TRUNCATED HIV ENVELOPE PROTEINS (ENV), METHODS AND COMPOSITIONS RELATED THERETO

Abstract: The instant application provides methods and related compositions pertaining to novel HIV envelope proteins. In some embodiments, the invention relates to methods and compositions for the preparation, production, and administration of isolated novel HIV envelope nucleic acid and protein sequences suitable, for example, as vaccines against HIV.

METHODS AND COMPOSITIONS RELATED THERETO

Abstract: The instant application provides methods and related compositions pertaining to novel HIV envelope proteins. In some embodiments, the invention relates to methods and compositions for the preparation, production, and administration of isolated novel HIV envelope nucleic acid and protein sequences suitable, for example, as vaccines against HIV.

Agents: EHRHARD, Kathleen et al; Frommer Lawrence & Haug LLP, 745 Fifth Avenue, New York, NY 10151 (US).

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
TITLE OF THE INVENTION

TRUNCATED HIV ENVELOPE PROTEINS (ENV), METHODS AND COMPOSITIONS RELATED THERETO

FEDERAL FUNDING

This invention was made, in part, with government support under Cooperative Agreement Number W81XWH-07-2-0067. The Federal Government has certain rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority of U.S. Provisional Application Serial No. 61/478,857 filed April 25, 2011, which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates generally to novel HIV envelope proteins and to methods and compositions related thereto. More particularly, the invention relates to methods and compositions for the preparation, production, and administration of isolated novel HIV envelope nucleic acid and protein sequences suitable, for example, in certain embodiments, as vaccines against HIV.

BACKGROUND OF THE INVENTION

AIDS, or Acquired Immunodeficiency Syndrome, is caused by human immunodeficiency virus (HIV) and is characterized by several clinical features including wasting syndromes, central nervous system degeneration and profound immunosuppression that results in opportunistic infections and malignancies. HIV is a member of the lentivirus family of animal retroviruses, which include the visna virus of sheep and the bovine, feline, and simian immunodeficiency viruses (SIV). Two closely related types of HIV, designated HIV-1 and HIV-2, have been identified thus far, of
which HIV-1 is by far the most common cause of AIDS. However, HIV-2, which differs in genomic structure and antigenicity, causes a similar clinical syndrome.

The form of HIV-1 that dominates the global epidemic is called the major group of HIV-1. There are three HIV-1 groups, the major group (M group), the outlier group (O group), and the non-M/non-O group (N group). There is also the P group. The M group is further divided into nine distinct genetic subtypes, which are commonly referred to as clades and circulating recombinant forms (CRFs). HIV-1 M group subtypes/clades are labelled A, B, C, D, F, G, H, J, and K. Clade B is the most prevalent in the United States, while clade C is the most prevalent worldwide. CRF01_AE or former clade E and CRF02_AG are the most prevalent inter-subtype recombinant strains in the HIV-1 epidemic. Geographic distribution of genetic subtypes and inter-subtype recombinant forms is continually changing, and current data offers incomplete estimates.

An infectious HIV particle consists of two identical strands of RNA, each approximately 9.2 kb long, packaged within a core of viral proteins. This core structure is surrounded by a phospholipid bilayer envelope derived from the host cell membrane that also includes virally-encoded membrane proteins (Abbas et al., Cellular and Molecular Immunology, 4th edition, W.B. Saunders Company, 2000, p. 454). The HIV genome has the characteristic 5'-LTR-Gag-Pol-Env-LTR-3' organization of the retrovirus family. Long terminal repeats (LTRs) at each end of the viral genome serve as binding sites for transcriptional regulatory proteins from the host and regulate viral integration into the host genome, viral gene expression, and viral replication.

The HIV genome encodes several structural proteins. The gag gene encodes structural proteins of the nucleocapsid core and matrix. The pol gene encodes reverse transcriptase (RT), integrase (IN), and viral protease (PR) enzymes required for viral replication. The tat gene encodes a protein that is required for elongation of viral transcripts. The rev gene encodes a protein that promotes the nuclear export of incompletely spliced or unspliced viral RNAs. The vif gene product enhances the infectivity of viral particles. The vpr gene product promotes the nuclear import of viral DNA and regulates G2 cell cycle arrest. The vpu and nef genes encode proteins that
down regulate host cell CD4 expression and enhance release of virus from infected cells. The env gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gpl60) and cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gpl20) and the transmembrane 41-kDa envelope glycoprotein (gp41), which are required for the infection of cells (Abbas et al., Cellular and Molecular Immunology, 4th edition, W.B. Saunders Company, 2000, pp. 454-456). gp140 is a modified form of the Env glycoprotein, which contains the external 120-kDa envelope glycoprotein portion and the extracellular part of the gp41 portion of Env and has characteristics of both gpl20 and gp41. The nef gene is conserved among primate lentiviruses and is one of the first viral genes that is transcribed following infection. In vitro, several functions have been described, including downregulation of CD4 and MHC class I surface expression, altered T-cell signaling and activation, and enhanced viral infectivity.

HIV infection initiates with gpl20 on the viral particle binding to the CD4 and chemokine receptor molecules (e.g., CXCR4, CCR5) on the cell membrane of target cells such as CD4+ T-cells, macrophages and dendritic cells. The bound virus fuses with the target cell and reverse transcribes the RNA genome. The resulting viral DNA integrates into the cellular genome, where it directs the production of new viral RNA, and thereby viral proteins and new virions. These virions bud from the infected cell membrane and establish productive infections in other cells. This process also kills the originally infected cell. HIV can also kill cells indirectly because the CD4 receptor on uninfected T-cells has a strong affinity for gpl20 expressed on the surface of infected cells. In this case, the uninfected cells bind, via the CD4 receptor-gpl20 interaction, to infected cells and fuse to form a syncytium, which cannot survive. Destruction of CD4+ T-lymphocytes, which are important to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of AIDS disease progression. The loss of CD4+ T cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.
Research on the Env glycoprotein has shown that the virus has many effective protective mechanisms with few vulnerabilities (Wyatt & Sodroski, Science. 1998 Jun 19;280(5371): 1884-8). For fusion with its target cells, HIV-1 uses a trimeric Env complex containing gp120 and gp41 subunits (Burton et al., Nat Immunol. 2004 Mar;5(3):233-6). The fusion potential of the Env complex is triggered by engagement of the CD4 receptor and a coreceptor, usually CCR5 or CXCR4. Neutralizing antibodies seem to work either by binding to the mature trimer on the virion surface and preventing initial receptor engagement events, or by binding after virion attachment and inhibiting the fusion process (Parren & Burton, Adv Immunol. 2001;77:195-262). In the latter case, neutralizing antibodies may bind to epitopes whose exposure is enhanced or triggered by receptor binding. However, given the potential antiviral effects of neutralizing antibodies, it is not unexpected that HIV-1 has evolved multiple mechanisms to protect it from antibody binding (Johnson & Desrosiers, Annu Rev Med. 2002;53:499-518).

Most experimental HIV-1 vaccines tested in human and/or non-human primate suggests that a successful vaccine will incorporate immunogens that elicit broad neutralizing antibodies (bNabs) and robust cell-mediated immunity. HIV-1 envelope glycoprotein (Env) is the main viral protein involved in the entry of the virus and is also the primary target for neutralizing antibodies, but due to immune evasion strategies and extreme sequence variability of Envs, generation of bNabs has been a daunting task (Phogat S, Wyatt R. Curr Pharm Des. 2007, 13:213-27; Phogat S, et al. J Intern Med. 2007 262:26-43, Karlsson Hedestam GB, et al Nat Rev Microbiol. 2008, 6:143-55).

Developing effective vaccines to prevent HIV infection or neutralize HIV infection has been difficult. The ability to elicit broad and potent neutralizing antibodies is a major challenge in the development of an HIV-1 vaccine. It is a primary goal to develop an HIV vaccine that can effectively elicit specific anti-viral neutralizing antibodies as well as cell-mediated immune responses to prevent infection and control the spread of HIV, with a potential for considerable breadth of reactivity across genetic clades. The extraordinary degree of genetic diversity of HIV has been problematic for vaccine development.
Citation or identification of any document in this application is not an admission that such document is available as prior art to the present invention.

SUMMARY OF THE INVENTION

In certain embodiments, the instant application provides an isolated peptide comprising a truncated HIV Env protein, wherein the HIV Env protein is mutated in the native gp120/gp41 cleavage site to prevent protease cleavage, comprises the MPER of gp41, and is truncated prior to the transmembrane domain.

In some embodiments, the HIV Env protein comprises about 1-10 hydrophilic amino acids at its C-terminus. In certain embodiments, the about 1-10 hydrophilic amino acids are three lysines.

In some embodiments, the MPER of gp41 comprises the 4E10 epitope. In certain embodiments, the MPER of gp41 comprises the amino acid sequence: LWYIK (SEQ ID NO: 24) at its C-terminus. In further embodiments, the HIV Env protein comprises about 1-10 non-native hydrophilic amino acids C-terminal to and contiguous with the LWYIK (SEQ ID NO: 24) amino acid sequence. In certain embodiments, the HIV Env protein binds integrin α4β7.

In some embodiments, the HIV Env protein is derived from an HIV-1 strain classified in a group selected the group consisting of: M, O, N, and P. In certain embodiments, the HIV-1 strain is isolated from an individual with an acute HIV-1 infection. In other embodiments, the HIV-1 strain is isolated from an individual with a chronic HIV-1 infection. In certain embodiments, the HIV Env protein is derived from an HIV-1 group M strain. In further embodiments, the HIV-1 group M strain is a subtype (clade) selected from the group consisting of: A, B, C, D, F, G, H, J, and K. In a particular embodiment, the subtype (clade) is clade B. In another embodiment, the subtype (clade) is clade D. In yet another embodiment, the subtype (clade) is clade C.

In certain embodiments, the HIV Env protein comprises an amino acid sequence having 85% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.
In further embodiments, the HIV Env protein comprises 90% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In yet other embodiments, the peptide comprises an amino acid sequence having 95% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In certain embodiments, the peptide comprises an amino acid sequence having 98% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In other embodiments, the peptide comprises an amino acid sequence having 99% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In a particular embodiment, the peptide comprises the amino acid sequence depicted in SEQ ID NO: 1.

In some embodiments, the application pertains to an isolated nucleic acid comprising a nucleic acid sequence encoding an amino acid sequence having 85%, 90%, 95%, 98%, 99% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In certain embodiments, the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 1. In a particular embodiment, the isolated nucleic acid comprises the nucleic acid sequence depicted in SEQ ID NO: 20.

In yet other embodiments, the instant application pertains to a vector comprising nucleic acid encoding an amino acid sequence having 85%, 90%, 95%, 98%, 99% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In certain embodiments, the application relates to a host cell comprising the vector comprising nucleic acid encoding an amino acid sequence having 85%, 90%, 95%, 98%, 99% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In a particular embodiment, the host cell is a CHO cell.

In yet other embodiments, the instant application relates to a method of making a peptide comprising an amino acid sequence having at least 85% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1, comprising culturing a host cell comprising a vector comprising nucleic acid encoding an amino acid sequence having 85%, 90%, 95%, 98%, 99%, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 under conditions suitable for protein expression and isolating the peptide.
In certain embodiments, the instant application provides a composition comprising an isolated HIV Env protein, such as an isolated HIV Env protein comprising an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 and pharmaceutically acceptable carrier.

In yet other embodiments, the instant application relates to a method of generating antibodies against HIV in a mammal, comprising administering to the mammal a composition comprising an isolated HIV Env protein, such as an isolated HIV Env protein comprising an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 and a pharmaceutically acceptable carrier. In certain embodiments, the composition further comprises an adjuvant. In certain embodiments, the adjuvant comprises a liposome formulation. In further embodiments, the liposome formulation comprises one or more of: dimyristoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol, cholesterol, and phospholipid. In a particular embodiment, the liposome formulation comprises phospholipid A. In certain embodiments, the antibodies generated in the mammal are antibodies that compete with the peptide comprising the truncated HIV Env protein for binding integrin α4β7.

In some embodiments, the instant application relates to a method of conferring immunity against HIV in a mammal, comprising administering to the mammal a composition comprising an isolated HIV Env protein, such as an isolated HIV Env protein comprising an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 and a pharmaceutically acceptable carrier. In certain embodiments, the composition further comprises an adjuvant. In certain embodiments, the adjuvant comprises a liposome formulation. In further embodiments, the liposome formulation comprises one or more of: dimyristoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol, cholesterol, and phospholipid. In a particular embodiment, the liposome formulation comprises phospholipid A. In further embodiments, the method comprises administering the composition to the mammal by injection.
Examples of mammals to which the compositions of the invention can be administered include human, non-human primates, dogs, rabbits, guinea pigs, and mice.

In yet other embodiments, the instant application relates to a subunit vaccine comprising an HIV Env protein of the invention, such as an isolated peptide comprising a truncated HIV Env protein, wherein the HIV Env protein is mutated in the native gpl20/gp41 cleavage site to prevent protease cleavage, comprises the MPER of gp41, and is truncated prior to the transmembrane domain. In some embodiments, the HIV Env protein comprises about 1-10 hydrophilic amino acids at its C-terminus. In certain embodiments, the about 1-10 hydrophilic amino acids are three lysines. In other embodiments, the subunit vaccine comprises an isolated HIV Env protein, such as an isolated HIV Env protein comprising an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

In some embodiments, the instant application relates to a nucleic acid vaccine comprising an isolated nucleic acid comprising a nucleic acid sequence encoding an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1. In certain embodiments, the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 1.

In yet other embodiments, the instant application pertains to an isolated peptide comprising an amino acid sequence having 90 % or greater identity to the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. In certain embodiments, the peptide comprises an amino acid sequence having 98 % or greater identity to an amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. In further embodiments, the peptide comprises an amino acid sequence having 99 % or greater identity to an amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. In a particular embodiment, the peptide comprises the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

In another embodiment, the application relates to an isolated nucleic acid sequence comprising a nucleic acid sequence encoding an amino acid sequence having 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.
NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. In certain embodiments, the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

In some embodiments, the instant application relates to a kit comprising (a) a composition comprising an isolated peptide comprising a truncated HIV Env protein, wherein the HIV Env protein is mutated in the native gp120/gp41 cleavage site to prevent protease cleavage, comprises the MPER of gp41, and is truncated prior to the transmembrane domain and a pharmaceutically acceptable carrier and (b) instructions for administration of the composition to a mammal. In some embodiments, the HIV Env protein comprises about 1-10 hydrophilic amino acids at its C-terminus. In certain embodiments, the about 1-10 hydrophilic amino acids are three lysines.

In some embodiments, the application relates to a kit comprising (a) a composition comprising an isolated HIV Env protein, such as an isolated HIV Env protein comprising an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 and (b) instructions for administration of the composition to a mammal.

In other embodiments, the application relates to a kit comprising (a) a composition comprising an isolated nucleic acid comprising a nucleic acid sequence encoding an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 1 and a pharmaceutically acceptable carrier and (b) instructions for administration of the composition to a mammal. In certain embodiments, the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 1.

In certain embodiments, the application relates to an isolated peptide comprising a truncated HIV Env protein, wherein the HIV Env protein is mutated in the native gp120/gp41 cleavage site to prevent protease cleavage, comprises the MPER of gp41, and is truncated prior to the transmembrane domain, wherein the HIV Env protein is mutated in the leader sequence. In some embodiments, the native signal peptide is replaced with a tPA signal peptide. In certain embodiments, the tPA signal peptide
comprises a sequence selected from the group consisting of: SEQ ID NO: 2 1 and SEQ ID NO: 22.

In yet other embodiments, the instant application provides an isolated peptide comprising an amino acid sequence having 90 % or greater identity to the amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9. In further embodiments, the peptide comprises an amino acid sequence having 98 % or greater identity to an amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9. In still further embodiments, the peptide comprises an amino acid sequence having 99 % or greater identity to an amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9. In a particular embodiment, the peptide comprises the amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9.

In some embodiments, the application relates to an isolated nucleic acid sequence comprising a nucleic acid sequence encoding an amino acid sequence having 85 %, 90 %, 95 %, 98 %, 99 %, or greater identity to the amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9. In certain embodiments, the isolated nucleic acid sequence comprises a nucleic acid sequence depicted in SEQ ID NO: 3 or SEQ ID NO: 5.

These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic of the vector, pJWERESpuro.

Figure 2: Immunoprecipitation Western Blot of 293/pJW Ba-L gpl40 DC 4E10 Puro transfection. Conditioned media of 293 cells transfected with pJW Ba-L gpl40 DC 4E10 Puro and naive cells are immunoprecipitated with Human monoclonal antibodies to the MPER region (2F5 and 4E10), HIV-1 (+) human serum and normal human serum. Precipitated proteins are resolved on 12.5% SDS-PAGE and transferred to PVDF. Ba-L gpl40 DC 4E10 proteins are detected with MoAb to gp41 (M25) followed by Goat anti-mouse IgG AP conjugate, and BCIP/NBT substrate. Ba-L gpl40 DC 4E10 is detected
with 4E10 (lane 1), 2F5 (lane 2) and HIV-1(+) human serum (lane 3), and not detected with normal human serum (lane 4). No band corresponding to Ba-L gpl40 DC 4E10 is detected in the naive sample with 4E10 (lane 5), 2F5 (lane 6) and HIV-1(+) human serum (lane 7) or normal human serum (lane 8).

Figure 3 depicts the nucleic acid sequence of HIV-1 Ba-L gpl40 DC 4E10 (SEQ ID NO: 6). The tPa signal is highlighted.

Figure 4 depicts the amino acid sequence of Ba-L gpl40 DC 4E10 protein (SEQ ID NO: 7). The tPa signal is highlighted.

Figure 5 depicts the nucleic acid sequence of HIV-1 Ba-L gpl45 (SEQ ID NO: 8). Highlighted is the tPa signal peptide. This sequence is identical in the gpl45 region to Figure 3, differing only in the tPa signal sequence.

Figure 6 depicts the amino acid sequence of HIV-1 Ba-L gpl45 protein (SEQ ID NO: 9). The tPa signal is highlighted.

Figure 7: Mammalian expression plasmid pJWTCDE-N.

Figure 8: HIV-1 subtype C gpl60 expression plasmid. HIV-1 gpl60 genes are ligated into pSWTIPK3 at the Nhel and EcoRI sites in frame with the t-Pa signal peptide.

Figure 9 depicts the nucleic acid sequence for Clade C, C3728v2c6 gpl60 (SEQ ID NO: 10). The HIV-1 C3728v2c6 gpl60 nucleic acid sequence is codon optimized. The tPa signal is highlighted.

Figure 10 depicts the nucleic acid sequence for Clade C, C3728v2c6 gpl60 DC (SEQ ID NO: 11). The HIV-1 C3728v2c6 gpl60 DC nucleic acid sequence is codon optimized.
The tPa signal is highlighted. The gpl20/gp41 cleavage site is mutated to prevent cleavage.

Figure 11 depicts the nucleic acid sequence for Clade C, C06838vlc48 gpl60 (SEQ ID NO: 12). The HIV-1 C06838vlc48 gpl60 nucleic acid sequence is codon optimized. The tPa signal is highlighted.

Figure 12 depicts the nucleic acid sequence for Clade C, C06838vlc48 gpl60 DC (SEQ ID NO: 13). The HIV-1 C06838vlc48 gpl60 DC nucleic acid sequence is codon optimized. The tPa signal is highlighted. The gpl20/gp41 cleavage site is mutated to prevent cleavage.

Figure 13 depicts the nucleic acid sequence for Clade C, C06980vlc3 gpl60 (SEQ ID NO: 14). The HIV-1 C06980vlc3 gpl60 nucleic acid sequence is codon optimized. The tPa signal is highlighted.

Figure 14 depicts the nucleic acid sequence for Clade C, C06980vlc3 gpl60 DC (SEQ ID NO: 15). The HIV-1 C06980vlc3 gpl60 DC nucleic acid sequence is codon optimized. The tPa signal is highlighted. The gpl20/gp41 cleavage site is mutated to prevent cleavage.

Figure 15 depicts the nucleic acid sequence for Clade C, C06980v0c22 gpl60 (SEQ ID NO: 16). The HIV-1 C06980v0c22 gpl60 nucleic acid sequence is codon optimized. The tPa signal is highlighted.

Figure 16 depicts the nucleic acid sequence for Clade C, C06980v0c22 gpl60 DC (SEQ ID NO: 17). The HIV-1 C06980v0c22 gpl60 DC nucleic acid sequence is codon optimized. The tPa signal is highlighted. The gpl20/gp41 cleavage site is mutated to prevent cleavage.
Figure 17 is a schematic of the pSWTIPK3 vector.

Figure 18 depicts the nucleic acid sequence for pSWTIPK3 (SEQ ID NO: 18).

Figure 19: IP western blot of CHO-K1 cells transfected with HIV-1 subtype C gpl60 and gpl60 DC expression plasmids. Env proteins are immunoprecipitated from the 48 hr. post-transfection cell lysates using HIV-1 (+) human serum, resolved on 4-15% SDS-PAGE and transferred to PVDF. Proteins from the following constructs were detected using rabbit antibodies to HIV-1 subtype B gpl60: C06838vlc48 gpl60 (lane 1), C06980vlc3 gpl60 (lane 2), C06980v0c22 gpl60 (lane 3), C3728v2c6 gpl60 (lane 4), C06838vlc48 gpl60DC (lane 5), C06980vlc3 gpl60DC (lane 6), C06980v0c22 gpl60DC (lane 7), C3728v2c6 gpl60DC (lane 8), naïve CHO-K1 (-) control (lane 9), Ba-L gpl45 (+) control (lane 10) and subtype C 96ZM651 gpl40 (+) control (lane 11). Molecular weight protein markers are run in lane 12.

Figure 20: IP western blot of HEK293 cells transfected with HIV-1 subtype C gpl60 and gpl60 DC expression plasmids. Env proteins are immunoprecipitated from the 48 hr. post-transfection cell lysates using huMAb to gp41 (4E10), resolved on 4-15% SDS-PAGE and transferred to PVDF. Proteins from the following constructs were detected using rabbit antibodies to HIV-1 subtype B gpl60: C06838vlc48 gpl60 (lane 1), C06980vlc3 gpl60 (lane 2), C06980v0c22 gpl60 (lane 3), C3728v2c6 gpl60 (lane 4), C06838vlc48 gpl60DC (lane 5), C06980vlc3 gpl60DC (lane 6), C06980v0c22 gpl60DC (lane 7), C3728v2c6 gpl60DC (lane 8), naïve HEK293 (-) control (lane 9), Ba-L gpl60 (+) control (lane 10), naïve CHO-K1 (-) control (lane 11) and CHO-K1/Ba-L gpl60 (+) control (lane 12). Molecular weight protein markers are run in lane 13.

Figure 21: HIV-1 C06980v0c22 gp145 expression plasmid. The HIV-1 gp145 gene is ligated into pSWTIPK3 at the Nhel and EcoRI sites in frame with the t-Pa signal peptide.
Figure 22 depicts the nucleic acid sequence for pSWC06980v0c22 gpl45 (SEQ ID NO: 19).

Figure 23 depicts the codon optimized nucleic acid sequence for HIV-1 C06980v0c22 gpl45 (SEQ ID NO: 20). The tPa signal is highlighted.

Figure 24 is the protein sequence of HIV-1 C06980v0c22 gpl45 (SEQ ID NO: 32). The tPa signal is highlighted.

Figure 25A (SEQ ID NO: 21) and B (SEQ ID NO: 22) depicts tPA sequences employed in the Env proteins of the invention.

Figure 26: IP western blot of CHO-K1 cells transfected with pSWC06980v0c22 gpl45. Env proteins are immunoprecipitated from the 48 hr. post-transfection conditioned media and cell lysates using HIV-1 (+) human serum, resolved on 4-15% SDS-PAGE and transferred to PVDF. The gpl45 was detected using rabbit antibodies to HIV-1 subtype B gpl60 and Subtype C gpl20: naive CHO-K1 (+) control media (lane 1), supercoiled pSWC06980v0c22 gpl45 media (lane 2), linearized pSWC06980v0c22 gpl45 media (lane 3), naive CHO-K1 (+) control cell lysate (lane 4), supercoiled pSWC06980v0c22 gpl45 cell lysate (lane 5), linearized pSWC06980v0c22 gpl45 cell lysate (lane 6). Molecular weight protein markers are run in lane 7.

Figure 27: 4-15% SDS-PAGE of C06980v0c22 gpl45 purified from the conditioned media of CHO cell lines H-73-9-2-8 and H-73-9-3-9. 5μg protein is resolved under reducing and nonreducing conditions and stained with coomassie blue R250: H-73-9-2-8 nonreduced (lane 1), H-73-9-3-9 nonreduced (lane 2), H-73-9-2-8 reduced (lane 3) and H-73-9-3-9 reduced (lane 4). A molecular weight protein marker is run in lane 5.
Figure 28: Western blot of C06980v0c22 gpl45 purified from the conditioned media of CHO cell lines H-73-9-2-8 and H-73-9-3-9. O^g protein is resolved under reducing and nonreducing conditions on 4-15% SDS-PAGE, transferred to PVDF and detected with an HIV-1 (+) serum: H-73-9-2-8 nonreduced (lane 1), H-73-9-3-9 nonreduced (lane 2), H-73-9-2-8 reduced (lane 3) and H-73-9-3-9 reduced (lane 4). A molecular weight protein marker is run in lane 5.

Figure 29: Flow chart of downstream purification methods for gpl45

Figure 30. SE-HPLC analysis of purified Recombinant HIV-lC06980v0c22 gpl45 (lot 112009). 1:10 dilution of purified protein was prepared in IX PBS and 20 μL was loaded on the TSK-GEL 3000SWXL Column (TOSOH BIOSEP). The column was eluted with isocratic gradient of IX PBS at flow rate of 1.0 mL/min, resulting in the identification of 4 gpl45 species.

Figure 31: Flow chart of downstream purification methods for gpl45.

Figure 32: SE-HPLC analysis of purified Recombinant HIV-lC06980v0c22 gpl45 lot 120710A. 1:10 dilution of purified protein was prepared in IX PBS and 20 μL was loaded on the TSK-GEL 3000SWXL Column (TOSOH BIOSEP). The column was eluted with isocratic gradient of IX PBS at flow rate of 1.0 mL/min, resulting in the identification of 4 gpl45 species.

Figure 33. Flow chart of downstream purification methods for gpl45.

Figure 34: SE-HPLC analysis of purified Recombinant HIV-lC06980v0c22 gpl45 lot 120710B. 1:10 dilution of purified protein was prepared in IX PBS and 20 μL was loaded on the TSK-GEL 3000SWXL Column (TOSOH BIOSEP). The column was eluted with isocratic gradient of IX PBS at flow rate of 1.0 mL/min, resulting in the identification of 4 gpl45 species.
Figure 35: HIV-1 Subtype C Env Sequence Alignment. Boxed region represents the gp41/gpl20 cleavage domain. The amino terminal amino acid is a serine derived from the Nhel cloning site at the tPa signal terminus.

Figure 36: C06980v0c22 gpl45 amino acid sequence (SEQ ID NO: 32). The tPA signal, cleavage site mutations, and C-terminal triple lysine are as indicated in the boxed regions.

Figure 37: C06980v0c22 gpl45 nucleotide sequence (SEQ ID NO: 20) and translation (SEQ ID NO: 32). The tPA leader sequence is indicated between the nucleic acid sequence and translation. The cleavage site mutations and terminal lysine repeat are as indicated in the boxed regions.

Figure 38 depicts the C-terminal residues of an HIV Env protein according to the invention (SEQ ID NOS: 25 and 43).

Figure 39 Antigenicity: 4E10 and VRCOl bind to CO6980 gpl45 by ELISA.

Figure 40 Neutralization: the CO6980 PV is Sensitive to the 4E10 and VRCOl mAbs.

Figure 41 depicts the Rabbit clade C gpl45 Study design.

Figure 42 gpl45 clade C immunized rabbit sera neutralize Tier 1 pseudoviruses from clade B and C.

Figure 43 Development of neutralizing antibodies against the HIV-1 clade C Tier 1 pseudovirus post-immunization.

Figure 44 Cross-clade neutralization of B, C and AE IMC in the PBMC assay using gpl45 immunized rabbit sera.
Figure 45 Development of neutralizing antibodies against the HIV-1 clade B BaL IMC post-immunization.

Figure 46 The gpl45 immunized rabbit sera bind clade C Envs.

Figure 47 Neutralization of GS015 is IgG Mediated (TZMbl Neutralization assay).

Figure 48 Composite of neutralization values by immunogen.

Figure 49 depicts the results of an LP. Western blot of protein-free media adapted CHO C06980v0c22 gpl45 cell. The gpl45 is precipitated from the conditioned media using human antibodies, resolved on 4-15 % SDS-PAGE, transferred to PVDF and detected using rabbit antisera to gpl20 and gpl60.

Figure 50 Homologies and Glycosylation Sites.

Figure 51 Amino acid sequences of clade D gpl40 and clade C gpl45 after codon optimization.

Figure 52 Binding of sera from immunized rabbits to different Envs.

Figure 53: IFNy ELISPOT results in the A) lymph node and B) spleen, shown as spot count after stimulation with HIV-l antigen.

Figure 54: Detection of IL-2 expression by intracellular staining.

Figure 55: ELISA binding titers of all groups against HrV-1 envelope protein gpl45 and gpl40.
Figure 56: Neutralization results of all groups in two assay platforms, A) TZMbl and B) PBMC.

Figure 57. Flow-cytometry based α4β7 binding and inhibition assay.

Figure 58. Induction of α4β7 expression on primary T cells. CD4+ (upper panels) and CD8+ (lower panels) T cells isolated from PBMC by magnetic bead separation were cultured with anti-CD3/CD28, IL-2 and retinoic acid for 5d. The primary CD4+ (upper panels) and CD8+ (lower panels) T cells were cultured to express α4β7 bound to recombinant gpl20 or gpl45 protein, or a cyclic peptide containing the V2 loop region of Env. Bound protein/peptide (blue histogram) and no-protein neutravidin-PE control (green histogram) are shown. The gpl45 panels show that CD8+ cells are 89.7% positive, and CD4+ T cells are 93.3% positive for a4B7 binding to gpl45.

Figure 59. Binding of HIV-1 Env to α4β7 expressing T cells. Primary CD4+ (upper panels) and CD8+ (lower panels) T cells cultured to express α4β7 bound to recombinant gpl20 or gpl45 protein, or a cyclic peptide containing the V2 loop region of Env. Bound protein/peptide (blue histogram) and no-protein neutravidin-PE control (green histogram) are shown.

Figure 60. Blocking interactions between V2 and α4β7. Primary isolated T cells were cultured to express α4β7 as described. Anti-V2 monoclonal antibodies were preincubated with biotinylated (A) gpl20 or (B) cyclic-V2 peptide prior to binding to cells. Anti-a4 monoclonal antibody was pre-bound to cells prior to protein addition as a positive control.

Figure 61: Blue Native PAGE of C06980v0c22 gpl45 proteins. 5μg of the following proteins are resolved on a 4-16% Novex Bis-Tris gel using Invitrogen's Native PAGE system: lot 112009 (lane 1), lot 12071 OA (lane 2) and lot 12071 0B (lane 3). Molecular
weight protein markers are run in lane 4. For each lot of gpl45, 3 multimeric species (A, B and C) are evident. Multimer B is predominant.

Figure 62: SDS-PAGE of EGS crosslinked C06980v0c22 gpl45 (lot 120710A) under nonreducing conditions. 5µg of gpl45 was treated with 12.5, 5, 1, 0.2 and 0 mM EGS and resolved on a 3-8 % NuPAGE Tris Acetate polyacrylamide gel under nonreducing conditions: 12.5 mM EGS (lane 1), 5 mM EGS (lane 2), 1 mM EGS (lane 3), 0.2 mM EGS (lane 4) and 0 mM EGS (lane 5). EGS crosslinked phosphorylase B was run in lane 6 as a molecular weight protein marker.

Figure 63: SDS-PAGE of EGS crosslinked C06980v0c22 gpl45 (lot 120710A) purified on Superose 6. 10 µg of gpl45 from the column load and eluted fractions was crosslinked with 5mM EGS. Crosslinked and noncrosslinked gpl45 was resolved on a 3-8 % NuPAGE Tris Acetate polyacrylamide gel: 5 µg noncrosslinked gpl45 column load (A), 10 µg crosslinked gpl45 column load (B) and 10 µg crosslinked eluted fractions 26-32 (C). EGS crosslinked phosphorylase B was run as a molecular weight protein marker (D).

DETAILED DESCRIPTION

Many candidate HIV vaccines do not interact with the natural neutralizing antibodies in humans. As described herein, Applicants have demonstrated that the HIV-1 Env can be modified to bind broadly reactive antibodies. Accordingly, the instant invention provides methods and related compositions pertaining to novel HIV Env proteins.

The novel HIV Env proteins of the invention comprise the entire ectodomain of an HIV Env protein, including the membrane proximal external region (MPER) of gp41. The gp41 protein consists of three main domains, namely, the ectodomain, the transmembrane domain, and the cytoplasmic tail. The ectodomain consists of the fusion peptide, N-terminal heptad repeat, C-terminal heptad repeat, and the MPER.
The MPER of gp41 typically comprises the last 24-28 C-terminal amino acids of the gp41 ectodomain. The MPER is a highly conserved region of the HIV Env protein and contains epitopes for broadly neutralizing human monoclonal antibodies, in particular, the 2F5, Z13, and 4E10 monoclonal antibodies.

The inventive HIV Env proteins described herein are truncated HIV Env proteins that are mutated in the gpl20/gp41 cleavage site to prevent protease cleavage, comprise the MPER of gp41, and are truncated prior to the transmembrane domain. The HIV Env proteins of the invention may comprise any native MPER of the gp41 of an HIV Env protein.

In certain embodiments, the HIV Env proteins of the invention comprise an MPER sequence comprising the amino acid sequence, ALDSWNLWNWFDIS (SEQ ID NO: 23). In certain embodiments, the HIV Env proteins of the invention comprise an MPER sequence comprising the amino acid sequence, LWYIK (SEQ ID NO: 24). In some embodiments, the MPER sequence comprises the amino acid sequence, ELLALDSWNLWNWFDISNWLWYIK (SEQ ID NO: 25). In other embodiments, the MPER sequence comprises the amino acid sequence, DLLALDSWKNLWNWFDITNWLWYIK (SEQ ID NO:26).

Typically, an HIV Env protein of the invention will comprise at least one of the epitopes for the monoclonal antibodies, 2F5, Z13, and 4E10. Examples of 2F5 epitopes include ALDSWN (SEQ ID NO: 27) as disclosed herein, ELDKWA (SEQ ID NO: 28), and EKNEQELLELDKWASLW (SEQ ID NO: 29) (see, e.g., Montero, M, et al., Microbiology and Molecular Biology Reviews (2008) 72(l):54-84 and references cited therein). Examples of 4E10 epitopes include NWFDIS (SEQ ID NO: 30) as disclosed herein and NWFDIT (SEQ ID NO: 31). Id.

The HIV Env proteins of the instant invention lack the transmembrane domain and cytoplasmic tail but comprise the entire ectodomain of gp41. In certain embodiments, the ectodomain is modified to comprise about 1-10 hydrophilic amino acids at its C-terminus. The hydrophilic amino acid residues are typically added to the ectodomain of a truncated HIV Env protein of the invention in order to, in certain embodiments, improve
exposure of this region by making it more hydrophilic. In embodiments wherein the HIV Env protein comprises about 1-10 hydrophilic amino acids at its C-terminus, the hydrophilic amino acids are typically contiguous with the final amino acid residue of the native MPER sequence. Thus, the 1-10 hydrophilic amino acids typically comprise the final amino acid residues at the C-terminus of the HIV Env protein. In certain embodiments, the 1-10 hydrophilic amino acids are one or more lysine residues.

In certain embodiments, the HIV Env proteins of the instant invention are derived from an HIV strain isolated from an individual with an acute HIV infection. In other embodiments, the HIV infection is chronic. In certain embodiments, the HIV Env protein is derived from an HIV-1 strain classified in a group that is M, O, N, or P. In a particular embodiment, the HIV Env protein is derived from an HIV-1 group M strain. In further embodiments, the HIV-1 group M strain is a subtype (clade) selected from A, B, C, D, F, G, H, J, K, and hybrids thereof. In further embodiments, the HIV Env proteins are derived from an HIV-1 Group M strain that is a Clade B, Clade C, or Clade D strain. In some embodiments, the Clade B, C, or D strain is isolated from an individual with an acute infection. In other embodiments, the Clade B, C, or D strain is isolated from an individual with a chronic infection. Examples of suitable parent HIV strains from which the Env proteins of the instant invention can be derived include the HIV-1 Clade D sequences depicted in GenBank under Accession Nos. AF484477, AF484511, and AF484502 and the HIV-1 Clade C sequences depicted in GenBank under Accession Nos. HM215344 and HM215345.

In certain embodiments, the HIV Env proteins described herein are useful as immunogens in different forms to use as HIV vaccine components to elicit bNabs, e.g., against HIV-1. The different forms of the HIV Env can be used in a prime, as DNA/vector expressing the protein/protein and/or as a boost as protein. For example, in some embodiments, an HIV Env protein of the invention is administered to a mammal as a DNA vaccine, followed by administration of a boost as protein. In further embodiments, the HIV Env protein is administered as nucleic acid in a plasmid, followed by administration in a viral vector (e.g., as nucleic acid in an MVA), followed by
administration as a protein. In some embodiments, the inventive HIV Env proteins could also be used as particulate immunogens by crosslinking to virus particles like Qbeta, cow pea mosaic virus, CRM, HPV, HBsAg, etc.

In certain embodiments, HIV Env proteins of the instant invention are utilized as reagents for screening of new broad neutralizing antibodies and/or mapping of human sera with broad neutralizing serum activity and animal sera following immunization studies. In other embodiments, HIV Env proteins of the instant invention are utilized for screening of small molecules that compete for binding of broad neutralizing antibodies. The identified small molecules could be used as immunogens or anti-viral compounds.

As described herein, Applicants have generated recombinant Env proteins with unique sequences in which Applicants have modified the leader, modified the cleavage site for gp120/gp41, added a hydrophilic amino acid-tail and terminated the sequence before the transmembrane domain such that it comprises the full ectodomain of gp41. The DNA sequences are unique as they are codon optimized.

In another advantageous embodiment, the HIV Env proteins have substantially similar sequences to the HIV Env protein sequences depicted in Figures 4, 6, 24, 35, 36, and/or 37. In another particularly advantageous embodiment, the HIV Env proteins have a substantially similar MPER sequence to the MPER sequence depicted in Figure 38.

In a particularly advantageous embodiment, the HIV Env proteins of the present invention have about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or about 100% sequence identity to SEQ ID NO: 1 or any of the HIV Env protein sequences depicted in Figures 3-6, 23, 24, and 35-37.

In one embodiment, the HIV Env proteins of the present invention may be used as reagents to screen for and identify new broadly neutralizing antibodies. Assays for screening for neutralizing antibodies are known in the art. A neutralization assay approach has been described previously (Binley JM, et al., (2004). Comprehensive Cross-
Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies. *J. Virol.* 78: 13232-13252). Pseudotyped viruses may be generated by co-transfecting cells with at least two plasmids encoding the soluble Env cDNA of the present invention and the rest of the HIV genome separately. In the HIV genome encoding vector, the Env gene may be replaced by the firefly luciferase gene. Transfectant supernatants containing pseudotyped virus may be co-incubated overnight with B cell supernatants derived from activation of an infected donor's primary peripheral blood mononuclear cells (PBMCs) or with monoclonal or polyclonal (serum) antibodies. Cells stably transfected with and expressing CD4 plus the CCR5 and CXCR4 coreceptors may be added to the mixture and incubated for 3 days at 37° C. Infected cells may be quantified by luminometry.

In some embodiments, for the screening of broad neutralizing antibodies, an envelope-enzyme fusion protein may be constructed by attaching an enzyme to the C-terminal end of an envelope protein. Virus particles comprising of the fusion protein and wild type and/or soluble envelope glycoprotein may be generated and used to infect target cells in the presence of a patients' sera. Activities of enzyme measured in such infected cells are measures of virus binding and entry to the target cells that are mediated by the wild type viral envelope protein. Examples of enzymes that can be used to generate the fusion protein include, but are not limited to, luciferase, bacterial or placental alkaline phosphatase, β-galactosidase, and fluorescent proteins such as Green fluorescent protein or toxins. The assay, in general, can also be carried out in 96-well plate. Decreased enzyme activities in the presence of the sera indicate that there are neutralizing antibodies in the sera.

As used herein, the terms "drug," "agent," and "compound" encompass any composition of matter or mixture which provides some pharmacologic effect that can be demonstrated in-vivo or in vitro. This includes small molecules, antibodies, microbiologials, vaccines, vitamins, and other beneficial agents. As used herein, the terms further include any physiologically or pharmacologically active substance that produces a localized or systemic effect in a patient.
Nucleic Acids, Proteins, and Recombinant Technology

The term "nucleic acid" encompasses DNA, RNA (e.g., mRNA, tRNA), heteroduplexes, and synthetic molecules capable of encoding a polypeptide and includes all analogs and backbone substitutes such as PNA that one of ordinary skill in the art would recognize as capable of substituting for naturally occurring nucleotides and backbones thereof. Nucleic acids may be single stranded or double stranded, and may be chemical modifications. The terms "nucleic acid" and "polynucleotide" are used interchangeably. Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid, and the present compositions and methods encompass nucleotide sequences which encode a particular amino acid sequence.

Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively.

The terms "protein", "peptide", "polypeptide", and "amino acid sequence" are used interchangeably herein to refer to polymers of amino acid residues of any length.
The polymer may be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component. The conventional one-letter or three-letter code for amino acid residues are used herein.

As used herein, a "synthetic" molecule is produced by in vitro chemical or enzymatic synthesis rather than by an organism.

As used herein, the term "expression" refers to the process by which a polypeptide is produced based on the nucleic acid sequence of a gene. The process includes both transcription and translation.

A "gene" refers to the DNA segment encoding a polypeptide or RNA.

An "isolated" polynucleotide or polypeptide is one that is substantially free of the materials with which it is associated in its native environment. By substantially free, is meant at least 50%, advantageously at least 70%, more advantageously at least 80%, and even more advantageously at least 90% free of these materials.

An "isolated" nucleic acid molecule is a nucleic acid molecule separate and discrete from the whole organism with which the molecule is found in nature; or a nucleic acid molecule devoid, in whole or part, of sequences normally associated with it in nature; or a sequence, as it exists in nature, but having heterologous sequences in association therewith.

"Native" proteins or polypeptides refer to proteins or polypeptides isolated from the source in which the proteins naturally occur. "Recombinant" polypeptides refer to polypeptides produced by recombinant DNA techniques; e.g., produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide. "Synthetic" polypeptides include those prepared by chemical synthesis as well as the synthetic antigens described above.
By "homolog" is meant an entity having a certain degree of identity with the subject amino acid sequences and the subject nucleotide sequences. As used herein, the term "homolog" covers identity with respect to structure and/or function, for example, the expression product of the resultant nucleotide sequence has the enzymatic activity of a subject amino acid sequence. With respect to sequence identity, preferably there is at least 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or even 99% sequence identity. These terms also encompass allelic variations of the sequences. The term, homolog, may apply to the relationship between genes separated by the event of speciation or to the relationship between genes separated by the event of genetic duplication.

Relative sequence identity can be determined by commercially available computer programs that can calculate % identity between two or more sequences using any suitable algorithm for determining identity, using, for example, default parameters. A typical example of such a computer program is CLUSTAL. Advantageously, the BLAST algorithm is employed, with parameters set to default values. The BLAST algorithm is described in detail on the National Center for Biotechnology Information (NCBI) website.

The homologs of the peptides as provided herein typically have structural similarity with such peptides. A homolog of a polypeptide includes one or more conservative amino acid substitutions, which may be selected from the same or different members of the class to which the amino acid belongs.

In one embodiment, the sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine,
isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

The present invention also encompasses conservative substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue with an alternative residue) that may occur e.g., like-for-like substitution such as basic for basic, acidic for acidic, polar for polar, etc. Non-conservative substitution may also occur e.g., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyridylalanine, thienylalanine, naphthylalanine and phenylglycine. Conservative substitutions that may be made are, for example, within the groups of basic amino acids (Arginine, Lysine and Histidine), acidic amino acids (glutamic acid and aspartic acid), aliphatic amino acids (Alanine, Valine, Leucine, Isoleucine), polar amino acids (Glutamine, Asparagine, Serine, Threonine), aromatic amino acids (Phenylalanine, Tryptophan and Tyrosine), hydroxyl amino acids (Serine, Threonine), large amino acids (Phenylalanine and Tryptophan) and small amino acids (Glycine, Alanine).

Many methods of amplifying DNA are known in the art, and any such method can be used, see for example Sambrook et al., Molecular Cloning: A Laboratory Manual 2d ed. (1989). For example, a DNA fragment of interest can be amplified using the polymerase chain reaction or some other cyclic polymerase mediated amplification reaction.

The amplified region of DNA can then be sequenced using any method known in the art. Advantageously, the nucleic acid sequencing is by automated methods (reviewed by Meldrum, Genome Res. September 2000; 10(9): 1288-303, the disclosure of which is incorporated by reference in its entirety), for example using a Beckman CEQ 8000 Genetic Analysis System (Beckman Coulter Instruments, Inc.). Methods for sequencing nucleic acids include, but are not limited to, automated fluorescent DNA sequencing (see, e.g., Watts & MacBeath, Methods Mol Biol. 2001;167:153-70 and MacBeath et al., Methods Mol Biol. 2001; 167:1 19-52), capillary electrophoresis (see, e.g., Bosserhoff et
al., Comb Chem High Throughput Screen. December 2000;3(6):455-66), DNA sequencing chips (see, e.g., Jain, Pharmacogenomics. August 2000;1(3):289-307), mass spectrometry (see, e.g., Yates, Trends Genet. January 2000;16(1):5-8), pyrosequencing (see, e.g., Ronaghi, Genome Res. January 2001;11(1):3-11), and ultrathin-layer gel electrophoresis (see, e.g., Guttman & Ronai, Electrophoresis. December 2000; 21(18):3952-64), the disclosures of which are hereby incorporated by reference in their entireties. The sequencing can also be done by any commercial company. Examples of such companies include, but are not limited to, the University of Georgia Molecular Genetics Instrumentation Facility (Athens, Ga.) or SeqWright DNA Technologies Services (Houston, Tex.).

Any one of the methods known in the art for amplification of DNA may be used, such as for example, the polymerase chain reaction (PCR), the ligase chain reaction (LCR) (Barany, F., Proc. Natl. Acad. Sci. (U.S.A.) 88:189-193 (1991)), the strand displacement assay (SDA), or the oligonucleotide ligation assay ("OLA") (Landegren, U. et al., Science 241:1077-1080 (1988)). Nickerson, D. A. et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990)). Other known nucleic acid amplification procedures, such as transcription-based amplification systems (Malek, L. T. et al., U.S. Pat. No. 5,130,238; Davey, C. et al., European Patent Application 329,822; Schuster et al., U.S. Pat. No. 5,169,766; Miller, H. I. et al., PCT Application W089/06700; Kwoh, D. et al., Proc. Natl. Acad. Sci. (U.S.A.) 86:173 (1989); Gingeras, T. R. et al., PCT Application W088/10315), or isothermal amplification methods (Walker, G. T. et al., Proc. Natl. Acad. Sci. (U.S.A.) 89:392-396 (1992)) may also be used.

To perform a cyclic polymerase mediated amplification reaction according to the present invention, the primers are hybridized or annealed to opposite strands of the target DNA, the temperature is then raised to permit the thermostable DNA polymerase to extend the primers and thus replicate the specific segment of DNA spanning the region between the two primers. Then the reaction is thermocycled so that at each cycle the
amount of DNA representing the sequences between the two primers is doubled, and specific amplification of gene DNA sequences, if present, results.

Any of a variety of polymerases can be used in the present invention. For thermocyclic reactions, the polymerases are thermostable polymerases such as Taq, KlenTaq, Stoffel Fragment, Deep Vent, Th, Pfu, Vent, and Ultima, each of which are readily available from commercial sources. For non-thermocyclic reactions, and in certain thermocyclic reactions, the polymerase will often be one of many polymerases commonly used in the field, and commercially available, such as DNA pol 1, Klenow fragment, T7 DNA polymerase, and T4 DNA polymerase. Guidance for the use of such polymerases can readily be found in product literature and in general molecular biology guides.

Typically, the annealing of the primers to the target DNA sequence is carried out for about 2 minutes at about 37-55°C, extension of the primer sequence by the polymerase enzyme (such as Taq polymerase) in the presence of nucleoside triphosphates is carried out for about 3 minutes at about 70-75°C, and the denaturing step to release the extended primer is carried out for about 1 minute at about 90-95°C. However, these parameters can be varied, and one of skill in the art would readily know how to adjust the temperature and time parameters of the reaction to achieve the desired results. For example, cycles may be as short as 10, 8, 6, 5, 4.5, 4, 2, 1, 0.5 minutes or less.

Also, "two temperature" techniques can be used where the annealing and extension steps may both be carried out at the same temperature, typically between about 60-65°C, thus reducing the length of each amplification cycle and resulting in a shorter assay time.

Typically, the reactions described herein are repeated until a detectable amount of product is generated. Often, such detectable amounts of product are between about 10 ng and about 100 ng, although larger quantities, e.g. 200 ng, 500 ng, 1 mg or more can also, of course, be detected. In terms of concentration, the amount of detectable product can be from about 0.01 pmol, 0.1 pmol, 1 pmol, 10 pmol, or more. Thus, the number of cycles of the reaction that are performed can be varied, the more cycles are performed, the more
amplified product is produced. In certain embodiments, the reaction comprises 2, 5, 10, 15, 20, 30, 40, 50, or more cycles.

For example, the PCR reaction may be carried out using about 25-50 µl samples containing about 0.01 to 1.0 ng of template amplification sequence, about 10 to 100 pmol of each generic primer, about 1.5 units of Taq DNA polymerase (Promega Corp.), about 0.2 mM dDATP, about 0.2 mM dCTP, about 0.2 mM dGTP, about 0.2 mM dTTP, about 15 mM MgCl₂, about 10 mM Tris-HCl (pH 9.0), about 50 mM KC1, about 1 µg/ml gelatin, and about 10 µl/ml Triton X-100 (Saiki, 1988).

Those of ordinary skill in the art are aware of the variety of nucleotides available for use in the cyclic polymerase mediated reactions. Typically, the nucleotides will consist at least in part of deoxynucleotide triphosphates (dNTPs), which are readily commercially available. Parameters for optimal use of dNTPs are also known to those of skill, and are described in the literature. In addition, a large number of nucleotide derivatives are known to those of skill and can be used in the present reaction. Such derivatives include fluorescently labeled nucleotides, allowing the detection of the product including such labeled nucleotides, as described below. Also included in this group are nucleotides that allow the sequencing of nucleic acids including such nucleotides, such as chain-terminating nucleotides, dideoxynucleotides and boronated nuclease-resistant nucleotides. Commercial kits containing the reagents most typically used for these methods of DNA sequencing are available and widely used. Other nucleotide analogs include nucleotides with bromo-, iodo-, or other modifying groups, which affect numerous properties of resulting nucleic acids including their antigenicity, their replicatability, their melting temperatures, their binding properties, etc. In addition, certain nucleotides include reactive side groups, such as sulphydryl groups, amino groups, N-hydroxysuccinimidyl groups, that allow the further modification of nucleic acids comprising them.

The term "oligonucleotide" is defined as a molecule comprised of two or more deoxyribonucleotides, preferably more than three. Its exact size will depend upon many factors which, in turn, depend upon the ultimate function and use of the oligonucleotide.
The term "primer" as used herein refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be either single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, source of primer and use for the method. In certain embodiments, oligonucleotides that can be used as primers to amplify specific nucleic acid sequences of a gene in cyclic polymerase-mediated amplification reactions, such as PCR reactions, consist of oligonucleotide fragments. Such fragments should be of sufficient length to enable specific annealing or hybridization to the nucleic acid sample. The sequences typically will be about 8 to about 44 nucleotides in length, but may be longer. Longer sequences, e.g., from about 14 to about 50, are advantageous for certain embodiments.

In embodiments where it is desired to amplify a fragment of DNA, primers having contiguous stretches of about 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides from a gene sequence are contemplated.

As used herein, "hybridization" refers to the process by which one strand of nucleic acid base pairs with a complementary strand, as occurs during blot hybridization techniques and PCR techniques.

Whichever probe sequences and hybridization methods are used, one ordinarily skilled in the art can readily determine suitable hybridization conditions, such as temperature and chemical conditions. Such hybridization methods are well known in the art. For example, for applications requiring high selectivity, one will typically desire to employ relatively stringent conditions for the hybridization reactions, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.10 M NaCl at temperatures of about 50° C to about 70° C. Such high
stringency conditions tolerate little, if any, mismatch between the probe and the template or target strand. It is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide. Other variations in hybridization reaction conditions are well known in the art (see for example, Sambrook et al., Molecular Cloning; A Laboratory Manual 2d ed. (1989)).

Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex, as taught, e.g., in Berger and Kimmel (1987, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA), and confer a defined "stringency" as explained below.

Maximum stringency typically occurs at about Tm-5 °C (5 °C below the Tm of the probe); high stringency at about 5 °C to 10 °C below Tm; intermediate stringency at about 10 °C to 20 °C below Tm; and low stringency at about 20 °C to 25 °C below Tm. As will be understood by those of ordinary skill in the art, a maximum stringency hybridization can be used to identify or detect identical nucleotide sequences while an intermediate (or low) stringency hybridization can be used to identify or detect similar or related polynucleotide sequences.

In one aspect, the present invention employs nucleotide sequences that can hybridize to another nucleotide sequence under stringent conditions (e.g., 65 °C and 0.1xSSC (1xSSC = 0.15 M NaCl, 0.015 M Na3 Citrate pH 7.0). Where the nucleotide sequence is double-stranded, both strands of the duplex, either individually or in combination, may be employed by the present invention. Where the nucleotide sequence is single-stranded, it is to be understood that the complementary sequence of that nucleotide sequence is also included within the scope of the present invention.

Stringency of hybridization refers to conditions under which polynucleic acid hybrids are stable. Such conditions are evident to those of ordinary skill in the field. As known to those of ordinary skill in the art, the stability of hybrids is reflected in the melting temperature (Tm) of the hybrid which decreases approximately 1 to 1.5 °C with every 1 % decrease in sequence homology. In general, the stability of a hybrid is a function of sodium ion concentration and temperature. Typically, the hybridization
reaction is performed under conditions of higher stringency, followed by washes of varying stringency.

As used herein, high stringency includes conditions that permit hybridization of only those nucleic acid sequences that form stable hybrids in 1 M Na+ at 65-68 °C. High stringency conditions can be provided, for example, by hybridization in an aqueous solution containing 6x SSC, 5x Denhardt's, 1 % SDS (sodium dodecyl sulphate), 0.1 Na+ pyrophosphate and 0.1 mg/ml denatured salmon sperm DNA as non-specific competitor. Following hybridization, high stringency washing may be done in several steps, with a final wash (about 30 minutes) at the hybridization temperature in 0.2 - O.1x SSC, 0.1 % SDS.

It is understood that these conditions may be adapted and duplicated using a variety of buffers, e.g., formamide-based buffers, and temperatures. Denhardt's solution and SSC are well known to those of ordinary skill in the art as are other suitable hybridization buffers (see, e.g., Sambrook, et al., eds. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York or Ausubel, et al., eds. (1990) Current Protocols in Molecular Biology, John Wiley & Sons, Inc.). Optimal hybridization conditions are typically determined empirically, as the length and the GC content of the hybridizing pair also play a role.

Nucleic acid molecules that differ from the sequences of the primers and probes disclosed herein, are intended to be within the scope of the invention. Nucleic acid sequences that are complementary to these sequences, or that are hybridizable to the sequences described herein under conditions of standard or stringent hybridization, and also analogs and derivatives are also intended to be within the scope of the invention. Advantageously, such variations will differ from the sequences described herein by only a small number of nucleotides, for example by 1, 2, or 3 nucleotides.

Nucleic acid molecules corresponding to natural allelic variants, homologues (i.e., nucleic acids derived from other species), or other related sequences (e.g., paralogs) of the sequences described herein can be isolated based on their homology to the nucleic acids disclosed herein, for example by performing standard or stringent hybridization
reactions using all or a portion of the known sequences as probes. Such methods for nucleic acid hybridization and cloning are well known in the art.

Similarly, a nucleic acid molecule detected in the methods of the invention may include only a fragment of the specific sequences described. Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids, a length sufficient to allow for specific hybridization of nucleic acid primers or probes, and are at most some portion less than a full-length sequence. Fragments may be derived from any contiguous portion of a nucleic acid sequence of choice. Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.

Derivatives, analogs, homologues, and variants of the nucleic acids of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids of the invention, in various embodiments, by at least about 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or even 99% identity over a nucleic acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art.

For the purposes of the present invention, sequence identity or homology is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1990;87: 2264-2268, modified as in Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1993;90: 5873-5877.

Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers & Miller, CABIOS 1988;4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local

Advantageous for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp://blast.wustl.edu/blast/executables. This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul & Gish, 1996. Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., Journal of Molecular Biology 1990;215: 403-410; Gish & States, 1993;Nature Genetics 3: 266-272; Karlin & Altschul, 1993;Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).

In all search programs in the suite the gapped alignment routines are integral to the database search itself. Gapping can be turned off if desired. The default penalty (Q) for a gap of length one is Q=9 for proteins and BLASTP, and Q=10 for BLASTN, but may be changed to any integer. The default per-residue penalty for extending a gap (R) is R=2 for proteins and BLASTP, and R=10 for BLASTN, but may be changed to any integer. Any combination of values for Q and R can be used in order to align sequences so as to maximize overlap and identity while minimizing sequence gaps. The default amino acid comparison matrix is BLOSUM62, but other amino acid comparison matrices such as PAM can be utilized.

Alternatively or additionally, the term "homology" or "identity", for instance, with respect to a nucleotide or amino acid sequence, can indicate a quantitative measure of homology between two sequences. The percent sequence homology can be calculated as \(\frac{(N_{ef} - N_{dif}) \times 100}{N_{ef}} \), wherein \(N_{dif} \) is the total number of non-identical residues in the two sequences when aligned and wherein \(N_{ef} \) is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence identity of 75% with the sequence AATCAATC (\(N_{ref} = 8; N_{dif} = 2 \)). "Homology" or "identity" can refer to the number of positions with identical nucleotides or amino acids divided by the number of nucleotides or amino acids in the shorter of the two sequences wherein
alignment of the two sequences can be determined in accordance with the Wilbur and Lipman algorithm (Wilbur & Lipman, Proc Natl Acad Sci USA 1983;80:726, incorporated herein by reference), for instance, using a window size of 20 nucleotides, a word length of 4 nucleotides, and a gap penalty of 4, and computer-assisted analysis and interpretation of the sequence data including alignment can be conveniently performed using commercially available programs (e.g., Intelligenetics.TM. Suite, Intelligenetics Inc. CA). When RNA sequences are said to be similar, or have a degree of sequence identity or homology with DNA sequences, thymidine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Thus, RNA sequences are within the scope of the invention and can be derived from DNA sequences, by thymidine (T) in the DNA sequence being considered equal to uracil (U) in RNA sequences. Without undue experimentation, the skilled artisan can consult with many other programs or references for determining percent homology.

As regards codon optimization, the nucleic acid molecules of the invention have a nucleotide sequence that encodes the antigens of the invention and can be designed to employ codons that are used in the genes of the subject in which the antigen is to be produced. Such methods, and the selection of such methods, are well known to those of skill in the art. In addition, there are several companies that will optimize codons of sequences, such as Geneart (geneart(dot)com). Thus, the nucleotide sequences of the invention can readily be codon optimized.

As used herein, the term "probe" refers to a molecule (e.g., an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification), that is capable of hybridizing to another molecule of interest (e.g., another oligonucleotide). When probes are oligonucleotides they may be single-stranded or double-stranded. Probes are useful in the detection, identification and isolation of particular targets (e.g., gene sequences). As described herein, it is contemplated that probes used in the present invention may be labelled with a label so that is detectable in any detection system, including, but not limited to enzyme
(e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems.

The present invention further contemplates direct and indirect labelling techniques. For example, direct labelling incorporates fluorescent dyes directly into the nucleotide sequences that hybridize to the array-associated probes (e.g., dyes are incorporated into nucleotide sequence by enzymatic synthesis in the presence of labelled nucleotides or PCR primers). Direct labelling schemes yield strong hybridization signals, typically using families of fluorescent dyes with similar chemical structures and characteristics, and are simple to implement. In some embodiments comprising direct labelling of nucleic acids, cyanine or alexa analogs are utilized in multiple-fluor comparative array analyses. In other embodiments, indirect labelling schemes can be utilized to incorporate epitopes into the nucleic acids either prior to or after hybridization to the microarray probes. One or more staining procedures and reagents are used to label the hybridized complex (e.g., a fluorescent molecule that binds to the epitopes, thereby providing a fluorescent signal by virtue of the conjugation of dye molecule to the epitope of the hybridised species).

Oligonucleotide sequences used as probes according to the present invention may be labeled with a detectable moiety. Various labeling moieties are known in the art. Said moiety may be, for example, a radiolabel (e.g., 3H, 125I, 35S, 14C, 32P, etc.), detectable enzyme (e.g., horse radish peroxidase (HRP), alkaline phosphatase etc.), a fluorescent dye (e.g., fluorescein isothiocyanate, Texas red, rhodamine, Cy3, Cy5, Bodipy, Bodipy Far Red, Lucifer Yellow, Bodipy 630/650-X, Bodipy R6G-X and 5-CR 6G, and the like), a colorimetric label such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.), beads, or any other moiety capable of generating a detectable signal such as a colorimetric, fluorescent, chemiluminescent or electrochemiluminescent (ECL) signal.

Probes may be labeled directly or indirectly with a detectable moiety, or synthesized to incorporate the detectable moiety. In one embodiment, a detectable label is incorporated into a nucleic acid during at least one cycle of a cyclic polymerase-mediated amplification reaction. For example, polymerases can be used to incorporate fluorescent nucleotides during the course of polymerase-mediated amplification.
reactions. Alternatively, fluorescent nucleotides may be incorporated during synthesis of nucleic acid primers or probes. To label an oligonucleotide with the fluorescent dye, one of conventionally-known labeling methods can be used (Nature Biotechnology, 14, 303-308, 1996; Applied and Environmental Microbiology, 63, 1143-1147, 1997; Nucleic Acids Research, 24, 4532-4535, 1996). An advantageous probe is one labeled with a fluorescent dye at the 3' or 5' end and containing G or C as the base at the labeled end. If the 5' end is labeled and the 3' end is not labeled, the OH group on the C atom at the 3'-position of the 3'end ribose or deoxyribose may be modified with a phosphate group or the like although no limitation is imposed in this respect.

Spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means can be used to detect such labels. The detection device and method may include, but is not limited to, optical imaging, electronic imaging, imaging with a CCD camera, integrated optical imaging, and mass spectrometry. Further, the amount of labeled or unlabeled probe bound to the target may be quantified. Such quantification may include statistical analysis. In other embodiments the detection may be via conductivity differences between concordant and discordant sites, by quenching, by fluorescence perturbation analysis, or by electron transport between donor and acceptor molecules.

In yet another embodiment, detection may be via energy transfer between molecules in the hybridization complexes in PCR or hybridization reactions, such as by fluorescence energy transfer (FET) or fluorescence resonance energy transfer (FRET). In FET and FRET methods, one or more nucleic acid probes are labeled with fluorescent molecules, one of which is able to act as an energy donor and the other of which is an energy acceptor molecule. These are sometimes known as a reporter molecule and a quencher molecule respectively. The donor molecule is excited with a specific wavelength of light for which it will normally exhibit a fluorescence emission wavelength. The acceptor molecule is also excited at this wavelength such that it can accept the emission energy of the donor molecule by a variety of distance-dependent energy transfer mechanisms. Generally the acceptor molecule accepts the emission

The nucleotide sequences of the present invention may be inserted into vectors. The term "vector" is widely used and understood by those of ordinary skill in the art, and as used herein the term "vector" is used consistent with its meaning to those of ordinary skill in the art. For example, the term "vector" is commonly used by those ordinarily skilled in the art to refer to a vehicle that allows or facilitates the transfer of nucleic acid molecules from one environment to another or that allows or facilitates the manipulation of a nucleic acid molecule.

For example, a vector is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment. A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo; i.e., capable of replication under its own control. An "origin of replication" refers to those DNA sequences that participate in DNA synthesis. An "expression control sequence" is a DNA sequence that controls and regulates the transcription and translation of another DNA sequence. A coding sequence is "operably linked" and "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then translated into the protein encoded by the coding sequence.

In general, expression vectors containing promoter sequences which facilitate the efficient transcription and translation of the inserted DNA fragment are used in connection with the host. The expression vector typically contains an origin of
replication, promoter(s), terminator(s), as well as specific genes which are capable of providing phenotypic selection in transformed cells. When the polynucleotide encodes a polyprotein fragment, advantageously, in the vector, an initiation codon (ATG) is placed at 5' of the reading frame and a stop codon is placed at 3'. Other elements for controlling expression may be present, such as enhancer sequences, stabilizing sequences and signal sequences permitting the secretion of the protein. The transformed hosts can be fermented and cultured according to means known in the art to achieve optimal cell growth.

Any vector that allows expression of the immunogens of the present invention may be used in accordance with the present invention. In certain embodiments, the immunogens of the present invention may be used in vitro (such as using cell-free expression systems) and/or in cultured cells grown in vitro. For such applications, any vector that allows expression of the immunogens in vitro and/or in cultured cells may be used.

A DNA "coding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence. A "cDNA" is defined as copy-DNA or complementary-DNA, and is a product of a reverse transcription reaction from an mRNA transcript.

Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, ribosome binding sites, upstream regulatory domains, polyadenylation signals, terminators, and the like, that provide for the expression of a coding sequence in a host cell. A "cis-element" is a nucleotide sequence, also termed a "consensus sequence" or "motif," that interacts with other proteins which
can upregulate or downregulate expression of a specific gene locus. A "signal sequence" can also be included with the coding sequence. This sequence encodes a signal peptide, N-terminal to the polypeptide, that communicates to the host cell and directs the polypeptide to the appropriate cellular location. Signal sequences can be found associated with a variety of proteins native to prokaryotes and eukaryotes. Not all of these control sequences need always be present in a recombinant vector so long as the desired gene is capable of being transcribed and translated.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. The promoter sequence is typically bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site, as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to enzymes which cut double-stranded DNA at or near a specific nucleotide sequence.

"Recombinant DNA technology" refers to techniques for uniting two heterologous DNA molecules, usually as a result of in vitro ligation of DNAs from different organisms. Recombinant DNA molecules are commonly produced by experiments in genetic engineering. Synonymous terms include "gene splicing", "molecular cloning" and "genetic engineering". The product of these manipulations results in a "recombinant" or "recombinant molecule".

A cell has been "transformed" or "transfected" with exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes,
yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a vector or plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations. An organism, such as a plant or animal, that has been transformed with exogenous DNA is termed "transgenic".

As used herein, the term "host" is meant to include not only prokaryotes but also eukaryotes such as yeast, plant and animal cells. Prokaryotic hosts may include E. coli, S. tymphimurium, Serratia marcescens and Bacillus subtilis. Eukaryotic hosts include yeasts such as Pichia pastoris, mammalian cells and insect cells and plant cells, such as Arabidopsis thaliana and Tobaccum nicotiana. A number of mammalian cell lines are known in the art and include immortalized cell lines available from the American Type Culture Collection (ATCC), such as, but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), Mardin-Darby bovine kidney ("MDBK") cells, as well as others. Similarly, bacterial hosts such as E. coli, Bacillus subtilis, and Streptococcus spp., will find use with the present expression constructs. Yeast hosts useful in the present invention include inter alia, Saccharomyces cerevisiae, Candida albicans, Candida maltosa, Hansenula polymorpha, Kluveromyces fragilis, Kluveromyces lactis, Pichia guillerimondii, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica. Insert hosts useful in the present invention include, but are not limited to, Spodoptera frugiperda cells.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will
usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, the coding sequence is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein. For example, a polynucleotide, may be placed by genetic engineering techniques into a plasmid or vector derived from a different source, and is a heterologous polynucleotide. A promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter.

As used herein, "fragment" or "portion" as applied to a gene or a polypeptide, will ordinarily be at least 10 residues, more typically at least 20 residues, and preferably at least 30 (e.g., 50) residues in length, but less than the entire, intact sequence. Fragments of these genes can be generated by methods known to those skilled in the art, e.g., by restriction digestion of naturally occurring or recombinant fiber or fibrin genes, by recombinant DNA techniques using a vector that encodes a defined fragment of the fiber or fibrin gene, or by chemical synthesis.

Methods for making and/or administering a vector or recombinants or plasmid for expression of gene products of genes of the invention either in vivo or in vitro can be any desired method, e.g., a method which is by or analogous to the methods disclosed in, or disclosed in documents cited in: U.S. Patent Nos. 4,603,112; 4,769,330; 4,394,448; 4,722,848; 4,745,051; 4,769,331; 4,945,050; 5,494,807; 5,514,375; 5,744,140; 5,744,141; 5,756,103; 5,762,938; 5,766,599; 5,990,091; 5,174,993; 5,505,941; 5,338,683; 5,494,807; 5,591,639; 5,589,466; 5,677,178; 5,591,439; 5,552,143; 5,580,859; 6,130,066; 6,004,777; 6,130,066; 6,497,883; 6,464,984; 6,451,770; 6,391,314; 6,387,376; 6,376,473; 6,368,603; 6,348,196; 6,306,400; 6,228,846; 6,221,362; 6,217,883; 6,207,166; 6,207,165; 6,159,477; 6,153,199; 6,090,393; 6,074,649; 6,045,803; 6,033,670; 6,485,729; 6,103,526; 6,224,882; 6,312,682; 6,348,450 and 6; 312,683; U.S. patent application Serial No. 920,197, filed October 16, 1986; WO 90/01543; WO91/1525; WO 94/16716; WO 96/39491; WO
The invention also provides for transformed host cells comprising a vector of the invention. In one embodiment, the vector is introduced into the cell by transfection, electroporation or infection. The invention also provides for a method for preparing a transformed cell expressing an immunogen of the present invention comprising transfecting, electroporating or infecting a cell with an expression vector (e.g., a DNA vaccine) to produce an infected producing cell and maintaining the host cell under biological conditions sufficient for expression of the immunogen in the host cell.

According to another embodiment of the invention, the expression vectors are expression vectors used for the in vitro expression of proteins in an appropriate cell system. The expressed proteins can be harvested in or from the culture supernatant after, or not after secretion (if there is no secretion a cell lysis typically occurs or is performed), optionally concentrated by concentration methods such as ultrafiltration and/or purified by purification means, such as affinity, ion exchange or gel filtration-type chromatography methods.

It is understood to one of skill in the art that conditions for culturing a host cell varies according to the particular gene and that routine experimentation is necessary at times to determine the optimal conditions for culturing the vector depending on the host.
cell. A "host cell" denotes a prokaryotic or eukaryotic cell that has been genetically altered, or is capable of being genetically altered by administration of an exogenous polynucleotide, such as a recombinant plasmid or vector. When referring to genetically altered cells, the term refers both to the originally altered cell and to the progeny thereof.

Polynucleotides comprising a desired sequence can be inserted into a suitable cloning or expression vector, and the vector in turn can be introduced into a suitable host cell for replication and amplification. Polynucleotides can be introduced into host cells by any means known in the art. The vectors containing the polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means as described above, including direct uptake, endocytosis, transfection, f-mating, electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (where the vector is infectious, for instance, a retroviral vector). The choice of introducing vectors or polynucleotides will often depend on features of the host cell.

For applications where it is desired that the immunogens be expressed in vivo, for example when the immunogens of the invention are used in DNA or DNA-containing vaccines, any vector that allows for the expression of the immunogens of the present invention and is safe for use in vivo may be used. In preferred embodiments the vectors used are safe for use in humans, mammals and/or laboratory animals.

The vectors used in accordance with the present invention should typically be chosen such that they contain a suitable gene regulatory region, such as a promoter or enhancer, such that the immunogens of the invention can be expressed.

For example, when the aim is to express the immunogens of the invention in vitro, or in cultured cells, or in any prokaryotic or eukaryotic system for the purpose of producing the protein(s) encoded by that immunogen, then any suitable vector can be used depending on the application. For example, plasmids, viral vectors, bacterial vectors, protozoal vectors, insect vectors, baculovirus expression vectors, yeast vectors, mammalian cell vectors, and the like, can be used. Suitable vectors can be selected by
the skilled artisan taking into consideration the characteristics of the vector and the requirements for expressing the immunogens under the identified circumstances.

When the aim is to express the immunogens of the invention in vivo in a subject, for example in order to generate an immune response against an HIV antigen and/or protective or therapeutic immunity against HIV, expression vectors that are suitable for expression on that subject, and that are safe for use in vivo, should be chosen. For example, in some embodiments it may be desired to express the immunogens of the invention in a laboratory animal, such as for pre-clinical testing of HIV immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the immunogens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. Any vectors that are suitable for such uses can be employed, and it is well within the capabilities of the skilled artisan to select a suitable vector. In some embodiments it may be preferred that the vectors used for these in vivo applications be attenuated to prevent vector from amplifying in the subject. For example, if plasmid vectors are used, preferably they will lack an origin of replication that functions in the subject so as to enhance safety for in vivo use in the subject. If viral vectors are used, preferably they are attenuated or replication-defective in the subject, again, so as to enhance safety for in vivo use in the subject.

Any vector suitable for administration as a vaccine may be employed in the instant invention. In certain embodiments of the instant invention, vectors suitable for use as DNA vaccines are used, such as pVAX and pcDNA vectors (Invitrogen).

In other embodiments of the present invention, viral vectors are used. Viral expression vectors are well known to those skilled in the art and include, for example, viruses such as adenoviruses (e.g., adenovirus subtypes Ad5, Ad1, Ad26, Ad35, Ad48 and Ad49), adeno-associated viruses (AAV), alphaviruses, retroviruses and poxviruses, including avipox viruses, attenuated poxviruses, and vaccinia viruses, such as the modified vaccinia Ankara virus (MVA). In certain embodiments, a vaccine of the invention comprises an adenovirus selected from Ad5, Ad1, Ad26, Ad35, Ad48 and
Ad49. Such viruses, when used as expression vectors are innately non-pathogenic in the selected subjects such as humans or have been modified to render them non-pathogenic in the selected subjects. For example, replication-defective adenoviruses and alphaviruses are well known and can be used as gene delivery vectors.

Following expression, the antigens of the invention can be isolated and/or purified or concentrated using any suitable technique known in the art. For example, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, immuno-affinity chromatography, hydroxyapatite chromatography, lectin chromatography, molecular sieve chromatography, isoelectric focusing, gel electrophoresis, or any other suitable method or combination of methods can be used.

In certain embodiments, the nucleotide sequences and/or antigens of the invention are administered in vivo, for example where the aim is to produce an immunogenic response in a subject. A "subject" in the context of the present invention may be any animal. For example, in some embodiments it may be desired to express the immunogens of the invention in a laboratory animal, such as for pre-clinical testing of HIV immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the immunogens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. In certain embodiments the subject is a human, for example a human that is infected with, or is at risk of infection with, an HIV.

For such in vivo applications the nucleotide sequences and/or antigens of the invention are preferably administered as a component of an immunogenic composition comprising the nucleotide sequences and/or antigens of the invention in admixture with a pharmaceutically acceptable carrier. The immunogenic compositions of the invention are useful to stimulate an immune response against HIV and may be used as one or more components of a prophylactic or therapeutic vaccine against HIV for the prevention, amelioration or treatment of HIV. The nucleic acids and vectors of the invention are useful for providing genetic vaccines, i.e., vaccines for delivering the nucleic acids
encoding the antigens of the invention to a subject, such as a human, such that the antigens are then expressed in the subject to elicit an immune response.

Immunogenic Compositions

The term "immunogenic protein or peptide" as used herein also includes peptides and polypeptides that are immunologically active in the sense that once administered to the host, it is able to evoke an immune response of the humoral and/or cellular type directed against the protein. Preferably the protein fragment is such that it has substantially the same immunological activity as the total protein. Thus, a protein fragment according to the invention comprises at least one epitope or antigenic determinant. The term epitope relates to a protein site able to induce an immune reaction of the humoral type (B cells) and/or cellular type (T cells).

The term "immunogenic protein or peptide" further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein.

The term "epitope" refers to the site on an antigen or hapten to which specific B cells and/or T cells respond. The term is also used interchangeably with "antigenic determinant" or "antigenic determinant site". Antibodies that recognize the same epitope can be identified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen.

An "immunological response" to a composition or vaccine is the development in the host of a cellular and/or antibody-mediated immune response to a composition or vaccine of interest. Usually, an "immunological response" includes but is not limited to one or more of the following effects: the production of antibodies, B cells, helper T cells, suppressor-T cells, and/or cytotoxic T cells and/or γδ T cells, directed specifically to an antigen or antigens included in the composition or vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms
normally displayed by an infected host, a quicker recovery time and/or a lowered viral
titer in the infected host.

Generation of an immunological response may involve antigen presenting cells
(APCs). APCs may be "professional" antigen presenting cells or may be another cell that
may be induced to present antigen to T cells. APCs include dendritic cells (DCs) such as
interdigitating DCs or follicular DCs, Langerhans cells, PBMCs, macrophages, B-
lymphocytes, or other cell types such as epithelial cells, fibroblasts or endothelial cells,
activated or engineered by transfection to express a MHC molecule (Class I or II) on their
surfaces. APCs also include hybridomas, lymphomas, and synthetic APCs such as lipid
membranes. Precursors of APCs include CD34+ cells, monocytes, fibroblasts and
endothelial cells. Cytokine genes which may promote immune potentiation include IL-2,
IL-12, IFN-γ, TNF-a, IL-18, etc. Such proteins include MHC molecules (Class I or Class
II), CD80, CD86, or CD40. Examples of T cells include helper T cells (CD4+) and CD8+
cells.

The terms "immunogenic" protein or polypeptide as used herein also refers to an
amino acid sequence which elicits an immunological response as described above. An
"immunogenic" protein or polypeptide, as used herein, includes the full-length sequence
of the protein, analogs thereof, or immunogenic fragments thereof. By "immunogenic
fragment" is meant a fragment of a protein which includes one or more epitopes and thus
elicits the immunological response described above. Such fragments can be identified
using any number of epitope mapping techniques, well known in the art. See, e.g.,
Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E. Morris,
Ed., 1996) Humana Press, Totowa, N.J. For example, linear epitopes may be determined
by e.g., concurrently synthesizing large numbers of peptides on solid supports, the
peptides corresponding to portions of the protein molecule, and reacting the peptides with
antibodies while the peptides are still attached to the supports. Such techniques are
known in the art and described in, e.g., U.S. Pat. No. 4,708,871; Geysen et al. (1984)
23:709-715, all incorporated herein by reference in their entireties. Similarly,
conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, supra.

Synthetic antigens are also included within the definition, for example, polypeptides, flanking epitopes, and other recombinant or synthetically derived antigens. See, e.g., Bergmann et al. (1993) Eur. J. Immunol. 23:2777-2781; Bergmann et al. (1996) J. Immunol. 157:3242-3249; Suhrbier, A. (1997) Immunol. and Cell Biol. 75:402-408; Gardner et al. (1998) 12th World AIDS Conference, Geneva, Switzerland, Jun. 28-Jul. 3, 1998. Immunogenic fragments, for purposes of the present invention, will usually include at least about 3 amino acids, at least about 5 amino acids, at least about 10-15 amino acids, or at least about 25 or more amino acids, of the molecule. There is no critical upper limit to the length of the fragment, which could comprise nearly the full-length of the protein sequence, or even a fusion protein comprising at least one epitope of the protein.

As used herein, the terms "antigen" or "immunogen" are used interchangeably to refer to a substance, typically a protein, which is capable of inducing an immune response in a subject. The term also refers to proteins that are immunologically active in the sense
that once administered to a subject (either directly or by administering to the subject a nucleotide sequence or vector that encodes the protein) is able to evoke an immune response of the humoral and/or cellular type directed against that protein.

The term "antibody" includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, Fv and scFv which are capable of binding the epitope determinant. These antibody fragments retain some ability to selectively bind with its antigen or receptor and include, for example:

(i) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain;

(ii) Fab', the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule;

(iii) F(ab')2, the fragment of the antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; F(ab')2 is a dimer of two Fab' fragments held together by two disulfide bonds;

(iv) scFv, including a genetically engineered fragment containing the variable region of a heavy and a light chain as a fused single chain molecule.

General methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988), which is incorporated herein by reference).

A "neutralizing antibody" is one that can neutralize the ability of that pathogen to initiate and/or perpetuate an infection in a host and/or in target cells in vitro. A neutralizing antibody may inhibit the entry of HIV-1 virus with a neutralization index > 1.5 or >2.0. Broad and potent neutralizing antibodies may neutralize greater than about 50% of HIV-1 viruses (from diverse clades and different strains within a clade) in a neutralization assay. The inhibitory concentration of the monoclonal antibody may be less than about 25 mg/ml to neutralize about 50% of the input virus in the neutralization assay.
An "isolated antibody" or "non-naturally occurring antibody" is one that has been separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody is purified: (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator; or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations that include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Pat. No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the

An "antibody fragment" comprises a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies (see U.S. Pat. No. 5,641,870; Zapata et al., Protein Eng. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

It should be understood that the proteins, including the antibodies of the invention may differ from the exact sequences illustrated and described herein. Thus, the invention contemplates deletions, additions and substitutions to the sequences shown, so long as the sequences function in accordance with the methods of the invention. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic—aspartate and glutamate; (2) basic—lysine, arginine, histidine; (3) non-polar—alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar—glycine, asparagine, glutamine, cysteine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. It is reasonably predictable that an isolated or non-naturally occurring replacement of leucine with isoleucine or valine, or vice versa; an aspartate with a glutamate or vice versa; a threonine with a serine or vice versa; or a similar conservative replacement of an amino acid with a structurally related amino acid, will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the sequences illustrated and described but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the scope of the invention.

According to the invention, in certain embodiments, administration of a vaccine of the invention can be combined with other vaccinations within the framework of vaccination programs, in the form of immunization or vaccination kits or methods, or in the form of multivalent immunogenic compositions and multivalent vaccines, e.g.,
comprising at least one vaccine component against a target pathogenic agent, such as HIV, and at least one vaccine component against at least one other pathogenic agent. This also includes the expression by the same expression vector of genes of at least two pathogenic agents.

The invention thus also relates to a multivalent or "cocktail" immunogenic composition or a multivalent or "cocktail" vaccine against a target pathogenic agent, such as HIV, and against at least one other pathogen of the target species, using the same *in vivo* expression vector containing and expressing at least one polynucleotide of the target pathogenic agent, such as HIV, according to the invention and at least one polynucleotide expressing an immunogen of another pathogen.

As discussed herein, these multivalent compositions or vaccines can also comprise a pharmaceutically acceptable carrier or vehicle or excipient, and optionally an adjuvant.

The immunogenic compositions or vaccines as discussed herein can also be combined with at least one conventional vaccine (e.g., inactivated, live attenuated, or subunit) directed against the same pathogen or at least one other pathogen of the species to which the composition or vaccine is directed. The immunogenic compositions or vaccines discussed herein can be administered prior to or after the conventional vaccine, e.g., in a "prime-boost" regimen.

Formulations

The compositions of the invention can include any pharmaceutically acceptable carrier known in the art.

To facilitate the administration of a vaccine of the invention, the vaccine can be formulated into suitable pharmaceutical compositions. Generally, such compositions include the active ingredient (e.g., a DNA vaccine) and a pharmacologically acceptable carrier. Such compositions can be suitable for delivery of the active ingredient to a patient for medical application, and can be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
Pharmaceutical compositions for use in accordance with the present invention can be formulated in a conventional manner using one or more pharmacologically or physiologically acceptable carriers comprising excipients, as well as optional auxiliaries, which facilitate processing of the active compounds into preparations, which can be used pharmacologically. Proper formulation is dependent upon the route of administration chosen. Thus, for injection, the active ingredient can be formulated in aqueous solutions, preferably in physiologically compatible buffers. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. For oral administration, the active ingredient can be combined with carriers suitable for inclusion into tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like. For administration by inhalation, the active ingredient is conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant. The active ingredient can be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Such compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Other pharmacological excipients are known in the art.

The compositions of the invention may be injectable suspensions, solutions, sprays, lyophilized powders, syrups, elixirs and the like. Any suitable form of composition may be used. To prepare such a composition, a nucleic acid or vector of the invention, having the desired degree of purity, is mixed with one or more pharmaceutically acceptable carriers and/or excipients. The carriers and excipients must be "acceptable" in the sense of being compatible with the other ingredients of the composition. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to, water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, or combinations thereof, buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl
ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).

An immunogenic or immunological composition of the invention, e.g., a DNA vaccine, can also be formulated in the form of an oil-in-water emulsion. The oil-in-water emulsion can be based, for example, on light liquid paraffin oil (European Pharmacopea type); isoprenoid oil such as squalane, squalene, EICOSANETM or tetratetracontane; oil resulting from the oligomerization of alkene(s), e.g., isobutene or decene; esters of acids or of alcohols containing a linear alkyl group, such as plant oils, ethyl oleate, propylene glycol di(caprylate/caprate), glyceryl tri(caprylate/caprate) or propylene glycol dioleate; esters of branched fatty acids or alcohols, e.g., isostearic acid esters. The oil advantageously is used in combination with emulsifiers to form the emulsion. The emulsifiers can be nonionic surfactants, such as esters of sorbitan, mannide (e.g., anhydromannitol olate), glycerol, polyglycerol, propylene glycol, and oleic, isostearic, ricinoleic, or hydroxystearic acid, which are optionally ethoxylated, and polyoxypropylene-polyoxyethylene copolymer blocks, such as the PLURONIC® products, e.g., L121. The adjuvant can be a mixture of emulsifier(s), micelle-forming agent, and oil such as that which is commercially available under the name PROVAX® (IDEC Pharmaceuticals, San Diego, CA).

The immunogenic compositions of the invention can contain additional substances, such as wetting or emulsifying agents, buffering agents, or adjuvants to

The term "adjuvant" encompasses vaccine adjuvants. A vaccine adjuvant is a component that potentiates the immune responses to an antigen and/or modulates it towards the desired immune responses. See The European Medicines Agency (EMEA) Evaluation of Medicines for Human Use, Guideline on Adjuvants in Vaccines, (2005), page 6. Examples of suitable adjuvants include mineral salts, such as aluminum hydroxide and aluminum or calcium phosphate gels; oil emulsions and surfactant based formulations, e.g., MF59 (microfluidized detergent stabilized oil-in-water emulsion), QS21 (purified saponin), AS02 [SBAS2] (oil-in-water + MPL + QS-21), Montanide ISA-51 and ISA-720 (stabilized water-in-oil emulsion); particulate adjuvants, e.g., virosomes (unilamellar liposomal vehicles incorporating influenza hemagglutinin), AS04 ([SBAS4] Al salt with MPL), ISCOMS (structured complex of saponins and lipids), polylactide co-glycolide (PLG); microbial derivatives (natural and synthetic), e.g., monophosphoryl lipid A (MPL), Detox (MPL + M. Phlei cell wall skeleton), AGP [RC-529] (synthetic acylated monosaccharide), DC\textsubscript{Chol} (lipoidal immunostimulators able to self-organize into liposomes), OM-174 (lipid A derivative), CpG motifs (synthetic oligonucleotides containing immunostimulatory CpG motifs), modified LT and CT (genetically modified bacterial toxins to provide non-toxic adjuvant effects); endogenous human immunomodulators, e.g., hGM-CSF or hIL-12 (cytokines that can be administered either as protein or plasmid encoded), Immudaptih (C3d tandem array); and inert vehicles, such as gold particles. Id.

Adjuvants that enhance the effectiveness of the vaccine may also be added to the formulation. Further to the above, adjuvants include, but are not limited to, mineral salts (e.g., A\textsubscript{1}K(S\textsubscript{4}O\textsubscript{4})\textsubscript{2}, A\textsubscript{1}Na(S\textsubscript{4}O\textsubscript{4})\textsubscript{2}, A\textsubscript{1}NH(S\textsubscript{4}O\textsubscript{4})\textsubscript{2}, silica, alum, Al(OH)\textsubscript{3}, Ca\textsubscript{3}(P\textsubscript{0}O\textsubscript{4})\textsubscript{2}, kaolin, or carbon), polynucleotides with or without immune stimulating complexes (ISCOMs) (e.g., CpG oligonucleotides, such as those described in Chuang, T.H. et al, (2002) J. Leuk. Biol. 71(3): 538-44; Ahmad-Nejad, P. et al (2002) Eur. J. Immunol. 32(7): 1958-68; poly IC or poly AU acids, polyarginine with or without CpG (also known in the art as IC31;
JuvaVax™ (U.S. Patent No. 6,693,086), certain natural substances (e.g., wax D from Mycobacterium tuberculosis, substances found in Corynebacterium parvum, Bordetella pertussis, or members of the genus Brucella), flagellin (Toll-like receptor 5 ligand; see McSorley, S.J. et al (2002) J. Immunol. 169(7): 3914-9), saponins such as QS21, QS17, and QS7 (U.S. Patent Nos. 5,057,540; 5,650,398; 6,524,584; 6,645,495), monophosphoryl lipid A, in particular, 3-de-O-acylated monophosphoryl lipid A (3D-MPL), imiquimod (also known in the art as IQM and commercially available as Aldara®; U.S. Patent Nos. 4,689,338; 5,238,944; Zuber, A.K. et al (2004) 22(13-14): 1791-8), and the CCR5 inhibitor CMPD167 (see Veazey, R.S. et al (2003) J. Exp. Med. 198: 1551-1562).

Aluminum hydroxide or phosphate (alum) are commonly used at 0.05 to 0.1% solution in phosphate buffered saline. Other adjuvants that can be used, especially with DNA vaccines, are cholera toxin, especially CTAl-DD/ISCOMs (see Mowat, A.M. et al (2001) J. Immunol. 167(6): 3398-405), polyphosphazenes (Allcock, H.R. (1998) App. Organometallic Chem. 12(10-11): 659-666; Payne, L.G. et al (1995) Pharm. Biotechnol. 6: 473-93), cytokines such as, but not limited to, IL-2, IL-4, GM-CSF, IL-12, IGF-1, IFN-cc, LFN-β, and IFN-γ (Boyer et al., (2002) J. Liposome Res. 121:137-142; WO01/095919), immunoregulatory proteins such as CD40L (ADX40; see, for example, WO03/063899), and the CD1a ligand of natural killer cells (also known as CRONY or α-galactosyl ceramide; see Green, T.D. et al, (2003) J. Virol. 77(3): 2046-2055), immunostimulatory fusion proteins such as IL-2 fused to the Fc fragment of immunoglobulins (Barouch et al., Science 290:486-492, 2000) and co-stimulatory molecules B7.1 and B7.2 (Boyer), all of which can be administered either as proteins or in the form of DNA, on the same expression vectors as those encoding the antigens of the invention or on separate expression vectors.

The oil in water emulsion, which is especially appropriate for viral vectors, can be based on: light liquid paraffin oil (European pharmacopoeia type), isoprenoid oil such as...
squalane, squalene, oil resulting from the oligomerization of alkenes, e.g. isobutene or decene, esters of acids or alcohols having a straight-chain alkyl group, such as vegetable oils, ethyl oleate, propylene glycol, di(caprylate/caprate), glycerol tri(caprylate/caprate) and propylene glycol dioleate, or esters of branched, fatty alcohols or acids, especially isostearic acid esters. The oil is used in combination with emulsifiers to form an emulsion. The emulsifiers may be nonionic surfactants, such as: esters of on the one hand sorbitan, mannide (e.g., anhydromannitol oleate), glycerol, polyglycerol or propylene glycol and on the other hand oleic, isostearic, ricinoleic or hydroxystearic acids, said esters being optionally ethoxylated, polyoxypropylene-polyoxyethylene copolymer blocks, such as Pluronic, e.g., L121.

For maleic anhydride-alkeny1 derivative copolymers, EMA (Monsanto) may be used, which are straight-chain or crosslinked ethylene-maleic anhydride copolymers and they are, for example, crosslinked by divinyl ether. Reference is also made to J. Fields et al., Nature 186: 778-780, Jun. 4, 1960. With regard to structure, the acrylic or methacrylic acid polymers and EMA are preferably formed by basic units having the following formula in which: R1 and R2, which can be the same or different, represent H or CH3, x=0 or 1, preferably x=1, y=1 or 2, with x+y=2. For EMA, x=0 and y=2 and for carbomers x=y=1. These polymers are soluble in water or physiological salt solution (20 g/l NaCl) and the pH can be adjusted to 7.3 to 7.4, e.g., by soda (NaOH), to provide the adjuvant solution in which the expression vector(s) can be incorporated.

A further instance of an adjuvant is a compound chosen from the polymers of acrylic or methacrylic acid and the copolymers of maleic anhydride and alkenyl derivative. Advantageous adjuvant compounds are the polymers of acrylic or methacrylic acid which are cross-linked, especially with polyalkenyl ethers of sugars or polyalcohols. These compounds are known by the term carbomer (Pharmeuropa Vol. 8, No. 2, June 1996). Persons skilled in the art can also refer to U.S. Patent No. 2,909,462 (incorporated herein by reference) which describes such acrylic polymers cross-linked with a polyhydroxylated compound having at least 3 hydroxyl groups, preferably not more than 8, the hydrogen atoms of at least three hydroxyls being replaced by
unsaturated aliphatic radicals having at least 2 carbon atoms. The preferred radicals are those containing from 2 to 4 carbon atoms, e.g. vinyls, allyls and other ethylenically unsaturated groups. The unsaturated radicals may themselves contain other substituents, such as methyl. The products sold under the name CARBOPOL® (BF Goodrich, Ohio, USA) are particularly appropriate. They are cross-linked with an allyl sucrose or with allyl pentaerythritol. Among then, there may be mentioned CARBOPOL® 974P, 934P and 971P. Among the copolymers of maleic anhydride and alkenyl derivative, the copolymers EMA® (Monsanto) which are copolymers of maleic anhydride and ethylene, linear or cross-linked, for example cross-linked with divinyl ether, are preferred. Reference may be made to J. Fields et al., Nature, 186 : 778-780, 4 June 1960, incorporated herein by reference.

The term "liposome" as used herein encompasses smectic mesophases, which may comprise either phospholipid or nonphospholipid smectic mesophases. See, for example, "smectic mesophase" in Small, D.M., in "The Physical Chemistry of Lipids, From Alkanes to Phospholipids" Handbook of Lipid Research, Vol 4, Plenum, NY, 1986, pp. 49-50, which states that "[w]hen a given molecule is heated, instead of melting directly into an isotropic liquid, it may instead pass through intermediate states called mesophases or liquid crystals, characterized by residual order in some directions but by lack of order in others...In general, the molecules of liquid crystals are somewhat longer than they are wide and have a polar or aromatic part somewhere along the length of the molecule. The molecular shape and the polar-polar, or aromatic, interaction permit the molecules to align in partially ordered arrays....These structures characteristically occur in molecules that possess a polar group at one end. Liquid crystals with long-range order in the direction of the long axis of the molecule are called smectic, layered, or lamellar liquid crystals....In the smectic states the molecules may be in single or double layers, normal or tilted to the plane of the layer, and with frozed or melted aliphatic chains." See also Figs. 3-4 of Small.

Advantageously, the immunogenic compositions and vaccines according to the invention comprise an effective quantity to elicit an immunological response and/or a
protective immunological response of one or more expression vectors and/or polypeptides as discussed herein; and, an effective quantity can be determined from this disclosure, including the documents incorporated herein, and the knowledge in the art, without undue experimentation. The immunogenic compositions can be designed to introduce the antigens, nucleic acids or expression vectors to a desired site of action and release it at an appropriate and controllable rate. Methods of preparing controlled-release formulations are known in the art. For example, controlled release preparations can be produced by the use of polymers to complex or absorb the immunogen and/or immunogenic composition. A controlled-release formulation can be prepared using appropriate macromolecules (for example, polyesters, polyamino acids, polyvinyl, pyrroidone, ethyleneyvinylacetate, methylcellulose, carboxymethylcellulose, or protamine sulfate) known to provide the desired controlled release characteristics or release profile. Another possible method to control the duration of action by a controlled-release preparation is to incorporate the active ingredients into particles of a polymeric material such as, for example, polyesters, polyamino acids, hydrogels, polylactic acid, polyglycolic acid, copolymers of these acids, or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these active ingredients into polymeric particles, it is possible to entrap these materials into microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylnethacrylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in New Trends and Developments in Vaccines, Voller et al. (eds.), University Park Press, Baltimore, Md., 1978 and Remington's Pharmaceutical Sciences, 16th edition.

Administration

Suitable dosages of the antigens, nucleic acids and expression vectors of the invention (collectively, the immunogens) in an immunogenic composition of the invention can be readily determined by those of skill in the art. For example, the dosage
of the immunogens can vary depending on the route of administration and the size of the subject. Suitable doses can be determined by those of skill in the art, for example by measuring the immune response of a subject, such as a laboratory animal, using conventional immunological techniques, and adjusting the dosages as appropriate. Such techniques for measuring the immune response of the subject include but are not limited to, chromium release assays, tetramer binding assays, IFN-γ ELISPOT assays, IL-2 ELISPOT assays, intracellular cytokine assays, and other immunological detection assays, e.g., as detailed in the text "Antibodies: A Laboratory Manual" by Ed Harlow and David Lane.

Assays for assessing the cellular response to HIV vaccines of the instant invention include intracellular staining (e.g., flow cytometry) and ELISPOT (an enzyme-linked immunosorbent assay format), which allow detecting and counting cells producing cytokines (e.g., TNFβ and IFN-γ) in response to antigens. For example, isolation of splenocytes or peripheral blood monocyte cells (PBMCs) from animals or human patients followed by in vitro challenge with an HIV epitope such as 2F5 or 4E10, and finally testing by ELISPOT and/or intracellular cytokine staining (ICS), can determine the potential for a cell-mediated immune response in vaccine recipients. Flow cytometry using tetramers (e.g., molecules consisting of four copies of a given class I molecule bound to their cognate peptide and alkaline phosphatase) allows the enumeration of antigen-specific T cells (e.g., detection of T cells that recognize specific peptides bound to major histocompatibility complex (MHC) class I molecules). A standard chromium release assay can be used to assess cytotoxicity. To assess a cell-mediated immune response to a DNA vaccine, the more traditional approaches of measuring T cell proliferation in response to antigen and CTL-mediated killing of autologous cells expressing HIV epitopes can also be used.

ELISA assays and Western blots can be used to assess humoral immune responses. In particular, ELISA and Western blots can be used to assess antibody binding, antibody neutralizing capability, antibody-mediated fusion inhibition, and antibody-dependent cytotoxicity.
An MT-2 assay can be performed to measure neutralizing antibody responses. Antibody-mediated neutralization can be measured in an MT-2 cell-killing assay as described previously (Montefiori et al., 1988, J. Clin. Microbiol., 26:231-237). The inhibition of the formation of syncytia by the sera shows the activity of neutralizing antibodies present within the sera, induced by vaccination. Briefly, vaccinated test and control sera can be exposed to virally infected cells (e.g., MT-2 T cell line). Neutralization can be measured by staining viable cells (e.g., with Finter's neutral red when cytopathic effects in control wells are about >70% but less than 100%). Percentage protection can be determined by calculating the difference in absorption (A540) between test wells (cells+virus) and dividing this result by the difference in absorption between cell control wells (cells only) and virus control wells (virus only). Neutralizing titers are then expressed as the reciprocal of the plasma dilution required to protect at least 50% of cells from virus-induced killing.

When provided prophylactically, the immunogenic compositions of the invention are ideally administered to a subject in advance of HIV infection, or evidence of HIV infection, or in advance of any symptom due to AIDS, especially in high-risk subjects. The prophylactic administration of the immunogenic compositions can serve to provide protective immunity of a subject against HIV infection or to prevent or attenuate the progression of AIDS in a subject already infected with HIV. When provided therapeutically, the immunogenic compositions can serve to ameliorate and treat AIDS symptoms and are advantageously used as soon after infection as possible, preferably before appearance of any symptoms of AIDS but may also be used at (or after) the onset of the disease symptoms.

Suitable doses of nucleic acid compositions for humans can range from 1 μg/kg to 1 mg/kg of total nucleic acid, e.g., from 5 μg/kg-500 mg/kg of total DNA, 10 μg/kg-250 μg/kg of total DNA, or 10 μg/kg-170 μg/kg of total DNA. In one embodiment, a human subject (18-50 years of age, 45-75 kg) is administered 1.2 mg-7.2 mg of DNA. DNA vaccines can be administered multiple times, e.g., between two-six times, e.g., three
times. In a particular embodiment, 100 µg of a DNA composition is administered to a human subject at 0, 4, and 12 weeks (100 µg per administration).

An example of range for an immunogenic amount of protein composition is 5 µg/kg-500 µg/kg, e.g., 10-100 µg/kg of total protein, with adjuvant. In one embodiment, a dose of 325 µg of a protein composition is administered to a human (18-55 years of age, 45-75 kg).

The immunogenic compositions can be administered using any suitable delivery method including, but not limited to, intramuscular, intravenous, intradermal, mucosal, and topical delivery. Such techniques are well known to those of skill in the art. More specific examples of delivery methods are intramuscular injection, intradermal injection, and subcutaneous injection. However, delivery need not be limited to injection methods. Further, delivery of DNA to animal tissue has been achieved by cationic liposomes (Watanabe et al., (1994) Mol. Reprod. Dev. 38:268-274; and WO 96/20013), direct injection of naked DNA into animal muscle tissue (Robinson et al., (1993) Vaccine 11:957-960; Hoffman et al., (1994) Vaccine 12: 1529-1533; Xiang et al., (1994) Virology 199: 132-140; Webster et al., (1994) Vaccine 12: 1495-1498; Davis et al., (1994) Vaccine 12: 1503-1509; and Davis et al., (1993) Hum. Mol. Gen. 2: 1847-1851), or intradermal injection of DNA using "gene gun" technology (Johnston et al., (1994) Meth. Cell Biol. 43:353-365). Additional methods of delivery of DNA to animal tissue include electroporation, jet injection, sonoporation, microneedle-assisted delivery, etc. Alternatively, delivery routes can be oral, intranasal or by any other suitable route. Delivery also be accomplished via a mucosal surface such as the anal, vaginal or oral mucosa.

Immunization schedules (or regimens) are well known for animals (including humans) and can be readily determined for the particular subject and immunogenic composition. Hence, the immunogens can be administered one or more times to the subject. In certain embodiments, there is a set time interval between separate administrations of the immunogenic composition. While this interval varies for every subject, typically it ranges from 10 days to several weeks, and is often 2, 4, 6 or 8 weeks.
For humans, the interval is typically from 2 to 6 weeks and up to 6 months or more. With DNA tattooing, the interval is typically only 3 days (e.g., 0, 3, and 6 days). The immunization regimes typically have from 1 to 6 administrations of the immunogenic composition, but may have as few as one or two or four. The methods of inducing an immune response can also include administration of an adjuvant with the immunogens. In some instances, annual, biannual or other long interval (5-10 years) booster immunization can supplement the initial immunization protocol.

The present methods also include a variety of prime-boost regimens. In these methods, one or more priming immunizations are followed by one or more boosting immunizations. The actual immunogenic composition can be the same or different for each immunization and the type of immunogenic composition (e.g., containing protein or expression vector), the route, and formulation of the immunogens can also be varied. For example, if an expression vector is used for the priming and boosting steps, it can either be of the same or different type (e.g., DNA or bacterial or viral expression vector).

The immunogenic compositions of the invention can be administered alone, or can be co-administered, or sequentially administered, with other immunogens and/or immunogenic compositions, e.g., with "other" immunological, antigenic or vaccine or therapeutic compositions thereby providing multivalent or "cocktail" or combination compositions of the invention and methods of employing them. For example, in some embodiments, an HIV Env protein of the instant invention is administered in a viral vector, such as an MVA, which also comprises genes encoding one or more other HIV proteins, such as, e.g., gag and pol. Again, the ingredients and manner (e.g., sequential or co-administration) of administration, as well as dosages can be determined taking into consideration such factors as the age, sex, weight, species and condition of the particular subject, and the route of administration.

In certain embodiments, the immunogenic compositions of the invention are administered to a mammal. In further embodiments, the mammal is a human, a non-human primate, a dog, a rabbit, a guinea pig, or a mouse.

Those of ordinary skill in the art can easily make a determination of the proper
dosage of a protein subunit and/or DNA vaccine. Generally, certain factors will impact the dosage that is administered; although the proper dosage is such that, in one context, in embodiments where a DNA vaccine is administered, the exogenous gene is expressed and the gene product is produced in the particular cell of the mammal. Preferably, the dosage is sufficient to have a therapeutic and/or prophylactic effect on the animal.

Combination Therapies

The methods of treating subjects infected with HIV with the compositions of the instant invention can include combination therapies, in which other HIV treatments are administered. For example, a subject undergoing HIV Env protein subunit vaccination according to the instant invention can be administered anti-retroviral drugs individually, or in combination, for example, with various combinations of nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and HIV protease inhibitors.

Nucleoside reverse transcriptase inhibitors include, e.g., zidovudine (AZT); didanosine (ddl); zalcitabine (ddC); stavudine (d4T); lamivudine (3TC); abacavir (1592U89); adefovir dipivoxil [bis(POM)-PMEA]; lobucavir (BMS-180194); and lodenosine (FddA), 9-(2,3-dideoxy-2-fluoro-b-D-threo-pentofuranosyl)adenine.

Non-nucleoside reverse transcriptase inhibitors include nevirapine (BI-RG-587); delaviradine (BHAP, U-90152); and efavirenz (DMP-266).

Protease inhibitors include saquinavir (Ro 31-8959); ritonavir (ABT-538); indinavir (MK-639); nelfinavir (AG-1343) available under the VIRAECPT™ tradename from Agouron Pharmaceuticals, Inc.; amprenavir (141 W94), a non-peptide protease inhibitor, tradename AGENERASE™; and lasinavir (BMS-234475).

Kits

The compositions of the instant invention and their methods of use are ideally suited for preparation of kits. HIV Env nucleic acid and/or protein may be provided in containers that can be in any form, e.g., lyophilized, or in solution (e.g., a distilled water or buffered solution), etc. In the kits of the invention, a set of instructions will typically be included.
The kits can include one or more other elements including: other reagents, e.g., a diluent, devices or other materials for preparing the composition for administration; pharmaceutically acceptable carriers; and devices or other materials for administration to a subject. Instructions for use can include instructions for therapeutic application including suggested dosages and/or modes of administration, e.g., in a human subject, as described herein.

The kit can further contain at least one additional reagent, such as a diagnostic or therapeutic agent, e.g., a diagnostic agent to monitor a response to immune response to the compositions in the subject, or an additional therapeutic agent as described herein.

In one embodiment, the kit includes a vial (or other suitable container) containing one or more recombinant HIV Env proteins of the instant invention. In certain embodiments, the kit further includes an adjuvant and an excipient. The adjuvant and the excipient are formulated with the protein, and can be included in the formulation or packaged separately within the kit.

The invention will now be further described by way of the following non-limiting examples.

EXAMPLE 1
Ba-L gpl40 DC4E10

The HIV-1 Ba-L gpl60 gene, minus the signal peptide was codon optimized and synthesized at Geneart. The gpl20/gp41 cleavage site was altered to prevent cleavage: Arg 501 and Arg 509 were changed to Serines. The gpl40 DC4E10 sequence was amplified by PCR and inserted into the pJWIRES expression plasmid in frame with the tPa signal. The amino terminus begins with E(30) and the carboxyl terminus ends at ...WLWYIK(681) (SEQ ID NO: 45) with an additional KKK added to help solubility.

The pJWIRES includes the following:
Expression of the inserted gene is driven by the CMV promotor and Bovine Growth Hormone (BGH) Poly A. It has puromycin acetyl transferase gene linked to the inserted gene through IRES sequence for Puromycin resistance.

The resulting construct is referred to as pJW Ba-L gpl40 DC 4E10 Puro (FIGURE 1).

Transfection studies were performed using HEK 293 cells using lipofectamine 2000. IP western blot of the conditioned media using 4E10 and 2F5 Human MPER antibodies (Polymun Scientific GmbH, Klosterneuburg, Austria) showed reactivity with the gpl40 DC 4E10 as shown in Figure 2.

See also Figures 3-4 for the nucleic acid and protein sequences of the Clade B sequence, Ba-L gpl40 DC 4E10.

Figures 5-6 depict the nucleic acid and protein sequences for a second modified Clade B sequence, Ba-L gpl45.

EXAMPLE 2

Clade D gp140 Methods

Cell line development and molecular cloning

Chinese Hamster Ovary (CHO) cell lines stably expressing the extracellular domains of gpl60 (gpl40) for 3 HIV-1 clade D isolates were developed. The goal was to develop cell lines that secrete high levels of gpl40 that can be purified and be used in HIV-1 vaccine development. The isolates chosen for gpl40 expression are A07412 (parent sequence, GenBank Accession No. AF484477; see also GenBank Accession No. AY736828), 57128 (parent sequence, GenBank Accession No. AF484502; see also GenBank Accession No. AY736829) and 57140 (parent sequence, GenBank Accession No. AF484511). In order to maximize expression in this system, the gpl40 codes were created synthetically at GENEART. Through this process, the genes were codon optimized for expression in human cells by designing the genes using codons that correspond to the most abundant tRNAs present in human cells. Human codon optimization is ideal for any DNA vaccine component to be used in humans, but is also
quite effective in yielding high levels of expression in CHO. In addition to codon optimization, the synthetic genes were also designed to eliminate various cis-acting elements that can reduce transcription/translation efficiency (such as splice sites, poly A sites, adenine-rich elements, the Rev Responsive Elements (RRE), and other mRNA secondary structures) as well as other motifs (such as GC-rich stretches, internal TATA boxes, Qui site) that may destabilize mRNA.

For each isolate, the gpl40 genes were mutated at the primary and secondary gpl20/gp41 cleavage sites using a PCR-based process. This was done to prevent gpl20/gp41 cleavage, resulting in stable gpl40 molecules upon secretion. In addition, the native signal peptide for each was removed so that the efficient Tissue Plasminogen Activator (tPA) signal in the expression vector can be used as the secretory signal. The gpl40 codes each have a stop codon inserted just prior to the Transmembrane (TM) Domain to prevent the gpl40 from being bound to the cell membrane upon secretion. The gpl40 genes were ligated into the mammalian expression vector pJWTCDE-N at the Nhel and EcoRI sites for stable expression in CHO cells.

A07412
The amino acid sequence of the amino terminus is SL(30)WVT.. (SEQ ID NO: 46), and the carboxyl terminus is ...FSITK(673)-Stop (SEQ ID NO: 47). The amino terminal serine is a foreign residue from the Nhel cloning site at the end of the tPa signal. The gpl20/gp41 cleavage site was altered from RAKRRVVEREKR(507) (SEQ ID NO: 48) to RAKSRVVEREKS (SEQ ID NO: 49). See also Figure 51, SEQ ID NO: 4.

57140
The amino acid sequence of the amino terminus is SL(33)WVT.. (SEQ ID NO: 46), and the carboxyl terminus is ...FSISN(673)-Stop (SEQ ID NO: 50). The amino terminal serine is a foreign residue from the Nhel cloning site at the end of the tPa signal. The gpl20/gp41 cleavage site was altered from RAKRRVVEREKR(507) (SEQ ID NO: 48) to RAKSRVVEREKS (SEQ ID NO: 49). See also Figure 51, SEQ ID NO: 4.
The amino acid sequence of the amino terminus is SL(33)WVT.. (SEQ ID NO: 46), and the carboxyl terminus is ...FSITK(671)-Stop (SEQ ID NO: 47). The amino terminal serine is a foreign residue from the Nhel cloning site at the end of the tPa signal. The gpl20/gp41 cleavage site was altered from KARRVVEREK(R507) (SEQ ID NO: 51) to KARSVVVEREK(S (SEQ ID NO: 52). See also Figure 51, SEQ ID NO: 5.

The pJWTCDE-N contains the following elements for efficient expression of foreign genes in CHO cells (Figure 7):

1. Transcription of the gpl40 genes are driven by the CMV promoter/intron A and Bovine Growth Hormone (BGH) Poly A.
2. Neomycin Phosphotransferase II (NPT II) gene, driven by the SV40 promoter and a synthetic poly A for the selection of stably transfected cells under G418 Sulfate selection.
3. Dihydrofolate Reductase (DHFR) gene, driven by a partially crippled SV40 promoter and SV40 poly A for fairly weak expression of DHFR in transfected Cells. This facilitates selection in nucleoside-free media as well as inducing gene amplification of the foreign DNA through treatment with the DHFR inhibitor Methotrexate (MTX). This gene amplification can greatly increase the level gpl40 production along with the increase in DHFR production needed to sustain life in MTX-containing media.

After cloning the expression vectors for each, sequencing of the inserted gpl40 genes are performed to ensure proper construction.

To establish stable CHO cell lines secreting gpl40, CHO cells deficient in DHFR (CHO-dhfr-) were transfected using Lipofectamine 2000 (Gibco). Transfected cells were analyzed in a gpl20 antigen capture assay and in radioimmunoprecipitation (RIP) with HIV-1 (+) human serum to detect the presence and quality of gpl40 production. Transfected cells were plated into 96-well plates for selection in alpha MEM with 10% dialyzed Fetal Bovine Serum and 550 μg/mlG418 Sulfate. Surviving cells...
were screened with a gpl20 antigen capture assay, and fairly high gpl40 producers were selected for expansion and single-cell cloning.

The gpl20 antigen capture assay is an ELISA-based assay for the detection and quantification of gp120 protein. Molecules, such as gpl40 and the later described gpl40 DC 4E10 and gpl45 proteins, which contain the gpl20 sequence, can also be detected with this assay. The microtiter wells in a 96-well plate are coated with two murine monoclonal antibodies that react with unique epitopes on HIV-1 gp120. When gp120 standard solutions or tissue culture test samples are added to the wells, an immune complex forms with the plate-bound antibodies and the gp120 in solution. Unbound materials are then thoroughly washed away. The conjugate solution, containing peroxidase-conjugated human anti-gp120 polyclonal antibodies is then added. The conjugated antibodies complex with other epitopes on the captured gp120. After washing away the unbound conjugate solution, the peroxidase substrate is added. The enzyme-substrate reaction results in the substrate's blue color change. Upon adding the stop solution (2 N sulfuric acid), the blue changes to yellow, which can be quantitatively measured by reading the absorbance at 450nm. The amount of gp120 in the gp120 standards and test samples is relative to the absorbance. The concentration of gp120 in a test sample can be calculated based on the standard curve.

True clones were compared to find a few strong producers using a gp120 antigen capture assay and RIP. The best were treated with 0.02µM MTX to facilitate gene amplification of the foreign DNA. Once cells were able to grow at normal rates in MTX, they were cloned again to find higher producers. Cell lines were cloned by limiting dilution, analyzed for optimum expression and adapted for growth in the protein-free media HyQPFCHO Liquid Soy (HyClone; Logan, Utah).

Protein Purification

Conditioned media from CHO cultures were harvested by centrifugation and concentrated with tangential flow 100 kDa molecular weight cutoff filters to about 2L. Media was buffered with phosphate buffer, and pH was adjusted to 7.2. Sodium chloride
concentration was adjusted to 300 mM, and media was filtered with 0.22 micron filter. Media was passed through a GNL agarose (Vector Laboratories; Burlingame, CA) column, and Env proteins were eluted in PBS containing 500 mM methyl a-D-mannopyranoside. Media was passed on the GNL agarose column 3-4 additional times to remove all of the Env protein from the conditioned media. Additional procedures were performed to further purify the Env proteins. The sodium chloride concentration of the GNL agarose eluates were adjusted to 212 mM and passed through a column of Q-sepharose (Amersham Biosciences; Piscataway, NJ). The high molecular weight impurities bind Q-sepharose, but Env does not under these conditions. To disrupt any abnormal multimers formed through air oxidation, the Q sepharose treated Env proteins were concentrated to about 3 ml and treated with 50 mM DTT for 15 hours at 4°C, followed by 1 hour at 21°C. DTT treated preparations were then run on a Superdex 200 26/60 (Amersham Biosciences) gel filtration column to remove additional high and low molecular weight impurities, as well as to reduce the amount of Env breakdown products. The column was run at 0.5 ml/min. in PBS containing 1 mM DTT. Fractions containing the purest Env proteins, as analyzed on SDS-PAGE, were pooled. Proteins were then buffer exchanged on 10 ml PD-10 columns (Amersham Biosciences) equilibrated with PBS. Finally, proteins were filtered with 0.22µm filters, aliquoted and stored at -70°C.

EXAMPLE 3
Introduction

Plasmid DNA constructs expressing the Env proteins of four subtype C isolates isolated from patients at the acute and early seroconversion stages of infection were developed and tested to downselect the best candidate for gpl45 expression. Isolate C06980v0c22 was selected, stable cell lines expressing C06980v0c22 gpl45 were developed, and research cell banks were produced. Purified gpl45 protein was produced and supplied for study in preclinical immunogenicity studies.

As described above, Applicants collaborated on the development of a subtype D HIV-1 subunit vaccine. Sequences for 4 subtype D HIV-1 isolates were provided and
several gpl40 and gpl20-secreting CHO cell lines were prepared. Cell lines were adapted to serum-free media and the Env proteins purified for preclinical immunogenicity studies. Small animals were immunized and gpl40 and gpl20-specific serum antibody binding titers evaluated by ELISA and neutralizing antibody titers against the homologous primary isolate evaluated using the pseudotype assay. While all gpl20 and gpl40 proteins were immunogenic, none elicited detectable neutralizing antibody against the homologous pseudotyped isolate.

HIV Env subunit vaccine efforts were pursued using subtype C Env sequences with the goal of eliciting more potent and broadly neutralizing antibody responses. As discussed above, a DNA construct had been developed encoding modifications of the HIV-1 Ba-L (Subtype B) Env. This construct coded for a truncated gpl60 molecule referred to as gpl45. This gpl45 protein includes a modified tissue plasminogen activator (t-Pa) signal peptide upstream of a cleavage deficient gpl60 that is truncated at the end of the membrane proximal external region (MPER). At the C terminus, three additional lysine residues were included, theoretically to increase the hydrophilicity of the C tail in order to present potentially neutralizing MPER epitopes to the immune system. Unlike the previous gpl40 molecules discussed above, this gpl45 molecule reacted to the neutralizing anti-MPER huMAb 4E10 in ELISA and western blot.

Subtype C is known to be the most common international subtype, and since preliminary data suggested subtype C infections may induce the most broadly cross-reactive HIV-1 neutralizing response in natural infection, subtype C sequences were investigated. A gpl45 construct was proposed to be created using a primary CCR5-dependant subtype C Env sequence. Stable CHO cell lines expressing this Env protein were developed.

Envelope Downselection

The env sequences from 4 subtype C strains were provided for codon optimization and synthesis. Transient expression studies were performed to select which isolate would be used for further gpl45 development.
An electronic copy was provided of four South African subtype C R5 HIV-1 envelope sequences from three acute (C06838vlc48, C06980v0c22 and C3728v2c6) and one early seroconverted (C06980vlc3) HIV-1 infections. Two of the sequences are from the same individual, one during acute infection (C06980v0c22) and the other after seroconversion (C06980vlc3).

In order to maximize expression in Chinese Hamster Ovary (CHO) cells, the env genes were synthesized incorporating C. griseus (Chinese Hamster) codon bias by Geneart AG (Regensberg, Germany). To further optimize expression, cis-acting motifs that can reduce translational efficiency were eliminated (e.g., internal TATA boxes, chi-sites, ribosomal entry sites, RNA secondary structure, repeat sequences, etc.). Two versions of each env gene were synthesized: a) gpl60, full-length gpl60 minus the native signal peptide and b) gpl60 DC, full-length gpl60 minus the native signal peptide and with mutations in the gpl20/gp41 primary and secondary cleavage sites to prevent protease cleavage.

The translations of the four gpl60 (WT) and gpl60 DC (cleavage mutant) genes are compared (Figure 35). Molecules are shown as the sequences following the t-Pa signal peptide cleavage in the expressed proteins. The shaded regions are areas of variability. The boxed region highlights the gpl20/gp41 cleavage sites; arginine to serine mutations in the gpl60DC genes prevent the proteolytic cleavage. The gpl60 genes were cloned into pSWTIPK3, a proprietary mammalian expression plasmid (Advanced Biosciences Laboratories, Inc.), at the Nhel and EcoRI sites, in frame with the tPa signal peptide (Figure 8). The native leader sequences are replaced by the tPa signal peptide, which provides a more efficient secretion signal, enhancing gpl60 production and transport to the cell membrane. The expression plasmids contain the Cytomegalovirus (CMV) promoter to control expression. The plasmids were expanded and purified from transformed Escherichia coli, and the gpl60 coding regions were sequenced to confirm sequence identity.

Chinese hamster ovary cells (CHO-K1) and Human embryonic kidney cells (HEK293; clone 293H) cells were transfected and analyzed for gpl60 production in
western blot and antigen capture ELISA. Based on production quality and quantity of gpl60 molecules, a decision was made which isolate will be used to develop CHO cell lines producing the gp145 protein. Cells were transfected with the four gpl60 and gpl60DC plasmid constructs using lipofection (Lipofectamine 2000; Invitrogen, Carlsbad, CA). Cultures transfected with HIV-1Ba-L gp145, HIV-1Ba-L gpl60 or HIV-1 subtype C gpl40 expression constructs served as positive controls. Naive CHO-K1 and HEK293 served as negative controls. Media and cell lysates were harvested 48 hours post-transfection for analysis.

Media and cell lysate samples from CHO-K1 transfections were evaluated for gp41/gpl20/gpl60 content via IP western blot using an HIV-1 positive human serum for immunoprecipitation and an HIV-1Ba-L gpl60 immunized rabbit’s serum for detection. No Env expression was detected in the media for any construct except the Ba-L gpl45 control (data not shown). If gpl60 is processed into gp41 and gpl20, the gpl20 could shed into the media; the amount of shed gpl20 is below the assay detection limit. From the cell lysates, Env expression is evident with each of the subtype C gpl60 and gpl60DC constructs (Figure 19). Each construct produces gpl60; each isolate runs at a different size, likely due to different glycosylation patterns. Only pSWC06980v0c22 gp l60 shows gp l60 processing into gp l20 and gp41.

Because expression levels in CHO-K1 were quite low, transfection and analysis using HEK293 cells was performed to further evaluate each construct. Cell lysate samples from HEK293 transfections were evaluated for gp41/gpl60 content via IP western blot using huMAb to gp41 (4E10) for immunoprecipitation and HIV-1Ba-L gpl60 immunized rabbit’s serum for detection. Env expression is strongly evident with each of the subtype C gpl60 and gpl60DC constructs (Figure 20). Each construct produces gpl60; each isolate runs at a different size, likely due to different glycosylation patterns. Again, only pSWC06980v0c22 gpl60 shows gpl60 processing into gpl20 and g_{p41}.

To quantify gpl20/gpl60 production levels, media and cell lysates from transfected CHO-K1 and HEK293 were analyzed in an HIV-1 gpl20 antigen capture
In the CHO-K1 transfections, Env expression was detected with each construct except C06838vlc48 gpl60DC. Expression levels were quite low overall, compared to the Ba-L gp145 control. This was due to very low expression levels and difficulty in the detection of the Env proteins from these isolates. Level of the Ba-L gpl45 expression was also quite low due to the low efficiency in transfecting CHO cells. The highest producing subtype C constructs were the C06980v0c22 and C3728v2c6 gpl60s. It should be noted that concentration values are based on relative reactivities to a subtype C gpl20 standard from a different isolate. Exact concentrations may differ than as reported due to possible differences in each isolates' affinities to the antibodies used in the assays.

Table 1: HIV-1 gpl20 Antigen Capture Assay of CHO-K1 cells transfected with HIV-1 subtype C gpl60 and gpl60 DC expression plasmids. Quantities of gpl20 and gpl60 are detected at 48 hrs post-transfection in media and cell lysates.

<table>
<thead>
<tr>
<th>Construct</th>
<th>gp120/gp160 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>pSWC06838vlc48 gpl160</td>
<td>0.6</td>
</tr>
<tr>
<td>pSWC06980vlc3 gp160</td>
<td>1.0</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160</td>
<td>3.2</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160</td>
<td>7.2</td>
</tr>
<tr>
<td>pSWC06838vlc48 gp160DC</td>
<td>0.0</td>
</tr>
<tr>
<td>pSWC06980vlc3 gp160DC</td>
<td>0.4</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160DC</td>
<td>1.6</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160DC</td>
<td>2.5</td>
</tr>
<tr>
<td>(-) Control</td>
<td>0.0</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp145</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Since detection of Env proteins was so weak in CHO-K1, analysis of HEK293 transfections was performed to verify results. In HEK293, Env expression was detected using antigen capture with each construct (Table 2). In HEK293, 06838vlc48 gpl60DC was now detected, but very weakly. Expression levels were much higher than with the
CHO-K1. The highest producing subtype C constructs were again the C06980v0c22 and C3728v2c6 gpl60s.

Table 2: HIV-1 gp120 Antigen Capture Assay of HEK293 cells transfected with HIV-1 subtype C gpl60 and gpl60 DC expression plasmids. Quantities of gp120 and gpl60 are detected at 48 hrs post-transfection in media and cell lysates.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Cell Type</th>
<th>gp120/gp160 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160</td>
<td>293H</td>
<td>0.0</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160</td>
<td>293H</td>
<td>28.2</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160</td>
<td>293H</td>
<td>94.1</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160</td>
<td>293H</td>
<td>198.2</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160DC</td>
<td>293H</td>
<td>0.0</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160DC</td>
<td>293H</td>
<td>2.7</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160DC</td>
<td>293H</td>
<td>13.9</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160DC</td>
<td>293H</td>
<td>59.3</td>
</tr>
<tr>
<td>(-) Control</td>
<td>293H</td>
<td>0.0</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp145</td>
<td>293H</td>
<td>237.0</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp160</td>
<td>293H</td>
<td>79.0</td>
</tr>
<tr>
<td>(-) Control</td>
<td>CHO-K1</td>
<td>0.0</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp145</td>
<td>CHO-K1</td>
<td>41.0</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp160</td>
<td>CHO-K1</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Further evaluation of gpl60 production was performed using two gpl60 antigen capture assays utilizing the human monoclonal antibodies 4E10 (Table 3) and 2F5 (Table 4). The gpl60 from each isolate reacted strongly with the 4E10-based assay. Even the C06838vlc48 isolate reacted strongly, indicating that the gp120 assay gives artificially low results for this isolate. The gpl60 from each isolate reacted with the 2F5-based assay, although weaker than the 4E10-based assay. The C06980vlc22 isolate reacted the strongest. The weaker 2F5 reactivity is explained by the fact that the 2F5 epitope is quite different in the subtype C isolates from that in the subtype B isolates from which the antibody was developed. Without being bound to theory, Applicants think reactivity to 2F5 may possibly be through interactions with gpl60-bound lipids rather than the amino acid backbone. These assays demonstrate that the MPER is exposed on each construct.
Table 3: HIV-1 gp160 Antigen Capture Assay using of HEK293 cells transfected with HIV-1 subtype C gp160 and gp160 DC expression plasmids. 4E10 huMAb to gp41 MPER is used as the capture antibody. Relative quantities of gp160 are detected at 48 hrs post-transfection in media and cell lysates.

<table>
<thead>
<tr>
<th>Construct</th>
<th>OD 450 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160</td>
<td>0.146</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160</td>
<td>0.926</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160</td>
<td>2.534</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160</td>
<td>0.589</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160DC</td>
<td>0.162</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160DC</td>
<td>1.105</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160DC</td>
<td>2.608</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160DC</td>
<td>0.681</td>
</tr>
<tr>
<td>(-) Control</td>
<td>0.123</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp145</td>
<td>2.417</td>
</tr>
</tbody>
</table>

Table 4: HIV-1 gp160 Antigen Capture Assay using of HEK293 cells transfected with HIV-1 subtype C gp160 and gp160 DC expression plasmids. 2F5 huMAb to gp41 MPER is used as the capture antibody. Relative quantities of gp160 are detected at 48 hrs post-transfection in media and cell lysates.

<table>
<thead>
<tr>
<th>Construct</th>
<th>OD 450 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160</td>
<td>0.146</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160</td>
<td>0.200</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160</td>
<td>0.344</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160</td>
<td>0.198</td>
</tr>
<tr>
<td>pSWC06838v1c48 gp160DC</td>
<td>0.155</td>
</tr>
<tr>
<td>pSWC06980v1c3 gp160DC</td>
<td>0.179</td>
</tr>
<tr>
<td>pSWC06980v0c22 gp160DC</td>
<td>0.298</td>
</tr>
<tr>
<td>pSWC3728v2c6 gp160DC</td>
<td>0.219</td>
</tr>
<tr>
<td>(-) Control</td>
<td>0.135</td>
</tr>
<tr>
<td>(+) Control: Ba-L gp145</td>
<td>2.268</td>
</tr>
</tbody>
</table>
Applicants concluded that the isolate C06980v0c22 would be used to establish CHO cell lines producing gpl45. The decision to use this isolate was based on several factors:

- its relatively strong expression, as compared to isolates C06838vlc48 and C06980vlc2
- Processing of gpl60 into gp120 and gp41 was most pronounced with this isolate
- This strain was isolated early from the patient during acute infection
- Its strong reactivity with the MPER antibody 4E 10
- This virus was infection competent

CHO-K1/C06980v0c22 gpl45 cell line development

The C06980v0c22 gpl45 DNA expression plasmid was constructed and used to establish stably transfected CHO-K1 cells producing gpl45. These cell lines were adapted for growth in protein-free media, and cell banks were established. The clone H-73-9-2-8 was selected for gpl45 protein production.

The C06980v0c22 gpl45 DNA construct was developed by modifying the gpl60DC gene using a PCR-based technique. The gpl45 gene is composed of residues N30, directly downstream of the native signal peptide cleavage site, through K676 just prior to the transmembrane domain. Following K676, the gpl45 terminates with three additional lysines (Figure 36 and Figure 37). These are included to theoretically increase the hydrophilicity of the C terminus, thus increasing exposure of the MPER for presentation to the immune system. Upon signal peptide cleavage, it is predicted that a foreign serine from the modified t-Pa signal will be present at the amino terminus. The gpl45 gene was ligated at the Nhel and EcoRI sites in the mammalian expression plasmid pSWTIPK.3 and named pSWC06980v0c22 gpl45 (Figure 21). The plasmid was amplified in the E. coli (Invitrogen) strain DH5a and purified using an Endofree Plasmid Maxi kit (Qiagen, Valencia, CA). The plasmids were analyzed by restriction digest, and
the sequence of the gpl45 coding region was confirmed by DNA bidirectional sequencing. The plasmid contains the puromycin acetyl-transferase gene for selection of stable colonies under puromycin selection. It is driven by an internal ribosomal entry site (IRES) and the CMV promoter. This facilitates a high level of expression of the gpl45 gene by linking its expression with that of the puromycin resistance marker.

A summary of important features of the mammalian expression vector can be described as follows:

- The vector contains an antibiotic resistance gene that can be used as a selectable marker in bacteria during construction. Therapeutic products derived from such vectors should avoid use of penicillin or related antibiotics during their construction. Therefore, kanamycin is used instead of ampicillin.

- The gpl45 gene to be expressed is codon optimized for enhanced expression of the product. The gene is synthesized using CHO codon bias, using codons that correspond to the most abundant tRNAs present in CHO cells. The synthetic gene is also designed to eliminate any cis-acting elements that can reduce transcription/translation efficiency as well as other motifs that may destabilize mRNA.

- The gp145 gene is introduced into the vector in frame with a modified t-Pa signal peptide to allow for efficient transport to the cell membrane.

- The gene is expressed under control of a strong promoter and efficient poly-A signal. The powerful CMV promoter and the efficient Bovine Growth Hormone (BGH) poly-A are used.

- For the selection of stable protein-expressing cell clones, the vector contains a selectable marker: puromycin acetyl-transferase gene for puromycin resistance driven by an internal ribosomal entry site (IRES) and the CMV promoter.
In developing cell lines, care was taken to perform tasks, keep records and use materials that would be acceptable with the FDA should the need arise to use these cell lines in the clinical setting. The CHO-K1 (cat# CCL.61) cells were obtained from ATCC (Manassas, VA). To establish stable CHO-K1 cell lines, the preferred method of transfection is electroporation. A benefit of this method is in its avoidance of uncharacterized animal-derived components. In addition, animal derived products were avoided unless necessary. Recombinant trypsin was used instead of porcine trypsin and the fetal bovine serum (FBS) was well defined from a New Zealand source to reduce the chances of BSE contamination. FBS was irradiated, heat inactivated and sterile filtered.

CHO-K1 cells were separately electroporated with supercoiled and linearized pSWC06980v0c22 gpl45 DNA (linearized with the single cutter: NruI). Both forms of DNA were used, as both have their benefits and drawbacks when establishing cell lines. Supercoiled DNA typically transfects with higher efficiency, which may be beneficial, as CHO-K1 cells transfect poorly. Linear DNA transfects with less efficiency, but incorporates into host genome with better efficiency than supercoiled DNA. Briefly, 5x10^6 CHO-K1 cells were suspended in 0.5 ml electroporation buffer (BioRad, Hercules, CA), mixed with 100 μl Electroporation Buffer containing 100 μg plasmid DNA in 0.4 cm electrode cuvettes. Cells were pulsed using a Gene Pulser apparatus (BioRad) at 350V with 125 μFO, set on ice for 30 minutes, pooled and cultured in 5.5 ml complete F-12 K medium (F12-K (Invitrogen, Inc.)), containing 10 % heat inactivated FBS (HyClone Laboratories, Logan UT), 10 μg/ml gentamicin (Invitrogen, Inc.) and 2 mM 1-glutamine (Quality Biologicals, Inc., Columbia, MD)).

Forty-eight hours post-electroporation, conditioned media and cell lysate samples were taken for analyses in a gpl20 antigen capture assay and IP western blot. The gpl20 antigen capture assay results confirm the secretion of gpl45 into the conditioned media. Production was quite low at only four and nine ng/ml from the linear and supercoiled DNA, respectively. Production from the supercoiled DNA is higher than that from the linearized DNA, as expected. Env proteins from Media and cell lysate samples were analyzed in IP western blot (Figure 26). The presence of gpl45 in the conditioned media
from both the supercoiled and linearized DNA electroporated cells is evident at about 140 KDa, as expected. A slightly lower molecular weight species of gpl45 is evident in the cell lysates, as expected. This likely represents incompletely processed gpl45.

Forty-eight hours post-electroporation, cells were plated at about 4500 cells/well in 96-well plates for selection in cF12-K. After 24 hours, cells were put under puromycin selection in cF12K containing 10µg/ml puromycin (Sigma-Aldrich, St. Louis, MO). Media was changed twice a week until puromycin-resistant colonies reached about 50% confluency. Conditioned media was analyzed for gpl45 production using the gpl20 antigen capture assay. Twenty cultures with the highest production were expanded, frozen and cloned by limiting dilution to isolate true clones that stably express gpl45. The best production levels of uncloned cultures reached 2 µg/ml.

From the original 20 cultures initially selected and cloned, >100 clones were analyzed by gpl20 antigen capture assay. Based on gpl45 production levels, 17 cell lines, representing 12 of the original cultures were determined to be potential candidates for gpl45 production. Frozen stocks for each cell line were made. Studies to compare production levels of each of the selected clones were performed. Briefly, cells were seeded in a 24-well plate at 1x10^5 cells in 1 ml tissue culture media and incubated at 37°C for 64 hours. Media was harvested and analyzed by gpl20 antigen capture assay and I.P. western blot. Based on their antigen capture and I.P. western blot results, clones H-73-9, H-84-1 and H-94-10 were selected for adaptation to protein-free media required for protein production. A five vial cell bank was frozen for each. Each clone produced between 1 and 2 mg gpl45/L. In I.P. western blot, each of the selected clones has strong gpl45 reactivity at about 140 kDa as expected.

It was observed that CHO-K1 cells electroporated with supercoiled DNA yielded higher transient gpl45 production than those cells electroporated with linearized DNA: 9 ng/ml versus 4 ng/ml, respectively. However, both supercoiled and linearized DNA yielded about 100 stable cell lines following puromycin selection. Interestingly, 16 of the 17 best gpl45 producing cell lines were derived from the linearized DNA. This supports
Applicants’ prediction that supercoiled DNA is more efficiently taken up by cells, but linearized DNA is more efficiently integrated and results in higher protein yields in stable cell lines.

The three selected cell lines were adapted for growth in protein-free media. As adaptation for growth in protein-free media can be difficult for certain clones, three were selected to increase the likelihood that an adaptable clone is selected. In addition, each clone was adapted to three different media (PowerCHO-1 CD, PowerCHO-2 CD and PowerCHO-3 CD, Lonza, Walkersville, MD), each containing 5 µg/ml puromycin and 4 mM 1-glutamine. After several passages in protein-free media, clone H-73-9 grown in PowerCHO-1 CD, PowerCHO-2 CD and PowerCHO-3 CD adapted and were named H-73-9-1, H-73-9-2, and H-73-9-3, respectively. Clone H-84-1 grown in PowerCHO-2 CD also adapted well and was named H-84-1-2. A two vial cell bank was frozen for each.

The four adapted cultures were again cloned by limiting dilution and the best producing clone for each culture was identified by the gpl20 antigen capture assay. Of these, two cultures were identified as being the best producers; H-73-9-2-8 and H-73-9-3-9. Two vial cell banks were frozen for each, and cultures were expanded to about 500 ml for small-scale protein purification. Conditioned media was harvested, buffered with 20mM Tris, pH 8, 0.5% Triton-X-100 and 500 mM sodium chloride. Buffered media was run through 2 ml columns of Galanthus nivalis lectin (GNL) agarose (Vector Laboratories, Inc., Burlingame, CA). The columns were washed with Tris, pH 8, 0.5% Triton-X-100 and 500mM sodium chloride, followed by PBS. The bound gpl45 was eluted with 400mM methyl a-D-mannopyranoside. Purified gpl45 was analyzed in SDS-PAGE and western blot (Figure 27 and Figure 28). Both clones produce an approximately 145 kDa protein that reacts well in western blot. Under nonreducing conditions, some dimer and high order multimers are evident, also. Both cell lines produced >1.2 mg/L according to Comassie Plus Protein Assay (Pierce). Clone H-73-9-2-8 had better growth characteristics (slightly healthier and faster growth), thus was selected gpl45 production.
A 10 vial research cell bank (RCB) for H-73-9-2-8 (lot 4/17/08) was made and stored in liquid nitrogen freezer. 2X10⁶ cells were frozen in 10 vials of 1 ml protein-free freezing medium (7.5% DMSO (Sigma-Aldrich), 50% fresh growth media, 42.5% Profreeze CDM (Lonza)). The genomic DNA was isolated from 5x10⁶ cells using Qiamp Blood Mini Kit (Qiagen), and the integrated gpl45 gene region was amplified by PCR and sequenced in both directions. There was a 100% sequence match in the gpl45 coding region. Two weeks after cell banking, cells were tested for mycoplasma contamination using MycoAlert Mycoplasma detection Kit (Lonza) and were found to be negative. One vial was thawed and put into culture to test for viability. After 3 days of culture, cells were 77% viable and tested positive for gpl45 production in gpl20 antigen capture assay. Culture was tested for bacterial contamination, and showed no bacterial growth in inoculated SOC broth after incubation at 37°C for 24 hours.

A culture grown from the H-73-9-2-8 RCB lot 4/17/08 was used to make 25 vial RCB (lot Fl 144) and stored in liquid nitrogen freezer. 10X10⁶ cells were frozen in 25 vials of 1 ml protein-free freezing medium (7.5% DMSO (Sigma-Aldrich), 50% PowerCHO-2 CD, 42.5% Profreeze CDM (Lonza)). At the time of cell banking, the culture was tested for mycoplasma contamination and was found to be negative. The culture was tested for bacterial and fungal contamination, and showed no bacterial growth in thioglycollate broth or fungal growth in soybean-Casein digest broth. One vial from the cell bank was thawed and cultured in the media previously described to check for viability and to confirm production of gpl45 in these cells. Upon thawing, viability was acceptable at 87%. Growth characteristics were as expected and gpl45 production was confirmed by antigen capture assay.

C06980v0c22 gpl45 Protein production

Three lots of gpl45 were produced and delivered for further studies (Table 5).
Table 5: HIV-1c_{06980vOc22} gp145 Lots provided

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Concentration (mg/ml)</th>
<th>Total Delivered (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112009</td>
<td>1.1</td>
<td>7</td>
</tr>
<tr>
<td>120710A</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>120710B</td>
<td>0.975</td>
<td>5</td>
</tr>
</tbody>
</table>

Lot 112009

H-73-9-2-8 culture was expanded to 3 L in PowerCHO-2 CD supplemented with 4 mM l-glutamine and 5 µg/ml puromycin using roller bottles. The conditioned media was clarified by centrifugation. Media samples from the 3 L harvest were analyzed in antigen capture. Results predicted nearly 4 mg gp145/L media in gross. Quality and yield was determined to be acceptable for production using the 3L harvest. The gp145 protein was purified as described below and as outlined in Figure 29.

Harvested media was concentrated at room temperature using a 0.1 m2 Pellicon filtration unit with molecular weight cut off of 30 kDa. The system was flushed with 1.0 M NaOH followed by WFI water then by 1X PBS buffer. The CHO cell culture supernatant (3 L) was introduced and the system was operated in a recirculation mode. The concentration was performed at a permeate flux of -1 L per hr/ 0.1 m2 and a cross flow of 0.5L/min. At the end of concentration, the sample was concentrated to 200 mL. The concentrated cell culture supernatant was stored at -70 oC until further processing.

The gp145 was purified using Lectin Affinity Chromatography. Concentrated media was adjusted to 500 mM sodium chloride and was run over 25 ml column of GNL agarose. The column was washed with PBS and the bound gp145 was eluted with 500 mM methyl a-D-mannopyranoside. The purification was performed at a flow rate of 10 ml/min. The eluate (100 mL) was concentrated and diafiltered into PBS using a tangential flow filtration. A 50 cm2 Pellicon filtration unit with molecular weight cut off of 30 kDa was used for this step. The system was flushed with 1.0 M NaOH, followed
by WFI water then by PBS. The eluate was then introduced, and the system was operated in recirculation mode. The ultra filtration was performed at a permeate flux of 2.0 mL/min., and the cross flow was ~ 40 ml/min. The volume of the GNL-Eluate was reduced to 8 mL in PBS.

Protein content was estimated by Bradford assay and found to be 1.1 mg/mL. Endotoxin in the purified gpl45 was estimated using colorimetric LAL assay (Lonza) and found to be 31.8 EU/mg protein. SDS-PAGE analysis in reduced and non-reduced condition showed the molecular weight of ~145 kD for the purified protein.

As can be seen from SE-HPLC analysis (Figure 30), lot 112009 gpl45 was eluted in four multimeric forms, referred to as A, B, C, and D. Based on the mobility of protein standards, the apparent molecular weight of each gpl45 species is calculated (Table 6). The major peak calculates as >669 kDa (estimated to about 895 kDa), corresponding to form A. Two shoulders are evident at > 669 (estimated to about 680 kDa) and 571 kDa, corresponding to forms B and C, respectively. A fourth, but minor peak of 417 kDa corresponds to a form D.
Table 6: Retention time and molecular weight of protein standards and purified gpl45 (lot 112009) multimer species

<table>
<thead>
<tr>
<th>Protein</th>
<th>Retention Time (Min)</th>
<th>Molecular Weight (kDa)</th>
<th>Multimeric form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroglobulin</td>
<td>11.81</td>
<td>669</td>
<td>N/A</td>
</tr>
<tr>
<td>Ferritin</td>
<td>13.74</td>
<td>440</td>
<td>N/A</td>
</tr>
<tr>
<td>Catalase</td>
<td>16.18</td>
<td>232</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Gamma Globulin</td>
<td>16.52</td>
<td>150</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>16.75</td>
<td>66</td>
<td>N/A</td>
</tr>
<tr>
<td>gp145 peak 1</td>
<td>11.15</td>
<td>Approx. 895</td>
<td>A</td>
</tr>
<tr>
<td>gp145 peak 2</td>
<td>11.77</td>
<td>Approx. 680</td>
<td>B</td>
</tr>
<tr>
<td>gp145 peak 3</td>
<td>12.25</td>
<td>571</td>
<td>C</td>
</tr>
<tr>
<td>gp145 peak 4</td>
<td>14.64</td>
<td>417</td>
<td>D</td>
</tr>
</tbody>
</table>

The purity of the gpl45 was 96.1% by SDS-PAGE followed by laser densitometry.

Lot 120710A

H-73-9-2-8 culture was expanded to 11L in PowerCHO-2 CD supplemented with 4 mM l-glutamine and 5 µg/ml puromycin using roller bottles. The conditioned media was clarified by centrifugation. Media samples from the 11L harvest were analyzed in antigen capture. Results predict nearly 8 mg gpl45/L media in gross. Quality and yield was determined to be acceptable for production using the 11L harvest. The gpl45 protein was purified as described below and as outlined in Figure 31.

Harvested media was concentrated at room temperature using a 0.1 m² Pellicon filtration unit with molecular weight cut off of 30 kDa operating in a recirculation mode as described for lot 112009. The 11L conditioned media was concentrated to 1L.
The concentrated conditioned media was buffered with 20 mM Tris, pH 8, 500 mM sodium chloride and 0.5 % Triton-X-100, and then clarified with 0.22 µm filter. Conditioned media was passed over 20 ml GNL-Agarose resin at 4°C at about 1 ml/min. The resin was washed with 20 mM Tris, pH 8, 500 mM sodium chloride and 0.5% Triton-X-100 buffer, and then equilibrated with PBS. The gpl45 was eluted in PBS containing 0.5M Methyl-α-D manopyranoside. GNL-Eluate (88 mL) was concentrated to 20 ml with 50 kDa MWCO filter. 10 ml was set aside for use in preparing lot 120710B. The remaining 10 ml was run on PD10 buffer exchange resin into PBS. Eluted material was sterile filtered with 0.22µm filter, aliquoted and stored at -70°C. Lot 120710A final product has a volume of 22ml.

Protein content was estimated by Bradford assay and found to be 1.0 mg/mL. Endotoxin in the purified gpl45 was estimated using colorimetric LAL assay and found to be <0.313 EU/mg protein. SDS-PAGE analysis in reduced and non-reduced condition shows the molecular weight of 142 kD for the purified protein. Under non-reducing conditions, multimers are also evident. This represents multimers held together with disulfide bonds.

As can be seen from SE-HPLC analysis (Figure 32), gpl45 lot 120710A was eluted in four multimeric forms as with lot 112009. Based on the mobility of protein standards, the molecular weight of each gpl45 species is calculated (Table 7). The major peak calculates as 666 kDa, corresponding to a form B. A second peak and a shoulder calculate to >669 kDa (estimated to about 845 kDa) and 584 kDa, corresponding to forms A and C, respectively. A fourth, but minor peak of 411 kDa corresponds to a form D.
Table 7: Retention time and molecular weight of protein standards and purified HIV-IC06980v0c22 gp145 lot 12071 OA multimer species

<table>
<thead>
<tr>
<th>Protein</th>
<th>Retention Time (Min)</th>
<th>Molecular Weight (kDa)</th>
<th>Multimeric form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroglobulin</td>
<td>11.813</td>
<td>669</td>
<td>N/A</td>
</tr>
<tr>
<td>Ferritin</td>
<td>13.677</td>
<td>440</td>
<td>N/A</td>
</tr>
<tr>
<td>Catalase</td>
<td>16.114</td>
<td>232</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Gamma Globulin</td>
<td>16.400</td>
<td>150</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>16.737</td>
<td>66</td>
<td>N/A</td>
</tr>
<tr>
<td>gp145 peak 1</td>
<td>11.226</td>
<td>Approx. 845</td>
<td>A</td>
</tr>
<tr>
<td>gp145 peak 2</td>
<td>11.824</td>
<td>666</td>
<td>B</td>
</tr>
<tr>
<td>gp145 peak 3</td>
<td>12.217</td>
<td>584</td>
<td>C</td>
</tr>
<tr>
<td>gp145 peak 4</td>
<td>14.343</td>
<td>411</td>
<td>D</td>
</tr>
</tbody>
</table>

The purity of HIV-IC06980v0c22 gp145 lot 12071 OA was 94.2% by SDS-PAGE followed by laser densitometry.

Lot 120710B

Lot 120710B is made from the same gp145 eluted during lectin affinity chromatography as lot 12071 OA. For lot 120710B, an additional step for the purpose of reducing intermolecular disulfide bonds is employed. The rationale for this is based on the observation that the previous lot of gp145 (lot 112009) is in the form of high order multimers. Without being bound to theory, Applicants believe that many of these multimers are due to oxidation, resulting in intermolecular disulfide bridges. Reduction of these bonds is attempted to produce protein in the form of lower order multimers, preferably trimer.

The gp145 protein was purified as described below and as outlined in Figure 33.
10 ml of the concentrated GNL eluate described for lot 12071 OA had been set aside for use in preparing lot 12071 OB. This 10 ml was treated with 50 mM DTT at 37° C for 30 minutes, then run on PD10 buffer exchange resin into PBS. Eluted material was sterile filtered with 0.22 μm filter, aliquoted and stored at -70° C. Lot 120710B final product has a volume of 22ml.

Protein content was estimated by Bradford assay and found to be 0.975 mg/mL. Endotoxin in the purified gpl45 was estimated using colorimetric LAL assay and found to be <0.321 EU/mg protein. SDS-PAGE analysis in reduced and non-reduced condition shows the molecular weight of 143 kD for the purified protein. Under non-reducing conditions, only trace amount of multimers are also evident. This represents multimers held together with disulfide bonds. Treatment with DTT reduced many of these bonds compared to the non-DTT treated lot 12071 OA.

Western blot shows the major band at about 143 kDa under reducing and non-reducing conditions. Several multimeric forms of gpl45 are evident under non-reducing conditions, but fewer than seen with the non-DTT treated lot 12071 OA. Under reducing conditions, these multimers have mainly been reduced to monomer.

As can be seen from SE-HPLC analysis (Figure 34), gpl45 was eluted in four multimeric forms as with lots 12071 OA and 112009. Based on the mobility of protein standards, the molecular weight of each gpl45 species is calculated (Table 8). The major peak calculates as 665 kDa, corresponding to a form B. A second peak and a shoulder calculate to >669 kDa (estimated to about 844 kDa) and 572 kDa, corresponding to forms A and C, respectively. A fourth, but minor peak of 412 kDa corresponds to form D.
Table 8: Retention time and molecular weight of protein standards and purified HIV-1C06980v0c22 gp145 lot 120710B multimer species.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Retention Time (Min)</th>
<th>Molecular Weight (kDa)</th>
<th>Multimeric form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroglobulin</td>
<td>11.813</td>
<td>669</td>
<td>N/A</td>
</tr>
<tr>
<td>Ferritin</td>
<td>13.677</td>
<td>440</td>
<td>N/A</td>
</tr>
<tr>
<td>Catalase</td>
<td>16.114</td>
<td>232</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Gamma Globulin</td>
<td>16.400</td>
<td>150</td>
<td>N/A</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>16.737</td>
<td>66</td>
<td>N/A</td>
</tr>
<tr>
<td>gp145 peak 1</td>
<td>11.23</td>
<td>Approx. 844</td>
<td>A</td>
</tr>
<tr>
<td>gp145 peak 2</td>
<td>11.83</td>
<td>665</td>
<td>B</td>
</tr>
<tr>
<td>gp145 peak 3</td>
<td>12.289</td>
<td>572</td>
<td>C</td>
</tr>
<tr>
<td>gp145 peak 4</td>
<td>14.327</td>
<td>412</td>
<td>D</td>
</tr>
</tbody>
</table>

The purity of the gp145 is 94.2% by SDS-PAGE followed by laser densitometry.

DTT reduction of intermolecular disulfide bonds had some effect on the multimeric form of gp145. In SDS-PAGE, it is clear that most intermolecular disulfide bonds were reduced with DTT treatment, if compared to non-DTT treated. SE-HPLC shows only a modest increase in form C, perhaps due to a modest reduction of form A.

Further investigation of the nature of the multimeric forms is included below in Example 7.

EXAMPLE 4

Induction of Neutralizing Antibodies to HIV-1 by Immunization with CHO-Expressed Recombinant gp145 Derived from Acute Clade C HIV-1
Animals: 24 New Zealand White female rabbits, 1.8-2 kg

The rabbits are divided into 6 groups of 4 animals each. The individual animals are identified by cage cards and ear tags.

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Adjuvant/Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gp145</td>
<td>Alhydrogel</td>
</tr>
<tr>
<td>2</td>
<td>gp145</td>
<td>Liposome formulation 1 containing lipid A, preformed and mixed with gp145</td>
</tr>
<tr>
<td>3</td>
<td>gp145</td>
<td>Liposome formulation 1 containing lipid A with encapsulated gp145</td>
</tr>
<tr>
<td>4</td>
<td>gp145</td>
<td>Liposome formulation 2 containing lipid A and PIP with encapsulated gp145</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>Liposome formulation 1 containing lipid A</td>
</tr>
<tr>
<td>6</td>
<td>mper23, clade B</td>
<td>Liposome formulation 2 containing lipid A and PIP with encapsulated mper23</td>
</tr>
</tbody>
</table>

Antigen: 25 µg/rabbit/dose

gp145 as described above expressed in CHO cell (acute clade C, C0698v0c22) in PBS, pH 7.4

mper23 (NK-4): LELDKWASLWNWFDTNWLWYIK (SEQ ID NO: 53), (HBX2 variant; Swiss-Prot accession number P04578 except that the N at position 674 was replaced with D.)

Adjuvants:

Alhydrogel (0.6 mg A13+/dose) formulated at 0.6 mg A13+ in 0.125 ml of PBS, pH 7.4; Mixed with equal volume of antigen

Liposome formulation 1 - DMPC:cholesterol:DMPG (9:7.5:1); 50 mM phospholipids containing 100 µg of lipid A/0.25 ml dose; PBS, pH 7.4. DPMC refers to dimyristoyl phosphatidylcholine, and DMPG refers to dimyristoyl phosphatidylglycerol.

Liposome formulation 2 - DMPC:cholesterol:PIP (1:1.5:1); 50 mM phospholipids containing 100 µg of lipid A/0.25 ml dose; PBS, pH 7.4. PIP refers to phosphatidyl inositol-4-phosphate.
Bleeding: The animals are bled at weeks -2, 0, 4, 8, and 10 from an ear artery using a 20-24 gauge butterfly catheter. Approximately, 5 ml of blood is taken during each phlebotomy. The blood is incubated at room temperature for 2-3 hr and then refrigerated overnight at 4C prior to centrifugation to remove the serum from the clot. The serum is aliquoted: 1 x 1ml and 3 x 0.5 ml in plastic vials and frozen at -80C.

At week 12, the rabbits are terminally bled by cardiac puncture after anesthesia with atamine/Xylanine with a 60 cc syringe and an 18 gauge needle. The serum is aliquoted: 5 x 1ml and 5 x 5ml in plastic vials and frozen at -80 °C.

Immunization: Weeks 0, 4 and 8 by the intramuscular route in alternating caudal thigh muscles. Inject 0.25 ml with a 23-27 gauge needle.

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week -2</td>
<td>Release from quarantine</td>
</tr>
<tr>
<td>Week -2</td>
<td>Pre-bleed</td>
</tr>
<tr>
<td>Week 0</td>
<td>Pre-bleed</td>
</tr>
<tr>
<td>Week 0</td>
<td>Immunize IM, 0.25 ml</td>
</tr>
<tr>
<td>Week 4</td>
<td>Bleed</td>
</tr>
<tr>
<td>Week 4</td>
<td>Immunize IM, 0.25 ml</td>
</tr>
<tr>
<td>Week 8</td>
<td>Bleed</td>
</tr>
<tr>
<td>Week 8</td>
<td>Immunize IM, 0.25 ml</td>
</tr>
<tr>
<td>Week 10</td>
<td>Bleed</td>
</tr>
<tr>
<td>Week 12</td>
<td>Terminal Bleed</td>
</tr>
</tbody>
</table>

See also Figure 41. Results are presented in Figures 42-48, 52.

EXAMPLE 5

The following methods detailed below for the mouse studies incorporate the immunogenicity/antigenicity methods used in the rabbit studies depicted in the Figures (see Figures 41-48, 52), except rabbits received 25 ug of gpl45 or placebo in liposomes as described.
Gpl45 Mouse Immununogenicity Study: Antigenicy/Immunogoenicity Methods

Antigens

The gpl45 protein was produced from an envelope sequence isolated from an acute, subtype C infected individual from Tanzania. The entire ecto-domain of the protein is present, including the MPER of gp41. The protein was designed to include two mutations (R508S, R51IS) in the gpl20/gp41 cleavage site to prevent protease cleavage and a multi-lysine C-terminal to facilitate production and MPER epitope presentation. The protein was produced in CHO cells, purified by lectin affinity chromatography and is present as a mix of multimers as described in Example 7. The gpl45 protein contained the following MPER epitope sequence: ALDSWNLWNWFDIS (SEQ ID NO: 23).

Liposome preparation

Antigens, experimental M13 phage or gpl45 protein, were encapsulated in liposome prior to immunization. Liposomes composed of dimyristoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol and cholesterol in molar ratios of 1.8:0.2:1.5 were prepared by dispersion of lyophilized mixtures of lipids at a phospholipid concentration of 50 mM in Dulbecco's PBS with 0.4 g/ml lipid A, either lacking or containing antigen. Liposomes were washed twice in sterile saline to remove the unencapsulated antigen.

Animal Immunizations

Forty female BALB/C mice, 25 g each, were immunized under a protocol approved by the Institutional Laboratory Animal Care and Use Committee. Animals were divided into eight groups of five animals each (Table 9). Mice were immunized intramuscularly four times in alternating caudal thigh muscles at two or three week intervals with 5x10^{11} phage or 10 µg gpl45 protein each per dose. Blood was collected at two-week intervals starting two weeks prior to the first immunization ending when the animals were euthanized. Blood was incubated at room temperature for 2-3 h, refrigerated overnight at 4°C then centrifuged. Serum was collected and stored at -20°C.
Two weeks after the last boost (week 10) the mice will be euthanized. Blood, spleens, lymph nodes, bone marrows, and livers were obtained and processed from naive and immunized mice.

<table>
<thead>
<tr>
<th>Group#</th>
<th>Immunogen</th>
<th>Immunization (Weeks)</th>
<th>Bleeds (Weeks) 150ul/mouse/bleed</th>
<th>Euthanasia (collect blood, spleens, lymph nodes, bone marrow and livers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M13-12D4</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>2</td>
<td>M13-12B7</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>3</td>
<td>M13-all 5</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>4</td>
<td>gp145/M13-all 5</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>5</td>
<td>gp145</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>6</td>
<td>M13-no insert</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
<tr>
<td>7</td>
<td>Naive</td>
<td>0, 3, 6, 8</td>
<td>-2, 0, 2, 4, 6, 8, 10</td>
<td>Week 10</td>
</tr>
</tbody>
</table>

Table 9. Mouse immunization plan.

IFNγ-release ELISPOT (Enzyme-linked Immunosorbent Spot) assay

Spleen cells secreting IFNγ were analyzed by ELISPOT. Ninety-six-well nitrocellulose-backed MultiScreen-IP sterile plates (Millipore) were coated overnight at 4°C with 10 μg/ml of anti-gamma interferon (IFNγ) (PBL Interferon Source) in sterile PBS. The wells were blocked with sterile PBS containing 0.5% bovine serum albumin for 30 min at 37°C and washed with PBS containing 0.025% Tween 20 (wash solution) followed by sterile RPMI-1640 complete medium. Single cell suspensions were prepared from the mouse spleens of each group (five mice/group). Cells (2x10⁶/well) were plated on anti-IFNγ-coated plates and incubated for 18 h at 37°C in a humidified CO₂ incubator. Cells were incubated with 5 μg/ml acute C gp145 (HIV-1 C06980, Advanced Bioscience Laboratories), gp40 (HIV-1 IIIB, Advanced Bioscience Laboratories), yeast-derived gp41 (Meridian Biosciences) or 10 μg/ml cathepsin degraded, yeast-derived gp41 or no protein. Plates were washed with wash solution followed by distilled water and overlaid with 0.125 μg/ml of biotinylated anti-IFNγ (clone XMG 1.2; BD PharMingen) and incubated at room temperature for 2h. The plates were then washed and incubated with a 1:1,000 dilution of avidin-conjugated alkaline phosphatase (Vector Laboratories) for 2 h at room temperature. The plates were washed, and bound IFNγ was detected by the
addition of 5-bromo-4-chloro-3-indolylphosphate (BCIP)/nitroblue tetrazolium (NBT) (Kirkegaard and Perry Labs). The plates were washed with water, and the individual spots were visualized and counted the next day using a stereo binocular microscope. The average number of spots/number of cells plated was plotted.

Antigen presentation and detection of cytokines from T-cells by flow cytometry

Cells from spleens or lymph nodes from the different groups of mice were stimulated with 5 µg/ml acute C gp45 (HIV-1 C06980, Advanced Bioscience Laboratories), gp40 (HIV-1 IIIB, Advanced Bioscience Laboratories), yeast-derived gp41 (Meridian Biosciences) or 10 µg/ml cathepsin degraded, yeast-derived gp41 or ConA as the positive control for 22 h at 37°C. The cells were incubated with the above-mentioned antigens for 2 h before the addition of brefeldin A (1 µg/ml, Sigma-Aldrich) and monensin (0.07 mg/ml, BD Pharmingen). Cells were incubated for an additional 20 h. Cells were analyzed on an LSR II (BD Immunocytometry Systems) flow cytometer and 500,000 events were collected using FACSDiva software (BD Immunocytometry Systems). Dead cells were excluded using a viability marker and B-cells were excluded. The CD3+ CD4+ and the CD3+ CD8+ T-cells were gated and analyzed for the expression of IL-2, TNF-a, IFN-g and CD107a. The data were analyzed using FlowJo software (Tree Star). Percent positively stained cells per antigen are shown for each group. The black bar represents a two-fold range above the control response, M13 - no insert.

Antigen-specific serum IgG ELISA

Antigen specific IgG titers were determined by binding ELISA titrations using gp45 and gp41 as targets. Antigens were diluted to 0.25 µg/ml in PBS (pH 7.4), 100 ul per well was added to 96-well microtiter Immunol 2 polystyrene plates. Plates were incubated overnight at 4°C then washed three times with 300 ul 0.1% PBST (PBS containing 0.1% Tween-20). Serum was titered in 2-fold serial dilutions starting at 1:50 dilution in serum diluent (0.1% PBST containing 5% non-fat milk), and 100 ul each dilution was added to the plate. Plates were incubated at 37°C for 1 h then washed three times with wash buffer. HRP-labeled anti-mouse IgG antibody diluted to 1:16,000 in
serum diluent was added, 100 µl/well. Plates were incubated for 1 h at 37°C then washed three times with wash buffer. TMB (100 µl, Kirkegaard & Perry Labs) was added, incubated for 30 min at 37°C and the reaction stopped by adding 100 µl of 1 M phosphoric acid. Plates were read on a spectrophotometer at 410 nm, 570 nm reference filter. Antigen binding titer was determined by calculating the concentration at which binding was detectable above three times background. Two independent assays were performed and the results were averaged.

Surface Plasmon resonance (SPR) measurements by Biacore

SPR measurements were conducted with a Biacore T200 using CM5 chips. Peptides were immobilized to the chip surface using the Biacore amine coupling kit (Biacore, AB). All immobilization steps used a flow rate of 10 µl/min and were performed at 25°C. The peptide loading buffer was 20 mM sodium acetate, pH 4.2. The immobilization wizard packaged within the T200 control software was used to immobilize 14700 resonance units (RU) of 10 µM scrambled MPER peptide and 20500 RU of MPER peptide to their respective flow cells. Both peptides had a 10 min contact time during immobilization. The serum samples were diluted 1:50 in Tris buffered saline, pH 7.4 and passed over the chip surface at 30 µl/min for 3 min followed by a 5 min dissociation period. At the end of the 5 min period, a 75 µg/mL solution of sheep anti-mouse IgG(Fc) antibody (The Binding Site) was passed over the flow cells for 2 min at a flow rate of 10 µl/min. After a 70 s dissociation period, the chip surface was regenerated using a 30 second pulse of 50 mM HCl, a 30 second pulse of 100 mM EDTA in 20 mM Tris, pH 7.4, and 30 second pulse of 50% acetic acid followed by a 1 minute injection of Tris-buffered saline, pH 7.4. Non specific binding was subtracted and data analysis was performed using the BIAevaluation 4.1 software. The reported response units for the IgG specific values are the difference between the average value of a 5 second window taken 60 seconds after the end of the anti-IgG injection and the average value of a 5 second window taken 10 seconds before the beginning of the anti-IgG injection.
Pseudovirus neutralization assay

TZM-bl cells were used as assay targets to determine HIV-1 neutralization. BnAb or plasma were titered in 4-fold serial dilutions starting at 25 μg/ml or 1:20 dilution respectively, in growth medium [DMEM with 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine (Quality Biologies Inc.), and 15% fetal calf serum (Gemini Bio-Products)] and 25 μl added in duplicate to a 96-well flat-bottom black plate. Pseudovirus, diluted in growth medium to a dilution optimized to yield ~150,000 relative luminescence units (RLU), was added in equal volume to each well. The samples were incubated at 37°C in a humidified 5% CO₂ incubator for 1 h. All incubations were under these conditions. TZMbl cells were resuspended at 2×10⁵ cells/ml in growth medium containing 60 μg/ml DEAE-dextran (Sigma), 50 μl was added to each well. Each plate included wells with cells and pseudovirus (virus control) or cells alone (background control). Plates were incubated for 48 h, and then 100 μl/well of reconstituted Brite Lite Plus (Perkin Elmer) was added. RLU values were measured using a Victor 2 luminometer (Perkin-Elmer). The percent inhibition due to the presence of the antibody was calculated by comparing RLU values from wells containing antibody to well with virus control. Two independent assays were performed and the results were averaged.

PBMC neutralization assay

PBMC, collected from HIV-negative donors and cryopreserved, were used as assay targets to determine HIV-1 neutralization. This assay uses replication-competent HIV-1 infectious molecular clones (IMC) containing a Renilla reniformis luciferase (LucR)-expressing HIV-1 reporter gene; viral production is measured with a luminometer (Edmonds, TG et al. Virology 408:1-13 (2010)). Sera were titered in 4-fold serial dilutions starting at 1:20 dilution in IL-2 growth medium [RPM1-1600 with 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine (Quality Biologies Inc.), 15% fetal calf serum (Gemini Bio-Products), and 20 U/ml recombinant interleukin-2 (Roche Diagnostics)] and 25 μl was added in duplicate to a 96-well round-bottom plate. IMC, diluted in IL-2 growth medium to a dilution optimized to yield ~50,000 RLU, was added in equal volume to each well. The samples were incubated at 37°C in a humidified 5%
C0₂ incubator for 1 h. All incubations were under these conditions. PHA/IL-2 stimulated
PBMC were resuspended at 2x10^6 cells/ml in 1L-2 growth medium then 50 µl was added
to each well. Each plate included wells with cells and IMC (virus control) or cells alone
(background control). Plates were incubated for 24 h. 100 µl of growth medium was
added to each well and then plates were incubated for an additional 72 h. Renilla
Luciferase Assay System (Promega) was used to quantify luciferase production. Lysis
buffer, 50 µl/well, was added and two freeze/thaw cycles were performed, 20 µl/well was
transferred to a black, flat-bottom plate and RLU in each well were measured
immediately after injection of 100 µl substrate. The percent inhibition due to the presence
of the antibody was calculated by comparing RLU values from wells containing antibody
to well with virus control. Two independent assays were performed and the results were
averaged.
...city of the five M13-displayed 4E10 epitopes capable of inhibiting neutralization was evaluated in vivo. Thirty-five female BALB/C mice, seven groups of five animals each, were vaccinated with a single M13-displayed epitope, all five M13-displayed epitopes or all five M13-displayed epitopes in combination with HIV-1 gpl45 envelope protein (Table 9). The gpl45 envelope protein, from an acute clade C HIV-1 infection, has been shown to elicit neutralizing antibodies in rabbits.

Analysis of elicited cellular immune response

Cellular immune responses elicited by vaccination were assessed by INFγ-release ELISPOT and intracellular cytokine staining (ICS) assays in both the spleen and lymph node. In these assays HIV-specific responses were measured after stimulation with HIV-1 envelope proteins: gpl45, gpl40, gp41 or cathepsin degraded gp41. A response two-fold greater than the control group, mice immunized with M13 - no insert, was considered a positive response (Figure 53 and 54). ICS data was analyzed to determine CD3+CD4+ or CD3+CD8+ T-cell specific responses.

In the INFγ-release ELISPOT assay, a single response was observed in all groups in both the lymph node and the spleen; the M13-all 5 immunized group, stimulated with gpl40 in the lymph node and the gpl45 immunized group, stimulated with gpl45 in the spleen (Figure 53). Background responses to gpl40 were high in the splenic T-cells. IL-2 responses were observed by ICS for all groups against several HIV-1 envelope antigens; TNF-α, CD107a and INFγ responses were not detected. Positive IL-2 responses were more frequent in the lymph node than in the spleen, 85% and 48% positive responses, respectively, but were lower in magnitude, 3.9-fold and 4.5-fold above control, respectively. Positive IL-2 responses were more frequent in the CD4+ T-cell compartment than in the CD8+ T-cell. 73% and 60% positive responses, respectively, and were higher in magnitude, 4.5-fold and 3.8-fold above control, respectively (Figure 54). Mice immunized with liposomes only did not have HIV-1 specific cellular responses.

Analysis of elicited antibody responses

Humoral immune responses were analyzed by IgG binding ELISA, Biacore and by neutralization assays. Binding titers against gpl45 and gpl40 were determined for all groups (Figure 55). Animals immunized with gpl45 or gpl45/M13-all 5 produced antibodies with high titers gpl45, average of 512000 and 409600 respectively, and gp41, average of 30400 and 43200 respectively; both groups had the highest titers to the gpl45 immunizing protein. The other groups did not have detectable binding titers in this assay with the exception of
A weak binding titer to gp45, average 1200. Biacore was used to
-specific IgG binding to MPER peptide in pooled serum; no binding was
observed (data not shown).

Neutralization assays were performed using both TZMbl and PBMC as assay targets.

Sera were titered against two neutralization-sensitive HIV-1 strains in both assay platforms
and ID50 values were calculated (Figure 56). Animals immunized with gp45/M13-all 5 had
the highest neutralization titers in both the TZMbl and PBMC assays, a 2.1- and 1.9-fold
increase respectively over the gp45-immunized group. Animals immunized with a single
M13-displayed MPER epitope, M13-12D4 and M13-12B7, or multiple M13-displayed

MPER epitopes (M13-all 5), also produced HIV-neutralizing antibodies. All sera were
screened against the HIV-2/MPER chimera and a nonspecific viral control, MuLV, no
neutralization was observed for either of these viruses.

EXAMPLE 6

α4β7 Blocking Assay

Materials:

Media: 10% FCS / RPMI / Lglut / PenStrep

Cells: RPMI8866

Table 10 - Reagents:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Source</th>
<th>M#</th>
<th>Lot#</th>
<th>Working Dil.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mouse IgG</td>
<td>Invitrogen</td>
<td>10400C</td>
<td>645253A</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Normal human IgG</td>
<td>GenScript</td>
<td>A10006</td>
<td>A108810</td>
<td>10%</td>
<td>Make lyoph, stock to 1mg/mL H2O</td>
</tr>
<tr>
<td>Anti-α4β7 blocking MAb</td>
<td>Beckman</td>
<td>IM0764</td>
<td>21</td>
<td>2ug/well</td>
<td>make lyoph, stock to 0.5mg/mL H2O</td>
</tr>
<tr>
<td>Anti-β7-FITC</td>
<td>BioLegend</td>
<td>321212</td>
<td>B142196</td>
<td>1:10</td>
<td></td>
</tr>
<tr>
<td>Peptide-PE</td>
<td>Invitrogen</td>
<td>A2660</td>
<td>866787</td>
<td>1:400</td>
<td></td>
</tr>
<tr>
<td>gp145-AcuteC-biotin</td>
<td>V.Polonis</td>
<td>LotB</td>
<td>0.5ug/well</td>
<td>biotinylated 2X by RF</td>
<td></td>
</tr>
<tr>
<td>Anti-Env mAbs x 14</td>
<td>See Table 12 for list of mAbs tested</td>
<td>rcvd from S. Zolla-Pazner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepare α4β7 Binding Buffer

- prepare 1M MnCl2 fresh from powder (lg MnCl2-4H2O (from Arthos Lab - MW 197.9) + 5mL dH2O

- prepare binding buffer per table below

- sterile filter solution and store at 4°C
Harvest cells

- collect non-adherent cells and transfer to a 50ml tube
- pellet cells at 200xg for 10' and pour off supernatant
- combine all cells into 10mL media, resuspend vigorously to break up clumps and count
- adjust volume to 1.0x106 cells/mL media

10 - aliquot 100μL (100K) cells per well into assay plates (96-well U-bottom polypropylene)
- pellet at 200xg for 10'
- wash cells 2X with binding buffer

Table 12 - Samples

Preincubate Protein + IgG
- add binding buffer to wells according to plate layout and sample calculations
- add IgG to the appropriate sample wells according to the sample calculations
iding buffer alone to wells for UNTREATED, POS CTRL and NO IgG

- make up stock of protein(s) at 0.025ug/uL in binding buffer

Table 13

<table>
<thead>
<tr>
<th>Protein</th>
<th>[stock] ug/uL</th>
<th># Wells</th>
<th>uL per well</th>
<th>Total Vol</th>
<th>[Final] ug/uL</th>
<th>uL Protein</th>
<th>uL Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp145-AcuteC Lot B2</td>
<td>1.0</td>
<td>20</td>
<td>20</td>
<td>400</td>
<td>0.025</td>
<td>10.0</td>
<td>390</td>
</tr>
</tbody>
</table>

- add 20uL binding buffer to UNTREATED wells
- add 20uL protein to sample wells, POS CTRL and NO IgG CTRL wells (= 0.5ug protein/well)
- incubate plate for 60min at 37°C

10 Binding Assay
- prepare blocking buffer (10% mouse IgG, 10% human IgG in binding buffer)
- add 50uL / well blocking buffer
- add 4uL (2ug) anti-a4 blocking mAb to the POS CTRL well
- incubate on ice x 10min (do not wash off)
- transfer 50uL protein/IgG complexes to assay plate per layout
- incubate on ice x 30min
- wash 2X with binding buffer

20 Staining
- prepare staining cocktail

Table 14:

<table>
<thead>
<tr>
<th>uL per well</th>
<th># wells</th>
<th>Total Vol</th>
<th>uL β7-FITC (1:10)</th>
<th>uL NA-PE (1:400)</th>
<th>uL Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
<td>1000</td>
<td>100</td>
<td>2.5</td>
<td>898</td>
</tr>
</tbody>
</table>

- add 50uL binding buffer to unstained wells
- add 50uL staining cocktail to NO IgG CTRL, POS CTRL and all sample wells
- incubate at 4°C for 30min
binding buffer

-

- spin cells down and resuspend in 150uL binding buffer
- store plates at 4°C until ready to read

Compensation Bead Preparation

- prepare 2 wells of compensation beads, wash beads with staining buffer 2X
- resuspend beads in 45uL staining buffer
- 5uL CD4-FITC to one well and 5uL CD4-PE to the other and mix well
- incubate at 4°C for 30min
- wash 2X with staining buffer
- resuspend in 200uL staining buffer

A second α4β7 binding inhibition assay is a flow cytometry based assay which can be performed on the RMPI8866 cell line, but is primarily performed on isolated CD4+ and CD8+ T cells cultured to express the active form of the α4β7 heterodimer. A model for this assay is shown in Figure 57. This assay can be performed as a binding assay to test variants of the HrV-1 env derived from selected acute sequences. The expanded utility of the assay includes the test for functional blocking of the α4β7 interaction by monoclonal antibodies or purified serum IgG against either the env protein or the integrin. Selected HIV-1 env protein is generated and biotinylated and pre-incubated with antibody, followed by incubation with the α4β7 expressing cells. Binding is detected by addition of neutravidin-PE and the presence of the α4β7 is confirmed by staining with the non-blocking mAb conjugated to FITC. When testing an anti-integrin antibody, the cells are pre-incubated with the antibody prior to addition of the biotinylated env protein, and detection proceeds as described.

Applicants have adapted this method for use with whole env protein as well as biotinylated linear and cyclic peptides. In certain embodiments, the assay is developed to be used with the IMC and VLP constructs.

One of the important features of this assay is the ability to use primary T cells expressing the active form of α4β7. To generate these cells, Applicants isolate CD4+ and CD8+ T cells from PBMC by magnetic bead separation. A negative selection protocol is used so the resulting cells are "untouched", purified and bead-free. Following isolation, cells
lays in the presence of anti-CD3/anti-CD28, IL-2 and retinoic acid to
ission of α4β7 (Figure 58).
Preliminary experiments during development of this assay were conducted to
determine the binding kinetics and overall utility of the assay with a variety of HIV-1
envelope reagents. Recombinant CRF01_AEgpl20 and an acute subtype C gpl45 (as
described above) were biotinylated and bound to α4β7 expressing CD4+ or CD8+ T cells
(Figure 59, left and center panels). A biotinylated cyclic peptide containing the V2 loop of
HIV-1 Env derived from CRF01-AE also bound both CD4+α4β7+ and CD8+α4p7+ cells.
Similar binding was also seen with the RPMI8866 cell line (data not shown). There was no
binding detected with a clade B MN derived gpl20 or with a cyclic V2 peptide containing a
mutation in the apex of the loop (data not shown).

Initial blocking studies were conducted using human anti-V2 monoclonal antibodies
(kindly provided by S. Zolla-Pazner) and the CRFOl_AE-derived gpl20 or cyclic V2 peptide.
Both V2-reactive monoclonal antibodies tested, 697-30D and 2158, blocked binding of Env
to CD4+α4p7+ and CD8+α4p7+ cells (Figure 60). As a positive control, cells were pre-
incubated with the anti-a4 blocking antibody HP2/1 prior to addition of protein or peptide.
Applicants proceeded with these experiments, testing a panel of overlapping linear peptides
derived from the V2 loop to delineate the amino acid residues required for this interaction
(data not shown).

Methodology

Preparation of α4β7 T Lymphocytes. Cryopreserved PBMC are thawed in complete
media and CD4+ or CD8+ T cells are isolated by magnetic bead negative selection. Cells are
cultured in the presence of anti-CD3/anti-CD28, IL-2 and retinoic acid for at least 5 days.
Polychromatic flow cytometry is used to monitor phenotype, cell viability and expression of
active form of α4β7. For some assays, the human B cell lymphoma line RPMI8866 will be
used as it highly expresses active form of α4β7.

α4β7 Binding/Blocking Assay. Cells expressing α4β7 are incubated with 2.5 μg
biotinylated V2 peptides or HIV-1 envelope glycoprotein for 30 minutes. Following a wash
to remove unbound peptide/protein, cells are stained with neutravidin-PE and binding is
assessed by flow cytometry. For blocking studies, antibodies are pre-incubated with either
the α4β7 expressing cells or with the HIV-1 envelope protein, as appropriate, for 30 minutes
prior to addition.

Synthesis of HIV-1 envelope proteins. Acute envelope sequences are selected from
subjects in the RV217 acute infection study for synthesis. Sequences are submitted to
don optimization and cloning into mammalian expression vectors.

id in CHO cells or HEK293 cells, which provide different glycosylation patterns that may be important for binding assays. Following expression, a portion of each protein is biotinylated for use in α4β7 binding/blocking assays.

Synthesis of biotinylated V2 peptides. Peptides designed by Dr. Tim Cardozo (New York University) are synthesized and biotinylated by Genemed Synthesis Inc. These peptides have been kindly provided to us by Dr. Cardozo.

EXAMPLE 7

Summary

Data from gel filtration supported the presence of a mixture of different multimer species. However, it was not certain how the globular nature, hydrophobic regions and heavy glycosylation of gp145 affect the resolution of the different multimeric forms in this assay. Therefore, it was difficult to conclude what species are present and in what proportion. In addition, poor resolution in this assay made it difficult to determine the relative quantity of each form. To further analyze the oligomeric forms present in the purified lots of C06980v0c22 gp145, Blue Native PAGE (BN PAGE), and EGS crosslinking, SDS-PAGE was performed using purified proteins. In addition, separation of oligomeric forms was attempted using gel filtration chromatography.

BN PAGE

The multimeric composition of purified HIV-lC06980v0c22 gp145 lots 112009, 12071 0A and 12071 0B were analyzed using Blue Native PAGE. Purified H1V-lC06980v0c22 gp145 was run on a 4-16% Novex Bis-Tris polyacrylamide gel using Invitrogen's Native PAGE system (Figure 61). For comparison, Ba-L gp145 and the three clade D gp140 proteins (A07412, 57128, and 57140) described above were also run. Laser densitometry analysis run on the BLUE Native PAGE predicts a mixture of multimeric forms for each protein (Table 15).
isoelectric densitometry prediction of gp140 and gp145 multimer composition

<table>
<thead>
<tr>
<th>Clade</th>
<th>Protein</th>
<th>Lot</th>
<th>Apparent Molecular Weight (kDa)</th>
<th>Multimeric Species</th>
<th>Percent composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Ba-L gp145</td>
<td>061308</td>
<td>>800* 691 538 278</td>
<td>A</td>
<td>40.3 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>21.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>35.1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>3.1 %</td>
</tr>
<tr>
<td>D</td>
<td>A07412 gp140</td>
<td>3-31-05</td>
<td>>800* 733 574</td>
<td>A</td>
<td>30.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>32 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>37.5 %</td>
</tr>
<tr>
<td>D</td>
<td>57128 gp140</td>
<td>4-13-05</td>
<td>>800* 674 566</td>
<td>A</td>
<td>21.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>44.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>34 %</td>
</tr>
<tr>
<td>D</td>
<td>57140 gp140</td>
<td>4-20-05</td>
<td>>800* 773 659</td>
<td>A</td>
<td>27.1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>40.6 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>32.2 %</td>
</tr>
<tr>
<td>C</td>
<td>C06980v0c22 gp145</td>
<td>112009</td>
<td>>800* 767 624 302/244**</td>
<td>A</td>
<td>12.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>52.7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>27.3 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>7.2 %</td>
</tr>
<tr>
<td>C</td>
<td>C06980v0c22 gp145</td>
<td>120710A</td>
<td>>800* 751 621 308/239**</td>
<td>A</td>
<td>11.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>61 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>22 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>5.6 %</td>
</tr>
<tr>
<td>C</td>
<td>C06980v0c22 gp145</td>
<td>120710B (DTT treated)</td>
<td>>800* 770 638 307/239**</td>
<td>A</td>
<td>15.1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>59.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>19.6 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>5.9 %</td>
</tr>
</tbody>
</table>

* Extremely diffuse band spanning several hundred kDa; difficult to state molecular weight. More than one species may be present in these fractions.

** Doublet with incomplete separation may represent 2 species including some breakdown products.

From Blue Native PAGE, it is clear that the gp140 and gp145 proteins exist as a mixture of various multimers. However, it is not abundantly clear what species are present. If one assumes that monomer is about 140 kDa, then the expected molecular weight of trimer, tetramer, pentamer and hexamer are about 420 kDa, 560 kDa, 700 kDa, and 840 kDa, respectively. However, due to their globular form, hydrophobic regions, and heavy glycosylation, it is suspected that the proteins may not behave in this manner. Accordingly, for this Example, Applicants designated each multimer species as A, B, C or D, with A being the most complex and D the least complex. All C06980v0c22 gp45 lots behave similarly with B as the predominant form along with significant amounts of C and D. DTT treatment...
ars to have no significant affect on the multimer composition. A similar
;clade D 57140 and 57128 gpl40s. The clade D A07412 gpl40 is similar,
but the C form is slightly greater in quantity than the B form. For the Ba-L gpl45, the
predominant species are found in a broad, diffuse band corresponding to a likely mixture of
high order multimers, classified as the A species. A distinct major C population and a more
minor B population are also evident.

EGS Crosslinking/SDS-PAGE

C06980v0c22 gpl45 gpl45 has been further characterized by SDS-PAGE of proteins
crosslinked with ethylene glycol bis(succinimidylsuccinate) (EGS) to further characterize the
multimeric forms. The data suggests that trimers predominate, but dimers and trace amounts
of monomer and higher order multimers are also present. Purified HIV-1co6980v0c22 gpl45 (lot
120710A) was crosslinked with 0.2, 1, 5 and 12.5 mM EGS and resolved on a 3-8%
NuPAGE Tris Acetate polyacrylamide gel (Invitrogen) under reducing and non-reducing
conditions and stained with coomassie blue (Figure 62). Laser densitometry analysis was
used to estimate the molecular weights of each gpl45 species. When treated with 0.2 mM
EGS, gpl45 crosslinking is not complete, and three species are evident at 334, 232 and 139
kDa. These correspond well to the predicted molecular weights of trimeric, dimeric and
monomeric forms. As EGS concentrations are increased to 5 and 12.5 mM, crosslinking is
completed, revealing that trimer is the predominate species. A major dimer species is also
present, but monomer makes up only a trace of the total protein. Under nonreducing
conditions, a faint band corresponding to a higher order multimer is also evident with the
fully crosslinked samples. This reveals that some higher order multimers exist that are held
together with disulfide bridges. Multimeric species A, B and C presumably correspond to the
higher order multimer, trimer and dimer species as resolved with the EGS crosslinked
protein, respectively. Based on Blue Native PAGE results, the major multimer species B and
C had apparent molecular weights of 751 and 621 kDa, respectively. These apparent
molecular weights were too high to conclude with confidence that they represent trimer and
dimer. However, using EGS crosslinking, the apparent molecular weights are more in line
with the major forms being trimer or dimer. EGS crosslinking SDS-PAGE is a method used
by J.P. Nkolola, et. al. (1) to describe recombinant HIV-1 92UG037.8 gpl40 produced in the
baculovirus system as trimer. These proteins run at a similar molecular weight as the
C06980v0c22 gpl45 using a similar EGS crosslinking procedure. The apparent
discrepancies in the predicted molecular weights of the gpl45 oligomers observed with BN-
PAGE and EGS crosslinking SDS-PAGE may be due to how the charge, globular nature, hydrophobic regions and heavy glycosylation of gp145 affect the resolution of the different multinineric forms in these assays. It would seem that BN-PAGE is capable of resolving oligomeric forms in the native state. However, the molecular weights cannot be determined due to proportionate differences in the mobility of gp145 and the molecular weight markers. In EGS-crosslinking SDS-PAGE, oligomers are covalently bound together, but denatured as with a regular SDS-PAGE. Under these conditions, gp145 migrates relative to the standards based on its apparent molecular weight much as it would if not crosslinked.

Dimer and Trimer Purification

Gel filtration chromatography has been investigated as to whether it can be used to isolate the various oligomeric species of gp145. Successful isolation of the various forms would allow for the potential investigation of the antigenicity or immunogenicity of each form.

Gel filtration chromatography using Superose 6 was performed. It is thought that Superose 6 would have potential for separating the high molecular weight gp145 species because of its high molecular weight range; optimal separation of proteins is 5 to 500 kDa. Separation of large proteins often proves to be difficult due to relatively poor resolution of gel filtration resins for high molecular weight proteins, such as the gp145 oligomers.

Superose 6 shows some promise for separating the different oligomers. On an analytical Superose 6 PC 3.2/30 (GE Healthcare) column, 25 μL containing 200 μg HiV-1co6800v0c22 gp145 lot 12071 OA was loaded at 0.05 ml/min in PBS, pH 7.2. 50μl fractions were collected and analyzed by EGS crosslinking/SDS-PAGE (Figure 63). Although no fractions contained pure trimer or dimer, some enrichment of trimer was evident in certain fractions. Higher order multimers are evident in some fractions. Different column size and conditions could have better resolution and potentially separate out trimer from the higher order multimers and dimers. In further embodiments, optimization of separation conditions may be performed using a Superose 6 column.

References

Having thus described in detail embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Each patent, patent application, and publication cited or described in the present application is hereby incorporated by reference in its entirety as if each individual patent, patent application, or publication was specifically and individually indicated to be incorporated by reference.
WHAT IS CLAIMED IS:

1. An isolated peptide comprising a truncated HIV Env protein, wherein the HIV Env protein is mutated in the native gpl20/gp41 cleavage site to prevent protease cleavage, comprises the MPER of gp41, and is truncated prior to the transmembrane domain.

2. The peptide of claim 1, wherein the HIV Env protein comprises about 1-10 hydrophilic amino acids at its C-terminus.

3. The peptide of claim 2, wherein the about 1-10 hydrophilic amino acids are three lysines.

4. The peptide of claim 1, wherein the MPER of gp41 comprises the 4E10 epitope.

5. The peptide of claim 4, wherein the MPER of gp41 comprises the amino acid sequence: LWYIK (SEQ ID NO: 24) at its C-terminus.

6. The peptide of claim 5, wherein the HIV Env protein comprises about 1-10 non-native hydrophilic amino acids C-terminal to and contiguous with the LWYIK (SEQ ID NO: 24) amino acid sequence.

7. The peptide of claim 1, wherein the HIV Env protein is derived from an HIV-1 strain classified in a group selected the group consisting of: M, O, N, and P.

8. The peptide of claim 7, wherein the HIV Env protein is derived from an HIV-1 group M strain.

9. The peptide of claim 8, wherein the HIV-1 group M strain is a subtype (clade) selected from the group consisting of: A, B, C, D, F, G, H, J, and K.

10. The peptide of claim 9, wherein the subtype (clade) is clade B.

11. The peptide of claim 9, wherein the subtype (clade) is clade D.
12. The peptide of claim 9, wherein the subtype (clade) is clade C.

13. The peptide of claim 12, comprising an amino acid sequence having 85% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

14. The peptide of claim 13, wherein the peptide comprises an amino acid sequence having 90% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

15. The peptide of claim 14, wherein the peptide comprises an amino acid sequence having 95% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

16. The peptide of claim 15, wherein the peptide comprises an amino acid sequence having 98% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

17. The peptide of claim 16, wherein the peptide comprises an amino acid sequence having 99% or greater identity to the amino acid sequence depicted in SEQ ID NO: 1.

18. The peptide of claim 17, wherein the peptide comprises the amino acid sequence depicted in SEQ ID NO: 1.

19. An isolated nucleic acid comprising a nucleic acid sequence encoding the amino acid sequence of any of claims 13-18.

20. The nucleic acid of claim 19, wherein the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 1.

21. A vector comprising the nucleic acid of claim 19.

22. A host cell comprising the vector of claim 21.

23. The host cell of claim 22, wherein the host cell is a CHO cell.
24. A method of making a peptide comprising an amino acid sequence having at least 85%
or greater identity to the amino acid sequence depicted in SEQ ID NO: 1, comprising
culturing the host cell of claim 22 or claim 23 under conditions suitable for protein
expression and isolating the peptide.

25. A composition comprising the peptide of any of claims 13-18 and a pharmaceutically
acceptable carrier.

26. A method of generating antibodies against HIV in a mammal, comprising
administering the composition of claim 25 to the mammal.

27. The method of claim 26, wherein the composition further comprises an adjuvant.

28. A method of conferring immunity against HIV in a mammal, comprising
administering the composition of claim 25 to the mammal.

29. The method of claim 28, wherein the composition further comprises an adjuvant.

30. The method of claim 28, comprising administering the composition to the mammal by
injection.

31. The method of any of claims 26-30, wherein the mammal is selected from the group
consisting of: a human, a non-human primate, a dog, a rabbit, a guinea pig, and a mouse.

32. A subunit vaccine comprising the peptide of any of claims 1-3.

33. A subunit vaccine comprising the peptide of any of claims 13-18.

34. A nucleic acid vaccine comprising the nucleic acid of claim 19.

35. An isolated peptide comprising an amino acid sequence having 90% or greater
identity to the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID
NO: 5.
36. The peptide of claim 35, wherein the peptide comprises an amino acid sequence having 98% or greater identity to an amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

37. The peptide of claim 36, wherein the peptide comprises an amino acid sequence having 99% or greater identity to an amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

38. The peptide of claim 37, wherein the peptide comprises the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

39. An isolated nucleic acid sequence comprising a nucleic acid sequence encoding the amino acid sequence of any of claims 35-38.

40. The nucleic acid of claim 39, wherein the nucleic acid sequence encodes the amino acid sequence depicted in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.

41. A kit comprising (a) a composition comprising the peptide of any of claims 1-3 and a pharmaceutically acceptable carrier and (b) instructions for administration of the composition to a mammal.

42. A kit comprising (a) the composition of claim 25 and (b) instructions for administration of the composition to a mammal.

43. A kit comprising (a) a composition comprising the nucleic acid of claim 19 and a pharmaceutically acceptable carrier and (b) instructions for administration of the composition to a mammal.

44. The peptide of any of claims 7-12, wherein the HIV-1 strain is isolated from an individual with an acute HIV-1 infection.

45. The peptide of any of claims 7-12, wherein the HIV-1 strain is isolated from an individual with a chronic HIV-1 infection.
46. The peptide of claim 1, wherein the HIV Env protein is mutated in the leader sequence.

47. The peptide of claim 46, wherein the native signal peptide is replaced with a tPA signal peptide.

48. The peptide of claim 47, wherein the tPA signal peptide comprises a sequence selected from the group consisting of: SEQ ID NO: 21 and SEQ ID NO: 22.

49. An isolated peptide comprising an amino acid sequence having 90% or greater identity to the amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9.

50. The peptide of claim 49, wherein the peptide comprises an amino acid sequence having 98% or greater identity to an amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9.

51. The peptide of claim 50, wherein the peptide comprises an amino acid sequence having 99% or greater identity to an amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9.

52. The peptide of claim 51, wherein the peptide comprises the amino acid sequence depicted in SEQ ID NO: 7 or SEQ ID NO: 9.

53. An isolated nucleic acid sequence comprising a nucleic acid sequence encoding the amino acid sequence of any of claims 49-52.

54. The nucleic acid of claim 53, wherein the nucleic acid sequence is selected from the group consisting of: SEQ ID NO: 3 and SEQ ID NO: 5.

55. The nucleic acid of claim 19, wherein the isolated nucleic acid comprises the nucleic acid sequence depicted in SEQ ID NO: 20.
56. The method of claim 27 or claim 29, wherein the adjuvant comprises a liposome formulation.

57. The method of claim 56, wherein the liposome formulation comprises one or more of: dimyristoyl phosphatidylcholine, dimyristoyl phosphatidylglycerol, cholesterol, and phospholipid.

58. The method of claim 57, wherein the liposome formulation comprises phospholipid A.

59. The method of claim 26, wherein the antibodies generated in the mammal are antibodies that compete with the peptide comprising the truncated HIV Env protein for binding integrin α4β7.

60. The isolated peptide of claim 1, wherein the peptide binds integrin α4β7.
FIG. 1

pJWIRESpuro
6986 bps

SV40 Origin
Beta-Lactamase
NdeI 715
CMV Promotor
Intron A
tPa Leader
HindIII 2021
NheI 2096
EcoRI 2108
BamHI 2378
IVS (synthetic intron)

puc Origin
5000
6000
1000
2000
3000
4000

XhoI 4332
BGH Poly A
Puro
ECMV IRES
FIGURE 3

Nucleic acid sequence of HIV-1 Ba-L gp140 DC 4E10 (SEQ ID NO: 6)

ATGGATGCATGAAGAGAGGCTCTGCTGTGCTGCTGCTGCTGTGAGGAGTCTCGTT
TCGGCTAGC GAGGAAAAGCTGTTGGGTACCGTGACTACGGCGTGCCCCTGTTGGAAAGAG
GCCACCACCACCTTCTGCGCCACGACGCGCAAGGCTACGACACCAACGGGTGACACAAC
GTGTGGGCCACCCACGCGCTGCGCCACCGACCAACACCAACCAGGAATGTGGACGTGGAA
AACGTGACCGAGAAAATCTCAAATGTGGAAGAACAACCATGGTGGAACAGATGCACGAGGAC
ATCATCAGCCTGTTGGAGACAGAGCTGAGTCCCTGCTGCAATGCTGACCCCCCTGCTGCTG
ACCCCTGAACCGCCAACCTCGGCGAAACGCGACACCAACACCAACACCTCC
AGCAGCGGGGAGATGATGCGCGGAGGGGAGATGAAAGAATCTCAAGCTTCAAGATCACCAC
AACATCCGGGGCAAGATGCTGAAAAGATACGCCTTTCTGCTGACGACATGCTGCCC
ATGGAAACAAACAGCAACCCGCTGATAGGCGTGACTCGTGCAACACCAACCGCTGATCACC
CAGGCCCTGCCCCAAGATCATCGTTTCTGAGCCCCATCCCAATCCACTACTGCGCCCCCTGCGGC
TTCGCCATCCTGAAAGTGCAAGGAACACAAATGTCAACCGAAGCGGCCCCCTGAGCAACGTG
AGCACCCTGCGAGATGCGACCCACCGGTACCCGGCGCTGCGTCTGGACCCACAGCGTCTGGAAC
GGCAGCTTGCCAGGAGAAGATGTTGACAGAAGACAGATCCCTRCCCGACAAACAGCCAAG
ACCATCATCCTGCGACGCTGAGACAGATCAACTGCAACCCGCCCACCAACACACAC
ACCCGGAAAGACATCACCACATCGGCCCTGAGCGAGGCCCCCTGCTACACACACCGCGAGATCATC
GCGCACTACCGGGCAGGCCCAGCTGACACTGAGCCGGCGCCAAATGGAAACAGACACCTGAAAC
AGATCTGCTATCAAGCTGCGGAGACGATTGCCAACAAGACCATCGTGTTTCAAGACACAGC
AGCGGGCGAGACCCCGAGATCGTGACCCACAGCTCTACATGCTGGCGCGAGTCTCTCTTAC
TGCAACACAGCAACAGCAGCTGATGACGAGGAGGAAACACAAACACACC
GTGGAAACACACACATGCACTCCGGCCGATCAAGCGATACATCAATATGTTGGCAAG
AAAGTGCCGAGAGCATGCTGACCCCTCCTCCAACCTCGGGCGCAGTACGCCGAGCAGCAAC
ATCACCACCGCTGCTGACCCCGGAGCGCGACCGACAAGACAGGCTGTTT
FIGURE 3 (cont.)

CGGCTTGCGGCAGATGATCACGGGAGACTGGGAGCGAGCTGTAAAGTACAGGATTG
GTGAAGATCGAGCCCTGGGCTTGCGCTAACAAAGGCGGTGAGTGGAAGCGGG
GAGAAGAGCGCCGTGGGCATCGGGCCGCTGTGTTCTGGTGCTCTGAGGAGACCAGCAGC
ACCATGGAGCCAACATGACCCCTGACCGTGCCCGGGCTGTGCTGTCCCGACATC
GTGCAGCACAGAACACCTGCTGCGGGCCATTGAGGCACACAGCAGCAGACTGCTGCGCTG
ACCGTGTTGGGATTAAGCAGCTGCGGCAGGGTGGCTGGCCGTTGAGAGATACCTGCGG
GATCAGCAGCTGCTGGGATCTGGGGCTGCAGCCGAAGCTGATCTGACTCACCCGCCGTG
CCCTGGAAACGCCAGCTTGTTCAAAAGAGCTGAAACAAATCTGGGAACAACATGACTGG
ATGGAATGGAGCAGGCAGATCAACACTACACAGCAGCTACAGCAGCTGATCGAGGAA
AGCCAGAACCAGCAGGAAAAGAAGCAGCAGAATGCGAAACTGGAAGAGTTGGCGACGC
CTGTGGAATGTTGCGAGATCGATGCTGCTGTGATACGATCGAAAGAAGAAGTGA
FIGURE 4

Amino acid sequence of HIV-1 Ba-L gp140 DC 4E10 (SEQ ID NO: 7)

MDAMKRGGLCCVLLLCGAVFPSAS EEKLWVTYVYGVPVWKEATTTLASDAKAYDTEVHN
VWATHACVPTDPNQEVLENIENVENFNNMVEQMHDISELWDQSILPKCVKLTPLCV
TLMNQDLRNATNGDNTTSSREMGGGEMKNSKHKTNIRGKVQKEYALFYELDIVP
IDNNSNNRRYRLISNTVSITQPISFSIPIHIPHCAPIAGFAIKKDDKFNGKGPCSNV
STVQCTHGRIPVSTQLLNLGQLAAEEEEVIRSENFAKNTIVQQLNESVEINCTRPNNN
TRKSHIGPGAITYTTGEIGDIRQAHNCNLQAKWNTLNNKVKLREQFGNKIVFKHS
SGGDPEIVTHSNCGGEFFYCNSTQLNISTWNVTEESNNTVENNITLPCRIKQINMWOQ
KVGRAMYAPPGRGQIRCSSNITGLLLTRDGGPEANKEVFRPGGDMRDNWRSLEYKYKV
VKIEPLGVAPTGKSVVQREKSAVGIGAVFLGFLGAAGSTMGAAAMTLTVQARLLLSGI
VQQNINLRLAIEAQHLLLQTLTVWGIKQLQARVLAVERYLRDQQLLGWIWCSGKLICTTAV
PWNASWSNKLNIWDMTWMEDREINNTYSIISLIEESQNNQKNEQELLEDKWAS
LWNWFIDTEWLYIKKK
FIGURE 5

Nucleic acid sequence of HIV-1 Ba-L gp145 (SEQ ID NO: 8)

ATGGATGCAATGAGAGAGGGCTCTGCTGTGCTGCTGCTGTTGAGCAAGCTTCCGTT
ACTACCACAGAGCTGAGGAGAACAGGCTGACGGGTGACCTACGACCCTGGCCGTT
TGGAAGAGGGCCACACCATCTGTTCTGCGCCAGCGAGCCGACGCTAAGGCTACGAGC
GTGACACAGCTGTTGCGGACCCACAGGTCGCTGCCAACCGACCCCCAACCCCGGAG
GAGCTGGAAACAGTGACCGAGAACCTTCAAGATGGAAAGAAACATGGTGGGACAGAT
CACGACATCATCAGCCGAGCCCTGCGGACCCGACCCCGGACCGCGTCGACGACCC
CGTGACGTGAACCTGAAACTGCAAGCCAGCAAGGGAGATGAAGAAGAAGAGTGC
ATGCACCATCCAATGCGGGAAGTGGACAGGAAGTACGGGCTTTCTACGAGCTGGAC
ATCGTCGACATCGAAGCAGACACCGGTTACAGCTGATCAGTCAAGAACCAGGC
GTGACCCGACCTGCGCCAAAGATGATCGTTCAGGAGCGCACCATTCCACTACTGCGCC
CCTGCGGCGCTCGCATGGAAGAAAGAAGATGCTCAAGCAAGAGAACGGCAGAGCG
AGCAACGTGAGCACCAGTGACAGGCACCGGACATCGGCGCTGCTGACCCACACGG
CTGGAACCAGGCGAGCTGCTGGAAGGTGATGATCGAAAGCGAATCTCCTCGCCGAC
AACGCGCCAGCAATCATCGTGCAAGCTGAGGAGCTGGAGATCAACTGCAACCCGGCC
AAACAAACACCGGAAGACGATCACCACATCGGCGGCCTGGCAGGGCTCTGTTACACCA
CGGCCGAGATCGTACCCACAGCTTCAACTGTGGGGAGACCATCAGCTGTTT
AACGATACGCGAGGCAAGCCCGAAGATCGTACCCACAGCTTCAACTGTGGGGAGAC
ATCGTGAACCGCTGCGGAGAGCTGGAGATGATCGAAAGCGAATCTCCTCGCCGAC
AAGCAGCAGCCAGGCAGCCCGAGATCGTACCCACAGCTTCAACTGTGGGGAGAC
TTCTTTACTGCAACAGCACCACCGTCTGTTCAACAGCACCCTGGAATGTGACCGAGGAA
AACACCGGACATCGGCGGCCTGGCAGTCAAGCAGATATCGTTGACCCCTGGCCCGAC
ATCGTGGCAGAAAGTGCGAGGGCAGCGCATCGGCCTGCCCTTGCGCCCGATCCAGTCCG
AGCAGCAGCAGCCAGGCAGCCCGAGATCGTACCCACAGCTTCAACTGTGGGGAGAC
FIGURE 5 (cont.)
GAGGTGTTCGCGCTGGGGAAGGATATGCGGGACAACTCGGAGCGGAGCTGTACAAG
TACAAGGTGTTGGAAGATCGAGCCCCTGCGCGTGCGCCCCCAACCAAGGCAAGAGCCGGGTG
GTGACGCAGGGAAGAGAGGCGCTCGGAGCGCCGCTGGTCTTCTGGCTCTGGAGCC
GCCGGAAGCACCATGGGAGGCCGCCAGCATGACCCCTGACCCTGAGCAGCGCCCGTGTGCTG
TCGGCATCGTGCAAGCAGAACAACCTGCTGCGGGCATTGAGGACACGACAGCATCTG
CTGAGCTGACCGTGTGCGGCATTAAGCAAGCTGCAAGCCCAGGGTGCTGCGCGTGGAGAGA
TACCTGCGGATCAGCAGCTGCTGCGGGATCTGCGCGTCAAGCAAGCTGATCTGCAACC
ACCGCGCTGCCCCTGGAAACGCGCGCTGTTCCAACAAAGCCTGAACAAAATCTGGGACAAC
ATGACCTGGATGGAAATGGGACCGCGAGATCAAACAACACCCACAGCATCTTACAGGCTG
ATCGAGAAAGCAGACAGCAGGAAAAGCAAGAGCAGGAACCTGCTGGAACCTGGGACAAG
GGGCGCAGGCTGTGGAACCTGCTGATTTCCGAGCTACCCGAGTGCTGTGGAATCAAGGAAGAAG
AAGTGA
FIGURE 6

Amino acid sequence of HIV-1 Ba-L gp145 (SEQ ID NO: 9):

MDAMKRG1LCCVL1LGAVPVTTEAS EEEKLVTVYVGVPPVWKEATTTLFCASDADKAYDTE
VHNWATHACVPTDPNQPEVELENVENFNFWMKKNVEQMHDIIISLWDQSLKPCVKLTIP
LCTLNCTDLRNATNGDNTNTTTSSREMGGEMKNSF KnITTNIRGKVQKEYALFYELD
IVPIDNNSNNRRLISCTNSVITQACP1SFEPIHYPACAPGFAILKCKDKFNGKGPC
SNVSTVQCTHGIRPVVSTQKLLNGSLAEVVIRSENFADNAKTI1VQLNEVESVENCSTRP
NNNTRKSISIHPGRALYTTGEIIGDIRQAHCNLSRAKWNWNEEIVKLLLREQFGNKTIVF
KHSSGGDPEIVTHSFNCGGEFFYCNSTQLFNSTWNVTEESNNTVENNTITLPCRIKQIIN
MWQKVGRAMYAPPiRQIRCSNITGLLTLTRDDGPEANKTEVRPGPGGDMRDNWRSELYK
YKVVKIEPLGVAPTAKSRVQREKSAVGAVGFLGFLGAAGSTMGASAAMTLTVQARLLL
SGIVQQNNLLRAIEAQHLLQLTVWGKQIQARVLAVERYLRDQQLLG1WGCSGKLICT
TAVPWNASWSNKLNIWDNMTWMEWDREINNYTSIYSLIESQNNQQEKNEQELLELDK
WASLWNVFDITELWLYIKKK
FIGURE 9
HIV-1 C3728v2c6 gp160 Codon Optimized (SEQ ID NO: 10):
tPA signal is highlighted

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGGAGCATCTTCTGTT
ACTACCACAGAGGCTAGC AACCTGTTGCGAGCCAGCGAGCACAGGCTACTAGGCGGCGCCCGATGTGGAAAG
GAGGCCAAGACCACCTGTCTGCTGGGCGAGAGCAAGATCGAGAAGGAGGTGCAC
AACGTGTGGGGCACCACGCCCTGCGTCGCCCCACCGACCCAAACACCCAGAGATGGAGCTG
CCCAACGTGACCGAGAACCTTCACATGTGGAAAGAAGCAGATGTGGGAACCAGATGCAACAG
GACATCATTACGCTGCTGGGACAGGCTTCGGAAGCGCTACGCGGAAAGAAGGAGAAGCAAT
CACGAGGCCTGTTCTACAAGCTGACATCGTGCCCCCTGGGCAACAGCAACCGAGAGCTAC
AGGCTGATCAACTGCAACACCGACCCCTGACCCAGGCTGCCCCCAAGTGACCTTCGAC
CCCATTCCCCATCCACTTGCGCCCCAGCCGGCTACCGCCATTCTGAAAGTGCAAGGACAGG
AGTTCACGCGACCCGGCCTCTGCAACACGCTGTCCACCGTGCACTGACACCGGCACTC
AGGCCGCTGTGGTGGCTCCCCAGCTGCTGAAAGCGGCTGCGCCGAAGGAGCATCATC
ATCCGCAGCGAAACTGACCAAAACAGTGAAGACCATCTATGTGGCACTGACACGGAGACG
GTGAGATCAAACCTGTACCAGGCCCAAAACAACCAACCCAGGAAAGACATCGATCGGCCCA
GGCCAGACCTTCTCTACGGCCAGGGCGCATCATCGGCAACATCAAGGCAAGGCGCTACTGACC
ATCAGCAAGAAACAGTGGAAACCGAACCTGGAGAGAGTGCTCAACAAGCTGAGAGGAGTAC
TTCAAGAAACACCCATCATGTCTCCTGGGGCTCCCACCTCTGGCAGCGCTGAGATCATCACC
CAGCTCTACACTGCAAGCCGAGTTCTACTGCAACAAAGCCAGCAGCTGCTTTCAACGAG
ACCAGCACGGGCTCTGCAACAAAGACAGCAGCCAGGAAAGACATTCACCTCTGCGCTGCAAG
ATCAAGCAGATCATCAACCTGTGGCAAGAAGTGCAGGCAAGGCCATGTACGCCCAACAAATC
FIGURE 9 (cont.)

GCGGGGAACATCACCCTGTGAGCAGCAACATCACCCTGTGAGCAGCAAGGACGAGGCGG
GACAACACACAAAGAACCGAGACATTCCGGCAGCCAGGCCGAGACATGAGGGACAACTGG
CAGGAGGAGCTGTACAAAGTGAGGTGGAGGTGAAGCCCTTGGGCGTGGGCCCCAAGG
GAAGCCAGGCGGAAGATGTGATGGAAACGGAGAAGAGGCGGGGGGCTTGGGCGCGCTTTT
CTGGGATTCCCTGGGGGGCTGCGCCATACCAGGATGAGGACGCCACGATCCACCTCGGACGG
CAGGCTAGCGAGCCTGCTGCTGCGAGAATCGTAGCAGCAGCATCCAACCTGCTGAGGGGCTAC
GAGGCTACAGCATATGACTCAGCTGACCGTGTTGGGCATCAAGCAGCTGACGCAACAG
GTGCTGGCCATCGAGAGATATCTCGAGAACAGCACTGCTCGGATCAGTGGGCTGCGAC
GGCAAGCTGATCTGCCACCAACCCGCTGGAACAGCAGCTGTTCCAAACAAGTCCCTG
AAGGCCATCTGGGCAACAATGAGCCTGGGAGATCGAGGACAGGATGAGATCAGAACTACCC
AACACCATCTACAGGCTCGAGGACGACCCACATCGACGAGGAAGAAAGAAAGAAGAC
CTGCTGGGCCCTGAACAGCTGGGAAACACCTGTGGAGCTGTGTACACATCCACAAAAGTGGCTG
TGATACATCAGGATCCTTACTCATAGATCTGATGGGCGGCTCAGTGGGCGCGCTTGAAGGATCTAC
GCCATCCTGTCACTGTAACAGATGGCCCGAGGCATACAGCCCCACCTGAGCGCTTCCCAGACC
CTGACACCCACACCAGCGGGGGCCAGACAGACGGCGGAGGAGGAGGGCCGGCGAG
CAGGACAAGAACGAGATCCCATCAGGCTGCTGGAAACGGGCTGTTTCTGCGCTGGCGCGAGAC
CTGAGAAGCCTGCTGTGCTTGACTCACAGGCTAGGGAGCTTACATCTGTAGTCCACCC
AGGGCCGTGGAACCTGCTTGGGCACTCCACCTGGGCTGAGGGGGCTGCTGCGAGGCCG
CTGAGTACCTGGCTCGGCGCTGCGGCAAGCAGCTGTAAGAAGACGCGCATC
AGACTGCTGGAACATCCCGCCCCTGCGTCGGGCAAGGAGGGCCCGACAGGATCAGGGCGCTTGGAG
ATCCAGAGGATCTCGAGGGCGGATCCAAACGTGGCCAAACAGGATCAGGGGCGGCTTGGAG
GCCGCCCTGCTGTGATGA
FIGURE 10

HIV-1 C3728v2c6 gp160 DC codon optimized Nucleic acid seq (SEQ ID NO: 11):

tPa signal is highlighted

The gp120/gp41 cleavage site is mutated to prevent cleavage

ATGGATGCAATGAAAGAGAGGCTCTGCTGTGCTGCTGCTGCTGCTGCTGAGAGCTCTTGTT
ACTACCACAGAGGCTAGC AACCTGTGGGAGCCTGACTACGGCGTGCCTCGCTGGAGAGG
GAGGCGAAGACACCACTGTTTGCCGCGACAGCAGCAAACGCTCAGAGAGAGGTGCCA
ACGCTGGACACGAGAATCATAATGTTGGAAGAGACATAGTTGGAAGATGCAAGAAGAGAG
GAGATGAAAGAAGACTGCACCTCAAAGCAGCACAGGGAGATAAGGGAAGAGGACC
CAGCAGCGCCCTGTGCTCTAAACGCTGGACATCGTGCCCGGCTTGGAACAGCAACGAGAGCTAC
AGGCTATCAAAGCAGACACGACCTGACCCAGCAGGGCTGCCCCGGAGGAGCTTTGAC
CCATCCCCAACCTACTGCGCCCCAGCCGCTACCATCTGAAAGTGAAGATGACAGACAG
AAGTTACCGACCGGCTCTGCAACACACGCGAGCAGATGACACCCAGGCCATAC
AAGCACCGGTGTTGCTCCACCAGCTGCTGAAAGGCAAGCGCTGCGCCGAGAGGAACATCTC
ATCCGGACGGAAGACATGCAACACAGCTCATATTGAGCTACAGGAGAGACAG
GTGGAGATCAACTGTGAGCAAGCAAAACACACAGGGAGACAGCCAGATGAGTCGCC
GGCCAGACCTCTTACTGCGCGGCGGCGATCATGCGCACACAGGAGCAGGCTAC
ATCGACAAGAAAGATGGAACACCCACTGTGGAGAGGATGCTCAACAGTGAAGAGATGAC
TTCAAGAACACACCACATCGTGGCCCGCCACTCTGCGCGCAGCTGGAGATACCAACC
CACAGGTTTCAACTGACGGGCGGAGATTTCCTACTGCAACACAGCACGAGCTGTTAAACG
ACCACCAACGCGCTTACGCAAAAGAGACAGGGCAACAGGAGCACATCCCTGCCCCGAGA
ATCAAGCAGATCATCAACTGTTGCGAGAAAGTGGCGACGGCCATGTCAGGCCCCCAACAA
FIGURE 10 (cont.)

GCCGGGAACACATCCTGCTGAGCAACATCACCACCCGCTGCTGACCAGGGACGGCGGG
GACAACACAACAGAGACATTTCCCGCCAGGGCGGGAGACATGAGGGACAACTGG
CGGAGCGGACTGTAACAGTGACTGAGGTGGAGTGAAGCCCTGTGGGCTGGCCACAGC
GAAGCCAGGAGCAGTGTTGAGGAGAGAGAGCGCCCTGGGCTGGCCGCGGCTTT
CTGGGATTCCTGGGCTGGGTGCAGCACCACCCTGGGAGGAGAGAGACATGAGGGCCTC
CAGGCTAGGCAAGCTGCTGTCCGGAAATCGTGCAGCAGAGTCCAACCTGCTGAGGGCTATC
GAGGCTCAGCAGCATATGCTCCAGCTGAAGTGTTGGGCATCAACGAGCTGAGACAGACG
GTGCTGGCCATCGAGAGATATCTCGAGACAGACUTCGCTGGGCATCTGGGCTGGCTGAGC
GGCAAGCTGATCTGACCAACAACGTTGAACAGCTGCTGAGTGGGACAGAGATCAGCAACTACACC
AACACCATCTACAGGCTGGAGGACAGCCACACTCAGCGAGAGAAGAGAAGAGAC
CTGCTGGCCCTGAACAGCTGGAAACACTCTGAGGTGAAGCTGTGGTCAACATACAACACTGCTG
TTGACATCCTGGGATTTCTCATGATGTGCTTGGGCCGGCCTGTACGCGCTGAGATCATCTTCC
GCCACCTCTGTCATCGTAACAGAGTGGCAGGGCTACAGGCCCACAGCGCTGCTGAGACAGACC
CTGACACCCCAACAGCAGGGCCAGAACAGACTGAGCAGACGAAGAGGCGGGACGAG
CAGGACAGAGACATCCAGCAGCTGTTGAGGCGTTTCTCTGAGCCCTGGCTGGGACAGAC
CTGAGAAGCGTTGCTGGCTTTCACTACAGGCTGAGGGACTCTATCTGTAGCTGCCACC
AGGCCCTGGGAACTGCTGCGGCTACCACCTGGGGCTGAGGCGCGCTGAGGCGCGCCGGG
CTGAAGTACCTGGGCTCCCTGGGCAAGATTTGGGGCCAGAGCTGGAAGAGAGCAGCCATC
AGACTGCTGGGACATCAGCGCCATCGCCGGTTGGCCAGGGCAGCCAGACAGAGATCAGGAGTTC
ATCACAGAGGATCTGCAAGGGCCATCCAAACGTTGACCACAGTAGCAGGGCGCCTGAG
GCCGCCCTGCTGTGA
FIGURE 11

HIV-1 C06838v1c48 gp160 Codon optimized Nucleic acid seq. (SEQ ID NO: 12):

tPa signal is highlighted

ATGGATGCAATGAGAGGAGGCTCTGTGTGCTGTGGAGCATCTTGTGGAG
ACTACACAGAGGCTAGC AACCTTGTGGGTCACCCTGTACTACGGGCTGGCCCGTGTGGAGA
GAGGCCAAGACCAACCTGTCTTGCGCCAGCAGCCCAAGGCCCTACGAAAGGAAGGAGTGAC
AACGTTGTGGGCCCACCAGCCTCGGTCGCCACCGACCAGCGCCCCCGAGGATGGTGCTG
AGAAGCAGTGAACGAGAACTTCACATGTGGAGAAACGACATGGTGAGCAGATGACACAG
GACATCATCGCGCTTGAGGGACACGACCTGAGCAGCAGCTGAAAGCTGACCCCTGTGAG
GTGACCCCTGTACCCGAAACCTGTAACCCGACCCACCGGACACCTCAACAGGAAGAGATG
GAGGGCGAGATCAAGAAGACCTGACCTTCACATCAACCCACCGAGATCAGGGGCAAGAAGAG
AAGGCTCCAGCCTGTGTCTACAGGGCTGGAGCTGGTGGCAGCTCAACACAGCAACAGGACTAC
ATCTCGTACATGCAACACGCAAGCCCATCACCAGGCTGGCAAGAGGTGTCTCTCGAC
CCCATCCCCATCCACTACTGCGCCCCAGCAGCGCTACGGGATCCTGAAAGTGCAACACGACAAG
CCCTCAACCGGCACGGCCCATGCAACAAGCTGTCCTACCGTGACAGTGACCCCAACAGGCATC
AAGCCCCTGTACAGCACCACGCTGCTGCTGAAACGGCAGCCCTGGCGGAGAAGGAGGTGATC
ATCCGCTTCGAGAAACTCGGACCAACAGCCCAAGACCATCATCGTGAGCTGAAACACAGAC
ATCGAGATCAAGTGCACTACGGCCCACAAACACACCCACGAGAGCAGATCGGATCGGCCCA
GGCCAGGCTCTACACCCAGGAGACATCAGCGCAGATAGAAGGGCCCTACTGCAACC
ATCGAGACAGAGAGGTGGAAGGAGAAGACTGGGCAACGTCAAGAGAAGCTGAAAGGAGTAC
TTCCCCAACCACACATCGTTGTCTCCCCTCTCTGGGGGACCTGGAGATCACCACC
CACAGCTTACACTGCAAGGGCGAGTGTCTTCTACAGAAACACAGCAAGCTGTGTTCAACAC
AACGACCGAGAAACACTGACCACATCCCTGCCCCTGCAGAATCAAGCAGATCGTGAAC
ATGTGGCAGGGCGGCGGCAACGGCTACTGACGCCCCACCCATCGAGGGCAACATCACCCTGC
AAGTCCACATCACCAGCGGCTGTGCTGACCAGAGACGGGCGAACAGCAGAGAGAAGAC
GAGACATTCAGCGCCGCGCAGAGAGGAATACGCGCTGAGGAGCAGCTGAGAAGG
TACAGGTTGTTGGAGATCAAGCGCTGGGATGCCCACCCGCGAAGAGAAGATG
GTGGAGAGAGAAGAGAGGCGGATGCGGCGCGCCTGATTCTGGGCTCTGGAGGC
GCCGGAAGCACCATTGGGAGCGCGCAAGCCTGACACCTGAGTCAATGCAAGACG
TCCCGGATCGTGACAGCAAGCAGACAGAATCTGTAGATACGTAGAGGCTAGCTAGA
CTGCAGCTGACCCTGTTAGGCGААGАGААGААGААGААGААGААGААGААGААGААGААGААG
TACCTGAAGATCAACACTGATGCTGCCCTGCTGGGCATGGGCTACGGCAAGCTGATCTGCAC
ACAGCCGTGCATGGAAATAGCATGTGGTCCAАAAAGAAGCGAGATCGACATCGACAGTGGAAACAAC
ATGACCTGGATGGCATGCGGAGAGААGААGААGААGААGААGААGААGААGААGААGААGААGААG
CTGGAGGACAGCAGCCACTAGAGGAAGAAACGAGAAGACCTGCTGGGCTCTGGAGACGC
TGGAAAGAАCCTGTGTCAGCTGTTTAACTACATCAААAGCTGATGGCTGTGACTGATCAAGACTCTTC
ATCATCATCTGGCGGGCGCTATGCGCTGAGGATCATCTCTCGCGCTGCTGCTGCTCATCGTG
AACAGAGTGCAGCCAGGGGATCACGCCCCACTGAGGCTTTCCAGACCTGATCCCCAGCCCAGA
GGCCCCGACAAGCTGCGCAGGATCGAGGAGGGCGCGCGAGCAAGGCGAGATCC
GTGGAGGCTGTGAACGGCTTCCTCTGCCCCCTTGGGAGACCTGAGAAGCCTGCTGCTG
TTGACCTATCACCAGCTGAGGACTTCATCTGATCCTGGCCAGACGCGTGGGCTCTGCTG
GGCAGGTCCAGCTGAGGCTGGCTAGAGGCTGGGAGATCTGAAAGATCCTGGGGCGG
CTGTCGACTCTGGGGCGCTAGCTGAAAGAGCGCGCTGAGGCTGGCTTCGACACATC
GCCATCGCCGTAGCGAGGGACAGCACAGGATCAGCGAGGCTTCGAGGCGCGGCTCGAGA
GCCATCGAGGAACGTGCCAAGCAGGATCAGCGAGGCTTCGAGGCGCGGCTCGAGA
FIGURE 12

HIV-1 C06838v1c48 gp160 DC codon optimized Nucleic acid seq (SEQ ID NO: 13)

tPa signal is highlighted

The gp120/gp41 cleavage site is mutated to prevent cleavage

ATGGATGCAATGAAGAGAGGCTCTGCTGTGCCTGCTGTGAGACATCTTTCTG
ACTACCACAGAGCTAGC AACCTGTGAGGAGCTAGTACTACGGCGTCCCCGTGGAGA
GAGGCCAAGACCCCCTGTTCTGCGCCAAGGGGCAAGCCTACGAAAAGGAGGGTGAC
AACGTTGGGCCCCACGCCTGCGGCCACGACCCGACCCGACACAGGTAGGTGCTG
AGAACAAGTCGCCGAAAATCTAACATGTGGAAAGACAGACATGAGTGAGACAGATCAC
GACATCATCAGCCTGTTGGGACCAAGAGCCTGGAAGCCGGTGGAAGCTGACACCCCTGTC
GTACCCTGACCTGCAACACGATGGACCGCAACCCGACACAGTACCTACAGGAGAGATG
AGGGGCGGAGATCAAGAAGCTGACCTTTACATCACCACCGAGATCAGGGAAGAAGAG
AAGTCTCAGCCCCCCGTTTTCTACAGGGACGTGGTGACCTGAACACAGCAACGAGTAC
ATCTGTCAACTGCAACACAGCGCCATCACCCAGGCTGGGCCAAAGGTTGCTCTCGAC
CCCATCCCATCCACTACGGCCTCCCACAGGCCTACGGCTACCTGGAAGTGCACAGCAAC
CCCTTCAACGGCACGCCCCATGCCCAACAGTGCTACTCCGTCAGTGACCCACCGCCAC
AAAGCCGCTGATCAGCACCAGCTGCTGTGAAACGGCCAGCCTGCGCAAGAGAGGATGAC
ATCCGCTTCAAGAACCTGACCAGCACAAGCCAAAGACCTCATCTGCTCGTAACCAGAGC
ATCGAGATCAAGCTGCATCAGGCCCCAACAACACACCAAGAGAGCATCGAGAGGCGCCA
GGCCAGGCTTCTACGCCACGAGGACATCATCGCGACATGAAAGGCTACTCGCAC
ATCGAGACAGAGAGGTGGAAGAGACACTGGCAACGTCACAGAGACGATGAAAGGAGTAC
TTCCCAACACCAACCATCAGCTTTCTCCTTCCTTGCCGGGAGTTCTGAGACAGACGTAAC
CACAGCTTCAACTGCAAGGGGGAGTCTTCTTCTACAGAAACACCAAGCAAGCTGTTCAACA
AACGACACCGAGAAACACTGACCATCCGCTCCGTGCAAGAATACAGCAGATCGTGAAC
ATGTGGCACGGGCGTGGGCAAGGGGCATGTACGCACCCCCACCCATCGAGGGCAACATCACCTGC
AAATGCAAATCAACCGCTCTGTGCTGACCAGACAGGGCGGAACCGGACACAGAGAGGAAC
GAGACATTAGCCCGAGCGGCGGAGACATGAGGGAACAGACTGGCGAGCGAGCTGTACAGG
TACAAAGTTGGTGGAGATCAAGGCCCCTGGGGATCGCCCCAACCGGCCAGAGAGACAG
GTTGAGAGAGAGAGAGCGCCGTCGAGCTGGGCGGCGCTTTCTTGACCTGCTGGAGGCC
GCCGGACAGCCATGCGAGCCGGGACAGCTGACAGACGACAGACAGGTTGCTGCTGGCCATCGAGA
TACCTGAAAGATACGACGACGTGCTCGGCTCTTGGGGTCGACGCGGGAAGCTGTCTGACC
ACAGCGTGCATGGGTAAGACAGAGCGATGTCGAAGCTGAGATCGTGGAAAACAC
ATGACCTGGATGCGATTGGGACAGAGATGACGCAACTACACAAACCCATTACAGACTG
CTGGAAGGACAGCCACGAGCCAGAGAAGAGCGGACGAGCGACCTGCGGCGCTGGACAGC
TGGAAAGAACTGTGGAACTGGTTTTAACATCAACAAATGGGGCTTGATGTACATGAAATCTTC
ATCATCTGCTGGGCGGCCCCCTGAGATCATTCTCGCGGTCTGCTGTCCATCGTG
AACAGTGGCAGCCAGGTTACAAGCCCCACTGAAGCTCCAGACCCCTAGTCCCCAGCCCAGA
GGCCCGCAAGCGCGCGAAGCTGGCGAGGAGGAGGGCGCGCGAGACGAAAAGGGCGAGATCC
GTGAGGCGCTGGTAACCCCTCTTCTGGCCCTGCTGGGACAGACCTGAGAAGCCCTGTGCTTG
TTCTGACTACCCAGCTGGGAGACTCATCTGGTAAGCCAGCCGTGGGGCCCTGCTGT
GGCGAGCTCACGCTGGGCTGAGAGCGATCCTGGAAGAGACGCGCGCTGAGCCTGGAGTACAACTC
GGCAGCGAACGACCGAAGGCAACGAGTCATCGAGCTGACCAGAGACTGCTGAGTACAAGG
GCCATCGACGAAAGTGCCCCAGAGACGAGGGCTTGCGAGGGCCGCCCTGCGAGTGA
FIGURE 13

HIV-1 C06980v1c3 gp160 codon optimized nucleic acid seq. (SEQ ID NO: 14):

tPa signal is highlighted

ATGGATGCAATGAAGAGAGGAGCTCTGCTGTGTGCTGCTGTGCTGCTGTGGAGCATCTTTGCTTT
ACTACCACAGAGGCTAGC AACCTGTTGGTGAGCCGTACTACGGCGTCCCGTGGAGA
GAGGCCAAGAAGACCCCTCGTTCTGCGACGACGAGCCAAAGGCTACGAGAGAGAGGTAC
AACGTGTGGGCACCCACCGCTGAGCCACCGAGCCACAGCCAGGAAATCTTTCTG
GGCAAGAAACGTTGACGAGAAAGTTCACATGGGAGAACTACATGTTGAGGACAGATGAC
GAGGACATCAGCAGCTGTTGGGACAGAGCCACTCGAGGCTTCTGCGTAAGCTGACCCCTCTG
TGCATCACCTGAAGTTGACCGACTTTTACCGCAGCCACACAGGACACCGGAGCTACGACAAC
AACGCGCCACGCAACAGACAAACAGTCAAAGACTGCACTTTCAACATCATCCTGGAG
CTGAGGGAACAGGGAAGAGAGGAGAAGGCAACCGCTTATCTCAACACTGGAGACATCCTGAGGAC
GACGGCAACTCCACGGCTGTACAGACTGATCAACTGCAACAGCATCATCAAGCAGG
TGCTCAAGATCAGCTTCCGACTCCCATCCATCCCATCCACTACTGCGCCAGCAGGCTTCTTG
ATCCTGACCTGCAAACAGAGACATTCAACGGGGAGGCACGGGCTATGGAACAACGTTGGCTG
GTGCACTGATCCACGGGATCAAGCCCGTGTTGCTCCACCGACTGCTGCTGAACGCGAC
CTGAGCCAGGGCGAGATCATGATAGAAGCCGAACATCATCAACAAACAGTGAAGACCATC
ATCGTGCACTTCAACAAAGAGCGTGGAGATCGTGTGACCAGGCCAAACAAACACCAACGG
AAGACATCAGGATCGGCCAGCGACCTTCTACGCGCCACTGGGCAATCATCCTGCAAGGGG
ATCCGGCAGGGCCTACTGCAGCATCAACAGGAGCAACTGGAACATCACCCTTCGAGAGG
TCCAAGAAGCTTGCCGGAGCGACTTCACCAACAGAACCATCCAGTTCGAGAGCCCTCTGGC
GGGCAGCTTGGAGATRCACATTGCAACTGAGAGCCACTTACTGCAAGGGAGTTTCTTACTGCAAC
ACATCAGCTGTTCAAGACGACCATTACCAACCCAGGCCACCTTAACACTGAACGGGCA
AACAGCACCCCTGACATCCATGCGAGATCAGCATCAACATGTGGCAGGGCGCTG
FIGURE 13 (cont.)

GGCAAGGCACATCTACGCCAGCCCAATTCGCCGGCAGCATCTGCGAGAAGCAACATCACC
GGCCTGCTGCTGACAGGGACGGCCGGCAGACACAAAGGACACCGAGATCTTTCAAGGCACC
GGCAGACATGAGGGACAGACACTTGCGCGAGGAGCTGTACAAAGTACAAGATCGTGAGATC
AAGCCCCGCGGCGGCTTCTTTCTTTGTGTGCTTCCGGAGGAGCGCCGGAAGACACCAGCTGGA
GGCGCTCCATCAACCCATCAGGCAGGCGGACAGCTGCTGCGCTGCGGTAGCTGAGCAGCAG
CAGAGCAACCTGCTGCGGCGATCAGAGCAACATGCTGAGCTGCGAGCTGCCAGCAGCAG
GAGCTGAGCTGAGCTGAGCAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGC
CTGCTGCGGCTCTGGGGCGAGGCTGATCTGCTGCCACCAGCCGCGGCTGACCACACC
AACAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGC
GACAGAGATGAAGACACATCAGAACCACAAAGACATCTGCTGCGGAGGTGTCCCAGAGC
CAGCAGGAGAGAAGAGAAGACCTGCTGCGGCGACAGCAGGGAAACAACCTGTGGGACAG
TGTTTCAGACATCGAAGCTGCTGACATCAAGATCTTCTCATGTCATCGTCGGGCAGGGC
CTGATCGGCTGAGATCATCTTCTGCGGCTCGTCATCGTGAACAGAGCTGCGAGGGGAGGC
TACAGCCCCCTGAGCTTCCAGACCACCTCTGACCCCACCAGAGAGACGCGCAGCCCCGCC
AGGATCGAGAGAGAGAGAGGCGGCGGAGCGAGGAGAGGAGAGATTAGATTCTTACGACTGTTCCGGC
TTCTGAGGAGCTGGGAGCAGCTGAGAAGCCTGCTGACATCTTCTGCTGACACCACCTCTCAG
AGGGACCTGATCTCCTGCTGAGGCCGGCTAGAGCCACAGAGCTGCTGCGGAGGTCAGGCTGAGG
GGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAGC
CTGAGATCAAGAGGAGCGCCATACACTGCTGAGACACATCAGGCGCCGCTGCGGAGGCAG
GGCCACACAGGACTCATCGAGATCGTGAGGGGCTTTAGGAGCGCGTCAGCTGCTGAGCTG
AGAAGGATCCGGAGGGCCTGGAGGTGCTCACCTGCAGTGAG
FIGURE 14

HIV-1 C06980v1c3 gp160 DC codon optimized Nucleic acid seq (SEQ ID NO: 15):

tPa signal is highlighted

The gp120/gp41 cleavage site is mutated to prevent cleavage

ATGGATGCAATGAAAGAGAGAGGCTCTGCTGTGTGTGCTGTGTGCTGTGGAGACGTCTTTCGTT
ACTACCACAGAGGCTAGC AACCTTGTTGAGCGCAGGCTGTGTGGACCCTCCTTGTGGAGA
GAGGCGCAAGACCACTCTTCTGCGCCACGCCAGCAAGCAGCCCTACGAGAGGGAGGTGCAC
AACGTTGGCCACCACGCCTGCTGCACCGACACCCAACCAACCAACACGAGATCAAGACGCTGCTTCTGT
GGCAAGAAGCAGGAGAAGCTTCAACATGGAGAGAATACATGCTGGAGACCAGATGCAC
GAGGACATCATACAGCCTGTTGGGACCGAGACCTGCAGCTGGTCAGCTGACCTGAGAACCCTCTG
TGCACTACCCTGAGACTGACGCTTCCACCGCAACACAGCGACAGCGCTTGATACGACAAG
AACGCCACCGCAACACGAGCAACACAGATCAAGAACGACTGACGCTTCCACATCATACCTCGAG
CTGAGGGACAAGAGGAAAGGAGAAGCCTCTGATTCAACACCTGGGACATCGTGACGCTTG
GACGCGCAACTCCAAGCTGTGACAGCTGATCAACTGCAACACACGACATCATCAAGACGGCC
TGTCACAGATCAGCTTTGACCCCAATCCACATCAACTGCGCCCAGCCGGCTTCTTGAG
ATCCTGACCTGCAACAAAGCAGACATTCAACGGCCAGGCCCCATCGAACAACCTGCTCCGCT
GTGCACTTGACCAAGCCCGAGATCAAGCACCCTGAGTGGCTCCACCCAGCCTGCTGCTGAACGGCAGC
CTGGCAAGGGCGAGATCATGATCAAGCCGAGAACATCACAACCAACACGTGAAGACCATC
ATCGTGCATTCACAAGAGCGGTGGAGATCGTGTTCGACCCAGGCCAAACAAACAACCAACG
AAGAGACATCGGAGATCGCCGGCCAGGCGACCTTCTACGCCACCGGCGACATCATCGGGCAG
ATCCGGCAGGCTACTGAGCATCAACAGAGCAACTGGAACATCACCTGCAAGAGGTTG
TCCAAAGAGCTGGCGAGACCTTCCCAACAGAAACCACATCCAGTTGACAGCCCTCTGTC
GGCGACCTGGGACATCACAGACAGCTTCAACTGCGAGGGCGAGTTCTTTCTACTGCAAC
ACACACACGCTTTAGAGCACCTACCACCCAAACGGCACACCTACAAACCTGAACGCCACA
FIGURE 14 (cont.)

AACAGCACCCTGATCATCACCATCCATGCAGGACTCAAGCAGATCATCATCAACATGTGGCAGGGCGTG
GGCAAGCCATCTACGCCAGCCAAATCGGCCGGCAGCATCACCCTGAGAAGCAACATCACC
GGCCTGCTGCTGACCAGGAGCAGGGAGCAGCATCACCCTGACAGAAGCAACATCACC
GGCGGAGACATGAGGGCAACTGGCCAGAGCGAGCTGTACAGTGACAAGATGAGTGGAGATC
AAGCCCTCTGGGCGTGGCCTCACAACCCGAGCCAGAGGAGGTTGGTGGTGAAGAGCAGGAGAAGAGC
GCCGTCACCAGCTGGCCAGCTTTCTGGGCTCTGAGGGCCGGCAAGACCCAGCAACATCCGATGGA
GCCGTCCTACATCACCCTGAGCAGCCAGACGAGCTGCTGCCTGGAGATCGTAGCAG
CAGGACACCGTCTGGCCGGCCATCGAGCTCACAGCAACATGCTGCAGCTGGCGAGTCTGG
GGCATCAAGCAGCTGCAGAGGCAAGTGCTGGCCATCGAGATACCTGAAAAAGGATCACG
CAGGTCTGAGCATCTGGGGCTGCAACCGGCAAGATGCTGACACCAGCAGGCGCTGGCAAC
AACAGCTGCTCAAAGAAGCCACAGAGGAGATCTGGGAGAAGACCTGACCTGGATGAGTTGG
GACAGAGAGATCGACAACTACACAAACAAATCTACAGGCTGGAAGGTTGGTGGCAAGAC
CAGCAGGAGAAGAAGAAGGACTGCTGCTGGCCCTGGGACAGCTGGGAAACCAACCTGTTGAAC
TGGTTCGACATGCAACTTGCTGTGGTATACATCAAGATCTCTCTACATGATCGTGAGGCAGGC
CTGATCGGCTAGGAGATCATCTCTCGCCCTGCTGCTCCATCGTAACAGAGTGGCAGGCAGGC
TACAGCCCCCTGAGCTCTCCAGACCTGATCCCCAAACAGAGAGAGCCCACAGGCGCCCGC
AGGATCGAGGGAGGGGCGGCGAGCCAGGAGAAGATGACTGCTGGTCTCCGGC
TTCTGGGCCCTGGGAGACCTGAGAAGCCTGTGCACTCTCCTGCTACCAACACCCTG
AGGGACCTGATCTGCTGATCCGCGCTAGAGCCACAGAGCTGTGGAGGAGTCCAGCTGAGG
GGCTGCAGAGAGGCTGGAGGGCCTGAAGTACCTGGGCAAGCCTGGTGACAGTACTTGGGCC
CTGAGATCAAAGAGGGCCCATCAACCTGCTGGAGACACATCGCCATCGCCGGCTGGCCAG
GGCAGCGACAGATCATCGAGATCGTGAGAAGGCGCTGTAGGAGCCGGCTGCAGAAATCCTG
AGAAGGATCCGGGCAAGGGCGCTGGAGAAGGCTGGCCCTGAGTGATG
FIGURE 15

HIV-1 C06980v0c22 gp160 codon optimized nucleic acid seq (SEQ ID NO: 16):

tPa signal is highlighted

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGTGTACGAGCTTCTCGTT

ACTACACAGAGGCTAGC AACCTGTTGACACGAGTACTACGCGTGGCGCCAGTGGAGAG

GAGGCAAGACCAACCTGTTCTCGCCAGCGGAGCAGCGAGCCGGCCCTTGAGCTAGGAGG

AACGTGTTGAGGCGACCCAGCTCTGTGTGCCCACCGAACCCGACCCGACCTGAGGATACGC

GCCAAGAACATGACGACAAGAATGTTAATAATGAGAAGGAGGATGAGCAAGTACGAC

AGGACATCATCAGCTGCGGGAACAGCAGCTGAGGCTGCTCTGACGACGACGTCTCGAG

TGCATCACCTGAAACTGCAACCAGCTGTAGGAGCAACGGCAGCACGGCTCTACAGCTACCCAG

GAGGTAGGAGGAAGAAGAGGAGAGGAGCAGCGCTCGTTAAAAGTGGACACATGCCTGCA

CTGGACGCGAACAAGCTCCCTCTGTACAGTCAACTGCAACTGCAACCAGCACATCATCAAGACG

GCTGCTCCCAAGATCACTGCTGAGACCCTACCCATCCTACTACTGCGGCCAGCCGGCTTC

GTGATCCTGAAGTGCAAAACAGACATTCAACGGACGCCGACCCTGTTAACAACGTGTCC

GCTGTCAGTCCACCAGCGCATCAAGGCCGTGGTGTCCTCCACCCAGCTCTGCTGCTGAAACGC

AGCCTGGACAAGGCGAGATCATGATACAGAAGGAGAAGTACACCGAGCAGGCAAAACACACC

ATACATGTCACCTGAAACACAGCTGGAGATCGTGCTGCAACCGGAAAAACACGCTGAAACACC

AGGAAAGACATGATGGATGCAGGAGCTCCTACCGACACGGCCAGAGCTTACTGAGGAGG

GACATCGGCGACCCCTACTGAGATAAAGCGAGACAAGCAGGAACACGGCAACCTGAGAGG

GTTCAGAAAGACTGGCGGACACTTCCTCCAAAACAGACATCCAGTCTTAAAGGGCCCTCT

GCCGGGCACCTGGAGATCACCTGACCTCTCTAAGGTGACGGGGCGGATCTTCTTCTACTGC

AACACATCAAGCTTTAAACGGAGACTACCAACAGGAGCAGCATACACACAAAACAGGG

ACCAACAGCACCCTGACTCATACCCATGAGCAAGAGATCATCAACATGTTGCGGAGG

GTGGCAAGGGCCATCTACGGCCAGCCAAATCCGCGAGGCAACATCACTTGGCGCTTAAACACATC
ACCGGCTGCTGCTGACCAAGGCGGCGAACCAACGACACCGAGATCTTCAGGCCA
GCCGGCAGACATAGGGACACCTGGCGGAGAGCGCGAGCTGATAAACGATACGCTGGAG
ATCAAGCCCCCTGGGCGTGGCTCAACGCCAGGAGAAGAGGAGGTGGAAGGAGAGAGAAG
AGGCCCCTCACCCTGGGCCGCTGTGTCTCTGGGAGAGCCCGGAGAGACCATCG
GGAGCCGGCTCCATCACCCCTAGACGGCAGACGGCCAGGCTGCTGGCTGCTGAGCTGACAG
CACGAGAGTAGACCTGTGAGAGGATTAGCCCTAGACGACATGCTGCTGACAGCTGAGT
TGAGGCACTCAAGCAGCGCGGATCGTGCCATCGAGATACCTGAAGGATCACG
CAGCCTGCTCGGCACTTGGGCGTCAGCGGCAACGCTGCTCGTACCAGGTCGGGCTGG
AAACAACTCCTGTGCTACAGGCCAGAGGAGGAGATCTGGAAGGAAACCTGCACTGGATGGAG
TGAGACAGAGAGATACAAACTAACACCAACACATCATAGCTGCTGGAGGTGGTCCAG
AGCCAGCAGGGAGGGAAGGAAGGACCTGCTGGGCTGGAAGAAGAAGCTGCTGAGGCGGACG
GGCTGATCCGGCTAGATCTCTCGGCCTGCTGCTCCATCGTGAAACAGAGTGCAGGACG
GGCTACAGCCCCCTGGGAGGGTAGATCCCTGGAGACCAAACACGAGAGGCGCCAGGCCC
GGCACAGACGAGGGAGGCCGGCGGAGACAGGACAAGGACAGATCCATGCTGCTGCTCCGTGGAG
GGCTCTCTGCGCTGCTGGAGACCTGAGAACGCTGCTGATCTCTGGGAGGGAGGTCCAGCGCTG
CTAGGGGCACTCTTGATCCGCGGCAAGGGCCACAGAGCTGCTGGGAGGTGGTCCAGCGCTG
AGGCGCTGAGATCAAGAGAGGCGGCACTACGTGCTGGACAAATCGGCGGCTGCTGGGCC
GGCGGCAAAGACGTACAGTCCGAGGCTGGGCTGGCTGCTGAAACAGGCTGCTGAGATCC
CCCAGAAGGATCAGACAGGGGCTGGAGGCTGCTGAGTGA
FIGURE 16
HIV-1 C06980v0c22 gp160 DC codon optimized Nucleic acid seq (SEQ ID NO: 17):

tPA signal is highlighted

The gp120/gp41 cleavage site is mutated to prevent cleavage

ATGGATGCAATGAAGAGAGAGGCTCTGCCTGTGCTGCTGCTGCTGCTGTGGAGCGACTTCTTCGTT
ACTACCACAGAGCTAGC AACCTGTGGTGGACTGCTACTACGGGTGCCCCTGTTGGAGA
GAGGGCAAGACCACTCCCTGCTGCGCCAGCGAGGCAAGGGTTACTACGGAGGGGAAGCTGCAC
AACCTGTGGCACCACGCCTGCTGCCACCGACCCCCGACCCACTAAGAAATCTTTCTG
GAGCAAGAAGCTGACGAGAAGTCTAATACGTGGAAGAACTACATGTTGGAACGATGACAC
GAGGACATCATCGCCTCTGTGGAGAGAGACGCCTGCCCTGCCTGCTGAAGCTGACCTCGACCCCTG
TGACTAACCCTGAACTGCAAGAGGACACACTGCTTTCAACACTGCAAGTCGTAACATCCACC
AACCCACCTGTTGTGAAACAGCCAAAGAGATCAAGAAACTGCAAGCTTTCAACACTCAACACC
GAGCTGAGGGCAAAGGAAGAGAAAGGAGACAGCCCTGTCTTCAAACACTGGAATCGTGCAG
CTGGACGGCAACAGCTCCCTGTACAGACTGAATCAGCAAACACTGCAACACGATCATCAAAGCAG
GCCTGCCAACAGATCGCTTACGCCACCCATCCCCATCCACTATGCGCCCGACCGGCTTC
GTATCCTGAAGTGCAACAAACGAGACTTCAACGGCAAGGCGCCCTGTGAACACGCTTGC
GCTGTCAGTGCAACCCAGCGATCAGGCCCTGTTGTGGCTACCCAGCTGTGCAAGGGC
AGCTGGGCAAGGGCGAGATCATGATCAGAAGAGACATCAGCAACAGTAAGGACC
ATCATCGTGCACTGAACAAACAGCGTTGAGATCGTGCTGCAACCAGGCCAAACACCAACC
AGGAAGAGCATCGAGGAGGAGCCACATCTCTGACGGCAACGGGCGACATCGGC
GACATGCCGCAGGCTACTGACAGCATAACGAGAGCAACTGGAAGCGCACCACCTGGAGAG
GTGTCACGAGAAAGCTGGCCCGAGACTTCCCAACAGACCATCCAGTTCAAGAGGGCCCTCT
GGCGGCGACCGCTGAGATCCATGCAACAGCTTCAGCTCAACTGCGAGGGGAGTTCTTCTACTGC
FIGURE 16 (cont.)

AACACATCCAACTCGTTTAAACGGGACCTACTACCCCCCAACGGGACACATACCTACCCCAACAGG
ACCAACAGCACCCTGCATCCCATGGCAGGCAAGCTACATCTACACATGTGGGACAGGGC
GTGGGCAAAGGCAAGCCCTAATCACAGCACTCAACATCTGAGTGCTGAGGAAGG
ACCAGGCTCTGCTCTGACCAAGGCACGCAGGCAACCCATACCCACCTGCGAGGTCCCAACATC
ACCGGGCTCTGGCTGACCAAGGCACGCAGGCAACCCATACCCACCTGCGAGGTCCCAACATC
GCCGCGCGAGACATGAGGGCAACACTGGCGGAGAGCAGCAGCTGTAAGTACGAGATCGTGAGA
ATCAAGCCCTGGCGCTGCGCTCCAACCCAGGCAAGAGGGCAAGGGGACTGGTGAGAAGACGAGAAG
AGCGCCGGATCCATCGGCGCCGCTGGTCTGGGTTTCTGCGGCTCTGGGAGCCCGAGGAGACACATTG
GAAGCGCGCTCAACATGCGACGGCAACAGGCAACCGAGCAGCTGTCGAGGATCGTCGAGCAG
CAGCAGAGCAACCTGCTGAGACACCTATGGGAGGACTGCACGACACGTACGCTGACGCTGAGATCG
TGGGGGATCAAGACGAGCTGCGACAGGCCAGAGTGCTGGCCATCGAGATACCTGAGGATCAG
CAGCTGCTGGGCTCGTGGGGCTCGGACGCAAGCTGTGAGACATGCTGACACACCTGCTGAGGATCAG
AACACACTTGTCTCAACCCGAGAGGACACATGCTGGAGGAAATCCTGAGAGATCGTGAGGAG
TGGGAGACAGAGATCAGCAACTCAACCAACACCATCTAGAGCTGCTGGAGGATCGTGCTCCAG
AGCCCGAGGAGGGAAAGGAGAAGACCTGCTGCGCTGGCCATGAGCTGAGAACAACCTGAGG
AACCTGTCTCGACATCCAACTGGCTGCTGTACATCAATCTCATCATGATCTGAGGC
GCGCTGATCCCGCTAGGATCATCTTCGCGTCTGCTGATCCATGGAACAGAGTGCGGCAG
GGCTACGCACCCTGAGCTTTGACGACACCTGATCCCCAACAGAGGAGGACAGCCAGGCGGAG
GGCTTCTGCAGGCGCTGCGGAGACAGCTGAGAAGCTGCTGTCACTTCTCCTGTACACCAC
CTGGAAGGACTTATCCATGACGCGCGCAGGCAAGGAGCTGCTGGGAGGATCGCCAGCCTG
AGGGCGCTGGCACGAGGCGCTGCGTGGCAAGCTCTGAGCTGCAACATGCCCCTGGCTGGCC
GAGGCGACGGAGATCCATCGAGATCTGCGACAGGGCTGGCTAGGGCCCGTCTGAGACATC
CCCAGAAGAGATCGACAGGGGCTGAGGCTGCCCTGCGATGTA
FIG 17

pSWTIPK3

5930 bps

APH I
Enhancer
CMV Promoter

puc Origin

5000
1000

Intron A

Kozak
t-Pa Signal
2000

MCS

MluI 1737

IVS (synthetic intron)

Puromycin acetyl-transferase

NotI 3801
BGH Poly A

Low 3546
XhoI 3542
SalI 3536

NheI
EcoRV
KasI
NarI
EcoRI
BamHI
BglII
XhoI
XmaI

1821
FIGURE 18

pSWTIPK3 sequence (SEQ ID NO: 18):

TGGCAGATGGGCGGCAATGGCATTGCGATCTACATTACCTTACATTTGCGAATTAGCCATAT
TAGTCATTGGTTATATAAGCATAAAATCAATATTGGGCAATTGGGCGAATTGCCTACGGTTGTATC
TATATCATATATGACATTTATATTGCGTCATGTCAATATAATGAGCCGCTATCTTTGAGATTT
GATTATTGACTAGTTATATATAATGACATATTACGGGTTATAGTTCTATAGACGCCCATATA
TGGAGTTTCCGCGTTCATCATATCTTTACGTTAAATGGCGCGCCCCGCTGGCTGACGGCCGCCAAGC
CCGCCCATTTGAGCGTCAATATAAGCCTAGTGGTTCCATAGTGCCCAATAGGAGCTTTGCC
ATGGGAGCTGCAATGGGCTAGTATTTACGGTTAACTGCCCCACTTGGCAGTACATCAAGTG
ATCATATGCAAATGCTGCCGCCCTTATTGACGGTGAAATGGCGCGCCCTGCGGCTCCTA
ATGCCCCAGTACATGACCTTACGGGACCTTCTACTTGGCAGTACATCTACGTATTAGCTA
TCGCTATTACCTAGTGATAGCGGTTTGGCAGTACACCAATGGGCGTGGATAGCGGTGTTG
ACTCACGGGATTTCCCAAAGTCTCCACCCCATTTGACGCTAAATGGGAGTTTGCTTTTGGCAC
AAAATCACAAGGGGACTTTCCCAAAAATGCTGTAATAACCCGCCCTGGGAGCGAAATGGGCC
GTAGGCCGTGACGTTGGGAGGTCTATATAAAGCAGAGCTCCTGTTTAGTGAAACCGTCACTCG
CCTGGAGACGCGCATCCCGGCTGTTTTGACCTCCATAGAAAGACCGGGGACCAGATCCAGCC
TCCGCGGGCCGGAAACGGGTCACTTGGGAACCGGGAATTCCCCGGTGCCAAGCTGAGCTAAGT
CCGCCTATAAGCTCTATAGGCACACCCCTTTGCTCTTATGCATGCTATACGTGTGTGGGG
CTTGGGGGCTATACACCCCCCGCTTTTATAGCTATAGTGATGTATAGCTTTAGCTTATAG
GGTGGGTTATTGACCATATTGGACACTCCCCCTATTTGGGACGATACCTTTCCATTACT
AATCCCATACATGGCTTTGGCCACAATTACTCTTATTTGCTATATGCAATACTCTGTCT
CTTCAGAGACTGACACGGGACTCTGTATTTTACAGGATGGGGTGCCCATTTATTATTACCA
AATTCACATATAAAAACCGGTCCCACGCCGGATGTTTTGATTTACAATAACATAACAGTG
GATCTCCACGGCAATCTCGGAGTACGGTTCCCGGACATGGGCTCTTCCTCCGGTGAGGCGG
FIGURE 18 (cont.-2)

GTTCCTTTTGAAACACGATGATAAGCTTGCCACACACACGACACGCCCCTTCCA
TGACCGAGTACAAGCGACGTTGCGCTCGCAACCACGAGACGTCTCCCCGCGCTGAT
GCACCGCTGCGCCGCGGCTCCCGGACTACCCGCGCCAGCGCCACCCGGGACCTGACC
GCCACATCGAGCGGGTGCAACAGAATCTTCTCCTACGCGCGTGCCGCTGCTAC
TCGGCAAGTTGTTGCTGCGGACAGCGCGCTGCGGCTGGCTGACCCACCGGGAGAG
GCCGTGAGCGGGGCCGCTGCGCAAGATCGGAGCCGGCCGGCCCGGCTGGTGGAGC
CCCCGCTGCGCCGCGAGCAACAGATGAGGAGCCCTGCCTGGCTCCGACCGGGCCGAG
CCGGCTGGTTCTCTGGCCACCGTGCGCTCTCGCCGACACCCAGGGCAAGGTCTTGCGG
GCCCGTCTGCTRTTCGGCCAAGTTGGAAGCGCGCCAGCCAGCGCGGCGGTCCGGTCTGG
AGACCTCCGCGCCGCCGCAACCTTTTCCTCAGAGGCTGCTGCTTACGTCGCTACGCG
ACGTGCGAGGTGCGCCGAAGACGCGCGACCTCGTGCACTGCACCGCAAGCCGGGTGCCTGAC
GCCGGGCACGACGGCGACCGCCGCGGAGACGACCCGGGCTGGCGCAGCGACGTGCA
CCTCGAGGCGAGCGCCGCTGATCGCCTCGACTGCGCTTCTAGTTGCCAGCCATCCTTGT
TTTGCCCTCCCGTGCCTCTGGCAGAGTGGGCCACTCCCGTCTCCTTTCCT
AATAAAATGAGAAGAAATTGACATCGATTGTCTGAGTTGTCAATTCTTTCTTCTGGGGGTG
GGGTGGGCGACAGCAAGGGGGGAGGATTGGGAAGACATACAGCGCATGCTGGGGATG
CGTGCGGCTCTATGGCGCTCTGCGGGACCTTGGCGTAACATGCTAGCTGGTCTCC
TGTCAGAATTTGTTATCCGCTACAATTTCCAAAAAACATACGAGCGGGAAGCATAAAGTG
TAAAGCCTGGGTCATACTAGTGAGCTAATCTCAATTCTGCGTGTCGCTACTGCC
CGCTTCCCAGTCGGAAACCTCTGCGGCACGCTAATGAAATCGGCAACCGGCAGG
GAGAGGGCGTTTGGCGATTGGCGCTCCTGGCCTTCTCGCTCAGCTGACTCGTGCTGCT
GGTCGTCCGCGCTGCGAGGCGGTATACGCTCAGTACAAGGGCGGTAATACGGTTATCCAC
FIGURE 18 (cont. - 4)

TGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCGTCAG
CCAGTTTAGTCTGACCAATCATCTGTGTAACATCATTTGGCAACGCTACCTTTGGCCATGT
CAGAAACAACCTCTGGGCGCATCGGGCTTCCCCATACAAATCGATGATTGTGCAACCCTGATT
CCCGACATTATCGCGAGCCCATTTTATACCCATATAAATCAGCATTCATGTGGAATTAA
TCGCGGCTTTGAGCAAGACGTTCCTCCGTATTGAAATATGGCTCATACTCTCTCTCTTTCTAT
TTATTGAAGCATTATCATCAGGGTTATTGTCTCATGAGCGGATACATATTGGAATGTATTA
GAAAAATAAACAATAGGGTTCCGGCAACATTCCCCGAAAGTGCCAC
FIGURE 20

[Image of a gel electrophoresis with bands labeled gp160 and gp41, molecular weight markers in kilodaltons (KDa) on the right side.]
FIGURE 22

pSWC06980v0c22 gp145 sequence (SEQ ID NO: 19):

TGCGC4ACGTGGCGC4ATCATCGATCATACATTACATATTGGCAATATTAGCCATAT
TAGTCAATTGGATATAGCATAAAATCAATATTGGCTATTTGACCATTGCCATGTTGTATC
TATATCATAATATGACATTATTTATTATTTGCTCATGTCATAATAGACCCCATGTTGCATTT
GATTATGGACTAGTTATTTAATAGTAATCAATTACGAGGGGTATAGTTCTCATAGTTCTAGCATTATA
TGGAGTTCCAGTTATACTTTACGGTTAATGGCCCGCTTGCGTACGGCGCCCAACGACC
CCCACCATTGAGTCTAATAATGGACTATGTTATCCGCTATAGTAACGCAATAGGGACCTTTCC
ATTGACGTCAATGGGGTTGAGTATATTACGCTTTACCCACCTTGGCTGACATCAATTCAAGTGAT
ATCATACTGCAATGACCTTTACGGGTTTCTACTTTTTGAACGTTATATGTGCAATAGTTACG
TCGCTATTACATGGGAATGTTGCTGGTTTTGTGACGTAACCAATGGCGTGGATAGCGGTTTCG
ACTCAGGEC4G4ATTTCACAAAGCTCCTCCACCCCATTGTACGTAATGGGATTGTTTTGTCACACC
AAATCAACGCGGACTTTTCCAAATGTCGTAATAACCCCCCGCCCGGTACGCAATGGGGCG
GTAGGGCTGTACGTTGAGGCTGTATATAAGCAGACTCGTGTATATAAATGTACGTCAGATCG
CCTGGAGACGCCAATCCAGCTGTGGTTTGACCCATAGAGACACCAGGACGCCATCCAGCC
TCCCGGGCCGGAACCGGTCATTGGAACCCGGAATTCCCGTGGCAAGAGTGACTGTAAGTA
CCCGCTATAGACTCTATAGGCACACCCTTTGGCCTCTTATGCATGTATACCTGTTGG
CTTGGGGCCCTATACACCCGCCCTTTCTTATGCTATAGGTGATAGTGTAAGGCTTAATA
GGTGTTGGTTATGACATTATGGACACTCCTTTCTATGGTAAGGGATACCCATTACT
AATCCAATACTTGCTTTTGCCACAATACTCTATAGCCATATAAGCACATCTGTC
CTTCCAGACTGACACGGGACTCTGTAGTTTTTACAGGATGGGTTCCCATTTATATTTACA
AATTCACTATAAACAACGCGCCTCCCGCGTTGCGGCGCATTAAAAACTAGCGTGG
GATCTCAAGCGAAATCTCGGAGGTACGTGGTTTCGGGACATGGGCTTTCTCCGGTAGCGGGCGG
FIGURE 22 (cont.-2)

TGCAGAGGGGTGTCCCAAGAAGCTGCGCCAGCACCTTCCCCCAAACAAGACCATCCAGTTCAAGA
GCCCTCTGCGCGCGACCTGGAAGATCACCATGCACACTTTCAACTGAGGGCCAGTTCT
TCTACTGCAACACACTTCAAGCTGTCTTAAAGGGACCTACTAACCACACCGACATACCT
CAAACGGGACCAAGACCAAGCTGATCACCACATGCAAGACTGCAAGACTACACAT
GGCAGGGCGTGCGCAAGGACCCATTCTGCGCCAGCACCACATCGCCGGCAACACATCCG
CCACATACCGCGCTGTGCAGCAGGACGCGCGACGACACACCGACACAGGTG
TCAGGGCCAGCGCGGAGACATGAGGACAAACTGGCGGAGCGAGCCTGTAAGGTACAGA
TCGTGGAAGTCAAGCCCTTGCGGCTGGCTACCAAGCAGACAGGCTGAGGAGAACGAGA
GCCAGAAGACCCGCTACCGCCGCGGTGTCTGGGCTCTGGAGAGCCGGCGGAA
GCCACATCGGAGCCGGCCCTACATCACGCGCTGAGCCGGACGCTGCTGTCCGGGA
TCGTGCAACGAGCAACCTGCAGAGCCATTTGGCTCAGCGACACATCGTGCAGC
TGACAGTGTGCGGACATCGACGACAGAGGAGATGCTGGCCATCGAGATACCTGA
AGGATCAGCAGCTGCTGGACATCGGACAGGCGCAAGCTGATCTCGACCACCGCCG
TGCCTGGAACAACTCTCTGTCGAACAGGACGAGAATGCTGAAAGACCTGACCT
GGATGGAGTGGGACAGACAGACAGATACACACAGACATTCCAGTGCTGAGGAG
TGTCACAGCGACAGCCGAGAGGAAGCAGACGCTGCGTCCCTGGAGATGCTGGAACA
ACCTGTTGGAACCTGTTGCAACATCGCAACTGGCTGAGTACATCAAGAAGAAAGTGAA
TTGGATCCACTAGTAGATCTCTCGAAGACGCGCCAGCTGAGGATCTGGAATTAAATCCG
TCTCGGAGGGCGGCTGTTGGGAGTAGACTCCCTCTCAAGAGGCCAGACCTCTCG
CTAACAGTGTCCAGGTTCAACACGAGAGATTTGATATTCACCTGCGCAGCGCTGAG
CTTTGGAGGGTGCGCGCTTCATCGTGCAAGGAAGACAAACTTGGGTTGTCAGGCTG
AGGTGTCGAGGCTTTGAGATCTCGGGCAATACCTGAGTAGAACACATCCACTTGGCCT
TTCCTCCACAGGGTGTCCACTGCCAGGTCTCAACTGCGAGTGCAGCATCGCATAGGCGG
FIGURE 22 (cont.-3)

CCAATTCGGCCCTCTCCCTCCCCCTCCCCCTAACTTGCGGAGAGGCGCTTGGGAATA
AGGCGGCTGTGCACCTTGAATCTGTCCATATCTTTCCACCATAATTTGGCGCTTTTTGGCAATGT
GAGGGCCCGGAAACCTTGGCCCTTCTCTTCTTACGGACACCTCTAGGGGTCTTCTCCCCCTCT
CGCACCAGGAAATCGAACGGTCTGGATGTCTGGAAGAGAAGAGAGATTTGTGCAGCTTGGGAAGGCTTC
TTGAAACACAAAACAGTCTGTAACCCGACCTTTTACGCGGAGCGGAACCCCACCTTGGCGA
CAGGTGCTCTTGGCAGGAAAGGACCTGATAAGATACACCTGCAAGGCGGACACAACC
CCAGTGCACTTTGAGTTGGATAGTTGAGAAGAGTCAATAGGCTTCTCCTCAAGAGT
ATTCAAAGGGGGCGTGAAGAGATGCCACAAGAGTACCCCATTTGTAAGGATCTGATCTTG
GCCCTCGTGTGACATGCTTCTACATGTTAGTACGGAGTTAAACACGTCTAGGCCTCCCCC
GAACACGGGGAGGTGTTTCTTTTGGAAAAACAGTGAATAAGCTTCTGACCAACCCCAACA
AGGAGACGACCTTCCATGACGAGATACAAGCCACGCGTGGCCTCCGGCACCCGCGGACGAC
GTCCCCCGGCGGACCTGACGGCCCTCCGCGGCGGCCTTGGCGGACTACCCCCCGCCACGGCCAC
ACCGTGGAACCCGGACCCGCACTGAGCGGGTGACGGCGAGCTGCAAGAATCTTTCCTCACG
CGCTCGGGGCTCGACATCGGCAAGGTTGGTGGTCGGACGCGGGCGTCGGGTGGGGGATC
TGACACGCGGAGACGGTGCAAGCGGGGGGCGGGTTTGGCCGAGATCGGCCCCCGCGCATG
GCCAGTGTGGACGCGTTCCGGCAGTGCGCAGAACAAGATGGAGGGCTTCTGGCGCTCCG
CACGGCTAACAGGAGCGCCGGGTGTTCTGCGCCAACCCGTCGGGCCTCCGGGACACCCAG
GACAGGGTCTGGGCACGGCAGGGCGCTGGTCTCGGCGGCGGCGGCGGCGG
GCTCCCCGCTCTTTGGGAGACCGTTCGGCGCCGCAACCTCCCCCTTCTAAGCGGGCTTGCGC
TTCCCTACGTACGGCGGGAGGATCGGCAAGAGACGCGCGACCTGGTGACAGGACCGAC
AAGGGGGGCTCAGGCCCCACAGCCACGACGACCAGCGGAGAGGCGGCGGCGGCGGCGG
CCCATGGCTTCCGAACCGAACCCGGGCGCCGGACGAGCGCGCGGACGAGGCGGAGCGG
GCCACACCGACCTCGAGGGGGCGGCGGCTGATCGCAGGCTGTTCTCTAGT
FIGURE 22 (cont.-4)

TGCCAGCCATCTGTGTGGTGGTGGGGCTCCCTCCCGTGCCTTCTTGTGGACCCTGGGAAGGGTGGCCACT
CCCAGCTTGTGCTTTCTAATAAATGAGGAAATTGCATCGCATTTGTCTGAGTATGGTGTCACT
TCTTTCTGGAAGGTGGGTGGGGCCAGGAGCAGGAAGGAGAATGGGGAAGACAAATACG
AGGCATGTGCTGGGATGGGCTGGCTGGCTCTATGGGTCGCGAGCCAGCTTCGCGCTGATATG
GGTCTAGCTTGTGTCTGTATGAATTGTATACGCTCACAAATCTCCACACACACATACGAG
CCGGAAAGCATAAAGGTTGAAGGCTGCTAAAGGCTAGTGAAGCTTAACTCAATTAATTG
CGTTGCCTAGCTGCCCCTTTCAGTGCGGAAACCTGTGAGTTGCGAGGCAGCTCAGGATTAAATGG
TCGCCGCAACCGCGGGAGGAGGCCGGGTCTTTGCAGTTGGCCTCAGCTTCCCTTCTCGCTCA
CTGACTCGCTGCGCTGCGCTGGTCGCGCGCGACGCTATCGCTCAGCTCAAAGGCCGG
TAATACGCTTATCCACAGAATCAGGGGATAACCGAGAAGAAAGACATGGAGCAAAGGCC
AGCAAAAGGCGGAGACCTAAAAAGGCCGCTTGGTGGCTGTTTCATAGGCTCGGCC
CCCCTGACGAGCATCAAAAAATCGACGCTCAAAGTCAGAGGGGCGAACCAGCACAGGAC
TATAAGCATACGCGCTTTCCCTGGAAAGCTCCTCGTGCGCTCCTCTGTTGGCACCC
TGCGCTTACCCGGAACCTGCTGGCGCTTCTCCAAGTCTGGCGTGGCCCTTTTTCTCATA
GCTACGCTGTAGTTCTCAGTGCAGTTGGTAGGCTCGCTGCTGCTCAAGGCTGGGCTGGTGCG
ACGAAACCCCCGTTCAACGGACGGCCTTTATCCGGTAACTATCGTCTTGAGTCGA
ACCGCTGTAAGACAGCATTATCTGCCACTGGCGCAGCCACTGGTAAACAGGATTAGCAGAG
CGAGGTATGTAGGGCGTGCTACAGAAGTTTTGAAGGTGGTGCCCTAACCGGCTACACTA
GAAGAACAGTTTTGTATGTCGCTGCTGCTGGACGACGTTACCTGGGAAAGGAGGTTG
GTAGCTCTTGTATCCGGCAAAACACCCACCGCCTGGTACGCGGTGGTTTTTTGTGTGCCAAGGC
AGCAGATTACGCGCAGAAAAAGGATCTCAAGAAGATCTTTTGATCTTTTCTACCGGGGT
CTGACGCTCAGTGGAAAGGGAACACGCTACGTTAAAGGATTTTTGTCATGAGATTATCAAAAA
GGATCTCCACCTAGATCCTTTTAAAAATGAAGTTTTAAATCAATCTAAAGTATAT
FIGURE 22 (cont.-5)

ATGAGTAAACTTGGTCTGACAGTTAGAAAAACTCATCGAGCATCAAATGAAAATGCAATT
TATTTCATTCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAGGAG
AAAACCTCAAGGGCAGTTCCATAGGATGGCAAGATCCTGTTATCGGTCGATCGATCCGA
CTCGTCAACATCAATACAACCTATTTATTTCCCCTCGTCAAAAAATAAGGGTTATCAAGTG
AGAAATCACCATTGAGTGAGCACTGAATCCGCTGAGAATGGCAAAAAGCTTATGCAATTCTT
TCCAGACTTGTTCACCAACAGCCAGCCATTAAGCTGTATCAAAAATCAGCTCGATCAACCA
AACCGTTATTCATTGGATGTTGCGCTGAGCGAGCAAGAAAAATACGCATGCTGTATAAAAAG
GACAATTACAAACAGGAAATCGAATGGCAACCGGGCGCAGGAACACTGCACAGCGCATCAAACAA
TATTTTCACTCTGAATGGTATTTCTATCTCTATACTGGATGCTGTTTTTCCCGGGGATCG
CAGTGTTGAGTAAACCATTGATCATCGAGGATACGGATAAAAATGCTTGTGGTGGAGAGAAG
GCATAAATTCGTCAGCGGCTTATGCTGACCATCTCTACATGTAACATCTTGGAACGGC
TACCTTTGCCATGTTCAGAAAACACTTGCGCATCGGCGCTTTCCATACAATCGYATGA
TTGTCGACCTCTGATTGCCGACATTATCGCGGACCCATTTTTATACCATATAAAAATCAGCAT
CCATGTTGGAATTTAATCGCGCGCCTTGGACAAAGACGGTTTGCGGTAATATGGCCTCATAC
TCTTTCTTTTTCAATATTGGGAAGCAATTATCCGGGATTATGGCTACTA
TATTTGAAATGTATTTTGGAAAAATAAAACAAATAGGGTTCCGCGACATTCCCCGGAAAAAG
TGCCAC
FIGURE 23

HIV-1 C06980v0c22 gp145 codon optimized nucleic acid seq. (SEQ. ID NO: 20):

tPA signal is highlighted

ATGGATGCAATGAAGAGAGGGCTCTGTGCTGCTGCTGCTGTTGGAGCAGTCTTTGTT
ACTACCACAGAGGCTAGC AACCTGTTGGTGAGCCTAGACGGCCCTGCCTGAGAGA
GAGGCAAGACACACCTCTTTGCGCCAGAGCCAGCCAAGGCTACGAAGGAGAGTGACAC
AACGTGTGGCGCCACCAGCGCCTCGTGGCCACCGGACCCCACGACCCTCAGAAATCTCTG
GGCAAGAGAAGTGACCAGAGAAGTCAACATGGGAAGAACCACCATGAGTGCAAGACAGAC
GAGGACATCACATCAAGGCTGAGGGCCAGACGGCCTGCTGAGTGGACACCCCGCTG
TGACTACCCCTGAACCTGAGCCACGCTGAGCGCCACCCACAGGAGACACGTGACGGACAC
AACGCCACGCTTGAAGACGCCCACGCAACGATCAAGAACTGCAGCCTCAATCACGACACC
GAGCTGAGGAGAAGAAGGAGAGCGCCCTGTTCAAACACTTGGACATCGGTGAG
CTGGAGGCAACAGCTCCTCTGTAGACACTGACTCACAACGCACACGACATCAAGGAG
GCCTGCCCAAAGATCAGCTCTGACCCCCTCCCCCTCCACTACTGCACCCCCAGCCGGCTTC
GTGATCTCTGAAGTGCAAGAACAGCAGACATCAACGGACACGGGGCCCTGTAACACGCTGTC
GCTGTCAGCTGACCCACGGAATCAAGGGGACCTGCTGTCCTACCCGAGCTGCTGGAACGGC
AGCTGGCAAGGGGAGATCATCGTACAGAAAGGAGACATCAACCCGCAACAGTGGAAGACC
ATCATCTGTCACTGAAACACAGCGTGGAGATCGTGTCACCCAGGCCAAACAACACCACC
AGGAAGAGATCAGGATCGGCGCCAGGGCCAGACTTCTACGCACCGGCGACATCATCGGC
GACATCCGGCGAGGCTACTGCGACATCAAGGAGACCAAAGCTGGAAACGCCACCCCGCTGACAGG
GTGTCAAGAGAAGCTGGCGGAGAGAACCTCTCCCACAGAACAGGACACAGTGCTGACCCCTC
GCGGGCGACCTGAGATACCCATGCAAGCTCTCAACTGCGAGGCGAGTTCTTCTACTGC
AACACATCAAGCTGTTTAAAGCGGACACTAACCACAGGACATACACTCCAAACGAGG
ACCAACAGACCCCTGATCATCCCGTGAGGATCAAGGAGATCATCAACATGTCGGAGGCG
FIGURE 23 (cont.)

GTGGGCAAGGCCACATCTACGCCAGCCCAATCAGCCCGGAACACTACCTGCCGATCGTGCAATC
ACCCGGGTGCTGCTGACCAGGGACGGCGGACACCAACGACACCGGATCTTCCAGGCA
GCCGGCGGAGAACATAGAGGCAACACCTGGCGAGCGAATGTGCTCAAGTGAATCGTGAG
ATCAAGCCCTTGCGCTGGCCTCAAACCGAGGGAAGACGAGGATGCTGGAAGAGCGAGAAG
AGCGCCGTCACCATCGGCGCCGTGGTTTCTTGGGCTTCTGGGAGCCGCAGCAAGCACATG
GGAGCCCCTCCATCACCCCTGACCGTGCCAGCCAGGGCACTCGTGTCCCGGATCGTGCA
CAGCAGAAGCAACCTGTGAGACCCATTGAAGGCTCAACGACACATGCTCAGCTGACAGTG
TGGGGCATCAAACAGCAGCTGCAACCGCAAGGAGGCTGGCCATCGAGAGATACCCTGAAGGAATCAG
CAGCTGCTGGCATCTGGGGCTGCAGCCGCAAGCTGATCTGCCACACCGCGCGTGCCTGG
AAACAACCTCTGTCACACAGGACCAGGAGATCTGGGAAGAACCTGACCTTGGATGGAG
TGGGACAGAGAGATCAGCAACTACACCAACACCATCTACAGCTGCTGGAGGAGGTGTCACCAG
AGCCAGCAGGAGAGCAAGGACCTGCTGGCCTTGAGCTGGAACACTAGCTGGG
AAGCTTTCGACATCAGCAACTGGCTGGTGATCACATCAAGAAGAAGAAGTGA
FIGURE 24

HIV-1 C06980v0c22 gp145 protein (SEQ ID NO: 32):

tPA signal is highlighted
FIGURE 25

(A) tPa signal (SEQ ID NOS: 33 and 21)

Highlighted regions are from the Nhe1 cloning site. This is not part of a native tPa gene, but is incorporated for cloning purposes. Cleavage occurs between the A and S.

Nucleic acid

ATGGATGCAATGAAGAGGAGGGCTCTGCTGTTGCTGCTGCTGCTGTTGAGCAGTCTTCGTT

TCG GCTAGC (SEQ ID NO: 33)

Protein

MDAMKRGLCCVLLLCGAVFVS AS (SEQ ID NO: 21)

(B) tPa signal (SEQ ID NOS: 34 and 22)

Highlighted regions are from the Nhe1 cloning site. This is not part of a native tPa gene, but is incorporated for cloning purposes. Cleavage occurs between the A and S.

Nucleic acid

ATGGATGCAATGAAGAGGAGGGCTCTGCTGTTGCTGCTGCTGCTGTTGAGCAGTCTTCGTT

ACTACACAGAG GCTAGC (SEQ ID NO: 34)

Protein

MDAMKRGLCCVLLLCGAVFVTTE AS (SEQ ID NO: 22)
FIGURE 29

Cell culture supernatant
Vol 3 L

→

Tangential Flow Filtration
Final Volume 200 mL

→

Lectin Affinity Chromatography
Volume: 100 mL

→

Concentration: Tangential Flow Filtration
Final Volume: 7 mL
FIGURE 30

Peak: 1 2 3 4

Minutes

Minutes

AU
FIGURE 31

Harvest Cell Culture Conditioned Media
Volume = 11L

Concentration of Conditioned Media using TFF
Final Volume = 1L

Lectin Affinity Chromatography
Volume = 88 ml

Concentration using 50 kDa MWCO filter
Volume = 20 ml

Buffer exchange 1/2 of product on PD-10 into PBS. Volume = 22 ml @ 1.0 mg/ml
FIGURE 33

Harvest Cell Culture Conditioned Media
Volume = 11L

Concentration of Conditioned Media using TFF
Final Volume = 1L

Lectin Affinity Chromatography
Volume = 38 ml

Concentration using 30 kDa MWCO filter
Volume = 20 ml

Reduce intermolecular disulfide bonds in 1/2 of product using DTT.

Buffer exchange on PD-10 into PBS.
Volume = 22 ml @ 1.0 mg/ml
FIGURE 34

Peak: 1 2 3 4

Minutes

AU

0.000

0.002

0.004

0.006

0.008

0.010

0.012

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Minutes
FIGURE 36
C06980v0c22 gp145 amino acid sequence (SEQ ID NO: 32):

1 mdamkrglcc vlllgavfvt tteamnlw tvyygvpwre aektltfcs adekayevh
 t-Pa Signal
61 nvwathacvpt tdpdfqefil gkntekfmw wknymvdqmhe diiisldwqs lqpcvkltnpl
121 citlnctdtvt ahngstvyn dentvstnte ikncsnitrt elrdrkrkkeh alfnnldivq
181 ldgnsslyrl incntsiikq acpkisfdpi pihycapagf vilcnnenetf ngtgpwnvns
241 avgcethgikp vvestqllllng slakgeimir senitdnvkt iiivhlnnsve ivctrpnmnt
301 rksirigppq tfyatgdiig dirqaycsin esnwnatlqr vskklaehfp nktiqfksps
361 ggdeiletms fncrgeffyc ntsklfnqty ypntyyypng tnsstliipcr ikqiinmwwqg
421 vgkaiyaspi agnitorsni tgtllltradg dtndteifrp aggdmdnwr selkykyive
481 ikplgvapte axkrrvksk evtigavfl gflgaagstm gaasitltvq arqlsrgivq
 Cleavage site R to S mutation
541 qqsnnllraie aqghmlqityl wgiqqlqarv laierylkqd qflgiwgcsg kliettavpw
601 nnswsnrtqd eiwknltwme wderisnytn tiyellevsq sqgernekdl laisdwnnlw
661 nwfdisnwlw yikkkk
 Triple lysine
FIGURE 37

C06980v0e22 gp145 nucleotide sequence (SEQ ID NO: 20) and translation (SEQ ID NO: 32):

```plaintext
1  atggatgcaa tgaagagagg gctctgcgtg ctgtgaggcg agtctctcggt
   >>........................t-Fa leader........................>>
   m d a m k r g l c c v l l l c g a v f v
   NheI
   +=-----

61  actaccacag aggctagcag cctgtggtgt agccggttact aacgccgtcc cgtgtggaga
   >....t-Fa leader..>>
   t t t e a s
   >>........................gp145.................................>
   s n l w v t v y y g v p v w r

121  gaggccaaaga ccacccctgtt ctgcgcagcac gacgccaaggg cctagcgagcg gggaggtgcac
   >................................................gp145..................>
   e a k t t l f c a s d a k a y e r e v h

181  aacgtgtggc ccacccacgc cttcggtgcc ccccagcccg ccctccagga aacctctcttg
   >................................................gp145..................>
   n v w a t h a c v p t d p d p e i f l

241  ggcaagaacgg tgacccggaac gttaaactg tggaagaact acatggtgaac ccaatgcac
   >................................................gp145..................>
   g k n v t e k f n m w k n y m v d q m h

301  gaggtcatctgtaa ctagccctgtt ggaccaagac cttcagccct gtggaaagct gacccccttg
   >................................................gp145..................>
   e d i i s l w d q s l q p c v k l t p l

361  tgcataaccc tgcagtcgcc caggccagcc gcacccccgt gccagcacaac gcacagaccc
   >................................................gp145..................>
   c i t l n c t d v t a h n g s t v y d n

421  aacgccacgg tgtggaagag ccaacagag aacagactgc gcccct ccag ctggacacac
   >................................................gp145..................>
   n a t v v n s t n e i k n c s f n i t t

481  gagctgaggg acaagaggg gaaggagac ggcctgttca acaacctggc acaagtgcag
   >................................................gp145..................>
   e l r d k r k k h a l f r n l d i v q

541  ctggacagcc acaagttcctgt gtagactgc aatacagcac aacaggagcat catcaagcag
   >................................................gp145..................>
   l d g n s s l y r l i n c n t s i l k q

601  gcctgcaccc agatcagctt cggcccaactt cccatcact gccgccccag ccggctgttc
   >................................................gp145..................>
   a c p k i s f d p i p i h y c a p a g f

661  gtgatctgtg aagtcaaacaa ccggccacgc gcctgctgtga aacagctgcag
   >................................................gp145..................>
   v i l k c n n e t f n g t g p c n n v s
```
FIGURE 39

<table>
<thead>
<tr>
<th>Envelope</th>
<th>Antigen</th>
<th>Clade</th>
<th>Year</th>
<th>2F5</th>
<th>4E10</th>
<th>2G12</th>
<th>b12</th>
<th>VRC01</th>
</tr>
</thead>
<tbody>
<tr>
<td>C06980</td>
<td>gp145</td>
<td>C</td>
<td>2008</td>
<td>>25</td>
<td>1.0</td>
<td>>25</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>57128</td>
<td>gp140</td>
<td>D</td>
<td>1998</td>
<td>>25</td>
<td>>25</td>
<td>0.1</td>
<td>6.7</td>
<td>>25</td>
</tr>
<tr>
<td>A07412</td>
<td>gp120</td>
<td>D</td>
<td>1999</td>
<td>>25</td>
<td>>25</td>
<td>>25</td>
<td>>25</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>gp140</td>
<td></td>
<td></td>
<td>>25</td>
<td>>25</td>
<td>22.9</td>
<td>>25</td>
<td>4.3</td>
</tr>
<tr>
<td>57140</td>
<td>gp120</td>
<td>D</td>
<td>1998</td>
<td>>25</td>
<td>>25</td>
<td>20.0</td>
<td>>25</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>gp140</td>
<td></td>
<td></td>
<td>>25</td>
<td>>25</td>
<td>>25</td>
<td>>25</td>
<td>0.02</td>
</tr>
</tbody>
</table>
FIGURE 40

<table>
<thead>
<tr>
<th>Clade/CoR</th>
<th>Envelope</th>
<th>2F5</th>
<th>4E10</th>
<th>2G12</th>
<th>b12</th>
<th>VRC01</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/R5</td>
<td>C06980</td>
<td>>25</td>
<td>4.7</td>
<td>>25</td>
<td>>25</td>
<td>0.7</td>
</tr>
<tr>
<td>D/R5</td>
<td>57128</td>
<td>>25</td>
<td>11.7</td>
<td>10.5</td>
<td>24.4</td>
<td>>25</td>
</tr>
<tr>
<td>D/R5</td>
<td>A07412</td>
<td>4</td>
<td>2.2</td>
<td>>25</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>C/R5</td>
<td>20635-4</td>
<td>>25</td>
<td>1.1</td>
<td>>25</td>
<td>>25</td>
<td>0.1</td>
</tr>
<tr>
<td>C/R5</td>
<td>93/MW/965</td>
<td>>25</td>
<td>10.3</td>
<td>>25</td>
<td>3.2</td>
<td>NT</td>
</tr>
<tr>
<td>C/R5</td>
<td>PBL 288</td>
<td>>25</td>
<td>4.5</td>
<td>>25</td>
<td>>25</td>
<td>NT</td>
</tr>
<tr>
<td>D/R5</td>
<td>E13613M4</td>
<td>3.2</td>
<td>12.8</td>
<td>>25</td>
<td>>25</td>
<td>NT</td>
</tr>
<tr>
<td>D/R5</td>
<td>NKU3006</td>
<td>2.1</td>
<td>2.7</td>
<td>>25</td>
<td>>25</td>
<td>NT</td>
</tr>
<tr>
<td>D/R5</td>
<td>A03349M1</td>
<td>>25</td>
<td>2.4</td>
<td>>25</td>
<td>3.8</td>
<td>NT</td>
</tr>
</tbody>
</table>
6 Groups of 4 New Zealand White females

<table>
<thead>
<tr>
<th>Group</th>
<th>Antigen</th>
<th>Adjuvant/Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gp145</td>
<td>Alhydrogel</td>
</tr>
<tr>
<td>2</td>
<td>gp145</td>
<td>Liposome formulation 1 containing lipid A, preformed and mixed with gp145</td>
</tr>
<tr>
<td>3</td>
<td>gp145</td>
<td>Liposome formulation 1 containing lipid A with encapsulated gp145</td>
</tr>
<tr>
<td>4</td>
<td>gp145</td>
<td>Liposome formulation 2 containing lipid A and PIP with encapsulated gp145</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>Liposome formulation 1 containing lipid A</td>
</tr>
<tr>
<td>6</td>
<td>mper23, clade B</td>
<td>Liposome formulation 2 containing lipid A and PIP with encapsulated mper23</td>
</tr>
</tbody>
</table>

→ 25 ug dose at weeks 0, 4 and 8
→ Bleeds at weeks -2, 0, 4, 8, 10, 12 (terminal)
→ Binding titers of 10^4-10^5 to:
 6980 gp145, CN54 gp140, ZA 1157 gp120
Figure 42

TZMbl Screens – 1:40 Serum Dilution, pre vs. wk10

Sera do not neutralize MuLV or the HIV-2/MPER chimera (G Shaw)
FIGURE 43

Group 1
- 1445
- 1446
- 1449
- 1454

Group 2
- 1450
- 1453
- 1455
- 1456

Group 3
- 1447
- 1448
- 1451
- 1452

Group 4
- 501
- 502
- 505
- 509

Week #

10 4 8 10 12

1000
100
10

ID50 Dr. 1

= Immunization
FIGURE 44

PBMC Screens – 1:50 Serum Dilution, pre vs. wk10

- SF162 mLuc IMC
- Bank mLuc IMC
- CM235 mLuc IMC
- 16-29 mLuc IMC

Animal #: 1446, 1447, 1450, 1452, 752, 753, 733, 706, 744, 748, 749, 741, 504, 508, 506, 512

Immunogen: C06980 gp145, A07412 gp140, A07412 gp120, Placebo
FIGURE 46

Geometric mean titers, all groups \((\text{SEM})\)

\(\text{C gp120 = ZA.1197MB, S Africa}\)
FIGURE 47

Before IgG Depletion

After IgG Depletion

% Neutralization

Plasma Dilution

-25 0 25 50 75 100

10^2 10^3 10^4 10^5 10^6

1453 Wk0
1453 Wk10
21.2
NHS

% Neutralization

Plasma Dilution

-25 0 25 50 75 100

10^2 10^3 10^4 10^5 10^6
FIGURE 48

[Graph showing neutralization data with strain and immunogen details]
I.P. Western Blot of Protein-free media adapted CHO C06980v0c22 gp145 cell line

Lane
1. 4E10 Human anti-gp41
2. 2F5 Human anti-gp41
3. NHS
4. HIV-1(+) Plasma
5. Standards

The gp145 is precipitated from the conditioned media using human antibodies, resolved on 4-15% SDS-PAGE, transferred to PVDF and detected using rabbit antisera to gp120 and gp160.
FIGURE 50

<table>
<thead>
<tr>
<th>% Sequence Identity:</th>
<th>ConC</th>
<th>C06980</th>
<th>A07412</th>
<th>S7140</th>
<th>S7128</th>
<th>Potential N-glycosylation sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConC</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>29</td>
</tr>
<tr>
<td>C06980</td>
<td>82.9</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>31</td>
</tr>
<tr>
<td>A07412</td>
<td>77.2</td>
<td>71.4</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>29</td>
</tr>
<tr>
<td>S7140</td>
<td>75.7</td>
<td>71</td>
<td>78.9</td>
<td>100</td>
<td>NA</td>
<td>28</td>
</tr>
<tr>
<td>S7128</td>
<td>75.7</td>
<td>70.2</td>
<td>77.8</td>
<td>77.8</td>
<td>100</td>
<td>28</td>
</tr>
</tbody>
</table>
FIGURE 52

ELISA Binding Titers
2 weeks post final vaccination
Group Mean with SEM

Binding Tier

Antigen

- C06980 gp145 (C)
- CN54 gp140 (BC)
- A07412 gp140 (D)
- 57140 gp140 (D)
- UG21 gp140 (D)
- gp120 (C)
- A07412 gp120 (D)
- gp41 (B)
FIGURE 53

A. Lymph Node INF-g

B. Spleen INF-g
FIGURE 57

Cell surface staining
Neuraminidase-PE
anti-β7-FITC
FIGURE 61

- Multimer A
- Multimer B
- Multimer C

<table>
<thead>
<tr>
<th>Lane</th>
<th>kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1236</td>
</tr>
<tr>
<td>2</td>
<td>1048</td>
</tr>
<tr>
<td>3</td>
<td>720</td>
</tr>
<tr>
<td>4</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Protein Form</td>
<td>Lane 26</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Higher order Multimer</td>
<td>487</td>
</tr>
<tr>
<td>Trimer</td>
<td></td>
</tr>
<tr>
<td>Dimer</td>
<td></td>
</tr>
<tr>
<td>Monomer</td>
<td></td>
</tr>
</tbody>
</table>

kDa
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2012/035O26

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K39/21
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data, EMBL, BIOSIS, CHEM ABS Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/022869 A2 (PROGENICS PHARM INC)</td>
<td>1,7-12, 32,42, 44-48</td>
</tr>
<tr>
<td></td>
<td>20 March 2003 (2003-03-20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, line 35 - page 8, line 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 3</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 92/19742 A1 (TRANSGENE SA)</td>
<td>1,4,5, 7-12,32, 41,42</td>
</tr>
<tr>
<td></td>
<td>12 November 1992 (1992-11-12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 33 - page 4, line 30</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
24 August 2012

Date of mailing of the international search report
03/09/2012

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Mandl, Birgit
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

The whole document table 3
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/035O26

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 03022869 A2</td>
<td>20-03-2003</td>
<td>AT 519500 T</td>
<td>15-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002335709 B2</td>
<td>27-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2459426 A1</td>
<td>20-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1461079 A2</td>
<td>29-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005502350 A</td>
<td>27-01-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005089526 A1</td>
<td>28-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 03022869 A2</td>
<td>20-03-2003</td>
</tr>
<tr>
<td>wo 9219742 AI</td>
<td>12-11-1992</td>
<td>AT 149203 T</td>
<td>15-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2086509 A1</td>
<td>03-11-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69217614 DI</td>
<td>03-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69217614 T2</td>
<td>10-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0541753 T3</td>
<td>04-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2099257 T3</td>
<td>16-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2676071 A1</td>
<td>06-11-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3023070 T3</td>
<td>30-07-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3453611 B2</td>
<td>06-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H05508324 A</td>
<td>25-11-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 44828 A1</td>
<td>19-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6261799 B1</td>
<td>17-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6284248 B1</td>
<td>04-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 9219742 AI</td>
<td>12-11-1992</td>
</tr>
</tbody>
</table>

| us 2011064760 AI | 17-03-2011 | NONE | |

Form PCT/ISA/210 (patent family annex) (April 2005)