OPIC

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

CIPO

(CANADIAN INTELLECTUAL

PROPERTY OFFICE

(72) CLICK, CLIFFORD N., JR., US
(72) VICK, CHRISTOPHER A., US
(72) PALECZNY, MICHAEL H., US
(71) SUN MICROSYSTEMS, INC., US

51y Int.C1.” GO6F 9/30, GO6F 9/45, GO6F 13/38

30) 1999/04/23 (09/298.251) US

54y SELECTION D’INSTRUCTIONS DANS UN ENVIRONNEMENT
A PLATE-FORMES MULTIPLES

54) INSTRUCTION SELECTION IN A MULTI-PLATFORM

ENVIRONMENT

locate node in tree "\/1 002

go to Instruction

selection code for N 1004
located node

——

select next potential user
defined instruction that 1006
matches to node

- does location of inputs of user
defined instructionmatch location 1008
of inputs for node?

yyes
nstructl
predlcate 1010
ansfed7

*yes

estimate execution cost for
user defined instruction /_,1 012

Y 1016

R

cost estimate less

1014

es
than previous cost Y update cost estimate

estimate?

Y

L update oost-;stimate

/ﬁ?}?gusgr define 1078

instructions that
yes \match? " N\c1020

na

(12) (19) (CA) Dem ande-Application

(21) (A1) 2,306,542
22) 2000/04/20
43) 2000/10/23

(57) Systems and methods for building a platform specific compiler having an embedded 1nstruction selector 1n a multi-
platform environment are provided. A set of user defined platform dependent compiler architecture descriptors that
describe corresponding architectural features and a set of imstruction predicates defining those instructions to be
selected are converted to platform dependent compiler object code and instruction selector object code, respectively.
The platform specific compiler having the embedded instruction selector 1s formed from the platform dependent
compiler object code, the instruction selector object code, and the platform independent compiler object code.

I*I Industrie Canada Industry Canada

10

CA 02306542 2000-04-20

ABSTRACT OF THE DISCLOSURE

Systems and methods for building a platform specific compiler having an

embedded instruction selector in a multi-platform environment are provided. A set of

user defined platform dependent compiler architecture descriptors that describe

corresponding architectural features and a set of instruction predicates defining those
instructions to be selected are converted to platform dependent compiler object code
and 1nstruction selector object code, respectively. The platform specific compiler
having the embedded instruction selector is formed from the platform dependent
compiler object code, the instruction selector object code, and the platform

independent compiler object code.

SUNI1P227 32

10

15

20

25

CA 02306542 2000-04-20

INSTRUCTION SELECTION IN A
MULTI-PLATFORM ENVIRONMENT

INVENTORS:
Clifford N. Click, Jr.

Christopher A. Vick
Michael H. Paleczny

BACKGROUND OF THE INVENTION
1. Field of Invention
The invention relates generally to computer systems. More particularly,
methods and apparatus for selecting executable instructions in a multi-platform
computing environment are disclosed.
2. Description of Relevant Art

The continuing proliferation of software platforms and hardware architectures

ensures that both computer users and computer program developers will encounter

many different computing environments in the course of their careers. It should be
noted that in the context of this discussion, the term environment refers to the
complete range of elements in a computing system that interact with the ported
software. These elements typically include a processor and operating system as well
as I/0 devices, lib;aries, networks, or, in some cases, a larger human or physical
system. Even though a few quasi-standard platforms (e.g. IBM-PC, UNIX) have

become widely used there, as yet, is no universal computing environment. In order to
maintain and expand their viability, therefore, most software programs will eventually
face the need to be ported, such that an executable version of the software program

based on the existing version is created in the new computing environment.

Portability, or the ability of a software program to be ported to a given environment

SUNI1P227

10

15

20

25

CA 02306542 2000-04-20

(1.e., the target) is, therefore, becoming universally recognized as a desirable attribute
for most software programs. It is clear, therefore, that portability between different
computing platforms enhances the value of a software program both by extending its
useful lifecycle and by expanding the range of installations in which it can be readily
used. As is well known in the art, a software program can include an application
program, a system program, or a component of a program whereas a software system
1s a collection of software programs.

A software program is portable if and to the degree that the cost of porting is

less than the cost of rewriting the program in the new target environment. A software

program would be perfectly portable if it could be ported at zero cost and, of course,
this 1s never possible in practice. In practice there are two basic portability protocols,
the first being binary portability (i.e., porting the executable form of the software .
program) and the second being source portability (1.e., porting the source language
representation of the software program). Although binary portability protocols
typically offer several advantages (related primarily to ease of porting) it can only be
used to port software programs across strongly similar environments thereby severely
limiting 1ts usefulness. In contrast, since source portability protocols assume
availability of a source code, they typically provide a greater ability to adapt a
particular software program to a wider range of computing environments.
Unfortunately, most of the porting process is still done by ad hoc methods that
result in 1netficient techniques that add substantially to the costs of porting software
from one platform to another. By way of example, a compiler translates a computer

program from one language into another, catching any errors in syntax along the way.

Most commonly, a compiler translates some high level language, such as C++ or

COBOL, 1nto machine language such that the computer can understand without any

SUN1P227)

10

15

20

25

CA 02306542 2000-04-20

translation. In order to fully port a compiler, therefore, several tasks must be
accomplished in order for the ported compiler to .be able to successfully, and in a
highly reliable manner, perform its designed functions while operating in a totally
different platform than the one it was originally conceived.

T'he several tasks required to be accomplished in order to fully port a compiler
include proper instruction selection since generally many different instruction types

can match the same machine independent semantics. A simple example is the

operation defined as adding a constant of “1” to a value where the value of “1” can be
represented as either an 8 bit or a 32 bit precision integer number. In another
example, for an X86 processor found in the Pentium® and Pentium II® line of

microprocessors, the floating point unit (FPU) has 3 precision modes in which it can

perform various operations, such as addition and subtraction. In the case where the
semantics require rounding to, for example 24 bit precision, and an FPU control word
has set the FPU precision to be, for example 53 bits, it would be inefficient and
incorrect for the X86 compiler to select instructions defined in the architecture

description that produce 53 bits of precision without introducing additional rounding.

Other examples include multiple hardware platforms, such as the SPARC
microprocessor configured as a V8 or a V9 processor. When configured as a V8

system, only V8 type instructions can be executed, however, when configured as the

V9 system, either V8 type or V9 type instructions can be executed. Therefore, it is
essential that in those cases where the V8 system is operating that only V8 type
instructions be selected since V9 instructions can not execute on the V8 system.

It 1s also desirable to select not only those instructions that will properly

execute on a particular platform, but also select those instructions that improve the

overall performance of the processor by reducing the “cost” of execution. By way of

SUN1P227 3

10

CA 02306542 2000-04-20

example, storing the results of a particular operation, such as a subtraction, in a
memory location is generally more computer resource intensive (i.e., more costly)
than storing the same result in a data register. Therefore, 1t would be more cost
etfective, where possible, to select the instruction whose cost is the least of all those
Instructions that could possibly be used. Using the example above, it would make

sense from a cost effectiveness standpoint to select the instruction that stores its result

In a register as opposed to those instructions that store their respective result in a

location 1n memory.

Therefore, what is desired is the capability of defining a selection protocol
whereby not only are the proper instructions selected to execute in a multi-platform
computing environment, but the cost of executing these selected instructions is

minimized.

SUN1P227 4

10

15

20

25

CA 02306542 2000-04-20

SUMMARY OF THE INVENTION

Broadly speaking, the invention relates to an improved method, apparatus and
computer system for building a compiler having an instruction selector in a multi-
platform environment. The invention can be implemented in numerous ways,

including as a method, a computer system, and an apparatus. Several embodiments of

the invention are discussed below.

According to one aspect of the present invention, an apparatus for compiling a

platform specific compiler having an embedded instruction selector is described. The
apparatus includes a set of user defined platform dependent compiler architecture
descriptors that describe corresponding architectural features of a particular hardware
platform and instruction predicates used by the instruction selector. An architecture
descriptor compiler converts the user defined platform dependent compiler
architecture descriptors into the platform dependent compiler source code and
instruction selector source which is converted into platform dependent object code

and 1nstruction selector object code by a host compiler. The compiler is formed from
platform independent compiler object code and the platform dependent compiler
object code in combination with the instruction selector object code.

As a method for building a platform specific compiler, a set of user defined
platform dependent compiler architecture descriptors that describe corresponding
architectural features of a particular hardware platform dependent compiler and
instruction predicates are provide&. The descriptors and 1nstruction predicates are

converted into platform dependent compiler source code and instruction selector

source code by an architecture descriptor compiler. The platform dependent compiler
source code and instruction selector source code is compiled into platform dependent

object code and instruction selector object code. The platform specific compiler

SUN1P227 5

10

CA 02306542 2000-04-20

having the embedded instruction selector is formed from the platform dependent
object code, the instruction selector object code, and platform independent compiler
object code.

In another embodiment, a platform specific compiler is disclosed. The
compiler includes platform dependent compiler object code having embedded
Instruction selector object code and platform independent compiler object code which
are suitable for execution on a particular hardware platform. An interface that is
partially embedded in the platform independent code and partially embedded in the
platform dependent object code mediates flow of information between the platform
independent compiler code and the platform dependent compiler code during platform
specific compiler run time.

These and other advantages of the present invention will become apparent
upon reading the following detailed descriptions and studying the various figures of

the drawings.

SUN1P227 6

10

15

20

25

CA 02306542 2000-04-20

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention, together with further advantages thereof, may best be
understood by reference to the following description taken in conjunction with the
accompanying drawings in which:

Fig. 1 1s a representative block diagram of a multi-platform compiler system in
accordance with an embodiment of the invention;

Fig. 2 illustrates a particular implementation of the multi-platform compiler
shown 1n Fig 1;

F1g. 3 shows another implementation of the compiler shown in Fig. 2:

Fig. 4 shows a flowchart detailing a compiler building process in accordance
with an embodiment of the invention;

Fig. 5 illustrates a Java Virtual Machine (JVM) having a platform specific
compiler in accordance with an embodiment of the invention;

Fig. 6A illustrates an exemplary AD file organization in accordance with an

embodiment of the invention:

Fig. 6B illustrates a particular relationship between various data fields

included in the AD file shown in Fig. 6A;

Fig.7 1llustrates an exemplary interface coupling platform dependent source
code and platform independent source code in accordance with an embodiment of the
invention;

Fig. 8 is an exemplary rep;ésentation of a run-time process by the compilation

engine 1n accordance with an embodiment of the invention;

Fig. 9 is a representation of a machine independent instruction:

Fig. 10 1s flowchart detailing the instruction selection process in accordance

with an embodiment of the invention; and

SUN1P227 7

CA 02306542 2000-04-20

Fig. 11 illustrates a computer system employed to implement the invention.

SUN1P227 8

10

15

20

25

CA 02306542 2000-04-20

DETAILED DESCRIPTION OF THE EMBODIMENTS

In the following description, frameworks and methods of selecting instructions
in a multi-platform computing environment are described. The invention will initially
be described in terms of a multi-platform compiler residing in a Java virtual machine.

In general, 1n order to build a platform specific compiler having an embedded

instruction selection code, a set of user defined platform specific architecture
descriptors in the form of an architecture description language (ADL) file and a set of

user defined instruction predicates are provided. It should be noted that the ADL can

take many forms well known to those skilled in the art such as C++, Attribute

Grammars, Custom Description Languages, etc., or some combination of these forms.
In the described embodiment, the instruction predicates take the form of boolean
expressions that in conjunction with instruction selection code embedded in the
platform specific compiler, enabl¢ only those instructions that are to be executed. In
one embodiment of the invention, the determination of the boolean expression’s value
may only be possible during instruction selection.

The AD file includes the user defined instruction predicates that form an input
to a multi-platform compiler builder that includes an architecture design language
compiler (ADLC). In one embodiment, the ADLC is used to generate particular
target platform dependent compiler source code used to build the target specific

compiler. The ADLC also generates target platform instruction selection source code

and target platform instruction predicate source code. The platform specific compiler

having an embedded instruction selector is built using the platform dependent

compiler source code, the instruction selection source code, and the instruction

predicate source code provided by the ADLC in combination with the platform

independent compiler object code otherwise provided.

SUN1P227 0

10

15

20

25

CA 02306542 2000-04-20

In this way, the platform specific compiler selects not only those instructions
deemed by the user to be suitable for execution on the target platform but those
instructions which improve processor performance by reducing instruction execution
costs. .In this way, the reliability and performance of the processor in a multi-platform
environment are substantially improved.

Fig. 1 1s a representative block diagram of a multi-platform compiler system
100 1n accordance with an embodiment of the invention. The multi-platform compiler
system 100 1s capable of building, or compiling, a platform specific compiler capable
of selecting instructions appropriate to the target platform. In addition, the compiler
1s also capable of selecting those instructions that improve overall processor
performance by reducing instruction execution cost.

In the described embodiment, the platform specific compiler is built by
compiling platform independent source code representing those portions of the
platform specific compiler that are independent of any particular platform and
platform dependent source code representing those features of the compiler that are
platform specific. In those cases where user defined (explicit) instruction predicates
are provided, or where it is determined that particular instructions require instruction
predicates regardless whether or not they are user supplied (implicit), the compiler is
built using instruction predicate source code that provides the platform specific
compiler with the aforementioned selection capability.

More particularly, in the described embodiment, the multi-platform compiler

system 100 includes a compiler builder 102 arranged to build the platform dependent
compiler using platform specific architecture descriptors and instruction predicates.

In the described embodiment, the platform specific architecture descriptors take the

form of architecture description language (ADL) used to represent those platform

SUNI1P227 10

10

15

20

CA 02306542 2000-04-20

dependent portions of the target platform compiler while the instruction predicates
take the form of boolean expressions. It should Be noted that the ADL can take many
forms well known to those skilled in the art such as C++, Java source code, Pascal,
etc. Typically, it is the AD file that is coded by the user of the multi-platform
compiler system 100, however, in some cases, the AD file is provided by original
equipment manufacturers in situations referred to as “turn key” systems. In these
situations, the end user has selected which target platforms are deemed to be useful
and the supplier has provided the necessary coding efforts.

In many instances, the AD file is located in, for example, memory systems
external to the compiler builder 102 such as an AD file 104 and an AD file 106. It
should be noted that although any number of AD files can be provided, each specific
to a particular platform, however, only one AD file at a time is processed by the
compiler builder 102. In this way, when platform dependent source code specific to,
for example, a platform type 1 is provided, the customized compiler builder 102 is
capable of compiling source code into platform type 1 object code. For example, the
AD file 104 can include ADL code having instruction predicates used by the compiler
builder 102 to build an X86 compiler capable of preferentially selecting those
instructions enabled by the user defined instruction predicates. As well known in the
art, X86 object code are those instructions executable by an X86 microprocessor

manufactured by the Intel Corporation of Santa Clara, CA.

Along the same lines, the AD file 106 can include ADL code having

instruction predicates used by the compiler builder 102 to build, for example, a
SPARC compiler capable of preferentially selecting those instructions enabled by the

user defined instruction predicates.

SUNI1P227 11

10

15

20

CA 02306542 2000-04-20

In both cases, the overall performance of the processor can be improved since
a cost analysis is also performed substantially simultaneously with the selection. In
this way, the compiler builder 102 is capable of automatically providing as many of
the platform specific compilers having appropriate instruction selection code as there
are AD files and corresponding user defined instruction predicates as are available.

Referring now to Fig. 2 illustrating a particular implementation of the multi-
platform compiler builder 102 shown in Fig 1. In the embodiment shown, the
compiler builder 102 includes an architecture description language compiler 202
(ADLC) coupled to an AD file 204 having user defined instruction predicates file 201.

The ADLC 202 1s arranged to compile the platform specific ADL code included in the

AD file 204 and the instruction predicates included in the file 201 to platform
dependent compiler source code, instruction selector source code, and instruction
predicate source code, respectively. In addition, the ADLC 202 1s capable of
generating instruction predicates that are not explicitly written in the AD file 204 in
order to ensure a correct or efficient instruction selection, heretofore referred to as
implicit instruction predicates.

The platform dependent compiler source code, the instruction selector source
code, and the instruction predicate source code are, in turn, provided to a host
compiler 203 coupled to the ADLC 202. In the described embodiment, the host
compiler 203 is a C++ compiler well known to those skilled in the art. However, any
compiler suitably arranged to corﬁpile source code to target specific compiler object
code can be used.

Durning compile time, the host compiler 203 coupled to the ADLC 202

compiles the platform dependent source code in combination with the platform

dependent instruction predicates source code and instruction selector source code to

SUN1P227 12

10

15

20

25

CA 02306542 2000-04-20

form the platform dependent compiler object code having embedded instruction

selector object code. In the described embodiment, the platform dependent compiler
object code 1s represented by a code block 206 that includes the embedded instruction
selector object code represented by a code block 216 included in a compiler unit 208
coupled to the host compiler 203. The embedded instruction selector object code
provides the customized compiler unit 208 with the capability of selecting those

instructions deemed appropriate by the user. In addition, by performing a cost

analysis, those 1nstructions which reduce instruction execution cost are preferentially

- selected thereby improving processor performance by reducing overall instruction

execution cost.

In some cases, the platform independent compiler object code is derived from
plattorm independent compiler source code compiled by the host compiler 203. In
other cases, such as the described embodiment, the platform independent compiler
object code 1s already provided. In the described embodiment, the platform
independent object code 1s represented by a code block 210 that includes, in one
embodiment, a compilation engine 212 coupled to a platform independent interface
214. In a particular implementation, during what 1s referred to as run-time, the
interface 214 mediates the transfer of information between selected portions of the

plattorm dependent object code and instruction selection object code to the

compilation engine 212.

By way of example, when an X86 microprocessor is required, the user

provides, for this example, the AD file 204 having stored therein the appropriate ADL

code specific to the X86 platform and the file 201 having the appropriate instruction
predicates. As directed by the compiler builder 102, both the X86 specific ADL code

and the 1nstruction predicates are supplied to the ADLC 202. The ADLC 202 then

SUN1P227 13

10

15

20

25

CA 02306542 2000-04-20

compiles the ADL code to X86 specific compiler source code and the instruction
predicates to corresponding platform specific instruction predicates source code and
instruction selector source code. It should be noted that the ADLC 202 is a universal
compiler capable of converting any properly constructed AD file into corresponding
platform specific compiler source code and, if required, platform dependent

instruction predicate source code. In this way, any requirements that the user code, or

in any way modify the ADLC 202 or any portion thereof are substantially eliminated.
Theretore, the only coding required of the user is that required to provide a properly

constructed and verified AD file that can include, if necessary, instruction predicates.
Once the ADLC 202 has compiled the X86 specific ADL code to X86

compiler source code and the instruction predicates into instruction selector source
code, they are compiled to object code using host compiler 203 and represented by the
blocks 206 and 216, respectively.

In some cases, multiple platform dependent compiler source code files are

made available to a compiler unit 300 shown 1n Fig. 3. The compiler unit 300 is one

implementation of the compiler unit 208 shown in Fig. 2 and, as such, should only be

consider exemplary in nature. In the described embodiment, the various platform
dependent AD files are stored in a file stack 301. The file stack 301 can be local to
the compiler unit 300 or, in some cases, can be remotely located in, for example, data

bases, remote servers, etc. This arrangement 1s particularly well suited for

-

applications involving transferring data over coupled computer networks, such as the

Internet, local area networks (LANSs), and the like. This use of multiple AD files is

particularly advantageous since it provides the compiler unit 300 with the capability

of operating, as needed, as any platform specific compiler represented by the '

corresponding AD file. By way of example, the file stack 301 includes platform an

SUNI1P227 14

10

15

20

25

CA 02306542 2000-04-20

AD ftile 302 representing, for example, SPARC specific descriptors along with their
corresponding instruction predicates which is converted to corresponding platform
dependent source code 304 and instruction selector 306. With this arrangement, any
platform having its corresponding AD file included in the file stack 301 could be
selected to customize the compiler unit 300. Although not shown, a selector is
typically employed to select which AD file is to be input to the ADLC 202.

As discussed above, the compiler builder 102 builds a particular compiler
having an instruction selector, using in one embodiment, a process 400 detailed by the
flowchart shown 1n Fig. 4. The process 400 begins at 402 by providing platform

specific architecture descriptors in the form of ADL code stored in, for example, an

AD file. At 404 a determination is made whether or not the AD file includes user

defined instruction predicates (explicit) or whether or not implicit instruction
predicates are required. Implicit instruction predicates are required when, for
example, 1t 1s essential for proper instruction execution that particular data be present
in particular locations. Such a situation occurs with those instructions having multiple
occurrences of a particular operand where it is essential that each operand must be the

same otherwise a processing error is likely to occur. Since the risks of error is likely

to vary from platform to platform (i.e., executing a 3 address instruction on a 2
address platform versus executing a 2 address instruction on a 3 address platform),
relying on the user to comprehend this fact is risky. In addition, an instruction
predicate can require the use of i;ﬁplementation details of the compiler unit that may

not be available to the writer of the AD file. Therefore, implicit instruction predicates
are a part of the instruction selection process in that those particular instructions

requiring special consideration are provided with the appropriate instruction predicate

by the ADLC.

SUN1P227 15

10

15

20

25

CA 02306542 2000-04-20

When explicit and/or implicit instruction predicates are required, the ADLC
provides the instruction selector source code at 406. Substantially simultaneously
with 406, the ADLC provides platform specific compiler source code at 408 based
upon the AD file inputs, whereas, platform independent compiler source code is
provided at 410. The host compiler then builds the platform specific compiler having
instruction selection and execution cost analysis capability by compiling the platform
independent source code, the platform dependent compiler source code, and the
instruction predicates source code concurrently at 412.

Once the platform specific compiler has been built at 414, the platform
specific compiler 1s available during run-time for selecting those cost effective
instructions that are compiled into platform specific object code as needed. In a
particular embodiment, during run-time, the platform independent interface mediates

the flow of information between the compilation engine and the platform dependent
compiler source code and instruction predicate source code.

More recently, the Java programming language, an object-oriented language,
has introduced the possibility of compiling output (called bytecode) that can run on
any computer system platform for which a Java virtual machine (or bytecode
interpreter) is provided. The Java virtual machine is designed to convert the bytecode
Into 1nstructions that can be executed by the actual hardware processor. Using this

virtual machine, rather than being interpreted one instruction at a time, bytecode can

be recompiled at each particular s;rstem platform by, in some cases, a just-in-time
(JIT) gzompiler.

Fig. 5 illustrates an apparatus that includes a Java Virtual Machine (JVM) 500
incorporating the compiler unit 208 in accordance with an embodiment of the

invention. In the described arrangement, a platform specific AD file stack 502

SUN1P227 16

10

15

20

CA 02306542 2000-04-20

coupled to the ADLC 202 includes a group of AD files each representing particular

platform dependent compiler features. In the described embodiment, the AD file

stack 502 includes the AD file 104 and AD file 106 representing the X86 and SPARC

architectures, respectively. In the case where a number of different AD files are
included in the AD file stack 502, a selector unit (not shown) is typically used to
select a particular AD file from the AD file stack 502 corresponding to the desired
operating platform. When the appropriate AD file 1s selected, the ADLC 202
converts the ADL code included in the selected AD file into appropriate platform
dependent compiler source code as discussed above.

' In the Java programming language and envirbnment, a just-in-time (JIT)
compiler is a program that turns Java bytecode into instructions that can be sent
directly to the processor. After a Java program has been written, the Java source
language statements are compiled by the Java compiler into Java bytecode rather than '

into code that contains instructions that match a particular hardware platform's
processor (for example, an Intel Pentium microprocessor or an IBM System/390

processor). The Java bytecode is platform-independent code that can be sent to any

platform and run on that platform.

More particularly, when bytecodes are provided to a JIT compiler provided by
the compiler unit 208, the compilation of methods contained 1n bytecodes 504 1s
delayed until the methods are about to be executed. When bytecodes 504 are
provided to an interpreter 506, bytecodes 504 are read into interpreter 506 one

bytecode at a time. Interpreter 506 then performs the operation defined by each
bytecode as each bytecode is read into interpreter 506. That 1s, interpreter 506

“interprets” bytecodes 504, as will be appreciated by those skilled 1n the art. In

SUN1P227 17

10

15

20

25

CA 02306542 2000-04-20

general, interpreter 506 processes bytecodes 504 and performs operations associated

with bytecodes 504 substantially continuously.

When a method i1s compiled, the compiler unit 208 generates machine
Instructions as selected by an instruction selector 508. The compiler unit 208 then
generates machine instructions from the selected bytecodes 504, and the resulting
machine language instructions may be executed directly by the target platform
operating system 510. In general, the machine-language instructions are discarded
when virtual machine 500 terminates.

Referring now to Fig. 6 illustrating the organization of an AD file 600 in
accordance with an embodiment of the invention. It should be noted that the
organization shown is one of the many possible organizations that AD file 104 can
take. In the described embodiment, the AD file 600 is a hierarchically organized set

of distinct platform architecture descriptor data fields. By way of example, a register

definition data field 602 is used by the ADLC to describe individual registers and
classes of registers with the target architecture. An encoding block data field 604
specifies the encoding classes used by the target compiler to output byte streams. A
frame management block data field 606 includes information that defines the frame
structure and management protocols. Such information defines, for example, what
direction the frame stack grows, the number of stack slots consumed by a monitor
enter operation, stack alignment requirements, number of stack slots reserved for
“Top of Stack™, amongst others.

An operand data field 608 provides operand definitions that must precede

instruction definitions for correct compilation in the ADLC since operands constitute
user defined types which are used in instruction definitions. A pipeline rules data

field 610 1s provided to define the behavior of the target architecture pipeline. An

SUN1P227 18

10

135

20

CA 02306542 2000-04-20

instruction definitions data field 612 provides instruction formats for the target
architecture as well as corresponding instruction predicates. A peephole data field
614 provides target architecture specific optimization rules used by the ADLC.

The hierarchical organization of the AD file 600 underlies the interrelationship
amongst the various AD input data fields. Fig. 6B graphically illustrates one such
relationship, specifically, the relationship between the various operands included in
the instruction definitions data field 612. By performing an backwards traversal from
using the instruction definitions data field 612 as the root, the relational dependencies
for the various operands required to be input to the AD input data field is

determinable. For example, by performing an upward traversal starting from the

instruction definition data field 612 as the root and extending upward along the
various branches, the pipeline rules data field 610 and operand definitions data field
608 are encountered. Performing. an upward traversals from the from the pipeline
rules data field 612 1s the register definitions data field 602, while the register
definitions data field 602 and the encoding class data field 608 are encountered when
an upwards traversal from the operand definitions data field 608 is performed. In this
way, the various operands required to fully define a particular instruction definition is
provided.

Fig. 7 illustrates an exemplary interface 700 used by the platform dependent
compiler in accordance with an embodiment of the invention. The interface 700

mediates communication between the compiler engine 212 (or the platform

independent object code) and the platform dependent object code in the block 206. In

the embodiment shown, the ADLC output includes object code for a deterministic

finite automaton (DFA) 702 that specifies the mapping from ideal operations to

machine 1nstructions. The ADLC output also includes object code that defines a set

SUN1P227 19

10

15

20

25

CA 02306542 2000-04-20

of instruction classes 704 that are used to, for example, define legal register masks,
encoding methods, branch offset behavior, etc. Object code for a peephole rules
oracle706 that specifies machine specific trees that are legal to optimize and what the

correct replacement is for those trees is also output by the ADLC. In this way, the

platform specific architecture characteristics are automatically provided in a format
suitable for the compilation engine 212 to use in compiling source code into platform
dependent object code.

The target independent portion of the interface 700 is coupled to a matcher

708 which generates input trees to be processed by the DFA 702 that performs bottom
up rewrite rule system (BURS) style tree pattern matching in order to select machine

Instructions for ideal operations in the intermediate representation.

The interface 700 also includes object code arrange to act as a peephole DFA
that performs tree pattern matching to find optimization candidates and replaces
matched trees of machine instructions with optimized trees of machine instructions.
A matcher 708 performs instruction selection using the matcher DFA and builds
machine specific intermediate representations. A scheduler 710 orders the machine
specific intermediate representations while a register allocator 712 selects a legal
assignment of registers to operands in the machine specific representation. This
includes the insertion of any instructions necessary to relocate values to proper
locations (such as moving arguments to their appropriate location specified by the
calling convention). A peephole 6ptimizer 714 pattern matches small trees in the

machine specific representation and replaces them with more optimal machine
specific trees. An object code output 716 uses virtual calls to encode machine

specific representation as machine object code in a buffer and makes the buffer

available to the virtual machine.

SUN1P227 20

10

15

20

CA 02306542 2000-04-20

Fig. 8 1s an exemplary representation of an instruction compilation process
carried out during run-time by the compilation engine 212 in accordance with an

embodiment of the invention. During the run-time, the compilation engine 212, when

required, generates an information request (referred to, in a particular embodiment, as

an emit function call) for specific information from the platform dependent compiler

object code and, if necessary, the instruction selector object code. By way of
example, when the compilation engine 212 requires platform specific information in
order to select an instruction using the embedded instruction selector, the compilation
engine 212 executes a function call to a information requestor 802. The information
requestor 802, 1n turn, 1s coupled to the interface 700 which directs the function call to
a information retriever 804 coupled to the DF A having the required instruction
predicates. In the described embodiment, the DFA then selects the instruction based
upon the corresponding instruction predicates. The information retriever 804, in turn,

responds to the function call by retrieving the requested information. It should be

noted that the retrieved information is structured in such a manner as to be readily
used by the compilation engine 212.

Fig. 9 represents an exemplary machine independent graph 900 of an
instruction having multiple recurrences of an operand in accordance with an
embodiment of the invention. The machine independent graph 900 is mapped to
those machine dependent instructions having the same semantics. For example, the
graph 900 node 902 represents at the most basic level a subtraction operation that
would map to any number of machine dependent subtraction operation (subA, subB,

sub(C) having the same semantics corresponding to subtraction. However, as

discussed previously, not all of the possible mappings are desirable since some may in

fact result 1n processing errors. This can occur, for example, in those situations where

SUN1P227 1

10

15

25

CA 02306542 2000-04-20

the target platform is a 2 address processor (such as an X86) and the result of the
subtraction operation is required to be stored into a location distinct from that of the
Inputs (as can be done by 3 address instructions in the SPARC architecture).
Typically, a bottom up matching process is used to break down the binary tree
representation of the machine instruction into semanﬁcs that the target platform can
understand and execute. In this example, each node of the tree is mapped to a target
dependent instruction as selected by the instruction predicate using the instruction
selection code generated by the ADLC.

The root instruction node 902 indicates that the instruction 900 is an integer

subtraction operation having as inputs the results of node 904 and node 906. The

result of the subtraction operation is stored in a register at 908. In this example, the
instruction selector selects the most cost effective instruction or sequence of

instructions out of all matching instructions to be executed.
Fig. 10 1s a flowchart detailing an instruction selection process 1000 in

accordance with an embodiment of the invention. The process 1000 begins at 1002
by locating a node in the machine independent binary tree representation of the
instruction. At 1004, the instruction selection code corresponding to the located node
1s obtained and executed. The next potential user defined instruction that can matches
the located node 1s then checked at 1006. This matching is based upon matching
comparing the semantics between the machine independent representation of the node
and the target platform representazion of the node. At 1008, a determination is made

whether or not the location of inputs of the user defined instruction matches the
location of inputs for the located node. If it is determined that there is match, then a

determination 1s made at 1010 whether or not the instruction predicate is satisfied. If

the instruction does not match or the instruction predicate is not satisfied, then control

SUN1P227 %)

10

15

20

25

CA 02306542 2000-04-20

1s passed back to 1006 where the next potential user defined instruction that matches

the node 1s selected.

Returning back to 1010, if the instruction predicate is satisfied, then an
estimate of the execution cost is made for the user defined instruction at 1012. A
determination is made at 1014 whether or not the cost estimate is less than the
previous cost estimate. If the cost estimate is less, then the cost estimate variable is

updated at 1016 and the best instruction is updated at 1018 after which a

determination at 1020 is made whether or not there are more user defined matching

structions. If there are no matching instructions then the process stops, however, if

there are more matching instructions, then control is passed back to 1006.

Returning to 1014, if it 1s determined that the cost estimate is not less, then if
there are additional matching instructions, control is passed back to 1006, otherwise

the process stops.

Fig. 11 1llustrates a computer system 1100 employed to implement the
invention. The computer system 1100 or, more speciﬁcally, CPUs 1102, may be
arranged to support a virtual machine, as will be appreciated by those skilled in the
art. As 1s well known in the art, ROM acts to transfer data and instructions uni-
directionally to the CPUs 1102, while RAM is used typically to transfer data and

Instructions in a bi-directional manner. CPUs 1102 may generally include any

number of processors. Both primary storage devices 1104, 1106 may include any
suitable computer-readable media. A secondary storage medium 1108, which is

typically a mass memory device, is also coupled bi-directionally to CPUs 1102 and
provides additional data storage capacity. The mass memory device 1108 is a

computer-readable medium that may be used to store programs including computer

code, data, and the like. Typically, mass memory device 1108 is a storage medium

SUN1P227 73

10

15

20

25

CA 02306542 2000-04-20

such as a hard disk or a tape which generally slower than primary storage devices

1104, 1106. Mass memory storage device 1108 may take the form of a magnetic or
paper tape reader or some other well-known device. It will be appreciated that the
information retained within thé mass memory device 1108, may, in appropriate cases,
be incorporated in standard fashion as part of RAM 1106 as virtual memory. A

specific primary storage device 1104 such as a CD-ROM may also pass data uni-

directionally to the CPUs 1102.

CPUs 1102 are also coupled to one or more input/output devices 1110 that
may include, but are not limited to, devices such as video monitors, track balls, mice,
keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic
or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other
well-known 1nput devices such as, of course, other computers. Finally, CPUs 1102
optionally may be coupled to a computer or telecommunications network, e.g., an
Internet network or an intranet network, using a network connection as shown
generally at 1112. With such a network connection, it is contemplated that the CPUs
1102 mught receive information from the network, or might output information to the

network 1n the course of performing the above-described method steps. Such
information, which is often represented as a sequence of instructions to be executed
using CPUs 1102, may be received from and outputted to the network, for example, in
the form of a computer data signal embodied in a carrier wave. The above-described

devices and materials will be familiar to those of skill in the computer hardware and

software arts.

Although only a few embodiments of the present invention have been

described, it should be understood that the present invention may be embodied in

many other specific forms without departing from the spirit or the scope of the present

SUNI1P227 24

10

15

CA 02306542 2000-04-20

invention. By way of example, the multi-platform compiler can be used in any
computing system.

Although the methods of porting a compiler from one operating system to
another, different operating system in accordance with the present invention are
particularly suitable for implementation with respect to a Java™ based environment,
the methods may generally be applied in any suitable object-based environment. In
particular, the methods are suitable for use in platform-independent object-based
environments. It should be appreciated that the methods may also be implemented in
some distributed object-oriented systems.

While the present invention has been described as being used with a

distributed object based computer system, it should be appreciated that the present
invention may generally be implemented on any suitable computing system having a
compiler. Therefore, the present examples are to be considered as illustrative and not

restrictive, and the invention is not to be limited to the details given herein, but may

be modified within the scope of the appended claims along with their full scope of

equivalents.

SUNIP227 25

10

15

20

25

CA 02306542 2000-04-20

What is claimed 1s:
1. An apparatus for generating a platform specific compiler having an embedded
instruction selector, comprising:

a set of user defined platform dependent compiler architecture descriptors that
describe corresponding architectural features of a particular hardware platform
dependent compiler;

a set of instruction predicates used to identify platform specific instructions
selected by the instruction selector;

an architecture descriptor compiler arranged to convert the user defined

platform dependent compiler architecture descriptors into the platform dependent
compiler source code and arranged to convert the set of instruction predicates into
platform specific instructor selector source code;

a host compiler arranged to compile the platform dependent compiler sourbe
code into platform dependent compiler object code and arranged to compile the
platform specific instructor selector source code into the embedded 1nstruction

selector object code;

platform independent compiler object code; and

an interface arranged to mediate the flow of information between the platform
dependent compiler object code and the platform independent compiler object code
during run time for the platform specific compiler, wherein during platform specific

compiler run time, the embedded instruction selector selects the instruction to be

compiled based upon the execution cost of the selected instruction, and wherein the
embedded instruction selector provides implicit instruction predicates used by the

platform specific compiler to compile the selected instruction.

SUN1P227 26

[y p——

10

15

20

CA 02306542 2000-04-20

2. An apparatus as recited in claim 1, wherein the platform specific compiler
includes platform independent compiler object code and platform dependent compiler

object code suitable for execution of the particular hardware platform.

3. An apparatus as recited in claim 2, wherein during platform specific compiler

run time, the platform independent compiler object code requests specific platform

dependent object code information by providing an information request to the
interface which directs the information request to a pre-determined platform

dependent compiler object code information retriever.

4. An apparatus as recited in claim 3, wherein the platform dependent compiler

object code information retriever responds to the information request by retrieving
specific platform dependent compiler object code information 1n satisfaction of the

information request.

5. An apparatus as recited in claim 4, wherein the retrieved information 1s

provided to the interface which, in turn, directs the information to the information

requestor.

6. An apparatus as recited in claim 1, wherein said apparatus comprises a

plurality of sets of user defined platform dependent architecture descriptors, wherein

each of which corresponds to a different hardware platform.

SUN1P227 27

10

15

20

25

CA 02306542 2000-04-20

7. A method of building a platform specific compiler having an embedded
instruction selector, comprising:

providing a set of user defined platform dependent compiler architecture
descriptors that describe corresponding architectural features of a particular hardware

platform dependent compiler;

providing a set of user defined instruction predicates used by the embedded
instruction selector to select those instructions to be compiled by the platform specific
compiler during run time;

converting the set of user defined platform dependent compiler architecture
descriptors into platform dependent compiler source code by an architecture
descriptor compiler;

converting the set of user defined instruction predicates into platform
instruction selector source code by an architecture descriptor compiler;

compiling the platform dependent compiler source code into platform
dependent object code by a host compiler coupled to the architecture descriptor
compiler;

compiling the instruction selector source code into instruction selector object
code by a host compiler coupled to the architecture descriptor compiler;

providing platform independent compiler object code, wherein the platform

independent compiler object code and the platform dependent compiler object code
are suitable for execution on the particular hardware platform; and
forming the embedded instruction selector from the platform dependent

compiler object code, the instruction selector object code, and the platform

independent compiler object code.

SUNTP227 28

10

15

20

CA 02306542 2000-04-20

8. A method as recited in claim 7, further comprising:

requesting specific platform dependent object code information by the
platform independent compiler object code by the platform independent object code
during platform specific compiler run time;

providing an information request to the interface; and

directing the information request to a pre-determined platform dependent

' compiler object code information retriever by the interface.

9. A method as recited 1n claim 8, further comprising:
retrieving specific platform dependent compiler object code information in

satisfaction of the information request in response to the request by the information

retriever.

10. A method as recited in claim 9, further comprising:

directing the retrieved information to the information requestor by the

interface.

11. A method as recited in claim 10, further comprising:

directing the retrieved information to the information requestor by the

interface.

12. A platform specific compiler having an embedded instruction selector,

comprising:

a platform dependent compiler object code;

SUN1P227 29

10

15

20

25

CA 02306542 2000-04-20

a platform independent compiler object code, wherein the platform
independent compiler object code and the platform dependent compiler object code

are suitable for execution on a particular hardware platform;
a platform dependent instruction selector object code embedded 1n the
platform dependent compiler object code;

an interface partially embedded in the platform independent code and partially
embedded in the platform dependent object code, wherein during platform specific

compiler run time, the interface mediates flow of information between the platform

independent compiler code and the platform dependent compiler code.

13. A compiler as recited in claim 12, wherein during platform specific compiler
run time, the platform independent compiler object code requests specific platform
dependent object code information by providing an information request to the
interface which directs the information request to a pre-determined platform

dependent compiler object code information retriever.

14. An apparatus as recited in claim 13, wherein the platform dependent compiler

object code information retriever responds to the information request by retrieving

specific platform dependent compiler object code information in satistaction of the

information request.

15. An apparatus as recited in claim 14, wherein the retrieved information i1s
provided to the interface which, in turn, directs the information to the information

requestor.

SUN1P227 30

CA 02306542 2000-04-20

16. An apparatus as recited in claim 12, wherein said apparatus comprises a
plurality of sets of user defined platform dependent architecture descriptors, wherein

each of which corresponds to a different hardware platform.

SUN1P227 31

02306542 2000-04-20

CA

u wiope|d

apon
108[q0

¢ wioje|d
apo)
08I0

| wioge|d

9po)d
108[q0

| @inbi4

u wioye|d
S

ubisa(g
.~ 81n}03)IYaiy

¢0l

19pjing
ladwon ¢ wiojje|d
wiroie|d-nny ol 001
:m_wmo
21Nn}o3)Iyaly

| WIOHE[d
a4 40
/ ubise
21nN}o3)IYoly
3p02 821n0S 00}
WwolsAS
la|dwo)

Wwiofe|d-jInIN

02306542 2000-04-20

CA

. . ajdwod
9p092)o8lqo 18|1Idwos Jajdwl 07

juspuadap wioje|d Jsoy
8p0o 824n0S J3jIdwo2
Juspuadop wiofe|d
9P02 83IN0S
9)eo|paid
UoIjonJIsu}

c0c

. 4% 8p0d J03[qo
80¢ aoeIa)U| 10}08|8S
jlun Jajidwod uoNoNIISU|

(071av)
Jajidwon

abenbue

(Qv)
|l

apo09o
Joalqo

ubisa(g
“ 21N}03a}IYoLY

wioje|d

1obie) ubiss(

a1NJoa)Iyosy

10¢

AV

V4 ainbi - apo2 }03[qo Jajidwod
. juspuadapui wiope|d

9p02 82IN0S
witopeld yabue)

02306542 2000-04-20

CA

¢ ainbi4

£0c¢

ap09 J08[qo Jojdwos 13|1dwod

Juspuadsp | wuioseld SOy

00¢
jun Jajdwod

9po2 193(qo
Juspuadapul wuopne|d

¢0c

(071av)
Jajidwon

obenbue

ubisaq
_ 90¢ 21NJ0dY2LY

FL

8p09 Joalqgo
10]09|9S uoponJsul
Juspuadap | wioped

9p0o 82IN0S
| wiojeld

9p02 821Nn0s Jajidwod

‘Juapuadap

| Wiojie|d

¢ WIOHE|d
of!]
ubisa(]

21N}0a)IYaLy

¢Ol

c0t
| WiOHE|d
ol
ubisa(
21N}03)IYdIY

201>

CA 02306542 2000-04-20

yes
402 :
Compiler building process provide AD file .

400

N\

explicit instruction predicates
included in AD file or explicit

instruction predicates required
?

404
yes

no

406

ADLC compiles

Instruction selector
source code based
upon instruction
predicates

ADLC compiles

platform independent
platform dependent

compiler source code

compiler source code
| from platform specific
408 - ADL input

410

compiler builder compiles
platform independent compiler

source code and platform 412

dependent compiler source
code and instruction selector
source code

platform specific compiler 414
' complete

Figure 4

02306542 2000-04-20

CA

WJLSAS
ONILVHdO

WNH0O41V 1d
1394Vl

016

00S
QUIYOB [ENHIA

lllll!lil]"lllllllll]lilll]l!

Jajdwod
£0¢ 1SOU
0L blLc
9p0d ﬁom.E.o B 9po092 10938(qo AV 4
Jajidwod ja)1dwo
juspuadapul Juspuadsp J1av
wioneid wioje;d

apoo
199[qo 10)03|as

— uonoNJjsul

806G

3

80¢

|

_

_

_

_

|

906 |
SERENEIREIN “
“

_

|

¢0G
A9E]S 9l 1AV

90

YOG SOPOIBING EAES

P

02306542 2000-04-20

CA

¥09

Y9 ainbi

809

sasse|)

Buipoou3

SNy
ajoydasd

174 5 N

C

sa)eolpald uoionJsuj

suonuiaq co_uo:bwc._..

19

019

SUoliula(]
puesadQ

suoiRiulie(d
19)s1bay

o[l
uonduosa(g ainjosjyoly

009

‘ g

909

EmEmmmcms_
auweld

¢09

02306542 2000-04-20

CA

v09

g9 ainbi4

809

SasSSe|)
buipoou3

4

19

sa)edlpald uononsu| _

suonua(uonoNisuj

019

suoliuyaq sa|ny

pueladp aulladid

Suojiulja(]
la)sibay

¢09

ey e el w—— —

02306542 2000-04-20

CA

012 | -) @inbi4

.
*\l’ W - - g —ith S e —— p—
.

0Lz 80, _

lojeaojly Ch4 Jg|npayo
S 19YJEN

19)sibay

(sajeolpald

ooepo)U .

“ m.wmﬁmﬂ& 002 SoEHet SaSSE|D) uoijonJisui)
UOooNIISU| V4d

¢ON.\\\\\

c0.

90/

90c¢

02306542 2000-04-20

CA

ajoydead

sajny
ajoydaad

90¢

0L¢C

A X4

Indino

Q ainbi4

10}Je00||Vy

1a}si1bay

00/ @2epajul

0LL

sasse|)

UOIONJISU|

¢0.

|1¢08 Jojsanbal
UoIlewolu;

IETETNEY
uolewIoul

PIeY
ejep sajedipaid

- uononssul
olj10ads wiope|d

v08

02306542 2000-04-20

CA

. NIE

uoIoNISul pajos|as

10)09|8S

suoionJsul
Juspuadap wiiojed
Buiyojew Ajjeonuewsas

O 4ns

1SP
806
| 910)S

#E

: |
¥06
(/ | PeOT]

Buiyojew
ISP

uolnejuasaidal
Juspuadapul wiojeid

CA 02306542 2000-04-20

. locate node in tree
Fig. 10 - s

go to instruction
selection code for 1004
located node

select next potential user
defined instruction that 1006
matches to node

does location of inputs of user
defined instructionmatch location
of inputs for node?

1008

instruction
predicate
satisfied?

yves
estimate execution cost for
user defined instruction 1012

cost estimate less

1010

1016

es ‘
1014 than previous cost Y update cost estimate
Lo update cost estimate
ore user definec
instructions that /\ 1016
yes match? 1020

no

CA 02306542 2000-04-20

1100

1106

ROM CPU

1104 1102 =

MASS STORAGE
1108

U
I/0 DEVICE
1110

Figure 11

locate node in tree /_/1 002

—

go to Instruction

selection code for N 1004
located node

select next potential user
defined instruction that 1006

matches to node

e

_— mion of inputs of user
defined instructionmatch location
\Jf inputs for node?
. *yes
// instruction
no

1008

predicate 1010
\saﬂsﬁed?
+yes

estimate execution cost for
user defined instruction ,\,101 2

Y 1016

R

cost estimate less

1014

than previous cost update cost estimate

estimate?

Y

L update oost";stimate

/ﬁrﬁ@ user define 101JS

instructions that
y=e \ match? T N\020

na

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - abstract drawing

