
(12) United States Patent
Motwani

USOO80361.24B1

US 8,036,124 B1
Oct. 11, 2011

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(51)

(52)
(58)

(56)

EARLY LOAD DETECTION SYSTEMAND
METHODS FOR GGSN PROCESSOR

Inventor: Girish Motwani, Karnataka (IN)

Assignee: Juniper Networks, Inc., Sunnyvale, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 552 days.

Appl. No.: 11/673,236

Filed: Feb. 9, 2007

Int. C.
H04L I/00 (2006.01)
U.S. Cl. 370/235; 370/230; 370/230.1
Field of Classification Search 370/232,

370/230, 230. 1, 235, 237
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,920,120 B2 * 7/2005 Huang et al. 370,329
6,996,062 B1* 2/2006 Freed et al. 370,235

7,197.564 B1* 3/2007 Bhojet al. 709,225
7.286,485 B1 * 10/2007 Ouellette et al. ... 370.252
7,720,063 B2 * 5/2010 Maiorana et al. .. 370,389

2003/0014544 A1* 1/2003 Pettey TO9,249
2005/0165932 A1* 7/2005 Banerjee et al. ... TO9,226
2005/0201398 A1* 9, 2005 Naik et al. 370,412

OTHER PUBLICATIONS

Sally Floyd and Van Jacobson, “Random Early Detection Gateways
for Congestion Avoidance'. Aug. 1993, IEEE.*
Floyd, S. et al., “Random Early Detection Gateways for Congestion
Avoidance' IEEE/ACM Transactions on Networking, vol. 1, No. 4.
Aug. 1993, pp. 397-413.

* cited by examiner

Primary Examiner — Huy Vu
Assistant Examiner — Omer Mian
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A device may store a first and second queue of packets,
calculate an average queue size based on the number of pack
ets in the first and second queues and discard a packet when
the packet is a session creation packet and the calculated
average queue size is greater than a threshold value.

23 Claims, 6 Drawing Sheets

on DEOUEUE NEXT PACKET 610

CALCULATEAVERAGE OUEUE SIZE 62O

YE
S AVG > THRESHOLDP 630

670

SESSION CREATION?

YES PROCESS PACKET 640

DROP PACKET
NO 650

YES

GET NEXT PACKET

U.S. Patent Oct. 11, 2011 Sheet 1 of 6 US 8,036,124 B1

O
l
w

O

N
CC
s
2

O
cy
vs.

Z
CO

V CD
CD

Z
CO
CD
CD

1
O CN
w w

O
Of)
?

O
ws
was

D

A 1 YS ws

was
S O
O was
was

US 8,036,124 B1 Sheet 2 of 6 Oct. 11, 2011 U.S. Patent

C1072 [1072

Z "SDI

US 8,036,124 B1
1.

EARLY LOAD DETECTION SYSTEMAND
METHODS FOR GGSN PROCESSOR

BACKGROUND OF THE INVENTION

Systems and methods described herein relate generally to
wireless communications using a GGSN device, and more
particularly, to early load detection within a GGSN device.
A General Packet Radio Service (GPRS) network provides

mobile computing and telephony users with packet-switched
connections to data networks through a gateway GPRS Sup
port node (GGSN) device. A GGSN device may process
packets from Subscribers already connected to a data network
and may also process session creation packets received from
mobile stations that may be in the process of creating a con
nection to a data network. Session creation packets require
more processing by GGSN devices than data packets that
transmit data via existing connections. GGSN devices may
become overloaded and drop packets over existing data con
nections when a large number of session creation packets are
received.

SUMMARY OF THE INVENTION

In accordance with one implementation a method is pro
vided, the method comprises storing a first and second queue
of packets; calculating an average queue size based on the
number of packets in the first and second queue and discard
ing a packet when the packet is a session creation packet and
the calculated average queue size is greater than a threshold
value.

In another implementation, a method is provided, the
method comprising: storing two queues of packets; calculat
ing an average queue size of the two queues as avg. = (1-w)x
avg+(wxq); where q is the number of packets remaining in
the first and second queues and w is a queue filter time
constant; comparing the calculated average queue size to a
threshold value; and discarding a packet when the calculated
average queue size exceeds the threshold value and the packet
is determined to be a session creation packet.

In yet another implementation, a network device is pro
vided, the network device including a first and second MAC
processor, and a plurality of compute processors, wherein
each of the compute processors are configured to: receive and
store a first queue of packets from a first a MAC processor;
receive and store a second queue of packets from a second
MAC processor, dequeue a packet; calculate an average
queue size based on the number of remaining packets in the
stored first and second queues; compare the calculated aver
age queue size to a threshold; determine if the dequeued
packet is a session creation packet; and process the dequeued
packet based on the calculated average queue size and
whether the dequeued packet is a session creation packet.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate an imple
mentation of the invention and, together with the description,
explain the invention. In the drawings,

FIG. 1 is a block diagram illustrating an exemplary GPRS
network for packet Switched communications between a
mobile station and a data network;

FIG. 2 is a block diagram illustrating an exemplary packet
flow through a GGSN node:

FIG. 3 is a block diagram illustrating an exemplary
GGSN-I card;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 4 is a block diagram illustrating an exemplary com

pute processor,
FIG. 5 shows exemplary queues received by a compute

processor, and
FIG. 6 is a flow diagram illustrating an exemplary process

performed by a compute processor.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following detailed description of the preferred
embodiments refers to the accompanying drawings. The
same reference numbers in different drawings may identify
the same or similar elements. Also, the following detailed
description does not limit the embodiments. Instead, the
scope of the embodiments is defined by the appended claims
and their equivalents.

System Overview

FIG. 1 illustrates an exemplary General Packet Radio Ser
vice (GPRS) network 100 that may be used to connect one or
more mobile stations 101a-101d (“mobile stations 101') to a
packet data network, such as the Internet 150. GPRS network
100 may include mobile stations 101, Base Transceiver Sta
tion (BTS) 105, Base Station Controller (BSC) 110, Serving
GPRS Support Node (SSGN) 120, GGSN 130 and firewall
140, that may connect mobile stations 110 to Internet 150, for
example. Information sent over GPRS network 100 may be
broken up into packets that may include a header and a pay
load. The header may include instructions and information,
Such as error checking information, and Source and destina
tion addresses. The payload may include data that is to be
delivered to the destination and may also include information
to create a data session with Internet 150.

Mobile stations 101 may include one or more processors or
microprocessors enabled by Software programs to perform
functions, such as data storage and transmission, and inter
facing with networks, such as Internet 150. As used herein,
the term “mobile stations' may include a cellular radiotele
phone with or without a multi-line display; a Personal Com
munications System (PCS) terminal that may combine a cel
lular radiotelephone with data processing, facsimile and data
communications capabilities; a personal digital assistant
(PDA) that can include a radiotelephone, pager, Internet/
Intranet access, Web browser, organizer, calendar and/or a
global positioning system (GPS) receiver; and a conventional
laptop and/or palmtop receiver or other appliance that
includes a radiotelephone transceiver. Mobile stations 101
may also be referred to as “pervasive computing devices that
are capable of communicating with other devices such as
other mobile stations 101. For example, mobile station 101d
may communicate through mobile station 101c. Mobile sta
tions 101 may also include a data storage memory, Such as a
random access memory (RAM) or another dynamic storage
device that stores information. Mobile stations 101 may con
nect to SGSN 120 via BTS 105 and BSC 110, for example.
BTS 105 may receive/transmit radio signals to/from

mobile stations 101. BTS 105 may also forward/receive sig
nals to/from BSC 110. BTS 105 may contain hardware and
Software for transmitting and receiving radio signals to/from
mobile stations 101 that may including baseband processing,
radio equipment and an antenna.
BSC 110 may transmit and receive signals to/from BTS

105. BSC 110 may contain hardware and software for man
aging BTS 105 and may control frequency allocation and

US 8,036,124 B1
3

communications to/from BTS 105, for example. BSC 110
may also transmit and receive signals to SGSN 120.
SGSN 120 may include hardware and/or software that may

receive communications from BSC 110 and may forward data
packets that may be received from mobile stations 101 to
GGSN 130. For example, when a subscriber wishes to access
Internet 150, the subscriber may use one of mobile stations
101 to contact SGSN 120 (via BTS 105 and BSC 110) and the
Subscriber may be assigned an IP addresses from a pool that
may be contained in SGSN 120. The assigned IP address is
identified with the particular mobile station 101 and may be
used in a packet header for all packets associated with the
given subscriber. Once a mobile station 101 ends its connec
tion, the IP address associated with the mobile station 101
may be returned to the IP address pool in SGSN 120 where the
address may be reassigned to another mobile station 101. The
incoming and outgoing packets may be assigned to the IP
address in the packet header that corresponds to one of mobile
stations 101 using the IP address at the time of transmission.
Any number of routing/network components (not shown)
may be interposed between the SGSN 120 and GGSN 130,
for example.
GGSN 130 may include hardware and/or software that

may receive encapsulated data packets from SGSN 120 and
may perform further processing on the received data packets.
For example, an encapsulated packet may be decapsulated
and processed by GGSN 130, and then may be transmitted
through Firewall 140 to Internet 150. GGSN 130 may also
track a users (mobile station 101) internet use and access
patterns and may perform layer 3 to 7 packet inspection for
processing as described below in FIGS. 2-6, for example.

Firewall 140 may filter packets sent to/from Internet 150
before allowing the packets to continue to/from GGSN 130.
Firewall 140 may include devices and software that may
separate networks. Firewall 140 may, for example, filternet
work traffic to forward legitimate traffic drop suspect traffic.

Internet 150 may include a data network such as Internet
Protocol (IP) network, a public switched telephone network,
such as the (PSTN), a metropolitan area network (MAN), a
wide area network (WAN), a local area network (LAN), or a
combination of networks. Internet 150 may also include
devices such as Switches, routers, firewalls, gateways, and/or
servers (not shown) in order to transmit/receive and route data
to/from other connected network devices. Internet 150 may
be a hardwired network using wired conductors and/or opti
cal fibers and/or may be a wireless network using free-space
optical and/or radio frequency (RF) transmission paths.
Implementations of Internet 150 and/or devices operating on
Internet 150 described herein are not limited to any particular
data type, and/or protocol.

FIG. 2 shows an exemplary GGSN device 130. GGSN
device 130 may include an Ethernet card 210, a GGSN-U card
220, a GGSN-I card 230, a routing engine 240 and an Ethernet
card 250, for example. In this exemplary embodiment, both
upstream (from mobile stations 101) and downstream (to
mobile stations 101) links of GGSN 130 may both contain
devices 210-250, where upstream devices are identified with
“U” and downstream devices are identified by “D. following
the reference number.

Ethernet card 210 may include hardware and/or software
that may interface with SGSN 120. For example, Ethernet
card 210 may receive packets from SGSN 120 destined for
Internet 150 (uplink), and may transmit data packets from
GSGN 130 to SGSN 120 destined for a mobile Station 101
(downlink).
GGSN-U card 220 may include hardware and/or software

that may receive encapsulated data packets from Ethernet

10

15

25

30

35

40

45

50

55

60

65

4
card 210 and may decapsulate the received packets for further
processing and forwarding to Internet 150. GGSN-U card 220
may also gather user statistical information relating to the
Volume of data transmitted to/from a mobile station 101, and
may also enforce downlink bandwidth requirements, for
example.
GGSN-I card 230 may include hardware and/or software

that may receive and process data packets. For example,
GGSN-I card 230 may perform layer 3 to 7 packet inspection
to compute charging information based on user's internet
access patterns and service provider configuration. GGSN-I
card may also process packets and determine if a packet
contains session creation information, for example.

Routing engine 240 may include hardware and/or Software
that may receive and route data packets. For example, routing
engine 240 may perform routing of packets based on address
ing information contained in a packet header, in both the
upstream and downstream directions.

Ethernet card 250 may include hardware and/or software
that may interface with Internet 150. For example, Ethernet
card 250 may receive packets from routing engine 240 des
tined for Internet 150 (uplink), and may transmit data packets
from Internet 150 to GGSN 130 destined for a mobile Station
101 (downlink).

FIG. 3 shows a block diagram of an exemplary GGSN-I
card 230. GGSN-I card 230 may include two MAC proces
sors 310-1 and 310-2 (collectively referred to as MAC pro
cessors 310) and twelve compute processors 320-1,
320-2, ... 320-12, (collectively referred to as compute pro
cessors 320).
MAC processors 310 may each include multiple packet

forwarding engines that may forward packets to compute
processors 320. MAC processor 310 may receive packets
from GGSN-U card 230. MAC processor 310 may perform
routing of packets based on computed hash values from
packet header information to determine a destination com
pute processor 320.
Compute processors 320 may include hardware and/or

software that may receive queues of data packets from MAC
processors 310. For example, each compute processor 320
may contain a memory for storing queues of data packets and
may contain logic for processing the stored packets. For
example, each compute processor 320 may include hardware
and/or software that may determine the amount of data pack
ets stored in the queues in memory, may detect the contents of
the data packets, and may further process or discard the data
packets based on a calculated average queue size and the
packet contents.

FIG. 4 shows a block diagram of an exemplary compute
processor 320. Compute processors 320 may include, for
example, a queue memory 410, queue filter logic 420, packet
processor 430 and packet inspection logic 440.
Queue memory 410 may include a random access memory

(RAM) or another dynamic storage device that stores queues
of data packets containing headers and information. Queue
memory may store and receive groups of packets from MAC
processors 310-1 and 310-2. Queue memory 410 may also be
used to store temporary variables or other intermediate infor
mation during execution of instructions by packet processor
430.
Queue filter logic 420 may include hardware and/or soft

ware that may calculate average queue sizes. For example,
queue filter logic 420 may track or monitor a number of
packets in two stored queues (one received from MAC pro
cessor 310-1 and one received from MAC processor 310-2) in
queue memory 410. Queue filter logic 420 may also store

US 8,036,124 B1
5

parameters necessary for performing calculations to deter
mine an average queue size as described below.

Packet processor 430 may include hardware and software
to dequeue and process packets from the queue memory 410.
For example, packet processor 430 may dequeue a packet in
a queue from MAC processor 310-1 and then may dequeue a
packet in a queue from MAC processor 310-2 stored in queue
memory 410. After a packet is dequeued, packet processor
430 may process payload information contained in the
packet. Packet processor 430 may prepare packets for trans
mission to Internet 150 (via firewall 140).

Packet inspection logic 440 may include may include logic
that may examine packet contents to determine if, for
example a packet contains session creation information.
Packet inspection logic 440 may also containhardware and/or
Software for discarding packets based on, for example, the
determination of the packet contents.

FIG. 5 shows exemplary groups of packets that may be
received by compute processors 320 from MAC processors
310. For example, group of packets 510 and 530 may be
received by compute processor 320-1 from MAC processor
310-1 and stored in queue 410-1. Group of packets 520 and
540 may be received by compute processor 320-1 from MAC
processor 310-2 and stored in queue 410-2. Queues 410-1 and
410-2 may be contained in memory 410. Exemplary group of
packets 510 may contain five packets of data, labeled 1-5 and
group of packets 530 may contain six packets of data, labeled
as 11-16. Exemplary group of packets 520 may contain five
packets of data, labeled as 6-10 and exemplary group of
packets 540 may contain seven packets of data, labeled as
17-23. The exemplary groups of packets received and stored
in queues 410-1 and 410-2 may be processed as described
below with reference to FIG. 6.

Exemplary Processing

FIG. 6 is a flow diagram illustrating an exemplary early
load detection process 600 performed by compute processor
320. Process 600 may be performed on two stored queues of
packets, where a first queue is received from MAC processor
310-1 and a second queue is received from MAC processor
310-2. In the example shown in FIG. 5, for instance, the first
queue may be queue 410-1 and the second queue may be
queue 410-2. Process 600 may begin as a first packet is
dequeued (act 610). Referring to FIG. 5, packet 1 contained in
queue 410-1 may be dequeued. After dequeing packet 1, the
average queue size may be calculated (act 620). For example,
the remaining number of data packets in the first and second
queues (410-1 and 410-2) may be determined and used in a
formula to calculate the average queue size. For example, a
current average queue size “avg.” may be calculated from a
previous average queue size “avg.” using a formula such as:

(1)

where “q may be the number of packets in the first and
second queues remaining to be dequeued. The variable
“w” may be considered as a “time constant value of the
queue filter logic 420, where “w” may be calculated
from a formula Such as:

(2) (1 - w)ht - 1
H + 1 + s L

where L may be a low queue length value constant, such as
60% of a maximum queue size, and H may be a high
queue length value constant, Such as 90% of a maximum

5

10

15

25

30

35

40

45

50

55

60

65

6
queue size, where an exemplary maximum queue size
(the Sum of both the first and second queues together)
may be 128 packets. For example, H may be set to a
value of 115 packets and L. may be set to 76 packets.
Using exemplary formula (2), a value of “w” may be
obtained and “w” may then be used in exemplary for
mula (1), in order to calculate a current average queue
size “avg.

For example, the four remaining packets contained in
queue 410-1 (2-5), and the five packets contained in queue
410-2 (6-10), are a total of 9 packets after dequeing packet 1
of queue 410-1. Using w=0.1, q=9, avg 0, a current average
may be calculated to be avg. 0.9. The current average queue
size value calculated in act 620 may then be compared to a
stored threshold value (act 630). For example, the stored
threshold value H may be compared to the calculated average
value “avg. in queue filter logic 420. If it is determined in act
630 that the average queue size is not greater than the thresh
old value (NO), the packet may be processed (act 640). For
example, the data contained in packet 1 may be processed by
packet processor 430 and may be transmitted to Internet 150.

Each time a packet is dequeued in act 610 a current average
queue size may be calculated using current values of q and
avg calculated inact 620. For example, after dequeing packet
1 of queue 410-1, the next packet that is dequeued is packet 6
of queue 410-2. Using w 0.1, q=8, avg. 0.9, a current aver
age queue size may be calculated to be avg. =1.6. Continuing
in this manner, the average queue sizes avg. calculated (inact
620) after dequeing packets 2, 7.3, 8, 4.9 and 5 may be 2.14,
2.53, 2.78, 2.90, 2.90, 2.81 and 2.63 respectively.

After processing a dequeued packet, it is determined if the
processed packet is the last packet in a queue (act 650). For
example, if packet 5 contained in queue 410-1 were pro
cessed, it may be determined that it is the last packet in a
queue and a group of packets may then be received (act 660).
For example, after processing packet 5 in queue 410-1, group
ofpackets 530 may be received and stored into queue 410-1 of
compute processor 320. In this example, packet 10 in queue
410-2 may then be dequeued in act 610. The number of
packets remaining to be dequeued (in queues 410-1 and 410
2) may now be equal to 6, as the last packet (10) may be
dequeued from queue 410-2 (leaving Zero packets remaining)
while 6 packets may be contained in the next group of packets
received queue 410-1. Compute processor 320 may then use
the determined value of w=0.1, the previous average queue
size value avg. 2.63 and q-6, to calculate an average queue
size avg. =2.97 in act 620, for example. If a processed packet
is not determined to be a last packet in a queue, process 600
may continue to process the next packet by dequeing a next
packet (act 610). Compute processor 320 may receive packets
(based on hash values computed in MAC processor 310) in
groups or individually. Compute processor 320 may also wait
for packets to be received if a queue is empty, for example.

If the average queue size is determined to be greater than a
threshold value (act 630) the packet is inspected to determine
if it is a session creation packet (act 670). For example, if
queue filter logic 420 determines that the calculated average
queue size (avg.) is greater than the threshold value (H),
packet inspection logic 440 may inspecta packet to determine
the contents. If the packet is determined to be a session
creation packet, it may be dropped (act 680). If the packet is
dropped, it is then determined if the packet is the last packet
in a queue (act 650). If the dropped packet is determined to be
the last packet in a queue (Yes), a next packet may be received
(act 660).

If, for example, the packet is inspected by packet inspec
tion logic 440 and not determined to be a session creation

US 8,036,124 B1
7

packet (act 670), the packet may then be processed (act 640).
For example, packet processor 430 may process the packet
contents and forward the packet to Internet 150. In this man
ner, even if a threshold value (H) has been exceeded, a packet
may be processed if it is not determined to be a session
creation packet, in order to ensure that existing data connec
tions may not be interrupted.

Although process 600 may calculate an average queue size
of the two queues (410-1 and 410-2), if the queue from one of
the MAC processors 310 is empty, compute processor 320
may calculate the average queue size using only one queue.
For example, packets from queue 410-2 (received from MAC
processor 310-2) may be dequeued and if the queue from
MAC processor 310-1 is empty (queue 410-1 contains no
packets), the average queue size value may be calculated
using the number of remaining packets in queue 410-2. Com
pute processor 320 may continue to dequeue packets and
calculate average queue sizes using only one queue until
packets may be received and stored in a second queue, for
example.

In further embodiments, exemplary process 600 may also
calculate an average queue size using three or more queues.
For example, compute processor 320 may receive packets
from three or more MAC processors 310, where packets
received from each of the MAC processors 310 may be stored
in queue memory 410. If, for example, an average queue size
is calculated using three queues of packets, exemplary for
mulas (1) and (2) may be used as described above with appro
priately scaled values of L and H. For example, when calcu
lating an average queue size using three queues of packets, a
value of L (60% of a maximum queue size) would be 115
packets and a value of H (90% of a maximum queue size)
would be 173 packets, as calculated using a maximum queue
size of 192 packets.

CONCLUSION

Implementations consistent with the principles of the
embodiments provide methods and systems for early load
detection in a compute processor. The foregoing description
of exemplary embodiments provides illustration and descrip
tion, but is not intended to be exhaustive or to limit the precise
form disclosed. Modifications and variations are possible in
light of the above teachings or may be acquired from practice
of the embodiments.

Moreover, while series of acts have been described with
regard to FIG. 6, the order of the acts may be varied in other
implementations consistent with the principles of the
embodiments. In addition, non-dependentacts may be imple
mented in parallel.
No element, act, or instruction used in the description of the

present application should be construed as critical or essential
unless explicitly described as Such. Also, as used herein, the
article 'a' is intended to include one or more items. Where
only one item is intended, the term “one' or similar language
is used. Further, the phrase “based on is intended to mean
“based, at least in part, on unless explicitly stated otherwise.
What is claimed is:
1. A method comprising:
storing, by a device, a first queue of packets and a second
queue of packets,

where the first queue of packets includes a first number of
packets and the second queue of packets includes a
second number of packets;

dequeueing, by the device, a packet from the first queue of
packets or the second queue of packets;

calculating, by the device, an average queue size based on:

10

15

25

30

35

40

45

50

55

60

65

8
a number of packets included in the first queue and

included in the second queue after the packet has been
dequeued from the first queue of packets or the second
queue of packets,

a previous average queue size based on a prior number of
packets included in the first queue of packets and in the
second queue of packets prior to the packet being
dequeued, and

a queue filter time constant;
determining, by the device, whether the packet is a session

creation packet when the calculated average queue size
is greater than a threshold value,

where determining whether the packet is a session creation
packet comprises examining contents of the packet;

discarding, by the device, the packet when the packet is
determined to be a session creation packet and when the
calculated average queue size is greater than the thresh
old value; and

further processing, by the device, the packet when the
calculated average queue size is greater than the thresh
old value and when the packet is determined not to be a
session creation packet.

2. The method of claim 1 further comprising:
comparing the calculated average queue size to the thresh

old value;
determining that the calculated average queue size is less

than the threshold value based on comparing the calcu
lated average queue size to the threshold value; and

transmitting the packet when the calculated average queue
size is less than the threshold value.

3. The method of claim 2, where the threshold value is 90%
of a maximum queue size, and
where the maximum queue size is based on a Sum of a
maximum number of packets included in the first queue
of packets and included in the second queue of packets.

4. The method of claim 1, where calculating an average
queue size further comprises:

determining the average queue size as avg. = (1-w)x
avg|+(Wxq). where q is the number of packets remain
ing in the first queue and the second queue after the
packet has been dequeued from the first queue or the
second queue, avg is the previous average queue size,
and w is the queue filter time constant.

5. A network device comprising:
a queue memory to store a first queue of packets received

from a first media access control (MAC) processor and a
second queue of packets received from a second media
access control (MAC) processor, and

logic to:
dequeue a packet from the first queue of packets,
calculate an average queue size based on:

a number of remaining packets in the first queue of
packets and the second queue of packets after the
packet has been dequeued,

a previous average queue size based on a previous
number of packets remaining in the first queue of
packets and the second queue of packets prior to the
packet being dequeued, and

a queue filter time constant,
compare the calculated average queue size to a thresh

old,
examine content of the dequeued packet when the cal

culated average queue size is greater than the thresh
old,

determine, based on the examined content, whether the
dequeued packet is a session creation packet,

US 8,036,124 B1
9

discard the dequeued packet when the calculated aver
age queue size is greater than the threshold and when
the dequeued packet is a session creation packet, and

further process the dequeued packet when the calculated
average queue size is greater than the threshold and
when the dequeued packet is not a session creation
packet,

where, when further processing the dequeued packet,
the logic is further to:
process payload information contained in the packet,

and
prepare the dequeued packet for transmission to a

network when the payload information has been
processed.

6. The network device of claim 5, where the logic is further
tO:

determine whether the dequeued packet is a last packet in
the first queue of packets, and

receive one or more packets for the first queue of packets
when the dequeued packet is the last packet.

7. A method comprising:
storing, by a device, two queues of packets in a memory

associated with the device;
dequeueing, by the device, a packet from one of the two

queues of packets;
calculating, by the device, an average queue size of the two

queues based on a number of packets remaining in the
two queues of packets after dequeueing the packet from
the one of the two queues of packets,

a previous average queue size based on a previous number
of packets remaining in the two queues of packets prior
to the packet being dequeued, and a queue filter time
constant;

comparing, by the device, the calculated average queue
size to a threshold value;

determining, by the device and based on a result of com
paring the calculated average queue size to the threshold
value, whether the dequeued packet is a session creation
packet;

discarding, by the device, the dequeued packet when the
calculated average queue size exceeds the threshold
value and when the dequeued packet is a session creation
packet, and

further processing, by the device, the dequeued packet
when the calculated average queue size exceeds the
threshold value and when the dequeued packet is not a
session creation packet.

8. The method of claim 7, where the threshold value is 90%
of a maximum queue size of the two queues.

9. The method of claim 7, where calculating the average
queues size further comprises:

calculating the average queue size as avg (1 -w)Xavg. -
(wxq), where q is the number of packets remaining in the
two queues after dequeueing the packet, avg is the pre
vious average queue size based on a previous number of
packets remaining in the two queues prior to dequeueing
the packet, and w is the queue filter time constant; and

calculating w based on

(1 - w)''' - 1
H + 1 + -- s L.

*

where H is a high threshold value and L is a low threshold
value.

10

15

25

30

35

40

45

50

55

60

65

10
10. The method of claim 9, where His 90% of a maximum

queue size of the two queues.
11. The method of claim 9, where L is 60% of a maximum

queue size of the two queues.
12. A network device comprising:
a plurality of processors, where each of the processors is to:
receive and store a first queue of packets from a first media

access control (MAC) processor,
receive and store a second queue of packets from a second
MAC processor;

dequeue a packet from the first queue of packets or the
second queue of packets;

calculate an average queue size based on:
a number of remaining packets in the first queue of

packets and second queue of packets after the packet
has been dequeued,

a previous average queue size prior to the packet being
dequeued, and

a queue filter time constant;
compare the calculated average queue size to a threshold;
determine, based on a result of comparing the calculated

average queue size to the threshold, whether the
dequeued packet is a session creation packet;

further process the dequeued packet when based on the
calculated average queue size is greater than the thresh
old and whether the dequeued packet is not a session
creation packet, and

discard the dequeued packet when the calculated average
queue size is greater than the threshold and when the
dequeued packet is a session creation packet.

13. The network device of claim 12, the plurality of pro
cessors are further to:

determine that the calculated average queue size is less
than the threshold,

process the dequeued packet when the calculated average
queue size is less than the threshold, prior to determining
whether the dequeued packet is a session creation
packet,

where the plurality of processors are to determine whether
the dequeued packet is a session creation packet when
the calculated average queue size is greater than the
threshold.

14. The network device of claim 12, where, when calcu
lating an average queue size, the plurality of processors are
further to:

calculate, after each packet is dequeued from the first
queue of packets or the second queue of packets, a cur
rent average queue size, and

determine whether to process or discard each dequeued
packet based on the respective calculated current aver
age queue sizes.

15. The network device of claim 12, where, when dequeue
ing a packet, the plurality of processors are further to:

select the packet to be dequeued by alternating between the
first queue of packets and the second queue of packets.

16. A method comprising:
storing, by a device, three or more queues of packets in a
memory associated with the device;

dequeueing, by the device, a packet from one of the three or
more queues;

calculating, by the device, an average queue size based on:
a number of packets in the three or more queues after

dequeueing the packet from the one of the three or more
queues,

a previous average queue size prior to dequeueing the
packet from the one of the three or more queues, and

a queue filter time constant;

US 8,036,124 B1
11

comparing, by the device, the calculated average queue
size to a threshold value;

examining, by the device, contents of the packet to deter
mine whether the packet contains session creation infor
mation, when the calculated average queue size is
greater than the threshold value; and

discarding, by the device, the packet when the packet is
determined to contain session creation information and
the calculated average queue size is greater than the
threshold value; and

transmitting, by the device, the packet when the packet is
determined to not contain session creation information
and the calculated average queue size is greater than the
threshold value.

17. The method of claim 16, where calculating the average
queue size comprises:

determining that a first one, of the three or more queues, is
not empty and that other ones, of the three or more
queues, are empty; and

calculating the average queue size further based only on a
number of packets in the first one, of the three or more
queues, when the other ones, of the three or more
queues, are empty.

18. The method of claim 16, further comprising:
dequeueing a packet from aparticular queue, of the three or
more queues;

determining whether the dequeued packet, from the par
ticular queue, is a last packet in the particular queue; and

receiving at least one additional packet at the particular
queue when the dequeued packet from the particular
queue is the last packet in the particular queue.

10

15

25

30

12
19. The method of claim 18, further comprising:
dequeueing another packet from the particular queue when

the dequeued packet, from the particular queue, is not
the last packet in the particular queue; and

calculating another average queue size based on:
a number of packets in the three or more queues after

dequeueing the other packet and,
the calculated average queue size.

20. The method of claim 16, further comprising:
transmitting the packet when the calculated average queue

size is not greater than a threshold value,
where the contents of the packet are not examined when the

calculated average queue size is not greater than a
threshold value.

21. The network device of claim 12, where the plurality of
processors are further to:

dequeue another packet from the first queue of packets or
the second queue of packets when the dequeued packet
is a last packet in the first queue of packets or the second
queue of packets; and

receiving another packet when the dequeued packet is not
the last packet in the first queue of packets or the second
queue of packets.

22. The network device of claim 5, where the logic is
further to:

process the dequeued packet when the calculated average
queue size is not greater than the threshold,

where the logic is to not examine the contents of the
dequeued packet when the calculated average queue size
is not greater than the threshold.

23. The method of claim 5, further comprising:
processing the packet when the calculated average queue

size is not greater than the threshold.
k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,036,124 B1 Page 1 of 1
APPLICATIONNO. : 1 1/673236
DATED : October 11, 2011
INVENTOR(S) : Girish Motwani

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 2 (column 8, line 24), after “The method of claim 1 insert --, --,

Claim 7 (column 9, line 29), after “queues based on insert -- : -;
Claim 7 (column 9, line 45), after “packet delete --, -- and insert -- : -;

Claim 12 (column 10, line 24), after “dequeued packet when delete “based on:
Claim 12 (column 10, line 26), after “old and delete “whether:
Claim 12 (column 10, line 27), after “packet delete --, -- and insert --, --,

Claim 18 (column 11, line 32), after “packet insert --, --,
Claim 18 (column 11, line 33), after “queue (first occurrence) insert --, --.

Signed and Sealed this
Twentieth Day of December, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

