(54) 发明名称
用于白光 LED 的铌酸盐或钽酸盐荧光材料及其制备方法

(57) 摘要
本发明涉及用于白光 LED 的铌酸盐或钽酸盐荧光材料及其制备方法。本发明包括未掺杂铌酸盐或钽酸盐、过渡金属掺杂铌酸盐或钽酸盐，具有 s^2构型的 Tl 离子掺杂铌酸盐或钽酸盐、稀土元素掺杂铌酸盐或钽酸盐以及类 Tl 离子和稀土离子共掺杂铌酸盐或钽酸盐。本发明的材料可用于白光 LED 及相关显示、照明器件。本发明原料廉价易得，制备工艺简单，材料的化学性质稳定，发光性能优异，制备得到的铌酸盐或钽酸盐荧光材料是理想的白光 LED 用荧光粉候选材料。
1. 用于白光 LED 的铟酸盐或钷酸盐荧光材料，其特征在于，化学式为 $A_xM_yM'_zO_{a+b}$，
其中：
 A 为第二主族元素中的一种或多种；
 M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种；
 M' 为 Nb 或 Ta 中的一种；
 M'^{II} 是选自具有 s^2 构型的类 Tl 离子中的一种或多种；
 $0 < a \leq 2, 0 < b \leq 3, 0 < c \leq 3, 0 < d \leq 14, 0 < x \leq 0.5$。

2. 按权利要求 1 所述的用于白光 LED 的铟酸盐或钷酸盐荧光材料，其特征在于，其中：
 A 为 Ca, Sr 或 Ba 中的一种或多种；
 M 为 Al, Ga, In, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 或 Lu 中的一种或多种。

3. 按权利要求 1 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料，其特征在于，其中：
 M'^{II} 为 Bi, Sb, Pb 或 Sn 中的一种或多种。

4. 按权利要求 1 所述的用于白光 LED 的铟酸盐或钷酸盐荧光材料，其特征在于，材料具备任意结构，包括钙钛矿结构、赝钙钛矿结构、双钙钛矿结构、橄榄石结构或焦绿石结构。

5. 按权利要求 4 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料，其特征在于，材料具备赝钙钛矿结构、双钙钛矿结构或焦绿石结构。

6. 按权利要求 5 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料，其特征在于，材料具备双钙钛矿结构。

7. 用于白光 LED 的/inet酸盐或钷酸盐荧光材料的制备方法，其特征在于，包括下述步骤：
 步骤 (1)：按化学式
 $A_xM_yM'_zO_{a+b}$ 配取原料，其中：
 A 为第二主族元素中的一种或多种，优选 Ca, Sr 或 Ba 中的一种或多种；
 M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al, Ga, In, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 或 Lu 中的一种或多种；
 M' 为 Nb 或 Ta 中的一种；
 M'^{II} 是选自具有 s^2 构型的类 Tl 离子中的一种或多种，优选 Bi, Sb, Pb 或 Sn 中的一种或多种；
 $0 < a \leq 2, 0 < b \leq 3, 0 < c \leq 3, 0 < d \leq 14, 0 < x \leq 5$。

 所述原料为各元素的无机盐；
 步骤 (2)：将上述全部原料在真空、空气、氧气、惰性气体或还原性气体环境下 $500 \sim 750^\circ \text{C}$ 预烧，优选的预烧时间为 $0.1 \sim 48$ 小时。
 步骤 (3)：将步骤 (2) 所得产物在真空、空气、氧气、惰性气体或还原性气体环境下 $1000 \sim 1700^\circ \text{C}$ 高温煅烧，优选的煅烧时间为 $12 \sim 72$ 小时。

8. 按权利要求 7 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料的制备方法，其特征在于，在完成步骤 (2) 后，对步骤 (2) 所得产物重复步骤 (2) 多次。

9. 按权利要求 7 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料的制备方法，其特征在于，在完成步骤 (3) 后，对步骤 (3) 所得产物重复步骤 (3) 多次。

10. 按权利要求 7 所述的用于白光 LED 的/inet酸盐或钷酸盐荧光材料的制备方法，其特征在于，
在于，在完成步骤 (3) 后，对步骤 (3) 所得产物在还原性气体环境下进行热处理。
用于白光 LED 的铌酸盐或钽酸盐荧光材料及其制备方法

技术领域
[0001] 本发明涉及用于白光 LED 的铌酸盐或钽酸盐荧光材料及其制备方法，属于荧光材料领域。

背景技术
[0002] 白光 LED 是继白炽灯、日光灯和节能灯之后的第四代照明光源，或称为 21 世纪绿色光源，具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单，体积小，重量轻，响应快，工作电压低及安全性好的特点。以 LED 固态光源替代传统照明光源是目前照明技术发展的主要趋势，各国都给予高度重视，纷纷制定了发展计划，加紧研制和开发。
[0003] 本发明所描述的白光 LED 的制备技术主要包括三种：光转换法、多色组合法和多量子阱法。光转换法是将单色光转换为多色光，将单色光转换为白光。多色组合法是由不同波长的单色光组成白光，这种方法对光的强度和波长要求高，而且在光源波动或温度变化时不易获得稳定的白光。多量子阱法是直接利用 LED 发光的二极管，目前在技术上还不成熟。
[0004] 光转换法是目前技术上最成熟的方法。依据发光原理和色度学原理，主要包括以下方案：
[0005] (1) 蓝色 LED 芯片和可被蓝光有效激发的发黄光荧光粉组合成白光 LED。半导体化合物蓝光 LED，属于 p-n 结光致发光。一部分蓝光被荧光粉吸收，激发荧光粉发射黄光，属于典型的下转换光致发光。发射的黄光和剩余的蓝光混合，调谐它们的强度比，即可得到各种色温的白光。当然，也可加入可被蓝光激发的发红光、绿光荧光粉得到白光。该原理和方案是当前技术的主流。这一方案最典型的例子是发蓝光 Indium Garna 芯片和涂有数种黄光的 Ce³⁺ 激活的 C₃₃ (Al, Ga)₃O₇ 黄绿宝石黄色荧光体封装组成白光 LED，已商业化。该技术方案存在着显色性差、色温偏低、缺少红色成分的缺点，需要加入可被蓝光激发的红色荧光粉来改善性能。
[0006] (2) 紫外光 LED 芯片和可被这种紫外光有效激发而发红光、绿光、蓝三基色荧光体有机组合成白光 LED。其原理类似三基色紧凑型荧光灯，可以选用多种荧光体组合。方案的特点是高效荧光体选择的种类丰富，可获得光效高、显色指数高及各种相关色温，可选择性强。但该方案也存在荧光粉转换效率低的问题。
[0007] 因此，合成具有良好发光特性、化学性质稳定、成本低的新型 LED 用荧光粉对实现高亮度的白光 LED 至关重要，尤其是性能优良的红色荧光粉非常缺乏。许多材料的激发电在 380-410 nm 范围内急剧下降，在红区无激发电或强度非常低。如 Y₂O₃:Eu，其在 254 nm 激发下是效率最高的红色荧光体，但长波 UV 和蓝光激发基本无效。同样，彩电用 Y₂O₃:S:Eu 荧光材料具有相似问题。
[0008] 目前，人们广泛研究的荧光粉体系大多集中在磷酸盐（如稀土激活的磷酸镧）、硼酸盐（如 (Y, Gd) B₃O₃:Eu 红粉）、铝酸盐（如 BaMgAl₃O₄:Eu 蓝粉）、硅酸盐（如 Zn₃SiO₅:Mn 绿粉）、氧化物（如红色荧光粉 Y₂O₃:Eu）等。人们对铌酸盐、钽酸盐材料的研究报道还比较
发明内容

[0009] 本发明的第一目的在于针对以往的技术特点，提出一种用于白光 LED 的铋酸盐或

[0010] 钨酸盐荧光材料。

[0011] 为实现本发明的第一目的，本发明的方案之一为，一种用于白光 LED 的铋酸盐或

[0012] 钨酸盐荧光材料，化学式为 $A_{2}M_{x}O_{y}$，其中；

[0013] M 为第二主族元素中的一种或多种，优选 Ca、Sr 或 Ba 中的一种或多种；

[0014] M' 为 Nb 或 Ta 中的一种；

[0015] $0 < a \leq 2,0 < b \leq 3,0 < c \leq 3,0 < d \leq 14$。

[0016] 此类荧光粉显示其组成中对应罕见元素的特征发射，如 $Ca_{2}EuNbO_{6}$ 和 $Sr_{2}EuNbO_{6}$ 分

[0017] 别表现出 Eu^{2+} 离子的红光发射和橙红光发射，此类荧光粉包括但不限于：

[0018] A 为第二主族元素中的一种或多种，优选 Ca、Sr 或 Ba 中的一种或多种；

[0019] M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al、Ga、In、Sc、

[0020] Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或 Lu 中的一种或多种；

[0021] M' 为 Nb 或 Ta 中的一种；

[0022] $0 < a \leq 2,0 < b \leq 3,0 < c \leq 3,0 < d \leq 14,0 < x \leq 0.5$。

[0023] 此类荧光粉可实现包括红光在内的可见光发射，包括但不限于：

[0024] $Ca_{2}YNbO_{6}: 0.01Mn$、$Ca_{2}YTaO_{6}: 0.01Mn$、$Ca_{2}GdNbO_{6}: 0.01Mn$、$Ca_{2}GdTaO_{6}: 0.01Mn$、

[0025] $Ca_{2}LaNbO_{6}: 0.01Mn$、$Ca_{2}LaTaO_{6}: 0.01Mn$、$Ca_{2}La_{2}NbO_{14}: 0.01Mn$、$Ca_{2}La_{2}TaO_{14}: 0.01Mn$、

[0026] $Ca_{2}Y_{3}NbO_{14}: 0.01Mn$、$Ca_{2}Y_{3}TaO_{14}: 0.01Mn$ 等。

[0027] 为实现本发明的第一目的，本发明的方案之一为，一种用于白光 LED 的铋酸盐或

[0028] 钨酸盐荧光材料，化学式为 $A_{2}M_{x}O_{y}: M'^{1}$，其中；

[0029] M' 为 Nb 或 Ta 中的一种；

[0030] M'^{1} 是选自具有 s^2 构型的类 Tl 离子中的一种或多种，优选 Bi、Sb、Pb 或 Sn 中的一

[0031] 种或多种；

[0032] $0 < a \leq 2,0 < b \leq 3,0 < c \leq 3,0 < d \leq 14,0 < x \leq 0.5$。
【0031】此类荧光粉可实现蓝光发射，包括但不限于：

Ca₂Y₂NbO₆:0.01Bi, Ca₂YTaqO₆:0.01Bi, Ca₂GdBaNbO₆:0.01Bi, Ca₂GdTaO₆:0.01Bi, Ca₂LaY₃NbO₆:0.01Bi, Ca₂LaTaO₆:0.01Bi, Ca₂La₂(Nₐ₀₀₉)ₙO₆:0.01Bi, Ca₂La₂(Nₐ₀₀₉)ₙTaO₆:0.01Bi, (Ca₀₈₉)₂La₂(Yₐ₀₀₉)ₙO₆:0.01Bi, (Ca₀₈₉)₂La₂(Yₐ₀₀₉)ₙTaO₆:0.01Bi, (Sr₀₈₉)₂(Yₐ₀₀₉)ₙO₆:0.01Bi, (Sr₀₈₉)₂(Yₐ₀₀₉)ₙTaO₆:0.01Bi, Ca₂La₃Ta₂O₁₄:0.01Bi, Ca₂Y₃Nb₃O₁₄:0.01Bi, Ca₂Y₃Ta₃O₁₄:0.01Bi, Sr₂GdBaNbO₆:0.01Bi, Sr₂GdTaO₆:0.01Bi 等。

【0032】为实现本发明的第一目的，本发明的方案之一为，一种用于白光 LED 的钒酸盐或

[0033] 为实现本发明的第二目的，本发明的方案之一为，一种用于白光 LED 的钒酸盐或

【0034】M 为第二主族元素中的一种或多种，优选 Ca, Sr 或 Ba 中的一种或多种；

【0035】M 为第二主族元素中的一种或多种，优选 Al, Ga, In, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb 或 Lu 中的一种或多种；

【0036】M' 为 Nb 或 Ta 中的一种；

【0037】M'' 为稀土元素中的一种或多种，优选 Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm 或 Yb 中的一种或多种；

【0038】0 < a ≤ 2, 0 < b ≤ 3, 0 < c ≤ 3, 0 < d ≤ 4, 0 < x ≤ 5。

【0039】此类荧光粉显示对应稀土离子掺杂的特征可见光强发射，如 Ca₂LaSB₇:0.5Eu 具

【0040】Ca₂LaY₃NbO₆:0.5Eu, Ca₂LaTaO₆:0.5Eu, Ca₂Y₂NbO₆:0.5Eu, Ca₂YTaqO₆:0.5Eu, Ca₂GdBaNbO₆:0.5Eu,

【0041】为实现本发明的第二目的，本发明的方案之一为，一种用于白光 LED 的钒酸盐或

【0042】M 为第二主族元素中的一种或多种，优选 Ca, Sr 或 Ba 中的一种或多种；

【0043】M' 为 Nb 或 Ta 中的一种；

【0044】M'' 为稀土元素中的一种或多种，优选 Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm 或 Yb 中的一种或多种；

【0045】M'''' 为稀土元素中的一种或多种，优选 Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm 或 Yb 中的一种或多种；
说明书

[0047] \(0 < a \leq 2.0 < b \leq 3.0 < c \leq 3.0 < d \leq 14.0 < y \leq 1.0 < z \leq 5.0\)。

[0048] 此类荧光粉可在同一基质中实现两带或两带以上的发射。如\(\text{Ca}_2\text{GdNbO}_6\cdot0.005\text{Bi}_{2}\)、
0.2Eu中可同时观察到蓝光发射棒和红光发射带，此类荧光粉包括但不限于：

[0049] \(\text{Ca}_2\text{GdNbO}_6\cdot0.005\text{Bi}_{2}\)、0.2Eu、\(\text{Ca}_2\text{GdTaO}_6\cdot0.005\text{Bi}_{2}\)、0.2Eu、\(\text{Ca}_2\text{LaNbO}_6\cdot0.005\text{Bi}_{2}\)、
0.2Eu、\(\text{Ca}_2\text{LaTaO}_6\cdot0.005\text{Bi}_{2}\)、0.2Eu、\(\text{Ca}_2\text{YNbO}_6\cdot0.005\text{Bi}_{2}\)、0.2Tb、\(\text{Ca}_2\text{YTaO}_6\cdot0.005\text{Bi}_{2}\)、0.2Tb等。

[0050] 实现本发明第一目的上述方案的用于白光LED的铌酸盐或钒酸盐荧光材料可以
具备任意结构，包括但不限于钙钛矿结构、氟化钙钛矿结构、双钙钛矿结构、橄榄石结构、焦绿
石结构；其中优选结构为氟化钙钛矿结构、双钙钛矿结构和焦绿石结构；进一步优选为双钙
钛矿结构。

[0051] 实现本发明第一目的上述方案的用于白光LED的铌酸盐或钒酸盐荧光材料中\(M^I\),
\(M^{II}\),\(M^{III}\)的过渡金属、稀土元素、具有\(s^2\)构型的类T1离子，作为发光中心离子其发光性质
强烈依赖于基质晶格，通过其选择合适的基质材料，调节其配位晶体场，可调节其发光颜色，
得到预期的可见光发射。这三类中心原子和\(\text{A}_n\text{M}_m\cdot\text{O}_x\)基质材料中相应阳离子的
半径，电荷差异不大，可以很容易的进入基质晶格，实现高的掺杂量和强的发光。

[0052] 本发明的第二目的在于提出一种用于白光LED的铌酸盐或钒酸盐荧光材料的制备
方法。

[0053] 为实现本发明的第二目的，本发明的方案之一，包括述步骤：

[0054] 步骤 (1)：按化学式

[0055] \(\text{A}_n\text{M}_m\cdot\text{O}_x\)或\(\text{A}_n\text{M}_m\cdot\text{O}_x\cdot\text{M}^{I}\)或\(\text{A}_n\text{M}_m\cdot\text{O}_x\cdot\text{M}^{II}\)或\(\text{A}_n\text{M}_m\cdot\text{O}_x\cdot\text{M}^{III}\)配取原料，其中：

[0056] A 为第二主族元素中的一种或多种，优选Ca、Sr 或 Ba 中的一种或多种；

[0057] M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al、Ga、In、Sc、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或 Lu 中的一种或多种；

[0058] M’ 为 Nb 或 Ta 中的一种；

[0059] M”为过渡金属中的一种或多种，优选 Cu、Mn、Cr 或 Ag 中的一种或多种；

[0060] M””是选自具有\(s^2\)构型的类T1离子中的一种或多种，优选 Bi、Sb、Pb 或 Sn 中的一
种或多种；

[0061] M”””为稀土元素中的一种或多种，优选 Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm 或 Yb
中的一种或多种；

[0062] \(0 < a \leq 2.0 < b \leq 3.0 < c \leq 3.0 < d \leq 14.0 < y \leq 1.0 < z \leq 5.0\)。

[0063] 所述原料为各元素的无机氧化物，包括但不限于氧化物、硫酸盐、硝酸盐或乙酸盐等。

[0064] 步骤 (2)：将上述全部原料在真空、空气、氧气、惰性气体或还原性气体环境下
1000 ～ 1700℃高温煅烧，优选的反应时间为 12 ～ 72 小时。

[0065] 在上述步骤 (2) 后，步骤 (2) 所得产物优选进一步重复步骤 (2) 多次。

[0066] 在上述步骤 (2) 后，步骤 (2) 所得产物优选进一步在还原性气体环境下进行热处
理。

[0067] 本发明的第二目的在于提出一种用于白光LED的铌酸盐或钒酸盐荧光材料的制备
方法。

[0068] 为实现本发明的第二目的，本发明的方案之一，包括述步骤：

[0069] 步骤 (1)：按化学式
说明书

[0070] \(\text{A}_n\text{M}_b\text{M} \text{O}_c \) 或 \(\text{A}_n\text{M}_b\text{M}' \text{O}_c \text{M} \) 配取原料，其中：

[0071] A 为第二主族元素中的一种或多种，优选 Ca、Sr 或 Ba 中的一种或多种；

[0072] M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al、Ga、In、Sc、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或 Lu 中的一种或多种；

[0073] M' 为 Nb 或 Ta 中的一种；

[0074] M 为过渡金属中的一种或多种，优选 Cu、Mn、Cr 或 Ag 中的一种或多种；

[0075] M" 为选自具有 \(s^2 \) 构型的类 Ti 离子中的一种或多种，优选 Bi、Sb、Pb 或 Sn 中的一种或多种；

[0076] M" 为稀土元素中的一种或多种，优选 Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm 或 Yb 中的一种或多种；

[0077] \(0 < a \leq 2.0 < b \leq 3.0 < c \leq 3.0 < d \leq 14.0 < x \leq 5 \)。

[0078] 所述原料为各元素的无机盐，包括但不限于氧化物、碳酸盐、硝酸盐或乙酸盐等。

[0079] 步骤 (2)：将上述全部原料在真空、空气、氧气、惰性气体或还原性气体环境下
500 ～ 750°C 预烧，优选的反应时间为 0.1 ～ 48 小时。

[0080] 步骤 (3)：将步骤 (2) 所得产物在真空、空气、氧气、惰性气体或还原性气体环境下
1000 ～ 1700°C 高温煅烧，优选的反应时间为 12 ～ 72 小时。

[0081] 在上述步骤 (2) 后，步骤 (2) 所得产物优选进一步重复步骤 (2) 多次。

[0082] 在上述步骤 (3) 后，步骤 (3) 所得产物优选进一步重复步骤 (3) 多次。

[0083] 在上述步骤 (3) 后，步骤 (3) 所得产物优选进一步在还原性气体环境下进行热处
理。

[0084] 为实现本发明的第二目的，本发明的方案之一，包括下述步骤；

[0085] 步骤 (1)：按化学式

[0086] \(\text{A}_n\text{M}_b\text{M}' \text{O}_c \) 配取原料，其中：

[0087] A 为第二主族元素中的一种或多种，优选 Ca、Sr 或 Ba 中的一种或多种；

[0088] M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al、Ga、In、Sc、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或 Lu 中的一种或多种；

[0089] M' 为 Nb 或 Ta 中的一种；

[0090] M" 为过渡金属中的一种或多种，优选 Cu、Mn、Cr 或 Ag 中的一种或多种；

[0091] M" 为选自具有 \(s^2 \) 构型的类 Ti 离子中的一种或多种，优选 Bi、Sb、Pb 或 Sn 中的一
种或多种；

[0092] M" 为稀土元素中的一种或多种，优选 Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm 或 Yb 中的一种或多种；

[0093] \(0 < a \leq 2.0 < b \leq 3.0 < c \leq 3.0 < d \leq 14.0 < x \leq 5 \)。

[0094] 所述原料为各元素的无机盐，包括但不限于氧化物、碳酸盐、硝酸盐或乙酸盐等。

[0095] 步骤 (2)：将所述 A 和 M 和 M' 元素对应的原料在真空、空气、氧气、惰性气体或还原性气体环境下 1000 ～ 1700°C 高温煅烧，优选的反应时间为 12 ～ 72 小时。

[0096] 步骤 (3)：在步骤 (2) 所得产物中加入所述 M' 或 M" 或 M''' 或 (M' 和 M") 元素对应的
原料在真空、空气、氧气、惰性气体或还原性气体环境下 1000 ～ 1700°C 高温煅烧，优选的反应时间为 12 ～ 72 小时。
[0097] 在上述步骤 (2) 后，步骤 (2) 所得产物优选进一步重复步骤 (2) 多次。
[0098] 在上述步骤 (3) 后，步骤 (3) 所得产物优选进一步重复步骤 (3) 多次。
[0099] 在上述步骤 (3) 后，步骤 (3) 所得产物优选进一步在还原性气体环境下进行热处理。
[0100] 为实现本发明的第二目的，本发明的方案之一，包括下述步骤：
[0101] 步骤 (1)：按化学式
[0102] \[A_2M^{IV} \cdot M^{V} \cdot O_x \text{或} A_2M^{IV} \cdot M^{V} \cdot O_y \text{或} A_2M^{IV} \cdot M^{V} \cdot O_z \text{或} A_2M^{IV} \cdot M^{V} \cdot O \text{配制原料，其中：}\]
[0103] A 为第二主族元素中的一种或多种，优选 Ca、Sr 或 Ba 中的一种或多种；
[0104] M 为第三主族元素或 Sc 或 Y 或镧系稀土元素中的一种或多种，优选 Al、Ga、In、Sc、
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或 Lu 中的一种或多种；
[0105] M’ 为 Nb 或 Ta 中的一种；
[0106] M’’ 为过渡金属中的一种或多种，优选 Cu、Mn、Cr 或 Ag 中的一种或多种；
[0107] M^{IV} 是选自具有 s^2 构型的类 Ti 离子中的一种或多类，优选 Bi、Sb、Pb 或 Sn 中的一
种或多种；
[0108] M^{VI} 为稀土元素中的一种或多类，优选 Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm 或 Yb
中的一种或多类；
[0109] 0 \leq a \leq 2.0, 0 \leq b \leq 3.0, 0 \leq c \leq 3.0, 0 \leq d \leq 14.0, 0 < x \leq 5。
[0110] 所述原料为各元素的无机盐，包括但不限于氧化物、碳酸盐、硝酸盐或乙酸盐等。
[0111] 步骤 (2)：将所述 A 和 M 和 M’ 元素对应的原料在真空、空气、氧气、惰性气
体或还原性气体环境下 500 至 750°C 预烧，优选的反应时间为 0.1 至 48 小时。
[0112] 步骤 (3)：将步骤 (2) 所得产物在真空、空气、氧气、惰性气体或还原性气体环境下
1000 至 1700°C 高温烧，优选的反应时间为 12 至 72 小时。
[0113] 步骤 (4)：在步骤 (3) 所得产物中加入所述 M’ 或 M’’ 或 M^{VI} 或 (M’ 和 M^{VI}) 元素对应
的原料在真空、空气、氧气、惰性气体或还原性气体环境下 1000 至 1700°C 高温烧，优选的
反应时间为 12 至 72 小时。
[0114] 在上述步骤 (2) 后，步骤 (2) 所得产物优选进一步重复步骤 (2) 多次。
[0115] 在上述步骤 (3) 后，步骤 (3) 所得产物优选进一步重复步骤 (3) 多次。
[0116] 在上述步骤 (3) 后，步骤 (4) 所得产物优选进一步重复步骤 (4) 多次。
[0117] 在上述步骤 (4) 后，步骤 (4) 所得产物优选进一步在还原性气体环境下进行热处理。
[0118] 实现本发明第二目的上述方案的用于白光 LED 的氮酸盐或钽酸盐荧光材料的制备
方法，所述的真空环境优选真空熔封石英管。
[0119] 对本发明所得样品使用日本日立公司的 U-3010 分光光度仪测试其紫外-可见
吸收光谱；将本发明所得样品使用 Shimadzu RF-5301PC 荧光光谱仪测试其光致发光谱；将
本发明所得样品使用德国 Fluorolog-3 荧光光谱仪及英国 FLS920 荧光光谱仪测试其光致发
光寿命。
[0120] 本发明所提供的发光材料可被紫外、近紫外、蓝光等各种波长的光激发，发光材料
的发射谱带包括蓝光、黄光、红光等各种谱带。
[0121] 本发明所提供的发光基质材料具有多变的晶体结构和可调的晶体场强度，同时，
所提供的基质材料还具有宽带限和低电荷输运特性，因而可实现发光材料发光波长的连续剪裁和发光亮度的有效优化，尤其是对于难以实现高效率的红光材料而言，本发明提供了广阔的选择空间。

附图说明
[0122] 图1为实施例中未掺杂Ca₂EuNbO₆材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 612nm)。
[0123] 图2为实施例中Ca₂Yₓ₋₁ₙₓNbO₆:xEu(x = 0.05, 0.3, 0.75)材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 613nm)。
[0124] 图3为实施例中Ca₃Laₓ₋₁ₙₓNbO₆:xEu(x = 0.05, 0.4, 0.75)材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 613nm)。
[0125] 图4为实施例中Ca₃Gdₓ₋₁ₙₓNbO₆:xEu(x = 0.05, 0.5, 0.75)材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 613nm)。
[0126] 图5为实施例中CaₓYₓ₋₁ₙₓO₆:0.3Eu, Ca₃Gdₓ₋₁ₙₓO₆:0.3Eu, Ca₃Laₓ₋₁ₙₓO₆:0.3Eu材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 613nm)。
[0127] 图6为实施例中Sr₂Gdₓ₋₁ₙₓO₆:0.3Eu材料的发射谱(λₑₓ = 464nm)和激发谱(λₑᵣ = 611nm)。
[0128] 图7为实施例中Sr₂Laₓ₋₁ₙₓO₆:0.3Eu材料的发射谱(λₑₓ = 394nm)和激发谱(λₑᵣ = 613nm)。
[0129] 图8为实施例中Ba₂Laₓ₋₁ₙₓO₆:0.3Eu材料的发射谱(λₑₓ = 283nm)和激发谱(λₑᵣ = 594nm)。
[0130] 图9为实施例中Ba₂Yₓ₋₁ₙₓO₆:0.3Eu材料的发射谱(λₑₓ = 266nm)和激发谱(λₑᵣ = 595nm)。

具体实施方式
[0131] 下面以实施例的方式说明本发明，但本发明绝非仅限于实施例。
[0132] 实施例1
[0133] 将原料CaCO₃, Eu₂O₃, Nb₂O₅按照Ca₂EuNbO₆的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于625℃预烧24h。所得粉体充分研磨后再于1000℃, 1200℃, 1500℃分别烧制24h。制成纯Ca₂EuNbO₆荧光材料。测试结果见图1。
[0134] 实施例2
[0135] 将原料CaCO₃, Eu₂O₃, Nb₂O₅按照Ca₂EuNbO₆的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于氢气氛炉中625℃预烧24h。所得粉体充分研磨后再于1700℃分别烧制24h。制成纯Ca₂Eu₂O₆荧光材料。测试结果与实施例1相当。
[0136] 实施例3
[0137] 将原料CaCO₃, Eu₂O₃, Nb₂O₅按照Ca₂EuNbO₆的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于氢气氛炉中625℃预烧24h。所得粉体充分研磨后再于1300℃分别烧制24h。制成纯Ca₂Eu₂O₆荧光材料。测试结果与实施例1相当。
[0138] 实施例4
将原料 SrCO₃、Eu₂O₃、Ta₂O₅ 按照 Sr₂EuTaO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1000℃、1200℃、1500℃分别烧制 24h。制成纯 Sr₂EuTaO₆ 熔料。其在短波紫外 (250–350nm)、近紫外 (393–395nm)、蓝光 (463–465nm) 激发下，可有效发红光 (575–650nm)。

实施例 5

将原料 SrCO₃、Eu₂O₃、Ta₂O₅ 按照 Sr₂Ba₁.₈EuTaO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1700℃分别烧制 24h。制成纯 Sr₂Ba₁.₈EuTaO₆ 熔料。其在短波紫外 (250–350nm)、近紫外 (393–395nm)、蓝光 (463–465nm) 激发下，可有效发红光 (575–650nm)。

实施例 6

将原料 BaCO₃、Eu₂O₃、Ta₂O₅ 按照 Ba₂EuTaO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1000℃、1200℃、1500℃分别烧制 24h。制成纯 Ba₂EuTaO₆ 熔料。其在短波紫外 (250–350nm)、近紫外 (393–395nm)、蓝光 (463–465nm) 激发下，可有效发红光 (575–650nm)。

实施例 7

将原料 Ca(NO₃)₂・4H₂O、Y₂O₃、Nb₂O₅ 按照 Ca₂YNbO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1000℃、1200℃、1500℃分别烧制 24h。制成纯 Ca₂YNbO₆。将所得 Ca₂YNbO₆ 粉体与 MnO 按 Ca₂YNbO₆:xMn (x = 0.2) 的配比研磨均匀，然后置于管真空的熔封石英管中于 950℃反应 24h 进行后续掺杂。得到 Ca₂YNbO₆: Mn 熔料。其在短波紫外激发下，显示红色宽带发射 (550–700nm)。

实施例 8

将原料 CaCO₃、La(NO₃)₃・6H₂O、Ta₂O₅ 按照 Ca₂LaTaO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1000℃、1200℃、1400℃分别烧制 24h。制成纯 Ca₂LaTaO₆。将所得 Ca₂LaTaO₆ 粉体与 MnO 按 Ca₂LaTaO₆:xMn (x = 0.3) 的配比研磨均匀，然后置于真空的熔封石英管中于 950℃反应 24h 进行后续掺杂。得到 Ca₂LaTaO₆: Mn 熔料。其在短波紫外激发下，显示红色宽带发射 (550–700nm)。

实施例 9

将原料 Ca(CH₃COO)₂・H₂O、Gd₂O₃、Nb₂O₅ 按照 Ca₂GdNbO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚中于 625℃预烧 24h。所得粉体充分研磨后再次于 1150℃、1200℃、1400℃分别烧制 24h。制成未掺杂的 Ca₂GdNbO₆ 熔料。将所得 Ca₂GdNbO₆ 粉体与 Bi₂O₅ 按 Ca₂GdNbO₆:xBi (x = 0.3) 的配比研磨均匀，然后置于真空的熔封石英管中于 930℃反应 30h 进行后续掺杂。得到 Ca₂GdNbO₆: Bi 熔料。其在紫外激发下，显示强烈的蓝光宽带发射。

实施例 10

将原料 CaCO₃、La₂O₃、Y₂O₃、Ta₂O₅ 按照 Ca₂La₉O₉Y₀.₁TaO₆ 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 700℃预烧 20h。所得粉体充分研磨后再次于 1100℃、1250℃、1400℃分别烧制 24h。制成未掺杂的 Ca₂La₉O₉Y₀.₁TaO₆ 熔料。将所得
Ca_{2}La_{0.9}Y_{0.1}TaO_{6} 粉体与 Bi_{2}O_{5} 按 Ca_{2}La_{0.9}Y_{0.1}TaO_{6}:xBi (x = 0.1) 的配比研磨均匀，然后置于抽真空的熔封石英管中于 950℃反应 30h 进行后续掺杂。得到 Ca_{2}La_{0.9}Y_{0.1}TaO_{6}:Bi 荧光材料。其在紫外激发下，显示强的蓝光宽带发射。

[0152] 实施例 11

[0153] 将原料 CaCO_{3}、La_{2}O_{3}、Ta_{2}O_{5} 按照 Ca_{2}La_{0.9}TaO_{6} 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 700℃预烧 20h。所得粉体充分研磨后再于 1100℃、1250℃、1400℃分别烧制 24h。制成未掺杂的 Ca_{2}La_{0.9}TaO_{6} 荧光粉基体材料。将所得 Ca_{2}La_{0.9}TaO_{6} 粉体与 Bi_{2}O_{5} 按 Ca_{2}La_{0.9}TaO_{6}:xBi (x = 0.1) 的配比研磨均匀，然后置于抽真空的熔封石英管中于 950℃反应 30h 进行后续掺杂。得到 Ca_{2}La_{0.9}TaO_{6}:Bi 荧光材料。其在紫外激发下，显示强的蓝光宽带发射。

[0154] 实施例 12

[0155] 将原料 CaCO_{3}、Y(NO_{3})_{3}•6H_{2}O、Nb_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}Y_{1-x}Nb_{x}O_{6}:xEu (x = 0.05, 0.3, 0.75) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 750℃预烧 12h。所得粉体充分研磨后再于 1100℃、1250℃、1500℃分别烧制 24h。制成 Ca_{2}YNb_{0.6}Eu 荧光材料。测试结果见图 2。

[0156] 实施例 13

[0157] 将原料 CaCO_{3}、Y(NO_{3})_{3}•6H_{2}O、Nb_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}La_{1-x}Nb_{x}O_{6}:xEu (x = 0.05, 0.4, 0.75) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 750℃预烧 12h。所得粉体充分研磨后再于 1100℃、1250℃、1500℃分别烧制 24h。制成 Ca_{2}La_{0.9}Nb_{0.6}Eu 荧光材料。测试结果见图 3。

[0158] 实施例 14

[0159] 将原料 CaCO_{3}、Gd_{2}O_{3}、Nb_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}Gd_{1-x}Nb_{x}O_{6}:xEu (x = 0.05, 0.5, 0.75) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 680℃预烧 20h。所得粉体充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h, 24h, 48h。制成 Ca_{2}GdNb_{0.6}Eu 荧光材料。测试结果见图 4。

[0160] 实施例 15

[0161] 将原料 CaCO_{3}、Y_{2}O_{3}、Ta_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}Y_{1-x}Ta_{x}O_{6}:xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 680℃预烧 20h。所得粉体充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h, 24h, 48h。制成 Ca_{2}YTa_{0.6}Eu 荧光材料。测试结果见图 5。

[0162] 实施例 16

[0163] 将原料 CaCO_{3}、Gd_{2}O_{3}、Ta_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}Gd_{1-x}Ta_{x}O_{6}:xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 700℃预烧 20h。所得粉体充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h, 24h, 48h。制成 Ca_{2}GdTa_{0.6}Eu 荧光材料。测试结果见图 5。

[0164] 实施例 17

[0165] 将原料 CaCO_{3}、La_{2}O_{3}、Ta_{2}O_{5}、Eu_{2}O_{3} 按照 Ca_{2}La_{1-x}Ta_{x}O_{6}:xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 750℃预烧 20h。所得粉体充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h, 24h, 48h。制成 Ca_{2}La_{0.9}TaO_{6}:Eu 荧光材料。测试结
果见图 5。

[0166] 实施例 18

[0167] 将原料 SrCO₃、Gd₂O₃、Ta₂O₅、Eu₂O₃ 按照 Sr₂Gd₁-xTaO₆ : xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h，制成 Sr₂GdTaO₆ : Eu 荧光材料。测试结果见图 6。

[0168] 实施例 19

[0169] 将原料 SrCO₃、La₂O₃、Ta₂O₅、Eu₂O₃ 按照 Sr₂La₁-xTaO₆ : xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1200℃、1400℃分别烧制 24h。制成 Sr₂LaTaO₆ : Eu 荧光材料。测试结果见图 7。

[0170] 实施例 20

[0171] 将原料 BaCO₃、La₂O₃、Ta₂O₅、Eu₂O₃ 按照 Ba₂La₁-xTaO₆ : xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1250℃、1450℃分别烧制 24h，制成 Ba₂LaTaO₆ : Eu 荧光材料。测试结果见图 8。

[0172] 实施例 21

[0173] 将原料 BaCO₃、Y(NO₃)₃•6H₂O、Ta₂O₅、Eu₂O₃ 按照 Ba₂Y₁-xTaO₆ : xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1200℃、1400℃分别烧制 24h，制成 Ba₂YTaO₆ : Eu 荧光材料。测试结果见图 9。

[0174] 实施例 22

[0175] 将原料 CaCO₃、La₂O₃、Nb₂O₅、Eu₂O₃、Bi₂O₃ 按照 Ca₃LaNbO₆ : Bi₁₋ₓEuₓ (y = 0.01, z = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于 Ar 气氛下 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1250℃、1500℃分别烧制 24h、24h、48h，制成 Ca₃LaNbO₆ : Bi₁₋ₓEuₓ 荧光材料。其在紫外激发下显示蓝光和红光的双带发射。

[0176] 实施例 23

[0177] 将原料 Gd₂O₃、Nb₂O₅、Eu₂O₃ 按照 Gd₁₋ₓNbO₆ : xEu (x = 0.3) 的化学计量比进行称量，在研钵中混合均匀后，装入带盖刚玉坩埚于氮气气氛下 650℃预烧 20h，所得粉末充分研磨后再于 1100℃、1200℃、1500℃分别烧制 24h，制成 GdNbO₆ : Eu 荧光材料。其在紫外激发下显示红光发射。
图 1

图 2
图 5

图 6
图 9

激发谱/发射谱

\[\lambda_{em} = 595 \text{ nm} \quad \lambda_{ex} = 266 \text{ nm} \]