(19) **日本国特許庁(JP)**

(51) Int.Cl.

(12) 特 許 公 報(B2)

FI

(11) 特許番号

特許第6189869号 (P6189869)

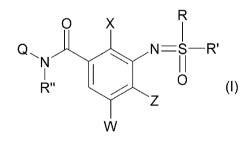
最終頁に続く

(45) 発行日 平成29年8月30日(2017.8.30)

(24) 登録日 平成29年8月10日(2017.8.10)

弁理士 坪倉 道明

\ /		
CO7D 249/14	(2006.01) CO7D	249/14 5 O 3
CO7D 257/02	(2006.01) CO7D	257/02 C S P
CO7D 409/12	(2006.01) CO7D	409/12
CO7D 411/12	(2006.01) CO7D	411/12
CO7D 405/12	(2006.01) CO7D	405/12
	•	請求項の数 13 (全 78 頁) 最終頁に続く
(21) 出願番号	特願2014-557070 (P2014-557070)	(73) 特許権者 512137348
(86) (22) 出願日	平成25年2月18日 (2013.2.18)	バイエル・インテレクチュアル・プロパテ
(65) 公表番号	特表2015-508768 (P2015-508768A)	ィ・ゲゼルシャフト・ミット・ベシュレン
(43) 公表日	平成27年3月23日 (2015.3.23)	クテル・ハフツング
(86) 国際出願番号	PCT/EP2013/053176	Bayer Intellectual
(87) 国際公開番号	W02013/124238	Property GmbH
(87) 国際公開日	平成25年8月29日 (2013.8.29)	ドイツ40789モンハイム・アム・ライ
審査請求日	平成28年2月15日 (2016.2.15)	ン、アルフレートーノーベルーシュトラー
(31) 優先権主張番号	12156307.6	セ10番
(32) 優先日	平成24年2月21日 (2012.2.21)	(74) 代理人 100114188
(33) 優先権主張国	欧州特許庁 (EP)	弁理士 小野 誠
	• •	(74) 代理人 100119253
		弁理士 金山 賢教
		(74) 代理人 100124855


(54) 【発明の名称】除草的に有効なスルフィニルアミノベンズアミド類

(57)【特許請求の範囲】

【請求項1】

下記式(I)のスルフィニルアミノベンズアミドまたは該化合物の塩。

【化1】

「式中、

記号および指数はそれぞれ、下記のように定義され;

Q は Q 1 、 Q 2 、 Q 3 または Q 4 基:

【化2】

であり;

X は、ニトロ、ハロゲン、シアノ、チオシアナト、(C $_1$ - C $_6$) - アルキル、ハロ -10 $(C_1 - C_6) - P \mathcal{N} + \mathcal{N}, (C_2 - C_6) - P \mathcal{N} + \mathcal{N}$ ケニル、(C ₂ - C ₆) - アルキニル、ハロ - (C ₃ - C ₆) - アルキニル、(C ₃ - C $\Box P N + N - (C_1 - C_6) - P N + N \setminus A \Box - (C_3 - C_6) - 9 \cap D D P N + N - (C_6)$ $_{1}$ - $_{6}$) - $_{7}$ ν + ν , $_{8}$ 1 (0) $_{5}$ $_{8}$ 1 ($_{8}$ 1 ON =) $_{5}$ $_{8}$ 1 O(O) $_{5}$ ($_{8}$ 1), N(O)C, R¹(R¹O)N(O)C, (R¹), N(R¹)N(O)C, R¹(O) C(R¹) N(O) C, R² O(O) C(R¹) N(O) C, (R¹) 2 N(O) C $(R^{1})N(O)C,R^{2}(O)_{2}S(R^{1})N(O)C,R^{1}O(O)_{2}S(R^{1})N$ $(O) C, (R^1), N(O), S(R^1) N(O) C, R^1 O, R^1 (O) CO, R^2$ $(0)_{2}SO, R^{2}O(O)CO, (R^{1})_{2}N(O)CO, (R^{1})_{2}N, R^{1}(O)$ 20 $C(R^{1})N, R^{2}(O)_{2}S(R^{1})N, R^{2}O(O)C(R^{1})N, (R^{1})_{2}N($ $O) C (R^{1}) N, R^{1} O (O) {}_{2} S (R^{1}) N, (R^{1}) {}_{2} N (O) {}_{2} S (R^{1}) N,$ $R^{2}(O)_{n}S, R^{1}O(O)_{2}S, (R^{1})_{2}N(O)_{2}S, R^{1}(O)C(R^{1})N$ $(O)_{2}S, R^{2}O(O)C(R^{1})N(O)_{2}S, (R^{1})_{2}N(O)C(R^{1})N(O)$ 0), S、(R⁵0), (O)P、R¹(O)C-(C₁-C₆)-アルキル、R¹O(O) C - (C₁ - C₆) - アルキル、(R¹)₂ N(O) C - (C₁ - C₆) - アルキル $(R^{1}O)(R^{1})N(O)C-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N},(R^{1})_{2}N(R^{1})N$ (O) C - (C₁ - C₆) - アルキル、R¹ (O) C(R¹) N(O) C - (C₁ - C₆) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \ R 2 O (O) C (R 1) N (O) C - (C $_1$ - C $_6$) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \ (R 1)₂N(O)C(R¹)N(O)C-(C₁-C₆)-アルキル、R²(O)₂S(R¹ 30) N (O) C - (C ₁ - C ₆) - PN+N, R ¹ O (O) ₂ S (R ¹) N (O) C - (C $_{1}$ - C_{6}) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} (R^{1}) $_{2}$ N (O) $_{3}$ S (R^{1}) N (O) C - (C_{1} - C_{6}) -アルキル、N C - (C $_1$ - C $_6$) - アルキル、R 1 O - (C $_1$ - C $_6$) - アルキル、R 1 (O) CO - (C₁ - C₆) - <math>PN + N, R²(O)₂ SO - (C₁ - C₆) - <math>PN + N6) - アルキル、(R¹)₂N - (C₁ - C₆) - アルキル、R¹(O) C(R¹) N -²O(O)C(R¹)N-(C₁-C₆)-アルキル、(R¹)₂N(O)C(R¹)N - (C₁ - C₆) - アルキル、R¹O(O)₂S(R¹)N - (C₁ - C₆) - アルキル 、 (R 1) $_2$ N (O) $_2$ S (R 1) N - (C $_1$ - C $_6$) - $\mathcal{P}\mathcal{N}$ $\mp\mathcal{N}$, R 2 (O) $_n$ S - (40 $C_{1} - C_{6}$) - PN = N, $R^{1}O(O)_{2}S - (C_{1} - C_{6})$ - PN = N, $(R^{1})_{2}N$ $(0)_{2}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^{1}(0)C(R^{1})N(0)_{2}S - (C_{1} - C_{6})$ C_{6}) - PN+N, $R^{2}O(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})$ - PN+N, $(R^{1})_{2}N(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})-Ph+h, (R^{5}O)_{2}$ (O) P-(C₁-C₆)-アルキル、フェニル、ヘテロアリール、複素環、フェニル-(C₁ - C₆) - アルキル、ヘテロアリール - (C₁ - C₆) - アルキル、複素環 - (C 1 - C 6) - アルキルであり、後者の 6 個の基はそれぞれニトロ、ハロゲン、シアノ、チ オシアナト、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_{6}$) - 90 $_{1}$ 0 $_{2}$ 0 $_{3}$ 0 $_{4}$ 0 $_{5}$ 0 $_{5}$ 0 $_{5}$ 0 $_{5}$ 0 $_{7}$ 0 $_{7}$ 0 $_{1}$ 0 $_{1}$ 0 $_{2}$ 0 $_{2}$ 0 $_{3}$ 0 $_{4}$ 0 $_{5}$ 0 $_{5}$ 0 $_{5}$ 0 $_{5}$ 0 $_{7}$ $R^{2}(O)_{n}S$, $R^{1}O(O)_{2}S$, $(R^{1})_{2}N(O)_{2}S$ $\sharp L U R^{1}O$ - $(C_{1}$ -50

20

30

40

50

C ₆) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオキソ基を有しており、

Zは、水素、ニトロ、ハロゲン、シアノ、チオシアナト、(C₁-C₆)-アルキル、 $\mathsf{N} \, \mathsf{D} \, - \, (\, \mathsf{C}_{\,\, 1} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{N} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \mathcal{N} \, + \, \mathsf{D} \, \cup \, (\, \mathsf{C}_{\,\, 2} \, - \, \mathsf{C}_{\,\, 6} \,) \, - \, \mathsf{P} \, \cup \, \mathsf{D} \, \cup \, \mathsf{$ - アルケニル、 (C っ - C 6) - アルキニル、ハロ - (C 3 - C 6) - アルキニル、 (C 3 - C 6) - シクロアルキル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シクロアルキル - (C ₁ - C ₆) - アルキル、ハロ - (C ₃ - C ₆) - シクロアルキル $-(C_1 - C_6) - \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus R^1(R^1ON =)C \setminus R^1O(O)C \setminus R^1(C_1 - C_6) + \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus R^1(O)C$ $(R^{1})_{2}N(O)C, R^{1}(R^{1}O)N(O)C, (R^{1})_{2}N(R^{1})N(O)C,$ $R^{1}(O)C(R^{1})N(O)C, R^{2}O(O)C(R^{1})N(O)C, (R^{1}), N(O)C$ 0) C(R¹) N(O) C, R²(O) ₂ S(R¹) N(O) C, R¹ O(O) ₂ S(R ¹) N(O) C, (R¹), N(O), S(R¹) N(O) C, R¹O, R¹(O) CO $R^{2}(0)_{2}SO, R^{2}O(0)CO, (R^{1})_{2}N(0)CO, (R^{1})_{2}N, R^{1}$ $(O) C (R^{1}) N, R^{2} (O)_{2} S (R^{1}) N, R^{2} O (O) C (R^{1}) N, (R^{1})$ 2 N (O) C (R ¹) N, R ¹ O (O) 2 S (R ¹) N, (R ¹) 2 N (O) 2 S (R ¹) $N \times R^{2} (O)_{n} S \times R^{1} O (O)_{2} S \times (R^{1})_{2} N (O)_{2} S \times R^{1} (O) C (R^{1})_{2} S \times R^{1} (O) C (R^{1})_{3} S \times R^{1} (O) C (R^{1})_{4} S \times R^{1} (O) C (R$ ¹) N(O)₂ S, R² O(O) C(R¹) N(O)₂ S, (R¹)₂ N(O) C(R¹) N (O) ₂ S 、 (R ⁵ O) ₂ (O) P 、 R ¹ (O) C - (C ₁ - C ₆) - アルキル、 R ¹ O (O) C - (C ₁ - C ₆) - アルキル、(R ¹) ₂ N (O) C - (C ₁ - C ₆) - ア N+N, $(R^{1}O)(R^{1})N(O)C-(C_{1}-C_{6})-PN+N$, $(R^{1})_{2}N(R^{1})_{3}$ ¹) N (O) C - (C ₁ - C ₆) - アルキル、R ¹ (O) C (R ¹) N (O) C - (C ₁ $- C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C (R^{1}) N (O) C - (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{6}) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^{2} O (O) C + (C_{1} - C_{1} - C_{1}) + (C_{1} - C_$ $(R^{1})_{2}N(O)C(R^{1})N(O)C-(C_{1}-C_{6})-Ph+h, R^{2}(O)_{2}S$ $(R^{1})N(O)C - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N}, R^{1}O(O)_{2}S(R^{1})N(O)C$ - (C₁ - C₆) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} (R¹) 2 N (O) 2 S (R¹) N (O) C - (C₁ - C $_{6}$) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \mathcal{N} \mathcal{C} - $(\mathcal{C}_{1}$ - \mathcal{C}_{6}) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \mathcal{N} \mathcal{N} \mathcal{C} - $(\mathcal{C}_{1}$ - \mathcal{C}_{6}) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} $R^{1}(0)CO-(C_{1}-C_{6})-PN+N, R^{2}(0)_{2}SO-(C_{1}-C_{6})-P$ N+N, $R^{2}O(O)CO-(C_{1}-C_{6})-PN+N$, $(R^{1})_{2}N(O)CO-(C_{1}-C_{6})$ $_{1}$ - $_{6}$ $_{0}$ - $_{7}$ $_{1}$ - $_{1}$ $_{1}$ - $_{1}$ $_{2}$ $_{1}$ - $_{1}$ - $_{1}$ $_{2}$ $_{3}$ $_{1}$ - $_{1}$ $_{2}$ $_{3}$ $_{1}$ - $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{1}$ $_{4}$ $_{5}$ $_{1}$ $_{5}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$) N - (C₁ - C₆) - PN = N , R² (O) ₂ S (R¹) N - (C₁ - C₆) - PN = J_{N} , $R^{2}O(O)C(R^{1})N-(C_{1}-C_{6})-P_{N}+J_{N}$, $(R^{1})_{2}N(O)C(R^{1})$ ¹) N - (C ₁ - C ₆) - アルキル、R ¹ O (O) ₂ S (R ¹) N - (C ₁ - C ₆) - ア N+N, $(R^{1})_{2}N(O)_{2}S(R^{1})N-(C_{1}-C_{6})-PN+N$, $R^{2}(O)_{n}$ $S - (C_1 - C_6) - P N + N$, $R^1 O (O)_2 S - (C_1 - C_6) - P N + N$, (R^1))₂N(O)₂S-(C₁-C₆)-アルキル、R¹(O)C(R¹)N(O)₂S-(C₁-C₆)-アルキル、R²O(O)C(R¹)N(O)₂S-(C₁-C₆)-アル $\pm N$, $(R^{1})_{2}N(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})-PN\pm N$, (R^{5}) O)₂(O)P-(C₁-C₆)-アルキル、フェニル、ヘテロアリール、複素環、フェ ニル - (C 1 - C 6) - アルキル、ヘテロアリール - (C 1 - C 6) - アルキル、複素環 - (C₁-C₆)-アルキルであり、後者の6個の基はそれぞれニトロ、ハロゲン、シア $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$ $_{3}$ - $_{6}$) - $_{9}$ $_{9}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_$ C_1 - C_6) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオキソ基を有しており、

Wは水素、ハロゲン、ニトロ、シアノ、チオシアナト、($C_1 - C_6$) - アルキル、ハロ - ($C_1 - C_6$) - アルキル、($C_2 - C_6$) - アルケニル、ハロ - ($C_2 - C_6$) - アルケニル、($C_2 - C_6$) - アルキニル、ハロ - ($C_3 - C_6$) - アルキニル、($C_3 - C_7$) - シクロアルキル、ハロ - ($C_3 - C_7$) - シクロアルキル、($C_1 - C_6$) - アルコキシ、ハロ - ($C_1 - C_6$) - アルコキシ、ハロ - ($C_1 - C_6$) - アルコキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルキャー・($C_1 - C_6$) - アルカキャー・($C_1 - C_6$) - アルカキ

20

30

40

50

R および R はそれぞれ独立に(C $_1$ - C $_6$) - アルキル、 ハロ - (C $_1$ - C $_6$) - アルキール、 (C $_2$ - C $_6$) - アルケニル、 (C $_2$ - C $_6$) - アルケニル、 (C $_2$ - C $_6$) - アルケニル、 (C $_3$ - C $_6$) - シクロアルキル、 (C $_3$ - C $_6$) - シクロアルキル、 (C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、 ハロ - (C $_3$ - C $_6$) - シクロアルキル、 ハロ - (C $_1$ - C $_6$) - アルキル、 ハロ - (C $_1$ - C $_6$) - アルキル、 ハロ - (C $_1$ - C $_6$) - アルキル、 ステロアリールまたは複素環であり、 後者の 3 個の基はそれぞれニトロ、 ハロゲン、 シアノ、 チオシアナト、 (C $_1$ - C $_6$) - アルキル、 八口 - (C $_1$ - C $_6$) - アルキル、 (C $_3$ - C $_6$) - シクロアルキル、 R $_1$ O (O) C 、 (R $_1$) $_2$ N (O) C 、 R $_1$ O 、 (R $_1$) $_2$ N 、 R $_2$ (O) $_1$ S 、 R $_1$ O (O) $_2$ S および R $_1$ O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、 複素環は n 個のオキソ基を有しており、

またはR および R がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、各場合で N (R 1)、 O および S (O) $_n$ からなる群からの m 個の環員を含む 3 から 8 員の不飽和、半飽和もしくは飽和環を形成しており、この環は各場合で、ニトロ、ハロゲン、シアノ、チオシアナト、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、 R 1 O (O) C 、 (R 1) $_2$ N (O) C 、 R 1 O 、 (R 1) $_2$ N 、 R 2 (O) $_n$ S 、 R 1 O (O) $_2$ S 、 (R 1) $_2$ N (O) $_2$ S および R 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、この環は n 個のオキソ基を有しており、

R は、水素、(C₁-C₆)-アルキル、ハロ-(C₁-C₆)-アルキル、(C₂ - C ₆) - アルケニル、ハロ - (C ₂ - C ₆) - アルケニル、(C ₂ - C ₆) - アルキニ ル、ハロ - (C_3 - C_6) - アルキニル、(C_3 - C_6) - シクロアルキル、ハロ - (C_4 3 - C₆) - シクロアルキル、(C₃ - C₆) - シクロアルキル - (C₁ - C₆) - アル $C - (C_1 - C_6) - P N + N \setminus R^1 O(O) C - (C_1 - C_6) - P N + N \setminus (R^1)$ $_{2}$ N (O) C - (C $_{1}$ - C $_{6}$) - $_{7}$ ν + ν , N C - (C $_{1}$ - C $_{6}$) - $_{7}$ ν + ν , R 1 O - $(C_1 - C_6) - 7\nu + \nu \setminus R^1(O) CO - (C_1 - C_6) - 7\nu + \nu \setminus R^2(O)_2$ SO-(C₁-C₆)-アルキル、(R¹)₂N-(C₁-C₆)-アルキル、R¹(O) C (R ¹) N - (C ₁ - C ₆) - アルキル、R ² (O) ₂ S (R ¹) N - (C ₁ - C ₆) - アルキル、R²(O)_n S - (C₁ - C₆) - アルキル、R¹O(O)₂ S - (C₁ - C₆) - PN = N, (R¹) , N(O) , S - (C₁ - C₆) - PN = N, R¹(O) $C \setminus R^{1}O(O)C \setminus (R^{1})_{2}N(O)C \setminus R^{1}O \setminus (R^{1})_{2}N \setminus R^{2}O(O)C($ $\mathsf{R}^{\ 1}\)\ \mathsf{N}\ ,\ \left(\ \mathsf{R}^{\ 1}\ \right)\ _{2}\ \mathsf{N}\ (\ \mathsf{O}\)\ \mathsf{C}\ \left(\ \mathsf{R}^{\ 1}\ \right)\ \mathsf{N}\ ,\ \mathsf{R}^{\ 2}\ (\ \mathsf{O}\)\ _{2}\ \mathsf{S}\ ,\ \mathtt{s}\ \mathtt{t}\ \mathtt{t}\ \mathtt{t}\ \mathtt{v}\ \mathtt{v}\$ それらは各場合でメチル、エチル、メトキシ、ニトロ、トリフルオロメチルおよびハロゲ ンからなる群からのs個の基によって置換されており、

20

30

40

50

または R $^{\times}$ は、(C $_3$ - C $_7$) - シクロアルキル、ヘテロアリール、複素環またはフェニルであり、前記の 4 個の基はそれぞれ、ハロゲン、ニトロ、シアノ、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、(C $_1$ - C $_6$) - アルコキシ、ハロ - (C $_1$ - C $_6$) - アルコキシおよび(C $_1$ - C $_6$) - アルコキシ - (C $_1$ - C $_4$) - アルキルからなる群からの s 個の基によって置換されており、

 R^{Y} は、水素、(C_1 - C_6) - Pルキル、ハロ - (C_1 - C_6) - Pルキル、(C_2 - C_6) - Pルキル、ハロ - (C_2 - C_6) - Pルケニル、(C_2 - C_6) - Pルキニル、(C_3 - C_7) - P0 ロPルキル、(C_1 - C_6) - P0 ロP0 エトロ、(P1 - P1 エトロ、(P2 - P1 - P1 エトロ、(P3 - P1 - P1 - P1 - P1 - P2 - P3 - P4 - P4 - P5 - P7 - P7 - P8 - P9 - P1 - P1 - P9 - P1 - P1 - P9 - P1 - P

 R^2 は、水素、(C_1 - C_6) - Pルキル、 R^1 O - (C_1 - C_6) - Pルキル、 R^7 C H $_2$ 、(C_3 - C_7) - シクロアルキル、 Π - (C_1 - C_6) - Pルキル、(C_2 - C_6) - Pルケニル、 Π - (C_2 - C_6) - Pルケニル、 Π - (C_3 - C_6) - Pルキニル、 Π - (C_3 - C_6) - Pルキニル、 Π - (C_3 - C_6) - Pルキニル、 Π - (Π) N、メトキシカルボニル、メチルカルボニル、ジメチルアミノ、トリフルオロメチルカルボニル、アセチルアミノ、メチルスルファニル、メチルスルフィニル、メチルスルホニル、またはそれぞれ Π - Π -

 R^{-1} は、水素、(C_{-1} - C_{-6}) - アルキル、ハロ - (C_{-1} - C_{-6}) - アルキル、(C_{-2} - C ₆) - アルケニル、ハロ - (C ₂ - C ₆) - アルケニル、(C ₂ - C ₆) - アルキニ 6) - シクロアルケニル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シ クロアルキル - (C 1 - C 6) - アルキル、(C 1 - C 6) - アルキル - O - (C 1 - C 。) - アルキル、シクロアルキル - (C ₁ - C ₆) - アルキル - O - (C ₁ - C ₆) - ア ルキル、フェニル、フェニル - (C_1 - C_6) - アルキル、ヘテロアリール、ヘテロアリ ール - (C ₁ - C ₆) - アルキル、複素環、複素環 - (C ₁ - C ₆) - アルキル、フェニ ν - O - (C $_{1}$ - C $_{6}$) - ν -複素環 - O - (C ₁ - C ₆) - アルキル、フェニル - N (R ³) - (C ₁ - C ₆) - アル キル、ヘテロアリール - N (R ³) - (C ₁ - C ₆) - アルキル、複素環 - N (R ³) - $(C_1 - C_6) - PN+N$, $J_1 = N - S(O)_n - (C_1 - C_6) - PN+N$, N = N - Nアリール - S (O) _n - (C ₁ - C ₆) - アルキル、複素環 - S (O) _n - (C ₁ - C ₆) - アルキルであり、後者の15個の基はそれぞれ、ニトロ、ハロゲン、シアノ、チオシ - シクロアルキル、R³O(O)C、(R³)₂N(O)C、R³O、(R³)₂N、R 4 (O) $_n$ S、R 3 O (O) $_2$ S、(R 3) $_2$ N (O) $_2$ SおよびR 3 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオキソ 基を有しており、

20

30

40

) - アルケニル、ハロ - (C ₂ - C ₆) - アルケニル、(C ₂ - C ₆) - アルキニル、ハ ロ - (С з - С 6) - アルキニル、(С з - С 6) - シクロアルキル、(С з - С 6) -シクロアルケニル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シクロア $N+N-(C_1-C_6)-PN+N,(C_1-C_6)-PN+N-O-(C_1-C_6)-PN+N-O-(C_1-C_6)$ アルキル、シクロアルキル - (C 1 - C 6) - アルキル - O - (C 1 - C 6) - アルキル 、フェニル、フェニル - (C₁ - Cჴ) - アルキル、ヘテロアリール、ヘテロアリール -(C₁-C₆)-アルキル、複素環、複素環 - (C₁-C₆)-アルキル、フェニル - O - (C ₁ - C ₆) - アルキル、ヘテロアリール - O - (C ₁ - C ₆) - アルキル、複素環 - O - (C ₁ - C ₆) - アルキル、フェニル - N (R ³) - (C ₁ - C ₆) - アルキル、 ヘテロアリール - N (R ³) - (C ₁ - C ₆) - アルキル、複素環 - N (R ³) - (C ₁ - C ₆) - アルキル、フェニル - S (O) _n - (C ₁ - C ₆) - アルキル、ヘテロアリー ル - S (O) _n - (C ₁ - C ₆) - アルキル、複素環 - S (O) _n - (C ₁ - C ₆) - ア ルキルであり、後者の15個の基はそれぞれ、ニトロ、ハロゲン、シアノ、チオシアナト 、(C₁ - C₆) - アルキル、ハロ - (C₁ - C₆) - アルキル、(C₃ - C₆) - シク $\Box \mathcal{P} \mathcal{N} + \mathcal{N} \setminus \mathbb{R}^3 \cup (O) \subset (\mathbb{R}^3)_2 \cup (O) \subset \mathbb{R}^3 \cup (\mathbb{R}^3)_2 \cup \mathbb{R}^4 \cup (O)$ $)_{n}$ S \setminus R 3 O (O) $_{2}$ S \setminus (R 3) $_{2}$ N (O) $_{2}$ S β \downarrow \downarrow \downarrow R 3 O - (C $_{1}$ - C $_{6}$) - \nearrow ルキルからなる群からのs個の基によって置換されており、複素環はn個のオキソ基を有 しており、

R 3 は、水素、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルキニル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル・(C $_1$ - C $_6$) - アルキルまたはフェニルであり、 R 4 は、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルキニル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル・(C $_1$ - C $_6$) - アルキルまたはフェニルであり、

 R^{6} は $(C_1 - C_2) - P ルキルであり、$

 R^{5} は、水素または(C_{1} - C_{2}) - アルキルであり、

 R^{7} は、アセトキシ、アセトアミド、N-メチルアセトアミド、ベンゾイルオキシ、ベンズアミド、N-メチルベンズアミド、メトキシカルボニル、エトキシカルボニル、ベンゾイル、メチルカルボニル、ピペリジニルカルボニル、モルホリニルカルボニル、トリフルオロメチルカルボニル、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、(C_3-C_6) - シクロアルキル、またはそれぞれメチル、エチル、メトキシ、トリフルオロメチルおよびハロゲンからなる群からの s 個の基によって置換されているヘテロアリールもしくは複素環であり;

nは0、1または2であり、

 $m \downarrow 0$ $\downarrow 1$ $\downarrow 2$ $\downarrow 3$ $\downarrow 3$ $\downarrow 5$ $\downarrow 6$ $\downarrow 6$ $\downarrow 7$ \downarrow

s は 0 、 1 、 2 または 3 である。]

【請求項2】

QがQ1、Q2、Q3またはQ4基:

【化3】

であり;

X がニトロ、ハロゲン、シアノ、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) - アルキル、(C_2 - C_6) - アルケニル、(C_2 - C_6) - アルキニル、(C_3 - C_6) 50

20

30

40

50

- シクロアルキル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シクロア ルキル - (C_{1} - C_{6}) - アルキル、ハロ - (C_{3} - C_{6}) - シクロアルキル - (C_{1} - C_{6}) - PN+N, R^{1} (O) C, R^{1} (R^{1} ON =) C, R^{1} O (O) C, (R^{1}) $_{2}$ $N(O)C, R^{1}O, (R^{1})_{2}N, R^{1}(O)C(R^{1})N, R^{2}(O)_{2}S(R^{1})$ $N, R^{2}O(O)C(R^{1})N, (R^{1})_{2}N(O)C(R^{1})N, R^{2}(O)_{n}S, R$ ¹ O (O) ₂ S \ (R ¹) ₂ N (O) ₂ S \ (R ⁵ O) ₂ (O) P \ R ¹ (O) C - (C 1 - C₆) - アルキル、R¹O(O) C - (C₁ - C₆) - アルキル、(R¹)₂N(O) C - (C ₁ - C ₆) - アルキル、N C - (C ₁ - C ₆) - アルキル、R ¹ O - (C ₁ - C_{6}) - PN+N, $(R^{1})_{2}N$ - $(C_{1}-C_{6})$ - PN+N, $R^{1}(O)C(R^{1})N$ $-(C_1 - C_6) - 7N + N \times R^2(O)_2 S(R^1) N - (C_1 - C_6) - 7N + N \times R^2(O)_2 S(R^1) N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1) N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1) N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1) N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 S(R^1)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - 7N + N \times R^2(O)_2 N - (C_1 - C_6)_2 - (C_1 - C_6)_2$ $R^{2}O(O)C(R^{1})N-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N},(R^{1})_{2}N(O)C(R^{1})$ $N - (C_1 - C_6) - Ph + h \setminus R^2 (O)_n S - (C_1 - C_6) - Ph + h \setminus R^1 O (O)_n S - (O)_$ O) 2 S - (C₁ - C₆) - アルキル、(R¹) 2 N (O) 2 S - (C₁ - C₆) - アル $+ \mu$ 、 $(R^{5}O)_{2}(O)P - (C_{1} - C_{6}) - \mu + \mu$ 、 $J = \mu$ 、 $\Delta = \mu$ 、 $\Delta = \mu$ 複素環、フェニル - (C 1 - C 6) - アルキル、ヘテロアリール - (C 1 - C 6) - アル キル、複素環 - (C ₁ - C ₆) - アルキルであり、後者の 6 個の基がそれぞれ、ニトロ、 ハロゲン、シアノ、チオシアナト、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) -PN+N, $R^{1}O$, (R^{1}) , N, $R^{2}(O)$, S, $R^{1}O(O)$, S, (R^{1}) , N(O)O) $_2$ S および R 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置 換されており、複素環がn個のオキソ基を有しており、

Zが、水素、ニトロ、ハロゲン、シアノ、(C₁-C₆)-アルキル、ハロ-(C₁- C_6) - PN+N \times (C_2 - C_6) - PN+D \times (C_3 - C ₆) - シクロアルキル、ハロ - (C ₃ - C ₆) - シクロアルキル、(C ₃ - C ₆) -シクロアルキル - (C₁ - C₆) - アルキル、ハロ - (C₃ - C₆) - シクロアルキル - $(C_1 - C_6) - \mathcal{P} \mathcal{V} + \mathcal{V} \setminus R^1 (O) C \setminus R^1 (R^1 O N =) C \setminus R^1 O (O) C \setminus (O) C$ R^{1}) $_{2}$ N (O) C, R^{1} O, (R^{1}) $_{2}$ N, R^{1} (O) C (R^{1}) N, R^{2} (O) $_{2}$ S $(R^{1})N, R^{2}O(O)C(R^{1})N, (R^{1})_{2}N(O)C(R^{1})N, R^{2}(O)$ $_{n}$ S $_$ $C - (C_1 - C_6) - P N + N \setminus R^1 O (O) C - (C_1 - C_6) - P N + N \setminus (R^1)$ 2 N (O) C - (C 1 - C 6) - アルキル、N C - (C 1 - C 6) - アルキル、R 1 O - $(C_1 - C_6) - PN + N, (R^1)_2 N - (C_1 - C_6) - PN + N, R^1 (O) C($ R^{1}) $N - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N}, R^{2} (O)_{2} S (R^{1}) N - (C_{1} - C_{6}) - \mathcal{P}$ N+N, $R^{2}O(O)C(R^{1})N-(C_{1}-C_{6})-PN+N$, $(R^{1})_{2}N(O)C$ $(R^{1})N - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S + (C_{1} - C_{1})_{n}S + (C_{1} - C_{1})_{$ $R^{1}O(O)_{2}S-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N}, (R^{1})_{2}N(O)_{2}S-(C_{1}-C_{6})$) - アルキル、($R^{5}O$) $_{2}$ (O)P - (C_{1} - C_{6}) - アルキル、フェニル、ヘテロア リール、複素環、フェニル - (C ₁ - C ₆) - アルキル、ヘテロアリール - (C ₁ - C ₆) - アルキル、複素環 - (C ₁ - C ₆) - アルキルであり、後者の 6 個の基がそれぞれ、 ニトロ、ハロゲン、シアノ、チオシアナト、(C₁-C₆)-アルキル、ハロ-(C₁- C_{6}) - $PN = N \times R^{1} \times O \times (R^{1})_{2} \times N \times R^{2} \times (O)_{n} \times S \times R^{1} \times O \times (O)_{2} \times (R^{1})_{n}$) ₂ N (O) ₂ S および R ¹ O - (C ₁ - C ₆) - アルキルからなる群からの s 個の基に よって置換されており、複素環がn個のオキソ基を有しており、

Wが水素、ハロゲン、ニトロ、シアノ、($C_1 - C_6$) - アルキル、ハロ - ($C_1 - C_6$) - アルキル、($C_3 - C_7$) - シクロアルキル、($C_1 - C_6$) - アルコキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルカトン - ($C_1 - C_6$) - ($C_1 - C$

R および R がそれぞれ独立に(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル・(C $_3$ - C $_6$) - シクロアルキル・(C $_1$ - C $_6$) - アルキル、ハロ - (C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、(C $_1$ - C $_6$) - アルコキシ - (C $_1$ - C $_6$

20

30

40

50

) - アルキル、ハロ - (C_1 - C_6) - アルコキシ - (C_1 - C_6) - アルキル、フェニル、ヘテロアリールまたは複素環であり、後者の 3 個の基がそれぞれ、ニトロ、ハロゲン、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) - アルキル、 R^1 O (O) C、(R^1) $_2$ N(O)C、 R^1 O、(R^1) $_2$ N、 R^2 (O) $_n$ S および R^1 O - (C_1 - C_6) - アルキルからなる群からの s 個の基によって置換されており、複素環が n 個のオキソ基を有しており、

または R および R がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、各場合で、 N(R 1)、 O および S(O) $_n$ からなる群からの m 個の環員を含む 3 から 8 員の不飽和、半飽和もしくは飽和環を形成しており、各場合でこの環がハロゲン、(C $_1$ - C $_6$) - アルキル、 R 1 O(O) C、(R 1) $_2$ N(O) C、 R 1 O、(R 1) $_2$ N、 R 2 (O) $_n$ S、 R 1 O(O) $_2$ S、(R 1) $_2$ N(O) $_2$ S および R 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、この環が n 個のオキソ基を有しており、

R が水素であり、

 R^{\times} が(C_1 - C_6) - Pルキル、ハロ - (C_1 - C_6) - Pルキル、(C_2 - C_6) - Pルケニル、(C_2 - C_6) - Pルケニル、(C_2 - C_6) - Pルキニル、ハロ - (C_3 - C_6) - Pルキニルであり、前記の6個の基がそれぞれ、 R^2 (O) $_n$ S、(R^1) $_2$ N、 R^1 O、 $_3$ - C_6 0) $_4$ C、 $_5$ O(O)C、 $_5$ C $_6$ 0) - $_4$ C $_5$ O(O)C、 $_5$ C $_6$ 0) - $_5$ C $_6$ 0 C $_6$ 0) - $_5$ C $_6$ 0) - $_5$ C $_6$ 0 C $_7$ 0 C $_8$ 0

または R $^{\times}$ が(C $_3$ - C $_7$) - シクロアルキルであり、この基が各場合でハロゲン、(C $_1$ - C $_6$) - アルキルおよびハロ - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、

 R^{Y} が水素、(C_{1} - C_{6}) - アルキル、ハロ - (C_{1} - C_{6}) - アルキル、(C_{3} - C_{7}) - シクロアルキル、(C_{1} - C_{6}) - アルコキシ、メトキシカルボニル、メトキシカルボニルメチル、ハロゲン、アミノ、アミノカルボニルまたはメトキシメチルであり、 R^{Z} が水素、(C_{1} - C_{6}) - アルキル、 R^{1} O - (C_{1} - C_{6}) - アルキル、 R^{7} C H_{2} 、(C_{3} - C_{7}) - シクロアルキル、ハロ - (C_{1} - C_{6}) - アルキル、 R^{1} O、 R^{1} (H) N、メトキシカルボニル、アセチルアミノまたはメチルスルホニルであり、

 R^{-1} が水素、(C_{-1} - C_{-6}) - Pルキル、ハロ - (C_{-1} - C_{-6}) - Pルキル、(C_{-3} - C_{-6}) - Pルキル、(C_{-3} - C_{-6}) - P0 ロ Pルキル、(C_{-1} - C_{-6}) - Pルキル、(C_{-1} - C_{-6}) - Pルキル・ O - (C_{-1} - C_{-6}) - Pルキル・ O - (C_{-1} - C_{-6}) - Pルキル、 P0 - (P1 - P1 -

 $\begin{array}{c} R^2 \text{ \acute{n}} \times \left(\ C_1 - C_6 \right) - \text{$\rlap{$\rlap{$}$}} \times \text{$\rlap{$}$} \times \left(\ C_3 - C_6 \right) \\ - \text{$\rlap{$$$}} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_3 - C_6 \right) \\ - \text{$\rlap{$$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_3 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\ - \text{$\rlap{$}$} \times \left(\ C_1 - C_6 \right) \\$

- (C_1 - C_6) - Pルキル、複素環、複素環 - (C_1 - C_6) - Pルキル、フェニル - O - (C_1 - C_6) - Pルキル、ヘテロアリール - O - (C_1 - C_6) - Pルキル、複素環 - O - (C_1 - C_6) - Pルキルであり、後者の 9 個の基がそれぞれ、ニトロ、ハロゲン、(C_1 - C_6) - Pルキル、ハロ - (C_1 - C_6) - Pルキル、 R^3 O (O) C 、(R^3) $_2$ N (O) C 、 R^3 O 、 (R^3) $_2$ N 、 R^4 (O) $_n$ S および R^3 O - (C_1 - C_6) - Pルキルからなる群からの S 個の基によって置換されており、複素環が S の のオキソ基を有しており、

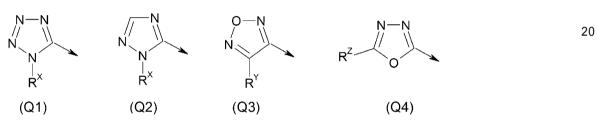
 R^3 が水素または(C_1 - C_6) - アルキルであり、

 $R^4 \dot{m} (C_1 - C_6) - T u + u c b u$

 R^{5} が水素または(C_{1} - C_{2}) - アルキルであり、

 ${\sf R}^{\ 7}$ がアセトキシ、アセトアミド、メトキシカルボニルまたは(${\sf C}_{\ 3}$ - ${\sf C}_{\ 6}$) - シクロアルキルであり、

nが0、1または2であり


mが0、1または2であり、

sが 0、 1、 2 または 3 である請求項 1 に記載のスルフィニルアミノベンズアミド。

【請求項3】

Q が Q 1 、 Q 2 、 Q 3 または Q 4 基:

【化4】

であり;

X がニトロ、ハロゲン、メチル、エチル、n - プロピル、イソプロピル、トリフルオロメチル、ジフルオロメチル、クロロジフルオロメチル、ジクロロフルオロメチル、トリクロロメチル、ペンタフルオロエチル、ヘプタフルオロイソプロピル、シクロプロピル、ヒドロキシカルボニル、メトキシカルボニル、エトキシカルボニル、メトキシ、エトキシ、メチルスルファニル、メチルスルフィニル、メチルスルホニル、メトキシメチル、エトキシメチル、メトキシエチル、メトキシエトキシメチル、メチルチオメチル、メチルスルフィニルメチルまたはメチルスルホニルメチルであり、

Zが水素、ニトロ、シアノ、ハロゲン、メチル、エチル、n - プロピル、イソプロピル、トリフルオロメチル、ジフルオロメチル、クロロジフルオロメチル、ジクロロフルオロメチル、トリクロロメチル、ペンタフルオロエチル、ヘプタフルオロイソプロピル、シクロプロピル、ヒドロキシカルボニル、メトキシカルボニル、エトキシカルボニル、メトキシ、エトキシ、メチルスルファニル、メチルスルフィニルまたはメチルスルホニルであり

Wが水素、塩素またはメチルであり、

R および R がそれぞれ独立にメチル、エチルまたは n - プロピルであり、 または

R および R がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、m 個の酸素原子を含む 5 員もしくは 6 員環を形成しており、

R が水素であり、

 R^{X} がメチル、エチル、 n - プロピル、プロプ - 2 - エン - 1 - イル、メトキシエチル、エトキシエチルまたはメトキシエトキシエチルであり、

R^Yがメチル、エチル、n-プロピル、塩素またはアミノであり、

 R^{Z} がメチル、エチル、n - プロピルまたはメトキシメチルであり、

50

30

40

mが 0 または 1 である請求項 1 または 2 に記載のスルフィニルアミノベンズアミド。

【請求項4】

除草活性含有量の少なくとも一つの請求項1から3のうちのいずれか1項に記載の式(I)の化合物を特徴とする除草剤組成物。

【請求項5】

製剤補助剤との混合物での請求項4に記載の除草剤組成物。

【請求項6】

殺虫剤、殺ダニ剤、除草剤、殺菌剤、薬害軽減剤および成長調節剤の群からの少なくと も一つの別の殺有害生物活性物質を含む請求項4または5に記載の除草剤組成物。

【請求項7】

薬害軽減剤を含む請求項6に記載の除草剤組成物。

【請求項8】

シプロスルファミド、クロキントセット - メキシル、メフェンピル - ジエチルまたはイソキサジフェン - エチルを含む請求項 7 に記載の除草剤組成物。

【請求項9】

さらに別の除草剤を含む請求項6から8のうちのいずれか1項に記載の除草剤組成物。

【請求項10】

有効量の少なくとも一つの請求項1から3のうちのいずれか1項に記載の式(I)の化合物または請求項4から9のうちのいずれか1項に記載の除草剤組成物を、植物に、または望ましくない植生の場所に施用する、望ましくない植物の防除方法。

【請求項11】

望ましくない植物を防除するための、請求項1から3のうちのいずれか1項に記載の式 (I)の化合物または請求項4から9のうちのいずれか1項に記載の除草剤組成物の使用

【請求項12】

前記式(I)の化合物を、有用植物の作物における望ましくない植物の防除に用いる、 請求項11に記載の使用。

【請求項13】

前記有用植物がトランスジェニック有用植物である請求項12に記載の使用。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、除草剤の技術分野、特別には有用植物の作物における広葉雑草およびイネ科雑草の選択的防除のための除草剤の技術分野に関するものである。

【背景技術】

[0002]

WO2011/035874A1には、除草活性N-(1,2,5-オキサジアゾール-3-イル)ベンズアミド類が開示されている。WO2004/052849A1には、フェニル環の3位にスルフィニルアミノ基を有する除草活性ベンゾイル誘導体が開示されている。しかしながら、これら刊行物に記載されている化合物の除草活性および/または作物植物適合性が常に十分であるとは限らない。

【先行技術文献】

【特許文献】

[0003]

【特許文献 1 】 W O 2 0 1 1 / 0 3 5 8 7 4 A 1

【特許文献 2 】 W O 2 0 0 4 / 0 5 2 8 4 9 A 1

【発明の概要】

【発明が解決しようとする課題】

[0004]

本発明の目的は、先行技術に開示の化合物の特性に勝る特性を有する除草活性化合物を

20

10

30

40

20

30

40

50

提供することにある。

【課題を解決するための手段】

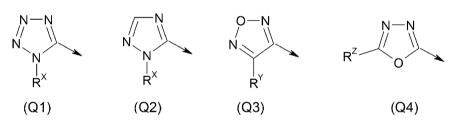
[0005]

特定のスルフィニルアミノベンズアミド類が除草剤として特に良好な好適性を有することが明らかになった。

[0006]

従って本発明は、下記式(I)のスルフィニルアミノベンズアミド類またはそれの塩を 提供する。

【化1】


 $Q \xrightarrow{N} N = S - R'$ $R'' \qquad X \qquad N = S - R'$ $Q \xrightarrow{N} \qquad (I)$

式中、

記号および指数はそれぞれ、下記のように定義され;

Q は Q 1 、 Q 2 、 Q 3 または Q 4 基:

【化2】

であり;

Xは、ニトロ、ハロゲン、シアノ、チオシアナト、(C1-C6)-アルキル、ハロ-(C₁ - C₆) - アルキル、(C₂ - C₆) - アルケニル、ハロ - (C₂ - C₆) - アル ケニル、(C_2 - C_6) - アルキニル、ハロ - (C_3 - C_6) - アルキニル、(C_3 - C_6 6) - シクロアルキル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シク $_{1}$ - C_{6}) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \ R^{1} (0) C_{x} R^{1} (R^{1} O N =) C_{x} R^{1} O (0) C_{x} (R^{1})₂N(O)C, R¹(R¹O)N(O)C, (R¹)₂N(R¹)N(O)C, R¹(O) C (R 1) N (O) C 、 R 2 O (O) C (R 1) N (O) C 、 (R 1) $_2$ N (O) C $(R^{1})N(O)C, R^{2}(O)_{2}S(R^{1})N(O)C, R^{1}O(O)_{2}S(R^{1})N$ $(O) C, (R^1)_2 N(O)_2 S(R^1) N(O) C, R^1 O, R^1 (O) CO, R^2$ $(0)_{2}SO, R^{2}O(O)CO, (R^{1})_{2}N(O)CO, (R^{1})_{2}N, R^{1}(O)$ $C(R^{1})N, R^{2}(O), S(R^{1})N, R^{2}O(O)C(R^{1})N, (R^{1}), N$ $O)C(R^{1})N, R^{1}O(O)_{2}S(R^{1})N, (R^{1})_{2}N(O)_{2}S(R^{1})N,$ R^{2} (O) $_{n}$ S, R^{1} O (O) $_{2}$ S, (R^{1}) $_{2}$ N (O) $_{2}$ S, R^{1} (O) C (R^{1}) N $(0)_{2}S, R^{2}O(0)C(R^{1})N(0)_{2}S, (R^{1})_{2}N(0)C(R^{1})N(0)_{2}$ $O)_{2}S$, $(R^{5}O)_{2}(O)P$, $R^{1}(O)C$ - $(C_{1}$ - $C_{6})$ - $\mathcal{P}\mathcal{N}$ + \mathcal{N} , $R^{1}O(C_{1})$ O) C - (C₁ - C₆) - アルキル、(R¹)₂ N(O) C - (C₁ - C₆) - アルキル $(R^{1}O)(R^{1})N(O)C-(C_{1}-C_{6})-PN+N,(R^{1})_{2}N(R^{1})N$ (O) C - (C₁ - C₆) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} \ R¹ (O) C (R¹) N (O) C - (C₁ - C₆) - アルキル、R ² O (O) C (R ¹) N (O) C - (C ₁ - C ₆) - アルキル、(R ¹

20

30

40

50

) $_{2}$ N (O) C (R 1) N (O) C - (C $_{1}$ - C $_{6}$) - $\mathcal{P}\mathcal{N}$ \neq \mathcal{N} \downarrow R 2 (O) $_{2}$ S (R 1 $_{1}$ - $_{6}$) - $_{7}$ ν + $_{1}$ ν , ($_{8}$ 1) $_{2}$ N ($_{0}$) $_{2}$ S ($_{8}$ 1) N ($_{0}$) C - ($_{1}$ - $_{6}$) -アルキル、N C - $(C_1$ - C_6) - アルキル、 R^1 O - $(C_1$ - C_6) - アルキル、 R^1 (O) CO-(C₁-C₆)-アルキル、R²(O)₂SO-(C₁-C₆)-アルキル $R^{2}O(O)CO-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N}, (R^{1})_{2}N(O)CO-(C_{1}-C_{6})$ 6) - アルキル、(R¹)₂N - (C₁ - C₆) - アルキル、R¹(O) C(R¹) N - $(C_1 - C_6) - 7N + N, R^2 (O)_2 S (R^1) N - (C_1 - C_6) - 7N + N, R$ 2 O (O) C (R 1) N - (C $_{1}$ - C $_{6}$) - $\mathcal{P}\mathcal{N}$ $\mp \mathcal{N}$ 、 (R 1) $_{2}$ N (O) C (R 1) N - (C₁ - C₆) - アルキル、R¹O(O)₂S(R¹)N - (C₁ - C₆) - アルキル $(R^{1})_{2}N(O)_{2}S(R^{1})N-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N}, R^{2}(O)_{n}S-(C_{1}-C_{6})$ $C_1 - C_6$) - PN = N, $R^1 O (O)$, $S - (C_1 - C_6)$ - PN = N, (R^1) , N $(0)_{2}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N}, R^{1}(0)C(R^{1})N(0)_{2}S - (C_{1} - C_{1})$ C_{6}) - PN+N, $R^{2}O(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})$ - PN+N, $(R^{1})_{2}N(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})-\mathcal{P}\mathcal{V}+\mathcal{V}_{N}(R^{5}O)_{2}$ (O) P-(C₁-C₆)-アルキル、フェニル、ヘテロアリール、複素環、フェニル-(C₁-C₆)-アルキル、ヘテロアリール - (C₁-C₆)-アルキル、複素環 - (C 1 - C₆) - アルキルであり、後者の6個の基はそれぞれニトロ、ハロゲン、シアノ、チ オシアナト、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) - アルキル、(C_3 - C_6 $_{6}$) - 90 $_{7}$ 0 $_{7}$ 1 $_{7}$ 1 $_{7}$ 1 $_{7}$ 1 $_{7}$ 1 $_{7}$ 2 $_{7}$ 1 $_{7}$ 2 $_{7}$ 1 $_{7}$ 2 $_{7}$ 2 $_{7}$ 2 $_{7}$ 3 $_{7}$ 3 $_{7}$ 4 $_{7}$ 5 $_{7}$ 5 $_{7}$ 7 $_{7}$ 8 $_{7}$ 9 $_{7}$ $R^{2}(O)_{n}SR^{1}O(O)_{2}SR(R^{1})_{2}N(O)_{2}SBLUR^{1}O-(C_{1}-C_{1})_{2}N(C_{1}-C_{2})_{3}$ C。) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオ キソ基を有しており、

Zは、水素、ニトロ、ハロゲン、シアノ、チオシアナト、(C₁-C₆)-アルキル、 $ND - (C_1 - C_6) - 7N + N, (C_2 - C_6) - 7N + N, (C_2 - C_6)$ - アルケニル、(C₂ - C₆) - アルキニル、ハロ - (C₃ - C₆) - アルキニル、(C $_{3}$ - $_{6}$ $_{0}$ - $_{9}$ $_{7}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ - $_{1}$ $_{2}$ $_{3}$ - $_{1}$ $_{2}$ $_{3}$ - $_{1}$ $_{2}$ $_{3}$ - $_{1}$ $_{2}$ $_{3}$ - $_{2}$ - $_{2$ - シクロアルキル - (C ₁ - C ₆) - アルキル、ハロ - (C ₃ - C ₆) - シクロアルキル $-(C_1 - C_6) - \mathcal{P} \mathcal{N} + \mathcal{N} \setminus R^1(O) C \setminus R^1(R^1ON =) C \setminus R^1O(O) C \setminus R^1(O) = (C_1 - C_6) + (C_1 - C_6) +$ $(R^{1})_{2}N(O)C, R^{1}(R^{1}O)N(O)C, (R^{1})_{2}N(R^{1})N(O)C,$ $R^{1}(O)C(R^{1})N(O)C, R^{2}O(O)C(R^{1})N(O)C, (R^{1})_{2}N(O)$ 0) C(R¹) N(O) C, R²(O) ₂ S(R¹) N(O) C, R¹ O(O) ₂ S(R ¹) N (O) C 、 (R ¹) ₂ N (O) ₂ S (R ¹) N (O) C 、 R ¹ O 、 R ¹ (O) C O $R^{2}(0)_{2}SO, R^{2}O(0)CO, (R^{1})_{2}N(0)CO, (R^{1})_{2}N, R^{1}$ $(O) C (R^{1}) N, R^{2} (O)_{2} S (R^{1}) N, R^{2} O (O) C (R^{1}) N, (R^{1})$ 2 N (O) C (R ¹) N, R ¹ O (O) 2 S (R ¹) N, (R ¹) 2 N (O) 2 S (R ¹) $N \times R^{2} (O)_{n} S \times R^{1} O (O)_{2} S \times (R^{1})_{2} N (O)_{2} S \times R^{1} (O) C (R^{1})_{2} S \times R^{1} (O) C (R^{1})_{3} S \times R^{1} (O) C (R^{1})_{4} S \times R^{1} (O) C (R$ ¹)N(O)₂S、R²O(O)C(R¹)N(O)₂S、(R¹)₂N(O)C(R¹) N (O) ₂ S 、 (R ⁵ O) ₂ (O) P 、 R ¹ (O) C - (C ₁ - C ₆) - アルキル、 R ¹ O (O) C - (C ₁ - C ₆) - アルキル、(R ¹) ₂ N (O) C - (C ₁ - C ₆) - ア N+N, $(R^{1}O)(R^{1})N(O)C-(C_{1}-C_{6})-PN+N$, $(R^{1})_{2}N(R^{1})$ - C ₆) - アルキル、R ² O (O) C (R ¹) N (O) C - (C ₁ - C ₆) - アルキル、 $(R^{1})_{2}N(O)C(R^{1})N(O)C-(C_{1}-C_{6})-Ph+h, R^{2}(O)_{2}S$ $(R^{1})N(O)C - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N}, R^{1}O(O)_{2}S(R^{1})N(O)C$ - (C₁ - C₆) - $\mathcal{P}\mathcal{N}$ + \mathcal{N} (R¹) 2 N (O) 2 S (R¹) N (O) C - (C₁ - C \backslash R 1 (O)CO-(C $_1$ -C $_6$)- $\mathcal{T}\mathcal{N}$ $\pm\mathcal{N}$ \backslash R 2 (O) $_2$ SO-(C $_1$ -C $_6$)- \mathcal{T} $_{1}$ - $_{6}$ $_{0}$ - $_{7}$ $_{1}$ + $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ - $_{1}$ $_{2}$ $_{1}$ $_{1}$ - $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{1}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$

20

30

50

) N - (C₁ - C₆) - アルキル、R²(O)₂ S(R¹) N - (C₁ - C₆) - アルキ $\mathbb{N} \setminus \mathbb{R}^2 \cup (0) \cup (\mathbb{R}^1) \cup (\mathbb{R}^1)$ 1) N - (C₁ - C₆) - \mathcal{P} \mathcal{N} + \mathcal{N} \ R \ \ O (O) \ 2 S (R \ \ 1) N - (C₁ - C₆) - \mathcal{P} ルキル、(R^{1}) $_{2}$ N (O) $_{2}$ S (R^{1}) N - (C_{1} - C_{6}) - アルキル、 R^{2} (O) $_{n}$ $S - (C_1 - C_6) - Ph + h \setminus R^1 O(O)_2 S - (C_1 - C_6) - Ph + h \setminus (R^1)_2 S - (C_1 - C_6)_3 - Ph + h \setminus (R^1)_3 S - (R^1)_4 S - (R^1)_5 S$) $_2$ N (O) $_2$ S - (C $_1$ - C $_6$) - $\mathcal{P}\mathcal{N}$ $\mp \mathcal{N}$ 、 R 1 (O) C (R 1) N (O) $_2$ S - ($C_1 - C_6$) - $\mathcal{P}\mathcal{N} + \mathcal{N}$, $R^2 O (O) C (R^1) N (O) 2 S - (C_1 - C_6) - \mathcal{P}\mathcal{N}$ $\pm N$, $(R^{1})_{2}N(O)C(R^{1})N(O)_{2}S-(C_{1}-C_{6})-PN\pm N$, (R^{5}) O)₂(O)P-(C₁-C₆)-アルキル、フェニル、ヘテロアリール、複素環、フェ ニル - (C 1 - C 6) - アルキル、ヘテロアリール - (C 1 - C 6) - アルキル、複素環 - (C₁ - C₆) - アルキルであり、後者の 6 個の基はそれぞれニトロ、ハロゲン、シア ノ、チオシアナト、(C₁ - C₆) - アルキル、ハロ - (C₁ - C₆) - アルキル、(C $_{3}$ - $_{6}$) - $_{9}$ $_{9}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_$) 2 N、R ² (O) n S、R ¹ O (O) 2 S、(R ¹) 2 N (O) 2 SおよびR ¹ O - (C 1 - C 6) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオキソ基を有しており、

Wは水素、ハロゲン、ニトロ、シアノ、チオシアナト、($C_1 - C_6$) - アルキル、ハロ - ($C_1 - C_6$) - アルキル、($C_2 - C_6$) - アルケニル、ハロ - ($C_2 - C_6$) - アルケニル、($C_2 - C_6$) - アルキニル、ハロ - ($C_3 - C_6$) - アルキニル、($C_3 - C_7$) - シクロアルキル、ハロ - ($C_3 - C_7$) - シクロアルキル、($C_1 - C_6$) - アルコキシ、ハロ - ($C_1 - C_6$) - アルコキシ、($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - アルキル、($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - ハロアルキル、 $C_1 - C_4$) - アルキル、($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - ハロアルキル、 ($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - ハロアルキル、 ($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - ハロアルキル 、 ($C_1 - C_4$) - アルキル 、 ($C_1 - C_6$) - アルコキシ - ($C_1 - C_4$) - ハロアルキル 、 ($C_1 - C_4$) - ハロアルキル ・ ($C_1 - C_4$) - ハロアル ・ (C_1

R および R はそれぞれ独立に(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキール、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルケニル、(C $_3$ - C $_6$) - シクロアルキル、八口 - (C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、ハロ - (C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、ステロアリールまたは複素環であり、後者の3個の基はそれぞれニトロ、ハロゲン、シアノ、チオシアナト、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、 R $_1$ O (O) C 、 (R $_1$) $_2$ N (O) C 、 R $_1$ O 、 (R $_1$) $_2$ N 、 R $_2$ (O) $_6$ S 、 R $_1$ O (O) $_6$ S 個の基によって置換されており、複素環は n 個のオキソ基を有しており、

またはRおよびR がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、各場合でN(R 1)、OおよびS(O) $_n$ からなる群からのm個の環員を含む 3 から 8 員の不飽和、半飽和もしくは飽和環を形成しており、この環は各場合で、ニトロ、ハロゲン、シアノ、チオシアナト、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、R 1 O(O) C、(R 1) $_2$ N(O) C、R 1 O、(R 1) $_2$ N、R 2 (O) $_n$ S、R 1 O(O) $_2$ S、(R 1) $_2$ N(O) $_2$ SおよびR 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、この環は n 個のオキソ基を有しており、

R は、水素、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) - アルキル、(C_2 - C_6) - アルケニル、ハロ - (C_2 - C_6) - アルケニル、(C_2 - C_6) - アルキニル、(C_3 - C_6) - シクロアルキル、ハロ - (C_3 - C_6) - シクロアルキル、(C_3 - C_6) - シクロアルキル - (C_1 - C_6) - アルキル、ハロ - (C_3 - C_6) - シクロアルキル - (C_1 - C_6) - アルキル、 C_1 - C_1 -

20

30

40

50

または R $^{\times}$ は、(C $_3$ - C $_7$) - シクロアルキル、ヘテロアリール、複素環またはフェニルであり、前記の 4 個の基はそれぞれ、ハロゲン、ニトロ、シアノ、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、(C $_1$ - C $_6$) - アルコキシ、ハロ - (C $_1$ - C $_6$) - アルコキシおよび(C $_1$ - C $_6$) - アルコキシ - (C $_1$ - C $_4$) - アルキルからなる群からの s 個の基によって置換されており、

 R^{Y} は、水素、(C_{1} - C_{6}) - Pルキル、ハロ - (C_{1} - C_{6}) - Pルキル、(C_{2} - C_{6}) - Pルケニル、ハロ - (C_{2} - C_{6}) - Pルケニル、(C_{2} - C_{6}) - Pルケニル、(C_{2} - C_{6}) - Pルキニル、(C_{3} - C_{6}) - Pルキニル、(C_{3} - C_{7}) - P0 - P0

 R^{2} は、水素、(C_{1} - C_{6}) - Pルキル、 R^{1} O - (C_{1} - C_{6}) - Pルキル、 R^{7} C H $_{2}$ 、(C_{3} - C_{7}) - シクロアルキル、八口 - (C_{1} - C_{6}) - Pルキル、(C_{2} - C_{6}) - Pルケニル、八口 - (C_{2} - C_{6}) - Pルケニル、八口 - (C_{3} - C_{6}) - Pルキニル、 R^{1} O 、 R^{1} (H) N、メトキシカルボニル、エトキシカルボニル、メチルカルボニル、ジメチルアミノ、トリフルオロメチルカルボニル、アセチルアミノ、メチルスルファニル、メチルスルフィニル、メチルスルホニル、またはそれぞれハロゲン、ニトロ、シアノ、(C_{1} - C_{6}) - Pルキル、八口 - (C_{1} - C_{6}) - Pルキル、(C_{3} - C_{6}) - Pルキル、(C_{1} - C_{6}) - Pルキル・S (O) C_{1} - C_{6}) - C_{1} - C_{2} 0 - C_{1} - C_{2} 0 - $C_$

20

30

40

50

れているヘテロアリール、複素環、ベンジルもしくはフェニルであり、複素環はn個のオキソ基を有しており、

 R^{1} は、水素、(C_{1} - C_{6}) - アルキル、ハロ - (C_{1} - C_{6}) - アルキル、(C_{5} - C 。) - アルケニル、ハロ - (C , - C 。) - アルケニル、(C , - C 。) - アルキニ 。) - シクロアルケニル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シ 6) - アルキル、シクロアルキル - (C 1 - C 6) - アルキル - O - (C 1 - C 6) - ア ルキル、フェニル、フェニル - (C_1 - C_6) - アルキル、ヘテロアリール、ヘテロアリ ール - (C ₁ - C ₆) - アルキル、複素環、複素環 - (C ₁ - C ₆) - アルキル、フェニ $N - O - (C_1 - C_6) - PN + N, \land PDP - N - O - (C_1 - C_6) - PN + N,$ 複素環 - O - (C 1 - C 6) - アルキル、フェニル - N (R ³) - (C 1 - C 6) - アル キル、ヘテロアリール - N (R ³) - (C ₁ - C ₆) - アルキル、複素環 - N (R ³) -(C₁-C₆)-アルキル、フェニル-S(O)_n-(C₁-C₆)-アルキル、ヘテロ アリール - S (O) n - (C 1 - C 6) - アルキル、複素環 - S (O) n - (C 1 - C 6) - アルキルであり、後者の15個の基はそれぞれ、ニトロ、ハロゲン、シアノ、チオシ - シクロアルキル、R ³ O (O) C 、 (R ³) ₂ N (O) C 、 R ³ O 、 (R ³) ₂ N 、 R ⁴ (0) _n S、R ³ O (0) ₂ S、(R ³) ₂ N (O) ₂ SおよびR ³ O - (C₁ - C₆) - アルキルからなる群からの s 個の基によって置換されており、複素環は n 個のオキソ 基を有しており、

 \Box - (C_3 - C_6) - Zシクロアルケニル、ハロ - (C 3 - C 6) - シクロアルキル、(C 3 - C 6) - シクロア $N+N-(C_1-C_6)-7N+N,(C_1-C_6)-7N+N-O-(C_1-C_6)-7N+N-O-(C_1-C_6)$ アルキル、シクロアルキル - ($C_{\ 1}$ - $C_{\ 6}$) - アルキル - $O_{\ -}$ ($C_{\ 1}$ - $C_{\ 6}$) - アルキル 、フェニル、フェニル - (C $_1$ - C $_6$) - アルキル、ヘテロアリール、ヘテロアリール -(C ₁ - C ₆) - アルキル、複素環、複素環 - (C ₁ - C ₆) - アルキル、フェニル - O - (C 1 - C 6) - アルキル、ヘテロアリール - O - (C 1 - C 6) - アルキル、複素環 - O - (C ₁ - C ₆) - アルキル、フェニル - N (R ³) - (C ₁ - C ₆) - アルキル、 ヘテロアリール - N (R ³) - (C ₁ - C ₆) - アルキル、複素環 - N (R ³) - (C ₁ - C ₆) - アルキル、フェニル - S (O) _n - (C ₁ - C ₆) - アルキル、ヘテロアリー ル - S (O) _n - (C ₁ - C ₆) - アルキル、複素環 - S (O) _n - (C ₁ - C ₆) - ア ルキルであり、後者の15個の基はそれぞれ、ニトロ、ハロゲン、シアノ、チオシアナト 、 (C ₁ - C ₆) - アルキル、ハロ - (C ₁ - C ₆) - アルキル、 (C ₃ - C ₆) - シク $\Box \mathcal{P} \mathcal{N} + \mathcal{N} \setminus \mathbb{R}^3 \cup (O) \subset (\mathbb{R}^3), \mathcal{N}(O) \subset \mathbb{R}^3 \cup (\mathbb{R}^3), \mathcal{N} \setminus \mathbb{R}^4 \cup (\mathbb{R}^3)$) n S、R 3 O (O) 2 S、 (R 3) 2 N (O) 2 SおよびR 3 O - (C 1 - C 6) - ア ルキルからなる群からのs個の基によって置換されており、複素環はn個のオキソ基を有 しており、

R 3 は、水素、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルキニル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル・(C $_1$ - C $_6$) - アルキルまたはフェニルであり、 R 4 は、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_2$ - C $_6$) - アルケニル、(C $_2$ - C $_6$) - アルキニル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル・(C $_1$ - C $_6$) - アルキルまたはフェニルであり、

R⁵は、水素または(C₁ - C₄) - アルキルであり、

 $\mathsf{R}^{\ 6}\ \mathsf{L}\ (\ \mathsf{C}_{\ 1}\ -\ \mathsf{C}_{\ 4}\)\ -\ \mathcal{P}\mathcal{N}\ +\ \mathcal{N}\ \mathcal{C}\ \mathcal{S}\ \mathcal{O}\ .$

 R^{-7} は、アセトキシ、アセトアミド、N-メチルアセトアミド、ベンゾイルオキシ、ベンズアミド、N-メチルベンズアミド、メトキシカルボニル、エトキシカルボニル、ベン

20

30

40

50

ゾイル、メチルカルボニル、ピペリジニルカルボニル、モルホリニルカルボニル、トリフルオロメチルカルボニル、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、(C₃-C₆)-シクロアルキル、またはそれぞれメチル、エチル、メトキシ、トリフルオロメチルおよびハロゲンからなる群からのs個の基によって置換されているヘテロアリールもしくは複素環であり;

nは0、1または2であり、

s は 0 、 1 、 2 または 3 である。

【発明を実施するための形態】

[0007]

式(I)および下記の全ての式において、2個より多い炭素原子を有するアルキル基は、直鎖または分岐であることができる。アルキル基は、例えばメチル、エチル、n‐もしくはイソプロピル、n‐、イソ‐、tert‐もしくは2‐ブチル、ペンチル類、ヘキシル類、例えばn‐ヘキシル、イソヘキシルおよび1,3‐ジメチルブチルである。同様に、アルケニルは例えば、アリル、1‐メチルプロプ‐2‐エン‐1‐イル、2‐メチルプロプ‐2‐エン‐1‐イル、1‐メチルプト‐3‐エン‐1‐イルである。アルキニルは、例えばプロパルギル、ブト‐2‐イン‐1‐イル、ブト‐3‐イン‐1‐イル、ガト‐3‐イン‐1‐イル、ブト‐3‐イン‐1‐イル、ガト‐3‐イン‐1‐イル、ガト‐3‐イン‐1‐イル、ガト‐3‐イン‐1・イル、1・メチルブト‐3‐イン‐1・イルである。多重結合は、不飽和基のいずれの位置にあっても良い。シクロアルキルは3から6個の炭素原子を有する炭素環式飽和環系であるり、例えばシクロプロピル、シクロブチル、シクロペンチルまたはシクロヘキセニルである。同様に、シクロアルケニルは3から6個の炭素環員を有する単環式アルケニル基、例えばシクロプロペニル、シクロブテニル、シクロペンテニルおよびシクロヘキセニルであり、二重結合はいずれの位置にあっても良い。

[00008]

ハロゲンは、フッ素、塩素、臭素またはヨウ素である。

[0009]

複素環は、3から6個の環原子を含む飽和、半飽和または完全不飽和環状基であり、その環原子のうち1から4個は酸素、窒素および硫黄の群からのものであり、この環はさらにベンゾ環によって縮合されていても良い。例えば、複素環は、ピペリジニル、ピロリジニル、テトラヒドロフラニル、ジヒドロフラニルおよびオキセタニルである。

[0010]

ヘテロアリールは、3から6個の環原子を含む芳香族環状基であり、その環原子のうちの1から4個は酸素、窒素および硫黄の群からのものであり、この環はさらにベンゾ環によって縮合されていても良い。例えば、ヘテロアリールは、ベンズイミダゾール・2・イル、フラニル、イミダゾリル、イソオキサゾリル、イソチアゾリル、オキサゾリル、チアゾリル、ピリミジニル、ピリダジニル、ピリジニル、ベンゾイソオキサゾリル、チアゾリル、ピロリル、ピラゾリル、チオフェニル、1,2,3・オキサジアゾリル、1,2,4・オキサジアゾリル、1,2,5・トリアゾリル、1,2,4・トリアゾリル、1,2,5・トリアゾリル、1,3,4・トリアゾリル、1,2,3・トリアゾリル、1,2,5・チアジアゾリル、1,3,4・チアジアゾリル、1,2,3・チアジアゾリル、1,2,3,4・テトラゾリル、1,2,3,4・テトラゾリル、1,2,3,4・テトラゾリル、1,2,3,4・チアトリアゾリル、1,2,3,4・チアトリアゾリル、1,2,3,4・チアトリアゾリル、1,2,3,4・チアトリアゾリル、1,2,3,4・チアトリアゾリルよび1,2,3,5・チアトリアゾリルである。

[0011]

ある基が遊離基によって多置換されている場合、それは、この基が、言及されているものからの1以上の同一もしくは異なる遊離基によって置換されていることを意味する。これは、各種原子および要素による環系の形成にも同様に当てはまる。同時に、特許請求の範囲は、標準的な条件下で化学的に不安定であることが当業者に公知である化合物を除外

20

30

50

するものである。

[0012]

置換基の性質および結合に応じて、一般式(I)の化合物は立体異性体として存在する場合がある。例えば 1 以上の不斉置換された炭素原子が存在する場合、エナンチオマーおよびジアステレオマーがあっても良い。同様に、S (O) $_n$ 部分における n が 1 である場合、立体異性体が存在する。同様に、R および R 基が異なって定義される場合、立体異性体が存在する。立体異性体は、一般的な分離方法によって、例えばクロマトグラフィー分離方法によって、製造された混合物から得ることができる。光学活性な出発原料および/または補助剤を用いる立体選択的反応を用いることで、立体異性体を選択的に製造することも同様に可能である。本発明は、一般式(I)によって包含されているが具体的には定義されていない全ての立体異性体およびそれらの混合物に関するものでもある。

[0013]

式(I)の化合物は塩を形成することができる。塩は、例えばR の場合に酸性水素原子を有する式(I)の化合物に対する塩基の作用によって形成することができる。好のな塩基は、例えばトリアルキルアミン類、モルホリン、ピペリジンまたはピリジンなどの有機アミン類、さらにはアンモニウム、アルカリ金属もしくはアルカリ土類金属の水酸化物、炭酸塩および炭酸水素塩、特に水酸化ナトリウムおよびカリウム、炭酸ナトリウムおよびカリウム、炭酸ナトリウムおよびカリウムである。これらの塩は、特性水素が農業的に好適なカチオンによって置き換わっている化合物、例えば金属塩、特にはナトリウムおよびカリウム塩、 あるはアルカリ金属塩もしくはアルカリ土類金属塩、特にはナトリウムおよびカリウム塩、 のえば式 [NRRR * * * R***] * (R、R*、R** * * * はそれぞれ独立に有機基、特にはアルキル、アリール、アラルキルまたはアルキルアリールである。)のカチオンとの塩である。アルキルスルホニウムおよびアルキルスルホキソニウム塩、例えば(C 1 ・ C 4)・トリアルキルスルホキソニウム塩も有用である。

[0014]

式(I)の化合物は、好適な無機もしくは有機酸、例えばHCl、HBr、H $_2$ SО $_4$ 、H $_3$ РО $_4$ またはHNО $_3$ などの鉱酸、または有機酸、例えばギ酸、酢酸、プロピオン酸、シュウ酸、乳酸もしくはサリチル酸などのカルボン酸、またはスルホン酸類、例えば $_2$ トルエンスルホン酸を加えることで、塩基性基、例えばアミノ、アルキルアミノ、ジアルキルアミノ、ピペリジノ、モルホリノもしくはピリジノで塩を形成することができる。これらの塩は、アニオンとしての酸の共役塩基を含む。

[0015]

好ましいものは、

QがQ1、Q2、Q3またはQ4基:

【化3】

$$N = N$$
 $N = N$
 $N =$

であり;

20

30

40

50

 C_{6}) - $\mathcal{P}\mathcal{N}$ + \mathcal{N}_{1} (O) C_{1} R_{1} (R 1 ON =) C_{1} R_{1} O (O) C_{2} (R 1) C_{2} $N(O) C \setminus R^{1} O \setminus (R^{1})_{2} N \setminus R^{1}(O) C (R^{1}) N \setminus R^{2}(O)_{2} S (R^{1})$ $N \times R^{2}O(O)C(R^{1})N \times (R^{1})_{2}N(O)C(R^{1})N \times R^{2}(O)_{n}S \times R^{2}$ 1 O (O) $_{2}$ S $_{5}$ (R 1) $_{2}$ N (O) $_{2}$ S $_{5}$ (R 5 O) $_{2}$ (O) P $_{5}$ R 1 (O) C - (C $_{1}$ - $_{6}$ $_{0}$ - $_{7}$ $_{1}$ - $_{1}$ $_{1}$ - $_{1}$ $_{1}$ - $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$) C - (C ₁ - C ₆) - アルキル、N C - (C ₁ - C ₆) - アルキル、R ¹ O - (C ₁ - $-(C_1 - C_6) - 7N + N \times R^2 (O)_2 S (R^1) N - (C_1 - C_6) - 7N + N \times R^2 (O)_2 S (R^3) N - (C_1 - C_6) - 7N + N \times R^3 (O)_2 S (C_1 - C_6) - (C_1 - C_6)$ $R^{2}O(O)C(R^{1})N-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N},(R^{1})_{2}N(O)C(R^{1})$ $N - (C_1 - C_6) - Ph + h \setminus R^2 (O)_n S - (C_1 - C_6) - Ph + h \setminus R^1 O ($ O) $_2$ S - (C $_1$ - C $_6$) - $\mathcal{P}\mathcal{N}$ \neq \mathcal{N} (R 1) $_2$ N (O) $_2$ S - (C $_1$ - C $_6$) - $\mathcal{P}\mathcal{N}$ キル、(R⁵O)₂(O) P-(C₁-C₆)-アルキル、フェニル、ヘテロアリール、 複素環、フェニル - (C ₁ - C ₆) - アルキル、ヘテロアリール - (C ₁ - C ₆) - アル キル、複素環 - (C 1 - C 6) - アルキルであり、後者の 6 個の基がそれぞれ、ニトロ、 ハロゲン、シアノ、チオシアナト、(C_1 - C_6) - アルキル、ハロ - (C_1 - C_6) - $P \mathcal{V} + \mathcal{V}$, $R^{1} O$, $(R^{1})_{2} N$, $R^{2} (O)_{n} S$, $R^{1} O (O)_{2} S$, $(R^{1})_{2} N (O)_{n} S$ O) $_2$ S および R 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置 換されており、複素環がn個のオキソ基を有しており、

Zが、水素、ニトロ、ハロゲン、シアノ、(C ₁ - C ₅) - アルキル、ハロ - (C ₁ - C_{6}) - PN+N $(C_{2}$ - C_{6}) - PN+N $(C_{2}$ - C_{6}) - PN+N $(C_{3}$ - C ₆) - シクロアルキル、ハロ - (C ₃ - C ₆) - シクロアルキル、(C ₃ - C ₆) -シクロアルキル - (C 1 - C 6) - アルキル、ハロ - (C 3 - C 6) - シクロアルキル - $(C_1 - C_6) - \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus R^1(R^1ON =)C \setminus R^1O(O)C \setminus (C_1 - C_6) + \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus R^1(O)C \setminus (C_1 - C_6) + \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus (C_1 - C_6) + \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus (C_1 - C_6) + \mathcal{P}\mathcal{N} + \mathcal{N} \setminus R^1(O)C \setminus (C_1 - C_6)C \setminus (C_1 - C_6)$ R^{1}) $_{2}N(O)C, R^{1}O, (R^{1}), N, R^{1}(O)C(R^{1})N, R^{2}(O), S$ $(R^{1})N, R^{2}O(O)C(R^{1})N, (R^{1})_{2}N(O)C(R^{1})N, R^{2}(O)$ $_{n}$ S, R 1 O (O) $_{2}$ S, (R 1) $_{2}$ N (O) $_{2}$ S, (R 5 O) $_{2}$ (O) P, R 1 (O) $C - (C_1 - C_6) - PN + N \setminus R^1 O(O) C - (C_1 - C_6) - PN + N \setminus (R^1)$ $_{2}$ N (O) C - (C $_{1}$ - C $_{6}$) - $_{7}$ ν + ν , N C - (C $_{1}$ - C $_{6}$) - $_{7}$ ν + ν , R 1 O - $(C_1 - C_6) - 7\nu + \nu, (R^1)_2 N - (C_1 - C_6) - 7\nu + \nu, R^1(O)C($ R^{1}) N - (C₁ - C₆) - \mathcal{P} N + \mathcal{N} \ R^{2} (O) ₂ S (R^{1}) N - (C₁ - C₆) - \mathcal{P} ルキル、R 2 O (O) C (R 1) N - (C $_1$ - C $_6$) - アルキル、(R 1) $_2$ N (O) C $(R^{1})N - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{6}) - \mathcal{P}\mathcal{N} + \mathcal{N} \cdot R^{2}(O)_{n}S - (C_{1} - C_{1})_{n}S - (C_{1} - C_{1})_{$ $R^{1}O(O)_{2}S-(C_{1}-C_{6})-\mathcal{P}\mathcal{N}+\mathcal{N}, (R^{1})_{2}N(O)_{2}S-(C_{1}-C_{6})$) - アルキル、(R⁵O)₂(O)P - (C₁ - C₆) - アルキル、フェニル、ヘテロア リール、複素環、フェニル - (C ₁ - C ₆) - アルキル、ヘテロアリール - (C ₁ - C ₆) - アルキル、複素環 - (C₁ - C₆) - アルキルであり、後者の 6 個の基がそれぞれ、 ニトロ、ハロゲン、シアノ、チオシアナト、(C₁-C₆)-アルキル、ハロ-(C₁- C_{6}) - $PN = N \times R^{1} \times O \times (R^{1})_{2} \times N \times R^{2} \times (O)_{n} \times S \times R^{1} \times O \times (O)_{2} \times (R^{1})_{n}$) ₂ N (O) ₂ S および R ¹ O - (C ₁ - C ₆) - アルキルからなる群からの s 個の基に よって置換されており、複素環がn個のオキソ基を有しており、

Wが水素、ハロゲン、ニトロ、シアノ、($C_1 - C_6$) - アルキル、ハロ - ($C_1 - C_6$) - アルキル、($C_3 - C_7$) - シクロアルキル、($C_1 - C_6$) - アルコキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルキル - ($C_1 - C_6$) - アルカキシ、($C_1 - C_6$) - アルカトン - ($C_1 - C_6$) - ($C_1 - C$

R および R がそれぞれ独立に(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル、(C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、ハロ - (C $_3$ - C $_6$) - シクロアルキル - (C $_1$ - C $_6$) - アルキル、(C $_1$ - C $_6$) - アルコキシ - (C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルコキシ - (C $_1$ - C $_6$) - アルキル、フェニル、ヘテロアリールまたは複素環であり、後者の3個の基がそれぞれ、ニトロ、ハロゲン

20

30

40

50

、(C_1 - C_6) - Pルキル、Nロ - (C_1 - C_6) - Pルキル、 R^1 O (O) C、(R^1) $_2$ N (O) C、 R^1 O 、(R^1) $_2$ N 、 R^2 (O) $_n$ S および R^1 O - (C_1 - C_6) - Pルキルからなる群からの S 個の基によって置換されており、複素環が S 個のオキソ基を有しており、

または R および R がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、各場合で、 N(R 1)、 O および S(O) $_n$ からなる群からの m 個の環員を含む 3 から 8 員の不飽和、半飽和もしくは飽和環を形成しており、各場合でこの環がハロゲン、(C $_1$ - C $_6$) - アルキル、 R 1 O(O) C、(R 1) $_2$ N(O) C、 R 1 O、(R 1) $_2$ N、 R 2 (O) $_n$ S、 R 1 O(O) $_2$ S、(R 1) $_2$ N(O) $_2$ S および R 1 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、この環が n 個のオキソ基を有しており、

R が水素であり、

または R $^{\times}$ が(C $_3$ - C $_7$) - シクロアルキルであり、この基が各場合でハロゲン、(C $_1$ - C $_6$) - アルキルおよびハロ - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、

 R^{Y} が水素、(C_{1} - C_{6}) - アルキル、ハロ - (C_{1} - C_{6}) - アルキル、(C_{3} - C_{7}) - シクロアルキル、(C_{1} - C_{6}) - アルコキシ、メトキシカルボニル、メトキシカルボニルメチル、ハロゲン、アミノ、アミノカルボニルまたはメトキシメチルであり、 R^{Z} が水素、(C_{1} - C_{6}) - アルキル、 R^{1} O - (C_{1} - C_{6}) - アルキル、 R^{7} C H_{2} 、(C_{3} - C_{7}) - シクロアルキル、ハロ - (C_{1} - C_{6}) - アルキル、 R^{1} O、 R^{1} O、 R^{2} C R^{3} C R^{2} C R^{3} C R^{4} C R^{4} C R^{5} C

 R^{-1} が水素、(C_{-1} - C_{-6}) - Pルキル、ハロ - (C_{-1} - C_{-6}) - Pルキル、(C_{-3} - C_{-6}) - Pルキル、(C_{-3} - C_{-6}) - P0 ロ Pルキル、(C_{-1} - C_{-6}) - P0 ロ Pルキル - (P_{-1} - P_{-6} 0) - Pルキル、 P_{-1} 0 - (P_{-1} 0 - P_{-1} 1 - P_{-1} 1 - P_{-1} 2 - P_{-1} 3 - P_{-1} 4 - P_{-1} 4 - P_{-1} 5 - P_{-1} 5 - P_{-1} 6 - P_{-1} 7 - P_{-1} 7 - P_{-1} 7 - P_{-1} 8 - P_{-1} 8 - P_{-1} 9 - P_{-1} 9 - P_{-1} 9 - P_{-1} 1 - P_{-1} 2 - P_{-1} 2 - P_{-1} 3 - P_{-1} 3 - P_{-1} 4 - P_{-1} 3 - P_{-1} 4 - P_{-1}

 R^2 が、(C_1 - C_6) - Pルキル、ハロ - (C_1 - C_6) - Pルキル、(C_3 - C_6) - シクロアルキル、(C_3 - C_6) - シクロアルキル、(C_3 - C_6) - シクロアルキル - (C_1 - C_6) - Pルキル - (C_1 - C_6) - Pルキル、シクロアルキル - (C_1 - C_6) - Pルキル、 O - (C_1 - C_6) - Pルキル、 O - (O - O

環 - O - (C $_1$ - C $_6$) - アルキルであり、後者の 9 個の基がそれぞれ、ニトロ、ハロゲン、(C $_1$ - C $_6$) - アルキル、ハロ - (C $_1$ - C $_6$) - アルキル、R 3 O (O) C 、(R 3) $_2$ N (O) C 、R 3 O 、(R 3) $_2$ N 、R 4 (O) $_n$ S および R 3 O - (C $_1$ - C $_6$) - アルキルからなる群からの s 個の基によって置換されており、複素環が n 個のオキソ基を有しており、

 R^3 が水素または(C_1 - C_6) - アルキルであり、

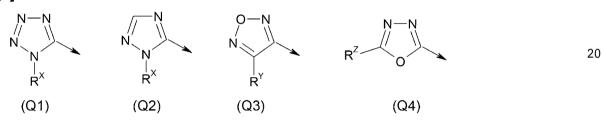
 $R^4 \dot{m} (C_1 - C_6) - T u + u c b u$

 R^{5} が水素または(C_{1} - C_{4}) - アルキルであり、

R 7 がアセトキシ、アセトアミド、メトキシカルボニルまたは(C $_{3}$ - C $_{6}$) - シクロアルキルであり、

nが0、1または2であり

mが0、1または2であり、


sが0、1、2または3である一般式(I)の化合物である。

[0016]

特に好ましいものは、

QがQ1、Q2、Q3またはQ4基:

【化4】

であり;

X がニトロ、ハロゲン、メチル、エチル、n - プロピル、イソプロピル、トリフルオロメチル、ジフルオロメチル、クロロジフルオロメチル、ジクロロフルオロメチル、トリクロロメチル、ペンタフルオロエチル、ヘプタフルオロイソプロピル、シクロプロピル、ヒドロキシカルボニル、メトキシカルボニル、エトキシカルボニル、メトキシ、エトキシ、メチルスルファニル、メチルスルフィニル、メチルスルホニル、メトキシメチル、エトキシメチル、メトキシエチル、メトキシエトキシメチル、メチルチオメチル、メチルスルフィニルメチルまたはメチルスルホニルメチルであり、

Zが水素、ニトロ、シアノ、ハロゲン、メチル、エチル、n - プロピル、イソプロピル、トリフルオロメチル、ジフルオロメチル、クロロジフルオロメチル、ジクロロフルオロメチル、トリクロロメチル、ペンタフルオロエチル、ヘプタフルオロイソプロピル、シクロプロピル、ヒドロキシカルボニル、メトキシカルボニル、エトキシカルボニル、メトキシ、エトキシ、メチルスルファニル、メチルスルフィニルまたはメチルスルホニルであり

Wが水素、塩素またはメチルであり、

R および R がそれぞれ独立にメチル、エチルまたは n - プロピルであり、

または

R および R がそれらが結合している硫黄原子とともに、炭素原子は別として、そしてスルホキシイミノ基の硫黄原子は別として、m 個の酸素原子を含む 5 員もしくは 6 員の飽和環を形成しており、

R が水素であり、

 R^{-X} がメチル、エチル、 n^{-1} プロピル、プロプ -2^{-1} - 2^{-1} - イル、メトキシエチル、エトキシエチルまたはメトキシエトキシエチルであり、

R^Vがメチル、エチル、n-プロピル、塩素またはアミノであり、

 R^{Z} がメチル、エチル、n - プロピルまたはメトキシメチルであり、

mが0または1である一般式(I)の化合物である。

10

30

30

40

50

[0017]

QがQ1またはQ2である本発明の化合物は、例えば図式1に示した方法により、ベンゾイルクロライド(II)の5-アミノ-1H-1,2,4-トリアゾールまたは5-アミノ-1H-テトラゾール(III)との塩基触媒反応によって製造することができる。

[0018]

図式 1【化5】

[0019]

ここで、BはCHまたはNである。

[0020]

式(II)のベンゾイルクロライドまたはそれの親安息香酸は基本的に公知であり、例えばWO2004/052849A1、WO2008/035737A1、WO2009/116290A1、WO2010/016230A1およびUS2011/0144345A1に記載の方法によって製造することができる。

[0021]

QがQ1またはQ2である本発明の化合物は、図式2に示した方法により、式(IV)の安息香酸の5-アミノ-1H-1,2,4-トリアゾールまたは5-アミノ-1H-テトラゾール(III)との反応によっても製造することができる。

[0022]

図式 2

【化6】

[0023]

[0024]

QがQ1またはQ2である本発明の化合物は、図式3に示した方法により、N-(1H-1,2,4-トリアゾール-5-イル)ベンズアミドまたはN-(1H-テトラゾール-5-イル)ベンズアミドの変換によっても製造することができる。

30

[0025]

図式 3

【化7】

[0026]

図式 3 に示したこの反応において、塩基の存在下にハロゲン化アルキルもしくはスルホン酸アルキルまたは硫酸ジアルキルなどのアルキル化剤を用いることが可能である。

[0027]

式(III)の5-Pミノ-1H-Fトラゾールは市販されているか、文献から公知の方法と同様にして製造することができる。例えば、置換された5-Pミノテトラゾールは Journal of the American Chemical Society (1954), 76, 923-924に記載の方法によってアミノテトラゾールから 製造することができる。

【化8】

$$\frac{1}{N}$$
 $\frac{N}{N}$ $\frac{1}{N}$ $\frac{1$

[0028]

上記の反応において、Xはヨウ素などの脱離基である。置換された 5 - アミノテトラゾールは、例えばJournal of the American Chemical Society(1954)76, 88 - 89に記載の方法に従って合成することもできる。

【化9】

[0029]

式(III)の5-アミノ-1H-トリアゾールは市販されているか、文献から公知の方法と同様にして製造することができる。例えば、置換された5-アミノトリアゾールは、Zeitschrift fur Chemie(1990), 30(12), 436-437に記載の方法によってアミノトリアゾールから製造することができる。

【化10】

[0030]

置換された 5 - アミノトリアゾールは、例えば Chemische Berichte (1964), 97(2), 396-404に記載の方法によって合成することもで きる。

【化11】

$$\begin{array}{c|c} H & H \\ \hline \\ N & N \\ N & N \\ \hline \\ H & N \\ \end{array}$$

[0031]

置換された 5 - アミノトリアゾールは、例えば Angewand te Chemie (1963), 75, 918に記載の方法に従って合成することもできる。

【化12】

[0032]

QがQ3である本発明の化合物は、例えば図式4に示した方法により、ベンゾイルクロライド(II)の4・アミノ・1 , 2 , 5 - オキサジアゾール(VI)との塩基触媒反応によって製造することができる。

[0033]

図式4

【化13】

[0034]

本発明の化合物は、図式 5 に記載の方法により、式(IV)の安息香酸の 4 - アミノ - 1 , 2 , 5 - オキサジアゾール(VI)との反応によって製造することもできる。

[0035]

50

10

20

20

30

50

<u>図式 5</u> 【化 1 4】

[0036]

活性化のために、代表的にはアミド化反応に使用される脱水試薬、例えば1,1 - カルボニルジイミダゾール(CDI)、ジシクロヘキシルカルボジイミド(DCC)、2,4,6-トリプロピル-1,3,5,2,4,6-トリオキサトリホスフィナン2,4,6-トリオキサイド(T3P)などを用いることができる。

[0037]

式(VI)の4-アミノ-1,2,5-オキサジアゾールは市販されているか公知であるか、文献から公知の方法と同様にして製造することができる。

[0038]

例えば、3-アルキル-4-アミノ-1,2,5-オキサジアゾールは、Russian Chemical Bulletin, Int. Ed., vol. 54,4, p.1032-1037(2005)に記載の方法によって -ケトエステル類から製造することができる。

【化15】

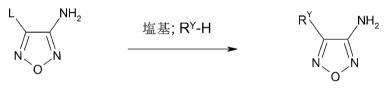
[0039]

3-アリール・4-アミノ・1,2,5-オキサジアゾール類は、例えばRussian Chemical Bulletin, 54(4), 1057-1059, (2005)またはIndian Journal of Chemistry, Section B:Organic Chemistry Including Medicinal Chemistry, 26B(7), 690-2(1987)に記載の方法に従って合成することができる。

【化16】

$$N$$
 OH N OH

[0040]


3 - アミノ - 4 - ハロ - 1 , 2 , 5 - オキサジアゾール類は、Heteroatom Chemistry 15(3), 199-207(2004)に記載の方法に従って 、例えば市販の3,4-ジアミノ - 1 ,2,5-オキサジアゾールからのサンドマイヤー 反応によって製造することができる。

【化17】

[0041]

求核性 R Y 基は、Journal of Chemical Research, Synopses, (6), 190, 1985またはIzvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, (9), 2086-8, 1986またはRussian Chemical Bulletin (Translation of Izvestiya Akademii Nauk, Seriya Khimicheskaya), 53(3), 596-614, 2004に記載の方法に従って、脱離基Lの置換によって3-アミノ-1,2,5-オキサジアゾールに導入することができる。Lは例えば塩素、臭素、ヨウ素、メシルオキシ、トシルオキシ、トリフルオロスルホニルオキシなどの脱離基である。

【化18】

[0042]

QがQ4である本発明の化合物は、例えば図式6に示した方法により、ベンゾイルクロライド(II)の2・アミノ・1 ,3 ,4 - オキサジアゾール(VII)との塩基触媒反応によって製造することができる。

[0043]

図式 6

【化19】

[0044]

本発明の化合物は、図式 7 に記載の方法により、式(IV)の安息香酸の 2 - アミノ - 1 , 3 , 4 - オキサジアゾール(VII)との反応によって製造することもできる。

[0 0 4 5]

図式 7

10

30

40

【化20】

$$R^{Z}$$
 $N-N$ $N=S-R'$ 活性化 R^{Z} $N-N$ $N=S-R'$ $N-N$ $N=S-R'$ $N-N$ $N=S-R'$ N

[0046]

活性化のために、代表的にはアミド化反応に用いられる脱水試薬、例えば1,1 - カルボニルジイミダゾール(CDI)、ジシクロヘキシルカルボジイミド(DCC)、2,4,6-トリプロピル-1,3,5,2,4,6-トリオキサトリホスフィナン2,4,6-トリオキサイド(T3P)などを用いることが可能である。

[0047]

本発明の化合物は、図式8に記載の方法により、式VIIIの化合物の環化によって製造することもできる。

[0048]

<u>図式8</u> 【化21】

[0049]

環化はSynth. Commun. 31 (12), 1907-1912(2001)またはIndian J. Chem., Section B:Organic Chemistry Including Medicinal Chemistry; Vol. 43(10), 2170-2174(2004)に記載の方法によって行うことができる。

[0050]

図式 9

【化22】

[0051]

図式8で使用される式(VIII)の化合物は、Synth. Commun. 25 50

20

30

40

(12), 1885-1892(1995)に記載の方法により、式(X)のアシルイ ソチオシアネート式(IX)のヒドラジドとの反応によって製造することができる。

[0052]

置換基 R が水素以外である本発明の化合物は、例えば、図式 1 0 に示した方法に従って、N-(1,2,5-オキサジアゾール-3-イル)-、N-(1,3,4-オキサジアゾール-2-イル)-、N-(テトラゾール-5-イル)-またはN-(トリアゾール-5-イル)アリールカルボキサミド(I)の一般式(XI)の化合物(Lは脱離基、例えば塩素、臭素、ヨウ素、メシルオキシ、トシルオキシ、トリフルオロスルホニルオキシなどである。)との反応によって製造することができる。

[0053]

図式10

[0054]

式(XI)の化合物は市販されているか、文献に記載の公知の方法によって製造することができる。

[0055]

本発明の化合物は、図式 1 1 に示した方法に従って、例えば 1 . Het. Chem. (1972), 9(1), 107-109に記載の方法に従い、式 (XII)のアミンの酸クロライド (II) との反応によって製造することもできる。

[0056]

図式11

[0057]

本発明の化合物は、図式12に示した方法に従って、式(XII)のアミンの式(IV)の酸との反応によって製造することもできる。

[0058]

図式 1 2

10

30

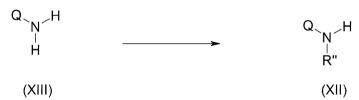
20

【化25】

$$Q$$
 N H $N=S-R'$ 活性化 Q N N $N=S-R'$ Q Q N Q

[0059]

活性化のため、代表的にはアミド化反応に使用される脱水試薬、例えば 1 , 1 · - カルボニルジイミダゾール(C D I)、ジシクロヘキシルカルボジイミド(D C C)、2 , 4 , 6 - トリプロピル - 1 , 3 , 5 , 2 , 4 , 6 - トリオキサイド(T 3 P) などを用いることができる。


[0060]

式(XII)のアミンは市販されているか、文献で公知であり、または例えば図式 1 3 に記載の方法により、塩基触媒アルキル化により、または還元的アミノ化により、または図式 1 4 に記載の方法に従って、アミンR - N H $_2$ (L は脱離基、例えば塩素、臭素、ヨウ素、メシルオキシ、トシルオキシ、トリフルオロスルホニルオキシなどである。)による脱離基 L の求核置換によって製造することができる。

[0061]

図式13

【化26】

[0062]

図式14

【化27】

[0063]

式(XII)のアミン類は、例えば、Q=Q1の場合にJ. Org. Chem. 73(10), 3738-3744(2008)に、またはQ=Q4の場合にBuletinul Institutului Politehnic din lasi (1974), 20(1-2), 95-99にまたはJ. Org. Chem. 67(21), 7361-7364(2002)に記載の環化反応によって製造することもできる。

[0064]

反応段階の順序を変えることが適切な場合もある。例えば、スルホキシドを有する安息香酸は、その酸塩化物に直接変換することはできない。その場合、最初に、チオエーテル段階でアミドを製造し、次にチオエーテルを酸化してスルホキシドとすることが望ましい。ベンズアミド段階で、合成手順終了までにスルホキシイミンを発生させないことが有利

20

10

30

40

20

30

40

50

である可能性がある。

[0065]

個々の反応混合物の後処理は、公知の方法により、例えば結晶化により、水系抽出後処理により、クロマトグラフィー法により、またはこれら方法の組み合わせにより行う。

[0066]

上記の反応によって合成可能な式(I)の化合物および/またはそれの塩の群は並行して製造することもでき、その場合にそれは、手動、部分自動または完全自動で行うことが可能である。例えば、反応の実施、後処理または生成物および/または中間体の精製を自動化することが可能である。全体としてそれは、例えば、D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (editor Gunther Jung), Wiley 1999, on pages 1 to 34によって記載の手順を意味するものと理解される。

[0067]

反応および後処理の並行実施については、多くの市販の装置、例えばBarnstead International, Dubuque, Iowa 52004-0797, USAからのCalpyso反応プロックまたはRadleys, Shirehill, Saffron Walden, Essex, CB 11 3AZ, Englandからの反応ステーション、またはPerkin Elmer, Waltham, Massachusetts 02451, USAからのMultiPROBE自動化ワークステーションを用いることが可能である。一般式(I)の化合物およびそれの塩または製造途中で生じる中間体の並行精製の場合、利用可能な装置には、例えばISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USAからのクロマトグラフィー装置などがある。

[0068]

詳細に挙げた装置は、個々の作業段階を自動化するモジュラー式手順となるが、作業段階間では手動操作を行わなければならない。これは、個々の自動化モジュールを例えばロボットによって運転する部分もしくは完全統合自動化システムを用いることで回避することができる。この種類の自動化システムは、例えばCaliper, Hopkinton, MA 01748, USAから購入することができる。

[0069]

単一合成段階または複数の合成段階の実行は、ポリマー担持試薬/捕捉剤樹脂を用いることで支援することができる。専門文献には、例えばChemFiles, Vol. 4, No. 1, Polymer-Supported Scavengers and Reagents for Solution-Phase Synthesis (Sigma-Aldrich)に一連の実験プロトコールが記載されている。

[0070]

本明細書に記載の方法は別として、一般式(I)の化合物およびそれの塩は、固体相担持法によって完全にまたは部分的に製造することができる。これに関しては、その合成または相当する手順に適合させた合成における個々の中間体または全ての中間体を、合成樹脂に結合させる。固体相担持合成法については、例えばBarry A. Buninin The Combinatorial Index , Academic Press, 1998 and Combinatorial Chemistry -Synthesis, Analysis, Screening (編者Gunther Jung), Wiley, 1999などの技術文献に詳細に説明されている。固体相担持合成法を使用することで、文献から公知の多くのプロトコールが可能となり、それらもやはり手動でまたは自動的に行うことができる。これらの反応は、NexusBiosystems, 12140 Community Road, Poway, CA92064, USAからのマイクロリアクターでのIRORI技術によって行うことができる。

20

30

40

50

[0071]

固体相または液体相のいずれでも、単一もしくは複数の合成段階の実施を、マイクロ波技術を用いることで支援することができる。専門文献には、一連の実験プロトコールが記載されており、例えばMicrowaves in Organic and Medicinal Chemistry (編者C. O. KappeおよびA. Stadler), Wiley, 2005にある。

[0072]

本明細書に記載の方法による製造によって、ライブラリと称される物質の収集物の形態で式(I)の化合物およびそれの塩が得られる。本発明は、少なくとも2種類の式(I)の化合物およびそれらの塩を含むライブラリも提供するものである。

[0073]

式(I)の本発明の化合物(および/またはそれの塩)は、下記において総称して「本発明の化合物」とも称され、広いスペクトラムの経済的に重要な単子葉および双子葉一年生雑草植物に対して優れた除草抗力を有する。その有効成分は、防除が困難であり、根茎、根株または他の多年生の器官から苗条を生じる多年生の雑草植物に対しても良好な防除を行う。

[0074]

従って、本発明はまた、望ましくない植物を防除する方法または好ましくは作物植物において植物の成長を調節する方法を提供するものであり、ここで1以上の本発明の化合物を、植物(例えば雑草植物、例えば単子葉または双子葉の雑草または望ましくない作物)、種子(例えば穀類、種子または塊茎のような栄養繁殖体(vegetative propagules)または芽が出た苗条部分)または植物が成長する区画(例えば栽培下の区画)に施用する。本発明の化合物は、例えば播種前(適切な場合、土壌中に組み込むことによっても)、発芽前または発芽後に施用することができる。本発明の化合物によって防除することができる単子葉および双子葉の雑草相のいくつかの代表的なものの具体例は下記の通りであるが、列挙が特定の種類への限定を強いるものではない。

[0075]

単子葉有害植物の属:エギロプス属(Aegilops)、カモジグサ属(Agrop yron)、コヌカグサ属(Agrostis)、スズメノテッポウ属(Alopecu rus)、セイヨウヌカボ属(Apera)、カラスムギ属(Avena)、ニクキビ属 (Brachiaria)、スズメノチャヒキ属(Bromus)、クリノイガ属(Ce n c h r u s)、ツユクサ属(Commelina)、ギョウギシバ属(Cynodon)、カヤツリグサ属(Cyperus)、タツノツメガヤ属(Dactylocteni um)、メヒシバ属(Digitaria)、ヒエ属(Echinochloa)、ハリ イ属(Eleocharis)、オヒシバ属(Eleusine)、カゼクサ属(Era grostis)、ナルコビエ属(Eriochloa)、ウシノケグサ属(Festu ca)、テンツキ属(Fimbristylis)、アメリカコナギ属(Heteran thera)、チガヤ属(Imperata)、カモノハシ属(Ischaemum)、 アゼガヤ属(Leptochloa)、ドクムギ属(Lolium)、ミズアオイ属(M onochoria)、キビ属(Panicum)、スズメノヒ工属(Paspalum)、クサヨシ属(Phalaris)、アワガエリ属(Phleum)、イチゴツナギ属 (Poa)、ツノアイアシ属(Rottboellia)、オモダカ属(Sagitta ria)、アブラガヤ属(Scirpus)、エノコログサ属(Setaria)、モロ コシ属(Sorghum)。

[0076]

<u>双子葉雑草の属</u>:イチビ属(Abutilon)、ヒユ属(Amaranthus)、ブタクサ属(Ambrosia)、アノダ属(Anoda)、カミツレモドキ属(Anthemis)、アファネス(Aphanes)、ヨモギ属(Artemisia)、アトリプレックス属(Atriplex)、ヒナギク属(Bellis)、センダングサ属(Bidens)、ナズナ属(Capsella)、ヒレアザミ属(Carduus)、ナ

20

30

40

50

ンバンサイカチ属(Cassia)、ヤグルマギク属(Centaurea)、アカザ属 (Chenopodium)、アザミ属(Cirsium)、セイヨウヒルガオ属(Co nvolvulus)、チョウセンアサガオ属(Datura)、ヌスビトハギ属(De smodium)、エメックス(Emex)、エゾスズシロ属(Erysimum)、ト ウダイグサ属(Euphorbia)、チシマオドリコソウ属(Galeopsis)、 コゴメギク属(Galinsoga)、ヤエムグラ属(Galium)、フヨウ属(Hi biscus)、サツマイモ属(Ipomoea)、ホウキギ属(Kochia)、オド リコソウ属(Lamium)、マメグンバイナズナ属(Lepidium)、アゼナ属(Lindernia)、シカレギク属(Matricaria)、ハッカ属(Menth a)、ヤマアイ属(Mercurialis)、ムルゴ(Mullugo)、ワスレナグ サ属 (M y o s o t i s)、ケシ属 (P a p a v e r)、アサガオ属 (P h a r b i t i s)、オオバコ属(Plantago)、タデ属(Polygonum)、スベリヒユ属 (Portulaca)、キンポウゲ属(Ranunculus)、ダイコン属(Rap hanus)、イヌガラシ属(Rorippa)、キカシグサ属(Rotala)、スイ バ属(Rumex)、オカヒジキ属(Salsola)、キオン属(Senecio)、 ツノクサネム属(Sesbania)、キンゴジカ属(Sida)、シロガラシ属(Si napis)、ナス属(Solanum)、ハチジョウナ属(Sonchus)、ナガボ ノウルシ属(Sphenoclea)、ハコベ属(Stellaria)、タンポポ属(Taraxacum)、グンバイナズナ属(Thlaspi)、ジャジクソウ属(Tri folium)、イラクサ属(Urtica)、クワガタソウ属(Veronica)、 スミレ属(Viola)、オナモミ属(Xanthium)。

[0077]

本発明の化合物が発芽前に土壌表面に施用される場合、雑草実生の発生が完全に防止されるか、雑草はそれらが子葉期に到達するまで成長するが、そこで成長を停止し、最終的に3から4週間経過した後、完全に枯死する。

[0078]

有効成分が植物の緑色部分に発芽後施用される場合、同様に、処置後に成長は停止し、 そして雑草植物は、施用時の成長段階にとどまるか、または一定期間の後、完全に枯死す るために、作物にとって有害である雑草との競合が、非常に早期にかつ持続的になくなる

[0079]

本発明の化合物は単子葉および双子葉の雑草に対して優れた除草活性を有するが、経済 的に重要な作物の作物、例えばラッカセイ属(Arachis)、フダンソウ属(Bet a)、アブラナ属(Brassica)、キュウリ属(Cucumis)、カボチャ属(Cucurbita)、ヒマワリ属(Helianthus)、ニンジン属(Daucu s)、ダイズ属(Glycine)、ワタ属(Gossypium)、サツマイモ属(I pomoea)、アキノノゲシ属(Lactuca)、アマ属(Linum)、トマト属 (Lycopersicon)、タバコ属(Nicotiana)、インゲンマメ属(P haseolus)、エンドウ属(Pisum)、ナス属(Solanum)、ソラマメ 属(Vicia)の双子葉作物、またはネギ属(Allium)、アナナス属(Anan as)、アスパラガス属(Asparagus)、カラスムギ属(Avena)、オオム ギ属(Hordeum)、イネ属(Oryza)、キビ属(Panicum)、サトウキ ビ属(Saccharum)、ライムギ属(Secale)、モロコシ属(Sorghu m)、ライコムギ属(Triticale)、コムギ属(Triticum)、トウモロ コシ属(Zea)、特にはトウモロコシ属およびコムギ属の単子葉作物は、個々の本発明 の化合物の構造およびその施用量に応じて、あったとしてもわずかの程度しか損傷を受け ない。そのため、本化合物は、農業上有用な植物または観賞植物などの植物作物における 望ましくない植物成長を選択的に防除する上で非常に適している。

[0800]

さらに、本発明の化合物は、(それらの特定の構造および適用される施用量に応じて)

20

30

40

50

作物において優れた成長調節性を有する。それは、調節的効果で植物自体の代謝に介入するので、植物成分を制御するために、そして、例えば乾燥および成長阻害を誘発することによる収穫向上に使用することができる。さらに、それは、植物を枯死させることなく望ましくない植物成長を抑制および阻害するのにも適している。植物成長の阻害は、例えばそれによって倒伏を減らすかまたは完全に防止することができることから、多くの単子葉作物および双子葉作物において重要な役割を果たす。

[0081]

また、有効成分は、その除草性および植物成長調節性のため、遺伝子操作された植物の作物または従来の突然変異誘発によって改変された植物において有害植物を防除するのに使用することもできる。一般に、トランスジェニック植物は、特別な有利な性質において、例えばある種の農薬、特にある種の除草剤に対する抵抗性、植物病害または植物病害を引き起こす生物体、例えばある種の昆虫もしくは微生物、例えば真菌、細菌もしくはウイルスに対する抵抗性を特徴とする。他の特定の性質は、例えば収穫物の量、品質、貯蔵性、組成および具体的な成分に関係する。例えば、デンプン含量が増加したもしくはデンプン品質が変わったトランスジェニック植物または収穫物において異なる脂肪酸組成を有するものが知られている。

[0082]

有用植物および観賞植物の経済的に重要なトランスジェニック作物、例えばコムギ、オオムギ、ライムギ、カラスムギ、キビ/モロコシ、イネ、キャッサバおよびトウモロコシのような穀物または他にテンサイ、ワタ、ダイズ、アブラナ、ジャガイモ、トマト、エンドウおよび他の野菜の作物において本発明の化合物またはそれの塩を使用することが好ましい。好ましくは、除草剤の植物毒性効果に対して抵抗性であるか組換え手段によって抵抗性となった有用植物の作物において除草剤として、本発明の化合物を使用することが可能である。

[0083]

今日までに生じた植物と比較して改変された性質を有する新規植物を製造する従来法は、例えば、従来の育種法および突然変異体の生成である。別法として、改変された性質を有する新規植物は、組換え法を用いて形成することができる(例えば、EP-A-0221044、EP-A-0131624参照)。例えば、下記のような多くの記述がなされている。

[0084]

- 植物中で合成されるデンプンを変性させることを目的とした作物の組換え改変(例えばWO 92/11376、WO 92/14827、WO 91/19806)、
- グルホシネート型(例えば、 E P A 0 2 4 2 2 3 6、 E P A 2 4 2 2 4 6 参照)またはグリホセート型(WO 9 2 / 0 0 3 7 7)またはスルホニル尿素型(E P A 0 2 5 7 9 9 3、 U S A 5 0 1 3 6 5 9)の特定の除草剤に対して抵抗性であるトランスジェニック作物、
- 植物を特定の有害生物に対して抵抗性とするバチルス・チューリンゲンシス毒素(Bt毒素)を産生する能力を有するトランスジェニック作物(例えばワタ)(EP-A-0142924、EP-A-0193259)、
- 改変された脂肪酸組成を有するトランスジェニック作物(WO 91/13972)
- 新規の成分または二次代謝産物で遺伝子操作された作物、例えば耐病性が高められた 新規のフィトアレキシン(EPA 309862、EPA0464461)、
- より多い収穫量およびより高いストレス耐性を特徴とする光呼吸が低下した遺伝子組換え植物(EPA 0305398)、
- 医薬的または診断的に重要なタンパク質を産生するトランスジェニック作物(「分子ファーミング(molecular pharming)」)、
 - より高い収率またはより良好な品質を特徴とするトランスジェニック作物
 - 例えば前記の新規性質の組み合わせを特徴とするトランスジェニック作物(「遺伝子

スタッキング」)。

[0085]

改変された性質を有する新規なトランスジェニック植物を製造するのに用いることができる多くの分子生物学的技術が基本的に知られており、例えばI.Potrykus and G.Spangenberg (編) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg.またはChristou, Trends in Plant Science 1 (1996) 423-431)を参照する。

[0086]

このような組換え操作においては、突然変異誘発またはDNA配列の組換えによる配列改変を可能にする核酸分子を、プラスミド中に導入することができる。標準的な方法を用いて、例えば、塩基交換を行うことができる。DNA断片を互いに連結するために、断片にアダプターまたはリンカーを付着させることができる。Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY;または、Winnacker Gene und Klone [Genes and Clones], VCH Weinheim 2nd edition, 1996を参照する。

[0087]

例えば、遺伝子産物において活性が低下した植物細胞の製造は、少なくとも一つの適切なアンチセンスRNAまたは共抑制効果を達成するためのセンスRNAの発現によって、または具体的には前記の遺伝子産物の転写産物を切断する少なくとも一つの適切に構築されたリボザイムの発現によって達成することができる。そのためには、第1に、存在するあらゆる隣接配列を含む遺伝子産物のコード配列全てを含むDNA分子、あるいはコード配列の一部のみを含むDNA分子を使用することができ、その場合に、これらの部分は、細胞にアンチセンス効果をもたらすのに十分長い必要がある。また、遺伝子産物のコード配列と高度に相同性を有するが、それと完全に同一なわけではないDNA配列を用いることもできる。

[0088]

植物中で核酸分子を発現するとき、合成されたタンパク質は、植物細胞のいずれかの区画に局在化してもよい。しかしながら、特定の区画での局在化を行うには、例えば、特定の区画での局在化を確保するDNA配列とコード領域を連結させることが可能である。そのような配列は、当業者には公知である(例えば、Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988),846-850; Sonnewald et al., Plant J. 1 (1991), 95-106参照)。また、核酸分子は、植物細胞の細胞小器官で発現させることもできる。

[0089]

トランスジェニック植物細胞は、植物全体を与える公知の技術によって再生することができる。基本的に、トランスジェニック植物は、あらゆる所望の植物種、すなわち単子葉と双子葉の両方の植物であることもできる。

[0090]

例えば、相同性(=生来の)遺伝子もしくは遺伝子配列の過剰発現、抑制もしくは阻害または非相同性(=外来の)遺伝子もしくは遺伝子配列の発現によって、性質が変わったトランスジェニック植物を得ることができる。

[0091]

10

20

30

20

30

40

50

好ましくは、例えばジカンバのような成長調節剤に対してまたは必須の植物酵素、例えばアセト乳酸シンターゼ(ALS)、EPSPシンターゼ、グルタミンシンターゼ(GS)もしくはヒドロキシフェニルピルビン酸ジオキシゲナーゼ(HPPD)を阻害する除草剤に対して、またはスルホニル尿素、グリホセート類、グルホシネート類またはベンゾイルイソオキサゾールおよび類似の有効成分の群からの除草剤、またはこれら活性化合物のいずれかの組み合わせに対して抵抗性であるトランスジェニック作物において、本発明の化合物を使用することができる。

[0092]

本発明による有効成分をトランスジェニック作物に使用するとき、他の作物で認められる雑草に対する効果が生じるだけでなく、特定のトランスジェニック作物における施用に対して特有の効果、例えば防除することができる雑草スペクトルの変更もしくは具体的には拡大、施用に用いることができる施用量の変更、好ましくはトランスジェニック作物が抵抗性である除草剤との良好な併用性(combinability)ならびにトランスジェニック作物の成長および収穫量の影響もある。

[0093]

従って、本発明は、トランスジェニック作物において雑草植物を防除するための除草剤としての本発明の化合物の使用を提供する。

[0094]

本発明の化合物は、水和剤、乳剤、噴霧液、粉剤または粒剤の形態で慣用の製剤で施用することができる。従って、本発明は、本発明の化合物を含む除草および植物成長調節組成物をも提供する。

[0095]

本発明の化合物は、生理的および/または物理化学的パラメータが必要な各種形態で製剤することができる。可能な製剤の例としては、水和剤(WP)、水溶剤(SP)、水溶性濃縮物、乳剤(EC)、乳濁液(EW)、例えば水中油および油中水型乳濁液、噴霧液、懸濁液の濃縮物(SC)、油もしくは水に基づく分散液、油剤、カプセル懸濁液(CS)、粉剤(DP)、種子粉衣製品、散布および土壌施用の粒剤、微粒剤の形態の粒剤(GR)、噴霧粒剤、被覆粒剤および吸着粒剤、水分散性粒剤(WG)、水溶性粒剤(SG)、ULV製剤、マイクロカプセルならびに口ウなどがある。

[0096]

これらの個々の製剤タイプは基本的に公知であり、例えば、Winnacker-Kuechler, Chemische Technologie [Chemical Technology], 第7巻, C. Hanser Verlag Munich, 第4版 1986, Wade van Valkenburg, Pesticide Formulations , Marcel Dekker, N.Y., 1973; K. Martens, Spray Drying Handbook, 第3版 1979, G. Goodwin Ltd. Londonに記載されている。

[0097]

また、不活性材料、界面活性剤、溶媒およびさらなる添加剤のような必要な製剤補助剤も知られており、例えばWatkins, Handbook of Insecticide Dust Diluents and Carriers, 第2版, Darland Books, Caldwell N. J.; H. v. Olphen, Introduction to Clay Colloid Chemistry; 第2版, J. Wiley & Sons, N.Y.; C. Marsden, Solvents Guide; 第2版, Interscience, N.Y. 1963; McCutcheon s Detergents and Emulsifiers Annual , MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, Encyclopedia of Surface Active Agents , Chem. Publ

20

30

40

50

. Co. Inc., N.Y. 1964; Schoenfeldt, Grenzflaechenaktive Aethylenoxidaddukte [I nterface-active ethylene oxide adducts], Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Kuechler, Chemische Technologie, 第7巻, C.Hanser Verlag Munich, 第4版 1986.に記載されている。

[0098]

これらの製剤に基づいて、例えば最終製剤の形態でまたはタンクミックスとして、例えば殺虫剤、殺ダニ剤、除草剤、殺菌剤などの他の農薬活性物質と、そして薬害軽減剤、肥料および/または成長調節剤との組み合わせ剤を製造することも可能である。好適な薬害軽減剤は、例えばメフェンピル・ジエチル、シプロスルファミド(cyprosulfamide)、イソキサジフェン・エチル、クロキントセット・メキシルおよびジクロルミドである。

[0099]

水和剤は、水中に均一に分散可能であり、そして有効成分に加えて、希釈剤または不活性物質は別として、イオン型および / またはノニオン型界面活性剤(湿潤剤、分散剤)、例えばポリオキシエチル化アルキルフェノール、ポリオキシエチル化脂肪族アルコールポリグリコールエーテルサルフェート、アルカンスルホン酸エステル、アルキルベンゼンスルホン酸エステル、リグノスルホン酸ナトリウム、2,2 - ジナフチルメタン - 6,6 - ジスルホン酸ナトリウム、ジブチルナフタレンスルホン酸ナトリウムまたは他にオレオイルメチルタウリン酸ナトリウムを含む製剤である。水和剤を製造するには、除草有効成分を、例えばハンマーミル、ブロワミルおよびエアジェットミルのような慣用の装置中で微粉砕し、そして同時にまたはその後で製剤補助剤と混合する。

[0100]

乳剤は、有効成分を有機溶媒、例えばブタノール、シクロヘキサノン、ジメチルホルムアミド、キシレンまたは他に比較的高沸点の芳香族もしくは炭化水素または有機溶媒の混合物中に溶解し、1以上のイオン系および/またはノニオン系界面活性剤(乳化剤)を添加することによって製造される。使用可能な乳化剤の例は、アルキルアリールスルホン酸カルシウム塩、例えばドデシルベンゼンスルホン酸カルシウム、またはノニオン系乳化剤、例えば脂肪酸ポリグリコールエステル、アルキルアリールポリグリコールエーテル、脂肪疾アルコールポリグリコールエーテル、プロピレンオキサイド・エチレンオキシド縮合物、アルキルポリエーテル、ソルビタンエステル、例えばソルビタン脂肪酸エステルまたはポリオキシエチレンソルビタンエステル、例えばポリオキシエチレンソルビタン脂肪酸エステルである。

[0101]

粉剤は、微粉砕された固形物質、例えばタルク、自然粘土、例えばカオリン、ベントナイトおよびピロフィライトまたは珪藻土と共に有効成分を粉砕することによって得られる

[0102]

懸濁濃縮物は、水または油に基づくものであることができる。それは、例えば、市販のビーズミルによる湿式粉砕によって、適宜に例えば他の製剤タイプの場合にすでに上記で挙げた界面活性剤を添加して製造することができる。

[0103]

乳濁液、例えば水中油型乳濁液(EW)は、例えば水系有機溶媒および適宜に例えば他の製剤タイプについて前記で挙げた界面活性剤を用いて撹拌機、コロイドミルおよび / またはスタティックミキサーによって製造することができる。

[0104]

粒剤は、吸着性の顆粒状不活性材料上に有効成分を噴霧することによって、または接着

20

30

40

50

剤、例えばポリビニルアルコール、ポリアクリル酸ナトリウムもしくは他に鉱油を用いて、担体物質、例えば砂土、カオリナイトもしくは顆粒状不活性材料の表面に有効成分濃縮液を塗布することによって製造することができる。また、好適な有効成分を、所望の場合に肥料との混合物として、肥料顆粒の製造に慣用のやり方で造粒することもできる。

[0105]

顆粒水和剤は、一般に噴霧乾燥、流動床造粒、パン造粒、高速撹拌機による混合、および固形不活性材料なしの押出といったような慣用の方法によって製造される。

[0106]

平板(pan)粒剤、流動床粒剤、押出粒剤および噴霧粒剤を製造するためには、例えば Spray - Drying Handbook 第3版 1979, G.Goodwin Ltd., London; J.E. Browning, Agglomeration, Chemical and Engineering 1967, 第147頁以下; Perry s Chemical Engineer s Handbook, 第5版, McGraw-Hill, New York 1973, 第8-57頁における方法を参照する。

[0107]

作物保護組成物の製剤に関するさらなる詳細については、例えば、G.C.Klingman, Weed Control as a Science , John Wiley and Sons, Inc., New York, 1961, 第81-96頁およびJ.D.Freyer, S.A.Evans, Weed Control Handbook , 第5版, Blackwell Scientific Publications, Oxford, 1968, 第101-103頁を参照する。

[0108]

農薬製剤は、一般に0.1から99質量%、特別には0.1から95質量%の本発明の 化合物を含む。

[0 1 0 9]

水和剤では、有効成分の濃度は、例えば約10から90質量%であり、100%までの残りは、慣用の製剤成分からなる。乳剤では、有効成分の濃度は、約1から90質量%、好ましくは5から80質量%であることができる。粉剤タイプの製剤は、1から30質量%の有効成分、好ましくは通常5から20質量%の有効成分を含み;噴霧液は、約0.05から80質量%、好ましくは2から50質量%の有効成分を含む。顆粒水和剤では、有効成分含量は、活性化合物が固体で存在するか液体で存在するか、そして造粒助剤、充填剤などが使用されるかによって部分的に決まる。水中に分散可能な顆粒剤では、有効成分の含量は、例えば、1から95質量%、好ましくは10から80質量%である。

[0110]

さらに、記載された有効成分製剤は、それぞれの慣用の粘着付与剤、湿潤剤、分散剤、 乳化剤、浸透剤、保存剤、不凍剤および溶媒、充填剤、担体および色素、消泡剤、蒸発抑 制剤ならびにpHおよび粘度に影響する薬剤を含んでいても良い。

[0111]

これらの製剤に基づいて、例えば最終製剤の形態でまたはタンクミックスとして、例えば殺虫剤、殺ダニ剤、除草剤、殺菌剤などの他の農薬活性物質と、そして薬害軽減剤、肥料および/または成長調節剤との組み合わせ剤を製造することも可能である。

[0112]

混合物製剤またはタンクミックスでの本発明の化合物についての使用可能な組み合わせ相手は、例えば、アセト乳酸シンターゼ、アセチル・CoAカルボキシラーゼ、セルロースシンターゼ、エノールピルビルシキミ酸・3・リン酸シンターゼ、グルタミンシンターゼ、p・ヒドロキシフェニルピルビン酸ジオキシゲナーゼ、フィトエンデサチュラーゼ、光化学系 I (photosystem I)、光化学系 I I (photosystem II)、プロトポルフィリノーゲンオキシダーゼの阻害に基づく既知の有効成分であり、

例えば、Weed Research 26 (1986) 441-445 または "The Pesticide Manual", 第14版, The British Crop Protection Council and the Royal Soc. of Chemistry, 2003およびその中に引用された文献に記載されている。

[0113]

施用においては、適切であれば、市販形態での製剤を、一般的な方法で、例えば水和剤、乳剤、分散剤および顆粒水和剤の場合には水で希釈する。ダスト型製剤、土壌処理用粒剤または散布用粒剤および噴霧液剤は通常、施用前に他の不活性物質それ以上希釈しない

10

[0114]

式(I)の化合物の必要な施用量は、温度、湿度および使用される除草剤の種類などの外部条件によって変わる。それは、広い範囲内で変動し得るものであり、例えば活性物質0.001から1.0kg/ha以上であるが、しかしながら好ましくは、それは0.005から750g/haである。

[0115]

下記の実施例は本発明を説明するものである。

[0116]

A . 化学例

2 , 4 - ジクロロ - 3 - { [ジエチル (オキシド) - 4 - スルファニリデン] アミノ} - N - (1 - メチルテトラゾール - 5 - イル) ベンズアミド (表中の実施例番号 1 - 14) の合成

シ)安息

<u>段階1:2,4-ジクロロ-3-(ノナフルオロ-n-ブチルスルホニルオキシ)安息</u> 香酸メチルの合成

アセトニトリル240mL中の2,4-ジクロロ-3-ヒドロキシ安息香酸メチル9.5g(43.0mmol)を炭酸カリウム8.6g(62.2mmol)および次にノナフルオロ-n-ブタンスルホニルクロライド9.5mL(52.8mmol)と混合した。反応混合物を室温(RT)で16時間撹拌した。後処理のため、内容物を氷水に注ぎ、混合物を酢酸エチルで抽出した。有機相を脱水し、ロータリーエバポレータによって濾液から溶媒を除去した。残留物をクロマトグラフィーによって精製して、精製された生成物3.5gを得た。

30

20

[0117]

<u>段階 2 : 2 , 4 - ジクロロ - 3 - { [ジエチル(オキシド) - 4 - スルファニリデン</u>] アミノ } 安息香酸メチルの合成

2 , 4 - ジクロロ - 3 - (ノナフルオロ - n - ブチルスルホニルオキシ)安息香酸メチル9.5 g (1 8 . 9 m m o 1)をトルエン 1 0 0 m L に溶かした。その溶液を、窒素雰囲気下に 5 から 1 0 分間にわたって窒素でパージした。次に、S,S - ジエチルスルホキシイミン 2 . 8 3 g (2 3 . 3 m m o 1)、酢酸パラジウム(II) 0 . 1 9 g (0 . 8 4 6 m m o 1)、(+ / -) - 2 , 2 - ビス(ジフェニルホスフィノ) - 1 , 1 - ビナフチル 0 . 8 4 g (1 . 3 5 m m o 1) および炭酸セシウム 9 . 8 g (3 0 . 1 m m o 1)をその順に加えた。次に、混合物を窒素で再度 1 5 から 2 0 分間にわたってパージした。反応混合物を 4 時間還流加熱した。後処理のため、内容物を冷却してRTとし、氷水に注ぎ、混合物を酢酸エチルで抽出した。有機相を脱水し、減圧下に蒸留した。得られた粗生成物をクロマトグラフィーによって精製して、単離された純粋生成物 4 . 5 g を得た

40

[0118]

<u>段階3:2,4-ジクロロ-3-{[ジエチル(オキシド)-4-スルファニリデン</u>]アミノ}安息香酸の合成

2 , 4 - ジクロロ - 3 - { [ジエチル(オキシド) - 4 - スルファニリデン] アミノ } 安息香酸メチル 4 . 5 g (1 3 . 9 m m o 1) をエタノール 1 6 0 m L に溶かした。次

に、10%水酸化ナトリウム水溶液16.8mL(42mmo1)を滴下した。次に、内容物をRTで3時間撹拌した。後処理のため、ロータリーエバポレータでエタノールを減圧下に除去した。残留物を水と混合し、混合物をジエチルエーテルで洗浄した。水相を濃塩酸で酸性とし、酢酸エチルで抽出した。有機相を脱水し、ロータリーエバポレータによって濾液から溶媒を除去した。生成物3.5gを残留物として単離した。

[0119]

<u>段階4:2,4-ジクロロ-3-{[ジエチル(オキシド)-4-スルファニリデン</u>]アミノ}-N-(1-メチルテトラゾール-5-イル)ベンズアミドの合成

ピリジン7.5mL中の2,4-ジクロロ-3-{[ジエチル(オキシド)- 4-スルファニリデン]アミノ}安息香酸250mg(0.81mmol)および5-アミノ-1-メチル-1H-テトラゾール112mg(1.13mmol)をオキサリルクロライド133mg(1.05mmol)と混合し、次にRTで3日間撹拌した。後処理のため、混合物を濃縮し、残留物をCH₂C1₂および飽和炭酸水素ナトリウム水溶液とともに撹拌した。有機相を再度濃縮し、残留物をクロマトグラフィーによって精製して、純粋な生成物170mgを得た。

[0120]

2 , 4 - ジクロロ - 3 - [(4 - オキシド - 1 , 4 - 4 - オキサチアン - 4 - イリデン)アミノ] - N - (4 - メチル - 1 , 2 , 5 - オキサジアゾール - 3 - イル)ベンズアミド(表中の実施例番号 6 - 1 0 2)の合成

<u>段階 1 : 2 , 4 - ジクロロ - 3 - [(4 - オキシド - 1 , 4 - 4 - オキサチアン - 4 - イリデン) アミノ] 安息香酸メチルの合成</u>

[0121]

<u>段階 2 : 2 , 4 - ジクロロ - 3 - [(4 - オキシド - 1 , 4 - 4 - オキサチアン - 4 - イリデン) アミノ] 安息香酸の合成</u>

2 , 4 - ジクロロ - 3 - [(4 - オキシド - 1 , 4 - 4 - オキサチアン - 4 - イリデン)アミノ]安息香酸メチル1 . 8 g (5 . 3 2 m m o 1)をメタノール4 0 m L に溶かした。次に、10%水酸化ナトリウム水溶液 3 1 m L (7 7 . 5 m m o 1)を加えた。次に、内容物をR T で 1 時間撹拌した。後処理のため、メタノールをロータリーエバポレータで減圧下に除去した。残留物を水と混合し、混合物をジエチルエーテルで洗浄した。水相を 1 M 塩酸で酸性とし、酢酸エチルで抽出した。有機相を脱水し、ロータリーエバポレータで濾液から溶媒を除去した。生成物 1 . 2 g を残留物として単離した。

[0122]

段階3:2,4-ジクロロ-3-[(4-オキシド-1,4-4-オキサチアン-4-イリデン)アミノ]-N-(4-メチル-1,2,5-オキサジアゾール-3-イル)ベンズアミドの合成

 CH_2Cl_2 15 m L 中の 2 , 4 - ジクロロ - 3 - [(4 - オキシド - 1 , 4 - 4 - オキサチアン - 4 - イリデン) アミノ] 安息香酸 2 0 0 m g (0 . 6 2 m m o 1) および 4 - メチル - 1 , 2 , 5 - オキサジアゾール - 3 - イル - アミン 6 7 . 2 m g (0 . 6 8 m m o 1) を 2 , 4 , 6 - トリプロピル - 1 , 3 , 5 , 2 , 4 , 6 - トリオキサトリホ

10

20

30

40

20

スフィナン 2 , 4 , 6 - トリオキサイド 5 8 9 m g (0 . 9 3 m m o 1 ; 5 0 % T H F 中溶液)と混合した。混合物を R T で 1 時間撹拌した。次に、 N E t $_3$ 3 1 2 m g (3 . 0 9 m m o 1)を滴下し、次に触媒量の 4 - (ジメチルアミノ)ピリジンを滴下した。内容物を R T で 3 日間撹拌した。後処理のため、混合物を 1 M 塩酸で洗浄した。相分離後、内容物を濃縮し、残留物をクロマトグラフィーによって精製して、純粋な生成物 9 0 m g を得た。

[0 1 2 3]

下記の表に挙げた実施例を、上記の方法と同様にして製造したか、あるいは上記の方法と同様にして得ることができる。下記の表に挙げた化合物は非常に特に好ましい。

[0124]

使用した略称の意味

[0125]

表 1:Q が Q 1 7 であり、 R x がメチル基であり、 R および W がそれぞれ水素である一般式(I)の本発明の化合物

【化28】

$$N - N O X R - R'$$
 $N - N O X R - R'$
 $N - S - R'$

【表1】

番号	X	Z	R	R'	物理データ (¹ H-NMR)
1-1	Me	Me	Et	Et	
1-2	Me	F	Et	Et	
1-3	Ме	CI	Et	Et	
1-4	Me	Br	Et	Et	
1-5	Me	I	Et	Et	
1-6	Me	CF₃	Et	Et	
1-7	Me	CHF ₂	Et	Et	
1-8	Me	CF ₂ CI	Et	Et	
1-9	Me	OMe	Et	Et	
1-10	Me	NO ₂	Et	Et	
1-11	Me	SO₂Me	Et	Et	
1-12	CI	Me	Et	Et	
1-13	CI	F	Et	Et	
1-14	CI	CI	Et	Et	(400 MHz, DMSO-d ₆ δ , ppm) 7.54 (d,1H), 7.30 (d,1H), 3.99 (s,3H), 3.42 – 3.26 (m,4H), 1.33 (t,6H)
1-15	CI	Br	Et	Et	
1-16	CI	I	Et	Et	
1-17	CI	CF ₃	Et	Et	
1-18	CI	CHF₂	Et	Et	
1-19	CI	CF ₂ CI	Et	Et	
1-20	CI	OMe	Et	Et	
1-21	CI	NO ₂	Et	Et	
1-22	CI	SO₂Me	Et	Et	
1-23	OMe	Me	Et	Et	
1-24	OMe	F	Et	Et	
1-25	OMe	CI	Et	Et	
1-26	OMe	Br	Et	Et	
1-27	OMe	ı	Et	Et	

10

20

番号	Х	Z	R	R'	物理データ (¹ H-NMR)	
1-28	OMe	CF ₃	Et	Et		
1-29	OMe	CHF ₂	Et	Et		
1-30	OMe	CF₂CI	Et	Et		
1-31	OMe	OMe	Et	Et		
1-32	OMe	NO ₂	Et	Et		
1-33	OMe	SO₂Me	Et	Et		
1-34	SO₂Me	Me	Et	Et		10
1-35	SO₂Me	F	Et	Et		10
1-36	SO₂Me	CI	Et	Et		
1-37	SO₂Me	Br	Et	Et		
1-38	SO₂Me	I	Et	Et		
1-39	SO₂Me	CF ₃	Et	Et		
1-40	SO₂Me	CHF ₂	Et	Et		
1-41	SO₂Me	CF ₂ CI	Et	Et		
1-42	SO₂Me	OMe	Et	Et		
1-43	SO₂Me	NO ₂	Et	Et		20
1-44	SO₂Me	SO₂Me	Et	Et		20
1-45	Me	Me	-(CH	l ₂) ₅ -		
1-46	Me	F	-(CH	l ₂) ₅ -		
1-47	Ме	CI	-(CH	l ₂) ₅ -		
1-48	Ме	Br	-(CH	l ₂) ₅ -		
1-49	Ме	I	-(CH	l ₂) ₅ -		
1-50	Ме	CF ₃	-(CH	l ₂) ₅ -		
1-51	Me	CHF ₂	-(CH	l ₂) ₅ -		
1-52	Ме	CF ₂ CI	-(CH	l ₂) ₅ -		
1-53	Me	OMe	-(CH	l ₂) ₅ -		30
1-54	Me	NO ₂	-(CH	l ₂) ₅ -		
1-55	Ме	SO₂Me	-(CH	l ₂) ₅ -		
1-56	CI	Me	-(CH	l ₂) ₅ -		
1-57	CI	F	-(CH	l ₂) ₅ -		
1-58	CI	CI	-(CH	l ₂) ₅ -	$\begin{array}{l} (400 \text{ MHz, DMSO-d}_6 \ \delta, \text{ ppm) } 7.55 \ (d,1H), \\ 7.31 \ (d,1H), \ 3.99 \ (s,3H), \ 3.42 - 3.25 \\ (m,4H), \ 2.13 - 2.05 \ (m,2H), \ 1.98 - 1.88 \\ (m,2H), \ 1.70 - 1.55 \ (m,2H) \end{array}$	
1-59	CI	Br	-(CH	l ₂) ₅ -		
1-60	CI	I	-(CH	l ₂) ₅ -		40
1-61	CI	CF ₃	-(CH	l ₂) ₅ -		
1-62	CI	CHF ₂	-(CH	l ₂) ₅ -		

0.0

番号	Х	Z	R	R'	物理データ (¹ H-NMR)	
1-63	CI	CF ₂ CI	-(CH ₂	2)5-		
1-64	CI	OMe	-(CH ₂	2)5-		
1-65	CI	NO ₂	-(CH ₂	2)5-		
1-66	CI	SO₂Me	-(CH ₂	2)5-		
1-67	OMe	Me	-(CH ₂	2)5-		
1-68	OMe	F	-(CH ₂	2)5-		
1-69	OMe	CI	-(CH ₂	2)5-		10
1-70	OMe	Br	-(CH ₂	2)5-		11
1-71	OMe	I	-(CH ₂	2)5-		
1-72	OMe	CF ₃	-(CH ₂	2)5-		
1-73	OMe	CHF ₂	-(CH ₂	2)5-		
1-74	OMe	CF ₂ CI	-(CH ₂	2)5-		
1-75	OMe	OMe	-(CH ₂	2)5-		
1-76	OMe	NO ₂	-(CH ₂	2)5-		
1-77	OMe	SO₂Me	-(CH ₂	2)5-		
1-78	SO₂Me	Ме	-(CH ₂	2)5-		
1-79	SO₂Me	F	-(CH ₂	2)5-		20
1-80	SO₂Me	CI	-(CH ₂	2)5-		
1-81	SO₂Me	Br	-(CH ₂	2)5-		
1-82	SO₂Me	I	-(CH ₂	2)5-		
1-83	SO₂Me	CF ₃	-(CH ₂	2)5-		
1-84	SO₂Me	CHF ₂	-(CH ₂	2)5-		
1-85	SO₂Me	CF ₂ CI	-(CH ₂	2)5-		
1-86	SO₂Me	OMe	-(CH ₂	2)5-		
1-87	SO₂Me	NO ₂	-(CH ₂	2)5-		
1-88	SO₂Me	SO₂Me	-(CH ₂	2)5-		30
1-89	Me	Me	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-90	Ме	F	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-91	Me	CI	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-92	Me	Br	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-93	Me	I	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-94	Me	CF ₃	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-95	Ме	CHF ₂	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-96	Ме	CF₂CI	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-97	Ме	OMe	-(CH ₂) ₂ O((CH ₂) ₂ -		40
1-98	Ме	NO ₂	-(CH ₂) ₂ O((CH ₂) ₂ -		
1-99	Ме	SO₂Me	-(CH ₂) ₂ O((CH ₂) ₂ -		

番号	Х	Z	R	R'	物理データ (¹ H-NMR)	
1-100	CI	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-101	CI	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-102	CI	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	(400 MHz, DMSO-d ₆ δ , ppm) 7.55 (d,1H), 7.32 (d,1H), 4.20 (m,2H), 4.02 (m,2H), 3.95 (s,3H), 3.55 – 3.37 (m,4H)	
1-103	CI	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-104	CI	I	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-105	CI	CF₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -		10
1-106	CI	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-107	CI	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-108	CI	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-109	CI	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-110	CI	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-111	OMe	Ме	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-112	OMe	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-113	OMe	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-114	OMe	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -		20
1-115	OMe	I	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-116	OMe	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-117	OMe	CHF₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-118	OMe	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-119	OMe	ОМе	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-120	OMe	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-121	OMe	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-122	SO₂Me	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-123	SO₂Me	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -		20
1-124	SO₂Me	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		30
1-125	SO₂Me	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-126	SO₂Me	I	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-127	SO₂Me	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-128	SO₂Me	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-130	SO₂Me	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-131	SO₂Me	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-132	SO₂Me	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
1-133	CI	COOMe	Et	Et		40
1-134	CI	COOMe	-(CF	l ₂) ₅ -		
1-135	CI	COOMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -		

[0126]

表 2:Q が Q 1 であり、 R^{\times} がエチル基であり、 R およびW がそれぞれ水素である一般式(I)の本発明の化合物

【化29】

【表2】

	物理データ (¹ H-NMR)	R'	R	Z	X	番号
		Et	Et	Ме	Me	2-1
		Et	Et	F	Ме	2-2
		Et	Et	CI	Me	2-3
		Et	Et	Br	Ме	2-4
10		Et	Et	ı	Me	2-5
		Et	Et	CF₃	Me	2-6
		Et	Et	CHF ₂	Me	2-7
		Et	Et	CF ₂ CI	Ме	2-8
		Et	Et	OMe	Me	2-9
		Et	Et	NO ₂	Me	2-10
		Et	Et	SO₂Me	Me	2-11
		Et	Et	Ме	CI	2-12
		Et	Et	F	CI	2-13
20	(400 MHz, DMSO-d ₆ δ, ppm) 7.53 (d,1H), 7.28 (d,1H), 4.34 (q,2H), 1.46 (t,3H), 1.33 (t,6H)	Et	Et	CI	CI	2-14
		Et	Et	Br	CI	2-15
		Et	Et	I	CI	2-16
		Et	Et	CF₃	CI	2-17
		Et	Et	CHF ₂	CI	2-18
		Et	Et	CF₂CI	CI	2-19
		Et	Et	OMe	CI	2-20
		Et	Et	NO ₂	CI	2-21
30		Et	Et	SO₂Me	CI	2-22
		Et	Et	Ме	OMe	2-23
		Et	Et	F	OMe	2-24
		Et	Et	CI	OMe	2-25
		Et	Et	Br	OMe	2-26
		Et	Et	I	OMe	2-27
		Et	Et	CF₃	OMe	2-28
		Et	Et	CHF ₂	OMe	2-29
		Et	Et	CF₂CI	OMe	2-30
40		Et	Et	OMe	OMe	2-31
70		Et	Et	NO ₂	OMe	2-32
		Et	Et	SO₂Me	OMe	2-33
		Et	Et	Me	SO₂Me	2-34
		Et	Et	F	SO ₂ Me	2-35

10

20

30

番号	Х	Z	R	R'	物理データ (¹H-NMR)
2-36	SO ₂ Me	CI	Et	Et	
2-37	SO₂Me	Br	Et	Et	
2-38	SO ₂ Me	I	Et	Et	
2-39	SO₂Me	CF ₃	Et	Et	
2-40	SO₂Me	CHF ₂	Et	Et	
2-41	SO₂Me	CF ₂ CI	Et	Et	
2-42	SO₂Me	OMe	Et	Et	
2-43	SO ₂ Me	NO ₂	Et	Et	
2-44	SO₂Me	SO₂Me	Et	Et	
2-45	Me	Me	-(CH	H ₂) ₅ -	
2-46	Ме	F	-(CH	H ₂) ₅ -	
2-47	Ме	CI		H ₂) ₅ -	
2-48	Ме	Br	-(CH	H ₂) ₅ -	
2-49	Ме	ı	-(CH	H ₂) ₅ -	
2-50	Me	CF ₃	-(Ch	H ₂) ₅ -	
2-51	Me	CHF ₂	-(Ch	H ₂) ₅ -	
2-52	Ме	CF ₂ CI	-(Ch	H ₂) ₅ -	
2-53	Ме	OMe	-(Ch	H ₂) ₅ -	
2-54	Me	NO ₂	-(CH	H ₂) ₅ -	
2-55	Ме	SO₂Me	-(CH	H ₂) ₅ -	
2-56	CI	Me	-(CH	H ₂) ₅ -	
2-57	CI	F	-(CH	H ₂) ₅ -	
2-58	CI	СІ	-(Cł	1 ₂) ₅ -	(400 MHz, DMSO-d ₆ δ , ppm) 7.50 (d,1H), 7.24 (d,1H), 4.30 (q,2H), 2.12 – 2.03 (m,2H), 2.00 – 1.88 (m,4H), 1.70 – 1.53 (m,2H), 1.43 (t,3H)
2-59	CI	Br	-(CH	H ₂) ₅ -	
2-60	CI	I	-(CH	H ₂) ₅ -	
2-61	CI	CF ₃	-(CH	1 ₂) ₅ -	
2-62	CI	CHF ₂	-(CH	H ₂) ₅ -	
2-63	CI	CF ₂ CI	-(CH	H ₂) ₅ -	
2-64	CI	OMe	-(Cl	H ₂) ₅ -	
2-65	CI	NO ₂	-(Cl	H ₂) ₅ -	
2-66	CI	SO₂Me	-(CH	H ₂) ₅ -	
2-67	OMe	Ме	-(Cl	H ₂) ₅ -	
2-68	OMe	F	-(CH	1 ₂) ₅ -	
2-69	OMe	CI	-(CH	H ₂) ₅ -	
2-70	OMe	Br	-(CH	H ₂) ₅ -	

番号	х	Z	R R'	物理データ (¹ H-NMR)	
2-71	OMe	ı	-(CH ₂) ₅ -		
2-72	OMe	CF ₃	-(CH ₂) ₅ -		
2-73	OMe	CHF ₂	-(CH ₂) ₅ -		
2-74	OMe	CF ₂ CI	-(CH ₂) ₅ -		
2-75	OMe	OMe	-(CH ₂) ₅ -		
2-76	OMe	NO ₂	-(CH ₂) ₅ -		
2-77	OMe	SO₂Me	-(CH ₂) ₅ -		10
2-78	SO₂Me	Me	-(CH ₂) ₅ -		
2-79	SO₂Me	F	-(CH ₂) ₅ -		
2-80	SO₂Me	CI	-(CH ₂) ₅ -		
2-81	SO₂Me	Br	-(CH ₂) ₅ -		
2-82	SO₂Me	I	-(CH ₂) ₅ -		
2-83	SO₂Me	CF ₃	-(CH ₂) ₅ -		
2-84	SO₂Me	CHF ₂	-(CH ₂) ₅ -		
2-85	SO₂Me	CF ₂ CI	-(CH ₂) ₅ -		
2-86	SO₂Me	OMe	-(CH ₂) ₅ -		00
2-87	SO₂Me	NO ₂	-(CH ₂) ₅ -		20
2-88	SO₂Me	SO₂Me	-(CH ₂) ₅ -		
2-89	Me	Me	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-90	Ме	F	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-91	Ме	CI	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-92	Me	Br	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-93	Me	I	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-94	Me	CF ₃	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-95	Me	CHF ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-96	Me	CF ₂ CI	-(CH ₂) ₂ O(CH ₂) ₂ -		30
2-97	Me	OMe	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-98	Me	NO ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-99	Me	SO₂Me	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-100	CI	Me	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-101	CI	F	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-102	CI	CI	-(CH ₂) ₂ O(CH ₂) ₂ -	(400 MHz, DMSO-d ₆ δ , ppm) 7.58 (d,1H), 7.34 (d,1H), 4.35 (q,2H), 4.20 (m,2H), 4.04 (m,2H), 3.56 – 3.48 (m,2H), 3.48 – 3.41 (m,2H), 1.46 (t,3H)	
2-103	CI	Br	-(CH ₂) ₂ O(CH ₂) ₂ -		40
2-104	CI	I	-(CH ₂) ₂ O(CH ₂) ₂ -		
2-105	CI	CF ₃	-(CH ₂) ₂ O(CH ₂) ₂ -		

20

30

40

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
2-106	CI	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-107	CI	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-108	CI	OMe	-(CH ₂) ₂ (D(CH ₂) ₂ -	
2-109	CI	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-110	CI	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-111	OMe	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-112	OMe	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-113	OMe	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-114	ОМе	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-115	OMe	I	-(CH ₂) ₂ (D(CH ₂) ₂ -	
2-116	OMe	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-117	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-118	OMe	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-119	OMe	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-120	OMe	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-121	OMe	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-122	SO₂Me	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-123	SO₂Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-124	SO ₂ Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-125	SO₂Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-126	SO ₂ Me	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-127	SO₂Me	CF₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-128	SO₂Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-130	SO ₂ Me	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-131	SO ₂ Me	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-132	SO₂Me	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
2-133	CI	COOMe	Et	Et	
2-134	CI	COOMe	-(CI	H ₂) ₅ -	
2-135	CI	COOMe	-(CH ₂) ₂ (D(CH ₂) ₂ -	

[0127]

表 3 : Q が Q 1 であり、 R × が n - プロピル基であり、 R および W がそれぞれ水素である一般式 (I) の本発明の化合物

【化30】

【表3】

番号	X	Z	R	R'	物理データ (¹ H-NMR)	
3-1	Me	Me	Et	Et		
3-2	Me	F	Et	Et		
3-3	Me	CI	Et	Et		
3-4	Me	Br	Et	Et		
3-5	Me	ı	Et	Et		10
3-6	Me	CF ₃	Et	Et		
3-7	Me	CHF ₂	Et	Et		
3-8	Me	CF ₂ CI	Et	Et		
3-9	Me	OMe	Et	Et		
3-10	Me	NO ₂	Et	Et		
3-11	Me	SO₂Me	Et	Et		
3-12	CI	Me	Et	Et]
3-13	CI	F	Et	Et]
3-14	CI	CI	Et	Et	(400 MHz, DMSO-d ₆ δ , ppm) 7.52 (d,1H), 7.25 (d,1H), 4.28 (t,2H), 1.87 (q,2H), 1.33 (t,6H), 0.87 (t,3H)	20
3-15	CI	Br	Et	Et]
3-16	CI	ı	Et	Et		
3-17	CI	CF ₃	Et	Et]
3-18	CI	CHF ₂	Et	Et		
3-19	CI	CF₂CI	Et	Et		
3-20	CI	OMe	Et	Et		
3-21	CI	NO ₂	Et	Et		
3-22	CI	SO₂Me	Et	Et		30
3-23	OMe	Me	Et	Et		
3-24	OMe	F	Et	Et		
3-25	OMe	CI	Et	Et		
3-26	OMe	Br	Et	Et		
3-27	OMe	ı	Et	Et		
3-28	OMe	CF ₃	Et	Et		
3-29	OMe	CHF ₂	Et	Et		
3-30	OMe	CF₂CI	Et	Et		
3-31	OMe	ОМе	Et	Et		40
3-32	OMe	NO ₂	Et	Et		
3-33	OMe	SO₂Me	Et	Et		
3-34	SO₂Me	Ме	Et	Et		

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
3-35	SO₂Me	F	Et	Et	
3-36	SO₂Me	CI	Et	Et	
3-37	SO₂Me	Br	Et	Et	
3-38	SO₂Me	I	Et	Et	
3-39	SO₂Me	CF ₃	Et	Et	
3-40	SO₂Me	CHF ₂	Et	Et	
3-41	SO₂Me	CF₂CI	Et	Et	
3-42	SO₂Me	OMe	Et	Et	
3-43	SO₂Me	NO ₂	Et	Et	
3-44	SO₂Me	SO₂Me	Et	Et	
3-45	Me	Me	-(CI	H ₂) ₅ -	
3-46	Me	F	-(CI	H ₂) ₅ -	
3-47	Me	CI	-(CI	H ₂) ₅ -	
3-48	Me	Br	-(CI	H ₂) ₅ -	
3-49	Me	I	-(CI	H ₂) ₅ -	
3-50	Me	CF ₃	-(CI	H ₂) ₅ -	
3-51	Me	CHF ₂	-(CI	H ₂) ₅ -	
3-52	Me	CF₂CI	-(Cl	H ₂) ₅ -	
3-53	Me	OMe	-(CI	H ₂) ₅ -	
3-54	Me	NO ₂	-(CI	H ₂) ₅ -	
3-55	Me	SO₂Me	-(CI	H ₂) ₅ -	
3-56	CI	Me	-(CI	H ₂) ₅ -	
3-57	CI	F	-(CI	H ₂) ₅ -	
3-58	CI	CI	-(CI	H ₂) ₅ -	$\begin{array}{l} \text{(400 MHz, DMSO-d}_6 \; \delta, \; ppm) \; 7.54 \; \text{(d,1H)}, \\ 7.27 \; \text{(d,1H)}, \; 4.29 \; \text{(t,2H)}, \; 3.42 - 3.25 \; \text{(m,4H)}, \\ 2.13 - 2.05 \; \text{(m,2H)}, \; 2.00 - 1.82 \; \text{(m,4H)}, \; 1.70 \\ - 1.51 \; \text{(m,2H)}, \; 0.87 \; \text{(t,3H)} \end{array}$
3-59	CI	Br	-(CI	H ₂) ₅ -	
3-60	CI	I	-(CI	H ₂) ₅ -	
3-61	CI	CF ₃	-(CI	H ₂) ₅ -	
3-62	CI	CHF ₂	-(CI	H ₂) ₅ -	
3-63	CI	CF₂CI	-(CI	H ₂) ₅ -	
3-64	CI	OMe	-(CI	H ₂) ₅ -	
3-65	CI	NO ₂	-(CI	H ₂) ₅ -	
3-66	CI	SO₂Me	-(CI	H ₂) ₅ -	
3-67	OMe	Me	-(CI	H ₂) ₅ -	
3-68	OMe	F	-(CI	H ₂) ₅ -	
3-69	OMe	CI	-(CI	H ₂) ₅ -	

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
3-70	OMe	Br	-(CH	H ₂) ₅ -	
3-71	OMe	ı	-(CH	1 ₂) ₅ -	
3-72	OMe	CF₃	-(CH	1 ₂) ₅ -	
3-73	OMe	CHF ₂	-(CH	1 ₂) ₅ -	
3-74	OMe	CF ₂ CI	-(CH	H ₂) ₅ -	
3-75	OMe	OMe	-(CH	1 ₂) ₅ -	
3-76	OMe	NO ₂	-(CH	1 ₂) ₅ -	
3-77	OMe	SO₂Me	-(CH	1 ₂) ₅ -	
3-78	SO₂Me	Ме	-(CH	H ₂) ₅ -	
3-79	SO₂Me	F	-(CH	1 ₂) ₅ -	
3-80	SO₂Me	CI	-(CH	H ₂) ₅ -	
3-81	SO₂Me	Br	-(CH	H ₂) ₅ -	
3-82	SO₂Me	1	-(CH	H ₂) ₅ -	
3-83	SO₂Me	CF₃	-(CH	H ₂) ₅ -	
3-84	SO₂Me	CHF ₂	-(CH	1 ₂) ₅ -	
3-85	SO₂Me	CF₂CI	-(CH	H ₂) ₅ -	
3-86	SO₂Me	OMe	-(CH	H ₂) ₅ -	
3-87	SO₂Me	NO ₂	-(CH	H ₂) ₅ -	
3-88	SO₂Me	SO₂Me	-(CH	H ₂) ₅ -	
3-89	Me	Ме	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-90	Ме	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-91	Me	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-92	Me	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-93	Me	1	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-94	Ме	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-95	Me	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-96	Me	CF₂CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-97	Me	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-98	Me	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-99	Me	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-100	CI	Ме	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-101	CI	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-102	CI	CI	-(CH₂)₂(O(CH ₂) ₂ -	$\begin{array}{l} \mbox{(400 MHz, DMSO-d}_6 \; \delta, \; \mbox{ppm)} \; 7.57 \; \mbox{(d,1H)}, \\ \mbox{7.31 (d,1H), 4.29 (t,2H), 4.22 - 4.15 (m,2H),} \\ \mbox{4.02 (m,2H), 3.55 - 3.40 (m,4H), 1.87 (m,2H),} \\ \mbox{0.87 (t,3H)} \end{array}$
3-103	CI	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
3-104	CI	ı	-(CH ₂) ₂ C	O(CH ₂) ₂ -	

20

30

40

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
3-105	CI	CF₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-106	CI	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-107	CI	CF₂CI	-(CH ₂) ₂ (D(CH ₂) ₂ -	
3-108	CI	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-109	CI	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-110	CI	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-111	OMe	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-112	OMe	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-113	OMe	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-114	OMe	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-115	OMe	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-116	OMe	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-117	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-118	OMe	CF₂CI	-(CH ₂) ₂ (D(CH ₂) ₂ -	
3-119	OMe	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-120	OMe	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-121	OMe	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-122	SO ₂ Me	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-123	SO ₂ Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-124	SO₂Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-125	SO ₂ Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-126	SO₂Me	1	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-127	SO₂Me	CF₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-128	SO ₂ Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-129	SO ₂ Me	CF₂CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-130	SO₂Me	OMe	-(CH ₂) ₂ O(CH ₂) ₂ -		
3-131	SO₂Me	NO ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
3-132	SO ₂ Me	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
3-133	CI	COOMe	Et	Et	
3-134	CI	COOMe	-(CI	H ₂) ₅ -	
3-135	CI	COOMe		D(CH ₂) ₂ -	

[0128]

表 4:Q が Q 1 であり、 R^{\times} が 2- メトキシエチル基であり、 R およびW がそれぞれ 水素である一般式(I)の本発明の化合物 【 化 3 1 】

$$\begin{array}{c|cccc}
CH_3 & N & O & X & R \\
N & N & N & S-R \\
O & H & Z
\end{array}$$

【表4】

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
4-1	Me	Me	Et	Et	
4-2	Ме	F	Et	Et	
4-3	Me	CI	Et	Et	
4-4	Ме	Br	Et	Et	
4-5	Me	I	Et	Et	
4-6	Ме	CF ₃	Et	Et	
4-7	Me	CHF ₂	Et	Et	
4-8	Me	CF ₂ CI	Et	Et	
4-9	Me	OMe	Et	Et	
4-10	Me	NO ₂	Et	Et	
4-11	Me	SO₂Me	Et	Et	
4-12	CI	Me	Et	Et	
4-13	CI	F	Et	Et	
4-14	CI	CI	Et	Et	
4-15	CI	Br	Et	Et	
4-16	CI	I	Et	Et	
4-17	CI	CF₃	Et	Et	
4-18	CI	CHF ₂	Et	Et	
4-19	CI	CF₂CI	Et	Et	
4-20	CI	OMe	Et	Et	
4-21	CI	NO ₂	Et	Et	
4-22	CI	SO₂Me	Et	Et	
4-23	OMe	Me	Et	Et	
4-24	ОМе	F	Et	Et	
4-25	OMe	CI	Et	Et	
4-26	OMe	Br	Et	Et	
4-27	OMe	I	Et	Et	
4-28	ОМе	CF₃	Et	Et	
4-29	OMe	CHF ₂	Et	Et	
4-30	ОМе	CF ₂ CI	Et	Et	
4-31	OMe	OMe	Et	Et	
4-32	ОМе	NO ₂	Et	Et	
4-33	OMe	SO₂Me	Et	Et	
4-34	SO₂Me	Me	Et	Et	
4-35	SO₂Me	F	Et	Et	
4-36	SO₂Me	CI	Et	Et	

10

20

30

番号	x	Z	R	R'	物理データ (¹ H-NMR)
4-37	SO₂Me	Br	Et	Et	
4-38	SO₂Me	I	Et	Et	
4-39	SO₂Me	CF ₃	Et	Et	
4-40	SO₂Me	CHF ₂	Et	Et	
4-41	SO₂Me	CF ₂ CI	Et	Et	
4-42	SO₂Me	OMe	Et	Et	
4-43	SO₂Me	NO ₂	Et	Et	
4-44	SO₂Me	SO₂Me	Et	Et	
4-45	Me	Me	-(Cł	H ₂) ₅ -	
4-46	Me	F	-(CI	H ₂) ₅ -	
4-47	Me	CI	-(CI	H ₂) ₅ -	
4-48	Ме	Br	-(Cl	H ₂) ₅ -	
4-49	Me	I	-(Cl	H ₂) ₅ -	
4-50	Me	CF ₃	-(Cł	H ₂) ₅ -	
4-51	Me	CHF ₂	-(Cl	H ₂) ₅ -	
4-52	Me	CF ₂ CI	-(Cł	H ₂) ₅ -	
4-53	Me	ОМе	-(Cl	H ₂) ₅ -	
4-54	Me	NO ₂	-(CI	H ₂) ₅ -	
4-55	Me	SO₂Me	-(CI	H ₂) ₅ -	
4-56	CI	Me	-(Cl	H ₂) ₅ -	
4-57	CI	F	-(Cl	H ₂) ₅ -	
4-58	CI	CI	-(CI	H ₂) ₅ -	
4-59	CI	Br	-(Cł	H ₂) ₅ -	
4-60	CI	I	-(Cl	H ₂) ₅ -	
4-61	CI	CF ₃	-(Cl	1 ₂) ₅ -	
4-62	CI	CHF ₂	-(Cł	H ₂) ₅ -	
4-63	CI	CF ₂ CI	-(CH	H ₂) ₅ -	
4-64	CI	OMe	-(CI	H ₂) ₅ -	
4-65	CI	NO ₂	-(CI	H ₂) ₅ -	
4-66	CI	SO₂Me	-(CH	1 ₂) ₅ -	
4-67	OMe	Me	-(Cł	H ₂) ₅ -	
4-68	OMe	F	-(Cl	H ₂) ₅ -	
4-69	OMe	CI	-(CI	H ₂) ₅ -	
4-70	OMe	Br	-(Cl	H ₂) ₅ -	
4-71	OMe	I	-(CI	H ₂) ₅ -	
4-72	OMe	CF₃	-(CI	H ₂) ₅ -	
4-73	OMe	CHF ₂	-(CI	H ₂) ₅ -	

番号	Х	Z	R	R'	物理データ (¹ H-NMR)	
4-74	OMe	CF ₂ CI	-(CI	H ₂) ₅ -		
4-75	OMe	OMe	-(CI	H ₂) ₅ -		
4-76	OMe	NO ₂	-(CH ₂) ₅ -			
4-77	OMe	SO₂Me	-(Cl	H ₂) ₅ -		
4-78	SO₂Me	Me	-(Cł	H ₂) ₅ -		
4-79	SO₂Me	F	-(CH ₂) ₅ -			
4-80	SO₂Me	CI	-(CH ₂) ₅ -			
4-81	SO₂Me	Br	-(CH ₂) ₅ -			
4-82	SO₂Me	I	-(CH ₂) ₅ -			
4-83	SO₂Me	CF ₃	-(CH ₂) ₅ -			
4-84	SO₂Me	CHF ₂	-(Cl	H ₂) ₅ -		
4-85	SO₂Me	CF ₂ CI	-(Cl	H ₂) ₅ -		
4-86	SO₂Me	OMe	-(Cl	H ₂) ₅ -		
4-87	SO₂Me	NO ₂	-(Cl	H ₂) ₅ -		
4-88	SO₂Me	SO₂Me	-(Cl	H ₂) ₅ -		
4-89	Ме	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-90	Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-91	Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-92	Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-93	Ме	ı	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-94	Me	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-95	Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-96	Ме	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-97	Me	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-98	Ме	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-99	Me	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-100	CI	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-101	CI	F	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-102	CI	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-103	CI	Br	-(CH ₂) ₂ O(CH ₂) ₂ -			
4-104	CI	ı	-(CH ₂) ₂ O(CH ₂) ₂ -			
4-105	CI	CF ₃	-(CH ₂) ₂ O(CH ₂) ₂ -			
4-106	CI	CHF ₂	-(CH ₂) ₂ O(CH ₂) ₂ -			
4-107	CI	CF ₂ CI	-(CH ₂) ₂ O(CH ₂) ₂ -			
4-108	CI	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-109	CI	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -		
4-110	CI	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -		

番号	X	Z	R	R'	物理データ (¹ H-NMR)
4-111	OMe	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-112	OMe	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-113	OMe	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-114	OMe	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-115	OMe	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-116	OMe	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-117	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-118	OMe	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-119	OMe	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-120	OMe	NO ₂	-(CH ₂) ₂ (D(CH ₂) ₂ -	
4-121	OMe	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-122	SO₂Me	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-123	SO₂Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-124	SO₂Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-125	SO₂Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-126	SO₂Me	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-127	SO₂Me	CF₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-128	SO₂Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-130	SO₂Me	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-131	SO₂Me	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-132	SO₂Me	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
4-133	CI	COOMe	Et	Et	
4-134	CI	COOMe	-(CI	H ₂) ₅ -	
4-135	CI	COOMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	

[0129]

表 5:Q が Q 2 で あり、 R \times がメチル基であり、 R および W がそれぞれ水素である一般式(I)の本発明の化合物

【化32】

10

20

【表5】

番号	х	z	R	R'	物理データ (¹ H-NMR)
5-1	Me	Me	Et	Et	
5-2	Ме	F	Et	Et	
5-3	Me	CI	Et	Et	
5-4	Ме	Br	Et	Et	
5-5	Me	ı	Et	Et	
5-6	Me	CF ₃	Et	Et	
5-7	Me	CHF ₂	Et	Et	
5-8	Me	CF ₂ CI	Et	Et	
5-9	Me	OMe	Et	Et	
5-10	Me	NO ₂	Et	Et	
5-11	Me	SO₂Me	Et	Et	
5-12	CI	Ме	Et	Et	
5-13	CI	F	Et	Et	
5-14	CI	CI	Et	Et	
5-15	CI	Br	Et	Et	
5-16	CI	ı	Et	Et	
5-17	CI	CF ₃	Et	Et	
5-18	CI	CHF ₂	Et	Et	
5-19	CI	CF ₂ CI	Et	Et	
5-20	CI	OMe	Et	Et	
5-21	CI	NO ₂	Et	Et	
5-22	CI	SO₂Me	Et	Et	
5-23	OMe	Ме	Et	Et	
5-24	ОМе	F	Et	Et	
5-25	ОМе	CI	Et	Et	
5-26	OMe	Br	Et	Et	
5-27	ОМе	I	Et	Et	
5-28	ОМе	CF₃	Et	Et	
5-29	OMe	CHF ₂	Et	Et	
5-30	OMe	CF ₂ CI	Et	Et	
5-31	OMe	OMe	Et	Et	
5-32	OMe	NO ₂	Et	Et	
5-33	OMe	SO₂Me	Et	Et	
5-34	SO₂Me	Me	Et	Et	
5-35	SO₂Me	F	Et	Et	
5-36	SO₂Me	CI	Et	Et	

10

20

30

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
5-37	SO₂Me	Br	Et	Et	
5-38	SO₂Me	I	Et	Et	
5-39	SO₂Me	CF ₃	Et	Et	
5-40	SO₂Me	CHF ₂	Et	Et	
5-41	SO₂Me	CF ₂ CI	Et	Et	
5-42	SO₂Me	OMe	Et	Et	
5-43	SO₂Me	NO ₂	Et	Et	
5-44	SO₂Me	SO₂Me	Et	Et	
5-45	Me	Me	-(CI	H ₂) ₅ -	
5-46	Me	F	-(Cl	H ₂) ₅ -	
5-47	Me	CI	-(CI	H ₂) ₅ -	
5-48	Ме	Br	-(CI	H ₂) ₅ -	
5-49	Ме	I	-(CI	H ₂) ₅ -	
5-50	Me	CF ₃	-(CI	H ₂) ₅ -	
5-51	Me	CHF ₂	-(CI	H ₂) ₅ -	
5-52	Ме	CF ₂ CI	-(Cl	H ₂) ₅ -	
5-53	Ме	OMe	-(C	H ₂) ₅ -	
5-54	Me	NO ₂	-(CI	H ₂) ₅ -	
5-55	Me	SO₂Me	-(CI	H ₂) ₅ -	
5-56	CI	Me	-(CI	H ₂) ₅ -	
5-57	CI	F	-(C	H ₂) ₅ -	
5-58	CI	CI	-(CI	H ₂) ₅ -	
5-59	CI	Br	-(CI	H ₂) ₅ -	
5-60	CI	I	-(C	H ₂) ₅ -	
5-61	CI	CF ₃	-(C	H ₂) ₅ -	
5-62	CI	CHF ₂	-(CI	H ₂) ₅ -	
5-63	CI	CF ₂ CI	-(Cl	H ₂) ₅ -	
5-64	CI	OMe	-(C	H ₂) ₅ -	
5-65	CI	NO ₂	-(C	H ₂) ₅ -	
5-66	CI	SO₂Me	-(CI	H ₂) ₅ -	
5-67	OMe	Me	-(Cl	H ₂) ₅ -	
5-68	OMe	F	-(C	H ₂) ₅ -	
5-69	OMe	CI	-(CI	H ₂) ₅ -	
5-70	OMe	Br	-(Cl	H ₂) ₅ -	
5-71	OMe	I	-(C	H ₂) ₅ -	
5-72	OMe	CF ₃	-(C	H ₂) ₅ -	
5-73	OMe	CHF ₂	-(C	H ₂) ₅ -	

番号	X	Z	R	R'	物理データ (¹ H-NMR)	
5-74	OMe	CF ₂ CI	-(CH	l ₂) ₅ -		
5-75	OMe	OMe	-(CH	l ₂) ₅ -		
5-76	OMe	NO ₂	-(CH	l ₂) ₅ -		
5-77	OMe	SO₂Me	-(CH	l ₂) ₅ -		
5-78	SO₂Me	Me	-(CH	l ₂) ₅ -		
5-79	SO₂Me	F	-(CH	l ₂) ₅ -		
5-80	SO₂Me	CI	-(CH	l ₂) ₅ -		1
5-81	SO₂Me	Br	-(CH	l ₂) ₅ -		
5-82	SO₂Me	I	-(CH	l ₂) ₅ -		
5-83	SO₂Me	CF ₃	-(CH ₂) ₅ -			
5-84	SO₂Me	CHF ₂	-(CH	l ₂) ₅ -		
5-85	SO₂Me	CF ₂ CI	-(CH	l ₂) ₅ -		
5-86	SO₂Me	OMe	-(CH	l ₂) ₅ -		
5-87	SO₂Me	NO ₂	-(CH	l ₂) ₅ -		
5-88	SO₂Me	SO₂Me	-(CH	l ₂) ₅ -		
5-89	Ме	Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-90	Ме	F	-(CH ₂) ₂ O	(CH ₂) ₂ -		2
5-91	Me	CI	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-92	Me	Br	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-93	Ме	ı	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-94	Ме	CF ₃	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-95	Me	CHF ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-96	Me	CF ₂ CI	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-97	Me	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-98	Ме	NO ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-99	Me	SO₂Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		3
5-100	CI	Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-101	CI	F	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-102	CI	CI	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-103	CI	Br	-(CH ₂) ₂ O(CH ₂) ₂ -			
5-104	CI	ı	-(CH ₂) ₂ O(CH ₂) ₂ -			
5-105	CI	CF ₃	-(CH ₂) ₂ O(CH ₂) ₂ -			
5-106	CI	CHF ₂	-(CH ₂) ₂ O(CH ₂) ₂ -			
5-107	CI	CF ₂ CI	-(CH ₂) ₂ O(CH ₂) ₂ -			
5-108	CI	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-109	CI	NO ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -		
5-110	CI	SO₂Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		

番号	X	Z	R	R'	物理データ (¹ H-NMR)
5-111	OMe	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-112	OMe	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-113	OMe	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-114	OMe	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-115	ОМе	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-116	OMe	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-117	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-118	OMe	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-119	OMe	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-120	OMe	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-121	OMe	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-122	SO₂Me	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-123	SO₂Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-124	SO₂Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-125	SO₂Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-126	SO₂Me	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-127	SO₂Me	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-128	SO₂Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
5-130	SO₂Me	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
5-131	SO₂Me	NO ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
5-132	SO₂Me	SO₂Me	-(CH ₂) ₂ O(CH ₂) ₂ -		
5-133	CI	COOMe	Et	Et	
5-134	CI	COOMe	-(Cl	H ₂) ₅ -	
5-135	CI	COOMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	

[0130]

表 6:Q が Q 3 であり、 R y がメチル基であり、 R およびW がそれぞれ水素である一般式(I)の本発明の化合物

【化33】

10

20

30

【表6】

番号	x	z	R	R'	物理データ (¹ H-NMR)	
6-1	Me	Me	Et	Et		
6-2	Me	F	Et	Et		
6-3	Me	CI	Et	Et		
6-4	Me	Br	Et	Et		
6-5	Me	I	Et	Et		10
6-6	Me	CF ₃	Et	Et		
6-7	Me	CHF ₂	Et	Et		
6-8	Me	CF ₂ CI	Et	Et		
6-9	Me	OMe	Et	Et		
6-10	Me	NO ₂	Et	Et		
6-11	Me	SO₂Me	Et	Et		
6-12	CI	Me	Et	Et		
6-13	CI	F	Et	Et		
6-14	CI	CI	Et	Et	(400 MHz, CDCl ₃ δ, ppm) 7.37 (d,1H), 7.25 (d,1H), 3.30 (q,4H), 2.48 (s,3H), 1.47 (t,6H)	20
6-15	CI	Br	Et	Et		
6-16	CI	I	Et	Et		
6-17	CI	CF ₃	Et	Et		
6-18	CI	CHF ₂	Et	Et		
6-19	CI	CF ₂ CI	Et	Et		
6-20	CI	OMe	Et	Et		
6-21	CI	NO ₂	Et	Et		
6-22	CI	SO₂Me	Et	Et		30
6-23	OMe	Me	Et	Et		
6-24	OMe	F	Et	Et		
6-25	OMe	CI	Et	Et		
6-26	OMe	Br	Et	Et		
6-27	OMe	I	Et	Et		
6-28	OMe	CF ₃	Et	Et		
6-29	OMe	CHF ₂	Et	Et		
6-30	OMe	CF ₂ CI	Et	Et		
6-31	OMe	OMe	Et	Et		40
6-32	OMe	NO ₂	Et	Et]
6-33	OMe	SO₂Me	Et	Et		
6-34	SO₂Me	Me	Et	Et		
6-35	SO₂Me	F	Et	Et		

番号	X	z	R	R'	物理データ (¹ H-NMR)
6-36	SO₂Me	CI	Et	Et	
6-37	SO₂Me	Br	Et	Et	
6-38	SO₂Me	I	Et	Et	
6-39	SO₂Me	CF ₃	Et	Et	
6-40	SO₂Me	CHF ₂	Et	Et	
6-41	SO₂Me	CF ₂ CI	Et	Et	
6-42	SO₂Me	OMe	Et	Et	
6-43	SO₂Me	NO ₂	Et	Et	
6-44	SO₂Me	SO₂Me	Et	Et	
6-45	Me	Me	-(CI	H ₂) ₅ -	
6-46	Me	F	-(Cl	H₂)₅-	
6-47	Ме	CI	-(Cl	H₂)₅-	
6-48	Ме	Br	-(Cl	H ₂) ₅ -	
6-49	Me	I	-(Cl	H ₂) ₅ -	
6-50	Me	CF ₃	-(CI	H ₂) ₅ -	
6-51	Ме	CHF ₂	-(CI	H₂)₅-	
6-52	Ме	CF ₂ CI	-(CI	H ₂) ₅ -	
6-53	Me	OMe	-(CI	H ₂) ₅ -	
6-54	Me	NO ₂	-(CI	H₂)5-	
6-55	Ме	SO₂Me	-(CI	H ₂) ₅ -	
6-56	CI	Me	-(CI	⊣ ₂)₅-	
6-57	CI	F	-(CI	H ₂) ₅ -	
6-58	CI	CI	-(CH	H ₂) ₅ -	$\begin{array}{l} (400 \text{ MHz, DMSO-d}_6 \ \delta, \text{ ppm}) \ 7.54 \\ (d,1H), \ 7.26 \ (d,1H), \ 3.43 - 3.26 \\ (m,4H), \ 2.38 \ (s,3H), \ 2.13 - 2.05 \\ (m,2H), \ 1.94 \ (m,2H), \ 1.62 \ (m,2H) \end{array}$
6-59	CI	Br	-(CI	H ₂) ₅ -	
6-60	CI	I	-(CI	⊣ ₂)₅-	
6-61	CI	CF ₃	-(CI	- 1₂)₅-	
6-62	CI	CHF ₂	-(CI	H₂)5-	
6-63	CI	CF ₂ CI	-(CI	⊣ ₂)₅-	
6-64	CI	OMe	-(CI	⊣ ₂)₅-	
6-65	CI	NO ₂	-(CI	H ₂) ₅ -	
6-66	CI	SO₂Me	-(Cl	H ₂) ₅ -	
6-67	OMe	Me	-(CI	H₂)₅-	
6-68	OMe	F	-(CI	Ⅎ ₂)₅-	
6-69	OMe	CI	-(CI	H ₂) ₅ -	
6-70	OMe	Br	-(CI	H ₂) ₅ -	

番号	x	z	R	R'	物理データ (¹ H-NMR)	
6-71	OMe	I	-(CF	I ₂) ₅ -		
6-72	OMe	CF₃	-(CH	1 ₂) ₅ -		
6-73	OMe	CHF ₂	-(CH ₂) ₅ -			
6-74	OMe	CF ₂ CI	-(CH ₂) ₅ -			
6-75	OMe	OMe	-(CH ₂) ₅ -			
6-76	OMe	NO ₂	-(CH ₂) ₅ -			
6-77	OMe	SO₂Me	-(CH ₂) ₅ -			10
6-78	SO₂Me	Me	-(CH ₂) ₅ -			10
6-79	SO₂Me	F	-(CH ₂) ₅ -			
6-80	SO₂Me	CI	-(CF	l ₂) ₅ -		
6-81	SO₂Me	Br	-(CF	l ₂) ₅ -		
6-82	SO₂Me	I	-(CF	l ₂) ₅ -		
6-83	SO₂Me	CF ₃	-(CF	l ₂) ₅ -		
6-84	SO₂Me	CHF ₂	-(CH	l ₂) ₅ -		
6-85	SO₂Me	CF ₂ CI	-(CF	l ₂) ₅ -		
6-86	SO₂Me	OMe	-(CF	l ₂) ₅ -		20
6-87	SO₂Me	NO ₂	-(CF	l ₂) ₅ -		20
6-88	SO₂Me	SO₂Me	-(CH	I ₂) ₅ -		
6-89	Me	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-90	Me	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-91	Me	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-92	Me	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-93	Me	I	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-94	Me	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-95	Me	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-96	Me	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -		30
6-97	Me	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-98	Me	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-99	Me	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-100	CI	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-101	CI	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-102	СІ	CI	-(CH₂)₂C	O(CH ₂) ₂ -	(400 MHz, CDCl ₃ δ , ppm) 7.44 (d,1H), 7.37 (d,1H), 4.35 – 4.31 (m,2H), 4.21 – 4.15 (m,2H), 3.55 (m,2H), 3.31 (m,2H), 2.49 (s,3H)	
6-103	CI	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -		40
6-104	CI	I	-(CH ₂) ₂ C	O(CH ₂) ₂ -		
6-105	CI	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -		

20

30

番号	X	Z	R	R'	物理データ (¹ H-NMR)
6-106	CI	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-107	CI	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-108	CI	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-109	CI	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-110	CI	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-111	OMe	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-112	OMe	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-113	OMe	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-114	OMe	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-115	OMe	1	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-116	OMe	CF₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-117	OMe	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-118	OMe	CF₂CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-119	OMe	OMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-120	OMe	NO ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-121	OMe	SO₂Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-122	SO₂Me	Me	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-123	SO₂Me	F	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-124	SO₂Me	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-125	SO₂Me	Br	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-126	SO₂Me	1	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-127	SO₂Me	CF₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-128	SO₂Me	CHF ₂	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
6-130	SO₂Me	OMe	-(CH ₂) ₂ O(CH ₂) ₂ -		
6-131	SO₂Me	NO ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
6-132	SO₂Me	SO₂Me	-(CH ₂) ₂ O(CH ₂) ₂ -		
6-133	CI	COOMe	Et Et		
6-134	CI	COOMe	-(CH	H ₂) ₅ -	
6-135	CI	COOMe	-(CH ₂) ₂ C	O(CH ₂) ₂ -	

[0131]

【化34】

 $I_3C \xrightarrow{N-N} O \qquad X \qquad R \\ N=S-R' \\ O \qquad Z$

【表7】

番号	х	z	R	R'	物理データ (¹ H-NMR)	
7-1	Me	Me	Et	Et		
7-2	Me	F	Et	Et		
7-3	Me	CI	Et	Et		
7-4	Me	Br	Et	Et		
7-5	Me	I	Et	Et		10
7-6	Me	CF ₃	Et	Et		
7-7	Me	CHF ₂	Et	Et		
7-8	Me	CF₂CI	Et	Et		
7-9	Me	OMe	Et	Et		
7-10	Me	NO ₂	Et	Et		
7-11	Me	SO₂Me	Et	Et		
7-12	CI	Ме	Et	Et		
7-13	CI	F	Et	Et		
7-14	CI	CI	Et	Et	(400 MHz, CDCl ₃ δ, ppm) 7.39 (d,1H), 7.31 (d,1H), 3.31 (q,4H), 2.55 (s,3H), 1.49 (t,6H)	20
7-15	CI	Br	Et	Et		
7-16	CI	1	Et	Et		
7-17	CI	CF ₃	Et	Et		
7-18	CI	CHF ₂	Et	Et		
7-19	CI	CF ₂ CI	Et	Et		
7-20	CI	OMe	Et	Et		
7-21	CI	NO ₂	Et	Et		
7-22	CI	SO ₂ Me	Et	Et		
7-23	OMe	Ме	Et	Et		30
7-24	ОМе	F	Et	Et		
7-25	OMe	CI	Et	Et		
7-26	OMe	Br	Et	Et		
7-27	OMe	I	Et	Et		
7-28	OMe	CF ₃	Et	Et		
7-29	OMe	CHF ₂	Et	Et		
7-30	OMe	CF ₂ CI	Et	Et		
7-31	OMe	OMe	Et	Et		
7-32	OMe	NO ₂	Et	Et		40
7-33	OMe	SO ₂ Me	Et	Et		
7-34	SO₂Me	Me	Et	Et		
7-35	SO₂Me	F	Et	Et		

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
7-36	SO₂Me	CI	Et	Et	
7-37	SO₂Me	Br	Et	Et	
7-38	SO₂Me	ı	Et	Et	
7-39	SO₂Me	CF ₃	Et	Et	
7-40	SO₂Me	CHF ₂	Et	Et	
7-41	SO₂Me	CF₂CI	Et	Et	
7-42	SO₂Me	OMe	Et	Et	
7-43	SO₂Me	NO ₂	Et	Et	
7-44	SO₂Me	SO₂Me	Et	Et	
7-45	Me	Me	-(CH	1 ₂) ₅ -	
7-46	Me	F	-(CH	H ₂) ₅ -	
7-47	Ме	CI	-(CH	1 ₂) ₅ -	
7-48	Ме	Br	-(CH	1 ₂) ₅ -	
7-49	Me	I	-(CH	- 1₂)₅-	
7-50	Me	CF₃	-(CH	1 ₂) ₅ -	
7-51	Ме	CHF ₂	-(CH	l ₂) ₅ -	
7-52	Me	CF ₂ CI	-(CH	1 ₂) ₅ -	
7-53	Me	OMe	-(CH	1 ₂) ₅ -	
7-54	Me	NO ₂	-(CH	1 ₂) ₅ -	
7-55	Ме	SO₂Me	-(CH	1 ₂) ₅ -	
7-56	CI	Ме	-(CH	1 ₂) ₅ -	
7-57	CI	F	-(CH	H ₂) ₅ -	
7-58	CI	CI	-(CH	H ₂) ₅ -	(400 MHz, CDCl ₃ δ, ppm) 7.35 (d,1H), 3.49 (m,2H), 3.33 – 3.23 (m,2H), 2.57 (s,3H)
7-59	CI	Br	-(CH	H ₂) ₅ -	
7-60	CI	I	-(CH	H ₂) ₅ -	
7-61	CI	CF ₃	-(CH	H ₂) ₅ -	
7-62	CI	CHF ₂	-(CH	1 ₂) ₅ -	
7-63	CI	CF ₂ CI	-(CH	1 ₂) ₅ -	
7-64	CI	OMe	-(CH	1 ₂) ₅ -	
7-65	CI	NO ₂	-(CH	1 ₂) ₅ -	
7-66	CI	SO₂Me	-(CH	1 ₂) ₅ -	
7-67	ОМе	Ме	-(CH	1 ₂) ₅ -	
7-68	OMe	F	-(CH	H ₂) ₅ -	
7-69	ОМе	CI	-(CI	I₂)₅-	
7-70	ОМе	Br	-(CI	1 ₂) ₅ -	
7-71	ОМе	I	-(CH	I₂)₅-	
7-72	ОМе	CF₃	-(CI	1 ₂) ₅ -	

番号	Х	Z	R	R'	物理データ (¹H-NMR)
7-73	OMe	CHF ₂	-(Cl	1 ₂) ₅ -	
7-74	OMe	CF₂CI	-(CI	1 ₂) ₅ -	
7-75	OMe	OMe		Ⅎ₂) ₅-	
7-76	OMe	NO ₂	-(CI	1 ₂) ₅ -	
7-77	ОМе	SO₂Me		H ₂) ₅ -	
7-78	SO₂Me	Me	-(CI	H ₂) ₅ -	
7-79	SO₂Me	F		1 ₂) ₅ -	
7-80	SO₂Me	CI		- 1₂)₅-	
7-81	SO₂Me	Br		H ₂) ₅ -	
7-82	SO₂Me	ı		H ₂) ₅ -	
7-83	SO₂Me	CF ₃		1 ₂) ₅ -	
7-84	SO ₂ Me	CHF ₂	-(Cł	H ₂) ₅ -	
7-85	SO₂Me	CF ₂ CI		1 ₂) ₅ -	
7-86	SO₂Me	OMe		H ₂) ₅ -	
7-87	SO₂Me	NO ₂	-(CI	H ₂) ₅ -	
7-88	SO₂Me	SO₂Me		H ₂) ₅ -	
7-89	Ме	Ме		O(CH ₂) ₂ -	
7-90	Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-91	Me	CI		O(CH ₂) ₂ -	
7-92	Ме	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-93	Ме	ı	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-94	Me	CF₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-95	Me	CHF₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-96	Me	CF₂CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-97	Ме	ОМе	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-98	Me	NO ₂		O(CH ₂) ₂ -	
7-99	Me	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-100	CI	Me		O(CH ₂) ₂ -	
7-101	CI	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-102	CI	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	(400 MHz, CDCl ₃ δ, ppm) 7.41 (d,1H), 7.36 (d,1H), 4.32 (m,2H), 4.19 (m,2H), 3.57 (m,2H), 3.31 (m,2H), 2.55 (s,3H)
7-103	CI	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-104	CI	I	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-105	CI	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-106	CI	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-107	CI	CF ₂ CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
7-108	CI	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -	

番号	X	Z	R	R'	物理	゠゚゙	゚゚゚゙゙゙゙゙゙゚゚゠゚゙゚゚゙゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	『データ (¹ H-NMR)
7-109	CI	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-110	CI	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-111	OMe	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-112	OMe	F	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-113	OMe	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-114	OMe	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -	.			
7-115	OMe	I	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-116	ОМе	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-117	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-118	OMe	CF₂CI	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-119	ОМе	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-120	OMe	NO ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -		ı	1	
7-121	OMe	SO₂Me	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-122	SO₂Me	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-123	SO ₂ Me	F	-(CH ₂) ₂ (O(CH ₂) ₂ -	.			
7-124	SO₂Me	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	,			
7-125	SO₂Me	Br	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-126	SO ₂ Me	I	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-127	SO₂Me	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-128	SO₂Me	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-129	SO₂Me	CF₂CI	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-130	SO₂Me	OMe	-(CH ₂) ₂ (O(CH ₂) ₂ -				
7-131	SO₂Me	NO ₂		O(CH ₂) ₂ -	\dashv			
7-132	SO₂Me	SO₂Me		O(CH ₂) ₂ -	\dashv			
7-133	CI	COOMe	Et	Et	\exists			
7-134	CI	COOMe	-(CI	H ₂) ₅ -				
7-135	CI	COOMe		O(CH ₂) ₂ -				

[0132]

表 8 : Q が Q 1 であり、 R $^{\times}$ がメチル基であり、 W が水素であるナトリウム塩の形での

--一般式(I)の本発明の化合物

【化35】

$$\begin{array}{c|c}
N & O & X & R \\
N & N & S - R' \\
H_3C & Na^+ & Z
\end{array}$$

10

20

30

【表8】

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
8-1	Me	Me	Et	Et	
8-2	Ме	CI	Et	Et	
8-3	Me	CF ₃	Et	Et	
8-4	Ме	CHF ₂	Et	Et	
8-5	CI	Me	Et	Et	
8-6	CI	CI	Et	Et	
8-7	CI	CF ₃	Et	Et	
8-8	CI	CHF ₂	Et	Et	
8-9	OMe	Me	Et	Et	
8-10	OMe	CI	Et	Et	
8-11	OMe	CF ₃	Et	Et	
8-12	OMe	CHF ₂	Et	Et	
8-13	SO₂Me	Me	Et	Et	
8-14	SO₂Me	CI	Et	Et	
8-15	SO₂Me	CF₃	Et	Et	
8-16	SO₂Me	CHF ₂	Et	Et	
8-17	Me	Me	-(CH	H ₂) ₅ -	
8-18	Me	CI	-(CH ₂) ₅ -		
8-19	Ме	CF₃	-(CH	H ₂) ₅ -	
8-20	Ме	CHF ₂	-(CH	H ₂) ₅ -	
8-21	CI	Me	-(CH	H ₂) ₅ -	
8-22	CI	CI	-(CH	H ₂) ₅ -	
8-23	CI	CF₃	-(CH	H ₂) ₅ -	
8-24	CI	CHF ₂	-(CH	H ₂) ₅ -	
8-25	OMe	Me	-(CH	H ₂) ₅ -	
8-26	OMe	CI	-(CH	H ₂) ₅ -	
8-27	OMe	CF ₃	-(CH	H ₂) ₅ -	
8-28	OMe	CHF ₂		H ₂) ₅ -	
8-29	SO₂Me	Me	-(Cl	H ₂) ₅ -	
8-30	SO₂Me	CI	-(CH	H ₂) ₅ -	
8-31	SO₂Me	CF ₃	-(CH	H ₂) ₅ -	
8-32	SO₂Me	CHF ₂	-(CH	H ₂) ₅ -	
8-33	Ме	Ме	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
8-34	Ме	CI	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
8-35	Ме	CF ₃	-(CH ₂) ₂ C	O(CH ₂) ₂ -	
8-36	Ме	CHF ₂	-(CH ₂) ₂ C	D(CH ₂) ₂ -	

10

20

30

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
8-37	CI	Ме	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-38	CI	CI	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-39	CI	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-40	CI	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-41	OMe	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-42	OMe	CI	-(CH ₂) ₂ (D(CH ₂) ₂ -	
8-43	OMe	CF ₃	-(CH ₂) ₂ O(CH ₂) ₂ -		
8-44	OMe	CHF ₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-45	SO₂Me	Me	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-46	SO₂Me	CI	-(CH ₂) ₂ (D(CH ₂) ₂ -	
8-47	SO₂Me	CF ₃	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-48	SO₂Me	CHF₂	-(CH ₂) ₂ (O(CH ₂) ₂ -	
8-49	CI	COOMe	Et	Et	
8-50	CI	COOMe	-(CI	H ₂) ₅ -	
8-51	CI	COOMe	-(CH ₂) ₂ O(CH ₂) ₂ -		

[0133]

表 9 : Q が Q 3 であり、 R $^{\,y}$ が塩素であり、 R $^{\,y}$ および W が それぞれ 水素である $^{\,-}$ 般式 ($^{\,1}$) の 本 発明 の 化 合物

【化36】

【表9】

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
9-1	Ме	Me	Et	Et	
9-2	Ме	F	Et	Et	
9-3	Me	CI	Et	Et	
9-4	Me	Br	Et	Et	
9-5	Ме	ı	Et	Et	
9-6	Me	CF ₃	Et	Et	
9-7	Ме	CHF ₂	Et	Et	
9-8	Ме	CF ₂ CI	Et	Et	
9-9	Me	OMe	Et	Et	
9-10	Me	NO ₂	Et	Et	
9-11	Ме	SO₂Me	Et	Et	
9-12	CI	Me	Et	Et	
9-13	CI	F	Et	Et	
9-14	CI	CI	Et	Et	(400 MHz, CDCl ₃ δ, ppm) 7.49 (d,1H), 7.46 (d,1H), 3.29 (q,4H), 1.51 (t,6H)
9-15	CI	Br	Et	Et	
9-16	CI	I	Et	Et	
9-17	CI	CF ₃	Et	Et	
9-18	CI	CHF ₂	Et	Et	
9-19	CI	CF ₂ CI	Et	Et	
9-20	CI	OMe	Et	Et	
9-21	CI	NO ₂	Et	Et	
9-22	CI	SO₂Me	Et	Et	
9-23	OMe	Me	Et	Et	
9-24	OMe	F	Et	Et	
9-25	OMe	CI	Et	Et	
9-26	OMe	Br	Et	Et	
9-27	OMe	I	Et	Et	
9-28	OMe	CF ₃	Et	Et	
9-29	OMe	CHF ₂	Et	Et	
9-30	OMe	CF ₂ CI	Et	Et	
9-31	OMe	ОМе	Et	Et	
9-32	OMe	NO ₂	Et	Et	
9-33	OMe	SO₂Me	Et	Et	
9-34	SO₂Me	Me	Et	Et	

10

20

30

番号	х	Z	R	R'	物理データ (¹H-NMR)
9-35	SO₂Me	F	Et	Et	
9-36	SO ₂ Me	CI	Et	Et	
9-37	SO ₂ Me	Br	Et	Et	
9-38	SO₂Me	I	Et	Et	
9-39	SO₂Me	CF₃	Et	Et	
9-40	SO₂Me	CHF ₂	Et	Et	
9-41	SO₂Me	CF₂CI	Et	Et	
9-42	SO₂Me	OMe	Et	Et	
9-43	SO₂Me	NO ₂	Et	Et	
9-44	SO₂Me	SO₂Me	Et	Et	
9-45	Ме	Me	-(CH	2)5-	
9-46	Ме	F	-(CH	2)5-	
9-47	Ме	CI	-(CH	2)5-	
9-48	Ме	Br	-(CH	2)5-	
9-49	Ме	I	-(CH	2)5-	
9-50	Ме	CF₃	-(CH ₂) ₅ -		
9-51	Ме	CHF ₂	-(CH	2)5-	
9-52	Ме	CF ₂ CI	-(CH	2)5-	
9-53	Ме	OMe	-(CH	2)5-	
9-54	Ме	NO ₂	-(CH	2)5-	
9-55	Ме	SO₂Me	-(CH	₂) ₅ -	
9-56	CI	Ме	-(CH	2)5-	
9-57	CI	F	-(CH	2)5-	
9-58	CI	СІ	-(CH	2)5-	(400 MHz, CDCl $_3$ δ , ppm) 7.48 (d,1H), 7.45 (d,1H), 3.40 – 3.25 (m,4H), 2.30 – 2.11 (m,4H), 1.88 – 1.80 (m,1H), 1.70 – 1.53 (m,1H)
9-59	CI	Br	-(CH	2)5-	
9-60	CI	I	-(CH	2)5-	
9-61	CI	CF ₃	-(CH	2)5-	
9-62	CI	CHF ₂	-(CH	2)5-	
9-63	CI	CF ₂ CI	-(CH	2)5-	
9-64	CI	OMe	-(CH	2)5-	
9-65	CI	NO ₂	-(CH	2)5-	
9-66	CI	SO₂Me	-(CH	2)5-	
9-67	ОМе	Me	-(CH	2)5-	
9-68	OMe	F	-(CH	2)5-	
9-69	OMe	CI	-(CH	2)5-	

番号	х	Z	R	R'	物理データ (¹ H-NMR)	
9-70	OMe	Br	-(CH	2)5-		
9-71	OMe	ı	-(CH	2)5-		
9-72	OMe	CF ₃	-(CH	2)5-		
9-73	OMe	CHF ₂	-(CH	2)5-		
9-74	OMe	CF ₂ CI	-(CH	2)5-		
9-75	OMe	OMe	-(CH	2)5-		
9-76	OMe	NO ₂	-(CH	2)5-		10
9-77	OMe	SO₂Me	-(CH	2)5 -		
9-78	SO₂Me	Me	-(CH	2)5-		
9-79	SO₂Me	F	-(CH	2)5-		
9-80	SO₂Me	CI	-(CH	2)5-		
9-81	SO₂Me	Br	-(CH	2)5-		
9-82	SO₂Me	I	-(CH	2)5-		
9-83	SO₂Me	CF₃	-(CH	2)5-		
9-84	SO₂Me	CHF ₂	-(CH	2)5-		
9-85	SO₂Me	CF ₂ CI	-(CH	2)5-		20
9-86	SO₂Me	OMe	-(CH	2)5 -		20
9-87	SO₂Me	NO ₂	-(CH	2)5-		
9-88	SO₂Me	SO ₂ Me	-(CH	2)5-		
9-89	Me	Ме	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-90	Me	F	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-91	Me	CI	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-92	Me	Br	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-93	Me	ı	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-94	Me	CF₃	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-95	Me	CHF ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -		30
9-96	Me	CF ₂ CI	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-97	Me	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-98	Me	NO ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-99	Me	SO₂Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-100	CI	Me	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-101	CI	F	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-102	CI	CI	-(CH ₂)₂O	(CH ₂) ₂ -	$\begin{array}{l} \text{(400 MHz, DMSO-d}_6 \ \delta, \ ppm) \ 7.57 \\ \text{(d,1H), 7.27 (d,1H), 4.23} - 4.12 \ (m,2H), \\ 4.06 - 3.97 \ (m,2H), \ 3.55 - 3.40 \ (m,4H) \end{array}$	
9-103	CI	Br	-(CH ₂) ₂ O	(CH ₂) ₂ -		40
9-104	CI	I	-(CH ₂) ₂ O	(CH ₂) ₂ -		
9-105	CI	CF ₃	-(CH ₂) ₂ O	(CH ₂) ₂ -		

番号	Х	Z	R	R'	物理データ (¹ H-NMR)
9-106	CI	CHF ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-107	CI	CF ₂ CI	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-108	CI	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-109	CI	NO ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-110	CI	SO₂Me	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-111	OMe	Me	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-112	OMe	F	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-113	OMe	CI	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-114	OMe	Br	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-115	OMe	I	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-116	OMe	CF₃	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-117	OMe	CHF ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-118	OMe	CF₂CI	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-119	OMe	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-120	OMe	NO ₂	-(CH ₂) ₂ O(CH ₂) ₂ -		
9-121	OMe	SO₂Me	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-122	SO₂Me	Ме	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-123	SO₂Me	F	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-124	SO₂Me	CI	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-125	SO₂Me	Br	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-126	SO₂Me	I	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-127	SO₂Me	CF ₃	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-128	SO₂Me	CHF ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-129	SO₂Me	CF ₂ CI	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-130	SO₂Me	OMe	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-131	SO₂Me	NO ₂	-(CH ₂) ₂ O	(CH ₂) ₂ -	
9-132	SO₂Me	SO₂Me	-(CH ₂) ₂ O	O(CH ₂) ₂ -	
9-133	CI	COOMe	Et	Et	
9-134	CI	COOMe	-(CH	l ₂) ₅ -	
9-135	CI	COOMe	-(CH ₂) ₂ C)(CH ₂) ₂ -	

[0134]

B.製剤例

a)粉剤は式(I)の化合物および/またはそれの塩10重量部および不活性物質としてのタルク90重量部を混合し、その混合物をハンマーミルで粉砕することにより得られる。

[0135]

b)容易に水に分散し得る水和剤は、式(I)の化合物および/またはそれの塩25重量部、不活性物質としてのカオリン含有石英64重量部、リグノスルホン酸カリウム10 重量部ならびに湿展剤および分散剤としてのオレオイルメチルタウリン酸ナトリウム1重量部を混合し、その混合物をピン付きディスクミルで粉砕することにより得られる。

[0136]

c)容易に水に分散し得る分散液濃縮物は、式(I)の化合物および/またはそれの塩20重量部をアルキルフェノールポリグリコールエーテル(Triton(登録商標)X207)6重量部、イソトリデカノールポリグリコールエーテル(8EO)3重量部およびパラフィン系鉱油(沸点範囲:例えば約255から277 超)71重量部と混合し、

10

20

30

その混合物をボールミルで5ミクロン以下の粉末度まで粉砕することにより得られる。

[0137]

d)乳剤は式(I)の化合物および/またはそれの塩15重量部、溶媒としてのシクロへキサノン75重量部および乳化剤としてのエトキシル化ノニルフェノール10重量部から得られる。

[0138]

e) 水分散性粒剤は、

式(I)の化合物および/またはそれの塩75重量部、

リグノスルホン酸カルシウム10重量部、

ラウリル硫酸ナトリウム5重量部、

ポリビニルアルコール3重量部および

カオリン7重量部

を混合し、その混合物をピン付きディスクミルで粉砕し、造粒液としての水を噴霧してその粉末を流動床で造粒することにより得られる。

[0139]

f)水分散性粒剤はまた、

式(I)の化合物および/またはそれの塩25重量部、

2,2 - ジナフチルメタン - 6,6 - ジスルホン酸ナトリウム5重量部、

オレオイルメチルタウリン酸ナトリウム2重量部、

ポリビニルアルコール1重量部、

炭酸カルシウム17重量部および

水 5 0 重量部

をコロイドミルで均質化および予備粉砕し、次にその混合物をビーズミルで粉砕し、得られた懸濁液を噴霧塔で一相ノズルにより噴霧および乾燥することにより得られる。

[0140]

C . 生物例

1 . 雑草植物に対する発芽前除草作用

単子葉および双子葉の雑草植物および作物植物の種子を砂壌土中の木質繊維ポットに入れ、土で覆う。次に、水和剤(WP)の形態でのまたは濃縮エマルション(EC)として製剤された本発明の化合物を、0.2%湿展剤を加えて600から800L/ha(変換値)の水施用量で水系懸濁液または乳濁液として覆っている土の表面に施用する。処理後、ポットを温室に入れ、試験植物の良好な成長条件下に維持する。未処理対照と比較して、3週間の試験期間後に、試験植物に対する損傷を肉眼で評価する(パーセント(%)での除草活性:100%作用=植物が枯死、0%作用=対照植物と同様)。例えば、化合物番号6-102、6-014および6-058はそれぞれ320g/haの施用量で、イチビ(Abutilon theophrasti)、アオゲイトウ(Amaranthus retroflexus)およびイヌカミツレ(Matricaria inodora)に対して少なくとも80%の効力を示す。

[0141]

2.雑草植物に対する発芽後除草作用

単子葉および双子葉の雑草植物および作物植物の種子を木質繊維ポット中の砂壌土に入れ、土で覆い、良好な成長条件下に温室で栽培する。播種から2から3週間後、試験植物を1葉期で処理する。次に、水和剤(WP)の形態でのまたは濃縮エマルション(EC)として製剤された本発明の化合物を、0.2%湿展剤を加えて600から800L/ha(変換値)の水施用量で水系懸濁液または乳濁液として植物の緑色部分の上に噴霧する。約3週間にわたって至適な成長条件下で試験植物を温室に放置しておいた後、未処理対照と比較して、製剤の作用を肉眼で評価する(パーセント(%)での除草活性:100%活性=植物が枯死、0%活性=対照植物と同様)。多くの本発明の化合物がそれぞれ施用量80g/haで、多くの望ましくない植物に対して優れた効力を示す。

[0142]

40

50

20

10

30

. .

3.比較試験

有害植物に対する除草効力の発芽前試験について指定された条件に従って、本発明の化 合物とWO2011/035874A1から公知の化合物との間で比較試験を行った。試 験結果から、本発明の化合物が、多くの有害植物に対して、より優れた効力を示すことが 明らかになっている。

[0143]

ここで使用される略称は下記の意味を有する。

[0144]

ABUTH: (Abutilon theophrasti)

AMARE:アオゲイトウ(Amaranthus retroflexus)

AVEFA: カラスムギ (Avena fatua)

MATIN: イヌカミツレ (Matricaria inodora)

PHBPU:マルバアサガオ(Pharbitis purpureum)

STEME:コハコベ(Stellaria media)

VERPE:オオイヌノフグリ(Veronica persica)。

[0145]

表 A: 発芽前除草効力

【表10】

化合物	用量	除草药	 动力 -		1	1	20
	[g/ha]						
		АВИТН	AMARE	MATIN	PHBPU	VERPE	
H ₃ C H CI CH ₃ CH ₃	320	80%	90%	90%	80%	90%	30
本発明の実施例番号 6-014							
O-N O CI CH ₃ N CH ₃	320	0%	30%	0%	10%	40%	
W02011/035874A1 からの実施例番号							
1-308							40

[0146]

表 B: 発芽前除草効力

【表11】

化合物	用量	除草効力	J			
	[g/ha]					
		ABUTH	AMARE	MATIN	STEME	
O N O CI N N S O CI N S O CI	320	90%	60%	90%	70%	10
本発明の実施例番号 6-058						
O CI CH ₃ N CH ₃	320	0%	30%	Ο%	0%	20
W02011/035874A1 からの実施例番号						
1-308						

[0147]

表 C : 発芽前除草効力 【表 1 2 】

化合物	用量	除草効力				
	[g/ha]	, , , , , ,				
		AVEFA	MATIN	PHBPU	STEME	30
N=S N=S OCI	320	70%	100%	100%	90%	
本発明の実施例番号 6-102						
ON OCI CH ₃ N CH ₃	320	0%	0%	10%	0%	40
W02011/035874A1 からの実施例番号 1-308						

フロントページの続き

FΤ (51) Int.CI. C 0 7 D 271/08 C 0 7 D 271/08 (2006.01) C 0 7 D 271/10 C 0 7 D 271/10 (2006.01) A 0 1 N 43/713 (2006.01) A 0 1 N 43/713 A 0 1 N 43/653 A 0 1 N 43/653 (2006.01) Ν A 0 1 N 43/832 (2006.01) A 0 1 N 43/82 103 A 0 1 N 43/824 (2006.01) A 0 1 N 43/82 101C A 0 1 P 13/00 (2006.01) A 0 1 P 13/00 (74)代理人 100129713 弁理士 重森 一輝 (74)代理人 100137213 弁理士 安藤 健司 (74)代理人 100146318 弁理士 岩瀬 吉和 (74)代理人 230105223 弁護士 城山 康文 (72)発明者 アーレンス, ハルトムート ドイツ国、63329・エゲルスバツハ、アウフ・デル・ホーエ・14 (72)発明者 ブラウン,ラルフ ドイツ国、76857・ランベルク、ビシヨフ-ベツク-シユトラーセ・1アー (72)発明者 ケーン,アルニム ドイツ国、55270・クライン - ヴインターンハイム、リングシュトラーセ・12 (72)発明者 レーア,シユテフアン フランス国、エフ・69006・リヨン、リユー・ビユゲ・9 (72)発明者 デイートリツヒ, ハンスユルク ドイツ国、65835・リーダーバツハ・アム・タウヌス、ボニフアツイウスシユトラーセ・1ベ (72)発明者 シユマツラー,ダーク ドイツ国、65795・ハタースハイム,ハウプトマンベーグ・2 (72)発明者 ガツツヴアイラー,エルマー ドイツ国、61231・バート・ナウハイム、アム・ナウハイマー・バツハ・22 (72)発明者 ロジンガー,クリストフアー,ヒュー ドイツ国、65719・ホフハイム、アム・ホツホフエルド・33

審査官 東 裕子

(56)参考文献 国際公開第2011/035874(WO,A1) 国際公開第2010/016230(WO,A1) 国際公開第2004/052849(WO,A1) 国際公開第2009/116290(WO,A1) 特表2014-510088(JP,A)

(58)調査した分野(Int.CI., DB名)

C 0 7 D

CAplus/REGISTRY(STN)