
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/01992.42 A1

Attarde et al.

US 2015O1992.42A1

(43) Pub. Date: Jul. 16, 2015

(54)

(71)

(72)

(21)

(22)

(60)

(60)

(51)

BLOCK-LEVEL, SINGLE INSTANCING

Applicant: CommVault Systems, Inc., Tinton Falls,
NJ (US)

Inventors: Deepak Raghunath Attarde, Marlboro,
NJ (US); Rajiv Kottomtharayil,
Marlboro, NJ (US); Manoj Kumar
Vijayan, Marlboro, NJ (US)

Appl. No.: 14/668,450

Filed: Mar. 25, 2015

Related U.S. Application Data
Division of application No. 14/049,463, filed on Oct.
9, 2013, which is a continuation of application No.
12/647,906, filed on Dec. 28, 2009, now Pat. No.
8,578,120.
Provisional application No. 61/180,791, filed on May
22, 2009.

Publication Classification

Int. C.
G06F II/4 (2006.01)

105

storage
manager

(52) U.S. Cl.
CPC G06F 1 1/1453 (2013.01); G06F 1 1/1464

(2013.01); G06F 1 1/1435 (2013.01); G06F
220 1/80 (2013.01); G06F 220 1/84 (2013.01)

(57) ABSTRACT

Described in detail herein are systems and methods for single
instancing blocks of data in a data storage system. For
example, the data storage system may include multiple com
puting devices (e.g., client computing devices) that store pri
mary data. The data storage system may also include a sec
ondary storage computing device, a single instance database,
and one or more storage devices that store copies of the
primary data (e.g., secondary copies, tertiary copies, etc.).
The secondary storage computing device receives blocks of
data from the computing devices and accesses the single
instance database to determine whether the blocks of data are
unique (meaning that no instances of the blocks of data are
stored on the storage devices). If a block of data is unique, the
single instance database stores it on a storage device. If not,
the secondary storage computing device can avoid storing the
block of data on the storage devices.

s"

primary
data

primary storage
secondary storage

161

secondary storage
computing device

storage
device

Patent Application Publication Jul. 16, 2015 Sheet 1 of 9 US 201S/O199242 A1

150

105 .
Storage
manager

130
195

170 170
C. C.
meta data meta
base agent base

C vs
160 162

primary
data

primary storage - A

165

secondary storage Secondary storage
Computing device Computing device 123

C C.

ys le. 115

storage storage
device device

FIG. I.

US 201S/O199242 A1 Jul. 16, 2015 Sheet 2 of 9 Patent Application Publication

Z “OICH

ZLZ

e?ep IS

Patent Application Publication Jul. 16, 2015 Sheet 3 of 9 US 201S/O199242 A1

Perform storage
operation

305 300

Receive indication to copy data

310

315

Form data stream of stream
header and stream data

3 20

Align stream header and
stream data into blocks

325

ls block single
instanceable?

Y 330

Generate identifier

335

Insert identifier into data
stream

More blocks?

N 345
Transfer data stream to

secondary storage computing
device

FIG. 3

Patent Application Publication Jul. 16, 2015 Sheet 4 of 9 US 201S/O199242 A1

Perform storage
operation

405

Receive data stream
from Client

410

Store stream header and
stream data in buffer

ls block single
instanceable?

425

Lookup block identifier

Block identifier found?

435

Store block in Container file

440

Add entry to primary
table in SDB

More blocks?

400

Store block in metadata
file

Add link to metadata file

4
Add entry to secondary table in
SIDB and increment reference

Count in primary table

445

50

455

Discard block

FIG. 4

Patent Application Publication Jul. 16, 2015 Sheet 6 of 9 US 201S/O199242 A1

250

Primary 600
Reference

ldentifier Location Offset Count

620 OXA1B3FG V 1\Chunk 1 \Container File 001

622 OXFG329A V_1\Chunk 5Container File 002 || 6 || 0 |
624 OXC13804 V 2\Chunk 1 \Container File 001

Secondary 650

ldentifier Referring Location
660 OXA1B3FG V 3\Chunk 1 \Metadata file 001
662 OXA1B3FG V 3\Chunk 8\Metadata file 001
664 OXC13804 V 3\Chunk 2\Metadata file 001

Patent Application Publication Jul. 16, 2015 Sheet 7 of 9 US 201S/O199242 A1

702

V 001

Chunk 001 260

Metadata file 706

Non-S data

704

Metadata index file 708

Index to metadata file

Container file 001 710

705

Chu 2

Metadata file 707

nk 00

Metadata index file 709

Index to metadata file

Container file OO1 713

Lelease...I
Container index file 714.

001 B1001 B2 001 Bn
1 O 1

FIG. 7

Patent Application Publication Jul. 16, 2015 Sheet 8 of 9 US 201S/O199242 A1

Restore

805

Receive Selection of
data to restore

810

Determine archive file and
Offset Within archive file

815

Determine Corresponding 800
Volume folder and chunk folder

820

Access Corresponding
index file

825

Determine from index file the
Offset Within Container file

830

ACCess Container file and
Seek to Offset

835

Retrieve data from
Container file

840

Restore data to selected
location

End

FIG. 8

Patent Application Publication Jul. 16, 2015 Sheet 9 of 9 US 201S/O199242 A1

900

Receive selection of a job
to be pruned

9
Determine archive file, volume

folders, and chunk folders
Corresponding to job

932
entries in Container

index file corresponding
o the container equa

Delete Container file

More
Container files in chunk

folders?

905

O7

910
Delete metadata files and

metadata index files in chunk
folders

Access Container file in chunk
folders

block in the Container
file, is its reference Count

in primary table equal

Free up space in
Container files?

Free up space in
Container files

End

Set corresponding entry in
container index file equal to

Zer0

More blockS in
COntainer file?

FIG. 9

US 2015/O 1992.42 A1

BLOCK-LEVEL, SINGLE INSTANCNG

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of U.S. patent appli
cation Ser. No. 14/049,463 filed on Oct. 9, 2013 (entitled
BLOCK-LEVEL SINGLE INSTANCING, Attorney Docket
No. 060692-8073.US02) which is a continuation of U.S.
patent application Ser. No. 12/647,906 filed on Dec. 28, 2009
(entitled BLOCK-LEVEL SINGLE INSTANCING, Attor
ney Docket No. 060692-8073.US01), now U.S. Pat. No.
8,578,120, which claims the benefit of U.S. Patent Applica
tion No. 61/180,791 filed on May 22, 2009 (entitled BLOCK
LEVEL SINGLE INSTANCING, Attorney Docket No.
060692-8073.US00), and is related to U.S. patent application
Ser. No. 12/565,576 filed on Sep. 23, 2009 (entitled SYS
TEMS AND METHODS FOR MANAGING SINGLE
INSTANCING DATA, Attorney Docket No. 060692-8067.
US01), each of which is incorporated by reference in its
entirety.

BACKGROUND

0002 Single instancing in a data storage system typically
involves attempting to store only a single instance of a file on
a storage device. In certain single instancing systems, a sepa
rate folder on the file system of the storage device is created
for each single instancing storage operation performed. Each
file that has been single instanced is stored as a separate
individual file in the separate folder.
0003 Because there may be numerous computing systems
in the data storage system, each requiring one or more storage
operations, these techniques may result in the creation of
numerous folders, each containing numerous files. For
example, if there are hundreds of computing systems, each
having thousands of files, backing up or copying all of these
files may potentially result in the creation of millions of files
on the storage device.
0004 Certain file systems of storage devices may not be
capable of adequately providing for storing such large num
bers of files. Other file systems may be equipped to handle
storing millions of files or more, but may not perform opti
mally in Such situations.
0005. The need exists for systems and methods that over
come the above problems, as well as that provide additional
benefits. Overall, the examples herein of some prior or related
systems and their associated limitations are intended to be
illustrative and not exclusive. Other limitations of existing or
prior systems will become apparent to those of skill in the art
upon reading the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 is a block diagram illustrating an example of
a data storage enterprise that may employ aspects of the
invention.
0007 FIG. 2 is a block diagram depicting in more detail
certain components illustrated in FIG. 1.
0008 FIG. 3 is a flow diagram of certain aspects of a
process for performing a storage operation.
0009 FIG. 4 is a flow diagram of other aspects of a process
for performing a storage operation.
0010 FIGS. 5A and 5B are diagrams illustrating suitable
data structures that may be employed by aspects of the inven
tion.

Jul. 16, 2015

0011 FIGS. 6A and 6B are diagrams illustrating suitable
data structures that may be employed by aspects of the inven
tion.
0012 FIG. 7 is a diagram illustrating various data struc
tures that aspects of the invention may utilize.
0013 FIG. 8 is a flow diagram of a process for restoring
data.
0014 FIG. 9 is a flow diagram of a process for pruning
data.

DETAILED DESCRIPTION

0015 The headings provided herein are for convenience
only and do not necessarily affect the scope or meaning of the
claimed invention.

Overview

0016. This application describes in detail, among other
things, systems and methods for single instancing (alterna
tively called deduplicating) blocks of data in a data storage
system (alternatively called a data storage network, a data
storage environment, or a data storage enterprise). The data
storage system stores single instanced blocks of data (alter
natively referred to as deduplicated blocks of data) in one or
more files and maintains one or more data structures (e.g.,
index files) that keep track of which blocks of data are refer
enced. This allows the data storage system to, among other
things: 1) single-instance data at a more granular level (at a
block-level instead of at a file-level); 2) reduce or eliminate
redundantly stored data, thereby saving storage space; 3)
store very large numbers of blocks of data without regard to
file system limitations; and 4) delete data that no longer needs
to be stored, while still maintaining data that needs to be
stored.
0017. The data storage system, for example, may include
multiple computing devices or computing systems (e.g., cli
ent computing devices) that store primary data (e.g., produc
tion data such as system files, user files, etc.). The data storage
system may also include a secondary storage computing
device, a single instance database, and one or more storage
devices that store copies of the primary data (e.g., secondary
copies, tertiary copies, etc.). The secondary storage comput
ing device receives blocks of data from the computing devices
and accesses the single instance database to determine
whether the blocks of data are unique (unique meaning that no
instances of the blocks of data are already stored on the
storage devices). If a block of data is unique, the single
instance database stores it in a file on a storage device. If not,
the secondary storage computing device can avoid storing the
block of data on the storage devices.
0018. The primary data of the computing devices can be
divided into data that is eligible for single instancing and data
that is not eligible for single instancing. An example of the
latter is metadata (e.g., Master File Table (MFT) information)
and an example of the former is data (e.g., operating system
and/or application files). A file typically comprises one or
more blocks as tracked by the file systems of the computing
devices.
0019. The computing devices align data that is eligible for
single instancing into blocks of data (which may comprise
one or more blocks as tracked by the file systems of the
computing devices) and generate identifiers for the blocks of
data that the secondary storage computing device uses to
determine if the blocks of data are unique. This allows the

US 2015/O 1992.42 A1

secondary storage computing device to avoid generating
identifiers for the blocks of data, which may be computation
ally expensive and/or require a long time to perform. There
fore, the distribution of the task of generating identifiers
(which can be computationally expensive operations) across
numerous computing devices frees up the secondary storage
computing device to perform other operations (e.g., storing
data, retrieving data, pruning data, etc.).
0020. The computing devices send the blocks of data and
other data (e.g., metadata and/or the data that is not eligible
for single instancing) in a data stream to the secondary storage
computing device. The secondary storage computing device
receives the data stream and stores blocks of data and their
identifiers in buffers in random access memory (RAM). The
secondary storage computing device determines whether a
block of data is already stored on a storage device. To do this,
the secondary storage computing device determines, by ana
lyzing data structures in the single instance database in view
of the block's identifier, whether the block of data is already
stored on a storage device. If it is, then the secondary storage
computing device 1) stores a link to the already stored block
of data in a metadata file and 2) discards the block of data from
the memory buffer. If it is not, then the secondary storage
computing device stores the block of data in a container file.
0021. Because the size of a block of data and associated
metadata is typically less then the size of a memory buffer, the
secondary storage computing device can keep a single block
of data in a single memory buffer while it looks up its iden
tifier in the single instance database. This allows the second
ary storage computing device to avoid writing the block of
data to disk (an operation which is typically slower than
storing the block of data in a RAM buffer) until the secondary
storage computing device determines that it needs to store the
block of data in a container file on a storage device. The
secondary storage computing device stores data that is not
eligible for single instancing in metadata files.
0022. By storing multiple blocks of data in a single con
tainer file, the secondary storage computing device avoids
storing each block of data as a separate file on the file systems
of the storage devices. This reduces the number of files that
would be stored on the file systems of the storage devices,
thereby ensuring that the storage devices canadequately store
the data of the computing devices in the data storage system.
0023. One advantage of these techniques is that they sig
nificantly reduce the number of files stored on a file system of
a computing device or storage device. This is at least partly
due to the storage of data blocks within the container files.
Even if the secondary storage computing device performs
numerous storage operations, these techniques will result in
storing far fewer files on the file system than storage opera
tions where each data block is stored as a separate file. There
fore, the file system of the computing device or storage device
may not necessarily have to contend with storing excessively
large numbers of files, such as millions of files or more.
Accordingly, these techniques enable very large numbers of
blocks of data to be stored without regard to limitations of the
file system of the computing device or storage device.
0024 However, the storage of blocks of data in container

files may create additional complexities when it comes time
to prune data. This is because a container file may contain
blocks of data that are referenced by links in metadata files
and thus cannot be deleted, because referenced blocks of data
typically still need to be stored on the storage devices. Fur

Jul. 16, 2015

thermore, because the blocks of data are not stored as files on
the file systems of the storage devices, they cannot be directly
referenced by the file system.
0025. The systems and methods described herein provide
Solutions to these problems. The secondary storage comput
ing device creates the container files as sparse files (typically
only on operating systems that Support sparse files, e.g., Win
dows operating systems, and other operating systems that
Support sparse files). A sparse file is type of file that may
include empty space (e.g., a sparse file may have real data
within it, Such as at the beginning of the file and/or at the end
of the file, but may also have empty space in it that is not
storing actual data, Such as a contiguous range of bytes all
having a value of Zero). Second, the secondary storage com
puting device maintains a separate index that stores an indi
cation of whether blocks of data in container files are referred
to by links in metadata files. In some examples, this can be
analogized to using another, non-native file system that keeps
track of blocks of data in the container files, on top of the
existing, native file systems of the storage devices.
0026. When a block of data is not referred to and does not
need to be stored, the secondary storage computing device
can prune it. To prune data, the secondary storage computing
device accesses the separate index to determine the blocks of
data that are not referred to by links. On operating systems
that Support sparse files, the secondary storage computing
device can free up space in the container files corresponding
to those blocks of data by marking the portions of the physical
media corresponding to the unreferenced portions of the con
tainer file as available for storage (e.g., by Zeroing out the
corresponding bytes in the container files). On operating sys
tems that do not Support sparse files, the secondary storage
computing device can free up space in the container files by
truncating the extreme portions of the container files (e.g., the
extremities Such as the beginnings and/or the ends of the
container files), thereby making the corresponding portions
of the physical media available to store other data. Freeing up
space in container files allows the operating system to utilize
the freed-up space in other fashions (e.g., other programs may
utilize the freed-up space).
0027 Various examples of the invention will now be
described. The following description provides specific details
for a thorough understanding and enabling description of
these examples. One skilled in the relevant art will under
stand, however, that the invention may be practiced without
many of these details. Likewise, one skilled in the relevant art
will also understand that the invention may include many
other obvious features not described in detail herein. Addi
tionally, some well-known structures or functions may not be
shown or described in detail below, so as to avoid unneces
sarily obscuring the relevant description.
0028. The terminology used below is to be interpreted in

its broadest reasonable manner, eventhough it is being used in
conjunction with a detailed description of certain specific
examples of the invention. Indeed, certain terms may even be
emphasized below; however, any terminology intended to be
interpreted in any restricted manner will be overtly and spe
cifically defined as such in this Detailed Description section.
0029 FIGS. 1 and 2 and the discussion herein provide a
brief, general description of a Suitable specialized environ
ment in which aspects of the invention can be implemented.
Those skilled in the relevant art will appreciate that aspects of
the invention can be practiced with other communications,
data processing, or computer system configurations, includ

US 2015/O 1992.42 A1

ing: Internet appliances, hand-held devices (including per
Sonal digital assistants (PDAs)), wearable computers, all
manner of cellular phones, mobile phones, and/or mobile
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, set-top boxes, network
PCs, mini-computers, mainframe computers, and the like.
The terms “computer,” “server,” “host,” “host system.” “cli
ent, and the like are generally used interchangeably herein,
and refer to any of the above devices and systems, as well as
any data processor.
0030. While aspects of the invention, such as certain func

tions, are described as being performed exclusively on a
single device, the invention can also be practiced in distrib
uted environments where functions or modules are shared
among disparate processing devices, which are linked
through a communications network, Such as a Local Area
Network (LAN), Wide Area Network (WAN), and/or the
Internet. In a distributed computing environment, program
modules may be located in both local and remote memory
storage devices.
0031 Aspects of the invention may be stored or distrib
uted on computer-readable media, including tangible com
puter-readable storage media Such as magnetically or opti
cally readable computer discs, hard-wired or preprogrammed
chips (e.g., EEPROM semiconductor chips), nanotechnology
memory, biological memory, or other data storage media.
Alternatively, computer implemented instructions, data
structures, Screen displays, and other data under aspects of the
invention may be distributed over the Internet or over other
networks (including wireless networks), on a propagated sig
nal on a propagation medium (e.g., an electromagnetic wave
(s), a Sound wave, etc.) over a period of time, or they may be
provided on any analog or digital network (packet Switched,
circuit switched, or other scheme).
0032. Aspects of the invention will now be described in
detail with respect to FIGS. 1 through 9. FIG. 1 illustrates an
example of a data storage system that may employ aspects of
the invention. FIG. 2 illustrates in more detail certain com
ponents illustrated in FIG. 1 that may be used to implement a
block-level single instancing system. These components
include a secondary storage computing device, a single
instancing database, and a storage device that stores only a
single instance of blocks of data of one or more computing
devices (e.g., client computing devices).
0033 FIG. 3 illustrates aspects of a process for copying
data that a computing device (e.g., a client computing device)
may perform. These aspects include determining whether
data is eligible for single instancing and transferring data in a
data stream to the secondary storage computing device. FIG.
4 illustrates aspects of the copy process that the secondary
storage computing device may perform upon receipt of the
data stream from the computing device. During this part of the
copy process, the secondary storage computing device deter
mines whether the data of the computing device is single
instanceable.

0034 FIGS.5A and 5B, 6A and 6B, and 7 are illustrations
of various data structures that aspects of the invention may
utilize. FIGS.5A and 5B depict data streams that the com
puting device may form during the copy process. FIGS. 6A
and 6B show data structures that may be used by the single
instance database to keep track of where blocks of data and
references to blocks of data are stored on the storage device.
FIG. 7 illustrates data structures that may be used to store
blocks of data on the storage device.

Jul. 16, 2015

0035 FIGS. 8 and 9 are process flow diagrams. FIG. 8
illustrates an example process that the secondary storage
computing device may perform to restore data stored on the
storage device. Such as to a computing device. FIG.9 depicts
an example process that the secondary storage computing
device may perform to prune data stored on the storage device
when it is no longer required to be stored on the storage
device.

Suitable Data Storage System
0036 FIG. 1 illustrates an example of one arrangement of
resources in a computing network, comprising a data storage
system 150. The resources in the data storage system 150 may
employ the processes and techniques described herein. The
system 150 includes a storage manager 105, one or more data
agents 195, one or more secondary storage computing
devices 165, one or more storage devices 115, one or more
computing devices 130 (called clients 130), one or more data
or information stores 160 and 162, and a single instancing
database 123. The storage manager 105 includes an index
111, a jobs agent 120, an interface agent 125, and a manage
ment agent 131. The system 150 may represent a modular
storage system Such as the CommVault QiNetiX system, and
also the CommVault GALAXY backup system, available
from CommVault Systems, Inc. of Oceanport, N.J., aspects of
which are further described in the commonly-assigned U.S.
patent application Ser. No. 09/610,738, now U.S. Pat. No.
7,035,880, the entirety of which is incorporated by reference
herein. The system 150 may also represent a modular storage
system Such as the CommVault Simpana system, also avail
able from CommVault Systems, Inc.
0037. The system 150 may generally include combina
tions of hardware and Software components associated with
performing storage operations on electronic data. Storage
operations include copying, backing up, creating, storing,
retrieving, and/or migrating primary storage data (e.g., data
stores 160 and/or 162) and secondary storage data (which
may include, for example, Snapshot copies, backup copies,
hierarchical storage management (HSM) copies, archive cop
ies, and other types of copies of electronic data stored on
storage devices 115). The system 150 may provide one or
more integrated management consoles for users or system
processes to interface with in order to perform certain storage
operations on electronic data as further described herein.
Such integrated management consoles may be displayed at a
central control facility or several similar consoles distributed
throughout multiple network locations to provide global or
geographically specific network data storage information.
0038. In one example, storage operations may be per
formed according to various storage preferences, for
example, as expressed by a user preference, a storage policy,
a schedule policy, and/or a retention policy. A “storage
policy is generally a data structure or other information
Source that includes a set of preferences and other storage
criteria associated with performing a storage operation. The
preferences and storage criteria may include, but are not
limited to, a storage location, relationships between system
components, network pathways to utilize in a storage opera
tion, data characteristics, compression or encryption require
ments, preferred system components to utilize in a storage
operation, a single instancing or variable instancing policy to
apply to the data, and/or other criteria relating to a storage
operation. For example, a storage policy may indicate that
certain data is to be stored in the storage device 115, retained

US 2015/O 1992.42 A1

for a specified period of time before being aged to another tier
of secondary storage, copied to the storage device 115 using
a specified number of data streams, etc.
0039. A "schedule policy” may specify a frequency with
which to perform storage operations and a window of time
within which to perform them. For example, a schedule
policy may specify that a storage operation is to be performed
every Saturday morning from 2:00 a.m. to 4:00 a.m. A “reten
tion policy may specify how long data is to be retained at
specific tiers of storage or what criteria must be met before
data may be pruned or moved from one tier of storage to
another tier of storage. In some cases, the storage policy
includes information generally specified by the schedule
policy and/or the retention policy. (Put another way, the stor
age policy includes the schedule policy and/or the retention
policy.) Storage policies, schedule policies and/or retention
policies may be stored in a database of the storage manager
105, to archive media as metadata for use in restore operations
or other storage operations, or to other locations or compo
nents of the system 150.
0040. The system 150 may comprise a storage operation
cell that is one of multiple storage operation cells arranged in
a hierarchy or other organization. Storage operation cells may
be related to backup cells and provide some or all of the
functionality of backup cells as described in the assignee's
U.S. patent application Ser. No. 09/354,058, now U.S. Pat.
No. 7,395.282, which is incorporated herein by reference in
its entirety. However, storage operation cells may also per
form additional types of storage operations and other types of
storage management functions that are not generally offered
by backup cells.
0041 Storage operation cells may contain not only physi
cal devices, but also may represent logical concepts, organi
Zations, and hierarchies. For example, a first storage opera
tion cell may be configured to perform a first type of storage
operations such as HSM operations, which may include
backup or other types of data migration, and may include a
variety of physical components including a storage manager
105 (or management agent 131), a secondary storage com
puting device 165, a client 130, and other components as
described herein. A second storage operation cell may contain
the same or similar physical components; however, it may be
configured to perform a second type of storage operations,
Such as storage resource management (SRM) operations, and
may include monitoring a primary data copy or performing
other known SRM operations.
0042. Thus, as can be seen from the above, although the

first and second storage operation cells are logically distinct
entities configured to perform different management func
tions (i.e., HSM and SRM, respectively), each storage opera
tion cell may contain the same or similar physical devices.
Alternatively, different storage operation cells may contain
Some of the same physical devices and not others. For
example, a storage operation cell configured to perform SRM
tasks may contain a secondary storage computing device 165,
client 130, or other network device connected to a primary
storage Volume, while a storage operation cell configured to
perform HSM tasks may instead include a secondary storage
computing device 165, client 130, or other network device
connected to a secondary storage Volume and not contain the
elements or components associated with and including the
primary storage Volume. (The term “connected as used
herein does not necessarily require a physical connection;
rather, it could refer to two devices that are operably coupled

Jul. 16, 2015

to each other, communicably coupled to each other, in com
munication with each other, or more generally, refer to the
capability of two devices to communicate with each other.)
These two storage operation cells, however, may each include
a different storage manager 105 that coordinates Storage
operations via the same secondary storage computing devices
165 and storage devices 115. This “overlapping configura
tion allows storage resources to be accessed by more than one
storage manager 105. Such that multiple paths exist to each
storage device 115 facilitating failover, load balancing, and
promoting robust data access via alternative routes.
0043 Alternatively or additionally, the same storage man
ager 105 may control two or more storage operation cells
(whether or not each storage operation cell has its own dedi
cated storage manager 105). Moreover, in certain embodi
ments, the extent or type of overlap may be user-defined
(through a control console) or may be automatically config
ured to optimize data storage and/or retrieval.
0044) The clients 130 typically include application soft
ware for performing various operations. Clients 130 typically
also include an operating system on which the application
software runs. A file system can be provided to facilitate and
control file access by the operating system and application
Software. File systems can facilitate access to local and
remote storage devices for file or data access and storage.
Clients 130 can also include local storage Such as a media
module media drive with fixed or removable media.
0045. In some examples, the clients 130 include storage
mechanisms for allowing computer programs or other
instructions or data to be loaded into memory for execution.
Such storage mechanisms might include, for example, a fixed
or removable storage unit and an interface. Examples of Such
storage units and interfaces can include a program cartridge
and cartridge interface, a removable memory (for example, a
flash memory or other removable memory module) and
memory slot, a PCMCIA slot and card, and other fixed or
removable storage units and interfaces that allow software
and data to be transferred from the storage unit to memory.
0046 Data agent 195 may be a software module or part of
a software module that is generally responsible for perform
ing storage operations on the data of the client 130 stored in
data store 160/162 or other memory location. Each client 130
may have at least one data agent 195 and the system 150 can
support multiple clients 130. Data agent 195 may be distrib
uted between client 130 and storage manager 105 (and any
other intermediate components), or it may be deployed from
a remote location or its functions approximated by a remote
process that performs some or all of the functions of data
agent 195.
0047. As used herein, the term module might describe a
given unit of functionality that can be performed in accor
dance with one or more embodiments of the present inven
tion. As used herein, a module might be implemented utiliz
ing any form of hardware, Software, firmware, or a
combination thereof. For example, one or more processors,
controllers, ASICs, PLAS, logical components, software rou
tines or other mechanisms might be implemented to make up
a module. In implementation, the various modules described
herein might be implemented as discrete modules or the func
tions and features described can be shared in part or in total
among one or more modules. In other words, as would be
apparent to one of ordinary skill in the art after reading this
description, the various features and functionality described
herein may be implemented in any given application and can

US 2015/O 1992.42 A1

be implemented in one or more separate or shared modules in
various combinations and permutations. Even though various
features or elements of functionality may be individually
described or claimed as separate modules, one of ordinary
skill in the art will understand that these features and func
tionality can be shared among one or more common Software
and hardware elements, and Such description shall not require
or imply that separate hardware or software components are
used to implement Such features or functionality.
0048. The overall system 150 may employ multiple data
agents 195, each of which may perform storage operations on
data associated with a different application. For example,
different individual data agents 195 may be designed to
handle Microsoft Exchange data, Lotus Notes data, Microsoft
Windows file system data, Microsoft Active Directory
Objects data, Microsoft SQL Server data, Microsoft Share
point Server data, and other types of data known in the art.
Other embodiments may employ one or more generic data
agents 195 that can handle and process multiple data types
rather than using the specialized data agents described above.
0049. If a client 130 has two or more types of data, one data
agent 195 may be required for each data type to perform
storage operations on the data of the client 130. For example,
to back up, migrate, and restore all the data on a Microsoft
Exchange server, the client 130 may use one Microsoft
Exchange Mailbox data agent 195 to back up the Exchange
mailboxes, one Microsoft Exchange Database data agent 195
to back up the Exchange databases, one Microsoft Exchange
Public Folder data agent 195 to back up the Exchange Public
Folders, and one Microsoft Windows File System data agent
195 to back up the file system of the client 130. These data
agents 195 would be treated as four separate data agents 195
by the system even though they reside on the same client 130.
0050 Alternatively, the overall system 150 may use one or
more generic data agents 195, each of which may be capable
of handling two or more data types. For example, one generic
data agent 195 may be used to back up, migrate and restore
Microsoft Exchange Mailbox data and Microsoft Exchange
Database data while another generic data agent 195 may
handle Microsoft Exchange Public Folder data and Microsoft
Windows File System data, etc.
0051 Data agents 195 may be responsible for arranging or
packing data to be copied or migrated into a certain format
such as an archive file. Nonetheless, it will be understood that
this represents only one example, and any suitable packing or
containerization technique or transfer methodology may be
used if desired. Such an archive file may include metadata, a
list of files or data objects copied, the file, and data objects
themselves. Moreover, any data moved by the data agents
may be tracked within the system by updating indexes asso
ciated with appropriate storage managers 105 or secondary
storage computing devices 165. As used herein, a file or a data
object refers to any collection or grouping of bytes of data that
can be viewed as one or more logical units.
0052 Generally speaking, storage manager 105 may be a
Software module or other application that coordinates and
controls storage operations performed by the system 150.
Storage manager 105 may communicate with some or all
elements of the system 150, including clients 130, data agents
195, secondary storage computing devices 165, and storage
devices 115, to initiate and manage storage operations (e.g.,
backups, migrations, data recovery operations, etc.).
0053 Storage manager 105 may include a jobs agent 120
that monitors the status of Some or all storage operations

Jul. 16, 2015

previously performed, currently being performed, or sched
uled to be performed by the system 150. (One or more storage
operations are alternatively referred to herein as a job’ or
jobs.) Jobs agent 120 may be communicatively coupled to

an interface agent 125 (e.g., a software module or applica
tion). Interface agent 125 may include information process
ing and display Software, such as a graphical user interface
(“GUI), an application programming interface (API), or
other interactive interface through which users and system
processes can retrieve information about the status of storage
operations. For example, in an arrangement of multiple stor
age operations cell, through interface agent 125, users may
optionally issue instructions to various storage operation cells
regarding performance of the storage operations as described
and contemplated herein. For example, a user may modify a
schedule concerning the number of pending Snapshot copies
or other types of copies scheduled as needed to Suit particular
needs or requirements. As another example, a user may
employ the GUI to view the status of pending storage opera
tions in Some or all of the storage operation cells in a given
network or to monitor the status of certain components in a
particular storage operation cell (e.g., the amount of storage
capacity left in a particular storage device 115).
0054 Storage manager 105 may also include a manage
ment agent 131 that is typically implemented as a Software
module or application program. In general, management
agent 131 provides an interface that allows various manage
ment agents 131 in other storage operation cells to commu
nicate with one another. For example, assume a certain net
work configuration includes multiple storage operation cells
hierarchically arranged or otherwise logically related in a
WAN or LAN configuration. With this arrangement, each
storage operation cell may be connected to the other through
each respective interface agent 125. This allows each storage
operation cell to send and receive certain pertinent informa
tion from other storage operation cells, including status infor
mation, routing information, information regarding capacity
and utilization, etc. These communications paths may also be
used to convey information and instructions regarding Stor
age operations.
0055 For example, a management agent 131 in a first
storage operation cell may communicate with a management
agent 131 in a second storage operation cell regarding the
status of storage operations in the second storage operation
cell. Another illustrative example includes the case where a
management agent 131 in a first storage operation cell com
municates with a management agent 131 in a second storage
operation cell to control storage manager 105 (and other
components) of the second storage operation cell via man
agement agent 131 contained in storage manager 105.
0056. Another illustrative example is the case where man
agement agent 131 in a first storage operation cell communi
cates directly with and controls the components in a second
storage operation cell and bypasses the storage manager 105
in the second storage operation cell. If desired, storage opera
tion cells can also be organized hierarchically such that hier
archically Superior cells control or pass information to hier
archically subordinate cells or vice versa.
0057 Storage manager 105 may also maintain an index, a
database, or other data structure 111. The data stored in data
base 111 may be used to indicate logical associations between
components of the system, user preferences, management
tasks, media containerization and data storage information or
other useful data. For example, the storage manager 105 may

US 2015/O 1992.42 A1

use data from database 111 to track logical associations
between secondary storage computing device 165 and Stor
age devices 115 (or movement of data as containerized from
primary to secondary storage).
0058 Generally speaking, the secondary storage comput
ing device 165, which may also be referred to as a media
agent, may be implemented as a software module that con
veys data, as directed by Storage manager 105, between a
client 130 and one or more storage devices 115 such as a tape
library, a magnetic media storage device, an optical media
storage device, or any other Suitable storage device. In one
embodiment, secondary storage computing device 165 may
be communicatively coupled to and control a storage device
115. A secondary storage computing device 165 may be con
sidered to be associated with a particular storage device 115 if
that secondary storage computing device 165 is capable of
routing and storing data to that particular storage device 115.
0059. In operation, a secondary storage computing device
165 associated with a particular storage device 115 may
instruct the storage device to use a robotic arm or other
retrieval means to load or eject a certain storage media, and to
Subsequently archive, migrate, or restore data to or from that
media. Secondary storage computing device 165 may com
municate with a storage device 115 via a suitable communi
cations path such as a SCSI or Fibre Channel communica
tions link. In some embodiments, the storage device 115 may
be communicatively coupled to the storage manager 105 via
a SAN.
0060 Each secondary storage computing device 165 may
maintain an index, a database, or other data structure 161 that
may store index data generated during storage operations for
secondary storage (SS) as described herein, including creat
ing a metabase (MB). For example, performing Storage
operations on Microsoft Exchange data may generate index
data. Such index data provides a secondary storage comput
ing device 165 or other external device with a fast and effi
cient mechanism for locating data stored or backed up. Thus,
a secondary storage computing device index 161, or a data
base 111 of a storage manager 105, may store data associating
a client 130 with a particular secondary storage computing
device 165 or storage device 115, for example, as specified in
a storage policy, while a database or other data structure in
secondary storage computing device 165 may indicate where
specifically the data of the client 130 is stored in storage
device 115, what specific files were stored, and other infor
mation associated with storage of the data of the client 130. In
Some embodiments, such index data may be stored along with
the data backed up in a storage device 115, with an additional
copy of the index data written to index cache in a secondary
storage device. Thus the data is readily available for use in
storage operations and other activities without having to be
first retrieved from the storage device 115.
0061 Generally speaking, information stored in cache is
typically recent information that reflects certain particulars
about operations that have recently occurred. After a certain
period of time, this information is sent to secondary storage
and tracked. This information may need to be retrieved and
uploaded back into a cache or other memory in a secondary
computing device before data can be retrieved from Storage
device 115. In some embodiments, the cached information
may include information regarding format or containeriza
tion of archives or other files stored on storage device 115.
0062 One or more of the secondary storage computing
devices 165 may also maintain one or more single instance

Jul. 16, 2015

databases 123. More details as to single instancing may be
found in one or more of the following commonly-assigned
U.S. patent applications: 1) U.S. patent application Ser. No.
11/269,512 (entitled SYSTEM AND METHOD TO SUP
PORT SINGLE INSTANCE STORAGE OPERATIONS,
Attorney Docket No. 60692-8023.US00); 2) U.S. patent
application Ser. No. 12/145,347 (entitled APPLICATION
AWARE AND REMOTE SINGLE INSTANCE DATA
MANAGEMENT, Attorney Docket No. 60692-8056. US00);
or 3) U.S. patent application Ser. No. 12/145.342 (entitled
APPLICATION-AWARE AND REMOTE SINGLE
INSTANCE DATA MANAGEMENT, Attorney Docket No.
60692-8057.US00), 4) U.S. patent application Ser. No.
11/963,623 (entitled SYSTEMAND METHOD FOR STOR
ING REDUNDANT INFORMATION, Attorney Docket No.
60692-8036.US02); 5) U.S. patent application Ser. No.
11/950,376 (entitled SYSTEMS AND METHODS FOR
CREATING COPIES OF DATA SUCH ASARCHIVE COP
IES, Attorney Docket No. 60692-8037.US01); or 6) the pre
viously referenced U.S. patent application Ser. No. 12/565,
576, each of which is incorporated by reference herein in its
entirety.
0063. In some examples, the secondary storage computing
devices 165 maintain one or more variable instance data
bases. Variable instancing generally refers to storing in sec
ondary storage one or more instances, but fewer than the total
number of instances, of each data block (or data object) in a
set of data (e.g., primary data). More details as to variable
instancing may be found in the commonly-assigned U.S. Pat.
App. No. 61/164,803 (entitled STORING A VARIABLE
NUMBER OF INSTANCES OF DATA OBJECTS, Attorney
Docket No. 60692-8068.US00).
0064. In some embodiments, certain components may
reside and execute on the same computer. For example, in
some embodiments, a client 130 such as a data agent 195, or
a storage manager 105, coordinates and directs local
archiving, migration, and retrieval application functions as
further described in the previously-referenced U.S. patent
application Ser. No. 09/610,738. This client 130 can function
independently or together with other similar clients 130.
0065. As shown in FIG. 1, each secondary storage com
puting device 165 has its own associated metabase 161. Each
client 130 may also have its own associated metabase 170.
However in some embodiments, each “tier of storage, such
as primary storage, secondary storage, tertiary storage, etc.,
may have multiple metabases or a centralized metabase, as
described herein. For example, rather than a separate meta
base or index associated with each client 130 in FIG. 1, the
metabases on this storage tier may be centralized. Similarly,
second and other tiers of storage may have either centralized
or distributed metabases. Moreover, mixed architecture sys
tems may be used if desired, that may include a first tier
centralized metabase system coupled to a second tier storage
system having distributed metabases and vice versa, etc.
0.066 Moreover, in operation, a storage manager 105 or
other management module may keep track of certain infor
mation that allows the storage manager 105 to select, desig
nate, or otherwise identify metabases to be searched in
response to certain queries as further described herein. Move
ment of data between primary and secondary storage may
also involve movement of associated metadata and other
tracking information as further described herein.
0067. In some examples, primary data may be organized
into one or more Sub-clients. A sub-client is a portion of the

US 2015/O 1992.42 A1

data of one or more clients 130, and can contain either all of
the data of the clients 130 or a designated subset thereof. As
depicted in FIG. 1, the data store 162 includes two sub
clients. For example, an administrator (or other user with the
appropriate permissions; the term administrator is used
herein for brevity) may find it preferable to separate email
data from financial data using two different Sub-clients hav
ing different storage preferences, retention criteria, etc.

Components of a Block-Level Single Instancing System

0068 FIG. 2 is a block diagram depicting in more detail
certain components illustrated in FIG.1. The data agent 195
of the client 130 includes various components. Such as a data
identification component 202, a block identification compo
nent 204, and an identifier generation component 206. The
data agent 195 also includes a compression component 210,
an encryption component 212, and a data stream generation
component 214. Various functions performed by these com
ponents are described herein.
0069. In addition to the data agent 195, the client 130
includes data 240. The data 240 includes single instanceable
data (SI data) 242 and non-single instanceable data (non-SI
data) 244. SI data 242 includes data that is eligible for single
instancing. Non-SI data 244 includes data that is not eligible
for single instancing. Non-SI data 244 may include metadata
Such as access control lists (ACLS), disk partition informa
tion, Master File Table (MFT) or File Allocation Table (FAT)
information, and/or other metadata. Non-SI data 244 may
also include other data that is determined not to be single
instanceable. SI data 242 may include data 240 of the client
130 other than non-SI data 244 (e.g., system files, application
files, user files, etc.).
0070 The secondary storage computing device 165
includes a data stream reception component 220 and an iden
tifier comparison component 222. Various functions per
formed by these components are also described in detail
herein. The secondary storage computing device 165 also
includes a memory 230, which includes multiple buffers 232.
The secondary storage computing device 165 may also
include other components, such as a decompression compo
nent and/or a decryption component. The single instance
database 123 includes data structures 250 that are used to
store data, Such as metadata about SI data 242. The storage
device 115 also includes data structures 260 that are used to
store data, Such as SI data 242 and non-SI data 244. In some
examples, the secondary storage computing device 165
includes the components that the client 130 includes, and
performs the functions that the client 130 performs.

Processes for Performing Storage Operations

0071 FIGS. 3 and 4 are flow diagrams illustrating certain
aspects of processes 300 and 400, respectively, for perform
ing a storage operation Such as a copy operation. A storage
operation (alternatively referred to as a job) is typically per
formed on files stored on file systems of one or more clients
130. One or more of the entities illustrated in the figures (e.g.,
FIGS. 1 and/or 2) may perform different aspects of the pro
cesses 300 and 400. In some examples, a storage manager 105
instigates the process 300 by sending an indication specifying
the storage operation to the data agent 195. The data agent 195
accesses the data of the client 130 (e.g., accesses files stored
on the filesystem of the client 130). The data agent 195 sends
the data to the secondary storage computing device 165,

Jul. 16, 2015

which then stores the data on one or more storage devices 115.
In some examples, less than all of these entities may be
involved in performing the storage operation. The process
300 is described as being performed by the data agent 195 and
the process 400 is described as being performed by the sec
ondary storage computing device 165. However, those of skill
in the art will understand that aspects of the processes 300 and
400 may be performed by any one or more of the entities
described herein (e.g., the data agent 195, the storage man
ager 105, the secondary storage computing device 165, etc.).
(0072. The process 300 begins at step 305 where the data
agent 195 receives an indication to copy data of the client 130.
The storage manager 105 may send the indication to the data
agent 195 (e.g., according to a storage policy), an adminis
trator may manually start the process 300, and/or the process
300 may be automatically started according to a schedule
policy.
(0073. At step 310 the data agent 195 accesses the data 240
of the client 130. The data agent 195 (e.g., the data identifi
cation component 202) determines which portions of the data
240 are SI data 242 and which portions are non-SI data 244.
For example, the data agent 195 may determine that metadata
(e.g., MFT. FAT, Volume information, transaction logs, etc.)
on the file system of the client 130 is non-SI data 244, and that
data other than metadata is SI data 242 (e.g., system files, user
files, etc.). At step 315 the data agent 195 (e.g., the data stream
generation component 214) forms a data stream of multiple
pairs of stream header and stream payload from the SI data
242 and the non-SI data 244. (An example data stream is
illustrated in FIG.5A and is described in detail below.) A data
stream, therefore, comprises multiple pairs of stream header
and stream payload. However, those of skill in the art will
understand that data streams may contain data organized in
other fashions. For the SI data 242, the data agent 195 may set
a flag in the stream header to indicate that the corresponding
stream payload contains single instanceable data.
(0074 At step 320, the data agent 195 (e.g., the identifier
generation component 206) aligns the stream header and
stream payload into one or more fixed size blocks of data. (An
example data stream with stream header and stream payload
aligned into multiple blocks is illustrated in FIG. 5B and is
described in detail below.) A block of data (alternatively
called a data block) is a sequence of bits or bytes having a
nominal length (a data block size). The file system of the
client 130 may track its data 240 in blocks (alternatively
called clusters) in sizes of 512 bytes, 4 KB, 16 KB, or other
sizes. (Put another way, a block may be a subset of one or
more data objects.) A file on the file system of the client 130
typically spans one or more blocks (e.g., a file of size 10 KB
may span 3 blocks of size 4 KB). The data agent 195 typically
aligns data blocks such that they have the same size, which
may be 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, or other
sizes. Accordingly, the term data block, as used herein, may
comprise one or more blocks as tracked by the file system of
the clients 130. For example, if the file system of a client 130
tracks its data 240 in blocks of size 4 KB and if the data agent
195 aligns the client’s 130 data 240 into data blocks of size
128KB, then these 128KB data blocks comprise 32 blocks of
data 240 as tracked by the file system of the client 130.
(0075. At step 325the data agent 195 determines whethera
data block is single instanceable. The data agent 195 does so
by analyzing the portion of the one or more corresponding
stream headers that indicates whether the data block is single
instanceable. For example, the stream headers may contain a

US 2015/O 1992.42 A1

flag orbit that indicates whether the Successive stream pay
load contain single instanceable data. (For example, see FIG.
5A, illustrating stream headers containing Such flags.) If the
data block is single instanceable, the process 300 continues at
step 330, where the data agent 195 (e.g., the identifier gen
eration component 206) generates an identifier for the data
block.

0076 Examples of identifiers include a hash value, mes
sage digest, checksum, digital fingerprint, digital signature or
other sequence of bytes that Substantially uniquely identifies
the data block in the data storage system. For example, iden
tifiers could be generated using Message Digest Algorithm 5
(MD5) or Secure Hash Algorithm SHA 512. In some
instances, the phrase “substantially unique' is used to modify
the term “identifier” because algorithms used to produce hash
values may result in collisions, where two different data
objects, when hashed, result in the same hash value. However,
depending upon the algorithm or cryptographic hash function
used, collisions should be suitably rare and thus the identifier
generated for a block should be unique throughout the data
storage system. The term “probabilistically unique identifier
may also be used. In this case, the phrase “probabilistically
unique' is used to indicate that collisions should be low
probability occurrences, and, therefore, the identifier should
be unique throughout the data storage system.
0077. At step 335 the data agent 195 (e.g., the identifier
generation component 206) inserts the generated identifier
into the data stream. The generated identifier may be com
prised in an identifier header and identifier data pair that
immediately follows the data block for which it is generated.
(See FIG. 5B and the accompanying description for addi
tional details of the identifier header and identifier data pair.)
At step 340 the data agent 195 determines whether there are
more data blocks. If so, the process 300 returns to step 325. If
not, the process 300 continues at step 345, where the data
agent 195 transfers the data stream to the secondary storage
computing device 165. The process 300 then ends. In some
examples, the data agent 195 may perform additional opera
tions upon the stream header and/or stream payload. Such as
encrypting the stream payload (e.g., using the encryption
component 212) and/or compressing the stream payload
(e.g., using the compression component 210).
0078 FIG. 4 is a flow diagram illustrating certain aspects
of the process 400 that the secondary storage computing
device 165 performs upon receiving the data stream from the
data agent 195. At step 405 the secondary storage computing
device 165 receives the data stream from the data agent 195.
At step 410, the secondary storage computing device 165
stores the stream header and stream payload corresponding to
a data blockina buffer 232 of the memory 230. The secondary
storage computing device 165 can store the entire stream
header and stream payload pairs corresponding to a single
block in a single buffer, because the buffer size (e.g., approxi
mately 640 KB) is greater than the size of the stream header
and stream payload pairs (e.g., up to approximately 512KB).
The buffer size is typically no greater than 10 times the size of
the stream header and stream payload pairs. In some
examples, the memory 230 includes 30 buffers 232, thus
allowing the secondary storage computing device 165 to
simultaneously store up to 30 different data blocks in fast
access memory. The ability to store multiple data blocks in
memory enables the secondary storage computing device 165
to avoid writing the multiple data blocks to disk, which can be
a lengthy operation.

Jul. 16, 2015

0079 At step 415 the secondary storage computing device
165 determines whether the data block is single instanceable.
The secondary storage computing device 165 may do so, for
example, by analyzing the metadata in the stream header that
indicates whether the data block is single instanceable (e.g., a
flag or bit that indicates whether the data block is single
instanceable).
0080. If the data block is single instanceable, the process
400 continues at step 425, where the secondary storage com
puting device (e.g., the identifier comparison component 222)
obtains the identifier corresponding to the data block (e.g.,
from the identifier data of the data stream) and looks up the
identifier. The secondary storage computing device 165 looks
up the identifier in the primary table in the single instance
database 123. (Example data structures used by the single
instance database 123 are illustrated in FIGS. 6A and 6B and
described with reference to these figures).
I0081. At step 430, if the secondary storage computing
device 165 finds the identifier of the data block in the primary
table, this indicates that an instance of the data block is
already stored on the storage device 115, and that the block of
data should not be stored. Accordingly, the secondary storage
computing device 165 can avoid storing another instance of
the data block and can instead store a link (alternatively called
a pointer) to the location(s) of the already stored instance. At
step 445 the secondary storage computing device 165 adds a
link to the location(s) of the already stored instance of the data
block to a metadata file. The link refers or points to the already
stored instance of the data block. For example, the secondary
storage computing device 165 may add as the link to the
metadata file the record of the already stored instance of the
data block in the primary table. At step 450 the secondary
storage computing device 165 adds an entry to the secondary
table in the single instance database. The entry includes the
location of the link in the metadata file. The secondary storage
computing device 165 also increments a reference count cor
responding to the data block in the primary table. The refer
ence count indicates the number of links to the already stored
instance of the data block. At step 455 the secondary storage
computing device 165 discards the stream header and stream
payload corresponding to the data block from the buffer 232
of the memory 230. Additionally or alternatively, the second
ary storage computing device 165 may indicate that the buffer
is available for storing another pair of stream header and
stream payload.
I0082 If the secondary storage computing device 165 does
not find the identifier of the block in the primary table (step
430), this indicates that no instances of the data block are
already stored on the storage device 115, and that the block of
data should be stored. Accordingly, at step 435 the secondary
storage computing device 165 stores the data block in a con
tainer file on the storage device 115. (See FIG. 7 and the
accompanying description for additional details of container
files.) At step 440 the secondary storage computing device
165 adds an entry to the primary table in the single instance
database. The entry includes the location of the data block in
the container file.

I0083. If the data block is not single instanceable (step
415), the process 400 continues at step 420, where the sec
ondary storage computing device 165 stores the block in a
metadata file. (See FIG. 7 and the accompanying description
for additional details of metadata files.) The three branches of
the process 400 converge at step 460, where the secondary
storage computing device 165 determines whether there are

US 2015/O 1992.42 A1

more data blocks. If so, the process 400 returns to step 415. If
not the process 400 concludes.
0084. In some examples, the secondary storage computing
device 165 may perform additional operations during the
process 400. Such as decrypting the stream payload (e.g.,
using a decryption component) and/or decompressing the
stream payload (e.g., using a decompression component).
The secondary storage computing device 165 may also store
in the index 161, for the data blocks, information mapping an
archive file and offset to the physical location of the data
blocks. An archive file is a logical entity that is created during
a storage operation and that corresponds to physical locations
of data blocks on the storage device 115. The storage manager
105 may map archive files to physical locations and keep such
information in index 111.
0085. In some examples, a variable number of instances of
data blocks (e.g., more than one instance and up to N-1
instances, where N is the number of instances of the data
block in primary data) is stored on the storage devices 115. In
Such examples, the secondary storage computing devices 165
may use techniques described in the previously referenced
U.S. Pat. App. No. 61/164,803 to ensure that a sufficient
number of instances of the blocks of data are stored on the
storage devices 115. Storing multiple instances (up to N-1) of
N data blocks provides for less risk of data loss than single
instance storage techniques, and generally nearly as less risk
of data loss as conventional data protection techniques (which
store N instances of N data blocks). Storing multiple
instances (up to N-1) of N data blocks also provides for more
efficient use of available storage space than conventional data
protection techniques, and almost as efficient use as single
instance storage techniques. Accordingly, the storing of a
variable number of instances of data blocks enables an admin
istrator to tailor data protection to Strike an appropriate bal
ance between 1) minimizing the risk of data loss, and 2)
making efficient use of available data storage space, in accor
dance with the administrator's requirements.

Suitable Data Structures

I0086 FIGS. 5A and 5B are diagrams of example data
streams 500 and 550, respectively, that may be employed by
aspects of the invention. Referring to FIG. 5A, the data agent
195 forms the data stream 500 from the data 240 of the client
130. The data stream 500 is composed of multiple pairs of
stream header 502 and stream payload 504. A stream payload
504 includes SI data 242 and/or non-SI data 244. A stream
header 502 includes metadata about the stream payload 504.
This metadata may include, for example, a length of the
stream payload 504, an indication of whether the stream
payload 504 is encrypted, an indication of whether the stream
payload 504 is compressed, an archive file identifier (ID), an
indication of whether the stream payload 504 is single
instanceable, and an indication of whether the stream payload
504 is a start of a block of data.
I0087. Referring to FIG. 5B, the data stream 550 has the
stream header 502 and stream payload 504 aligned into mul
tiple data blocks. In this example, the data blocks are of size
64 KB. The first two stream header 502 and stream payload
504 pairs comprise a first data block of size 64 KB. The first
stream header 502 indicates that the length of the succeeding
stream payload 504 is 63 KB and that it is the start of a data
block. (The stream header 502 may also include the metadata
discussed with reference to the stream headers 502 illustrated
in FIG. 3A.) The next stream header 502 indicates that the

Jul. 16, 2015

succeeding stream payload 504 has a length of 1 KB and that
it is not the start of a new data block. Immediately following
stream payload 504 are an identifier header 506 and identifier
data 508 pair. The identifier header 506 includes an indication
that the succeeding identifier data 508 includes the identifier
for the immediately previous data block. The identifier data
508 includes the identifier that the data agent (e.g., the iden
tifier generation component 206) generated for the data block.
The data stream 550 also includes other stream header 502
and stream payload 504 pairs, which may be for SI data 242
and/or for non-SI data 244.

I0088 FIGS. 6A and 6B are diagrams illustrating the data
structures 250 that may be used by the single instance data
base 123. The data structures 250 do not form part of a native
file system of a storage device storing the single instance
database 123. Alternatively, the data structures 250 are not
provided by any native file system for storage devices at least
as of the time of the filing of the provisional patent application
to which this application claims priority. The data structures
250 include a primary table 600 and a secondary table 650.
I0089 Referring to FIG. 6A, the primary table 600 includes
an identifier column 602 in which a data block identifier is
stored, a location column 604 in which a location of the data
block in a container file is stored, an offset column 606 indi
cating the offset within the container file corresponding to the
location of the data block, and a reference count column 608,
which contains a reference count of the number of links that
refer to the data block. For example, row 620 includes infor
mation about a data block for which the identifier is
“OXA1B3FG. This data block is located in the container file
that is indicated in the location column 606, at an offset of 10
within the container file. As indicated in the reference count
column 608, this data block is referred to twice, meaning that
there are two links that refer to the data block. As another
example, row 624 includes information about a data block for
which the identifier is “OXC13804. The location of this data
block is indicated in the location column 604 at an offset of 38
within the container file, and it is referred to one other time, by
one link.
(0090 Referring to FIG. 6B, the secondary table 650
includes information about links that refer to data blocks. The
secondary table 650 includes an identifier column 652, a
referring location column 654, and an offset column 656. For
example, row 660 includes information about a reference to
the data block having the identifier of"OXA1 B3FG' (row 620
in the primary table 600). The location of the link is indicated
in column 654, at an offset of five within the indicated meta
data file. As another example, row 662 includes information
about another reference to the data block having the identifier
of “OXA1B3FG. This link is located at the location indicated
in column 654, at an offset of 15 within the indicated metadata
file. As another example, row 664 includes information about
a reference to the block for which the identifier is
“OXC13804” (row 624 in the primary table 600). The location
of the link is indicated in column 654, at an offset of 19 within
the indicated metadata file.

0091 FIG. 7 is a diagram illustrating the data structures
260 that may be used to store blocks of SI data and non-SI data
on the storage device 115. The data structures 260 do not form
part of a native file system of the storage device 115. Alter
natively, the data structures 260 are not provided by any
native file systems for storage devices at least as of the time of
the filing of the provisional patent application to which this
application claims priority.

US 2015/O 1992.42 A1

0092. The data structures 260 include one or more volume
folders 702, one or more chunk folders 7047705 within a
volume folder 702, and multiple files within a chunk folder
704. Each chunk folder 7047705 includes a metadata file
706/707, a metadata index file 708/709, one or more container
files 710/711/713, and a container index file 712/714. The
metadata file 706/707 stores non-SI data blocks as well as
links to SI data blocks stored in container files. The metadata
index file 708/709 stores an index to the data in the metadata
file 706/707. The container files 710/711/713 Store SI data
blocks. The container index file 712/714 stores an index to the
container files 710/711/713. Among other things, the con
tainer index file 712/714 stores an indication of whether a
corresponding block in a container file 710/711/713 is
referred to by a link in a metadata file 706/707. For example,
data block B2 in the container file 710 is referred to by a link
in the metadata file 707 in the chunk folder 705. Accordingly,
the corresponding index entry in the container index file 712
indicates that the data block B2 in the container file 710 is
referred to. As another example, data block B1 in the con
tainer file 711 is referred to by a link in the metadata file 707,
and so the corresponding index entry in the container index
file 712 indicates that this data block is referred to.

0093. As an example, the data structures 260 illustrated in
FIG. 7 may have been created as a result of two storage
operations involving two clients 130. For example, a first
storage operation on a first client 130 could result in the
creation of the first chunk folder 704, and a second storage
operation on a second client 130 could result in the creation of
the Second chunk folder 705. The container files 710/711 in
the first chunk folder 704 would contain the blocks of SI data
242 of the first client 130. If the two clients 130 have Substan
tially similar data 240, the second storage operation on the
data 240 of the second client 130 would result in the second
ary storage computing device 165 storing primarily links to
the data blocks of the first client 130 that are already stored in
the container files 710/711. Accordingly, while a first storage
operation may result in storing nearly all of the data Subject to
the storage operation, Subsequent storage operations involv
ing similar data may result in Substantial data storage space
savings, because links to already stored data blocks can be
stored instead of additional instances of data blocks.

0094. If the operating system of the secondary storage
computing device 165 supports sparse files, then when the
secondary storage computing device 165 creates container
files 710/711/713, it can create them as sparse files. As pre
viously described, a sparse file is type of file that may include
empty space (e.g., a sparse file may have real data within it,
such as at the beginning of the file and/or at the end of the file,
but may also have empty space in it that is not storing actual
data, Such as a contiguous range of bytes all having a value of
Zero). Having the container files 710/711/713 be sparse files
allows the secondary storage computing device 165 to free up
space in the container files 710/711/713 when blocks of data
in the container files 710/711/713 no longer need to be stored
on the storage devices 115. In some examples, the secondary
storage computing device 165 creates a new container file
710/711/713 when a container file 710/711/713 either
includes 100 blocks of data or when the size of the container
file 710 exceeds 50 Mb. In other examples, the secondary
storage computing device 165 creates a new container file
7107711/713 when a container file 710/711/713 satisfies other
criteria (e.g., it contains from approximately 100 to approxi
mately 1000 blocks or when its size exceeds approximately

Jul. 16, 2015

50Mb to 1 Gb). Those of skill in the art will understand that
the secondary storage computing device 165 can create a new
container file 71077117713 when other criteria are met.
0095. In some cases, a file on which a storage operation is
performed may comprise a large number of data blocks. For
example, a 100 Mb file may be comprised in 400 data blocks
of size 256 KB. If such a file is to be stored, its data blocks
may span more than one container file, or even more than one
chunk folder. As another example, a database file of 20 Gb
may comprise over 40,000 data blocks of size 512 KB. If such
a database file is to be stored, its data blocks will likely span
multiple container files, multiple chunk folders, and poten
tially multiple volume folders. As described in detail herein,
restoring Such files may thus requiring accessing multiple
container files, chunk folders, and/or volume folders to obtain
the requisite data blocks.
0096. One advantage of the data structures 260 illustrated
in FIG. 7 and/or of the techniques described herein is that they
significantly reduce the number of files stored on a file system
of the storage device 115. This is at least partly due to the
storage of data blocks within the container files 710/711/713.
Even if numerous storage operations using these data struc
tures 260 are performed, this will result in far fewer files on
the storage device 115 than storage operations where each
data block is stored as a separate file. Therefore, the file
system of the storage device 115 may not necessarily have to
contend with storing excessively large numbers of files, such
as millions of files or more. Accordingly, the systems and
methods described herein enable very large numbers of
blocks of data to be stored without regard to limitations of the
file system of the storage device 115.
0097 Another advantage is that the data storage system
enables a reduction in the amount of blocks of data stored on
the storage devices 115, while still maintaining at least one
instance of each block of primary data. In examples where the
data storage system stores a variable number of instances of
blocks of primary data, blocks of primary data can be distrib
uted across two or more storage devices 115, thereby adding
a further aspect of redundancy.
0098. Another advantage is that the metadata files 706/
707, the metadata index files 708/709, the container files
710/711/713, and/or the container index files 712/714 could
be used to replicate the data stored in the single instance
database 123 or reconstruct the single instance database 123
if the data of the single instance database 123 is ever lost
and/or corrupted.
0099. The storage of data blocks in the container files may
create additional complexities when it comes time to prune
data blocks (pruning data blocks may be alternatively referred
to as deleting or removing data blocks) that the data storage
system no longer need retain. This is because the data blocks
are not stored as files on the file system on the storage device
115 and thus cannot be directly referenced by the file system
using the file system's data structures (the data structures that
are built into or provided with the file system). As described in
detail with reference to FIG. 9, the secondary storage com
puting device 165 uses the container index files 712/714 to
keep track of which blocks of data are referenced and thus
which blocks are not prunable (deletable).
0100. In some examples, the use of the container index
files 712/714, the metadata index files 708/709, and/or the
primary and secondary tables 600/650 to track data is analo
gous to a driver, agent or an additional file system that is
layered on top of the existing file system of the storage device

US 2015/O 1992.42 A1

115. This driver/agent/additional file system allows the data
storage system to efficiently keep track of very large numbers
of blocks of data, without regard to any limitations of the file
systems of the storage devices 115. Accordingly, the data
storage system can store very large numbers of blocks of data.
0101. Accordingly, the data structures 260 illustrated in
FIG. 7 and the techniques described herein enable the perfor
mance of multiple storage operations cumulatively involving
very large amounts of data, while still allowing for recovery
of space on the storage device 115 when storage of certain
data blocks is no longer required. For example, the data of
numerous clients 130 can be protected without having to store
redundant copies or instances of data blocks. Space on the
storage device 115 can also be recovered when it is no longer
necessary to store certain data blocks. Accordingly, storage
operations involving very large amounts of data are enabled
and optimized by the techniques described herein.

Process for Restoring Data

0102 FIG. 8 is a flow diagram of a process 800 for restor
ing one or more blocks of data. The process 800 is described
as being performed by the secondary storage computing
device 165, although those of skill in the art will understand
that aspects of the process 800 may be performed by any of
the entities described herein. The process 800 begins at step
805 where the secondary storage computing device 165
receives a selection of data to restore (e.g., one or more files).
For example, an administrator may utilize an integrated man
agement console that provides an interface for allowing the
administrator to specify one or more data blocks to be
restored (e.g., by allowing the administrator to specify one or
more files to be restored). As another example, a client 130
may request that a data block that had been previously copied
from the client 130 be restored to the client 130. At step 810
the secondary storage computing device 165 determines an
archive file and offset within the archive file corresponding to
the data to be restored. The secondary storage computing
device 165 may analyze the index 111 of the storage manager
105 to determine the archive file and offset.

0103) At step 815 the secondary storage computing device
165 determines volume folders and chunk folders corre
sponding to the archive file and offset. The secondary storage
computing device 165 may do so by analyzing the index 161
to determine the volume folders and chunk folders. The deter
mined volume folders and chunk folders contain the
requested data. At step 820 the secondary storage computing
device 165 accesses an index file within the determined vol
ume folders and chunk folders that corresponds to the data to
be restored. This may be the metadata index file 708/709
when the requested data is non-SI data 244 or the container
index file 712/714 when the requested data is SI data 242. At
step 825 the secondary storage computing device 165 deter
mines, from the index file, the offset within the metadata file
706/707 or the Offset within the container file 710/711/13
corresponding to the requested data. At step 830 the second
ary storage computing device 165 accesses the metadata file
706/707 or the container file 710/711/13 and seeks to the
determined offset. At step 835 the secondary storage comput
ing device 165 retrieves the data from the metadata file 706/
707 or the container file 710/711/13. At step 840 the second
ary storage computing device restores the data to a selected
location (e.g., to a client 130 and/or to another location). The
process 800 then concludes.

Jul. 16, 2015

0104. As previously noted, restoring a file may necessitate
accessing multiple container files, chunk folders, and/or Vol
ume folders to obtain the data blocks that comprise the file.
The secondary storage computing device 165 may thus have
to obtain a first data block from a first container file and a
second data block from a second container file. As another
example, the secondary storage computing device 165 may
thus have to obtain a first data block from a first container file
within a first folder and a second data block from a second
container file within a second folder. To do so, the secondary
storage computing device 165 may have to access multiple
index files or other data structures to locate the requisite
blocks of data. Those of skill in the art will understand that
various techniques may be used to restore data such as files
and other data.

Process for Pruning Data
0105 FIG.9 is a flow diagram of a process 900 for pruning
data. The process 900 is described as being performed by the
secondary storage computing device 165, although those of
skill in the art will understand that aspects of the process 900
may be performed by any of the entities described herein. The
process 900 begins when the secondary storage computing
device 165 receives instructions to prune data corresponding
to a storage operation (job). Additionally or alternatively, one
or more files can be selected to be pruned, and/or one or more
data blocks can be selected to be pruned. This selection of a
job or other data to be deleted can be made manually, Such as
by an administrator, or automatically, such as by the job, files,
and/or data blocks aging out by a retention policy.
0106. As previously noted, the data structures 260 illus
trated in FIG.7 may have been created as a result of two jobs
involving two clients 130. For example, a first job on a first
client 130 could result in the creation of the first chunk folder
704, and a second job on a second client 130 could result in
the creation of the second chunk folder 705. The process 900
is described using this example. More specifically, the pro
cess 900 is described below as pruning the data created as a
result of the first job. Of course, a similar process may be used
to delete other jobs, or even smaller increments of data or data
objects, such as individual files or blocks.
0107 At step 907 the secondary storage computing device
165 determines the file, e.g., archive file, and the volume
folders 702 and chunk folder 704 corresponding to the job to
be pruned. The secondary storage computing device 165 may
do so, for example, by analyzing the index 111 and/or the
index 161 to determine this information. At step 910 the
secondary storage computing device 165 deletes the metadata
file 706 and the metadata index file 708 in the chunk folder
704. The secondary storage computing device 165 can delete
the metadata file 706 and the metadata index file 708 in this
example because these files include non-SI data 244, which is
not referenced by any other data.
0108. At step 915 the secondary storage computing device
165 accesses the container file 710 and the container index file
712 in the chunk folder 704. The secondary storage comput
ing device 165 begins iterating through the data blocks in the
container files 710. At step 920, beginning with a first block in
the container file 710, the secondary storage computing
device 165 accesses the primary table 600 in the single
instance database 123. The secondary storage computing
device 165 determines from the primary table 600 whether
the reference count of a data block in the container file 710 is
equal to Zero. If so, this indicates that there are no references

US 2015/O 1992.42 A1

to the data block. The process 900 then continues at step 925,
where the secondary storage computing device 165 sets the
entry in the container index file 712 corresponding to the data
block equal to Zero, thus indicating that there are no refer
ences to the data block, and therefore prunable.
0109 If the reference count of a data block is not equal to
Zero, then the data block is not prunable, and the process 900
continues at step 930. At this step, the secondary storage
computing device 165 determines whether there are more
data blocks in the container file 710. If so, the process 900
returns to step 920, where it accesses the next data block. If
there are no more data blocks in the container file 710, the
process 900 continues at step 932, where the secondary stor
age computing device 165 determines whether all the entries
in the container index file 712 corresponding to the container
file 710 are equal to zero. As illustrated in FIG. 7, the second
index entry in the container index file 712 is not equal to zero,
thus indicating that the corresponding block in container file
710 is referenced (by data in the chunk folder 705, as earlier
described). Accordingly, the container file 710 cannot be
deleted.

0110. However, if the container file 710 did not contain
any referenced data blocks, then at step 933, the secondary
storage computing device 165 would delete the container file
710. The process would then continue at step 935, where the
secondary storage computing device 165 determines whether
there are more container files. According to the example as
illustrated in FIG. 7, there is an additional container file 711.
The process 900 then returns to step 915, where it performs
the same steps 920-933 for container file 711. As a result of
performing these steps, the secondary storage computing
device 165 would also determine that the container file 711
cannot be deleted, because it contains a data block that is
referenced (by data in the chunk folder 705, as earlier
described).
0111. After processing container files 710/711, the pro
cess 900 continues at step 940, where the secondary storage
computing device 165 determines whether to free up storage
space in the container files 710/711. The secondary storage
computing device 165 may do so using various techniques.
For example, if the operating system of the secondary storage
computing device 165 Supports sparse files, then the second
ary storage computing device 165 may free up space by
Zeroing out the bytes in the container files corresponding to
the space to be freed up. For a certain number of contiguous
blocks (e.g., a threshold number of contiguous blocks, such as
three contiguous blocks) for which the corresponding entries
in the container index file 712 indicate that the blocks are not
being referred to, then the secondary storage computing
device 165 may mark these portions of the container files
710/711 as available for storage by the operating system or
the file system. The secondary storage computing device 165
may do so by calling an API of the operating system to mark
the unreferenced portions of the container files 710/711 as
available for storage.
0112 The secondary storage computing device 165 may
use certain optimizations to manage the number of times
portions of the container file are specified or marked as avail
able for storage. Such as only Zeroing out bytes in container
files when a threshold number of unreferenced contiguous
blocks is reached (e.g., three or more unreferenced contigu
ous blocks). These optimizations may result in less overhead
for the operating system because it reduces the number of
contiguous ranges of Zero-value bytes in the container files

Jul. 16, 2015

710/711 that the operating system must keep track of (e.g., it
reduces the amount of metadata about portions of the con
tainer files 710/711 that are available for storage).
0113. If the operating system of the secondary storage
computing device 165 does not support sparse files, then the
secondary storage computing device 165 may free up space
by truncating either the beginning or the end of the container
files 710/711 (removing or deleting data at the beginning or
end of the container files 710/711). The secondary storage
computing device 165 may do so by calling an API of the
operating system, or by operating directly on the container
files 710/711. For example, if a certain number of the last
blocks of the container file are not being referred to, the
secondary storage computing device 165 may truncate these
portions of the container files 710/711. Other techniques may
be used to free up space in the container files 710/711 for
storage of other data. At step 945 the secondary storage com
puting device 165 frees up space in the container files 710/
711. The process 900 then concludes.
0114. As a result of the process 900, the chunk folder 704
would contain only the container files 710/711 and the con
tainer index file 712. At a later time, when the chunk folder
705 is pruned (that is, when the job that created this chunk
folder is selected to be pruned), then the container files 710/
711 in the chunk folder 704 can be deleted, because they no
longer contain data blocks that is referenced by other data.
Therefore, pruning data corresponding to a job may also
result in pruning data corresponding to an earlier job, because
the data corresponding to the earlier job is no longer refer
enced by the later job.
(0.115. Although the process 900 is described with refer
ence to the pruning of data corresponding to jobs (one or more
storage operations), other data can also be pruned. For
example, an administrator may wish to delete SI data 242 but
retain non-SI data 244. In Such case, the administrator may
instruct the secondary storage computing device 165 to delete
the container files 71077117713 but retain the metadata files
706/707 and metadata index files 708/709. As another
example, an administrator or storage policy may delete one or
more specific files. In Such case, the secondary storage com
puting device 165 deletes the data blocks in the container files
710/711/713 corresponding to the specific files but retains
other data blocks. The process 900 may include fewer or more
steps than those described hereinto accommodate these other
pruning examples. Those of skill in the art will understand
that data can be pruned in various fashions and therefore, that
the process 900 is not limited to the steps described herein.
0116. One advantage of the process 900 and the tech
niques described herein is that they enable the deletion of data
on the storage devices 115 that no longer needs to be stored
while still retaining data that needs to be stored, and doing so
in a space-efficient manner. Space previously allocated for
data blocks that no longer need to be stored can be reclaimed
by the data storage system, and used to store other data.
Accordingly, the techniques described herein provide for effi
cient use of available storage space (available on physical
media).

CONCLUSION

0117. From the foregoing, it will be appreciated that spe
cific examples of data storage systems have been described
herein for purposes of illustration, but that various modifica
tions may be made without deviating from the spirit and scope
of the invention. For example, although copy operations may

US 2015/O 1992.42 A1

have been described, the system may be used to perform
many types of storage operations (e.g., backup operations,
restore operations, archival operations, copy operations, Con
tinuous Data Replication (CDR) operations, recovery opera
tions, migration operations, HSM operations, etc.). As
another example, although block-level single instancing has
been described, the systems and methods detailed herein may
be used to single instance files. As another example, the
secondary storage computing device 165 may keep track of
which blocks of data in container files 710 are not referenced,
instead of keeping track of which blocks of data are referred
to by links. As another example, non-SI data 244 may not be
aligned into blocks of data. Accordingly, the invention is not
limited except as by the appended claims.
0118 Terms and phrases used in this document, and varia
tions thereof, unless otherwise expressly stated, should be
construed as open ended as opposed to limiting. As examples
of the foregoing: the term “including should be read as
meaning “including, without limitation” or the like; the term
“example' is used to provide exemplary instances of the item
in discussion, not an exhaustive or limiting list thereof; the
terms “a” or “an should be read as meaning “at least one.”
“one or more' or the like; and adjectives such as “conven
tional,” “traditional,” “normal,” “standard,” “known and
terms of similar meaning should not be construed as limiting
the item described to a given time period or to an item avail
able as of a given time, but instead should be read to encom
pass conventional, traditional, normal, or standard technolo
gies that may be available or known now or at any time in the
future. Likewise, where this document refers to technologies
that would be apparent or known to one of ordinary skill in the
art, such technologies encompass those apparent or known to
the skilled artisan now or at any time in the future.
0119 The presence of broadening words and phrases such
as "one or more.” “at least,” “but not limited to’ or other like
phrases in some instances shall not be read to mean that the
narrower case is intended or required in instances where Such
broadening phrases may be absent. The use of the term 'mod
ule' does not imply that the components or functionality
described or claimed as part of the module are all configured
in a common package. Indeed, any or all of the various com
ponents of a module, whether control logic or other compo
nents, can be combined in a single package or separately
maintained and can further be distributed in multiple group
ings or packages or across multiple locations.
0120 Ifa synchronization process or synchronization pro
cesses are described herein, it is not intended to require that
multiple synchronizations occur simultaneously or that mul
tiple computing systems being synchronized each receive the
same data. Although in some examples the data can be broad
cast to all participating computing systems simultaneously
(or close to simultaneously), in other examples the data can be
sent to different computing systems or groups of computing
systems at different times. Likewise, in some examples the
same data, or the same Subset of the data can be sent to all
computing systems. However, in other examples, Subsets of
the data can be tailored for a given computing system or group
of computing systems.
0121 Unless the context clearly requires otherwise,
throughout the description and the claims, the words "com
prise.” “comprising.” and the like are to be construed in an
inclusive sense, as opposed to an exclusive or exhaustive
sense; that is to say, in the sense of “including, but not limited
to. The word “coupled, as generally used herein, refers to

Jul. 16, 2015

two or more elements that may be either directly connected,
or connected by way of one or more intermediate elements.
Additionally, the words “herein.” “above,” “below,” and
words of similar import, when used in this application, shall
refer to this application as a whole and not to any particular
portions of this application. Where the context permits, words
in the above Detailed Description using the singular or plural
number may also include the plural or singular number
respectively. The word 'or' in reference to a list of two or
more items, that word covers all of the following interpreta
tions of the word: any of the items in the list, all of the items
in the list, and any combination of the items in the list.
0.122 The above detailed description of embodiments of
the invention is not intended to be exhaustive or to limit the
invention to the precise form disclosed above. While specific
embodiments of, and examples for, the invention are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the invention,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines having
steps, or employ systems having blocks, in a different order,
and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified. Each of these pro
cesses or blocks may be implemented in a variety of different
ways. Also, while processes or blocks are at times shown as
being performed in series, these processes or blocks may
instead be performed in parallel, or may be performed at
different times.
I0123. The teachings of the invention provided herein can
be applied to other systems, not necessarily the system
described above. The elements and acts of the various
embodiments described above can be combined to provide
further embodiments.
0.124. Any patents and applications and other references
noted above, including any that may be listed in accompany
ing filing papers, are incorporated herein by reference.
Aspects of the invention can be modified, if necessary, to
employ the systems, functions, and concepts of the various
references described above to provide yet further implemen
tations of the invention.

0.125. These and other changes can be made to the inven
tion in light of the above Detailed Description. While the
above description details certain embodiments of the inven
tion and describes the best mode contemplated, no matter
how detailed the above appears in text, the invention can be
practiced in many ways. Details of the system may vary
considerably in implementation details, while still being
encompassed by the invention disclosed herein. As noted
above, particular terminology used when describing certain
features or aspects of the invention should not be taken to
imply that the terminology is being redefined herein to be
restricted to any specific characteristics, features, or aspects
of the invention with which that terminology is associated. In
general, the terms used in the following claims should not be
construed to limit the invention to the specific embodiments
disclosed in the specification, unless the above Detailed
Description section explicitly defines Such terms. Accord
ingly, the actual scope of the invention encompasses not only
the disclosed embodiments, but also all equivalent ways of
practicing or implementing the invention under the claims.
0.126 While certain aspects of the invention are presented
below in certain claim forms, the inventors contemplate the
various aspects of the invention in any number of claim forms.

US 2015/01992.42 A1
14

For example, while only one aspect of the invention is recited
as embodied in a computer-readable medium, other aspects
may likewise be embodied in a computer-readable medium.
As another example, while only one aspect of the invention is
recited as a means-plus-function claim under 35 U.S.C. S 112.
sixth paragraph, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being
embodied in a computer-readable medium. (Any claims
intended to be treated under 35 U.S.C. S 112, 6 will begin
with the words “means for.) Accordingly, the inventors
reserve the right to add additional claims after filing the
application to pursue such additional claim forms for other
aspects of the invention.
We claim:
1. A system for restoring a file from a storage device, the

system comprising:
at least one processor;
at least one data storage device;
means for receiving a request for a file, wherein the file is

archived as one or more data blocks on the storage
device;

means for determining a first file and a first offset within the
first file corresponding to the requested file,
wherein the first file stores data blocks that are not eli

gible for single instancing, and
wherein the first file also stores at least one data structure

that includes references to data blocks that are eligible
for single instancing:

means for accessing the first file at the first offset;
means for determining if a first data block beginning at the

first offset includes at least a first portion of the requested
file;

means for obtaining the first data block from the first file
when the first data block beginning at the first offset
includes at least the first portion of the requested file; and

means for providing the requested file to a client device.
2. The system of claim 1, further comprising:
means for storing in the data structure of the first file a

reference to the already stored instance of the first data
block if an instance of a second data block is received
when the first data block has already been stored on the
storage device; and

means for storing the second data block to a third file if the
second data block is received when an instance of the
second data block has not already been stored on the
storage device.
wherein the third file stores only a single instance of each

data block,
wherein the third file stores data blocks from more than

one file stored at one or more computing client
devices, and

wherein the third file includes multiple portions avail
able for storing blocks, and

wherein the second data block is stored in one or more
portions.

3. The system of claim 1, further comprising:
means for determining if data beginning at the first offset

includes a reference to a second data block in a second
file that includes at least a second portion of the
requested file;

means for accessing the second file when the data begin
ning at the first offset includes the reference to the sec
ond data block in the second file; and

Jul. 16, 2015

means for obtaining the second data block from the second
file.

4. The system of claim 3, wherein the first file is located
within a first folder, and the second file is located within a
second folder.

5. The system of claim 1, further comprising:
determining a logical container corresponding to the

requested file; and
analyzing the logical container to determine the first file.
6. The system of claim 1, further comprising:
accessing an index file associated with the first file.

wherein the index file stores, for at least some of the one
or more data blocks, a single flag indicating whether the
stored block of data is referred to in one or more meta
data files on the one or more storage devices; and

analyzing the index file to determine the first offset within
the first file.

7. A computer-readable storage medium whose contents
cause a computing system to perform a method of restoring a
file from a storage device, the method comprising:

receiving a request for a file, wherein the file is archived as
one or more data blocks on the storage device;

determining a first file and a first offset within the first file
corresponding to the requested file;

accessing the first file at the first offset;
determining if a first data block beginning at the first offset

includes at least a first portion of the requested file;
when the first data block beginning at the first offset

includes at least the first portion of the requested file,
obtaining the first data block from the first file;

when a second data block that includes at least a second
portion of the requested file exists, obtaining the second
data block; and

providing the requested file to a client device.
8. The computer-readable storage medium of claim 7.

wherein the method further comprises:
determining if data beginning at the first offset includes a

reference to a second data block in a second file that
includes at least a second portion of the requested file;
and

when the data beginning at the first offset includes the
reference to the second data block in the second file,
accessing the second file; and
obtaining the second data block from the second file.

9. The computer-readable storage medium of claim 7.
wherein the method further comprises:
when a second portion of the requested file is in a second

file, determining a second offset within the second file at
which the second data block is located; and

obtaining the second data block.
10. The computer-readable storage medium of claim 7.

wherein the first file is located within a first folder, and the
second file is located within a second folder.

11. The computer-readable storage medium of claim 7.
wherein the method further comprises:

determining a logical container corresponding to the
requested file; and

analyzing the logical container to determine the first file.
12. The computer-readable storage medium of claim 7.

wherein the method further comprises:
accessing an index file associated with the first file; and
analyzing the index file to determine the first offset within

the first file.

US 2015/O 1992.42 A1

13. A method of restoring a file from a storage device, the
method comprising:

receiving a request for a file, wherein the file is archived as
one or more data blocks on the storage device;

determining a first file and a first offset within the first file
corresponding to the requested file;

accessing the first file at the first offset;
determining if a first data block beginning at the first offset

includes at least a first portion of the requested file;
when the first data block beginning at the first offset

includes at least the first portion of the requested file,
obtaining the first data block from the first file;

when a second data block that includes at least a second
portion of the requested file exists, obtaining the second
data block; and

providing the requested file to a client device.
14. The method of claim 13, wherein the method further

comprises:
determining if data beginning at the first offset includes a

reference to a second data block in a second file that
includes at least a second portion of the requested file;
and

when the data beginning at the first offset includes the
reference to the second data block in the second file,
accessing the second file; and

obtaining the second data block from the second file.
15. The method of claim 13, wherein the method further

comprises:

Jul. 16, 2015

when a second portion of the requested file is in a second
file, determining a second offset within the second file at
which the second data block is located; and

obtaining the second data block.
16. The method of claim 13, wherein the first file is located

within a first folder, and the second file is located within a
second folder.

17. The method of claim 13, wherein the method further
comprises:

determining a logical container corresponding to the
requested file; and

analyzing the logical container to determine the first file.
18. The method of claim 13, wherein the method further

comprises:
accessing an index file associated with the first file; and
analyzing the index file to determine the first offset within

the first file.
19. The method of claim 13, wherein determining a first file

and a first offset within the first file corresponding to the
requested file includes analyzing an index file to determine a
Volume folder and chunk folder that include the data blocks
associated with the requested file.

20. The method of claim 13, wherein determining a first file
and a first offset within the first file corresponding to the
requested file includes determining a Volume folder and
chunk folder corresponding to the requested data.

k k k k k

