylsalicylate.HCl (10%, aq., 30 mg/kg) was applied to the back skin (~5cm²) of SLAC/MRL/LPR mice twice per day (8:00 am and
6:00 pm). Progression of lupus was monitored once a week by measurement of hematuria, body weight and survival rate. The experiments were carried out in two groups of mice. One group of mice were 8 weeks old and had not shown SLE characteristics (Table 26a). The other group of mice were 16 weeks old, and had shown SLE characteristics (Table 26b).

The results show that diethylaminoethyl acetylsalicylate (a HPC of aspirin) prevent MRL/LPR mice from developing lupus completely when the mice were treated since 8 weeks old. Diethylaminoethyl acetylsalicylate HPC treatment reversed lupus in MRL/LPR mice when the mice are treated after 16 weeks old.

The results suggested that the HPCs of NSAIAs are promising agents for the treatment of psoriasis, discoid lupus erythematosus, systemic lupus erythematosus (SLE), multiple sclerosis (MS, caused by myelin inflammation and the HPCs of NSAIAs in the present disclosure can penetrate the outside membrane of myelin) and other autoimmune diseases in human.

Table 26a. Effect of Diethylaminoethyl acetylsalicylate Treatment on MRL/LPR mice of 8 weeks old.

<table>
<thead>
<tr>
<th>Time (week)</th>
<th>Untreated Group (n=10)</th>
<th>Diethylaminoethyl acetylsalicylate Treated Group(n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body Weight(g) (Q-4)</td>
<td>Hematuria Survival Rate</td>
</tr>
<tr>
<td>8</td>
<td>31.5±2.2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>34.2±2.4</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>37.5±2.1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>41.5±2.8</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>43.9±2.7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>13</td>
<td>45.5±2.0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>49.1±1.9</td>
<td>0.80±0.20</td>
</tr>
<tr>
<td>15</td>
<td>48.2±2.1</td>
<td>1.10±0.28</td>
</tr>
<tr>
<td>16</td>
<td>45.5±2.2</td>
<td>1.5010.43</td>
</tr>
<tr>
<td>17</td>
<td>44.3±2.6</td>
<td>1.7010.43</td>
</tr>
<tr>
<td>18</td>
<td>44.1±2.8</td>
<td>1.7810.52</td>
</tr>
<tr>
<td>19</td>
<td>40.3±2.6</td>
<td>1.7510.49</td>
</tr>
<tr>
<td>20</td>
<td>36.0±2.7</td>
<td>2.13±0.55</td>
</tr>
<tr>
<td>21</td>
<td>34.613.1</td>
<td>2.00±0.58</td>
</tr>
<tr>
<td>22</td>
<td>31.812.5</td>
<td>2.20±0.49</td>
</tr>
<tr>
<td>23</td>
<td>31.412.6</td>
<td>2.60±0.60</td>
</tr>
<tr>
<td>24</td>
<td>33.3±5.8</td>
<td>2.00±0.58</td>
</tr>
<tr>
<td>25</td>
<td>31.714.7</td>
<td>2.33±0.88</td>
</tr>
<tr>
<td>26</td>
<td>32.5±5.5</td>
<td>2.5011.50</td>
</tr>
<tr>
<td>27</td>
<td>34.2</td>
<td>2.00</td>
</tr>
<tr>
<td>28</td>
<td>30.5</td>
<td>3.00</td>
</tr>
<tr>
<td>29</td>
<td>26.3</td>
<td>3.00</td>
</tr>
<tr>
<td>30</td>
<td>0/1 0</td>
<td>49.812.1</td>
</tr>
<tr>
<td>31</td>
<td>50.411.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>50.8±2.0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>50.6±2.1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>50.8±2.3</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>50.3±2.4</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>50.7±2.3</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>50.9±2.0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>51.1±2.6</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>50.6±2.2</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>50.7±2.0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>51.2±2.1</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>51.1±2.6</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>50.7±2.2</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>50.3±2.6</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>50.7±2.0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>50.6±2.3</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>50.1±2.0</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>50.3±2.5</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>50.7±2.4</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>51.2±2.1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 26b. Effect of Diethylaminoethyl acetyl salicylate Treatment MRL/LPR mice of 16 weeks old.

<table>
<thead>
<tr>
<th>Time (week)</th>
<th>Untreated Group (n=10)</th>
<th>Diethylaminoethyl acetyl salicylate Treated Group (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body Weight(g)</td>
<td>Hematuria (0-4)</td>
</tr>
<tr>
<td>16</td>
<td>45.5±2.2</td>
<td>1.50±0.43</td>
</tr>
<tr>
<td>17</td>
<td>44.3±2.6</td>
<td>1.70±0.43</td>
</tr>
<tr>
<td>18</td>
<td>44.1±2.8</td>
<td>1.78±0.52</td>
</tr>
<tr>
<td>19</td>
<td>40.3±2.6</td>
<td>1.75±0.49</td>
</tr>
<tr>
<td>20</td>
<td>36.0±2.7</td>
<td>2.13±0.55</td>
</tr>
<tr>
<td>21</td>
<td>34.6±3.1</td>
<td>2.00±0.58</td>
</tr>
<tr>
<td>22</td>
<td>31.8±12.5</td>
<td>2.20±0.49</td>
</tr>
<tr>
<td>23</td>
<td>31.4±12.6</td>
<td>2.60±0.60</td>
</tr>
<tr>
<td>24</td>
<td>33.3±5.8</td>
<td>2.00±0.58</td>
</tr>
<tr>
<td>25</td>
<td>31.7±14.7</td>
<td>2.33±0.88</td>
</tr>
<tr>
<td>26</td>
<td>32.5±5.5</td>
<td>2.50±11.50</td>
</tr>
<tr>
<td>27</td>
<td>34.2</td>
<td>2.00</td>
</tr>
<tr>
<td>28</td>
<td>30.5</td>
<td>3.00</td>
</tr>
<tr>
<td>29</td>
<td>26.3</td>
<td>3.00</td>
</tr>
<tr>
<td>30</td>
<td>0/10</td>
<td>46.4±12.1</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Standard Error</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>47.1</td>
<td>±2.2</td>
</tr>
<tr>
<td>2</td>
<td>46.6</td>
<td>±2.4</td>
</tr>
<tr>
<td>3</td>
<td>47.3</td>
<td>±2.1</td>
</tr>
<tr>
<td>4</td>
<td>47.6</td>
<td>±2.0</td>
</tr>
<tr>
<td>5</td>
<td>47.2</td>
<td>±2.0</td>
</tr>
<tr>
<td>6</td>
<td>46.9</td>
<td>±2.1</td>
</tr>
<tr>
<td>7</td>
<td>47.4</td>
<td>±2.7</td>
</tr>
<tr>
<td>8</td>
<td>46.9</td>
<td>±2.3</td>
</tr>
<tr>
<td>9</td>
<td>47.2</td>
<td>±2.0</td>
</tr>
<tr>
<td>10</td>
<td>47.6</td>
<td>±2.3</td>
</tr>
<tr>
<td>11</td>
<td>47.7</td>
<td>±2.2</td>
</tr>
<tr>
<td>12</td>
<td>46.9</td>
<td>±2.0</td>
</tr>
<tr>
<td>13</td>
<td>47.5</td>
<td>±2.8</td>
</tr>
<tr>
<td>14</td>
<td>47.6</td>
<td>±2.0</td>
</tr>
<tr>
<td>15</td>
<td>47.9</td>
<td>±2.5</td>
</tr>
<tr>
<td>16</td>
<td>47.6</td>
<td>±2.4</td>
</tr>
<tr>
<td>17</td>
<td>47.3</td>
<td>±2.8</td>
</tr>
<tr>
<td>18</td>
<td>46.6</td>
<td>±2.8</td>
</tr>
<tr>
<td>19</td>
<td>46.9</td>
<td>±2.1</td>
</tr>
</tbody>
</table>
Example 27. Treatment of discoid lupus erythematosus.

[00260] About 2 ml (depended on the affected area size) of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin with discoid lupus erythematosus or around the discoid lupus erythematosus areas twice per day. The treatment is continued until the discoid lupus erythematosus disappeared (may be lifelong).

[00261] About 1.5 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin near the affected organs or the skin on any part of the body twice per day. The treatment is continued until the condition disappeared (may be lifelong).

Example 29. Prevention of discoid or systemic lupus erythematosus.

[00262] For people with high risk to get discoid or systemic lupus erythematosus, such as people having a twin sister or brother with discoid or systemic lupus erythematosus, people who have family history of discoid or systemic lupus erythematosus, people with mutant genes related to discoid or systemic lupus erythematosus, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 30. Treatment of multiple sclerosis (MS).

[00263] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin near the multiple sclerosis affected organs or the skin on any part of the body twice per day. The treatment is continued until the condition (MS) disappeared (may be lifelong).

[00264] For people with high risk to get multiple sclerosis, such as people having a twin sister or brother with multiple sclerosis, people who have family history of multiple
sclerosis, people with mutant genes related to multiple sclerosis, about 0.3 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 32. Anti-tumor activity of the HPCs of NSAIAAs.

[00265] The relationship between inflammation and cancer is well known. Dr. Thea D. Tisty described in his speech (Keystone Symposia: Inflammation and Cancer, Breckenridge, Colorado, USA, Feb. 27-March 3, 2005) that cyclooxygenase-2 (COX-2) stimulates aromatase activity, angiogenesis, proliferation, invasion, and prostaglandin synthesis. The increase in prostaglandins leads to an inhibition of apoptosis. Aspirin and other NSAIAAs inhibit COX-1 and COX-2. The overall relative risk of colorectal cancer, oesophageal cancer, ovarian cancer or other cancers is reduced in people taking long term aspirin. However, cancer cells may change their membrane structure to keep the NSAIAAs from entering the cancer cells. The novel HPCs in the present disclosure can penetrate any membrane barriers and can be applied topically to the outside skin area of the location of the cancer and large amounts of the HPCs will enter the cancer cells with very little systemic exposure.

A) Human breast cancer cells

[00266] Human breast cancer cells (BCAP-37, 2-3 mm³ of tumor tissue was used in each mouse) were subcutaneously xenografted into nude mice (BALB, 12 groups, 7 mice each group). After 14 days, the tumors grewed to the size of 50±1 0 mm³ (0.05 ml). 50 µl of 5% (equal to 2.5 mg of the HPCs) diethylaminoethyl acetylsalicylate.HCl (P-1, in pure water); 1-piperidinepropyl 2[(2,6-dichlorophenyl)amino]benzene acetate. HCl (P-2, in water), 1-pyrrolidinepropyl 2-(3-benzoylphenyl) propionate. HCl (P-3, in water), 4-piperidinemethyl 2-(3-phenoxyphenyl)propionate.HCl (P-4, in water), 3-piperidinemethyl 2-(p-isobutylphenyl) propionate.HCl (P-5, in water), diethylaminoethyl 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole 3-acetate.HCl (P-11, in water), 2-(4-morpholiny)ethyl (Z)-5-fluoro-2-methyl-1 -[(4-methylsulfinyl) phenylmethylene]-1 H-indene-3-acetate.HCl (P-12, in water), diethylaminoethyl 2-(2,4-dichlorophenoxy)benzeneacetate.HCl (P-19, in water), diethylaminoethyl 2-(8-methyl-1 0, 11-dihydro-1 1-oxodibenz(b,f)oxepin-2-yl)propionate.HCl (P-37, in water), 1-
pyrrolidinepropyl 2-[[3-(trifluoromethyl)phenyl]amino]benzoate.HCI (P-48, in water), 4-N,N-dimethylaminobutyryloxy-2-methyl-N-2-pyridinyl-2H,1,2-benzothiazine-3-carboxamide 1,1-dioxide. HCl (P-51 , in water) were topically applied to the human breast cancer cells-implanted area (near the front leg) every 8 hours. At day 42, the tumors sizes and weight data shown in Table 32a-1 and Table 32a-2 indicated that the HPCs were effective anti-tumor agents with low side effects such as weight loss.

Table 32a-1. The tumors sizes and the weights of the control group and the drug-treated groups of nude mice at day 42.

<table>
<thead>
<tr>
<th>HPC</th>
<th>Control</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>P-4</th>
<th>P-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm³)</td>
<td>850±110</td>
<td>140±50</td>
<td>160±50</td>
<td>210±60</td>
<td>190±55</td>
<td>180±55</td>
</tr>
<tr>
<td>Weight</td>
<td>23±2</td>
<td>24±3</td>
<td>23±2</td>
<td>22±3</td>
<td>23±3</td>
<td>23±2</td>
</tr>
</tbody>
</table>

Table 32a-2. The tumors sizes and the weights of the drug-treated groups of nude mice at day 42.

<table>
<thead>
<tr>
<th>HPC</th>
<th>P-11</th>
<th>P-12</th>
<th>P-19</th>
<th>P-37</th>
<th>P-48</th>
<th>P-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm³)</td>
<td>230±105</td>
<td>240±60</td>
<td>260±55</td>
<td>270±70</td>
<td>280±50</td>
<td>390±55</td>
</tr>
<tr>
<td>Weight</td>
<td>23±2</td>
<td>23±3</td>
<td>22±2</td>
<td>23±3</td>
<td>22±3</td>
<td>23±2</td>
</tr>
</tbody>
</table>

B) Human colon cancer cells

Human colon cancer cells (LS174J, 2-3 mm³ of tumor tissue was used in each mouse) were subcutaneously xenografted into nude mice (BALB). After 7 days, the tumors grow to the size of 6511 0 mm³ (0.065 ml). About 50 µl of 5% (equal to 1.5 mg of the HPCs) diethylaminoethyl acetylsalicylate.HCl salt (P-1 , in water); 1-piperidinomethyl 2-(3-[6-dichlorophenyl]amino)benzene acetate. HCl (P-2, in water), 1-pyrrolidinepropyl 2-(2,6-dichlorophenyl)amino]benzene acetate. HCl (P-2, in water), 1-pyrrolidinepropyl 2-(3-benzoylphenyl) propionate.HCl (P-3, in water), 4-piperidinemethyl 2-(3-phenoxypyphenyl)propionate.HCl (P-4, in water), 3-piperidinemethyl 2-(p-isobutylphenyl) propionate.HCl (P-5, in water), diethylaminoethyl 1-methyl-5-(4-
methylbenzoyl)-1 H-pyrrole-2-acetate.HCl (P-1 3 , in water), 2-(4-morpholiny1)ethyl 2-amino-3-benzoylbenezeneacetate.HCl (P-1 6 , in water), diethylaminoethyl 2-{(1 0,1 1-dihydro-1 0-oxodibenzo(b,f)thiepin-2-yl)propionate.HCl (P-36), diethylaminoethyl 2-{(2,3-dimethylphenyl)amino}benzoate.HCl (P-46, in water), diethylaminoethyl 2-{(2,6-dichlo-ro-3-methylphenyl)amino}benzoate.HCl (P-47, in water), N-(2-thiazoyl)-4,N,N-dimethylaminobutyryloxy-2-methyl-2H,1 ,2-benzothiazine-3-carboxamide 1,1-dioxide.HCl (P-52, in water) were topically applied to the human colon cancer cells-implanted area (near the front leg) every 12 hours. At day 30, the tumors sizes and weight data shown in Table 32b-1 and Table 32b-2 indicated that the HPCs are effective anti-tumor agents with low side effects such as weight loss.

Table 32b-1 . The tumors sizes and the weights of the control group and the drug-treated groups of nude mice at day 30.

<table>
<thead>
<tr>
<th>HPC</th>
<th>Control</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>P-4</th>
<th>P-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm³)</td>
<td>1500±380</td>
<td>480±130</td>
<td>520±170</td>
<td>550±190</td>
<td>550±128</td>
<td>520±140</td>
</tr>
<tr>
<td>Weight</td>
<td>22±2</td>
<td>23±3</td>
<td>22±2</td>
<td>23±2</td>
<td>22±3</td>
<td>23±2</td>
</tr>
</tbody>
</table>

Table 32b-2. The tumors sizes and the weights of the drug-treated groups of nude mice at day 30.

<table>
<thead>
<tr>
<th>HPC</th>
<th>P-13</th>
<th>P-16</th>
<th>P-36</th>
<th>P-46</th>
<th>P-47</th>
<th>P-52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm³)</td>
<td>690±250</td>
<td>590±350</td>
<td>480±180</td>
<td>650±250</td>
<td>590±350</td>
<td>720±280</td>
</tr>
<tr>
<td>Weight</td>
<td>23±3</td>
<td>23±2</td>
<td>21±2</td>
<td>23±3</td>
<td>22±2</td>
<td>23±3</td>
</tr>
</tbody>
</table>

Example 33. Treatment of breast cancer

[00268] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed on the breast with cancers twice per day. The process is continued until the tumor disappeared.
Example 34. Treatment of breast cancer

[00269] After the breast cancer is removed surgically or shrunk with other therapy, About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby the cancer or any part skin of the body twice per day. The process is continued until that it is sure that cancer is not come back (may be lifelong).

Example 35. Treatment of prostate cancer

[00270] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby the cancer twice per day. The process is continued until the cancer is cured.

Example 36. Treatment of prostate cancer

[00271] After the cancer is removed surgically or shrunk with other therapy, About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby the cancer or any part skin of the body twice per day.

Example 37. Treatment of lung cancer

[00272] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin on the chest twice per day and the treatment is continued until the cancer is cured.

Example 38. Treatment of lung cancer

[00273] After the cancer is removed surgically or shrunk with other therapy, About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin on the chest twice per day and the treatment is continued until the cancer is cured.

Example 39. Treatment of colon cancer

[00274] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby anus, or any part skin of the body twice per day. The process is continued until the cancer is cured.

Example 40. Treatment of colon cancer

[00275] After the cancer is removed surgically or shrunk with other therapy, About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the
skin nearby anus, or any part skin of the body twice per day. The process is continued
until the cancer is cured.

Example 41. Treatment of skin cancer

[00276] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is
applied to the skin with cancer or nearby twice per day. The process is continued until
the cancer is cured.

Example 42. Treatment of skin cancer

[00277] After the cancer is removed surgically or shrunk with other therapy, About
0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the
skin with cancer or nearby twice per day. The process is continued until the cancer is
cured.

Example 43. Treatment of bone cancer

[00278] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is
applied to the skin near by the bone cancer nearby twice per day. The process is
continued until the cancer is cured.

Example 44. Treatment of bone cancer

[00279] After the cancer is removed surgically or shrunk with other therapy, About
0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the
skin near the bone cancer or any part skin of the body twice per day. The process is
continued until the cancer is cured.

Example 45. Treatment of any kind of cancers.

[00280] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is
applied to the skin near the cancer or any part skin of the body twice per day. The process is
continued until the cancer is cured.

Example 46. Treatment of any kind of cancers.

[00281] After the cancer is removed surgically or shrunk with other therapy, about
0.8ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin
near the cancer or any part skin of the body twice per day. The process is continued
until the cancer is cured.
Example 47. Prevention of any kind of cancers.

For people with high risk to get cancers, such as people having a twin sister or brother with cancer, smokers, people who have family history of cancer, people with mutant genes related to cancer, about 0.5 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 48. Anti-thrombosis activity of HPCs of NSAIAs.

Eighteen Chinese White rabbits weighing between 3.0 and 3.5 kg (aged 6-7 months) were selected and divided into three groups (control, P-1 and P-10 groups, n=6). One hour before the experiment, thrombi were made by aspirating venous blood (1 ml) into a sterilized bottle to clot. To avoid fragmentation and slow lysis, the autologous blood clots were stabilized in temperature-controlled (70 °C) distilled water for 10 min. After anesthesia, the femoral veins were exposed and distally isolated, and autologous blood clots (0.05 g/kg) were injected through an indwelling catheter (20GA), which had been placed in the femoral vein isolated earlier. 50 mg/kg of diethylaminoethyl acetylsalicylate.HCl salt (P-1, 10% in 25% ethanol) and diethylaminoethyl acetylsalicylsalicylate.HCl salt (P-59, 10% in 25% ethanol) were topically applied to the back of the rabbits twice per day. After 5 days, rabbits were euthanized with an excessive intravenous injection of sodium amobarbital (60 mg/kg). The lungs and hearts were isolated to observe whether thrombi were present in the pulmonary arteries. The lungs were immersed in 10% formalin for 24 h. Consecutive transverse sections along the obstructed pulmonary arteries were paraffin-embedded and stained with hematoxylin-eosine.

In the control group, platelet thrombus and mixed thrombus surrounded the infused clots, which were present in large-sized vessels as well and stretched the vessel walls in both proximal and distal directions. There was excessive proliferation of endothelial cells and fibrocytes in these vessels. Additionally, there was acute pulmonary congestion. In the P-1 and P-59 groups, both lung tissue and vascular walls were normal. The results show that thrombotic activity and embolization-associated thrombus propagation were prevented by these HPCs of NSAIAs. HPCs can be very
useful for preventing and treating blood clots—a major cause of strokes, heart attacks and organ transplant rejection.

Example 49. Anti-thrombosis activity of diethylaminoethyl acetylsalicylate. citric acid salt.

[00285] Recent data suggests that inflammation is linked to cardiac diseases and aspirin is widely used for preventing cardiac diseases.

[00286] Thrombosis was induced by electrical stimulation (1 mA for 3 minutes) of the carotid artery in rats by using a thrombosis formation instrument (YLS-14A, Shandong Academy of Medical Sciences, Shandong, China). The rats (Spragu Dawley, 25 weeks old, 380-450 g) were divided into 3 groups, group A was the control group, groups B and C were the diethylaminoethyl acetylsalicylate-treated group. In group B, 100 mg/kg of diethylaminoethyl acetylsalicylate. HCl salt (10% in water) was applied to the shaved back skin of the rats (~9 cm², fur was cut off) 2 hour before the operation and 1 hour after the operation, then 50 mg/kg of the HPC was applied to the back of the rats twice per day. In group C, 50 mg/kg of diethylaminoethyl acetylsalicylate. HCl was applied to the back of the rats twice per day starting from 24 hours after the operation. The recovery of motor functions of rats was evaluated every day. The results were shown in Tables 49a and 49b. The results in Table 49a show that aspirin protected rats from stroke without bleeding problem. The results in Table 49b show diethylaminoethyl acetylsalicylate. HCl reversed paralysis from post-stroke in rat model without bleeding problem.
Table 49a. Anti-stroke activity by diethylaminoethyl acetylsalicylate

<table>
<thead>
<tr>
<th></th>
<th>Stroke-free rats (2 hours)</th>
<th>Stroke-free rats (1 day)</th>
<th>Stroke-free rats (7 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group (A)</td>
<td>0/10</td>
<td>0/8</td>
<td>0/8 (1 died)</td>
</tr>
<tr>
<td>Treated group (B)</td>
<td>8/10</td>
<td>9/10</td>
<td>10/10</td>
</tr>
</tbody>
</table>

Table 49b. Alleviation of the effects of strokes by diethylaminoethyl acetylsalicylate

<table>
<thead>
<tr>
<th></th>
<th>Stroke-free rats (3 hrs)</th>
<th>Stroke-free rats (2 day)</th>
<th>Weight Loss (3 days)</th>
<th>Stroke-free rats (7 days)</th>
<th>Weight Loss (7 days)</th>
<th>Stroke-free rats (14 days)</th>
<th>Weight Loss (14 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>0/10</td>
<td>0/10</td>
<td>-25+/-8% (2 died)</td>
<td>0/10</td>
<td>-22+/-5% (1 more died)</td>
<td>1/10</td>
<td>-18+/-6%</td>
</tr>
<tr>
<td>Treated group</td>
<td>0/10</td>
<td>4/10</td>
<td>-13+/-7%</td>
<td>9/10</td>
<td>-7+/-4%</td>
<td>10/10</td>
<td>-4+/-2%</td>
</tr>
</tbody>
</table>

Example 50. Treatment of stroke.

[00287] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck, chest, legs, arms, or any other part skin(rotating the location every time to avoid harm to the skin) twice per day. The process is continued until stroke is cured (maybe lifelong).
Example 51. Prevention of stroke.

[00288] For people with high risk to get stroke, such as overweight people, people having a twin sister, or brother with stroke, people who have family history of stroke, people with mutant genes related to stroke, about 0.5 ml of 8 % diethylaminoethyl acetylsaliclylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 52. Treatment of heart attack.

[00289] About 1.5 ml of 8 % diethylaminoethyl acetylsaliclylate.HCl in 25% ethanol is sprayed to the neck, chest, legs, or any other part skin(rotating the location every time to avoid harm to the skin) twice per day. The process is continued until stroke is cured (maybe lifelong).

Example 53. Prevention of heart attack.

[00290] For people with high risk to get heart attack, such as overweight people, people having a twin sister, or brother with heart attack, people who have family history of heart attack, people with mutant genes related to heart attack, about 0.3 ml of 8 % diethylaminoethyl acetylsaliclylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day

Example 54 Anti-hypertensive activity

A) Diethylaminoethyl acetylsaliclylate. citric acid (diethylaminoethyl acetylsaliclylate citric acid salt)

[00291] 20 spontaneously hypertensive rats (SLAC/SHR, 19 weeks old, 300-350g) were divided into 2 groups randomly. In group A, pure water (0.5 ml) was applied to the rats' back skin (~5 cm², fur was cut off) once perday for 6 weeks. In groups B, 50 mg/kg of diethylaminoethyl acetylsaliclylate citric acid salt (10% in water) was applied to the rats' back skin (~5 cm², fur was cut off) once perday. The results were shown in table 54a. The results showed that HPC of diethylaminoethyl acetylsaliclylate had very strong anti-hypertensive activity.
Table 54a. Anti-hypertensive activity of diethylaminoethyl acetyl salicylate. citric acid

<table>
<thead>
<tr>
<th></th>
<th>Blood pressure (mmHg)</th>
<th>Blood pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(week 0)</td>
<td>Systolic</td>
<td>diastolic</td>
</tr>
<tr>
<td>Group A</td>
<td>181.4±1 6.7</td>
<td>115.2±1 5.1</td>
</tr>
<tr>
<td></td>
<td>183.1±1 5.7</td>
<td>116.2±1 3.3</td>
</tr>
<tr>
<td>Group B</td>
<td>184.6±1 5.1</td>
<td>118.2±1 3.1</td>
</tr>
<tr>
<td></td>
<td>115.4±14.6</td>
<td>83.5±1 2.1</td>
</tr>
</tbody>
</table>

B) Atenolol HCl salt

[00292] Anti-hypertension patients' blood pressure was controlled by transdermally administering 100 mg of atenolol HCl salt in 1 ml of pure water per day without side effect of hypotention. 20 Hypertension patients were divided to 2 groups. Group A was control group (n=10, 1 ml of water was administrated to the chest of patients once per day) and group B was atenolol treated group (n=10, 100 mg of atenolol HCl salt was administrated to the chest of patients once per day). The results were shown in Table 54b.

Table 54b. Anti-hypertensive effect of atenolol HPC via transdermal administration

<table>
<thead>
<tr>
<th></th>
<th>Blood Pressure (mmHg)</th>
<th>Blood pressure(mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(before treatment)</td>
<td></td>
<td>(2 weeks after treatment)</td>
</tr>
<tr>
<td>Group A</td>
<td>162±27/1 10±21</td>
<td>163±28/1 13±23</td>
</tr>
<tr>
<td>Group B</td>
<td>160±22/1 10±20</td>
<td>128±1 5/81 ± 12</td>
</tr>
</tbody>
</table>
Example 55. Treatment of hypertension.

[00293] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck, chest, legs, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until hypertension is cured (maybe lifelong).

Example 56. Treatment of hypertension.

[00294] About 1 ml of 10% atenolol in 25% ethanol (pH is adjusted to 4-7 with HCl) is sprayed to the neck, chest, legs, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day.

Example 57. Prevention of hypertension.

[00295] For people with high risk to get hypertension, such as overweight people, people having a twin sister, or brother with hypertension, people who have family history of hypertension, people with mutant genes related to hypertension, about 0.5 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 58. Treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.

[00296] The pathogenesis of cell death in amyotrophic lateral sclerosis (ALS) may involve glutamate-mediated excitotoxicity, oxidative damage, and apoptosis. Cyclooxygenase-2, present in spinal neurons and astrocytes, catalyzes the synthesis of prostaglandin E₂. Prostaglandin E₂ stimulates glutamate release from astrocytes, whereas cyclooxygenase-2 also plays a key role in the production of pro-inflammatory cytokines, reactive oxygen species, and free radicals. Treatment with a selective cyclooxygenase-2 inhibitor, celecoxib, markedly inhibited production of prostaglandin E₂ in the spinal cords of ALS mice. Celecoxib treatment significantly delayed the onset of weakness and weight loss and prolonged survival by 25%. Spinal cords of treated ALS mice showed significant preservation of spinal neurons and diminished astrogliosis and microglial activation (Merit. E. Cudkowicz, et al., Annals of neurology, 52, 771 - 778,
2002). These results suggest that cyclooxygenase-2 inhibition may benefit ALS patients. HPCs of NSAIDs in the present disclosure can penetrate skin and nerve cell membrane barriers in very high rates (most NSAIDs cannot penetrate nerve cells effectively) and can be administered transdermal without hurting the GI tract, so these HPC are very promising agents for the treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.

[00297] For treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders, about 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck, chest, legs, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day.

Example 59. Prevention of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.

[00298] For people with high risk to get amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders, such as people having a twin sister, or brother with any one or more these diseases, people who have family history of any one or more these diseases, people with mutant genes related to any one or more these diseases, about 0.5 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.
Example 60. Anti-hair loss and bald activity of diethylaminoethyl acetylsalicylate.HCl salt.

[00299] 30 Lesional Dundee experimental bald rats (DEBR) were allocated to 3 groups. Group A (n=10) rats received 2 ml of pure water on whole body once per day for 10 weeks. Group B (n=10) rats received 50 mg/kg of diethylaminoethyl acetylsalicylate citric acid (1% in pure water) on whole body once per day for 10 weeks. Group C (n=10) received orally administered cyclosporine A (CsA) (10 mg/kg daily) for 10 weeks. In the untreated control group A, no hair growth was seen as a result of vehicle application and hair loss continued. In the diethylaminoethyl acetylsalicylate citric acid treated group B, hair regrew over the whole body with 2-4 weeks. In the oral CsA group C, hair regrew over the whole body with 2-4 weeks in a much lower rate (<40%) of that of group B.

Example 61. Treatment of bald.

[00300] About 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the top skin of head once or twice per day. The process is continued until bald is cured (maybe lifelong).

Example 62. Treatment of hair loss.

[00301] About 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the top skin of head once or twice per day. The process is continued until hair loss is cured (maybe lifelong).

Example 63. Anti-vitiligo activity of diethylaminpropyl acetylsalicylate.HCl salt.

[00302] 20 Smyth chickens (animal models of vitiligo) were allocated to 2 groups. Group A (n=10) chickens received 1 ml of pure water on discoloured lesions once per day for 10 weeks. Group B (n=10) Smyth chicken received 50 mg/kg of diethylaminoethyl acetylsalicylate citric acid (5% in pure water) on discoloured lesions once per day for 10 weeks. In the untreated control group A, the lesions were worse and feather loss continued. In the diethylaminoethyl acetylsalicylate citric acid treated group B, the discoloured lesions disappeared and feathers regrew with 3-6 weeks.
Example 64. Treatment of vitiligo.

[00303] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin or hair with vitiligo twice per day. The process is continued until vitiligo is cured (maybe lifelong).

Example 65. Prevention of vitiligo.

[00304] For people with high risk to get vitiligo, such as people having a twin sister, or brother with vitiligo, people who have family history of vitiligo, people with mutant genes related to vitiligo, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 66. Anti-Alzheimer disease activity of diethylaminopropyl acetylsalicylate.HCl tested with Tg2576 mouse model of Alzheimer disease.

[00305] Inflammatory mechanisms have been proposed as important mediators in the pathogenetic cascade of Alzheimer’s disease (McGeer PL, McGeer EG. The inflammatory response system of brain implications for the therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev., 1995; 21: 195-218). In the study by in’t Veld et al. (the New England Journal of Medicine, 2001; 345, 1515), they followed almost 7000 person at risk of Alzheimer’s disease for nearly seven years. Their results suggested that NSAIAs can reduce the relative risk for those whose cumulative use of NSAIAs was at least two years and two or more years before the onset of dementia. If the neuroprotective capacity of NSAIAs ceases in the years just before the onset of dementia, then these compounds would offer no protection against progression among most persons with the prodromal stage of diseases. We believe that the reason for this is that the tissues around the damaged nerve cells will form scars to protect the nerve cells from damaging farther. Most of NSAIAs have very low brain-blood and nerve cell barriers penetration rate and cannot penetrate the scar barrier. HPCs in the present disclosure have very high skin, blood-brain, nerve cell membrane, and scar barriers penetration rates and are very promising agents for the treatment of Alzheimer’s disease, Parkinson’s diseases, and other progressive neurodegenerative diseases.
[00306] The pathology of Alzheimer's disease (AD) shows a significant correlation between β-amyloid peptide (AβP) conformation and the clinical severity of dementia. For many years, efforts have been focused on the development of inhibitors of β-amyloid (Aβ) formation and its related neurotoxic effects. To determine the effect of diethylaminopropyl acetylsalicylate. HCl on in vivo Aβ accumulation, we administered transdermal^ diethylaminopropyl acetylsalicylate. HCl (50mg/kg in water) to the Tg2576 mouse model of AD over 2 months resulted in a significant, non-overlapping 70-80% reduction in the number of senile plaques, one of the pathological hallmarks of AD. Three-month-old female transgenic mice overexpressing the human APP gene containing the Swedish mutation that causes familial AD (Tg2576 line) were used for testing the effects of diethylaminopropyl acetylsalicylate.HCl in vivo. 20 Tg2576 mice were divided into 2 groups. In group A (n=10), 0.2 ml of pure water was applied transdermal^ to the back of mouse once per day for 2 months. In group B (n=10), 50 mg/kg of diethylaminopropyl acetylsalicylate.HCl in 0.2 ml of pure water was applied to the back of mouse once per day for 2 months. Then the animals were killed and their brains were removed for analysis. For Aβ analysis, hemibrains were dounce homogenized in 70% formic acid at 150 mg tissue/ml formic acid solution. Homogenates were transferred to a chilled ultracentrifuge and were then spun at 100,000 g for 1 h at 4°C. Supernatants were collected and neutralized with formic acid neutralization buffer (1.0 M Tris base, 0.5 M NaH₂PO₄, and 0.05% NaN₃; 1:20) for Aβ quantitation by ELISA. Aβ40 and Aβ42 were assayed by ELISA. Four individual experiments were performed. To compare across studies, the values for an individual study were normalized using the values obtained for the control animals included in each study. Values represent the mean ± SE for the n number shown, after normalizing. As shown in table 66a. The transdermal treatment of diethylaminopropyl acetylsalicylate.HCl (50mg/kg) resulted in a significant reduction (70%) in Aβ42 concentration in the brain.

Table 66a. The effect of diethylaminopropyl acetylsalicylate.HCl on the Aβ42 concentration.

<table>
<thead>
<tr>
<th>Group</th>
<th>Control (pure water)</th>
<th>diethylaminopropyl acetylsalicylate.HCl</th>
</tr>
</thead>
</table>

-119-
A342 concentration (pmol/g tissue)

| Concentration | 7.8 ± 0.4 | 2.3 ± 0.3 |

Studies in the Tg2576 mouse model have indicated that transdermal^ administered 50mg/kg of diethylaminopropyl acetylsalicylate.HCl results in a significant reduction (70%) the amount of Aβ detected in the brains of these animals at 2 months administration. To determine if the transdermal administration of diethylaminopropyl acetylsalicylate.HCl has beneficial functional consequences, we tested 2 months of diethylaminopropyl acetylsalicylate.HCl (50 mg/kg) in the transgenic model for Alzheimer's disease in which mice develop learning deficits as amyloid accumulates. The results showed that diethylaminopropyl acetylsalicylate.HCl protected transgenic mice from the learning and age-related memory deficits that normally occur in this mouse model for Alzheimer's disease. In the diethylaminopropyl acetylsalicylate.HCl(50mg/kg) treated group, all mice performed superbly on the radial-arm water-maze test of working memory and untreated transgenic mice show memory deficits. The diethylaminopropyl acetylsalicylate.HCl treated transgenic mice showed cognitive performance superior to that of the control transgenic mice and, ultimately, performed as well as nontransgenic mice. This therapeutic approach can thus prevent and treat Alzheimer's dementia.

About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin or hair with vitiligo twice per day. The process is continued until vitiligo is cured (maybe lifelong).

Example 68. Prevention of Alzheimer's disease and other progressive neurodegenerative diseases

For people with high risk to get Alzheimer's disease and other progressive neurodegenerative diseases, such as people having a twin sister, or brother with Alzheimer's disease and other progressive neurodegenerative diseases, people who
have family history of Alzheimer's disease and other progressive neurodegenerative
diseases, people with mutant genes related to Alzheimer's disease and other
progressive neurodegenerative diseases, about 0.3 ml of 8 % diethylaminoethyl
acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the
location every time to avoid harm to the skin) once or twice per day.

**Example 69. Anti-Parkinson’s disease activity of diethylaminoethyl
acetylsalicylate.HCl salt was tested with MPTP-induced Parkinson’s
Disease mice.**

30 Male C57/BL6 mice (24-26 g) were divided into 3 groups. Group A mice
were ip injected 0.4 % sodium carboxymethylcellulos (1.5 ml/kg per day) for 7 days.
Group B and C mice were ip injected N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP, 30 mg/kg per day) for 7 days. The mice were divided into 2 groups. In groups A
and B, 0.1 ml of pure water was applied transdermal to the neck of mice once perday
for 14 days. In group C, 30mg/kg of diethylaminoethyl acetylsalicylate.HCl salt in 0.1 ml
of water was applied transdermal to the neck of mice once per day for 14 days. All
mice were killed after the last treatment and the brain tissues were quickly freezed at -80 °C. The contents of dopamine (DA) in the striatum were determined with
spectrofluorophotometer (λ_ex=310 nm, λ_em =390 nm, RF-5000), 5-HT (λ_ex=355 nm, λ_em
=495 nm), and noradrenaline (NA) (λ_ex=400 nm, λ_em =500 nm). The contents of
malondialdehyde (MDA) in the SN were measured with the thiobarbituric acid-reaction
to indicate the LPO, and contents of glutathione (GSH) in the substantia nigra (SN)
were based on the dithionitrobenzonic acid (DTNB) determination. The contents of
GABA and Glu in the striatum and SN were shown by high performance amino acid
auto-analyser. The results were shown in table 69a. Effects of diethylaminoethyl
acetylsalicylate.citric acid on the contents of DA, NA, and 5-HT The content of DA, NA,
and 5-HT in the striatum was significantly decreased in MPTP group compared with
control group (P<0.05, n=1 0). Diethylaminoethyl acetylsalicylate,citric acid (30 mg/kg
transdermally) increased DA, NA, and 5-HT contents compared with model group
(P<0.05, n=1 0) (Table 69a).
Effects of diethylaminoethyl acetylsalicylate, citric acid on the concentration DA, NA, and 5-HT in the striatum of PD mice induced by MPTP. n=10. Mean±SD. \(^{b}P<0.05\) vs the control group. \(^{c}P<0.05\) vs MPTP group.

<table>
<thead>
<tr>
<th>Group</th>
<th>DA (µg/g wet tissue)</th>
<th>NA (µg/g wet tissue)</th>
<th>5-HT (µg/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>885±86</td>
<td>618155</td>
<td>3061 7</td>
</tr>
<tr>
<td>MPTP + water</td>
<td>5151 03</td>
<td>419157</td>
<td>248122</td>
</tr>
<tr>
<td>MPTP+diethylaminoethyl acetylsalicylate (30 mg/kg)</td>
<td>817±89</td>
<td>602+55</td>
<td>302+29</td>
</tr>
</tbody>
</table>

Effects of diethylaminoethyl acetylsalicylate, citric acid on the contents of MDA and GSH.

The level of nigral GSH in model group was markedly decreased (\(P<0.01\), \(n=10\)) and the contents of nigral MDA was increased compared with those in control group (\(P<0.01\), \(n=10\)). Diethylaminoethyl acetylsalicylate, citric acid markedly lowered the MDA level while relatively increased the GSH level in PD model (\(P<0.01\), \(n=10\)). The results were shown in table 69b.

<table>
<thead>
<tr>
<th>Group</th>
<th>GSH (µg/g protein)</th>
<th>MDA (µmol/g protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1521 2</td>
<td>1313</td>
</tr>
<tr>
<td>MPTP + water</td>
<td>10 1 1 7</td>
<td>2114</td>
</tr>
<tr>
<td>MPTP+diethylaminoethyl acetylsalicylate (30 mg/kg)</td>
<td>1431 3</td>
<td>1414</td>
</tr>
</tbody>
</table>
Effect of diethylaminoethyl acetylsalicylate.citric acid on the contents of GABA and Glu.

MPTP markedly increased the striatal GABA level (P<0.01, n=10) while decreased GABA in the SN (P<0.05, n=10) compared with control group, which were reversed by diethylaminoethyl acetylsalicylate.citric acid (30 mg/kg). However, modafinil did not change the increase of nigrostriatal Glu release induced by MPTP (Table 69c).

Table 69c. Effects of diethylaminoethyl acetylsalicylate.citric acid on the concentration of GABA (μmol/g wet tissue) and Glu in the substantia nigra and striatum of PD mouse induced by MPTP. n=10. Mean±SD. P<0.01 vs control group. P>0.05, P<0.05, P<0.01 vs MPTP group.
<table>
<thead>
<tr>
<th>Group</th>
<th>Substantia nigra</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GABA</td>
<td>Glu</td>
</tr>
<tr>
<td>Control</td>
<td>5.1 ±0.5</td>
<td>27.1 ±2.5</td>
</tr>
<tr>
<td>MPTP + water</td>
<td>2.2±0.4</td>
<td>34.5 ±2.7</td>
</tr>
<tr>
<td>MPTP + diethylaminoethyl</td>
<td>4.7±0.5</td>
<td>29.5±2.4</td>
</tr>
</tbody>
</table>

[00313] The results showed that the contents of striatal NA and 5-HT in the MPTP mice were markedly lower than those of the normal mice, and diethylaminoethyl acetylsalicylate increased striatal DA, NA, and 5-HT levels. It can improve or reverse the progress of Parkinson's disease. Our results also showed that diethylaminoethyl acetylsalicylate inhibited striatal GABA release in PD model. In conclusion, diethylaminoethyl acetylsalicylate prevented against the neurotoxicity of MPTP by anti-oxidation and modulation of the striatal NA and 5-HT and nigrostriate GABAergic activity. Thereby diethylaminoethyl acetylsalicylate may be a valuable neuroprotective agent for the treatment of Parkinson's disease.

Example 70. Treatment of Parkinson's disease and related diseases

[00314] About 0.8 ml of 8 % diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to the neck, face, or any part skin of the body twice per day. The process is continued until the disease is cured (maybe lifelong).

Example 71. Prevention of Parkinson's disease and related diseases

[00315] For people with high risk to get Parkinson's disease and related diseases, such as people having a twin sister, or brother with Parkinson's disease and related diseases, people who have family history of Parkinson's disease and related diseases, people with mutant genes related to Parkinson's disease and related diseases, about 0.3 ml of 8 % diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.
Example 72. Anti-glaucoma activity of diethylaminoethyl acetylsalicylate.HCl.

[00316] The ability of diethylaminoethyl acetylsalicylate.HCl to reduce intraocular pressure (IOP) was evaluated in cats with ocular hypertension produced by previously done laser trabeculoplasty. IOP was determined with a pneumatonometer after light corneal anesthesia with dilute proparacaine. 14 Cats were divided into 2 groups. Baseline IOP was determined prior to treatment with the test compound aqueous solution. In group A, 0.5 ml of water was applied transdermally to the area around eye (outside) of cat twice per day for 10 days. In group B, 30 mg/kg of diethylaminoethyl acetylsalicylate.HCl was applied to the area around eye (outside) of cat twice per day for 10 days. The results as shown in Table 72 showed that the HPC diethylaminoethyl acetylsalicylate.HCl had strong anti-glaucoma activity in animal model.

Table 72: Intraocular pressure reduction by diethylaminoethyl acetylsalicylate. HCl.

<table>
<thead>
<tr>
<th>Group</th>
<th>Base-line</th>
<th>End of treatment (day 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (pure water)</td>
<td>23.2±0.6</td>
<td>22.2±0.5</td>
</tr>
<tr>
<td>B (drug treated)</td>
<td>24.1±0.7</td>
<td>16.1±0.5</td>
</tr>
</tbody>
</table>

[00317] Diethylaminoethyl acetylsalicylate.HCl showed very strong anti-glaucoma activity in animal model.

Example 73. Treatment of glaucoma.

[00318] About 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby the eyes twice per day. The process is continued until glaucoma is cured (maybe lifelong).

Example 74. The treatment for cataract

[00319] About 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied to the skin nearby the eyes twice per day. The process is continued until cataract is cured (maybe lifelong).
Example 75. Prevention of cataract.

For people with high risk to get cataract, such as people having a twin sister or brother with cataract, people who have family history of cataract, people with mutant genes related to cataract, about 0.3 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is applied the skin nearby the eyes once or twice per day.

Example 76. HPCs of NSAIAs increase the lifespan of mice.

NSAIAs are not very effective for treatment of the conditions described above or have serious side effects because they cannot penetrate the cell membrane, especially the brain cells and nerve cells, very effectively and stay the general circulation too long, thus most of drugs will be metabolized by intestinal mucosa, liver, kidney, and lung before they reach the "site of action." This situation not only produces very low pharmacologic effect, but also causes toxic burden on intestinal mucosa, liver, kidneys, lungs, and other parts of the body. HPCs in the present disclosure are capable of penetrating across biological barriers and are more effective than the parent drugs. A few tenths or hundredths of the normal drug dosage is needed and much less side effects will be caused. This will benefit not only transdermal drug delivery, but also any drug delivery system (such as oral, subcutaneous, intramuscular, inhalation, and nasal) and can treat many conditions better than they can be treated by their respective parent drugs and even some conditions which cannot be treated by their respective parent drugs.

Increased inflammation and slowed metabolism are believed to be two primary contributors to the human and animal aging process. HPCs of aspirin and other NSAIAs that can penetrate one or more biological membranes and show very strong anti-inflammatory activity should increase the lifespan of animals.

60 mice (10 weeks old, 30.3±3.5 g) were divided into groups A and B. In group A (n=30), 0.05 ml of distilled water (~2cm²) was applied to the back of mice once per day. In group B (n=30), 0.5 mg of diethylaminoethyl acetylsalicylate citric acid (the HPC of aspirin) in 0.05 ml of water (10%) was applied to the back of mice (~2cm²) once per day. The results showed that the aspirin HPC increased 27% of the lifespan of mice (Table 76).
Table 76. Anti-aging effect of diethylaminoethyl acetylsalicylate citric acid which was administrated transdermal^*

Lifespan (month)

<table>
<thead>
<tr>
<th>Group</th>
<th>Lifespan ± Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>30.2±4.2</td>
</tr>
<tr>
<td>Group B</td>
<td>38.2±4.6</td>
</tr>
</tbody>
</table>

Example 77. The treatment for anti-aging and increasing the lifespan

[00324] About 0.4 ml of 8% diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to the any part skin of the body twice per day. The process is continued for lifelong.

Example 78. Treatment of Crohn's disease and other autoimmune diseases.

[00325] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to around anus, abdomen, or any part of the body twice per day. The treatment is continued until the conditions disappeared (may be lifelong).

[00326] For people with high risk to get Crohn's disease and other autoimmune diseases, such as people having a twin sister or brother with Crohn's disease and other autoimmune diseases, people who have family history of Crohn's disease and other autoimmune diseases, people with mutant genes related to Crohn's disease and other autoimmune diseases, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 80. Treatment of hyperthyroidism

[00327] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate. HCl in 25% ethanol is sprayed to neck or any part of the body twice per day. The treatment is continued until the hyperthyroidism condition disappeared (may be lifelong).
Example 81. Prevention of hyperthyroidism

[00328] For people with high risk to get hyperthyroidism, such as people having a twin sister or brother with hyperthyroidism and other autoimmune diseases, people who have family history of hyperthyroidism and other autoimmune diseases, people with mutant genes related to hyperthyroidism and other autoimmune diseases, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 82. Treatment of autoimmune liver inflammation, liver fibrosis and/or cirrhosis

[00329] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to abdomen or any part of the body twice per day. The treatment is continued until autoimmune liver inflammation, liver fibrosis and/or cirrhosis conditions disappeared (may be lifelong).

Example 83. Prevention of autoimmune liver inflammation, liver fibrosis and/or cirrhosis

[00330] For people with high risk to get autoimmune liver inflammation, liver fibrosis and cirrhosis, such as people having a twin sister or brother with autoimmune liver inflammation, liver fibrosis and/or cirrhosis, people who have family history of autoimmune liver inflammation, liver fibrosis and/or cirrhosis, people with mutant genes related to autoimmune liver inflammation, liver fibrosis and/or cirrhosis, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to abdomen or any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 84. Treatment of cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis

[00331] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin near the affected organs or any part of the body twice per day. The treatment is continued until cystic fibrosis, pulmonary fibrosis, pancreas
fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis conditions disappeared (may be lifelong).

Example 85. Prevention of cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis.

For people with high risk to get cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis, such as people having a twin sister or brother with cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis, people who have family history of cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis, people with mutant genes related to cystic fibrosis, pulmonary fibrosis, pancreas fibrosis, spleen fibrosis, gastrointestinal fibrosis, and other organs' fibrosis, about 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 86. Treatment of gallstones

Cholesterol gallstones develop when bile contains too much cholesterol and not enough bile salts. Bile duct inflammation may play a very important role in the formation of gallstones. The HPCs of NSAIAs can lower blood lipid levels and have anti-inflammatory activity. One of the treatments of gallstones is: about 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to abdomen or any part of the body twice per day. The treatment is continued until the gallstones disappear.

Example 87. Treatment of actinic keratosis

About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin with actinic keratosis or any part of the body twice per day. The treatment is continued until the actinic keratosis is cured.

Example 88. Prevention of actinic keratosis

For people with high risk to get actinic keratosis, such as people having a twin sister or brother with actinic keratosis, people who work a long time out door, about
0.4 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 89. Treatment of abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), and other skin disorders

[00336] About 0.7 ml of 8 % N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the affected skin or any part of the body twice per day. The treatment is continued until the skin disorders are cured.

Example 90. Treatment of allergic rhinitis (nasal allergies), allergic eyes, allergic eczema (atopic dermatitis), hives, allergic shock (anaphylaxis or anaphylactic shock), and/or other allergies (they may be caused by pollens, dust mite, molds, danders, foods, drugs, and/or other allergens)

[00337] About 0.7 ml of 8 % N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the affected areas or any part of the body twice per day. The treatment is continued until allergic rhinitis (nasal allergies), allergic eyes, allergic eczema (atopic dermatitis), hives, allergic shock (anaphylaxis or anaphylactic shock), and/or other allergies (they may be caused by pollens, dust mite, molds, danders, foods, drugs, and/or other allergens) are cured.

Example 91. Treatment for a longer healthier life

[00338] About 0.4 ml of 8 % N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part of the body twice per day. The treatment is continued for whole life.

Example 92. Treatment of acne, cystic acne, pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, and other skin disorders

[00339] About 0.5 ml of 8 % N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the affected skin or any part of the body twice per day. The treatment is continued until acne, cystic acne, pus-filled or reddish bumps, comedones,
papules, pustules, nodules, epidermoid cysts, keratosis pilaris, and other skin disorders are cured.

Example 93. Treatment of sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin, and other skin disorders

[00340] About 0.7 mL of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the affected skin or any part of the body twice per day. The treatment is continued until sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin, and other skin disorders are cured.

Example 94. Treatment for a healthier skin

[00341] About 0.4 mL of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part of the body twice per day. The treatment is continued for whole life.

Example 95. Treatment for macular degeneration and age-related macular degeneration (AMD)

[00342] About 0.7 mL of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin near the affected area or any part of the body twice per day. The treatment is continued until the conditions are cured.

Example 96. Treatment for both acute and chronic cough

[00343] About 0.7 mL of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck (near throat) or any part of the body twice per day. The treatment is continued until the condition is cured.

Example 97. Treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.

[00344] The pathogenesis of cell death in amyotrophic lateral sclerosis (ALS) may involve glutamate-mediated excitotoxicity, oxidative damage, and apoptosis. Cyclooxygenase-2, present in spinal neurons and astrocytes, catalyzes the synthesis of
prostaglandin E$_2$. Prostaglandin E$_2$ stimulates glutamate release from astrocytes, whereas cyclooxygenase-2 also plays a key role in the production of pro-inflammatory cytokines, reactive oxygen species, and free radicals. Treatment with a selective cyclooxygenase-2 inhibitor, celecoxib, markedly inhibited production of prostaglandin E2 in the spinal cords of ALS mice. Celecoxib treatment significantly delayed the onset of weakness and weight loss and prolonged survival by 25%. Spinal cords of treated ALS mice showed significant preservation of spinal neurons and diminished astrogliosis and microglial activation (Merit. E. Cudkowicz, et al., Annals of neurology, 52, 771-778, 2002). These results suggest that cyclooxygenase-2 inhibition may benefit ALS patients. HPCs of NSAIAIs in the present disclosure can penetrate skin and nerve cell membrane barriers in very high rates (most NSAIAIs cannot penetrate nerve cells effectively) and can be administered transdermal without hurting the GI tract, so these HPC are very promising agents for the treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders. One of the treatments for these diseases is: About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the neck, head, face, chest, or any part of the body twice per day. The treatment is continued until the conditions disappeared (may be lifelong).

Example 98. Prevention of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.

[00345] For people with high risk to get amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders, such as people having a twin sister or brother with amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders, people who have family history of amyotrophic lateral sclerosis (ALS),...
oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders., people with mutant genes related to amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders., about 0.3 ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 99. Treatment of organ transplant rejection.

[00346] Transplant rejection occurs when a transplanted organ or tissue is not accepted by the body of the transplant recipient. This is explained by the concept that the immune system of the recipient attacks the transplanted organ or tissue. This is expected to happen, because the immune system's purpose is to distinguish foreign material within the body and attempt to destroy it, just as it attempts to destroy infecting organisms such as bacteria and viruses. When possible, transplant rejection can be reduced through serotyping to determine the most appropriate donor-recipient match and through the use of immunosuppressant drugs that have serious side effects. Acute rejection usually begins one week after transplantation (as opposed to hyperacute rejection, which is immediate). The risk of acute rejection is highest in the first three months after transplantation. However, acute rejection can also occur months to years after transplantation. A single episode of acute rejection is not a cause for concern if recognized and treated promptly, and rarely leads to organ failure. But recurrent episodes are associated with chronic rejection the rejection is due to a chronic inflammatory and immune response against the transplanted tissue. The long-term use of immunosuppressant drugs will cause serious side effects. Normal NSAIAAs have a little use and high dosage of NSAIAAs will cause serious side effects too. HPC of NSAIAAs in the present disclosure should be good choices for the treatment of organ Transplant rejection.
A). The treatment and prevention of arm transplant rejection

[00347] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol and 0.1 ml of 1% of N,N-diethylaminoethyl 2-[1-[[1 fl]-1-[[3-[2-(7-chloroquinolin-2-yl)ethenyl][phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl][propyl][sulfanyl methyl]cyclopropyl]acetate.HCl salt (the HPC of Montelukast) in 25% ethanol are sprayed to the arm or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

B) The treatment and prevention of arm transplant rejection

[00348] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the arm or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

C). The treatment and prevention of leg transplant rejection

[00349] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol and 0.1 ml of 1% of N,N-diethylaminoethyl 2-[1-[[1 fl]-1-[[3-[2-(7-chloroquinolin-2-yl)ethenyl][phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl][propyl][sulfanyl methyl]cyclopropyl]acetate.HCl salt (the HPC of Montelukast) in 25% ethanol are sprayed to the leg or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

D) The treatment and prevention of face transplant rejection

[00350] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the face or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

E) The treatment and prevention of skin transplant rejection

[00351] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the transplanted skin or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).
F). The treatment and prevention of lung transplant rejection

[00352] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol and 0.1 ml of 1% of N,N-diethylaminoethyl 2-[1-[[1(1 fl)-1-[3-[2-(7-chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetate.HCl salt (the HPC of Montelukast) in 25% ethanol are sprayed to the chest or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

G). The treatment and prevention of lung transplant rejection

[00353] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol and 1 mg of N,N-diethylaminoethyl 2-[1-[[1(1 fl)-1-[3-[2-(7-chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetate.HCl salt (the HPC of Montelukast) are inhaled into the lung and/or upper respiratory tract twice per day. The treatment is continued until the rejection stops (that may be lifelong).

H). The treatment and prevention of liver transplant rejection

[00354] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol and 0.1 ml of 1% of N,N-diethylaminoethyl 2-[1-[[1(1 fl)-1-[3-[2-(7-chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetate.HCl salt (the HPC of Montelukast) in 25% ethanol are sprayed to the skin around the liver or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

I). The treatment and prevention of kidney transplant rejection

[00355] About 0.7 ml of 8% N,N-diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to the skin around kidney or other part skin of the body twice per day. The treatment is continued until the rejection stops (that may be lifelong).

Example 100. Treatment of Osteoporosis

[00356] Osteoporosis is a disease of bone that leads to an increased risk of fracture. In osteoporosis the bone mineral density (BMD) is reduced, bone microarchitecture is
disrupted, and the amount and variety of proteins in bone is altered. Local production of eicosanoids and interleukins is thought to participate in the regulation of bone turnover, and excess or reduced production of these mediators may underlie the development of osteoporosis [Raisz L (2005). J Clin Invest 115 (12): 331-8-25]. Bone formation and bone resorption are physiologically controlled by the activities of osteoblasts and osteoclasts. Imbalances in these activities can arise from a variety of hormonal or inflammatory perturbations, resulting in skeletal abnormalities characterized by decreased bone mass, as in osteoporosis, or increased bone mass, in osteopetrosis [Yang, S., Chen, W., Stashenko, P. and Li, Y-P, Journal of Cell Science. Oct. 1; 120:3362-71, (2007)]. Oral infections such as periodontitis and pulpal/periapical disease elicit innate and adaptive immune responses that protect the host against more widespread infection, but do so at the cost of localized tissue and bone destruction. Bone loss in these and other conditions is mediated by osteoclasts [Battaglino R, etc. J. Cell Biochem. 200(6):1387-94(2007)]. NSAIAs have anti-inflammatory activities, so HPCs of NSAIAs can be used for the treatment of osteoporosis, Paget's disease, bone metastases, periodontitis, and rheumatoid arthritis in humans and animals. Emerging clinical and molecular evidence suggests that inflammation also exerts significant influence on bone turnover, inducing osteoporosis. Numerous proinflammatory cytokines have been implicated in the regulation of osteoblasts and osteoclasts, and a shift towards an activated immune profile has been hypothesized as important risk factor. Chronic inflammation and the immune system remodeling characteristic of ageing, as well as of other pathological conditions commonly associated with osteoporosis, may be determinant pathogenetic factors [Lia Ginaldi, Maria Cristina Di Benedetto, and Massimo De Martinis (2005). Immunity & ageing, 2:1 4]. HPC of NSAIAs can be used for the treatment of osteoporosis without or with little side effects.

Example 101. Treatment of osteoporosis

[00357] About 0.8 ml of 8% diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to legs, arms, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until osteoporosis is cured (maybe lifelong).
Example 102. Treatment of osteoporosis

[00358] About 0.8 ml of 8 % diethylaminoethyl 2-(p-isobutylphenyl) propionate. HCl in 25% ethanol is sprayed to legs, arms, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until osteoporosis is cured (maybe lifelong).

Example 103. Treatment of osteoporosis

[00359] About 0.8 ml of 8 % diethylaminoethyl 1-methyl-5-(4-methylbenzoyl)-1 H- pyrrole-2-acetate.HCl salt in 25% ethanol is sprayed to legs, arms, or any other part skin (rotating the location every time to avoid harm to the skin) twice per day. The process is continued until osteoporosis is cured (maybe lifelong).

Example 104. Prevention of osteoporosis.

[00360] For people with high risk to get osteoporosis, such as old people, people having a twin sister, or brother with osteoporosis, people who have family history of osteoporosis, people with mutant genes related to osteoporosis, about 0.3ml of 8 % diethylaminoethyl acetylsalicylate.HCl in 25% ethanol is sprayed to any part skin of the body (rotating the location every time to avoid harm to the skin) once or twice per day.

Example 105. Antiviral, anti-fungus, and anti-insect activity of N,N-diethylaminoethyl acetylsalicylate and/or N,N-diethylaminoethyl jasmonate.citric acid in Peach trees.

[00361] 240 Peach trees were divided into 4 groups. All field operations concerning land preparation and the uses of fertilizers were same for all groups. Group A (n=60) was control group with no chemical treatments. Group B (n=60) was normal fungicides and insecticides-treated group. Group C (n=60) was treated with N,N-diethylaminoethyl acetylsalicylate plus some insecticides. Group D (n=60) was N,N-diethylaminoethyl acetylsalicylate and N,N-diethylaminoethyl jasmonate.citric acid treated group. In group A, Peach Leaf Curl, Peach Scab, Brown Rot, Black Knot and other fungal diseases were found and different scale insects, Shothole Borer, Peach tree Borer, Lesser Peachtree Borer, fruit Moth and other diseases and insects were found. No any good (edible) fruits were harvested. In group B, 100 g of ferbam [iron
tris(dimethyldithiocarbamate)] 76% Wettable Powder (WP) in 50 kg of water was applied to the group B Peach trees in November 15; 160 g of agricultural lime and 80 g of Sulfur 95% WP in 50 kg of water was applied to the group B Peach trees in December 15; 100 g of Daconil 2787 (chlorothalonil) in 50 kg of water was applied to the group B Peach trees in March 1; 80 g of difenoconazole [30% emulsifiable concentrate (EC)] and 80 g of propiconazole (30%EC) in 50 kg of water was applied to the group B Peach trees on March 15, 125 g of Captan 50% WP, 95 g of Ferbam 76% Wettable Powder, 80 g of Sulfur 95% Wettable Powder, 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B Peach trees on April 1 (early pink), 125g of Malathion 50% EC, 125 g of 1-naphthyl methylcarbamate 50%WP and 100 g of dimethomorph 50%WP in 50 kg of water was applied to the group B Peach trees on April 15; 125 g of Captan 50% WP and 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B Peach trees on April 20; 1.5 kg of M-Pede 49% liquid in 50 kg of water was applied to the group B Peach trees on April 25; 125g of Captan 50% WP, 100g of Ferbam 76% Wettable Powder, 80g of Sulfur 95% Wettable Powder, and 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B Peach trees on May 8, 125g of Malathion 50% EC, 125 g of 1-naphthyl methylcarbamate 50%WP and 50 g of myclobutanil (12.5% EC) in 50 kg of water was applied to the group B Peach trees on May 15; 125g of Captan 50% Wettable Powder, 100g of Ferbam 76% Wettable Powder, 80g of Sulfur 95% Wettable Powder, and 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B Peach trees on June 8, 125g of Malathion 50% EC, 125 g of 1-naphthyl methylcarbamate 50%WP and 100 g of dimethomorph 50%WP in 50 kg of water was applied to the group B Peach trees on June 16; 125 g of Captan 50% WP and 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B Peach trees on June 26; Yield 2500 kg of good (edible) peach. Group C was N,N-diethylaminoethyl acetylsalicylate-treated group. 50g of N,N-diethylaminoethyl acetylsalicylate in 50 kg of water was applied to the group C Peach trees on November 15, March 1, March 20, and June 20, 50g of N,N-diethylaminoethyl acetylsalicylate, 125g of Malathion 50% EC, 125 g of 1-naphthyl methylcarbamate 50%WP and 60 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group C peach trees on April 1, April 20, May 10, and May 30.
Yield 3000 kg of good (edible) peaches. Group D was the N,N-diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate. citric acid-treated group, 50g of N,N-diethylaminoethyl acetylsalicylate in 50 kg of water was applied to the group C peach trees on November 15, March 1, and March 20. 50 g of N,N-diethylaminoethyl acetylsalicylate, 125g of Malathion 50% EC, and 25g of N,N-diethylaminoethyl jasmonate. citric acid in 50 kg of water was applied to the group C peach trees on April 1, April 20, May 10, May 30, and June 20. Yielded 3200 kg of good (edible) peaches. The results show that diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate. citric acid had strong antiviral, anti-fungus, and anti-insect activity in peach trees. Only a few of insecticides and fungicides were needed and the yield was much higher in group C and D than other groups. The labor costs of groups C and D were much less and the harvest dates of groups C and D were 1 week earlier.

Example 106. Antiviral, anti-fungus, and anti-insect activity of N,N-diethylaminoethyl acetylsalicylate and N,N-diethylaminoethyl jasmonate.citric acid in red grape vine.

2 Acres of grape vine was divided into 4 groups (1/2 acre each). All field operations concerning land preparation and the uses of fertilizers were same for all groups. Group A was control group treated with no chemicals. Group B was normal fungicides and insecticides-treated group. Group C was N,N-diethylaminoethyl acetylsalicylate treated group. Group D was N,N-diethylaminoethyl acetylsalicylate and N,N-diethylaminoethyl jasmonate.citric acid treated group. In group A, black rot, downy mildew, powdery mildew, anthracnose, Phomopsis Blight, and other fungal diseases were found and Grape Berry Moth, Grape Root Borer, Rose Chafer, Japanese beetle, grape tomato gall, and other diseases and insects were found. Yield nothing of good (edible) grapes. In group B, 200g of Ferbam 76% WP in 100kg of water was applied to the group B grape vines in November 15; 160g of sulfur 95%WP and 600 g of hydrated lime in 100 kg of water was applied to the group B grape vines in December 15; 200 g of Daconil 2787 in 100 kg of water was applied to the group B grape vines in March 10; 25Og of Captan 50% WP and 200 g of dimethomorph 50%WP in 100 kg of water was applied to the group B grape vines in March 20; 30g of (4"R)-4"-deoxy-4"-
(methylamino)avermectin B1 benzoate [proclaim B (banleptm)] 2%WP and 120g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on March 30; 200 g of dimethomorph 50% WP and 200g of Mancozeb 80% WP in 100 kg of water was applied to the group B grape vines on April 10; 160 g of difenoconazole [30% emulsifiable concentrate (EC)] and 160 g of propiconazole (30% EC) in 100 kg of water was applied to the group B grape vines on April 20, 30g of (4"R)-4"-deoxy-4"-(methylamino)avermectin B1 benzoate [proclaim B (banleptm)] 2%WP, 250 g of 1-naphthyl methylcarbamate 50% WP and 100 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on April 30; 160 g of difenoconazole [30% emulsifiable concentrate (EC)] and 160 g of propiconazole (30% EC) in 100 kg of water was applied to the group B grape vines on May 10; 250g of Malathion 50% EC, 250 g of 1-naphthyl methylcarbamate 50% WP and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on May 20; 250g of Captan 50% Wetable Powder and 30g of (4"R)-4"-deoxy-4"-(methylamino)avermectin B1 benzoate [proclaim B (banleptm)] 2%WP in 100 kg of water was applied to the group B grape vines on May 30; 250g of Malathion 50% EC, 250 g of 1-naphthyl methylcarbamate 50% WP and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on June 8; 250g of Captan 50% Wetable Powder and 200g of Ferbam 76% Wetable Powder in 100 kg of water was applied to the group B grape vines on June 18; 160g of Sulfur 95% Wetable Powder and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on June 25; 250g of Malathion 50% EC, 250 g of 1-naphthyl methylcarbamate 50% WP and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on July 2; 160 g of difenoconazole [30% emulsifiable concentrate (EC)] and 160 g of propiconazole (30% EC) in 100 kg of water was applied to the group B grape vines on July 10; 250g of Captan 50% Wetable Powder, 200g of Ferbam 76% Wetable Powder, 160g of Sulfur 95% Wetable Powder, and 120 g of thiophanate-methyl 50% WP in 50 kg of water was applied to the group B grape vines on July 17, 250g of Malathion 50% EC, 250 g of 1-naphthyl methylcarbamate 50% WP and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vine on July 24; 250g of Captan 50% Wetable Powder, 200g of Ferbam 76% Wetable
Powder, 160 g of Sulfur 95% Wettable Powder, and 120 g of thiophanate-methyl 50% WP in 100 kg of water was applied to the group B grape vines on July 30. Yield 5000 kg of good (edible) grapes. Group C was N,N-diethylaminoethyl acetylsalicylate-treated group, 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl in 100 kg of water was applied to the group C grape vine on November 15, February 20, March 15, April 5, May 15, and July 25; 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl and 200 g of Malathion 50% Emulsifiable Concentrate in 100 kg of water was applied to the group C grapes on April 25, June 5, and June 30; Yield 6300 kg of good (edible) grapes. Group D was N,N-diethylaminoethyl acetylsalicylate and N,N-diethylaminoethyl jasmonate. citric acid-treated group. 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl in 100 kg of water was applied to the group C grape vine on November 1, February 20, and March 20; 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl and 50 g of N,N-diethylaminoethyl jasmonate.citric acid in 100 kg of water was applied to the group D grapes on April 5, April 20, May 5, May 20, June 5, June 20, July 5, and July 25. Yield 6700 kg of good (edible) grapes. The results show that N,N-diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate.citric acid had strong antiviral, anti-fungus, and anti-insect activity in grape vine. Only a few of insecticides and fungicide were needed and the yield was much higher in group C and D than other groups. Labor costs of groups C and D were much less and the harvest dates of Groups C and D were 10 days earlier.

Example 107. Antiviral, anti-fungus, and anti-insect activity of N,N-diethylaminoethyl acetylsalicylate in rice.

[00363] 2 Acres of rice was divided into 4 groups (1/2 acre each). All field operations concerning land preparation and the uses of fertilizers were same for all groups. Group A was control group treated with no chemicals, Group B was normal fungicides and insecticides-treated group, Group C was N,N-diethylaminoethyl acetylsalicylate. HCl-treated group and Group D was N,N-diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate.citric acid-treated group. In group A, Rice blast, rice sheath blight, sheath spot, sheath rot, stem rot, brown leaf spot, leaf smut, narrow brown leaf spot, kernel smut, panicle blast, and other diseases and insects were found. Yield 200 kg of not good rice. In group B, 200 g of
validamycin A 5% aqueous solution in 100kg of water was applied to the group B rice in July 1; 30 g of imidacloprid 10% WP in 100 kg of water was applied to the group B rice in July 5; 30 g of imidacloprid 10% WP and 200 g of Carbendazim 50% WP in 100kg of water was applied to the group B rice in July 12; 250g of Malathion 50% EC and 120g of propiconazole (11.7%) in 100kg of water was applied to the group B rice in July 20; 200 g of validamycin A 5% aqueous solution in 100kg of water was applied to the group B rice on July 30, 180 g of chlorothalonil 70% WP in 100kg of water was applied to the group B rice on August 8, 250g of Malathion 50% EC and 200 g of validamycin A 5% aqueous solution in 100 kg of water was applied to the group B rice on August 17; 30 g of imidacloprid 10% WP and 200 g of Carbendazim 50% WP in 100kg of water was applied to the group B rice on August 26 and September 8; 250g of Malathion 50% EC and 200 g of validamycin A 5% aqueous solution in 100kg of water was applied to the group B rice on September 20 and October 10. Yield 1500 kg of good rice. Group C was N,N-diethylaminoethyl acetylsalicylate.HCl-treated group. 30 g of imidacloprid 10% WP and 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl in 100kg of water was applied to the group C rice on July 1, July 12, July 25, August 10, August 25, September 10 and September 25; Yield 1800 kg of good rice. Group D was N,N-diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate.citric acid-treated group, 50g of N,N-diethylaminoethyl jasmonate. citric acid and 100 g of N,N-diethylaminoethyl acetylsalicylate.HCl in 100kg of water was applied to the group C rice on July 1, July 12, July 25, August 10, August 25, September 10 and September 25; Yield 1850 kg of good rice. The results show that N,N-diethylaminoethyl acetylsalicylate.HCl and N,N-diethylaminoethyl jasmonate.citric acid had strong antiviral, anti-fungus, and anti-insect activity in rice. Only a few of insecticides and fungicides were needed and the yield was much higher in groups C and D than other groups. The harvest dates of group C and D were 5 days earlier.

Example 108. Application of HPCs of prostaglandins to stimulate hair growth and eyelash growth.

[00364] About 0.2ml of 1% of HPC of N,N-diethylaminoethyl 11,15-dihydroxy-9-oxoprost-13-en-1-oate.HBr (the HPC of prostaglandin E₁), N,N-diethylaminoethyl (Z)-7-
About 1 ml of 1% of HPC of N,N-diethylaminoethyl 11,15-dihydroxy-9-oxoprost-13-en-10-oate.HBr (the HPC of prostaglandin E₁), N,N-diethylaminoethyl (Z)-7-[(1 R, 2R, 3R, 5S)-3,5-Dihydroxy-2-[(1 E, 3S)-3-hydroxy-5-phenyl-1-pentenyl]cyclopentyl]-5-N-ethylheptenoate.HBr (the HPC of bimatoprost), (13,1,4-dihydro-1 7-phenyl-1 8, 19,20-trinor PGF₂₀N,N-diethylaminoethyl ester, N,N-diethylaminoethyl (Z)-7-[(1 R, 2 R, 3 R, 5 S)-3,5-dihydroxy-2-[(1 E, 3 S)-3-hydroxy-5-phenyl-1-pentenyl]cyclopentyl]-5-N-ethylheptenoate.HBr, or 13,1,4-dihydro-1 5-keto-20-ethyl PGF₂₀N,N-diethylaminoethyl ester in pure water is applied to the skin area close to the eyelashes (0.1 ml solution for each eye). After more than 1 month treatment, the eyelashes will grow longer and fuller.

The above HPCs of prostaglandins and other HPCs of prostaglandins can stimulate hair growth and eyelash growth, and may be very useful in cosmetic industry.

Example 109 Applications of HPCs of progesterone

Progesterone plays many roles relating to the development of the fetus, nervous system, immune system and many other systems. It can act as an anti-inflammatory agent and regulates the immune response. Because of the poor bioavailability of progesterone when taken orally, the transdermal administration of it is favorable. Vaginal and rectal application is also effective, ENDOMETRIN (progesterone) Vaginal insert 100 mg, approved by the FDA in June 2007 to support embryo implantation and early pregnancy, Other products are CRINONE and PROCHIEVE bioadhesive progesterone vaginal gels, approved by FDA for use in infertility and during pregnancy. Progesterone can be given by injection. It may be used in treating...
multiple sclerosis, since the characteristic deterioration of nerve myelin insulation halts
during pregnancy, when progesterone levels are raised. It may be used for preventing
preterm birth in women at risk for preterm birth. It may be used for keeping females and
males youth. It has been observed in animal models that females have reduced
susceptibility to traumatic brain injury[Roof RL, Hall ED (May 2000). "gender differences
in acute CNS trauma and Stroke: neuroprotective effects of estrogen and progesterone".
J. Neurotrauma 17(5): 367-88.]. Encouraging results have also been reported in human
effects may be the reduction of inflammation which follows brain trauma.[Pan DS, et. al.

A). Treatment of brain trauma

[00368] About 0.5 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on the neck, chest, face, or any part of skin three time per day. The process is continued until the brain injury is cured.

B). Treatment of Stroke

[00369] About 0.5 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on the neck, chest, face, or any part of skin three time per day. The process is continued until stroke is cured.

C). Supporting embryo implantation and early pregnancy

[00370] About 0.3 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on any part of skin three times per day. The process is continued as necessary.

D). Treatment of discoid lupus erythematosus

[00371] About 0.3 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on the affected skin three time per day. The process is continued until discoid lupus erythematosus is cured
E). Treatment of systemic lupus erythematosus

[00372] About 0.5 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on the skin near by the affected organs three time per day. The process is continued until systemic lupus erythematosus is cured

F). Treatment of multiple sclerosis (MS).

[00373] About 0.5 ml of 2% of N-(4-N,N-diethylaminoethoxycarbonyl)phenyl progesterone imine.HCl salt in isopropanol is sprayed on the skin near by the affected organs three time per day. The process is continued until MS is cured.

Example 110. In vivo transportation of HPC and application of HPC of mustards and related compounds in treating cancer.

[00374] Study A: Blocking Human Gastric Cancer HGC-27 cell Proliferation with Chlorambucil and N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HCl salt

[00375] The inhibition of cellular proliferation was measured by the modified dimethyl thiazolyl diphenyl tetrazolium salt (MTT) [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, based on the ability of live cells to converting thiazolyl blue to dark blue formazan. Approximately 3500 cells of HGC-27 (in 100 µl culture solution) were seeded into 96-well culture plates and were cultured for 16 hours at 37°C. Different concentration solution (100µl) of Taxol (positive control), chlorambucil, or N,N-diethylaminoethyl 4-[bis(2-chloroethyl) amino]benzenebutyrate.HCl salt (HPC of chlorambucil) were added and incubation continued for 72 hours at 37°C. Then MTT were added and incubation continued at 37°C for 4 h, and 100 µl DMSO was pipetted to solubilize the formazan product for 30 min at room temperature. The absorbency at 570 nm was measured using Bio-Rad micro-plate reader stored at -20 °C until use for electrophoresis. Results were shown in table 110a.
Table 110a: HGC-27 cell growth inhibition rates for chlorambucil and its HPC (the HPC).

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Chlorambucil (100%)</th>
<th>HPC of chlorambucil (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 μM</td>
<td>0.3</td>
<td>15.6</td>
</tr>
<tr>
<td>2.0 μM</td>
<td>1.6</td>
<td>28.7</td>
</tr>
<tr>
<td>5.0 μM</td>
<td>12.5</td>
<td>42.1</td>
</tr>
<tr>
<td>25 μM</td>
<td>31.5</td>
<td>61.6</td>
</tr>
<tr>
<td>50 μM</td>
<td>39.4</td>
<td>82.1</td>
</tr>
<tr>
<td>75 μM</td>
<td>41.5</td>
<td>96.5</td>
</tr>
<tr>
<td>100 μM</td>
<td>53.1</td>
<td>98.1</td>
</tr>
<tr>
<td>200 μM</td>
<td>62.1</td>
<td>97.2</td>
</tr>
<tr>
<td>500 μM</td>
<td>81.0</td>
<td>98.2</td>
</tr>
</tbody>
</table>

The results showed that the HPC of chlorambucil had much stronger cancer cell growth inhibition than the parent drug, chlorambucil.

Study B: For evaluation of antitumor activity, a human myeloma cell line derived from the ascites of a patient with multiple myeloma was implanted into mice. The experiment was carried out on 17 groups of mice. Control group (A, orally), chlorambucil (group B₁: 1 mg/kg, orally, group B₂: 3 mg/kg, orally, group B₃: 1 mg/kg, transdermally, and group B₄: 3 mg/kg, transdermally), melphalan (group C₁: 1 mg/kg, orally, group C₂: 3 mg/kg, orally, group C₃: 1 mg/kg, transdermally, and group C₄: 3 mg/kg, transdermally), N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr (the HPC of chlorambucil (group D₁: 1 mg/kg, orally, group D₂: 3 mg/kg, orally, group D₃: 1 mg/kg, transdermally, and group D₄: 3 mg/kg, transdermally), and 4-[bis(2-chloroethyl)amino]-N-acetyl-L-phenylalanine N,N-diethylaminoethyl ester hydrobromide (the HPC of melphalan) (group E₁: 1 mg/kg, orally, group E₂: 3 mg/kg, orally, group E₃: 1 mg/kg, transdermally, and group E₄: 3 mg/kg, transdermally). The results are shown in table 110b.
Table 10b: Extension of survival period of mice with multiple myeloma by use of mustards and their HPCs (novel HPCs).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Dose (mg/kg) Per day</th>
<th>n</th>
<th>Survival Period (days)</th>
<th>Life Elongation Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (A)</td>
<td>-</td>
<td>5</td>
<td>45.5±3.6</td>
<td>100</td>
</tr>
<tr>
<td>B₁</td>
<td>1 mg</td>
<td>5</td>
<td>48.7±5.3</td>
<td>107</td>
</tr>
<tr>
<td>B₂</td>
<td>3 mg</td>
<td>5</td>
<td>68.5±4.2</td>
<td>151</td>
</tr>
<tr>
<td>B₃</td>
<td>1 mg</td>
<td>5</td>
<td>46.1±3.6</td>
<td>99</td>
</tr>
<tr>
<td>B₄</td>
<td>3 mg</td>
<td>5</td>
<td>44.6±3.6</td>
<td>98</td>
</tr>
<tr>
<td>C₁</td>
<td>1 mg</td>
<td>5</td>
<td>48.1±5.3</td>
<td>106</td>
</tr>
<tr>
<td>C₂</td>
<td>3 mg</td>
<td>5</td>
<td>70.5±3.2</td>
<td>155</td>
</tr>
<tr>
<td>C₃</td>
<td>1 mg</td>
<td>5</td>
<td>44.7±3.6</td>
<td>98</td>
</tr>
<tr>
<td>C₄</td>
<td>3 mg</td>
<td>5</td>
<td>45.6±3.6</td>
<td>100</td>
</tr>
<tr>
<td>D₁</td>
<td>1 mg</td>
<td>5</td>
<td>71.7±3.3</td>
<td>158</td>
</tr>
<tr>
<td>D₂</td>
<td>3 mg</td>
<td>5</td>
<td>88.5±3.2</td>
<td>194</td>
</tr>
<tr>
<td>D₃</td>
<td>1 mg</td>
<td>5</td>
<td>85.7±4.4</td>
<td>188</td>
</tr>
<tr>
<td>D₄</td>
<td>3 mg</td>
<td>5</td>
<td>91.5±4.7</td>
<td>201</td>
</tr>
<tr>
<td>E₁</td>
<td>1 mg</td>
<td>5</td>
<td>68.7±5.1</td>
<td>151</td>
</tr>
<tr>
<td>E₂</td>
<td>3 mg</td>
<td>5</td>
<td>85.2±4.3</td>
<td>187</td>
</tr>
<tr>
<td>E₃</td>
<td>1 mg</td>
<td>5</td>
<td>86.7±4.5</td>
<td>190</td>
</tr>
<tr>
<td>E₄</td>
<td>3 mg</td>
<td>5</td>
<td>87.5±4.2</td>
<td>192</td>
</tr>
</tbody>
</table>

[00378] The results showed that the HPCs demonstrated much stronger antitumor activity than their parent drugs and transdermal administration of the HPCs is better than oral administration.

Example 111. Antitumor activity of the HPCs of mustards

[00379] There are very few differences between cancer and normal cells according to present knowledge. Almost every cancer drug destroys both of cancer and normal cells, especially the rapidly dividing normal body cells such as hair follicles, cells lining
the gastrointestinal tract, and bone marrow cells involved in the immune defense system. The most common side effects of present chemotherapy are nausea, hair loss, and increased susceptibility to infection. In addition, there are many other side effects that cancer patients experience.

[00380] HPCs in the present disclosure can be administered transdermally. Transdermal cancer drug delivery has several advantages. This method helps to avoid cancer drugs directly hurting the gastro-intestinal tract and liver and inactivation of the drugs caused by first pass metabolism in the liver and gastro-intestinal tract. It can provide local delivery of appropriate concentrations of a drug to the intended site of action without systemic exposure. Topical drug delivery methods may use a much smaller amount of drugs than the amount used for the systemic method and thus reduce the side effects of cancer drugs.

[00381] A human myeloma cell line derived from the ascites of a patient with multiple myeloma was implanted into mice. The mice was divided into 11 groups: control group (A, orally), melphalan (B₁ and B₂, orally), chlorambucil (C₁ and C₂, orally), N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr (D₁ and D₂, transdermally), 4-[bis(2-chloroethyl)amino]-N-acetyl-L-phenylalanine N,N-diethylaminoethyl ester hydrobromide (E₁ and E₂, transdermally in 5% aqueous solution), and diethylaminoethyl 4-[bis(2-methylsulfonyl)ethyl)amino]benzenebutyrate.HCl (F₁ and F₂, transdermally in 5% aqueous solution). The body weight loss of mice was determined on day 21.

[00382] The results (Table 111) show that the HPCs of mustards had strong antitumor activity at 1.5 mg/kg dose and caused less side effects (less weight loss) when the HPCs are administered transdermally.
Table 111: Extension of survival period and weight loss of cancer mice by use of mustards and their HPCs.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Dose (mg/kg per day)</th>
<th>n</th>
<th>Survival Period (days)</th>
<th>Life Elongation Rate(%)</th>
<th>None Disease Rate</th>
<th>Weight Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (A)</td>
<td>-</td>
<td>7</td>
<td>43.5±5.6</td>
<td>100</td>
<td>0/7</td>
<td>-</td>
</tr>
<tr>
<td>B₁</td>
<td>1.5 mg</td>
<td>7</td>
<td>52.7±4.3</td>
<td>121</td>
<td>0/7</td>
<td>10%</td>
</tr>
<tr>
<td>B₂</td>
<td>3 mg</td>
<td>7</td>
<td>83.5±5.8</td>
<td>192</td>
<td>2/7</td>
<td>20%</td>
</tr>
<tr>
<td>C₁</td>
<td>1.5 mg</td>
<td>7</td>
<td>54.8±5.5</td>
<td>126</td>
<td>2/7</td>
<td>10%</td>
</tr>
<tr>
<td>C₂</td>
<td>3 mg</td>
<td>7</td>
<td>87.2±6.9</td>
<td>200</td>
<td>3/7</td>
<td>17%</td>
</tr>
<tr>
<td>D₁</td>
<td>1.5 mg</td>
<td>7</td>
<td>122.5±7.3</td>
<td>282</td>
<td>4/7</td>
<td>7%</td>
</tr>
<tr>
<td>D₂</td>
<td>3 mg</td>
<td>7</td>
<td>117.2±6.1</td>
<td>269</td>
<td>4/7</td>
<td>10%</td>
</tr>
<tr>
<td>E₁</td>
<td>1.5 mg</td>
<td>7</td>
<td>118.5±7.6</td>
<td>272</td>
<td>4/7</td>
<td>5%</td>
</tr>
<tr>
<td>E₂</td>
<td>3 mg</td>
<td>7</td>
<td>115.2±6.8</td>
<td>265</td>
<td>3/7</td>
<td>9%</td>
</tr>
<tr>
<td>F₁</td>
<td>1.5 mg</td>
<td>7</td>
<td>112.5±8.7</td>
<td>259</td>
<td>4/7</td>
<td>7%</td>
</tr>
<tr>
<td>F₂</td>
<td>3 mg</td>
<td>7</td>
<td>111.2±5.9</td>
<td>256</td>
<td>3/7</td>
<td>11%</td>
</tr>
</tbody>
</table>

Example 112. Treatment of multiple myeloma.

[00383] About 0.2 ml of 2% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in 50% ethanol is sprayed to the skin of any part of the body (apply to a different location every time to avoid hurting the skin repeatedly) twice per day. The treatment is continued until the condition (multiple myeloma) disappeared (may be lifelong).

Example 113. Treatment of brain tumors.

[00384] About 0.1 ml of 2% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in 50% ethanol is applied to the skin of the
head near the tumor (apply to a different location every time to avoid hurting the skin repeatedly) twice per day. The treatment is continued until the brain tumor disappeared.

Example 114. Treatment of brain tumors.

[00385] About 0.01 ml of 5% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in pure water is injected into the tumor twice per week. The treatment is continued until the brain tumor disappeared.

Example 115. Treatment of skin cancers.

[00386] About 0.5 ml of 0.1% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in 50% ethanol is applied to the skin with tumor or nearby the skin cancers twice per day. The treatment is continued until the brain tumor disappeared.

Example 116. N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr for the treatment of breast cancer

[00387] 0.2 ml of 5% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in pure water (or 50% ethanol) is directly applied to the surface skin of where the breast tumor is and this process is repeated every 3 days. 0.2 ml of 20% N,N-diethylaminoethyl acetylsalicylate in pure water (or 50% ethanol) is applied to the same area twice per day (without mixing it with the first medicine).

Example 117. N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr for the treatment of leukemias

[00388] 0.2 ml of 20% N,N-diethylaminoethyl 4-[bis(2-chloroethyl)amino]benzenebutyrate.HBr in pure water (or 50% ethanol) is directly applied to the skin on any part of the body twice per week (always applying to a different area to avoid hurting the same patch of skin over prolonged exposure).
Example 118. Anti-obesity of HPCs

Anti-obesity of HPCs in Sprague Dawley rats.

[00389] Peptides play an enormous variety of roles in all living matter. Peptide hormone is the largest group of hormones. They have a fascinating role in processes that control life. Unfortunately, peptides and related compounds are rapidly proteolysized by proteolytic enzymes. When peptides are taken orally, they are destroyed in a few minutes. In the case of injection, the administration of peptides is painful, and in many cases requires frequent and costly office visits to treat chronic conditions.

[00390] Enterostatins [Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR)] are pentapeptides derived from the NH₂-terminus of procolipase after tryptic cleavage and belong to the family of gut-brain peptides. They regulate fat intake and may be used for the treatment of obesity (Erlanson-Albertsson C, York D, Obes. Rev. 1997 Jul; 5(4): 360-72 and Sorhede M, Mei J, Erlanson-Albertsson C, J Physiol. 87:273-275,1 993).

[00391] 20 Female Sprague Dawley (SD) rats (20 weeks old, 320-345 g) were divided into 2 groups. In group A, 0.2 ml of water was administered to the back of rat (n=1 0) twice per day for 30 days. In Group B, 10 mg/kg of H-Val-Pro-Gly-Pro-Arg(NO₂)-OCH₂CH₂CH₂CH₃-HCl in 0.2 ml of water was administered transdermal* to the backs of rats (n=1 0) twice per day for 30 days. The results were shown in Table 118a.

Table 118a. Anti-obesity of H-Val-Pro-Gly-Pro-Arg(NO₂)-OCH₂CH₂CH₂CH₃-HCl in Sprague Dawley rats.

<table>
<thead>
<tr>
<th>Group</th>
<th>Weight (g) (Day 1)</th>
<th>Food intake (per day & per rat)</th>
<th>Weight (g) (Day 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>330.5±4.3</td>
<td>20.5±1.2</td>
<td>350.5±4.1</td>
</tr>
<tr>
<td>B</td>
<td>333.5±4.2</td>
<td>17.5±1.2</td>
<td>301.4±3.7</td>
</tr>
</tbody>
</table>
The results showed that peptide H-Val-Pro-Gly-Pro-Arg(NO$_2$)-OCH$_2$CH$_2$CH$_2$CH$_3$-HCl reduced the body weight of rats effectively. The rats of the control group were about 17% heavier than the rats in the peptide treated group.

Anti-obesity of peptide HPC in obese mice (SLAC/DB/DB).

20 obese DB/DB mice (SLAC/DB/DB) mice (16 weeks old, 55-60 g) were divided into 2 groups. In group A, 0.1 ml of water was administered to the back of mouse (n=10) twice per day for 30 days. In Group B, 15 mg/kg of H-Val-Pro-Gly-Pro-Arg(NO$_2$)-OCH$_2$CH$_2$CH$_2$CH$_3$.HCl in 0.2 ml of water was administered transdermal to the backs of rats (n=10) twice per day for 30 days. The results were shown in table 118b.

Table 118b. Anti-obesity of H-Val-Pro-Gly-Pro-Arg(NO$_2$)-OCH$_2$CH$_2$CH$_2$CH$_3$.HCl in obese mice (SLAC/DB/DB).

<table>
<thead>
<tr>
<th>Group</th>
<th>Weight (g) (Day 1)</th>
<th>Food intake (per day & per rat)</th>
<th>Weight (g) (Day 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>56.5±2.2</td>
<td>4.8±0.3</td>
<td>67.5±2.1</td>
</tr>
<tr>
<td>B</td>
<td>57.1±1.8</td>
<td>3.9±0.3</td>
<td>53.4±4.7</td>
</tr>
</tbody>
</table>

The results showed that peptide H-Val-Pro-Gly-Pro-Arg(NO$_2$)-OCH$_2$CH$_2$CH$_2$CH$_3$.HCl reduced the body weight of obese mice very effectively. The mice of the control group were about 26% heavier than the mice in the peptide treated group.

Example 119. The treatment for obese

About 0.3 ml of 5% H-Ala-Pro-Gly-Pro-Arg(NO$_2$)-OCH$_2$CH$_2$CH$_2$CH$_3$.HCl in 25% ethanol is applied to the neck, face, back, or any other part skin three times per day. The dosage should be adjusted to reach the health weight.
Example 120. HCl.H-Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln-OCH$_2$CH$_3$ for the treatment of Alzheimer's disease

20 mg of H-ASn-Ala-Pro-Val-SeMle-Pro-Gln-OCH$_2$CH$_3$ HCl salt is dissolved in 0.5 mL of pure water. The solution is applied transdermal to the neck, face, or any part of the body twice everyday for the treatment of Alzheimer's disease.

Example 121. Minimum inhibitory concentrations (MICs) of antimicrobials and HPCs of antimicrobials.

[00396] Minimum inhibitory concentrations (MICs) of the antimicrobials and their HPCs were assessed according to Jennifer M. Andrews, Journal of Antimicrobial Chemotherapy 48, suppl. S1, 5-16 (2001). The results (Tables 21) showed that the HPCs of antimicrobials were able to overcome β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) according to Minimum inhibitory concentrations (MICs) and much better than their parent drug. The test compounds are: 6-phenoxyacetacetamidopenicillanic acid 1-piperidineethyl ester hydrochloride (penicillin V-PEE), penicillin V, 6-(2,6-dimethoxybenzamido)penicillinic acid 2-pyrrolidinemethyl ester hydrochloride (methicillin-PME), methicillin, 7-[(2-acetylamino-4-thiazolyl)(methoxyimino)acetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid 2-diethylaminoethyl ester hydrochloride (ceftizoxime-DEE), and ceftizoxime). The HPCs showed much stronger anti-antimicrobial effects than their parent drugs.

Table 121. MICs (mg/L) of various antimicrobials and their HPCs to methicillin-resistant Staphylococcus aureus (MRSA)

<table>
<thead>
<tr>
<th></th>
<th>Penicillin V</th>
<th>Penicillin V-PEE</th>
<th>Methicillin</th>
<th>Methicillin-PME</th>
<th>Ceftizoxime</th>
<th>Ceftizoxime-DEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC (mg/L)</td>
<td>1824</td>
<td>12</td>
<td>1156</td>
<td>19</td>
<td>986</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Example 122 Glibornuridyl-N,N-dimethylaminoacetate.HCl for the treatment of diabetes.

A. Preparation of Glibornuridyl-N,N-dimethylaminoacetate.HCl

[00397] 367 g of glibornuride [N-[(3-hydroxy-4,7,7-trimethylbicyclo[2.2.1]hept-2-yl)amino]carbonyl]-4-methylbenzenesulfonamide and 120 ml of triethylamine is dissolved in ethyl acetate (2 l). 150 g of N,N-dimethylaminoacetyl chloride is added into the reaction mixture. The mixture is stirred for 2 h. The mixture is washed with water (1 x 1 l), 5%NaHCO₃ (1 x 1 l), water (1 x 1 l), 10% citric acid (1 x 1 l), and water (3 x 1 l). The solution is dried over sodium sulfate. After sodium sulfate is removed, 35 g of HCl gas is bubbled into the solution and the solid is collected by filtration and washed with ethyl acetate (3 x).

B. Controlled drug releasing system

[00398] 1 ml of 20% Glibornuridyl-N,N-dimethylaminoacetate.HCl in pure water (or 50% ethanol) is put into a reservoir, which can be wore around the arms, legs or any other part of the body and has a permeable bottom (the area is about 4 cm²) facing the skin. By controlling the rate of release of the solution, this system enables glibornuridyl-N,N-dimethylaminoacetate.HCl to reach constantly optimal therapeutic blood levels to keep the blood glucose at optimal level.

Example 123. Atenolol for the management of hypertension.

[00399] 100 mg of Atenolol HCl salt is dissolved in 1 ml of pure water in a reservoir, which can be wear around the arms or legs and has a permeable bottom (the area is 4 cm²) facing the skin. By controlling the rate of release of the solution, this system enables atenolol to reach constantly optimal therapeutic blood levels to keep the blood pressure at optimal level.

[00400] 2 mg of desogestrelyl-N,N-dimethylaminoacetate.HCl and 0.4 mg of ethinyl estradiolyl-N,N-dimethylaminoacetate.HCl is mixed with polyethylene glycol to form a gel. This gel is loaded on a patch (about 3cm²) to deliver a constantly optimal therapeutic blood level of desogestrel and ethinyl estradiol for the prevention of pregnancy in women.

Example 125 Application of HPC of NSAIA in treatment of ALS

[00401] Without being bound by a mechanism, the pathogenesis of cell death in amyotrophic lateral sclerosis (ALS) may involve glutamate-mediated excitotoxicity, oxidative damage, and apoptosis. Cyclooxygenase-2, present in spinal neurons and astrocytes, catalyzes the synthesis of prostaglandin E2. Prostaglandin E2 stimulates glutamate release from astrocytes, whereas cyclooxygenase-2 also plays a key role in the production of pro-inflammatory cytokines, reactive oxygen species, and free radicals. Treatment with a selective cyclooxygenase-2 inhibitor, celecoxib, markedly inhibited production of prostaglandin E2 in the spinal cords of ALS mice. Celecoxib treatment significantly delayed the onset of weakness and weight loss and prolonged survival by 25%. Spinal cords of treated ALS mice showed significant preservation of spinal neurons and diminished astrogliosis and microglial activation (Merit. E. Cudkowicz, et al., Annals of neurology, 52, 771-778, 2002). These results suggest that cyclooxygenase-2 inhibition may benefit ALS patients.

[00402] HPCs of NSAIA in the present disclosure can penetrate skin and nerve cell membrane barriers in very high rates and can be administered transdermal^ without hurting the GI tract, so these HPC are promising agents for the treatment of amyotrophic lateral sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM), and other muscle disorders.
Example 126. Treatment of gray hairs or white hairs.

[00403] About 0.3 ml of 8% diethylaminoethyl acetylsalicylate.HCl salt in 25% ethanol was sprayed to the skin under hairs or around the hairs twice per day. The treatment is continued until the color of hairs change back to the natural color.
WHAT IS CLAIMED IS:

D5-1 29, Structure D5-1 30, Structure D5-1 31, Structure D5-1 32, Structure D5-1 33, Structure D5-1 34, Structure D5-1 35, Structure D5-1 36, Structure D5-1 37, Structure D5-1 38, Structure D5-1 39, Structure D5-1 40, Structure D5-1 41, Structure D5-1 42, Structure D5-1 43, Structure D5-1 44, Structure D5-1 45, Structure D5-1 46, Structure D5-1 47, Structure D5-1 48, Structure D5-1 49, Structure D5-1 50, Structure D5-1 51, Structure D5-1 52, Structure D5-1 53, Structure D5-1 54, Structure D5-1 55, Structure D5-1 56, Structure D5-1 57, Structure D5-1 58, Structure D5-1 59, Structure D5-1 60, Structure D5-1 61, Structure D5-1 62, Structure D5-1 63, Structure D5-1 64, Structure D5-1 65, Structure D5-1 66, Structure D5-1 67, Structure D5-1 68, Structure D5-1 69, Structure D5-1 70, Structure D5-1 71, Structure D5-1 72, Structure D5-1 73, Structure D5-1 74, Structure D5-1 75, Structure D5-1 76, Structure D5-1 77, Structure D5-1 78, Structure D5-1 79, Structure D5-1 80, Structure D5-1 81, Structure D5-1 82, Structure D5-1 83, Structure D5-1 84, Structure D5-1 85, Structure D5-1 86, Structure D5-1 87, Structure D5-1 88, Structure D5-1 89, Structure D5-1 90, Structure D5-1 91, Structure D5-1 92, Structure D5-1 93, Structure D5-1 94, Structure D5-1 95, Structure D5-1 96, Structure D5-1 97, Structure D5-1 98, Structure D5-1 99, Structure D5-2 00, Structure D5-2 01, Structure D5-2 02, Structure D5-2 03, Structure D5-2 04, Structure D5-2 05, Structure D5-2 06, Structure D5-2 07, Structure D5-2 08, Structure D5-2 09, Structure D5-2 10, Structure D5-2 11, Structure D5-2 12, Structure D5-2 13, Structure D5-2 14, Structure D5-2 15, Structure D5-2 16, Structure D5-2 17, Structure D5-2 18, Structure D5-2 19, Structure D5-2 20, Structure D5-2 21, Structure D5-2 22, Structure D5-2 23, Structure D5-2 24, Structure D5-2 25, Structure D5-2 26, Structure D5-2 27, Structure D5-2 28, Structure D5-2 29, Structure D5-2 30, Structure D5-2 31, Structure D5-2 32, Structure D5-2 33, Structure D5-2 34, Structure D5-2 35, Structure D5-2 36, Structure D5-2 37, Structure D5-2 38, Structure D5-2 39, Structure D5-2 40, Structure D5-2 41, Structure D5-2 42, and Structure D5-2 43 in Figure 6, Structure L, Structure L-3 and Structure L-4:
including stereoisomers and pharmaceutically acceptable salts thereof, wherein:

L₁ is selected from the group consisting of nothing, O, S, -N(L₃)-, -N(L₃)-CH₂-O, -N(Ls)-CH₂-N(L₃)-, -O-CH₂-O-, -O-CH(L₃)-O, and -S-CH(L₃)-O-;

L₄ is selected from the group consisting of nothing, C=O, C=S, \[
\begin{array}{c}
\text{N} \\
\text{O} \text{L₃}
\end{array}
\]

and

\[
\begin{array}{c}
\text{O} \\
\text{L₃}
\end{array}
\]

L₄₁ is selected from the group consisting of nothing, N, N-O, N-N(L₃), N-S, N-O-CH₂-O, N-S-CH₂-O, N-L₃, N-O-L₃, N-N(L₃)-L₅, and L₃;

each L₃ and L₅ is independently selected from the group consisting of nothing, H, -CH₂COOL₆, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl
halide, wherein any carbon or hydrogen may be further independently replaced with O, S, P, NL₃, or any other pharmaceutically acceptable groups;

F₉ is selected from the group consisting of F₁, F₂, F-MA and F-MB;

each Y and Yi-Y₁₄ is independently selected from the group consisting of H, Cl, F, Br, I, CN, R₁₀, CH₃C≡C, CR₆≡C, P(Ο)OR₆, CF₂, CF₃O, CH₃, CF₃CF₂, R₅, R₆, R₇, R₈, CF₃CF₂O, CH₃CH₂, CH₃CH₂CH₂, (CH₃)₂CH, (CH₃)₂CHCH₂, CH₃CH₂CH(CH₃), (CH₃)₃C, C₄H₉, C₅H₁₁, CH₃CO, CH₃CH₂CO, R₅CO, CH₃OC(=O), CH₃CH₂OC(=O), R₅OC(=O), R₆C(=NOR₅), R₆C(=NR₅), CH₃COO, R₅COO, R₅COOCH₂, R₆NHCOCOCH₂, CH₃COS, CH₃O, R₅O, HO, R₁₀O, CF₃CH₂SCH₂, CHCl₂, CH₂COOR₆, CH₃S, R₅S, HS, R₁₀S, CH₃OCH₂CH₂, R₅OCH₂, R₁₀OCH₂CH₂, R₅O(C=O), C₂H₅OCONH, CH₂NHR₈, CH₃OCONH, CH₃SO₂, CH₂SO₂, R₅SO₂, R₅SO, NH₂SO₂, C₅H₅CH₂, NH₂, NHR₁₀, cyclobutyl, cyclopropyl, 4-chlorophenyl, 4-fluorophenyl, CH₂=CH, CH₂=CHCH₂, CH₃CH=CH, NR₅SO₂, N(R₅)₂SO₂, R₅OCH₂CH₂CH₂, or NO₂;

each X, X₁, X₂, X₃, X₄, X₅, and X₆ is independently selected from the group consisting of H, CH₃, R₅, CH₂, CHR₆, S, O, NR₆, CO, CH, CR₆, P(Ο)OR₆, N, CH₂=C, CH=CH, C≡C, CONH, CSNH, COO, OCO, COS, COCH₂, and CH₂CO;

each R₃, R₄, R₅, R₆, R₇, or R₉ is independently selected from the group consisting of H, OH, Cl, F, Br, I, substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, and substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with O, S, N, P(Ο)OL₇, CH=CH, C≡C, CHL₇, CL₅L₇, aryl, heteroaryl, or cyclic groups;

each L₂, L₈, L₉, and L₁₀ is independently selected from the group consisting of nothing, -O-, -S-, -N(L₃) -, -O-N(L₃) -, -N(L₃)=N(L₅) -, -N(L₃)=N-N(L₅) -, -N(L₃)CH₂O-, -N(L₃)CH₂- N(L₅) -, -O-CH₂O-, -O-CH(L₅)O-, -S-CH(L₃)O-, -O-L₃ -, -S-L₃ -, -N(L₃)=L₅ -, and L₃;
each \(L_{11}, L_{12}, \) and \(L_{13} \) is independently selected from the group consisting of

\[\text{nothing, } -\text{C}(=\text{O})-\text{, } -\text{C}(=\text{S})-\text{, } -\text{C}(=\text{N}(L_3))-\text{, } \]

and

\[\text{each } R_{10}, R_{20}, R_{21}, R_{22}, R_{23}, R_{24}, R_{25}, R_{26}, \text{ and } R_{27} \text{ is independently selected from the group consisting of nothing, } H, \text{ } R_1, \text{ } R_2, \text{ } R_3, \text{ } R_4, \text{ } R_5, \text{ } R_6, \text{ } R_7, \text{ } R_8, \text{ } R_6\text{CO, } R_6\text{NHC}(=\text{O}), \text{ } R_6\text{OC}(=\text{O}), \text{ } \]

\[-\text{R}_6\text{C}(=\text{NOR}_5)-\text{, } R_6\text{C}(=\text{NR}_5)-\text{, } R_6\text{C}(=\text{S})\text{, } \text{CNR}_6\text{, and } R_6\text{OC}(=\text{O})(\text{CH}_2)_n\text{C}(=\text{O}); } \]

\[\text{each } R, R_{11}-R_{16} \text{ is independently selected from the group consisting of nothing, } H, \text{ substituted and unsubstituted alkyl, substituted and unsubstituted cycloalkyl, substituted and unsubstituted heterocycloalkyl, substituted and unsubstituted aryl, substituted and unsubstituted heteroaryl, substituted and unsubstituted alkoxy, substituted and unsubstituted alkylthio, substituted and unsubstituted alkylamino, substituted and unsubstituted perfluoroalkyl, and substituted and unsubstituted alkyl halide, wherein any carbon or hydrogen may be further independently replaced with } O, \text{ } S, \text{ } P, \text{ } \text{NR}_5, \text{ or any other pharmaceutically acceptable groups; and } \]

\[\text{each } m \text{ and } n \text{ is independently selected from the group consisting of } O \text{ and integer; } \]

\[\text{with the proviso that when } T \text{ is Structure } T-1, F_9 \text{ is not Structure } F-2, \text{ Structure } F-79 \text{ to Structure } F-125, \text{ Structure } F-132 \text{ to Structure } F-211, \text{ Structure } F2-360 \text{ to Structure } F2-403, \text{ Structure } F2-408 \text{ to Structure } F2-411, \text{ Structure } F2-418, \text{ or Structure } F2-419, \text{ Structure } F3 \text{ is not Structure } F3-35 \text{ to Structure } F3-40, \text{ and Structure } F4 \text{ is not Structure } F4-1. \]

2) \text{Use of a HPC selected from the group consisting of the HPC of claim 1 and HPCs having a structure of Structure } L, \text{ Structure } L-3 \text{ or Structure } L-4, \text{ wherein } T \text{ is Structure } T-1 \text{ and } F_9 \text{ is Structure } F-2, \text{ Structure } F-79 \text{ to Structure } F-125, \text{ Structure } F-132 \text{ to Structure } F-211, \text{ Structure } F2-360 \text{ to Structure } F2-403, \text{ Structure } F2-408 \text{ to }
Structure F2-41, Structure F2-418, or Structure F2-419, F3 is Structure F3-35 to Structure F3-40, and F4 is Structure F4-1 for the manufacture of a medicament for penetrating a biological barrier.

3) The use of a HPC according to Claim 2, wherein the biological barrier is selected from the group consisting of blood-brain barrier, blood-CSF barrier and blood-synovial fluid barrier.

4) Use of a HPC according to Claim 1 for the manufacture of a medicament for treatment of conditions that are treatable by a parent drug of the HPC.

5) Use of a HPC according to Claim 4, wherein the HPC is used at a dosage lower than the dosage of its parent drug to be therapeutically effective.

6) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 50% or lower of the dosage of its parent drug to be therapeutically effective.

7) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 25% or lower of the dosage of its parent drug to be therapeutically effective.

8) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 10% or lower of the dosage of its parent drug to be therapeutically effective.

9) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 5% or lower of the dosage of its parent drug to be therapeutically effective.

10) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 2% or lower of the dosage of its parent drug to be therapeutically effective.

11) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 1% or lower of the dosage of its parent drug to be therapeutically effective.

12) Use of a HPC according to Claim 5, wherein the HPC is used at a dosage of 0.1% or lower of the dosage of its parent drug to be therapeutically effective.

13) Use of a HPC of NSAIA for the manufacture of a medicament for treating lupus erythematosus, multiple sclerosis, prostate cancer, bone cancer, diabetes (type I), diabetes (type II), stroke, heart attack, hair loss and bald, gray hair, vitiligo, Parkinson's disease, Alzheimer disease, spinal cord injury, glaucoma, cataract, aging, ALS (amyotrophic lateral sclerosis (ALS)), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy (MD), Duchenne muscular dystrophy (DMD), polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM),
hyperthyroidism, fibrosis of liver, cystic, pulmonary, pancreas, spleen, or gastrointestinal, gallstones, abnormal vascular skin lesions, birthmarks, moles (nevi), skin tags, aging spots (liver spots), acne, cystic acne, pus-filled or reddish bumps, comedones, papules, pustules, nodules, epidermoid cysts, keratosis pilaris, sagging skin, wrinkles, crows feet, flesh-colored skin spots, rosacea, post-treatment skin, acute and chronic cough, organ transplant rejection, and Osteoporosis.

14) Use of a HPC of mustard for the manufacture of a medicament for treating gastric cancer, multiple myeloma or brain tumor.

15) Use of a HPC of peptide for the manufacture of a medicament for treating Alzheimer's disease.

16) Use of a HPC of prostaglandin for the manufacture of a medicament for stimulating hair growth or eyelash growth.

17) Use of a HPC of beta-lactam antibiotics, for the manufacture of a medicament for treating conditions related to microorganism.

18) Use of a HPC of steroid for the manufacture of a medicament for treating brain trauma, stroke, embryo implantation, early pregnancy, discoid lupus erythematosus, systemic lupus erythematosus, avoidance of pregnancy in women, or multiple sclerosis.

19) Use of a HPC according to Claim 18, wherein the steroid is Progesterone, desogestrel or ethinylestradiol.

20) Use of a HPC of glibornuride, for the manufacture of a medicament for treating diabetes.

21) Use of a HPC of Atenolol, for the manufacture of a medicament for treating hypertension.

22) Use of a HPC according to any claim of Claim 2-21, wherein the HPC or a pharmaceutical composition thereof is applied to a biological subject by transdermal, transmucosal, trans-nasal, trans-vaginal, trans-mouth, trans-rectal method.

23) Use of a HPC according to any claim of Claim 2-21, wherein the HPC or a pharmaceutical composition thereof is applied to a biological subject by topical method.
24) Use of a HPC according to any claim of Claim 2-21, wherein the HPC or a pharmaceutical composition thereof is applied to a biological subject by oral, nasal, vaginal, rectal, parenteral, subcutaneous, intramuscular, intravenous, via inhalation or ophthalmic method.

25) Use of a HPC of NSAIA for treating conditions related to viral, fungus, or insect in plants.
Structure F-1

Structure F-2

Structure F-3

Structure F-4

Structure F-5

Structure F-6

Structure F-7

Structure F-8

Structure F-9

Structure F-10

Structure F-11

FIGURE 1 A
FIGURE 1 B
FIGURE 1 D
FIGURE 1 E
FIGURE 1 F
FIGURE 1 G
FIGURE 1 J
FIGURE 1 L
FIGURE 1 M
FIGURE 1 N
FIGURE 1 O
FIGURE 1 P
FIGURE 1 S
FIGURE 1 T
FIGURE 1 U
FIGURE 1 V
FIGURE 1 W
FIGURE 1 X
FIGURE 2 A
FIGURE 2 B
FIGURE 2 G
FIGURE 2 I
FIGURE 2 J
FIGURE 2 K
FIGURE 2 N
FIGURE 2
FIGURE 2
FIGURE 2 R
FIGURE 2 S
FIGURE 2
FIGURE 2 X
FIGURE 2
FIGURE 2 Z
FIGURE 2 AA
FIGURE 2 BB
FIGURE 2 CC
FIGURE 2 DD
Structure F2-326
Structure F2-327
Structure F2-328
Structure F2-329
Structure F2-330
Structure F2-331
Structure F2-332
Structure F2-333
Structure F2-334
Structure F2-335
Structure F2-336
Structure F2-337

FIGURE 2 EE
FIGURE 2 FF
FIGURE 2 HH
FIGURE 2 II
FIGURE 2 KK
Structure F2-405
Structure F2-406
Structure F2-407
Structure F2-408
Structure F2-409
Structure F2-410
Structure F2-411

FIGURE 2 LL
Structure F2-412

Structure F2-413

Structure F2-414

Structure F2-415

FIGURE 2 MM
FIGURE 2 NN
Structure F2-426

Structure F2-427

Structure F2-428

Structure F2-429

Structure F2-430

Structure F2-431

Structure F2-432

FIGURE 2 PP
FIGURE 3B
FIGURE 3D
Structure F3-38

Structure F3-39

Structure F3-40

Structure F3-41

Structure F3-42

FIGURE 3E
Structure F3-43

Structure F3-44

FIGURE 3F
FIGURE 4 A
Structure F4-7

Structure F4-8

Structure F4-9

Structure F4-10

Structure F4-11

Structure F4-12

FIGURE 4 B
FIGURE 4 C
FIGURE 5B
FIGURE 5D
FIGURE 5F
Structure P4-31

Structure P4-32

FIGURE 5G
FIGURE 6 C
FIGURE 6 E
Structure D5-55

Structure D5-56

Structure D5-57

Structure D5-58

Structure D5-59

Structure D5-60

Structure D5-61

Structure D5-62

Structure D5-63

Structure D5-64

Structure D5-65

Structure D5-66

FIGURE 6 F
FIGURE 6 G
FIGURE 6 H
FIGURE 6 I
FIGURE 6 J
FIGURE 6 K
FIGURE 6 L
FIGURE 6 M
FIGURE 6 N
FIGURE 6
FIGURE 6 P
FIGURE 6 Q
FIGURE 6 U
Structure D5-237 Structure D5-238 Structure D5-239

Structure D5-240 Structure D5-241 Structure D5-242

Structure D5-243

FIGURE 6 W
FIGURE 7A
FIGURE 8
FIGURE 10
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER
IPC(8)- C07D 209/32, A61K 31/352, A61K 45/00 (2010 01)
USPC - 514/424, 514/458, 514/171, 549/438

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8)- C07D 209/32, A61K 31/352, A61K 45/00 (2010 01)
USPC - 514/424, 514/458, 514/171, 549/438

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2008/093173 A1 (Yu et al.) 07 August 2008 (07 08 2008), Fig 2, para [0006]-[0008]</td>
<td>1-25</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,011,049 A (Whitcomb) 04 January 2000 (04 01 2000), col 2, in 4-11</td>
<td>20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

D

Date of the actual completion of the international search
26 January 2010 (26 01 2010)

Date of mailing of the international search report
17 FEB 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Authorized officer
Lee W Young
PCT Helpdesk 571-272-4300
PCT OSP 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)