(22) Date de dépôt/Filing Date: 2003/04/09

(41) Mise à la disp. pub./Open to Public Insp.: 2003/10/12

(45) Date de délivrance/Issue Date: 2011/10/18

(30) Priorité/Priority: 2002/04/12 (IT TO2002A 00330)

(51) Cl.Int./Int.Cl. B64D 47/00 (2006.01), B64C 27/32 (2006.01), B64C 27/82 (2006.01), B64D 15/12 (2006.01), H01R 39/08 (2006.01), H01R 39/14 (2006.01)

(72) Inventeur/Inventor:
FABIANI, MARIO, IT

(73) Propriétaire/Owner:
AGUSTA S.P.A., IT

(74) Agent: RIDOUT & MAYBEE LLP

(54) Titre : DISPOSITIF DE CONNEXION ELECTRIQUE D'HELICOPTERE, ET HELICOPTERE EQUIPE DE CE DISPOSITIF DE CONNEXION

(54) Title: HELICOPTER ELECTRIC CONNECTING UNIT, AND HELICOPTER EQUIPPED WITH SUCH A CONNECTING UNIT

(57) Abrégé/Abstract:
There is described an electric connecting unit for a helicopter, having a stator connected rigidly to a fixed part of the helicopter and fitted with first electric contact means; and a movable member rotated about a respective axis by a rotary member of the helicopter, and fitted with second electric contact means cooperating in sliding manner with the first electric contact means; the movable member having rigid fastening means for connection to the rotary member of the helicopter, so that no bearings are required between the stator and the movable member.
ABSTRACT

There is described an electric connecting unit for a helicopter, having a stator connected rigidly to a fixed part of the helicopter and fitted with first electric contact means; and a movable member rotated about a respective axis by a rotary member of the helicopter, and fitted with second electric contact means cooperating in sliding manner with the first electric contact means; the movable member having rigid fastening means for connection to the rotary member of the helicopter, so that no bearings are required between the stator and the movable member. (Figure 2)
HELICOPTER ELECTRIC CONNECTING UNIT, AND HELICOPTER EQUIPPED WITH SUCH A CONNECTING UNIT

The present invention relates to a helicopter electric connecting unit, and to a helicopter equipped with such a connecting unit. More specifically, in the following description, reference is made purely by way of example to an electric connecting unit for connecting on-board instruments to a deicing device on the helicopter tail rotor blades, or to test flight sensors for determining rotor operating parameters.

Connecting units of the above type are known which substantially comprise an axially symmetrical stator having a number of radial contact blades; and a movable member supported coaxially by the stator, rotated by helicopter tail rotor actuating means, and having annular conducting tracks which cooperate in sliding manner with the contact blades to connect the stator and movable member electrically.

More specifically, the stator is normally fixed rigidly to an outer casing of a power transmission unit interposed between the tail rotor hub and a drive unit of the helicopter.

The movable member, on the other hand, is supported radially by the stator by means of a number of bearings, and is rotated by a shaft of the tail rotor transmission unit.

A major drawback of connecting units of the above type lies in operating wear producing slack between the contacting components of the bearings supporting the movable member, thus altering the relative positions of the stator and movable member, and resulting in precarious, or even no, electric connection between the conducting tracks and sliding contacts.

The present invention provides a helicopter electric connecting unit designed to provide a straightforward, low-cost solution to the aforementioned drawback typically associated with known connecting units.
The present invention relates to a helicopter comprising a fixed part, at least one rotary member rotating with respect to the fixed part, and an electric connecting unit for connecting the rotary member and the fixed part electrically. The electric connecting unit comprises a stator connected rigidly to the fixed part of the helicopter and having first electric contact means; and a movable member rotated about a respective axis by the rotary member and having second electric contact means cooperating in sliding manner with the first electric contact means. The movable member comprises rigid fastening means for connection to the rotary member.

A preferred, non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:

Figure 1 shows a schematic side view of a helicopter featuring a connecting unit in accordance with the present invention;

Figure 2 shows a larger-scale axial section of the electric connecting unit according to the invention fitted to a transmission unit connected to the tail rotor helicopter.
With reference to Figure 1, number 1 indicates as a whole a helicopter having an electric connecting unit 2 (Figures 1 and 2) in accordance with the present invention.

Helicopter 1 comprises, in known manner, a main rotor 3, fitted to an intermediate top portion of the fuselage 4, and a secondary tail rotor 5, both of which are powered by a drive unit 6 via respective transmission units 7, 8.

Connecting unit 2 is used to electrically connect the fixed part of helicopter 1 and the movable parts – in the example shown, secondary rotor 5.

In the example shown, connecting unit 2 provides for connecting the on-board instruments (not shown) to a deicing device (not shown) fitted to secondary rotor 5, or to the test flight sensors for determining operating parameters of secondary rotor 5.

As shown in Figure 1, secondary rotor 5 comprises a central hub 9 connected angularly by transmission unit 8 to an output member (not shown) of drive unit 6; and a number of blades 10 fixed to and projecting radially from hub 9.

With reference to Figure 2, connecting unit 2 has an axis A, and is mounted between an outer casing 11 of transmission unit 8, and a shaft 12 of transmission unit 8, connected angularly to hub 9 of secondary rotor 5.

More specifically, connecting unit 2 substantially comprises a stator 15 connected rigidly, e.g. by screws (not shown), to casing 11 of transmission unit 8, and having a number of contact blades 16; and a movable member 17 rotated about axis A by shaft 12, and having a number of side by side, annular conducting tracks 18 cooperating in sliding manner with respective contact blades 16.

Stator 15 is substantially in the form of a cylindrical sleeve, and extends about shaft 12 with the interposition of movable member 17.
Stator 15 has two diametrically opposite, angular through openings 19 closed outwards by respective angular covers 20, each having a number of contact blades 16 projecting radially from stator 15 towards movable member 17.

More specifically, contact blades 16 of each cover 20 are arranged side by side and aligned in a direction parallel to axis A.

An important aspect of the present invention is that movable member 17 is fixed rigidly to shaft 12 and interposed radially between shaft 12 and stator 15.

Movable member 17 is substantially in the form of a cylindrical sleeve of axis A, and has conducting tracks 18 on a radially outer surface.

At opposite end portions 21, movable member 17 is bounded towards shaft 12 by respective conical surfaces 22 tapering towards each other and cooperating with respective bushes 23 wedged between movable member 17 and shaft 12.

More specifically, bushes 23 are fitted axially to shaft 12, and are bounded, towards end portions 21 of movable member 17, by respective conical surfaces 24 of the same shape as and cooperating with surfaces 22.

More specifically, bushes 23 have respective cross sections in the form of rectangular trapeziums, the minor bases of which are positioned facing each other and, like the major bases, extend radially with respect to axis A, and the oblique sides of which are positioned contacting respective surfaces 22 of movable member 17.

Bushes 23 are fitted tightly between shaft 12 and respective end portions 21 of movable member 17 by means of a number of bolts 25 fitted through respective through holes formed in movable member 17 and having axes parallel to axis A.
More specifically, bolts 25 provide for gripping two annular members 27 fitted radially loosely to shaft 12 and cooperating end to end with opposite ends of movable member 17 and with respective bushes 23.

The advantages of helicopter 1 and electric connecting unit 2 according to the present invention will be clear from the foregoing description.

In particular, by fitting movable member 17 rigidly and directly to shaft 12 of transmission unit 8, movable member 17 need no longer be supported radially by stator 15 by means of bearings, which may therefore be dispensed with, so that the relative position of the component parts of connecting unit 2 is more stable and less subject to wear.

Clearly, changes may be made to helicopter 1 and connecting unit 2 as described and illustrated herein without, however, departing from the scope of the accompanying Claims.
CLAIMS

1) A helicopter comprising a fixed part, at least one rotary member rotating with respect to said fixed part, and an electric connecting unit for connecting said rotary member and said fixed part electrically; said electric connecting unit comprising a stator connected rigidly to said fixed part of the helicopter and having first electric contact means; and a movable member rotated about a respective axis by said rotary member and having second electric contact means cooperating in sliding manner with said first electric contact means; wherein said movable member comprises rigid fastening means for connection to said rotary member.

2) A helicopter as claimed in Claim 1, wherein said stator and said movable member are mounted coaxially with each other; and said movable member is interposed radially between said stator and said rotary member.

3) A helicopter as claimed in Claim 2, wherein said rigid fastening means comprise two bushes wedged tightly between said rotary member and respective opposite end portions of said movable member.

4) A helicopter as claimed in Claim 3, wherein said rigid fastening means include a number of bolts for gripping said bushes respectively to said end portions of said movable member.

5) A helicopter as claimed in Claim 3 or 4, wherein said end portions of said movable member are bounded
towards said rotary member by conical first surfaces tapering towards each other; and said bushes are bounded towards said movable member by conical second surfaces of the same shape as said first surfaces and cooperating with the first surfaces.

6) A helicopter as claimed in any one of Claims 1 to 5, wherein said stator is fixed rigidly to an outer casing of a power transmission unit interposed between a drive unit and a rotor of the helicopter; and said rotary member is a shaft of said transmission unit.

7) A helicopter as claimed in any one of Claims 1 to 6, wherein said first electric contact means comprise a number of radial contact blades; and said second electric contact means comprise a number of annular conducting tracks each cooperating in sliding manner with a respective one of said contact blades.