0073 A2 /I 0 0 O 0 O

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

3 March 2005 (03.03.2005)

(10) International Publication Number

WO 2005/020073 A2

(51) International Patent Classification’: GOGF 9/46
(21) International Application Number:
PCT/US2004/0270438

(22) International Filing Date: 19 August 2004 (19.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/496,567
10/831,973

20 August 2003 (20.08.2003)
26 April 2004 (26.04.2004)

UsS
Us

(71) Applicant (for all designated States except US): KATANA
TECHNOLOGY, INC. [US/US]; 43 Nagog Park, Acton,
MA 01720 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VASILEVSKY,
Alexander, David [US/US]; 5 Gooseneck Lane, Westford,
MA 01886 (US). DAVIS, Scott, Howard [US/US]; 43
Dale Street, Needham, MA 02494 (US). THOMAS, Ben-
jamin, Joseph, III [US/US]; 2 Appletree Lane, Bedford,
MA 01730 (US).

(74)

(81)

(84)

Agent: RUSSAVAGE, Edward, J.; Lowrie, Lando &
Anastasie, LLP, One Main Street, Cambridge MA 02142
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR PROVIDING VIRTUAL COMPUTING SERVICES

Y Co o
{ /52—
Prgpaned |
2 Zzarre, Stiroes ; los
Lathere s r

%eﬂwuh‘ ol Z-ng-z_

ﬁ/L 1oy L%%D

|
!
|
!
|
|
I
{
1
|
]
I
|

#mﬂgm "—“f?’@m’/

ﬁ"lﬁs*
i

[S |
A
| f P i

/

Firers

lora
\Pi’é?gvt(

I
lons forp,

(57) Abstract: A level of abstraction is created between a set of physical processors and a set of virtual multiprocessors to form a
@\ virtualized data center. This virtualized data center comprises a set of virtual, isolated systems separated by a boundary referred as a
& partition. Bach of these systems appears as a unique, independent virtual multiprocessor computer capable of running a traditional
1) operating system and its applications. In one embodiment, the system implements this multi-layered abstraction via a group of
& microkernels, each of which communicates with one or more peer microkemel over a high-speed, low-latency interconnect and
& forms a distributed virtual machine monitor. Functionally, a virtual data center is provided, including the ability to take a collection
of servers and execute a collection of business applications over a compute fabric comprising commodity processors coupled by an
interconnect. Processor, memory and I/O are virtualized across this fabric, providing a single system, scalability and manageability.
According to one embodiment, this virtualization is transparent to the application, and therefore, applications may be scaled to

increasing resource demands without modifying the application.

WO 2005/020073 A2 I} H1I0 Y A08OH0 AT 0O 0 0 A AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

METHOD AND APPARATUS FOR PROVIDING VIRTUAL COMPUTING
SERVICES

Field of the Invention

The field of the invention relates generally to networked computing services, and more

specifically, to networked computer systems used to provide resources in a data center.

Background of the Related Art

Conventional datacenters include a complex mesh of N-tier applications. Each tier

typically includes multiple servers (nodes) that are dedicated to each application or application
portion. These nodes generally include one or more computer systems that execute an
application or portion thereof, and provide computing resources to clients. Some systems are
general purpose computers (e.g., a Pentium-based server system) having general purpose
operating systems (e.g., Microsoft Server 2003) while others are special-purpose systems (e.g.,
a network attached storage system, database server, etc.) that is specially developed for this
purpose using custom operating system(s) and hardware. Typically, these servers provide a
single function (e.g., file server, application server, backup server, etc.) to one or more client
computers coupled through a communication network (e.g., enterprise network, Internet,
combination of both).

Configurations of datacenter resources may be adjusted from time to time depending on
the changing requirements of the applications used, performance issues, reallocation of
resources, and other reasons. Configuration changes are performed, for example, by manually
reconfiguring servers, adding memory/storage, etc., and these changes generally involve a
reboot of affected computer systems and/or an interruption in the execution of the affected
application. There exist other techniques such as server farms with front-end load balancers
and grid-aware applications that allow the addition and deletion of resources, however, the
operating systems or applications on which they are supported must be specifically developed

to operate in such an environment.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, it is realized that the conventional

datacenter environment and associated systems are largely inflexible in many dimensions,

including resource allocation, usage and sharing. That is, resource allocation, usage and

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-2

sharing are directly impacted by physical server node boundaries. The result is that each
application is hosted on a set of dedicated, single function servers.

Also, it is realized that each of these types of servers is typically over-provisioned due
to the inflexibility of the environment. More particularly, each application component
executes on a server geared to more than the maximum workload the server will ever
experience from the application, resulting in rampant under-utilization of the computing
resources. For the majority of the time, the server experiences much less than its maximum
design workload. Also, it is realized that because resources in this environment are hard-
provisioned, the environment does not allow adequate flexibility in response to changing
business and customer needs. More particularly, as customer and business needs change,
expanding (or contracting) the server resources or applying excess resources where they are
needed is difficult, and generally requires time and effort on the part of an administrator to
reconfigure/upgrade the affected server system(s).

Conventional single-function server architecture leads to a multiplicity of servers in the
datacenter, each of which requires independent management and configuration. Further, the
single function server is a single point of failure in the system, and backup capabilities are not
easily placed into service without additional specialized hardware or software, or downtime
and effort on the part of an administrator.

Conventional application server farms usually provided with a server load balancer
generally require that each server not maintain state, and state must be persisted in networked
or shared storage (e.g., a database) such that independent server processes may share data.
Such applications require that the application be modified to store data to suit the persisted
architecture. There are other types of applications and operating systems that operate in a
cluster environment that are used to provide resources, but these conventional grid or cluster-
aware applications need to be modified or specially-developed to operate with multiple
processors in a coherent manner. This special development often requires the application or
operating system to be more complex as a result. Another common feature of server farms and
grid-aware applications and operating systems is that each of these environments involves
systems that execute (and therefore, require management of) separate instances of an operating
system on each server or grid or cluster member.

According to one aspect of the invention, an architecture is provided that allows an
administrator to more easily manage computing resources (e.g., in a data center). In one

embodiment, a virtualization layer is provided that allows operating systems (OSs) and their

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-3-

applications to be executed on a virtual server that spans more than one physical node.
Because, according to one embodiment, the virtualization layer isolates the OS and their
applications from the underlying physical nodes, resources may be managed without changes
at the application or operating system interface levels. This is beneficial, for example, as the
application or operating system need not be modified to function on multiple nodes (or types of
nodes) and therefore, the cost in developing a scalable application is decreased.

There are many application environments in which such an architecture may be used.
For instance, in a Java/J2EE programming environment that allows for rapid deployment of
applications, such a virtualization layer may be beneficial in decreasing the cost of developing
such applications. As is known, the Java/J2EE environment is an application execution
environment that allows applications formed of one or more “servlets” to be executed on the
server on behalf of the client over a communication network. Servlets interact with one
another through a set of Java/J2EE Application Programming Interfaces (APIs). The
J2EE/Java runtime environment may be executed as an application by a virtual server
according to various embodiments of the present invention, allowing applications developed in
this programming environment to be scalable without needing the applications or J2EE/Java
runtime programming to be aware of a clustered or grid-based environment where applications
are manually partitioned into groups of functions.

In a further example, specially-developed hardware/software systems may be replaced
by software-only application that is executed on a virtual server according to various
embodiments of the present invention. For instance, Network Attached Storage (NAS)
functions conventionally performed by customized hardware and software may be provided as
a software application executing on a virtual server. Conventionally, constructing clusters of
NAS devices that behave as a single system (having a single file system) requires complex
technology (e.g., a clustered file system that spans multiple NAS devices, or distributed that
either span multiple NAS devices or execute in a front-end switching device). By contrast, a
conventional file system program (e.g., UFS, EXT3, REISERFS via NFS,] CIFS protocols, for
instance) may be executed on a virtual server according to various embodiments of the present
invention to provide a single-system image and multi-system scalability with little to no
additional programming.

In another example, application servers may be constructed that are executed on a
virtual server according to various embodiments of the present invention. As discussed above,

in clustered OSes, each cluster node is required to execute a separate copy of the OS, and as a

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-4 -

result applications that execute on the cluster generally must be cluster-aware. In some
conventional clustered computing systems that support a single system image as typically
understood in the art, multiple instances of an operating system are clustered to create an
illusion of a single system to the application programmers. An application executed on a
virtual multiprocessor server according to various embodiments of the present invention
provides benefit of a single system and multiple server scalability, yet does not require the
additional effort in developing a cluster-aware operating system and cluster-aware application.
Further, because of the complexity in developing such applications, most of these applications
are stateless, requiring persistence of data to be shared by multiple processors through a
database system. Because a single system (and therefore a single OS) may be provided
according to various embodiments of the present invention, applications need not be stateless.
Also, as discussed above with respect to the Java/J2EE environment, multiple OS instances
need not be managed.

In another aspect of the invention, an administrator is provided a tool for managing a
virtual server that transparently includes one or more resources managed by the virtualization
layer. According to one embodiment, the virtualization layer includes a distributed virtual
machine monitor that provides a single system abstraction based upon coordinated, cooperating
systems.

According to another aspect of the invention, the virtual server spans one or more
nodes (e.g., servers), each of which may include one or more processors. To provision a new
application, an administrator creates (e.g., in a management console) a new virtual server,
transparently backed by data center resources. For instance, an administrator, in an interface of
a management console can map applications/OS to a virtual server. When additional resources
are needed for an application, the virtual server may be resized automatically (e.g.,
dynamically in real time). For instance, additional processing power (e.g., additional nodes
and/or processors) may be allocated to a particular virtual server, additional memory, storage,
or network capacity may be allocated to the virtual server.

One goal that may be realized by various aspects of the present invention is to create a
horizontally scalable software system that allows multiple processors coupled by one or more
interconnects to be easily partitioned into smaller systems, aggregated into larger systems,
easily managed and be transparent to existing operating systems (e.g., Linux, Windows NT,
Windows Server, etc.) and applications executing on these operating systems. For instance,

these processors may be commercially-available processors (e.g. IA-32, 1A-64, etc.) coupled

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-5-

by fast, low-latency interconnects such as, for example, InfiniBand, Ethernet, GigaNet, PCI-
Express, Gigabit Ethernet or any other interconnect type. In addition, interconnects may use
RDMA or other memory access techniques to reduce latency or improve throughput.
However, it should be appreciated that the invention is not limited to any particular processor,
interconnect, or memory access technique or architecture.

The virtual computing system may include a plurality of nodes having a variety of
system components and resources, and a management infrastructure that is used to manage the
virtual computing system. In particular, management functions relating to configuration and
performance of the virtual computing system components and resources are performed through
the management infrastructure. In one embodiment, a virtualization layer is provided that
allows operating systems (OSs) and their applications to be executed on a virtual server that
spans more than one physical node. One example of a virtual server system that may be
managed using various aspects of the invention is shown below in Figure 1.

Because, according to one embodiment, the virtualization layer isolates the OS and
their applications from the underlying physical nodes, resources may be managed without
changes at the application or OS interface levels. According to one aspect of the invention, an
administrator may manage a virtual server that transparently includes one or more resources
managed through the virtualization layer. According to one embodiment, the virtualization
layer includes a distributed virtual machine monitor that provides a siﬁgle system abstraction
based upon coordinated, cooperating systems and thereby controls access to physical resources
underlying the virtual server.

It is to be appreciated that for the purposes of this explanation, the term “node” refers to
a server platform that provides one or more processors, memory and /O interfaces that may be
used as resources in a virtual computer system. For example, an Intel-compatible server
platform (e.g., IA32, 1A64-based servers available from a variety of manufacturers) may be
used, the server having one or more physical processors. Although Intel-based servers may be
used, it should be appreciated that any processor based system may be used, and the invention
is not limited to any particular processor type.

One or more nodes can be virtually grouped together into a defined subset (referred to
hereinafter as a frame) to provide a distributed server. A distributed server is a pseudo-
machine that includes a set of one or more nodes and other resources. These other resources
may include, for example, virtual or physical storage, I/O, network or other entities that may be

used to support the distributed server. A frame may be defined that includes the set of one or

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-6-

more nodes and other resources coupled by an interconnect. The interconnect may allow
communication among the nodes and other resources.

In one embodiment, a distributed virtual machine monitor (DVMM) program forms a
one-to-one mapping to a distributed server. In one embodiment, the distributed virtual
machine monitor includes low level system software, a microkernel, which executes on each
node of the distributed server. In one embodiment, the distributed virtual machine monitor
may provide a cohesive environment that supports the OS. In particular, the distributed virtual
machine monitor may provide virtualization support and access to resources by OSs and their
applications.

According to one approach, the system provides a horizontal virtualization wherein
applications are distributed across virtual servers. In one example system, an application is
scaled horizontally across a virtual server, comprised of a set of virtual processors, each of
which is mapped to one or more physical nodes. From the perspective of the application, the
virtual server operates like a shared memory multi-processor, wherein tasks are executed by
one or more of the virtual processors, and the multiple portions operate in parallel. For
instance, using a set of physical nodes (e.g., servers) coupled through an interconnect, with
flexible partitioning and virtualization through advanced software, a horizontal virtualization
may be realized. The resulting system allows applications and operating systems to execute on
virtual servers, where each of these virtual servers spans a collection of physical servers.

A virtual system architecture according to one embodiment of the invention differs
from a conventional “grid” as applications need not be separated into separate function groups
to operate. Rather, according to one embodiment, applications may be executed unchanged,
because a single system is presented to the operating system and its applications. This
architecture also differs from traditional cluster environments in that a single copy of the OS
exists, whereas in a cluster environment, each cluster node executes a separate instance of the
OsS.

A virtual machine architecture may be presented to an operating system (OS). The OS
(e.g., Linux, Microsoft Windows Server, Windows XP, etc.) may be ported to run on a virtual
machine architecture (VMA) in much the same way that the OS can be ported to other
processor architectures (e.g., SPARC, MIPS, etc.). According to one aspect of the present
invention, the interface presented by the VMA is similar to a conventional machine

architecture (e.g., the well-known IA-32 and 1A-64 Intel architectures). However, it should be

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-7

appreciated that other architectures may be used, and the invention is not limited to any
particular architecture.

According to one aspect, the operating system (referred to herein as the guest operating
system or GOS) that ported to the VMA “sees” a single-system as presented by the VMA. The
VMA may present, for example, a multi-processor capable system to the GOS. Resources may
be virtualized through an abstraction layer (e.g., distributed virtual machine monitor (DVMM))
and accessed through the VMA.

According to another aspect of the present invention, the architecture performs a hybrid
virtualization of resources. In one embodiment, non-privileged instructions of the architecture
are executed natively on the underlying processor (e.g., a physical processor). Because such
instructions are executed natively by the physical processor, performance is increased. When
privileged registers or instructions are accessed, an abstraction layer (e.g., functions of a
distributed virtual machine monitor) may perform such access, providing isolation between the
operating system/application and the underlying hardware. In one example, privileged code is
replaced with calls into the distributed virtual machine monitor program.

Acclording to one aspect of the invention, a system is provided comprising a processor,
an operating system that accesses one or more virtual resources, and an abstraction layer that is
adapted to map the one or more virtual resources to one or more physical resources.

According to one embodiment, the one or more physical resources includes at least one of
input/output (I/0) devices, processors, interconnects and storage entities. According to another
embodiment, the operating system is adapted to generate a plurality of function calls, and the
abstraction layer is adapted to map the plurality of function calls into processor instructions to

be executed on a processor.

According to one embodiment, at least one of the operating system and a user program
is adapted to generate an exception, and wherein the abstraction layer is adapted to handle the
generated exception. According to another embodiment, the abstraction layer is adapted to
handle one or more traps generated by at least one of an operating system and a user program.
According to another embodiment, the operating system is adapted to generate a plurality of
function calls, and wherein the abstraction layer is adapted to rewrite the function calls as
processor instructions to be executed on a processor. According to one embodiment, the
abstraction layer is adapted to rewrite the plurality of function calls during execution of the

plurality of function calls.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-8-

According to one embodiment, the abstraction layer presents a virtual hardware
interface to the operating system. According to another embodiment, the abstraction layer
includes a microkernel that executes on a node. According to one embodiment, the node
includes one or more physical processors. According to another embodiment, the abstraction
layer presents an interface of a virtual processor to the operating system. According to one
embodiment, a plurality of virtual processors is grouped into a virtual system to present the
virtual hardware interface. According to another embodiment, the abstraction layer includes a
plurality of microkernels, at least one of which operates cooperatively to share resources of the
system and form a distributed virtual machine monitor.

According to another embodiment, the at least two of the plurality of microkernels
cooperate to present a logical address space to the operating system through a virtual hardware
interface. According to another embodiment, the distributed virtual machine monitor is
adapted to schedule a plurality of tasks as a plurality of respective threads executed by one or
more of the plurality of physical processors. According to another embodiment, the
distributed virtual machine monitor is adapted to schedule a plurality of processes as a plurality
of respective threads executed by one or more of the plurality of physical processors.
According to one embodiment, the plurality of threads share one or more objects via the

operating system.

According to one embodiment, the operating system executes on a virtual processor.
According to another embodiment, the system further comprises a plurality of nodes, and
wherein the processor is located in at least one of the plurality of nodes. According to another
embodiment, the abstraction layer defines a plurality of virtual processors, at least two of
which are mapped by the abstraction layer to at least two physical processors, respectively,

residing within a single node.

According to one embodiment, the abstraction layer comprises a plurality of
microkernels, at least two of which operate cooperatively as a cluster. According to another
embodiment, the system further comprises a node, and wherein the processor is located in the
node. According to another embodiment, a microkernel program is executed by the node.
According to another embodiment, the plurality of microkernels form a distributed virtual
machine monitor that presents a single hardware interface to the operating system. According
to one embodiment, the abstraction layer emulates a processor architecture. According to one

embodiment, the processor architecture is an architecture of a virtual processor. According to

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-9-

one embodiment, at least one of a plurality of function calls in the virtual processor
architecture are mapped to one or more physical processors.

- According to another embodiment, the operating system is adapted to execute on the
virtual processor. According to one embodiment, the abstraction léyer presents a single virtual
system to the operating system, and wherein the abstraction layer maps the virtual system onto
one or more of a plurality of physical processors. According to another embodiment, the
number of virtual processors is permitted to be at least one of less than or equal to a number of
physical processors in the system, and any number in relation to the number of physical

processors in the system.

According to one embodiment, the abstraction layer presents to the operating system
one or more virtual processors, wherein the one or more virtual processors are mapped onto a
plurality of physical processors. According to another embodiment, one or more of the
plurality of physical processors are hardware processors that reside within a node. According
to another embodiment, one or more virtual processors are associated with a virtual server, and
wherein the one or more virtual processors are mapped onto one or more physical processors
that reside within at least one of a group comprising a single node and different nodes.
According to one embodiment, at least one of the one or more virtual processors is associated
with a first virtual server, and another one of the one or more virtual processors is associated
with a second virtual server, and wherein the at least one of the virtual processors and the
another one of the one or more virtual processors are mapped to respective physical processors

that reside within a single node.

'According to another embodiment, the abstraction layer is adapted to define a virtual
server system comprising one or more virtual processors, and wherein the system further
comprises a hierarchical scheduling system that allows a plurality of virtual processors to be
shared among the plurality of physical processors. According to another embodiment, the
hierarchical scheduling system comprises a first and second scheduler, wherein the operating
system includes the first scheduler which schedules at least one task to be performed by the
virtual server system, and wherein the distributed virtual machine monitor includes the second
scheduler, the second scheduler being associated with the virtual server system and being
adapted to schedule the at least one task to be executed by at least one physical processor

associated with the virtual server.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-10-

According to another embodiment, the system comprises virtual memory shared among
the plurality of virtual processors. According to another embodiment, each of the plurality of
virtual processors is restricted to use a distributed memory that is mapped onto one or more
physical memory locations. According to another embodiment, the abstraction layer presents
to the operating system a virtual cache-coherent, non-uniform memory access (NUMA)
system. According to one embodiment, the virtual NUMA system comprises a set of virtual
processors executing on one or more physical nodes. According to another embodiment, the
virtual NUMA system provides access to basic I/O, memory and processor abstractions.
According to another embodiment, the abstraction layer presents to the operating system a
virtual cache-only memory architecture (COMA). According to another embodiment, the
virtual COMA system comprises a set of virtual processors executing on one or more physical
nodes. According to another embodiment, the virtual COMA system provides access to basic
/O, memory and processor abstractions. According to one embodiment, the abstraction layer
presents to the operating system a virtual uniform memory access (UMA) architecture.
According to one embodiment, the virtual UMA system comprises a set of virtual processors
executing on one or more physical nodes. According to another embodiment, the virtual

NUMA system provides access to basic I/O, memory and processor abstractions.

According to one embodiment, the distributed virtual machine monitor isolates the
operating system from one or more physical processors. According to another embodiment,
the distributed virtual machine monitor isolates the operating system from a shared virtual
memory system. According to another embodiment, at least two of the plurality of
microkernels are adapted to communicate using a synchronization protocol. According to
another embodiment, at least two of the plurality of microkernels communicate using a cache-
only distributed shared memory paging protocol. According to one embodiment, at least two
of the plurality of microkernels communicate using a function shipping protocol. According to
another embodiment, the function shipping protocol is an object-level function shipping

protocol.

According to one embodiment, at least two of the plurality of microkernels
communicate using a distributed shared memory protocol and/or a function shipping protocol.
According to one embodiment, the function shipping protocol is an object-level function
shipping protocol. According to one embodiment, at least two of the plurality of microkernels

share objects. According to one embodiment, at least two of the plurality of microkernels

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-11-

share pages. According to one embodiment, at least two of the plurality of microkernels share
objects and pages. According to another embodiment, the abstraction layer presents, to one or
more operating systems a plurality of virtual processors grouped into one or more virtual
multiprocessor systems. According to another embodiment, each of the one or more operating
systems are executed by a respective one of the one or more virtual multiprocessor systems.
According to another embodiment, the system is adapted to migrate physical processors among
the one or more virtual multiprocessor systems. According to another embodiment, the one or
more of virtual multiprocessor systems span one or more physical processors. According to
another embodiment, at least one virtual multiprocessor system may be configured to include
or exclude one or more virtual processors while the virtual multiprocessor system is in an
operating mode. According to another embodiment, the at least one memory address space is a
physical address space.

According to one aspect of the invention, a computer-readable medium is provided
having stored thereon a data structure comprising data mapping a virtual processor to one or
more physical processors. According to another aspect of the invention, the system comprises
a manager adapted to create an instance of a virtual server, and a resource allocated to the
instance of the virtual server, the virtual resource being associated with one or more actual
resources. According to one embodiment, the resource includes at least one virtual processor
being associated with one or more nodes. According to another embodiment, the virtual server
is associated with multiple virtual processors. According to another embodiment, the virtual
server presents a single system image while executing across the one or more nodes.

According to one embodiment, the one or more nodes are coupled by an interconnect.
According to another embodiment, the interconnect is InfiniBand. According to another
embodiment, the interconnect is PCI-Express. According to another embodiment, the
interconnect is GigaNet. According to another embodiment, the interconnect is Gigabit
Ethernet. According to one embodiment, the interconnect is 10 Gigabit Ethernet. According

to one embodiment, the interconnect uses RDMA.

According to one embodiment, the virtual server is adapted to execute an application on
the one or more nodes without modification. According to another embodiment, the manager
is adapted to perform a mapping between the virtual resource and the one or more actual
resources. According to another embodiment, the resource is a virtual network interface, and

the actual resource includes an actual network interface. According to another embodiment,

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-12-

the virtual resource is a virtual storage entity, and the actual resource includes an actual storage
device. According to one embodiment, the manager is adapted to perform a reallocation of the
virtual resource to another virtual server instance.

According to one embodiment, the system further comprises a distributed server that is
executed on the one or more nodes. According to another embodiment, the manager is adapted
to perform an association between the one or more actual resources and at least one of the
distributed server and virtual server. According to another embodiment, the system includes
one or more unallocated actual resources, and wherein the manager is adapted to perform an
association between the one or more unallocated resources and one or more respective
distributed servers or virtual servers. According to another embodiment, the virtual server is
associated with a first collection of resources, and wherein the manager is adapted to
disassociate the virtual server with the first collection of resources, and wherein the manager is
adapted to associate the virtual server with a second collection of resources. According to
another embodiment, the second collection of resources is presented to the virtual server by a
distributed server. According to another embodiment, the distributed server is executed on by

plurality of nodes.

According to one aspect of the invention, a computer system is provided comprising a
plurality of processors, and a virtualization layer adapted to define one or more virtual servers,
at least one of which presents a single computer system interface to an operating system, the
single computer system interface defining a plurality of instructions, wherein at least one of the
plurality of instructions is directly executed on at least one of the plurality of processors, and at
least one other of the plurality of instructions is handled by the virtualization layer. According
to one embodiment, the virtualization layer includes a microkernel that executes on at least one
processor. According to another embodiment, the at least one of the plurality of instructions is
a non-privileged instruction. According to another embodiment, the at least one other of the
plurality of instructions is a privileged instruction. According to another embodiment, the
virtualization layer includes code that handles a call to the privileged instruction. According to
another embodiment, the virtualization layer passes the non-privileged instruction to the at

least one of the plurality of processors without intervention.

According to another embodiment,the computer system further comprises a plurality of
resources, wherein each of the plurality of processors executes a respective instance of a

microkernel program, and wherein each of the respective instances of the microkernel pro gram

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-13 -

are adapted communicate to cooperatively share the plurality of resources of the computer
system. According to another embodiment, the virtual server includes one or more virtual
processors, wherein the virtualization layer is adapted to schedule tasks associated with at least
one of the one or more virtual processors as a thread that is executed on at least one of the
plurality of processors. According to another embodiment, the virtualization layer is adapted
to schedule a plurality of virtual processor tasks for execution substantially in parallel.
According to one embodiment, the computer system further comprises a plurality of
resources, wherein at least one of the one or more virtual servers includes at least two virtual
interfaces, both of which are adapted to send requests for access to the plurality of resources in
parallel. According to another embodiment, at least one of the at least two virtual interfaces
includes a virtual network interface. According to another embodiment, at least one of the at
least two virtual interfaces includes a virtual storage adapter. According to another
embodiment, the virtual storage adapter is a virtual host bus adapter (HBA). According to
another embodiment, the computer system further comprises at least one I/O server, wherein
the parallel access requests are serviced in parallel by the /O server. According to another
embodiment, the computer system further comprises at least one I/O device, wherein the

parallel access requests are serviced in parallel by the I/O device.

According to another embodiment, the parallel access requests are transmitted over a
switched communication network. According to another embodiment, the switched
communication network includes an InfiniBand switched fabric. According to another
embodiment, the parallel access requests are transmitted over a packet-based network.
According to another embodiment, the virtualization layer is adapted to map one or more
virtual resources to one or more physical resources. According to one embodiment, the one or
more physical resources includes at least one of input/output (I/0) devices, processors,

interconnects and storage entities.

Further features and advantages of the present invention as well as the structure and
operation of various embodiments of the present invention are described in detail below with
reference to the accompanying drawings. In the drawings, like reference numerals indicate
like or functionally similar elements. Additionally, the left-most one or two digits of a

reference numeral identifies the drawing in which the reference numeral first appears.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-14-

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings,

each identical or nearly identical component that is illustrated in various figures is represented
by a like numeral. For purposes of clarity, not every component may be labeled in every
drawing. In the drawings:

Figure 1 is a block diagram of a virtual server architecture according to one
embodiment of the present invention;

Figure 2 is a block diagram of a system for providing virtual services according to one
embodiment of the present invention;

Figure 3 is a block diagram showing a mapping relation between virtual processors and
physical nodes according to one embodiment of the present invention;

Figure 4 is a block diagram showing scheduling of virtual processor tasks according to
one embodiment of the present invention;

Figure 5 is a block diagram showing scheduling of virtual processor tasks in
accordance with another embodiment of the present invention;

Figure 6 is a block diagram showing an example memory mapping in a virtual server
system in accordance with another embodiment of the present invention;

Figure 7 is a block diagram showing an example execution level scheme in accordance
with another embodiment of the present invention; |

Figure 8 is a block diagram showing an example distributed virtual machine monitor
architecture in accordance with another embodiment of the present invention; and

Figure 9 is a block diagram showing an example system architecture upon which a
virtual computing system in accordance with another embodiment of the present invention may

be implemented. b

Detailed Description

According to one aspect, a horizontal virtualization architecture is provided wherein
applications are distributed across virtual servers. In one example system, an application is
scaled horizontally across at least one virtual server, comprised of a set of virtual processors,
each of which is mapped to one or more physical nodes. From the perspective of the
application, the virtual server operates like a shared memory multi-processor, wherein the same
portion of the application is located on one or more of the virtual processors, and the multiple

portions operate in parallel. The resulting system allows applications and operating systems to

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-15-

execute on virtual servers, where each of these virtual servers span a collection of physical
servers (or nodes) transparent to the applications and operating systems. That is, the virtual
server presents, to the operating system and application a single system where single instance
of an operating system runs. Such a system according to one embodiment is contrasted by
conventional clustered computing systems that support single system image as typically
understood in the art, in that multiple instances of an operating system are clustered to create
an illusion of a single system to the application programmers. Further, such a system
according to one embodiment is unlike conventional “grid” computing systems as typically
understood in the art, as no application modifications are required for the applications to
execute on the virtualization architecture.

Figure 1 shows one example system 101 that may be used to execute one or more data
center applications. System 101 may include one or more system layers providing layers of
abstraction between programming entities. As discussed above, a virtualization layer 104 is
provided that isolates applications on a guest operating system (GOS) operating in layers 102
and 103, respectively, from an underlying hardware layer 105. Such applications may be, for
example, any application program that may operate in a data center environment, For instance,
a database server application, web-based application, e-mail server, file server, or other
application that provides resources to other systems (e.g., systems 107A-107C) may be
executed on system 101. Such applications may communicate directly with virtualization layer
104 (e.g., in the case of a database server application, wherein the application is part of the
operating system) or may communicate indirectly through operating system layer 103.
Virtualization layer 104 in turn maps functions performed by one or more virtual processors to
functions performed by one or more physical entities in hardware layer 105. These entities
may be, for instance, physical nodes having one or more processors.

In one aspect, virtualization layer 104 presents, to application layer 102 and operating
system layer 103 a single system presented in the form of a virtual server. In one embodiment,
a single instance of an OS is executed by the virtual server. In particular, a distributed virtual
machine monitor creates a single system image, upon which a single instance of a virtual
server is executed. The virtual server acts as a single system, executing a single instance of the
OS. This architecture contrasts to conventional clustering systems where multiple OS entities
executing on multiple systems cooperate to present a single system (e.g., to an application
programmer that develops programs to be executed on a clustered OS). According to another

embodiment of the present invention, this virtual server includes one or more constructs similar

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-16 -

to a physical server (storage, memory, I/O, networking), but these constructs are virtual and are
mapped by virtualization layer 104 to one or more hardware entities.

Physical entities may communicate with each other over an interconnect (not shown)
for the purpose of sharing access to resources within hardware layer 105. For instance, a
distributed memory architecture may be used to allow hardware devices (e.g., nodes to share
other non-local memory. Other hardware entities (e.g., network, storage, I/O, etc.) may also be
shared by nodes through an interconnect.

System 101 may be coupled to one or more external communication networks (e.g.,
network 106) for the purpose of sharing resources with one or more systems (e.g., systems
107A-107C). System 101 may function as part of an overall computing system 100 to perform
one or more tasks. For instance, system 100 may function as a client-server, n-tiers, or other
type of architecture that executes one or more applications in a cooperative system. It should
be appreciated that system 100 may include any number and type of computing systems,
architecture, application, operating system or network, and the invention is not limited to any

particular one(s).

Example Architecture

Figure 2 shows an example architecture of a system 201 according to one embodiment
of the invention. System 201 includes an upper layer 202 including one or more operating
systems 207A-207C executed by one or more virtual servers 208A-208C, respectively.
According to one embodiment, virtual servers 208A-208C present, to their respective operating
systems 207A-207C, single system regardless of the number of hardware nodes (e.g., nodes
210A-210D) included in a particular virtual server.

Operating systems 207A-207C may be, for example, commodity operating systems that
may be ported to a Virtual Machine Architecture (VMA) presented by a distributed virtual
machine monitor. A virtual server may be an instance of an architecture presented by a
virtualization layer (e.g., layer 104). A virtual server may have a persistent identity and
defined set of resource requirements (e.g., storage, memory, and network) resource access
privileges, and/or resource limits.

Distributed virtual machine monitor (or DVMM) 203 provides an abstraction layer for
mapping resources presented by each virtual server to other upper layer 202 programs to
underlying hardware 204. In one embodiment, DVMM 203 includes one or more microkernel

209A-209E, each of which are pseudo-machines, each of which runs on a single node and

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-17-

manages the resources associated with that node. Each microkernel 209A-209E may include a
virtual memory which it manages, this memory space spanning one or more portions of
available physical memory associated with participating nodes.

Hardware layer 204 may include, for example, one or more nodes 210A-210E coupled
by a network 211. These nodes may be, for example, general-purpose processing systems
having one or more physical processors upon which tasks are performed.

According to one embodiment, an organizational concept of a frame may be defined,
the frame identifying a set of nodes and other hardware entities that may be used to operate as
an organizational unit. Elements within the frame may be capable of communicating between
each other over a network 211. In one example, network 211 may include a low-latency high-
bandwidth communication facility (e.g., InfiniBand, PCI-Express, GigiNet, Ethernet, Gigabit
Ethernet, 10 Gigabit Ethernet, etc.). Network 211 may also include one or more elements (e.g.,
switching or routing elements) that create an interconnected frame.

In one embodiment, nodes (e.g., nodes 210A-210E) are restricted to participating in one
and only one frame. A defined frame and its associated hardware may be associated with a
distributed server, and the entities of that frame may perform the physical operations associated
with that virtual distributed server.

In one embodiment, a distributed server is a collection of software and hardware
components. For example, hardware components may include commodity servers coupled to
form a cluster. Software associated with each distributed server runs on this cluster and
presents a multi-processor system architecture two upper layers, defining a virtual server that is
capable of hosting a guest operating system (GOS). Components of a distributed server may
include a distributed virtual machine monitor program, interconnects, processors, memory, I/O
devices and software and protocols used to bind them. A guest operating system (GOS), such
as, for example, UNIX (e.g., Linux, SUSE, etc.), Microsoft Windows Server, or other
operating system executes upon the virtual server. In one embodiment, the guest operating
system operates as if it was running on a non-cluster multi-processor system having coherent
shared memory.

System 201 may also include a manager 212 that manages the configuration of system
201. Manager 212 may include an associated management database 213 that stores
information relating to the configuration of system 201. Manager 212 may also communicate
with a management agent (not shown) executed by one or more virtual servers of system 201

for the purpose of performing configuration changes, monitoring performance, and performing

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-18 -

other administrative functions associated with system 201. The following section discusses an
example management architecture for managing a virtual computing architecture, and various
advantages of a scalable virtual computing system according to various embodiments of the

present invention.

Management Architecture

As discussed above, the virtualization architecture allows for an expansion (or a
contraction) of resources used by an executing virtual computing system. Such expansion or
contraction may be needed from time to time as customer and business needs change. Also,
applications or the operating systems themselves may need additional (or less) resources as
their requirements change (e.g., performance, loading, etc.). To this end, a capability may be
provided for changing the amount and allocation of resources, both actual and virtual, to the
virtual computing system. More specifically, additional resources (e.g., nodes, network,
storage, /O, etc.) may be allocated (or deallocated) in real time to a frame and these resources
may then be used (or not used) by a distributed server. Similarly, virtualized resources (e.g.,
virtual processors, virtual I/0, virtual networking, etc.) as well as physical resources may be
allocated or deallocated to a virtual server. In this manner, the virtual computing system may
be scaled up/scaled down as necessary.

The ability for allocating or deallocating resources may be provided using, for example,
manager 212 and one or more management agents. Such a system is described with more
particularity in the co-pending U.S. patent application filed April 26, 2004 entitled “METHOD
AND APPARATUS FOR MANAGING VIRTUAL SERVERS” under Attorney Docket
Number K2000-700100, which is incorporated by reference in its entirety.

According to one aspect of the present invention, a management capability is provided
for a virtual computing platform. This platform allows scale up and scale down of virtual
computing systems, and such a management capability provides for control of such scale up
and scale down functions. For instance, a capability is provided to allocate and/or deallocate
resources (e.g., processing, memory, networking, storage, etc.) to a virtual computing system.
Such control may be provide, for example, to an administrator through an interface (e.g., via a
CLI or GUI) or to other programs (e.g., via a programmatic interface).

According to one aspect of the present invention, an interface is provided that allows

for the addition or removal of resources during the execution of a virtual computing system.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-19-

Because resource allocation may be changed without restarting the virtual computing system, a
flexible tool is provided for administrators and programs for administering computing
resources.

In the case where such a virtual computing system is provided in a datacenter, an
administrator may be capable of provisioning resources in real time to support executing
virtual servers. Conventionally, data center server resources are hard-provisioned, and
typically require interruption of server operation for resources to be changed (e.g., change in
memory, network, or storage devices).

According to one embodiment of the present invention, a virtual computing system is
provided that allows a network administrator to provision computing resources in real-time
(“on-the-fly”) without a restart of a virtual computing system. For instance, the administrator
may be presented an interface through which resources may be allocated to a virtual server
(e.g., one that emulates a virtual multiprocessor computer). The interface may display a
representation of an allocation of physical resources and mapping to virtual resources used by a
virtual server. For example, the interface may provide an ability to map virtual servers to sets
of physical resources, such as a virtual processor that is mapped to a physical processor.

According to another embodiment, a capability is provided to allocate and/or deallocate
resources (e.g., processing, memory, networking, storage, etc.) to a virtual computing system.
Such control may be provide, for example, to an administrator through an interface (e.g., viaa
CLI, or GUI) or to other programs (e.g., via a programmatic interface). According to another
embodiment, an interface is provided that allows for the addition or removal of resources
during the execution of a virtual computing system. Because resource allocation may be
changed without restarting the virtual computing system, a flexible tool is provided for
administrators and programs for administering computing resources. This tool permits an
administrator to grow or shrink the capabilities of a virtual server system graphically or
programmatically.

For instance, the administrator may be presented an interface through which resources
may be allocated to a virtual server (e.g., one that emulates a virtual multiprocessor computer).
The interface may display a representation of an allocation of physical resources and mapping
to virtual resources used by a virtual server. For example, the interface may provide an ability
to map virtual servers to sets of physical resources, such as a virtual processor that is mapped
to a physical processor. In one embodiment, a virtual server can span a collections of a

physical nodes coupled by an interconnect. This capability allows, for example, an arbitrarily-

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-20 -

sized virtual multiprocessor system (e.g., SMP, Numa, ASMP, etc.) to be created.

Such capabilities may be facilitated by a management agent and server program that
collectively cooperates to control configuration of the virtual and distributed servers.
According to one embodiment, the management server writes information to a data store to
indicate how each node should be configured into virtual and distributed servers. Each
management agent may then read the data store to determine its node's configuration. The
configuration may be, for example, pushed to a particular management agent, pulled from the
management server by the management agent, or a combination of both techniques. The
management agent may pass this information to its distributed virtual machine monitor
program which uses the information to determine the other nodes in its distributed server with
whom it is tasked to cooperatively execute a set of virtual servers.

An administrator or other program may, using one or more interfaces (e.g., UL CLI,
programmatic, etc.) to allocate or deallocate resources to virtual servers or distributed servers.
More particularly, the interface may allow an administrator or program to associate a hardware
resource (e.g., an I/O device, network interface, node having one or more physical processors,
etc.) to a distributed server of a frame. As discussed further below with reference to Figure 3,
a frame (e.g., frame 302A, 302B) may define a partitioned set of hardware resources, each of
which sets may form multiple distributed servers, each of which sets may be associated with
one or more virtual servers. Alternatively, a hardware resource may be allocated directly to a

virtual server.

A hardware device may be unassigned to a particular distributed server within a frame
in which the hardware device is coupled, for example, during initial creation of the distributed
server (e.g., with unassigned resources), by adding new hardware to the frame, or by virtue of
having previously unassigning the hardware resource to a distributed server or virtual server.
Such unassigned resources may be, for example, grouped into a “pool” of unassigned resources
and presented to an administrator or program as being available for assignment. Once
assigned, the virtual computing system may maintain a representation of the assignment (or
association) in a data structure (e.g., in the data store described above) that relates the hardware
resource to a particular distributed server or virtual server.

Once an actual resource (e.g., hardware) is assigned, virtual resources associated with
the hardware resource may be defined and allocated to virtual servers. For instance, one or

more VNICs (virtual network interface cards) may be defined that can be backed by one or

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-21-

more actual network interface devices. Also, a new node may be assigned to a partition upon
which a virtual server is executed, and any CPUs of the newly-assigned nodes may be assigned
as additional virtual processors (V Ps) to the virtual server.

In one example, the management server may use an object model to manage
components (e.g., resources, both physical and virtual) of the system. Manageable objects and
object collections may be defined along with their associations to other manageable objects.
These objects may be stored in a data structure and shared with other management servers,
agents, or other software entities. The management architecture may implement a locking
mechanism that allows orderly access to configurations and configuration changes among

multiple entities (administrators, programs, etc.).

According to one embodiment, a management agent at each node interacts with the
distributed virtual machine monitor program and with outside entities, such as, for example, a
management server and a data store. In one example, the management server provides
command and control information for one or more virtual server systems. The management
agent acts as the distributed virtual machine monitor program tool to communicate with the
management server, and implement the actions requested by the management server. In one
example, the management agent is a distributed virtual machine monitor user process.
According to another embodiment, the data store maintains and provides configuration
information upon demand. The data store may reside on the same or different node as the
management server, or may be distributed among multiple nodes.

The management agent may exist within a constrained execution environment, such
that the management agent is isolated from both other virtual server processes as well as the
distributed virtual machine monitor program. That is, the management agent may not be in the
same processor protection level as the rest of the distributed virtual machine monitor program.
Alternatively, the management agent may operate at the same level as the distributed virtual
machine monitor program or may form an integral part of the distributed virtual machine
monitor program. In one embodiment, the management agent may be responsible for a number
of tasks, including configuration management of the system, virtual server management,
logging, parameter management, and event and alarm propagation.

According to one embodiment, the distributed virtual machine monitor management
agent may be executed as a user process (e.g., an application on the virtual server), and

therefore may be scheduled to be executed on one or more physical processors is similar to an

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-22-

application. Alternatively, the management agent may be executed as an overhead process at a
different priority than an application. However, it should be appreciated that the management
agent may be executed at any level of a virtual computing system hierarchy and at any
protection or priority level.

According to one embodiment, interactions between the management agent and the
management server may be categorized as either command or status interactions. According to
one embodiment, commands originate with the management server and are sent to the
management agent. Commands include, but are not limited to, distributed server operations,
instructions to add or remove a node, processor, memory and/or I/O device, instructions to
define or delete one or more virtual servers, a node configuration request, virtual server
operations, status and logging instructions, heartbeat messages, alert messages, and other
miscellaneous operations. These commands or status interactions may be transmitted, for
example, using one or more communication protocols (e.g., TCP, UDP, IP or others). It should
be appreciated that the virtual computing platform may be managed using a different
architecture, protocols, or methods, and it should be understood that the invention is not

limited to any particular management architecture, protocols, or methods.

Mapping of Virtual Servers

Figure 3 shows in more detail an example mapping of one or more virtual servers to a
grouping of hardware referred to hereinafter as a partition according to one embodiment of the
invention. A collection of one or more virtual processors is arranged in a set. In one
embodiment, a virtual server (VS) may be viewed as a simple representation of a complete
computer system. A VS, for example, may be implemented as a series of application
programming interfaces (APIs). An operating system is executed on a virtual server, and a
distributed virtual machine monitor may manage the mapping of VPs onto a set of physical
processors. A virtual server (e.g., VS 301A-301E) may include one or more VPs (e.g., 303A-
303C), and the number of VPs in a particular VS may be any number.

Hardware nodes and their associated resources are grouped together into a set referred
to herein as a frame. According to one embodiment, a virtual server is associated with a single
frame, and more than one virtual server may be serviced by a frame. In the physical realm,
nodes (e.g., nodes 304A-304C) may be associated with a particular frame (e.g., frame 302A).
In one example, a frame (e.g., frame 3024, 302B) may define a partitioned set of hardware

resources, each of which sets may form multiple distributed servers, each of which sets may be

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-23-

associated with one or more virtual servers. In one embodiment, virtual processors are mapped
to physical processors by the distributed virtual machine monitor. In one embodiment, there
may be a one-to-one correspondence between virtual processors and physical processors.
Nodes within a frame may include one or more physical processors upon which virtual
processor tasks may be scheduled. Although several example mappings are shown, it should
be appreciated that the invention is not limited to the shown mappings. Rather, any mapping
may be provided that associates a virtual server to a frame.

However, there may be configurations that are not allowed for reasons having to do
with security, performance, or other reasons. For instance, according to one embodiment,
mapping of a virtual server to more than one frame may not be permitted (e.g., nodes outside
of a frame are not connected to the internal frame interconnect). Other configurations may not
be permitted based on one or more rules. For instance, in one example, a physical processor
may not be permitted to be allocated to more than one distributed server. Also, the number of
active physical processors in use may not be permitted to be less than the number of virtual
processors in the virtual processing system. Other restriction rules may be defined alone or in

combination with other restriction rules.

Scheduling
Figure 4 shows an example scheduling relation between virtual processors and physical

processors according to one embodiment of the invention. As shown, virtual server 401
includes two virtual processors VP 403A-403B. Each of these VPs are mapped to nodes
404A-404B, respectively in frame 402. Node 404A may include one processor 405A upon
which a task associated with VP 403A may be scheduled.

There may be a scheduler within the distributed virtual machine monitor that handles
virtual processor scheduling. In one example, each virtual processor is mapped to one process
or task. The scheduler may maintain a hard affinity of each scheduled process (a VP) to a real
physical processor within a node. According to one embodiment, the distributed virtual
machine monitor may execute one task per virtual processor corresponding to its main thread
of control. Tasks in the same virtual server may be simultaneously scheduled for execution.

Figure 5 shows a more detailed example showing how virtual server processes may be
scheduled according to one embodiment of the present invention. In the example, there are
four virtual servers, VS1 (item 501), VS2 (item 502), VS3 (item 504), and V4 (item 505)

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-24 -

defined in the system. These virtual servers have one or more virtual processors (VPs)
associated with them.

These four virtual processors are mapped to two nodes, each of which nodes includes
two physical processors, P1-P4. The distributed virtual machine monitor maps each virtual
server to an individual process. Each virtual processor (VP) within a virtual server is a thread
within this process. These threads may be, for example, bound via hard affinity to a specific
physical processor. To the distributed virtual machine monitor, each of the virtual servers
appears as a process running at a non-privileged level. Each of the individual virtual
processors included in a virtual server process are component threads of this process and may
be scheduled to run on a separate, specific physical processor.

With the example configuration having two dual processor nodes (four physical
processors total), in one embodiment of the invention there may be up to a maximum of four
VPs created in any virtual server. Also, with a total number of eight VPs, there are eight
threads. As shown in Figure 5, the distributed virtual machine monitor may run each virtual
server process at approximately the same time (e.g., for performance reasons as related
processes running at different times may cause delays and/or issues relating to
synchronization). That is, the VS4 processes are scheduled in one time slot, VS3 processes in
the next, and so forth. There may be “empty” processing slots in which management functions
may be performed or other overhead processes. Alternatively, the scheduler may rearrange
tasks executed in processor slots to minimize the number of empty processor slots.

Further, the scheduler may allow for processors of different types and/or different
processing speeds to perform virtual server tasks associated with a single virtual server. This
capability allows, for example, servers having different processing capabilities to be included
in a frame, and therefore is more flexible in that an administrator can use disparate systems to
construct a virtual computing platform. Connections between different processor types are
facilitated, according to one embodiment, by not requiring synchronous clocks between

processors.

Memory
Figure 6 shows a block diagram of a memory mapping in a virtual computer system

according to one embodiment of the invention. In general, the distributed virtual machine
monitor may make memory associated with hardware nodes available to the guest operating
system (GOS) and its applications. The distributed virtual machine monitor (DVMM), through

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-25-

a virtual machine architecture interface (hereinafier referred to as the VMA), offers access to a
logical memory defined by the distributed virtual machine monitor and makes available this
memory to the operating system and its applications.

According to one embodiment, memory is administered and accessed through a
distributed memory manager (DMM) subsystem within the distributed virtual machine
monitor. Memory may, therefore, reside on more than one node and may be made available to
all members of a particular virtual server. However, this does not necessarily mean that all
memory is distributed, but rather, the distributed virtual machine monitor may ensure that local
memory of a physical node is used to perform processing associated on that node. In this way,
local memory to the node is used when available, thereby increasing processing performance.
One or more “hint” bits may be used to specify when local memory should be used, so that
upper layers (e.g., virtual layers) can signal to lower layers when memory performance is
critical.

Referring to Figure 6 and describing from left to right, a node’s physical memory 601
may be arranged as shown in Figure 6, where a portion of the node’s physical memory is
allocated to virtual memory 602 of the distributed virtual machine monitor memory. As
shown, distributed memory associated with the node may be part of a larger distributed
memory 603 available to each distributed server. Collectively, the distributed memories of
each node associated with the distributed server may be made available to a virtual server as
logical memory 604 and to the operating system (GOS), as if it were a physical memory.
Memory 604 is then made available (as process virtual memory 605) to applications.

GOS page table manipulation may, for example, be performed by the distributed virtual
machine monitor in response to GOS requests. Because, according to one embodiment, the
GOS is not permitted direct access to page tables to ensure isolation between different virtual
servers, the distributed virtual machine monitor may be configured to perform page table
manipulation. The distributed virtual machine monitor may handle all page faults and may be
responsible for virtual address spaces on each virtual server. In particular, the DMNI
subsystem of the distributed virtual machine monitor (DVMM) may perform operations on
page tables directly.

Memory operations that may be presented to the operating system through the virtual
machine architecture (VMA). According to one embodiment of the present invention, the
VMA may include memory operations that are similar in function to that of conventional

architecture types (e.g., Intel). In this manner, the amount of effort needed to port a GOS to

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-26 -

the VMA is minimized. However, it should be appreciated that other architecture types may
be used.

In the case where the architecture is an Intel-based architecture, memory operations that
may be presented include management of physical and logical pages, management of virtual
address spaces, modification of page table entries, control and modification of base registers,
management of segment descriptors, and management of base structures (e.g., GDT (global
descriptor table), LDT (local descriptor table), TSS (task save state) and IDT (interrupt
dispatch table)).

According to one embodiment, access to such memory information may be isolated.
For instance, access to hardware tables such as the GDT, LDT, and TSS may be managed by
the VMA. More particularly, the VMA may maintain copies of these tables for a particular
virtual server (providing isolation), and may broker requests and data changes, ensuring that
such requests and changes are valid (providing additional isolation). The VMA may provide
as a service to the GOS access to instructions and registers that should not be accessed at a
privileged level. This service may be performed by the VMA, for example, by a function call
or by transferring data in a mapped information page.

It can be appreciated that although the VMA may expose logical memory to the GOS,
actual operations may be performed on memory located in one or more physical nodes.
Mapping from virtual to logical memory may be performed by the VMA. For instance, a
virtual address space (or VAS) may be defined that represents a virtual memory to logical
memory mapping for a range of virtual addresses.

Logical memory may be managed by the GOS, and may be allocated and released as
needed. More particularly, the GOS may request (e.g., from the VMA) for an address space to
be created (or destroyed) through the VMA, and the DMM subsystem of the DVMM may
perform the necessary underlying memory function. Similarly, the VMA may include
functions for mapping virtual addresses to logical addresses, performing swapping, perform

mapping queries, efc.

Remote Direct Memory Access (RDMA) techniques may also be used among the nodes
to speed memory access among the nodes. Remote Direct Memory Access (RDMA) is a well-
known network interface card (NIC) feature that lets one computer directly place information
into the memory of another computer. The technology reduces latency by minimizing

demands on bandwidth and processing overhead.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-27.

Input/Qutput
Regarding I/O, the VMA may provide isolation between the GOS and distributed

virtual machine monitor. According to one embodiment of the present invention, the VMA
functions as a thin conduit positioned between the GOS and a DVMM I/O subsystem, thereby
providing isolation. In one embodiment, the GOS is not aware of the underlying hardware I/O
devices and systems used to support the GOS. Because of this, physical I/0 devices may be
shared among more than one virtual server.

In one implementation, GOS drivers associated with I/O may be modified to interface
with the VMA., Because the size of the distributed virtual machine monitor should, according
to one embodiment, be minimized, drivers and changes may be made in the GOS, as there is
generally more flexibility in changing drivers and configuration in the GOS than the
distributed virtual machine monitor.

I/O functions that may be performed by the distributed virtual machine monitor in
support of the GOS may include I/O device configuration and discovery, initiation (for both
data movement and control), and completion. Of these types, there may be varying /O
requests and operations specific to each type of device, and therefore, there may be one or
more I/O function codes that specify the functions to be performed, along with a particular
indication identifying the type of device upon which the function is performed. /O support in
the VMA may act as a pipe that channels requests and results between the GOS and underlying
distributed virtual machine monitor subsystem.

/O devices that may be shared include, for example, FibreChannel, InfiniBand and
Ethernet. In hardware, I/O requests may be sent to intelligent controllers (referred to
hereinafter as I/0 controllers) over multiple paths (referred to as multipathing). I/O controllers
service the requests by routing the request to virtual or actual hardware that performs the /O
request possibly simultaneously on multiple nodes (referred to as multi-initiation), and returns
status or other information to the distributed virtual machine monitor.

In one example I/O subsystem, the distributed virtual machine monitor maintains a
device map that is used to inform the GOS of devices present and a typing scheme to allow
access to the devices. This I/O map may be an emulation of a bus type similar to that of a
conventional bus type, such as a PCI bus. The GOS is adapted to identify the device types and

load the appropriate drivers for these device types. Drivers pass specific requests through the

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-28 -

VMA interface, which directs these requests (and their responses) to the appropriate distributed
virtual machine monitor drivers.

The VMA configuration map may include, for example, information that allows
association of a device to perform an operation. This information may be, for example, an
index/type/key information group that identifies the index of the device, the device type, and
the key or instance of the device. This information may allow the GOS to identify the I/O
devices and load the proper drivers.

Once the GOS has determined the I/O configuration and loaded the proper drivers, the
GOS is capable of performing 1/O to the device. /O initiation may involve the use of the
VMA to deliver an I/O request to tﬁe appropriate drivers and software within the distributed
virtual machine monitor. This may be performed, for example, by performing a call on the
VMA to perform an I/O operation, for a specific device type, with the request having device-
specific codes and information. The distributed virtual machine monitor may track which I/O
requests have originated with a particular virtual server and GOS. I/O commands may be, for
example, command/response based or may be performed by direct CSR (command status
register) manipulation. Queues may be used between the GOS and distributed virtual machine
monitor to decouple hardware from virtual servers and allow virtual servers to share hardware
I/0 resources.

According to one embodiment of the present invention, GOS drivers are virtual port
drivers, presenting abstracted services including, for example, send packet/get packets
functions, and write buffer/read buffer functions. In one example, the GOS does not have
direct access to I/O registers. Higher level GOS drivers, such as class drivers, filter drivers and
file systems utilize these virtual ports.

In one embodiment of the present invention, three different virtual port drivers are
provided to support GOS /O functions: console, network and storage. These drivers may be,
for example, coded into a VMA packet/buffer interface, and may be new drivers associated
with the GOS. Although a new driver may be created for the GOS, above the new driver the
GOS kernel does not access these so called “pass-through” virtual port drivers and regular
physical device drivers as in conventional systems. Therefore, virtual port drivers may be
utilized within a context of a virtual system to provide additional abstraction between the GOS
and underlying hardware.

According to another embodiment, the use of virtual port drivers may be restricted to

low-level drivers in the GOS, allowing mid-level drivers to be used as is (e.g., SCSI multi-path

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-29 -

drivers). With respect to the I/O bus map, virtual port drivers are provided that present
abstracted bardware vs. real hardware, allowing the system (e.g., the distributed virtual
machine monitor) to change the physical system without changing the bus map. Therefore, the
/O bus map has abstraction as the map represents devices in an abstract sense, but does not
represent the physical location of the devices. For example, in a conventional PC having a PCI
bus and PCI bus map, if a board in the PC is moved, the PCI map will be different. In one
embodiment of the present invention, a system is provided wherein if the location of a physical
device changes, the I/O map presented to higher layers (e.g., application, GOS) does not
change. This allows, for example, hardware devices/resources to be removed, replaced,
upgraded, etc., as the GOS does not experience a change in “virtual” hardware with an

associated change in actual hardware.

Example /0 Function

The following is an example of an I/O function performed in a virtual server as
requested by a GOS (e.g., Linux). The I/O function in the example is initially requested of the
Guest Operating System. For instance, a POSIX-compliant library call may invoke a system
service that requests an I/O operation. '

The I/O operation passes through a number of layers including, but not limited to:

* Common GOS I/O processing. A number of common steps might occur including request
aggregation, performance enhancements and other I/O preprocessing functions. The request
may be then passed to a first driver level referred to as an “Upper Level” driver.

* “Upper Level” drivers that are not in direct hardware contact, but provide support

for a particular class of devices. The request is further processed here and passed

on to Lower Level drivers.

* “ Lower Level” drivers are in direct hardware contact. These drivers are specific to a virtual
server and are modified to work in direct contact with the VMA /O interface as discussed
above. These drivers process the request and pass the request to the VMA 1/0 component as if
the /O component was a specific hardware interface.

* The VMA T/O component routes the request to the proper distributed virtual machine monitor
(DVMM) drivers for processing.

* The DVMM I/O layer now has the request and processes the request as needed. In this

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-30 -

example, a set of cooperating drivers moves the request onto network drivers (e.g., InfiniBand
drivers) and out onto the hardware.

In a virtual server according to one embodiment, all processors may initiate and
complete /O operations concurrently. All processors are also capable of using multipath /O
to direct I/O requests to the proper destinations, and in turn each physical node can initiate its
own I/O requests. Further, the network (e.g., an interconnect implementing InfiniBand) may
offer storage devices (e.g., via FibreChannel) and networking services (e.g., via IP) over the
network connection (e.g., an InfiniBand connection). This set of capabilities provides the
distributed virtual machine monitor, and therefore, virtual servers, with a very high
performance I/O system. An example architecture that shows some of these concepts is

discussed further below with reference to Figure 9.

Interrupts and Exceptions

Other interfaces to the GOS may also provide additional isolation. According to one
aspect of the present invention, interrupts and exceptions may be isolated between the GOS
and distributed virtual machine monitor (DVMM). More particularly, interrupts and
exceptions may be handled, for example, by an interface component of the VMA that isolates
the GOS from underlying interrupt and exception support performed in the DVMM. This
interface component may be responsible for correlation and propagation of interrupts,
exceptions, faults, traps, and abort signals to the DVMM. A GOS may be allowed, through the
VMA interface, to set up a dispatch vector table, enable or disable specific event, or change the
handler for specific events.

According to one embodiment, a GOS may be presented a typical interface paradigm
for interrupt and exception handling. In the case of an Intel-based interface, an interrupt
dispatch table (IDT) may be used to communicate between the GOS and the DVMM. In
particular, an IDT allows the distributed virtual machine monitor to dispatch events of interest
to a specific GOS executing on a specific virtual server. A GOS is permitted to change table
entries by registering a new table or by changing entries in an existing table. To preserve
isolation and security, individual vectors within the IDT may remain writeable only by the
distributed virtual machine monitor, and tables and information received from the GOS are not
directly writable. In one example, all interrupts and exceptions are processed initially by the

distributed virtual machine monitor.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-31-

As discussed above, a virtual machine architecture (VMA) may be defined that is
presented as an abstraction layer to the GOS. Any OS (e.g., Linux, Windows, Solaris, etc.)
may be ported to run on a VMA in the same manner as would be performed when porting the
OS to any other architecture (e.g., Alpha, Intel, MIPS, SPARC, etc.). According to one aspect
of the present invention, the VMA presented to the GOS may be similar to an Intel-based
architecture such as, for example, IA-32 or IA-64.

In an example VMA architecture, non-privileged instructions may be executed natively
on an underlying hardware processor, without intervention. In instances when privileged
registers or instructions must be accessed, the distributed virtual machine monitor may

intervene. For examples, in cases where there are direct calls from the operating system, trap

code in the VMA may be configured to handle these calls. In the case of exceptions

(unexpected operations) such as device interrupts, instruction traps, page faults or access to a
privileged instruction or register may cause an exception. In one example, the distributed
virtual machine monitor may handle all exceptions, and may deliver these exceptions to the
GOS via a VMA or may be handled by the VMA.

Execution Privilege Levels

Figure 7 shows an execution architecture 700 according to one aspect of the invention.
In particular, architecture 700 includes a number of processor privilege levels at which various
processes may be executed. In particular, there is defined a user mode level 705 having a
privilege level of three (3) at which user mode programs (e.g., applications) are executed. At
this level, GOS user processes 701 associated with one or more application programs are
executed. Depending on the access type requested, user processes 701 may be capable of

accessing one or more privilege levels as discussed further below.

There may also be a supervisor mode 706 that corresponds to a privilege level one €))
at which the GOS kernel (item 702) may be executed. In general, neither the GOS nor user
processes are provided access to the physical processor directly, except when executing non-
privileged instructions 709. In accordance with one embodiment, non-privileged instructions
are executed directly on the hardware (e.g., a physical processor 704 within a node). This is
advantageous for performance reasons, as there is less overhead processing in handling normal
operating functions that may be more efficiently processed directly by hardware. By contrast,

privileged instructions may be processed through the distributed virtual machine monitor (e.g.,

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-32-

DVMM 703) prior to being serviced by any hardware. In one embodiment, only the DVMM is
permitted to run at privilege level 0 (kernel mode) on the actual hardware. Virtual server
isolation implies that the GOS cannot have uncontrolled access to any hardware features (such
as CPU control registers) nor to certain low-level data structures (such as, for example, paging

directories/tables and interrupt vectors).

In the case where the hardware is the Intel IA-32 architecture, there are four processor
privilege levels. Therefore, the GOS (e.g., Linux) may execute at a level higher than kernel
mode (as the distributed virtual machine monitor, according to one embodiment, is only
permitted to operate in kernel mode). In one embodiment, the GOS kernel may be executed in
supervisor mode (privilege level 1) to take advantage of IA-32 memory protection hardware to
prevent applications from accessing pages meant only for the GOS kernel. The GOS kernel
may “call down” into the distributed virtual machine monitor to perform privileged operations
(that could affect other virtual servers sharing the same hardware), but the distributed virtual
machine monitor should verify that the requested operation does not compromise isolation of
virtual servers. In one embodiment of the present invention, processor privilege levels may be
implemented such that applications, the GOS and distributed virtual machine monitor are

protected from each other as they reside in separate processor privilege levels.

Although the example shown in Figure 7 has four privilege levels, it should be
appreciated that any number of privilege levels may be used. For instance, there are some
architecture types that have two processor privilege levels, and in this case, the distributed
virtual machine monitor may be configured to operate in the supervisor mode (privilege level
(or ring) 0) and the user programs and operating system may be executed at the lower privilege
level (e.g., level 1). It should be appreciated that other privilege scenarios may be used, and

the invention is not limited to any particular scenario.

Example Distributed Virtual Machine Monitor Architecture

Figure 8 shows an example of a DVMM architecture according to one embodiment of
the present invention. As discussed above, the DVMM is a collection of software that handles
the mapping of resources from the physical realm to the virtual realm. Each hardware node
(e.g., a physical processor associated with a node) executes a low-level system software that is

a part of the DVMM, a microkernel, and a collection of these instances executing on a number

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-33.

of physical processors form a shared-resource cluster. As discussed above, each collection of
cooperating (and communicating) microkernels is a distributed server. There is a one-~to-one
mapping of a distributed server to a distributed virtual machine monitor (DVMM). The
DVMM, according to one embodiment, is as thin a layer as possible.

Figure 8 shows a DVMM architecture 800 according to one embodiment of the present
invention. DVMM 800 executes tasks associated with one or more instances of a virtual server
(e.g., virtual server instances 801A-801B). Each of the virtual server instances store an
execution state of the server. For instance, each of the virtual servers 801A-801B store one or
more virtual registers 802A-802B, respectively, that correspond to a register states within each

respective virtual server.

DVMM 800 also stores, for each of the virtual servers, virtual server states (e.g., states
803A, 803B) in the form of page tables 804, a register file 806, a virtual network interface
(VNIC) and virtual fiber channel (VFC) table. The DVMM also includes a packet scheduler
808 that schedules packets to be transmitted between virtual servers (e.g., via an InfiniBand

connection or other connection, or direct process-to-process communication).

I/O scheduler 809 may provide I/O services to each of the virtual servers (e.g., through
I/O requests received through the VMA). In addition, the DVMM may support its own [/O,
such as communication between nodes. Each virtual device or controller includes an address
that may be specified by a virtual server (e.g., in a VMA I/O request). I/O devices is abstracted
as a virtual device to the virtual server (e.g., as a PCI or PCI-like device) such that the GOS
may access this device. Each VIO device may be described to the GOS by a fixed-format
description structure analogous to the device-independent PCI config space window.

Elements of the descriptor may include the device address, class, and/or type
information that the GOS may use to associate the device with the proper driver module. The
descriptor may also include, for example, one or more logical address space window
definitions for device-specific data structures, analogous to memory-mapped control/status
registers. The I/O scheduler 809 schedules requests received from virtual servers and
distributes them to one or more I/O controllers that interface to the actual I/O hardware. More
particularly, the DVMM I/O includes a set of associated drivers that moves the request onto a
communication network (e.g., InfiniBand) and to an I/O device for execution. 1/0 may be

performed to a number of devices and systems including a virtual console, CD/DVD player,

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-34 -

network interfaces, keyboard, etc. Various embodiments of an I/O subsystem are discussed

further below with respect to Figure 9.

CPU scheduler 810 may perform CPU scheduling functions for the DVMM. More
particularly, the CPU scheduler may be responsible for executing the one or more GOSs
executing on the distributed server. The DVMM may also include supervisor calls 811 that
include protected supervisor mode calls executed by an application through the DVMM. As
discussed above, protected mode instructions may be handled by the DVMM to ensure

isolation and security between virtual server instances.

Packet scheduler 808 may schedule packet communication and access to actual
network devices for both upper levels (e.g., GOS, applications) as well as network support
within DVMM 800. In particular, packet scheduler 808 may schedule the transmission of
packets on one or more physical network interfaces, and perform a mapping between virtual

interfaces defined for each virtual server and actual network interfaces.

DVMM 800 further includes a cluster management component 812. Component 812
provides services and support to bind the discrete systems into a cluster and provides basic
services for the microkernels within a distributed server to interact with each other. These
services include cluster membership and synchronization. Component 812 includes a
clustering subcomponent 813 that defines the protocols and procedures by which microkernels
of the distributed servers are clustered. At the distributed server level, for example, the
configuration appears as a cluster, but above the distributed server level, the configuration
appears as a non-uniform memory access, multi-processor single system.

The DVMM further includes a management agent 815. This component is responsible
for handling dynamic reconfiguration functions as well as reporting status and logging to other
entities (e.g., a management server). Management agent 815 may receive commands for
adding, deleting, and reallocating resources from virtual servers. The management agent 8§15
may maintain a mapping database that defines mapping of virtual resources to physical
hardware.

According to various embodiments of the invention microkernels, which form parts of
a DVMM, communicate with each other using Distributed Shared Memory (DSM) based on
paging and/or function shipping protocols (e.g., object-level). These techniques are used to
efficiently provide a universal address space for objects and their implementation methods.

With this technology, the set of instances executing on the set of physical processors

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-35-

seamlessly and efficiently shares objects and/or pages. The set of microkernel instances may
also provide an illusion of a single system to the virtual server (running on DVMM), which
boots and run a single copy of a traditional operating system.

Distributed shared memory 816 is the component that implements distributed shared
memory support and provides the unified view of memory to a virtual server and in turn to the
Guest Operating System. DSM 816 performs memory mapping from virtual address spaces to
memory locations on each of the hardware nodes. The DSM also includes a memory allocator
817 that performs allocation functions among the hardware nodes. DSM 816 also includes a
coherence protocol 818 that ensures coherence in memory of the shared-memory
multiprocessor. The DSM may be, for example, a virtual memory subsystem used by the
DVMM and as the foundation for the Distributed Memory Manager subsystem used by virtual
servers.

DSM 816 also includes a communication subsystem that handles distributed memory
communication functions. In one example, the DMM may use RDMA techniques for
accessing distributed memory among a group of hardware nodes. This communication may
occur, for example, over a communication network including one or more network links and
switches. For instance, the cluster may be connected by a cluster interconnect layer (e.g.,
interconnect driver 822) that is responsible for providing the abstractions necessary to allow
microkernels to communicate between nodes. This layer provides the abstractions and
insulates the rest of the DVMM from any knowledge or dependencies upon specific
interconnect features.

Microkernels of the DVMM communicate, for example, over an interconnect such as
InfiniBand. Other types of interconnects (e.g., PCI-Express, GigaNet, Ethernet, etc.) may be
used. This communication provides a basic mechanism for communicating data and control
information related to a cluster. Instances of server functions performed as part of the cluster
include watchdog timers, page allocation, reallocation, and sharing, I/0 virtualization and other
services. Examples of a software system described below transform a set of physical compute
servers (nodes) having a high-speed, low latency interconnect into a partitionable set of virtual
multiprocessor machines. These virtual multiprocessor machines may be any multiprocessor
memory architecture type (e.g., COMA, NUMA, UMA, etc.) configured with any amount of
memory or any virtual devices.

According to one embodiment, each microkernel instance of the DVMM executes on

every hardware node. As discussed, the DVMM may obtain information from a management

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-36 -

database associated with a management server (e.g., server 212). The configuration
information allows the microkernel instances of the DVMM to form the distributed server.
Each distributed server provides services and aggregated resources (e.g., memory) for
supporting the virtual servers.

DVMM 800 may include hardware layer components 820 that include storage and
network drivers 821 used to communicate with actual storage and network devices,
respectively. Communication with such devices may occur over an interconnect, allowing
virtual servers to share storage and network devices. Storage may be performed, for example,
using FibreChannel. Networking may be performed using, for example, a physical layer
protocol such as Gigabit Ethernet. It should be appreciated that other protocols and devices
may be used, and the invention is not limited to any particular protocol or device type. Layer
820 may also include an interconnect driver 822 (e.g., an InfiniBand driver) to allow individual
microkernel of the DVMM running on the nodes to communicate with each other and with
other devices (e.g., I/O network). DVMM 800 may also include a hardware abstraction 823
that relates virtual hardware abstractions presented to upper layers to actual hardware devices.
This abstraction may be in the form of a mapping that relates virtual to physical devices for
I/O, networking, and other resources.

DVMM 800 may include other facilities that perform system operations such as
software timer 824 that maintains synchronization between clustered microkernel entities.
Layer 820 may also include a kernel bootstrap 825 that provides software fé)r booting the
DVMM and virtual servers. Functions performed by kernel bootstrap 825 may include Joading
configuration parameters and the DVMM system image into nodes and booting individual
virtual servers.

In another embodiment of the present invention, the DVMM 800 creates an illusion of
a Virtual cache-coherent, Non-Uniform Memory Architecture (NUMA) machine to the GOS
and its application. However, it should be appreciated that other memory architectures (e.g.,
UMA, COMA, etc.) may be used, and the invention is not limited to any particular
architecture. The Virtual NUMA (or UMA, COMA, etc.) machine is preferably not
implemented as a traditional virtual machine monitor, where a complete processor ISA is
exposed to the guest operating system, but rather is a set of data structures that abstracts the
underlying physical processors to expose a virtual processor architecture with a conceptual ISA

to the guest operating system. The GOS may be ported to the virtual machine architecture in

10

I5

20

25

30

WO 2005/020073 PCT/US2004/027048

-37-

much the same way an operating system may be ported to any other physical processor
architecture.

A set of Virtual Processors makes up a single virtual multiprocessor system (e.g., a
Virtual NUMA machine, a Virtual COMA machine). Multiple virtual multiprocessor systems
instances may be created whose execution states are separated from one another. The
architecture may, according to one embodiment, support multiple virtual multiprocessor
systems simultaneously running on the same distributed server.

In another example architecture, the DVMM provides a distributed hardware sharing
layer via the Virtual Processor and Virtual NUMA or Virtual COMA machine. The guest
operating system is ported onto the Virtual NUMA or Virtual COMA machine. This Virtual
NUMA or Virtual COMA machine provides access to the basic /O, memory and processor
abstractions. A request to access or manipulate these items is handled via APIs presented by
the DVMM, and this API provides isolation between virtual servers and allows transparent

sharing of the underlying hardware.

Example System Architecture

Figure 9 is a block diagram of an example system architecture upon which a virtual
computing system in accordance with one embodiment of the present invention may be
implemented. As discussed above, a virtual computing system may be implemented using one
Or more resources (e.g., nodes, storage, /O devices, etc.) linked via an interconnect. As shown
in the example system 900 in Figure 9, a system 900 may be assembled having one or more
nodes 901A-901B coupled by a communication network (e.g., fabric 908). Nodes 901A-901B
may include one or more processors (e.g., processors 902A-902B) one or more network
interfaces (e.g., 903A-903B) through which nodes 901A-901B communicate through the
network.

As discussed above, nodes may communicate through many different types of networks
including, but not limited to InfiniBand and Gigabit Ethernet. More particularly, fabric 908
may include one or more communication systems 905A-905D through which nodes and other
system elements communicate. These communication systems may include, for example,
switches that communicate messages between attached systems or devices. In the case of a
fabric 908 that implements InfiniBand switching, interfaces of nodes may be InfiniBand host
channel adapters (HCAs) as are known in the art. Further, communication systems 905A-

905B may include one or more InfiniBand switches.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-38-

Communication systems 905A-905D may also be connected by one or more links. It
should be appreciated, however, that other communication types (e.g., Gigabit Ethernet) may
be used, and the invention is not limited to any particular communication type. Further, the
arrangement of communication systems as shown in Figure 9 is merely an example, and a
system according to one embodiment of the invention may include any number of components
connected by any number of links in any arrangement.

Node 901A may include local memory 904 which may correspond to, for example, the
node physical memory map 601 shown in Figure 6. More particularly, a portion of memory
904 may be allocated to a distributed shared memory subsystem which can be used for
supporting virtual server processes.

Data may be stored using one or more storage systems 913A-913B. These storage
systems may be, for example, network attach storage (NAS) or a storage area network (SAN)
as are well-known in the art. Such storage systems may include one or more interfaces (e.g.,
interface 918) that are used to communicate data between other system elements. Storage
system may include one or more components including one or more storage devices (e.g., disks
914), one or more controllers (e.g., controllers 915, 919), one or more processors (e.g.,
processor 916), memory devices (e.g., device 917), or interfaces (e.g., interface 918). Such
storage systems may implement any number of communication types or protocols including
Fibre Channel, SCSI, Ethernet, or other communication types.

Storage systems 913 may be coupled to fabric 908 through one or more interfaces. In
the case of a fabric 908 having an InfiniBand switch architecture; such interfaces may include
one or more target channel adaptors (TCAs) as are well-known in the art. System 900 may
include one or more I/O systems 906A-906B. These I/O systems 906A-906B may include one
or more I/O modules 912 that perform one or more I/O functions on behalf of one or more
nodes (e.g., nodes 901A-901B). In one embodiment, an I/O system (e.g., system 906A)
includes a communication system (e.g., system 911) that allows communication between one
or more I/O modules and other system entities. In one embodiment, communication system
911 includes an InfiniBand switch.

Communication system 911 may be coupled to one or more communication systems
through one or more links. Communication system 911 may be coupled in turn to I/O modules
via one or more interfaces (e.g., target channel adapters in the case of InfiniBand). I/O

modules 912 may be coupled to one or more other components including a SCSI network 920,

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-39.

other communication networks (e.g., network 921) such as, for example, Ethernet, a
FibreChannel device or network 922.

For instance, one or more storage systems (e.g., systems 913) or storage networks may
be coupled to a fabric though an I/O system. In particular, such systems or networks may be
coupled to an I/O module of the I/O system, such as by a port (e.g., SCSI, FibreChannel,
Ethernet, etc.) of an I/O module coupled to the systems or networks. It should be appreciated
that systems, networks or other elements may be coupled to the virtual computing system in
any manner (e.g., coupled directly to the fabric, routed through other communication devices
or I/O systems), and the invention is not limited to the number, type, or placement of
connections to the virtual computing system.

Modules 912 may be coupled to other devices that may be used by virtual computing
systems such as a graphics output 923 that may be coupled to a video monitor, or other video
output 924. Other I/O modules may perform any number of tasks and may include any number
and type of interfaces. Such I/O systems 906A-906B may support, for virtual servers of a
virtual computing system, I/O functions requested by a distributed virtual machine monitor in
support of the GOS in its applications.

As discussed above, I/O requests may be sent to /O controllers (e.g., I/O modules 912)
over multiple communication paths within fabric 908. The I/O modules 912 service the
requests by routing the requests to virtual or actual hardware that performs the 1/0 request, and
returns status or other information to the distributed virtual machine monitor.

According to one embodiment, GOS 1/0 devices are virtualized devices. For example,
virtual consoles, virtual block devices, virtual SCSL, virtual Host Bus Adapters (HBAs) and
virtual network interface controllers (NICs) may be defined which are serviced by one or more
underlying devices. Drivers for virtual I/O devices may be multi-path in that the requests may
be send over one or more parallel paths and serviced by one or more I/O modules. These
multi-path drivers may exist within the GOS, and may be serviced by drivers within the
DVMM. Further, these multi-path requests may be serviced in parallel by parallel-operating
DVMM drivers which initiate parallel (multi-initiate) requests on hardware. In one
embodiment, virtual NICs may be defined for a virtual server that allow multiple requests to be
transferred from a node (e.g., node 901A) through a fabric 908 to one or more /O modules
912. Such communications may occur in parallel (e.g., over parallel connections or networks)
and may occur, for instance, over full duplex connections. Similarly, a virtual host bus adapter

(HBA) may be defined that can communicate with one or more storage systems for performing

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-40-

storage operations. Requests may be transmitted in a multi-path manner to multiple
destinations. Once received at one or more destinations, the parallel requests may be serviced
(e.g., also in parallel). .

System 900 may also be connected to one or more other communication networks 909
or fabrics 910, or a combination thereof. In particular, system 900 may connect to one or more
networks 909 or fabrics 910 through a network communication system 907. In one
embodiment, network communication system 907 may be switch, router or other device that
translates information from fabric 908 to outside entities such as hosts, networks, nodes or

other systems or devices.

Conclusion

A level of abstraction is created between the set of physical processors and a set of
virtual multiprocessor partitions to form a virtualized data center. This virtualized data center
comprises a set of virtual, isolated systems separated by boundaries. Each of these systems
appears as a unique, independent virtual multiprocessor computer capable of running a
traditional operating system and its applications. In one embodiment, the system implements
this multi-layered abstraction via a group of microkernels that are a part of a distributed virtual
machine monitor (DVMM) to form a distributed server, where each of the microkernels
communicates with one or more peer microkernel over a high-speed, low-latency interconnect.

Functionally, a virtual data center is provided, including the ability to take a collection
of servers and execute a collection of business applications over the compute fabric.
Processor, memory and I/O are virtualized across this fabric, providing a single system image,
scalability and manageability. According to one embodiment, this virtualization is transparent
to the application.

Ease of programming and transparency is achieved by supporting a shared memory
programming paradigm. Both single and multi-threaded applications can be executed without
modification on top of various embodiments of the architecture.

According to one embodiment, a part of the distributed virtual machine monitor
(DVMM), a microkernel, executes on each physical node. A set of physical nodes may be
clustered to form a multi-node distributed server. Each distributed server has a unique memory
address space that spans the nodes comprising it. A cluster of microkernels form a distributed
server which exports a VMA interface. Each instance of this interface is referred to as a virtual

server.

WO 2005/020073 PCT/US2004/027048

-41 -

Because there is isolation between the operating system and its application from the
underlying hardware, the architecture is capable of being reconfigured. In one embodiment,
capability for dynamically reconfiguring resources is provided such that resources may be
allocated (or deallocated) transparently to the applications. In particular, capability may be
provided to perform changes in a virtual server configuration (e.g., node eviction from or
integration to a virtual processor or set of virtual processors). In another embodiment,
individual virtual processors and partitions can span physical nodes having one or more
processors. In one embodiment, physical nodes can migrate between virtual multiprocessor
systems. That is, physical nodes can migrate across distributed server boundaries.

According to another embodiment of the invention, copies of a traditional
multiprocessor operating system boot into multiple virtual servers. According to another
embodiment of the invention, virtual processors may present an interface to the traditional
operating system that looks like a pure hardware emulation or the interface may be a hybrid
software/hardware emulation interface.

It should be appreciated that the invention is not limited to each of embodiments listed
above and described herein, but rather, various embodiments of the invention may be practiced
alone or in combination with other embodiments.

Having thus described several aspects of at least one embodiment of this invention, it is
to be appreciated that various alterations, modifications and improvements will readily occur to
those skilled in the art. Such alterations, modifications, and improvements are intended to be
part of this disclosure, and are intended to be within the spirit and scope of the invention.

Accordingly, the foregoing description is by way of example only.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-42.

CLAIMS
1. A system comprising:
a processor;
an operating system that accesses one or more virtual resources; and
an abstraction layer that is adapted to map the one or more virtual resources to one or

more physical resources.

2. The system according to claim 1, wherein the one or more physical resources includes

at least one of input/output (I/O) devices, processors, interconnects and storage entities.

3. The system according to claim 1, wherein the operating system is adapted to generate a
plurality of function calls, and wherein the abstraction layer is adapted to map the plurality of

function calls into processor instructions to be executed on a processor.

4. The system according to claim 1, wherein at least one of the operating system and a
user program is adapted to generate an exception, and wherein the abstraction layer is adapted

to handle the generated exception.

5. The system according to claim 1, wherein the abstraction layer is adapted to handle one

or more traps generated by at least one of an operating system and a user program.

6. The system according to claim 1, wherein the operating system is adapted to generate a
plurality of function calls, and wherein the abstraction layer is adapted to rewrite the function

calls as processor instructions to be executed on a processor,

7. The system according to claim 6, wherein the abstraction layer is adapted to rewrite the

plurality of function calls during execution of the plurality of function calls.

8. The system according to claim 1, wherein the abstraction layer presents a virtual

hardware interface to the operating system.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-43 -

9. The system according to claim 1, wherein the abstraction layer includes a microkernel

that executes on a node.

10. The system according to claim 9, wherein the node includes one or more physical

processors.

11. The system according to claim 8, wherein the abstraction layer presents an interface of

a virtual processor to the operating system.

12. " The system according to claim 8, wherein a plurality of virtual processors is grouped

into a virtual system to present the virtual hardware interface.

13, The system according to claim 9, wherein the abstraction layer includes a plurality of
microkernels, at least one of which operates cooperatively to share resources of the system and

form a distributed virtual machine monitor.

14. The system according to claim 13, wherein the at least two of the plurality of
microkernels cooperate to present a logical address space to the operating system through a

virtual hardware interface.

15. The system according to claim 9, wherein the distributed virtual machine monitor is
adapted to schedule a plurality of tasks as a plurality of respective threads executed by one or

more of the plurality of physical processors.

16. The system according to claim 9, wherein the distributed virtual machine monitor is
adapted to schedule a plurality of processes as a plurality of respective threads executed by one

or more of the plurality of physical processors.

17. The system according to claim 15, wherein the plurality of threads share one or more

objects via the operating system.

18. The system according to claim 17, wherein the operating system executes on a virtual

processor.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-44 -

19. The system according to claim 1, wherein the system further comprises a plurality of

nodes, and wherein the processor is located in at least one of the plurality of nodes.

20. The system according to claim 1, wherein the abstraction layer defines a plurality of
virtual processors, at least two of which are mapped by the abstraction layer to at least two

physical processors, respectively, residing within a single node.

21. The system according to claim 19, wherein the abstraction layer comprises a plurality

of microkernels, at least two of which operate cooperatively as a cluster.

22. The system according to claim 1, wherein the system further comprises a node, and

wherein the processor is located in the node.

23. The system according to claim 22, wherein a microkernel program is executed by the

node.

24. The system according to claim 21, wherein the plurality of microkernels forming a
distributed virtual machine monitor that presents a single hardware interface to the operating

system.

25. The system according to claim 1, wherein the abstraction layer emulates a processor

architecture.

26. The system according to claim 25, wherein the processor architecture is an architecture

of a virtual processor.

27. The system according to claim 26, wherein at least one of a plurality of function calls in

the virtual processor architecture are mapped to one or more physical processors.

28. The system according to claim 11, wherein the operating system is adapted to execute

on the virtual processor.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-45 .

29. The system according to claim 1, wherein the abstraction layer presents a single virtual
system to the operating system, and wherein the abstraction layer maps the virtual system onto

one or more of a plurality of physical processors.

30. The system according to claim 12, wherein the number of virtual processors is
permitted to be at least one of*
less than or equal to a number of physical processors in the system; and

any number in relation to the number of physical processors in the system.

31. The system according to claim 1, wherein the abstraction layer presents to the operating
System one or more virtual processors, wherein the one or more virtual processors are mapped

onto a plurality of physical processors.

32. The system according to claim 31, wherein one or more of the plurality of physical

processors are hardware processors that reside within a node.

33. The system according to claim 31, wherein one or more virtual processors are
associated with a virtual server, and wherein the one or more virtual processors are mapped
onto one or more physical processors that reside within at least one of a group comprising a

single node and different nodes.

34. The system according to claim 31, wherein at least one of the one or more virtual
processors is associated with a first virtual server, and another one of the one or more virtual
processors is associated with a second virtual server, and wherein the at least one of the virtual
processors and the another one of the one or more virtual processors are mapped to respective

physical processors that reside within a single node.

35. The system according to claim 9, wherein the abstraction layer is adapted to define a
virtual server system comprising one or more virtual processors, and wherein the system
further comprises a hierarchical scheduling system that allows a plurality of virtual processors

to be shared among the plurality of physical processors.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

- 46 -

36. The system according to claim 35, wherein the hierarchical scheduling system
comprises a first and second scheduler, wherein the operating system includes the first
scheduler which schedules at least one task to be performed by the virtual server system, and
wherein the distributed virtual machine monitor includes the second scheduler, the second
scheduler being associated with the virtual server system and being adapted to schedule the at
least one task to be executed by at least one physical processor associated with the virtual

server.

37. The system according to claim 12, wherein the system comprises virtual memory

shared among the plurality of virtual processors.

38. The system according to claim 37, wherein each of the plurality of virtual processors is
restricted to use a distributed memory that is mapped onto one or more physical memory

locations.

39. The system according to claim 1, wherein the abstraction layer presents to the operating

system a virtual cache-coherent, non-uniform memory access (NUMA) system.

40. The system according to claim 39, wherein the virtual NUMA system comprises a set

of virtual processors executing on one or more physical nodes.

41. The system according to claim 39, wherein the virtual NUMA system provides access

to basic I/0, memory and processor abstractions.

42. The system according to claim 1, wherein the abstraction layer presents to the operating

system a virtual cache-only memory architecture (COMA).

43. The system according to claim 42, wherein the virtual COMA system comprises a set

of virtual processors executing on one or more physical nodes.

44. The system according to claim 42, wherein the virtual COMA system provides access

to basic I/O, memory and processor abstractions.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-47 -

45. The system according to claim 1, wherein the abstraction layer presents to the operating

system a virtual uniform memory access (UMA) architecture.

46. The system according to claim 37, wherein the virtual UMA system comprises a set of

virtual processors executing on one or more physical nodes.

47. The system according to claim 37, wherein the virtual NUMA system provides access

to basic I/O, memory and processor abstractions.

48. The system according to claim 9, wherein the distributed virtual machine monitor

isolates the operating system from one or more physical processors.

49. The system according to claim 9, wherein the distributed virtual machine monitor

isolates the operating system from a shared virtual memory system.

50. The system according to claim 13, wherein at least two of the plurality of microkernels

are adapted to communicate using a synchronization protocol.

51. The system according to claim 50, wherein at least two of the plurality of microkernels

communicate using a cache-only distributed shared memory paging protocol.

52. The system according to claim 50, wherein at least two of the plurality of microkernels

communicate using a function shipping protocol.

53. The system according to claim 51, wherein the function shipping protocol is an object-

level function shipping protocol.

54. The system according to claim 50, wherein at least two of the plurality of microkernels
communicate using at least one of distributed shared memory protocol and a function shipping

protocol.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-48 -

55. The system according to claim 53, wherein the function shipping protocol is an object-

level function shipping protocol.

56. The system according to claim 50, wherein at least two of the plurality of mictokernels

share objects.

57. The system according to claim 50, wherein at least two of the plurality of microkernels

share pages.

58. The system according to claim 50, wherein at least two of the plurality of microkernels

share objects and pages.

59. The system according to claim 8, wherein the abstraction layer presents, to one or more
operating systems a plurality of virtual processors grouped into one or more virtual

multiprocessor systems.

60. The system according to claim 59, wherein each of the one or more operating systems

are executed by a respective one of the one or more virtual multiprocessor systems.

61. The system according to claim 59, wherein the system is adapted to migrate physical

processors among the one or more virtual multiprocessor systems.

62. The system according to claim 59, wherein the one or more of virtual multiprocessor

systems span one or more physical processors.

63. The system according to claim 59, wherein at least one virtual multiprocessor system
may be configured to include or exclude one or more virtual processors while the virtual

multiprocessor system is in an operating mode.

64. The system according to claim 14, wherein the at least one memory address space is a

physical address space.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-49-

65. A computer-readable medium having stored thereon a data structure comprising data

mapping a virtual processor to one or more physical processors.
66. A system comprising:
a manager adapted to create an instance of a virtual server; and
a resource allocated to the instance of the virtual server, the virtual resource being

associated with one or more actual resources.

67. The system according to claim 66, wherein the resource includes at least one virtual

processor being associated with one or more nodes.

68. The system according to claim 66, wherein the virtual server is associated with multiple

virtual processors.

69. The system according to claim 67, wherein the virtual server presents a single system

image while executing across the one or more nodes.

70. The system according to claim 67, wherein the one or more nodes are coupled by an

interconnect.

71. The system according to claim 70, wherein the interconnect is InfiniBand.

72. The system according to claim 70, wherein the interconnect is PCI-Express.

73. The system according to claim 70, wherein the interconnect is GigaNet.

74. The system according to claim 70, wherein the interconnect is Gigabit Ethernet.

75. The system according to claim 70, wherein the interconnect is 10 Gigabit Ethernet.

76. The system according to claim 70, wherein the interconnect uses RDMA.

10

15

20

25

30

WO 2005/020073

PCT/US2004/027048

-50-

77. The system according to claim 67, wherein the virtual server is adapted to execute an

application on the one or more nodes without modification.

78. The system according to claim 66, wherein the manager is adapted to perform a

mapping between the virtual resource and the one or more actual resources.

79. The system according to claim 78, wherein the resource is a virtual network interface,

and the actual resource includes an actual network interface.

80. The system according to claim 78, wherein the virtual resource is a virtual storage

entity, and the actual resource includes an actual storage device.

8l. The system according to claim 78, wherein the manager is adapted to perform a

reallocation of the virtual resource to another virtual server instance.

82. The system according to claim 67, wherein the system further comprises a distributed

server that is executed on the one or more nodes.

83. The system according to claim 82, wherein the manager is adapted to perform an
association between the one or more actual resources and at least one of the distributed server

and virtual server.

84. The system according to claim 82, wherein the system includes one or more
unallocated actual resources, and wherein the manager is adapted to perform an association
between the one or more unallocated resources and one or more respective distributed servers

or virtual servers.

85. The system according to claim 66, wherein the virtual server is associated with a first
collection of resources, and wherein the manager is adapted to disassociate the virtual server
with the first collection of resources, and wherein the manager is adapted to associate the

virtual server with a second collection of resources.

86. The system according to claim 85, wherein the second collection of resources is

10

15

20

25

30

WO 2005/020073

PCT/US2004/027048

-51-

presented to the virtual server by a distributed server.

87. The system according to claim 86, wherein the distributed server is executed on by

plurality of nodes.

88. A computer system comprising:

a plurality of processors; and

a virtualization layer adapted to define one or more virtual servers, at least one of which
presents a single computer system interface to an operating system, the single computer system
interface defining a plurality of instructions, wherein at least one of the plurality of instructions
is directly executed on at least one of the plurality of processors, and at least one other of the

plurality of instructions is handled by the virtualization layer.

89. The computer system according to claim 88, wherein the virtualization layer includes a

microkernel that executes on at least one processor.

90. The computer system according to claim 88, wherein the at least one of the plurality of

instructions is a non-privileged instruction.

91. The computer system according to claim 88, wherein the at least one other of the

plurality of instructions is a privileged instruction.

92. The computer system according to claim 91, wherein the virtualization layer includes

code that handles a call to the privileged instruction.

93. The computer system according to claim 88, wherein the virtualization layer passes the

non-privileged instruction to the at least one of the plurality of processors without intervention.

94. The computer system according to claim 88, further comprising a plurality of resources,
wherein each of the plurality of processors executes a respective instance of a microkernel
program, and wherein each of the respective instances of the microkernel program are adapted

communicate to cooperatively share the plurality of resources of the computer system.

10

15

20

25

30

WO 2005/020073 PCT/US2004/027048

-52.

95. The computer system according to claim 88, wherein the virtual server includes one or
more virtual processors, wherein the virtualization layer is adapted to schedule tasks associated
with at least one of the one or more virtual processors as a thread that is executed on at least

one of the plurality of processors.

96. The computer system according to claim 95, wherein the virtualization layer is adapted

to schedule a plurality of virtual processor tasks for execution substantially in parallel.

97. The computer system according to claim 88, further comprising a plurality of resources,
wherein at least one of the one or more virtual servers includes at least two virtual interfaces,

both of which are adapted to send requests for access to the plurality of resources in paralle].

98. The computer system according to claim 88, wherein at least one of the at least two

virtual interfaces includes a virtual network interface.

99. The computer system according to claim 88, wherein at least one of the at least two

virtual interfaces includes a virtual storage adapter.

100. The computer system according to claim 99, wherein the virtual storage adapter is a
virtual host bus adapter (HBA).

101. The computer system according to claim 97, further comprising at least one I/O server,

wherein the parallel access requests are serviced in parallel by the /O server.

102. The computer system according to claim 97, further comprising at least one 1/O device,

wherein the parallel access requests are serviced in parallel by the I/O device.

103. The computer system according to claim 97, wherein the parallel access requests are

transmitted over a switched communication network.

104. The computer system according to claim 103, wherein the switched communication

network includes an InfiniBand switched fabric.

WO 2005/020073 PCT/US2004/027048

-53.

105. The computer system according to claim 97, wherein the parallel access requests are

transmitted over a packet-based network.

106. The computer system according to claim 88, wherein the virtualization layer is adapted

to map one or more virtual resources to one or more physical resources.

107. The computer system according to claim 106, wherein the one or more physical
resources includes at least one of input/output (I/O) devices, processors, interconnects and

storage entities.

PCT/US2004/027048

WO 2005/020073

1/9

W= YA

mv\&\\o.wv.é\v»

"PEIT pes bR S

Ry

S, .\\%.w, Gpratvensy e

‘\\\h.d%vs .
freLyorigy \

PCT/US2004/027048

WO 2005/020073

2/9

=

m%mwhl&t

syl g,....w&._wx% "

POV Ly
[L2w2bpre gy

. qele

- ow:l.

Zvfy

oI

\m;w%\v\

Yol
..Uﬂo\v‘

J

=2 Avwﬁw\\ Q\ : ; " . :

- | mhow | | G802 || D60k | 949 ‘pgop
PEmRzYA, | PRV bemzeyyy| oy

.\Q&Q\.«u\%‘ .wcﬂ.vwv% 7
g&m{ o ..4%%&%\%@\ \V\ . A.
. s Gl Nl itid (| R P % Y
=

AL . i AT RIS

A.r\ﬁﬂ &mj FhaE T %\..&Wmmb. FLo €, *ﬁtw@% Y4OT A &\kaﬁwﬁ
ot P90 {1 povmorgay PO WL 90 \L potorzgy ‘

S e A A\

- i

PCT/US2004/027048

WO 2005/020073

3/9

w.wl.mw.vqmao \l\

AN Gl it e e i et M S e et s e vt o— vt s e

| i
NEENED D
: “ _ Vonoe shoe vhoev
\4«55}&% rl.........l:.lf a..:i..;l».)....._. _l!ll.)l.\ﬁlllll_, |

%&Wﬁ.&

—
i yres
}
|
|
i

Fog y;T——_ oo =T — mm s e e | PO
w.\/m” ~[an] [ax] [ax] [an] | U] {ar] g ”w?
. . L .

Gropp (T T T T T T e e feanion Sy Wt 777
SA | dA] {dA]} | A dA |
i

_lll....ul.l l.lll|....ula||.x|L e ——— xlmlmumnxﬁ

e o e i e A ot o et o e vt

YEag

WO 2005/020073

PCT/US2004/027048
4/9

oz p

e — v S——

Heg. Hoso

el bt e e g Ar‘\(‘}

WO 2005/020073 PCT/US2004/027048
5/9

BPerATIVE, Ry ysmﬂ

e e e e

Ha-mcdﬂ—zef

drsrribures
Ve 2Ts b

MneHe

Jl/a«! TOR—

Time

PCT/US2004/027048

WO 2005/020073

6/9

-y QQ
\N“oi\m\\\
~7-#nLl /]

9 sy

Soaren

TRLAGrALSIq

H

C sy

4&3&.&34

Hopou

cepou

opon

[opou.

iﬂﬁﬂv

proomspy

Ly 7

Whing

PCT/US2004/027048

WO 2005/020073

7/9

R

%

li =zob)

.\\.u\%ww.mo%w o/ m,\\\.&

-

&l
S Carcg <Ex..u\wﬁ A

os4 w,\ucgw\v\ V2 baupig,

S S P att) -t et St st ommmniy Sememmep =sovoray

T SN ———

Qﬂ&]

.d\ﬂhxﬁ.ﬁ\‘ R/ 74 ng\% CRIVG s, s/ '

itlililli.l‘li\

/A

ﬁ-ll... e cama te gty vi—— ——— ooy St et ,

beo
ﬂ\vo&wﬁ%m._x\ &. ey 2.
L~ Y el el 4oy,

-ty Feegy Am.mﬁuw\

\dumﬁd.@V\ sob

T |

R oy Amnn ey e vy

[TTESY oS

\Q& \N\

PCT/US2004/027048

WO 2005/020073

8/9

V.4 ..mfhwum.“&l

PTG s

PRI AR
\«qugm.vb\ <P ey -
t .v\\ SEINDT Doy

¥, : 7y
Sty

(/4 29,

e
- e IIYHT AP FS
b ~|&§NWMH§%_ ._IW v@x\wew_%%# QQN:..@M_%QL lﬁvew..&. —
e =y ¢ o 13
ErE ooty | VA
=TT
g T ﬁnwmw\w P _ VI oy
; sverie Sodiprityy LS50 D3 LG ~GA BT
rsy || ~BRSTY) = 5 J. — 2
gy gV oe0f veog

ol

THRANY Y FHR IV \\

iy VR PUSY T

reos)

ABpAAG
AQ»Q..W.S

#1498 \u\

PCT/US2004/027048
9/9

WO 2005/020073

¢ =

g124

Q.A-%

Rz

4 I¥nbey
A<l Foy vy [
0&3%/35\&%@ - Q&%&«V«E\u =
. A
Loy Lty Ly L\N.. 7
> - N, \ //ﬂz
¢ ' . / & \\ . \
R / o Bl i AN
\ﬁn;mn\w . \%@w\.w . \
g N AN
1 o .
) . bamg | [| b
, / przsareay) \ fronormmiuy
Vs Z .
o 25
\ @/ ~ / .
.:\/M_ (Yorssormatiisas \\\\\\\.\\\\) proasammy:
_~ PRy
. 494 .
,ﬁ%xﬁﬂﬂcﬁ@am\u\ ,/.(.. ((%M_Q.WH N
. i Bog
\ﬂ__.v.ﬁ..ulx.%
==

-l

Jrasls

o .ﬁ&\w«%ﬁ%

)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

