/014672 A2 IV V00O 0 O

o

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 February 2006 (09.02.2006)

7 3
PO |0 000000 00 0 O

(10) International Publication Number

WO 2006/014672 A2

(51) International Patent Classification:

GOGF 17/60 (2006.01)

(21) International Application Number:
PCT/US2005/025643

(22) International Filing Date: 19 July 2005 (19.07.2005)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/894,658 19 July 2004 (19.07.2004) US

(71) Applicant (for all designated States except US): PACIFIC
EDGE SOFTWARE, INC. [US/US]; Suite 600, 11100
Northeast 8th Street, Bellevue, WA 98004 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCUMNIOTALES,
John [US/US]; 13439 - 179th Avenue Northeast, Red-
mond, WA 98052 (US). HILL, Jeff [US/US]; 6932 - 158th
Street, Snohomish, WA 98296 (US). KREAL, Vorun
[US/US]; 137 - 160th Avenue Southeast, Bellevue, WA
98008 (US). KELKAR, Suhas, A. [IN/US]; 6804 - 147th
Court Northeast, Redmond, WA 98052 (US).

Agents: BIERMAN, Ellen, M. et al.; Seed Intellectual
Property Law Group PLLC, Suite 6300, 701 Fifth Avenue,
Seattle, WA 98104-7092 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR OBJECT-ORIENTED WORKFLOW MANAGEMENT OF MULTI-DIMENSIONAL

DATA

EBlpartcls Anayier
| Beartoiotmatyies -

L 3603

Lﬂ icentify on ttbute a5 2 sevvh e

)
T et
C
2401

(57) Abstract: Methods and systems for managing and analyzing multi-dimensional data are provided. Example embodiments

provide a Meta-Object Data Management System "MODMS," which enables users to arrange and to rearrange the hierarchical rela-
& tionships of the data on an ad-hoc basis and allows the data to be analyzed using any set of attributes (dimensions) while the system
& is running. The MODMS represents heterogeneous data in a normalized (standardized) fashion using an object type management

system that allows the coercion of one type of object into another different type of object and automatically resolves attribute depen-
dencies. The MODMS supports object transitions for transforming an object from one type to another based upon meeting a defined
set of criteria and subject to approval by designated entities. In one embodiment, the MODMS is used to implement an enterprise
portfolio management system.

WO 2006/014672 A2 I} N0 IA0VOH0 AT 000 0O O AR

LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, — asto the applicant’s entitlement to claim the priority of the
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, earlier application (Rule 4.17(iii)) for all designations
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,

VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, Published:

LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian ~— without international search report and to be republished
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European upon receipt of that report

patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,

GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, Fortwo-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG) ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2006/014672 PCT/US2005/025643

METHOD AND SYSTEM FOR OBJECT-ORIENTED WORKFLOW
MANAGEMENT OF MULTI-DIMENSIONAL DATA

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to methods and systems for
managing multi-dimensional data and, in particular, to methods and systems for
creating, maintaining, and analyzing portfolios of multi-dimensional data, such
as project, asset, and product investments, using an object-oriented paradigm.

Background Information

Today's companies, institutions, and other organizations are
plagued by the vast amount of data which is now stored electronically and often
needs to be analyzed by a variety of persons within the organization relative to
business or organizational goals. The need to determine efficiently what data is
available for analysis and how io analyze disparate data across organizational
management boundaries is an ever-increasing problem as the data being
tracked increases and as organizations implement more specialized or
distributed functions. Managers, executives, employees, and other personnel,
each with possibly differing needs for particular content and detail, need to
analyze how different changes might effect the projects, products, resources,
finances, and assets that each are responsible for. Rapid planning cycles,
optimizing the use of critical resources, eliminating low value, non-strategic,
redundant, and poorly performing assets and projects, and real time visibility of
results are common goals in today’s organizations.

The idea of “porifolio management” has evolved within such
organizations as a way to emphasize that all assets of an organization, be they
financial, human, equipment resources, human resources or other assets,
require management and oversight in the same manner as traditional
investments such as real property, commercial paper, and equity investments.
Managing a group of assets as a portfolio encourages decision makers to view
the member investments as a whole but also be able to analyze and scrutinize
each discrete investment. Portfolio-based management of IT assets, such as
technology investments, has become a popular example of applying portfolio
management in a modern day organization. With portfolio-based management,
IT information such as inventory lists, spreadsheets, and project management

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

data are managed as assets that need to be analyzed as to how well they are
meeting IT and organizational level objectives.

Traditionally, discrete systems have been developed to handle the
data management and analysis needs of various entities within an organization.
This phenomenon has grown out of the situation that the data for each entity is
typically stored in its own subsystem and analysis tools have been developed
that are targeted for the specific needs of that entity. Thus, to date, portfolio
management systems have been created to separately manage each type of
investment. For example, extensive financial management and analysis
systems have been developed and used to analyze the financial assets of an
organization such as stocks, bonds, and other commercial paper. Classically,
the data for these systems is stored in a variety of (typically) relational data
base management systems (RDBMS) so that queries can be executed to gain
historical insight into the data. “What-if’ scenarios are often handled by
separate analysis packages that are specific to the type of data being analyzed
and the type of analysis conducted. On-line analysis processing packages
(OLAP packages) have been developed to support such “what-if” analysis with
data that have a large number of axes/variables (often referred to as multi-
dimensioned data). For example, an inventory control system of a geographical
distributed company may have resource data that can be viewed, analyzed,
and sorted by geographic location, region, type of resource, date placed in
operation, organization, responsible party, etc. An OLAP package attempts to
collect and store such data according to how the data is expected be analyzed
so as to optimize analysis efficiency (by reducing search times). In order to
analyze the same data according to different views, the system is taken off-line
and the data structures are recalculated to prepare for additional analysis. This
can be a very time consuming and burdensome process if the data set is very
large, as is typical.

Similarly, to handle project management, separate project
management and analysis systems have been developed to aid managers and
other executives in the project planning and execution lifecycles of projects
within an organization. For example, there are systems that offer extensive
milestone, critical path, and resource analysis for organization data that can be
defined as a project. There exist tools today that allow a group of projects to be
viewed as “investments” within a portfolio. These tools provide a way for
project managers and other executives within an organization to analyze the

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

costs and benefits of such projects in a similar manner to how financial analysts
analyze financial investments.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention provide enhanced
computer- and network-based methods and systems for managing and
analyzing multi-dimensional data. Multi-dimensional data is data having a large
plurality of attributes, such as data found in enterprise management systems.
Example embodiments provide a Meta-Object Data Management System
(“MODMS?”), which enables users to arrange and to rearrange the hierarchical
relationships of the data on an ad-hoc basis so that the data may be analyzed
using any set of attributes (dimensions) while the system is running. The
MODMS stores heterogeneous data in a normalized (standardized) fashion
using an object type management system, which allows the arbitrary coercion
of one type of object into another different type of object and automatically
resolves atiribute dependencies. The arbitrary coercion of one type of object
into another different type of object permits and supports a system whereby any
type of investment can be contained within any other type of investment, so
investments can be moved within and across portfolios at will. In addition,
investments can be transitioned from one type to another based upon specified
criteria and/or approvals.

The Meta-Object Data Management System provides techniques
for creating, managing, and analyzing relationships between, typically,
heterogeneous, multi-dimensional data. In one example embodiment, the
Meta-Object Data Management System comprises one or more functional
components/modules that work together to implement an enterprise portfolio
management system.

According to one approach, a Meta-Object Data Management
System comprises an object type management subsystem, a meta-object -
instantiation subsystem, one or more data repositories that hold the data used
to populate objects and object type definitions (for whatever other data is being
managed), and an input/output interface. For example, the data repositories
may store the financial investment data and the project management
(investment) data of the enterprise. The object type management subsystem is
used to define objects that correspond to the various data types (e.g.,
investment types) that will be created and managed by the MODMS. The
meta-object instantiation subsystem is used to create instances of object types

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

defined by the object type management system. The input/output interface
represents any interface to the components of the MODMS and make take the
form of a user command interface or a programmatic interface, such as an
application programming interface definition.

In one aspect, each meta-object comprises an object identifier, an
object type, and an attribute block. In another aspect, each object type is a
collection of attributes defined from a global attributes data structure. An object
type definition can be dynamically and automatically changed, by modifying one
of the global attributes associated with that object type. When an object type
definition is changed, the MODMS automatically adjusts each instantiated
meta-object that is associated with that object type without recompiling or
recreating the meta-objects. In yet another aspect, meta-objects do not obey
traditional inheritance rules, and thus each meta-object can be type cast into a
different object type. In another aspect, an attribute block stores all of the
attribute values for a single meta-object. Each attribute value is stored between
a beginning attribute tag and an ending attribute tag that identifies the attribute.
The attribute tag-value pairs are stored in a serialized single variable within the
meta-object. In one of these aspects, the tags are XML tags.

In yet another aspect, transitions from one object type to another
object type can be defined and associated with an object type. In one of these
aspects, when a meta-object is instantiated, it is associated automatically with
instances of potential transitions that are defined for that object type. When
specified criteria for a particular transition are met, the transition can be started.
In another aspect, transitions have approvals associated with them that need to
complete before a transition of the associated meta-object is permitted to
progress to completion. Also, transitions can be defined that do not require
criteria to be met or approvals to be granted. In addition, transition can be
defined to transition between objects of different types or between objects of
the same type (e.g., used to control other aspects of workflow). Transitions
may specify that an object is to be moved to a new location after the transition
occurs.

In another aspect, multi-dimensional views of the data can be
dynamically created through the use of datasheets. A datasheet attribute
specification is defined, and a corresponding datasheet is computed based
upon the object instances associated with the datasheet. When datasheets are
moved and copied to different locations, their resultant data and presentation is
automatically adjusted for the new location. In one of these aspects, a

10

15

20

25

WO 2006/014672 PCT/US2005/025643

datasheet is represented using a virtual object tree. A virtual object is
generated for each grouping of data that matches a discrete combination of
values of the attributes identified by the datasheet attribute specification. Then,
a virtual object is generated for each specified group of groups, until all
groupings and sub-groupings have been associated with virtual objects.

In yet another aspect, charts that represent multi-dimensional
views of the data can also be dynamically created. Each chart is associated
with a datasheet and the structure of the chart can automatically reflect the
dimensions of the datasheet, or be manually controlled. Once a chart structure
has been created, the presentation displayed by the chart structure can be
automatically modified by selecting a different axis of the data to be presented.
The resulting chart is then automatically populated using values of the
underlying datasheet.

According to another approach, a portfolio management system is
created using the MODMS. The portfolio management system comprises a
portfolio manager for instantiating meta-objects to correspond to portfolio data
and a portfolio analyzer for displaying instantiated meta-objects whose attribute
values match an attribute specification.

In an example portfolioc management system, heterogeneous
investment data, for example financial investments and project management
resource investments are managed and analyzed using a single abstraction, a
meta-object. In addition, each investment data item can be converted to a
different type of investment data item without reentering the original data.
Investment data can be dynamically organized within other investment data
irrespective of the type of investment data.

All of these approaches and aspects and other approaches and
aspects are supported by the methods and systems of a Meta-Object Data
Management System.

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an example block diagram of components of an
example Meta-Object Data Management System.

Figure 2 is an example overview flow diagram of typical
operations of an example Meta-Object Data Management System.

Figure 3 is an example block diagram abstraction of an object
type definition created and managed by an example object type management
component of a Meta-Object Data Management System.

Figure 4 is an example block diagram of an example meta-object.

Figure 5 is an example block diagram of an in-memory data
structure representation of time-phased attribute.

Figure 6 is a block diagram of an example in-memory data
structure representation of a meta-object.

Figure 7 is a block diagram of an abstraction of an example meta-
object instance hierarchy created using an exampie Meta-Object Data
Management System.

Figure 8 is an example overview flow diagram of a command
interpreter for an example Meta-Object Data Management System.

Figure 9 is an example flow diagram of a Change Object Type
Definition routine for modifying an object type definition in an example Meta-
Object Data Management System.

Figure 10 is an example flow diagram of an Update Meta-Object
routine for modifying an instantiated meta-object in an example Meta-Object
Data Management System when its object type definition has changed.

Figure 11 is an example flow diagram of an Adjust Rollups routine
for adjusting rollup attributes.

Figure 12 is an example flow diagram of steps executed by a
typical rollup event.

Figure 13 is an example block diagram of a general purpose
computer system for practicing embodiments of a Meta-Object Data
Management System.

Figures 14 and 15 are example block diagrams of a client-server,
network-based tiered architecture for implementing embodiments of a Meta-
Object Data Management System.

Figure 16 is an example block diagram of components of an
example object services layer of a Meta-Object Data Management System
used to implement an example Enterprise Portfolio Management System.

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Figure 17 is a block diagram of an example Enterprise Portfolio
Management System implemented using an example Meta-Object Data
Management System.

Figure 18 is a block diagram of an example investment instance
hierarchy of a hypothetical enterprise portfolio management system created
using a Meta-Object Data Management System.

Figure 19 is an overview flow diagram of example portfolio
management functions of a portfolio manager component of an example
Enterprise Portfolio Management System. ,

Figure 20 is an example flow diagram of an Add New Meta-Object
routine for adding a new meta-object (investment).

Figure 21 is an example flow diagram of a Move/Copy Meta-
Object routine for moving/copying a new meta-object (investment).

Figure 22 is an example flow diagram of a Delete Meta-Object
routine for deleting a meta-object (investment).

Figure 23 is an example flow diagram of a Change Meta-Object
routine for changing an existing meta-object (investment).

Figure 24 is an overview flow diagram of example portfolio
analysis functions of a portfolio analyzer component of an example Enterprise
Portfolio Management System.

Figure 25 is an example flow diagram of a Create Multi-
Dimensional View routine for creating a multi-dimension view (datasheet) of an
example portfolio.

Figure 26 is an example flow diagram of a Build Presentation
routine for building a presentation for a multi-dimension view.

Figure 27 is an example flow diagram of a Move/Copy Multi-
Dimensional View routine for moving/copying a multi-dimension view.

Figure 28 is an example flow diagram of a Delete Multi-
Dimensional View routine for deleting a multi-dimension view.

Figure 29 is an example screen display of a configuration view of
an Administration Module of an example Enterprise Portfolio Management
System implemented using an example Meta-Object Data Management
System.

Figure 30 is an example screen display of a workflow view of the
example Administration Module of the example Enterprise Portfolio
Management System used to create and manage object fransition definitions.

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Figure 31 is an example dialog to enter an approval list that is
based upon security roles.

Figure 32 is an example flow diagram of a routine for defining an
object transition in an example object type management subsystem of a Meta-
Object Data Management System.

Figure 33 is an example block diagram abstraction of an object
(type) transition table that contains transition definitions created and managed
by an example object type management subsystem of a Meta-Object Data -
Management System.

Figure 34 is an example block diagram of an in-memory data
structure representation of a transition table instantiated for an example meta-
object.

Figure 35 is an example screen display of a workflow view of an
example Enterprise Portfolio Management System that illustrates multiple
transitions to different types of investments defined for a single investment.

Figure 36 is an example screen display of another workflow view
of an example Enterprise Portfolio Management System that illustrates multiple
transitions to the same type of investment and to one other type of investment
based upon different transition paths defined for a single investment.

Figures 37A and 37B are an example flow diagram of the display
and processing that occurs in a workflow view of an example Enterprise
Portfolio Management System.

Figure 38 is an example screen display in an example Enterprise
Portfolio Management System of a meta-object (investment) transition that has
been initiated after the criteria have been met.

Figure 39 is an example flow diagram of a routine for initiating a
meta-object (investment) fransaction in an example Enterprise Portfolio
Management System.

Figure 40 is an example flow diagram of a routine for handling a
sequenced approval process in an example Enterprise Portfolio Management
System.

Figure 41 is an example screen display in an example Enterprise
Portfolio Management System of a properties dialog associated with a
transition.

Figure 42 is an example screen display in an example Enterprise
Portfolio Management System of a properties dialog associated with the criteria
component of a transition.

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Figure 43 is an example screen display in an example Enterprise
Portfolio Management System of a properties dialog associated with the
approval component of a transition.

Figure 44 is an example screen display of a transition ready to be
finalized in an example Enterprise Portfolio Management System.

Figure 45 is an example flow diagram of routine for performing the
transition of meta-object (investment) from one type to another type in an
example Enterprise Portfolio Management System.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide enhanced
computer- and network-based methods and systems for managing and
analyzing multi-dimensional data. Multi-dimensional data is data having a large
plurality of atfributes, such as data found in enterprise management systems.
Example embodiments provide a Meta-Object Data Management System
(*MODMS?), which enables users to arrange and to rearrange the hierarchical
relationships of the data on an ad-hoc basis and allows the data to be analyzed
using any set of attributes (dimensions) while the system is running. Thus,
analysis of the data can appear to occur concurrently with transactions on the
underlying data. The MODMS represents heterogeneous data in a normalized
(standardized) fashion using an object type management system that allows the
arbitrary coercion of one type of object into another different type of object and
automatically resolves attribute dependencies. Attribute dependencies occur
when the values of attributes of one object are calculated or dependent upon
attribute values of another object. Such dependencies are useful in portfolio
management applications where, for example, values that correspond to a cost
attribute of multiple investment line items are aggregated (rolled-up) into a
summary line item that represents the cost attribute of the portfolio as a whole.
The ability to coerce one type of object into another different type of object
permits and supports a system whereby any type of object can be contained
within any other type of object, so, for example, investments in a portfolio
management system can be moved within and across portfolios at will. In
addition, investments can be transitioned from one type to another based upon
specified criteria and/or approvals.

The Meta-Object Data Management System provides techniques
for creating, managing, and analyzing relationships between, typically
heterogeneous, multi-dimensional data. In one example embodiment, the

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Meta-Object ‘Data Management System comprises one or more functional
components/modules that work together to implement an enterprise portfolio
management system. One skilled in the art will recognize, however, that the
techniques of a MODMS may be used for the creation, management, and
analysis of relationships between many different types of single and multi-
dimensional data, and is not limited to use with portfolio management.

Figure 1 is an example block diagram of components of an
example Meta-Object Data Management System. One skilled in the art will
recognize that these components may be implemented in software or hardware
or a combination of both. As shown, a Meta-Object Data Management System
may comprise an object type management subsystem 101; a meta-object
instantiation subsystem 102; one or more data repositories 103-104 that hoid,
for example, the data used to populate objects and object type definitions (for
whatever data is being managed); and an input/output interface 105. For
example, the data repository 103 may store the financial investment data of an
enterprise and the data repository 104 may store the project management
(investment) data of the enterprise. The object type management subsystem
101 is used to define object types that correspond to the various data types
(e.g., investment types) that will be created and managed by the MODMS. The
meta-object instantiation subsystem 102 is used to create instances of the
object types defined by the object type management system.101. The
input/output interface 105 represents any interface to the components of the
MODMS and make take the form of a user command interface or a
programmatic interface, such as an application programming interface
definition. 4

More specifically, the object type management subsystem 101
defines and manages global attributes and creates and manages object type
definitions, which are each a collection of one or more global attributes. An
excerpt from an example set of global attribute definitions for an example
enterprise portfolio management system is attached as Appendix A—which-is
herein-incorporated-by-reference-in-its-entirety. Example global attributes may
include characteristics of the data to be stored and analyzed such as a
description, cost to date, tangible benefits, intangible benefits, etc., or any other
definable characteristic whose value can be specified. Global attributes can be
added, deleted, and modified while the MODMS is running. Once an object
type definition is created, its collection of attributes can be adjusted. For
example, attributes can be added to or deleted from an object type definition.

10

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Further, when an attribute definition is adjusted, any changes are percolated
throughout the object type definitions that include that attribute and preferably
throughout meta-object instances of the modified object type.

The object type management subsystem 101 also defines and
manages object transitions between the object types defined and managed by
the subsystem. Object transitions are progressions that allow an instantiated
object of one (source) object type to be transformed (by the MODMS) into
another (destination) object type when the “state” of the object (attribute values)
meets designated criteria and any required approvals have been granted.
Object transitions also support “workflow” management by allowing an
instantiated object to be moved to a new location when the transition is
approved and performed (or to a different location if the transition is rejected).
Accordingly, object transitions also may occur without changing the object type
and based upon the state of the object changing. The MODMS object type
management subsystem 101 supports object transitions by providing for the
coercion of one type of object into another without recompiling the system.
Object transition definitions can be added, deleted, and modified while the
MODMS is running. When an object transition definition is adjusted, preferably
any changes are percolated to the source object type definitions that are
affected by the change, and thus will affect newly instantiated objects of those
object types. In some embodiments, the changes are percolated to existing
object transitions; however, to do so, rules for governing behavior for “in-
progress” transitions need to be defined. For example, if an existing object
transition has been initiated and approval requests have been sent out, it may
be more difficult to change the behavior of the transition. Some embodiments
simply don’t allow for changes to in-progress transitions.

The meta-object instantiation subsystem 102 supports the
creation of instances of objects that are defined by the object type management
system 101. The meta-object instantiation subsystem 102 implements an
abstraction of a “higher level” object, known as a meta-object, that is not tied to
a particular object type, but rather implements a broader object concept that is
used to unify the creation and management of all object types that correspond
to user data. For example, within a portfolio management system, a meta-
object is instantiated (created) to correspond to each “investment’ type in the
system, including, for example, portfolios, projects, products, financial assets,
equipment, initiatives, operations, applications, processes, activities, human
resources, other resources, other assets, etc. A representation of a hierarchy

11

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

of investments is created based upon the relationships desired between
investments by instantiating a meta-object that corresponds to one investment
as a child of another meta-object that corresponds to another investment. The
object type definitions themselves do not define the containment or inheritance
relationships as common in other object-oriented systems. Rather, the
containment hierarchy of instantiated meta-objects defines the relationships
between the investments. Once meta-objects are instantiated, they can be
moved, copied, deleted, and their attributes changed. When a meta-object is
moved or copied, the attribute values of the original parent meta-object instance
and the new parent meta-object instance that are dependent upon children
meta-object instances are automatically adjusted (rolled up) to reflect the new
containment structure. Thus, for example, when an instantiated investment
object is moved to a new portfolio, the attributes of the original parent portfolio
and the new parent portfolio are automatically recomputed. Similarly, when an
object type definition is changed, instantiated meta-objects of the modified
object type are automatically adjusted to reflect changes to the object type
definition. Thus, for example, if the definition of a human resource object type
is changed to add an “age” characteristic, then instances of human resource
objects already created by the meta-object instantiation system 102 are
automatically updated to include an “age” attribute with a default value.

In addition to defining representations for types of objects and for
managing the data associated with them, the MODMS supports the concurrent
analysis of data (e.g., investment data) through the use of datasheets. A
datasheet is a multi-dimensional view of the underlying instance hierarchy
based upon a datasheet attribute specification (e.g., a property sheet). For
example, a new multi-dimensional view of the portfolio investment hierarchy
can be formed dynamically by instantiating a new datasheet based upon
specified properties. In one embodiment, the datasheet properties (the attribute
specification) specify axes (data columns of interest), grouping, sorting, and
filtering. A corresponding datasheet is then determined (calculated) by the
system and displayed. Once a datasheet is generated, its properties can be
adjusted, thereby causing an automatic adjustment and recalculation of the
resultant datasheet. In one example embodiment, a datasheet is associated
with a particular meta-object in the instance hierarchy and relates to the objects
within that sub-tree of the containment hierarchy. A datasheet (or more
precisely, its attribute specification) can be deleted, moved, or copied, thereby
automatically causing adjustments to be made to the resultant datasheet

12

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

dependant upon revised location and adjustments to be made to the associated
meta-object if applicable.

Although the techniques of a Meta-Object Data Management
System are generally applicable to any type of investment, the terms
“‘investment” and “asset” are used generally to imply any type of data having
one or more attributes whose cost or benefit can be assessed. One skilled in
the art will recognize that an investment is not limited to traditional investment
types such as real property, commercial paper, and equity investments.
Rather, a MODMS can be used to support the creation, management, and
analysis of any type of data object, whether commonly considered an
“‘investment” or not.

Also, although the examples described herein often refer to
portfolio management and enterprise portfolio management, one skilled in the
art will recognize that the subsystems (components) of a MODMS are defined
generically and that the techniques of the present invention can also be used in
any system that desires to create and manage different types of data objects
whose relationships to each other may change over time. In addition, the
concepts and techniques described are applicable to other data management
systems, including other types of applications that use data repositories to store
related information, for example, inventory control systems, product databases,
manufacturing systems, corporate finances, etc. Essentially, the concepts and
techniques described are applicable to any data management environment. In
the following description, numerous specific details are set forth, such as data
formats and code sequences, etc., in order to provide a thorough understanding
of the techniques of the methods and systems of the present invention. One
skilled in the art will recognize, however, that the present invention also can be
practiced without some of the specific details described herein, or with other
specific details, such as changes with respect to the ordering of the code flow.

In addition, although certain terms are used primarily herein, one
skilled in the art will recognize that other terms could be used interchangeably
to yield equivalent embodiments and examples. For example, it is well known
that equivalent terms could be substituted for such terms as “object,” “attribute,”
“‘dimension,” etc. In addition, terms may have alternate spellings which may or
may not be explicitly mentioned, and one skilled in the art will recognize that all
such variations of terms are intended to be included.

Figure 2 is an example overview flow diagram of typical
operations of an example Meta-Object Data Management System. In step 201,

13

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

the MODMS supports the setup (creation) or management of a global attribute
tables. The global attribute tables are used in step 202 to define (create) object
types. In addition (not shown), the MODMS supports the creation and
management of object transitions from one object type to another same or
different object type. Other functions (not shown) are also supported. One
skilled in the art will recognize -that any well-known technique can be used to
implement a global attributes table, and that any data structure equivalent of a
“table” may be employed. Each object type definition is based upon a collection
of global attribute definitions and a set of methods (functions) shared by all
meta-objects. Typically, as shown in the example global attributes table
excerpt of Appendix A, each global attribute is associated with one or more
attribute values and the table contains one or more “attribute value definitions”
(fields) that describe how each attribute value to be used or interpreted. Each
attribute may define more than one set of values. For example, an attribute
may define one set of values that correspond to target values and define a
different set of values (and potentially calculations) that correspond to actual
values. An attribute that defines multiple sets of values is referred to as a
“dimensioned” attribute. One skilled in the art will recognize that a dimensioned
attribute is an attribute that defines multiple value sets and that each dimension
instead' could be represented as its own attribute. In the example global
attribute table excerpted in Appendix A, each attribute definition contains a tag
name for identification, a descriptive name, an indication of whether multiple
attribute values (dimensions) are associated with the attribute and, for each
dimension of the attribute or for a single valued attribute, an attribute value
definition, which is a set of fields as that further define that value. For example,
each attribute value definition typically defines:

¢ if dimensioned, a type of dimension (e.g., target, plan, baseline, scenario,
actual);

e an indication of whether the attribute value can be rolled up to a
corresponding parent attribute value and, if so, the type of roll-up function
associated with that value;

e an indication of whether the attribute value is calculated, and, if so,
the calculation function for that attribute value;

o an indication of whether the attribute value is a time-phased attribute
and, if so, then the type of time-phased attribute is indicated.
Generally, time-phased attributes are attributes that have discrete values or
ranges of values over periods of time, and described in more detail with

14

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

reference to Figure 5. Other fields and types of values (not shown) may also be-
defined in an attribute value definition and in an attribute definition. In step 203,
meta-objects are instantiated using the created object types to correspond to
the data that is to be managed and analyzed. In step 204, these meta-objects
are persisted into storage. Then in step 205, a command interpreter is invoked
to handle requests to manipulate the instantiated meta-objects and to manage
the object type management subsystem.

An administrator of an application that incorporates the MODMS
typically uses an interface to the object type management system to define
object types for the data to be manipulated by the application. The
administrator creates a new object type (using well-known types of interfaces
such as dialog boxes, tables, forms, Q&A etc.) by determining which of the
global attributes are grouped together to form the new object type. Figure 3 is
an example block diagram abstraction of an object type definition created and
managed by an example object type management component of a Meta-Object
Data Management System. Each object type definition 301 created by the
object type management component of a MODMS comprises at least an object
type identifier 302 and a collection of one or more attributes 303. Each attribute
of the collection 303 is an indicator to an attribute definition 310 stored in the
MODMS, for example as one or more rows of a table similar to the table
described in Appendix A. The data structures shown in Figure 3 are abstract
representations of the data, and one skilled in the art will recognize that any
well-known method for storing tabular or linked information may be used. An
attribute definition 310 defines all of the fields that comprise the attribute. As
described with reference to Figure 2, each attribute definition 310 typically
comprises a descriptive name field 311, an identification tag name field 312,
and an indicator to one or more attribute value definitions, for example, attribute
value definition 314. When the attribute definition 310 defines a dimensioned
attribute, then an indicator 313 is present that refers to multiple attribute value
definitions 330 through a dimensioned attribute table 320. Specifically, for each
value set that comprises a dimension of the attribute, there is an indicator, such
as indicators 321-325 in the dimensioned attribute table 320 that refers to an
attribute value definition 330. The different value sets for a dimensioned
attribute may correspond, for example, to target values 321, plan values 322,
baseline values 323, actual values 325, and other such value sets 324. These
different dimensions of an attribute are present to convey the concept that a
single attribute may have different values depending upon its purpose, lifecycle

15

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

state, or for other reasons. Each atiribute value definition 314 or 330
comprises, for example, a type of value; an indication of whether the attribute
value roles up to a parent node and, if so, a rollup function; an indication of
whether the value is a calculated value and, if so, a calculation function; and an
indication of whether the attribute is a time-phased attribute and, if so, the type
of time phased attribute, etc. One skilled in the art will recognize that even if
the attribute is not a dimensioned attribute, the attribute value definition 314
may be stored in the table 320 using the same mechanism as for a
dimensioned attribute instead of being stored directly in the attribute definition
310 as shown in Figure 3. (Although attribute value definition 314 can be
represented by the same structure as 330, storing the attribute value definition
outside of the dimensioned attribute table may yield processing efficiencies.)

Once the object type definitions have been created using the
object type management component of the MODMS, then a user of the
application that incorporates the MODMS can instantiate meta-objects using a
meta-object instantiation component of the MODMS. Figure 4 is an example
block diagram of an example meta-object. Meta-object 400 includes an
identifier of the type of object that is instantiated 401, a name 402, an identifier
of the instantiated object 403, and an attribute block 404, which stores the
collection of attribute values for all of the attributes defined for the object type
denoted by object type identifier 401. The attribute value definitions of each
attribute (such as those described with reference to Figure 3) are used to
determine how each attribute value in attribute block 404 is to be interpreted
and treated. In one embodiment, the attribute block is implemented as a
“tagged” data structure of, typically, alphanumeric text that represents the value
for each attribute between a set of tags, such as XML tags. So, as shown in
Figure 4, the first attribute value is delimited with the beginning tag “<Attribute
1>" and with the ending tag “</Attribute 1>." The tag used in the attribute block
404 corresponds to the tag defined as tag name 312 in Figure 3. Each meta-
object 400 typically includes other fields, such as: an indicator 405 to a table of
methods 420 that define the behavior of each meta-object 400; an indication of
a parent meta-object 406 in an instance hierarchy; a flag 407 that indicates
whether the object has any associated children meta-objects; indicators 408 to
the children meta-objects of meta-object 400 in the instance hierarchy; lifecycle
information 409; a pointer to a table of potential object transitions assocuated
with the meta-object 410; and other fields (not shown).

16

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

One perspective of the atiribute block 404 is that of a serialized
“cache” of attribute values within an instantiated object. Because the attribute
block 404 contains serialized data and stores each attribute value in a
normalized (standard) fashion, the values of the attributes can be easily
persisted, for example, using well-known database management technology. In
addition, using a tag methodology for the block 404 allows the attribute cache to
be searched efficiently. Because a meta-object is an abstraction provided by
the MODMS, one skilled in the art will recognize that the abstraction can be
physically implemented according to a variety of techniques. For example,
when an already instantiated meta-object is read and assembled from
persistent storage to be manipulated by the MODMS, the various
implementations of an MODMS may temporarily store the attribute values of
attribute block 404 information as discrete data structures using traditional
object-oriented techniques that instantiate objects for each value based upon
the attribute type, etc. Other techniques, such as more traditional monolithic
programming techniques may also be employed to implement a meta-object
abstraction. From the perspective of a user of an application built upon
MODMS, however, each meta-object looks and acts the same regardless of the
type of object that is instantiated.

If one of the attribute values of the attribute block 404 is a time-
phased value, then the value is more specifically described as a series of time-
phased values, where each time-phased value is in effect over a range of time.
For example, a time-phased attribute may have a discrete value for each week
over a three-year period. Figure 5 is an example block diagram of an in-
memory data structure representation of time-phased atiribute. Each time-
phased attribute 501 has an associated time-phased attribute type 502; an
indicator 503 to a collection of one or more time-phased buckets 510; and
pointers to the methods 504 that can be used to manipulate the type of time-
phased attribute denoted by type 502. For example, a time-phased attribute
typically defines methods for getting and setting values for a particular range.
Each time-phased bucket 510 is a data structure that indicates the range over
which a value is effective. For example, each bucket 510 may comprise a
bucket type 511, a value 512 for the range indicated, a start time period
indication 513, a duration 514 that defines the range (for example, in number of
hours, days, quarters, years, etc.), and an indicator 515 to the next bucket in
the collection or that signifies the end of the list.

17

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Note that the values of a time-phased attribute can be stored in
the attribute block 404 delimited by tags in a manner that is similar to every
other attribute value. In this case, a bucket collection is delimited by a pair of
tags, which in turn contains nested tags that define the values (value, start time
period, duration) for each time bucket. For example, if “Administration” is the
tag name of a time-phased (labor) attribute type, then the cache for the time
buckets may read as:

<Administration>

<Bucket Collection>
< Bucket>
100, 1/1/2003, 30
</Bucket>
<Bucket>
250, 2/1/2003, 28
</Bucket>

</Bucket Coliection>

</Administration>
The text “100, 1/1/2003, 30” in this example indicates 100 units (of labor), a
start date of January 1, 2003, and a duration of 30 days. The value of each
bucket type is preferably stored in its smallest unit, so that it can be easily
converted to other time period units as needed.

Since a typical application that incorporates a MODMS creates
and manages a very large collection of data, the physical representation of
meta-objects can effect the efficiency of the application. In a typical
implementation of a MODMS, each meta-object is stored as records in a
multitude of tables, which are accessed by the management and analysis
components of the MODMS as needed. Figure 6 is a block diagram of an
example storage representation of a meta-object. In Figure 6, instantiated
meta-object 601 is an abstract data structure representation of the meta-object
400 shown in Figure 4 and contains the same fields: name 602; an object
identifier 603; an identification of the object type 604; an attribute block 605,
and other fields (not shown). The instantiated meta-object 601 is shown stored
as records in object table 610 and native attribute tables 620 and 630. Only
some of the tables used to represent meta-object 601 are shown in Figure 6.
For each object, the MODMS stores a record in object table 610 that contains

18

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

the object identifier 611, the name of the object 612, an identifier of the object
type 613, and an indicator 614 to the (tagged) attribute block. One skilled in the
art will recognize that instead of an indicator to the attribute block, the attribute
data may be stored in the object table itself. The fields in each record in object
table 610 thus correspond to the meta-object data structure 601. For each
attribute indicated by the attribute block indicator 614, the MODMS also stores
a record in a table that corresponds to the “native” type of the attribute, thus
cross-referencing the meta-objects by native attribute type. For example, if the
attribute block contains an attribute that ultimately resolves to a “number,” then
a record is created in a number attribute table 620 that indexes the meta-object
601. Or, for example, if the attribute block contains an attribute that is of a type
that is ultimately a money attribute, then a record is created in a money attribute
table 630. Example native attribute types include such types as numbers,
dates, money, text, flags, and time-phase attributes, although one skilled in the
art will recognize that depending upon the use of the MODMS, different native
types may be useful. Storage of each attribute in these various native attribute
type tables allows attributes to be indexed and accessed efficiently based upon
their types, as opposed to searching each instantiated meta-object for
instances that have attributes of a specific type. This capability may be useful,
for example, when an attribute definition is changed and all of the objects that
have been instantiated using that definition need to be updated accordingly.
Thus, each record in a native type attribute table indicates the object identifier
623 of the corresponding instantiated meta-object 601 that contains an attribute
value of that type. For example, each record in number attribute table 620
stores the atiribute name 621; an identifier of the attribute (sub)type 622; the
identifier of the corresponding instantiated meta-object 623; and the value 624
specified for that attribute in the instantiated meta-object.

As previously mentioned, a meta-object is instantiated as part of a
hierarchy of object instances. Figure 7 is a block diagram of an abstraction of
an example meta-object instance hierarchy created using an example Meta-
Object Data Management System. The meta-object instance hierarchy defines
the containment relationships of the instantiated meta-objects and is
independent of the object type definitions. That is, any meta-object can be a
child of any other meta-object providing it is instantiated as a child of that meta-
object. This allows, for example, different types of investments to become part
of other types of investments and to “behave” like they belong to the parent
investment without worrying about the strict inheritance rules of traditional

19

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

object-oriented programming techniques. (Using traditional object-oriented
techniques, an object can be manipulated using the same methods as its
“parent” object of a different object type only if the child object type definition is
derived when it is created from the parent object type definition.) So, in Figure
7, for example, a portfolio “A” meta-object 701 contains a portfolio “B” meta-
object 720; two product “F” and “G” meta-objects 721 and 722; and an asset “I”
meta-object 723. Further, the portfolio “B” meta-object 720 contains a project
collection “E” meta-object 732; program “C” meta-object 730, and program “D”
meta-object 731. The program “C” meta-object 730 further contains a project
collection “F" meta-object 740. Conversely, project collection “E” meta-object
732 contains a program “J” meta-object 741. Thus, in one case a program type
meta-object is a parent of a project collection type meta-object; whereas, in the
other case, a project collection meta-object is a parent of a program meta-
object. Thus, the containment relationships define the object ancestral
relationships and not the object definitions themselves.

Once meta-objects have been instantiated to correspond to the
initial data set, a command interpreter is invoked to manage the data and to
provide analysis functions. Figure 8 is an example overview flow diagram of a
command interpreter for an example Meta-Object Data Management System.
In step 801, the MODMS allows a user (for example, an administrator of an
application that incorporates the MODMS) to add, modify, or delete global
attributes. An example global attributes table was described with reference to
Figure 2. In step 802, the MODMS aliows a user to add, modify, or delete an
object type definition such as the object type definition described with reference
to Figure 3. In step 803, the MODMS allows a user to define object transitions
from one object type to another same or different object type. An example user
interface and routines for defining object transitions are described with
reference to Figures 30-34. In step 804, the MODMS allows a user to add,
modify, or delete instantiated meta-objects from the meta-object instance
hierarchy, for example, the hierarchy shown with reference to Figure 7. In an
example Enterprise Portfolio Management System built to incorporate the
MODMS, these functions are presented as part of a portfolio management
application. One such example Enterprise Portfolio Management System is
described with reference to Figures 17-29. In step 805, the MODMS allows a
user to analyze aspects of a portfolio. Portfolio management routines in an
example Enterprise Portfolio Management System are described further with
reference to Figures 19-23. In an example Enterprise Portfolio Management

20

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

System built to incorporate the MODMS, these functions are presented as part
of a portfolio analysis application. Portfolio analysis routines are typically tied to
the applications that incorporate the MODMS and so are discussed as they
relate to datasheet capabilities of an example portfolio management system
embodiment, such as that described further with reference to Figures 24-28.

One skilled in the art will recognize that there are many well-
known methods for implementing interfaces for the addition, deletion, and
modification of global attributes (step 801) and the addition and deletion of
object type definitions, of object transitions, and of instantiated meta-objects
(steps 802, 803, and 804). For example, an interface such as a dialog box-
based interface, a form based application, or a direct manipulation interface can
be used to modify tables that store global attributes, object type definitions,
object transitions, and meta-objects. One such user interface (part of an
administrator application that incorporates a MODMS) for modifying object type
definitions is described with reference to Figure 29. As mentioned previously,
modifications to an object type definition, however, result in automatic
adjustments to instantiated objects. Thus, when an object type definition is
modified, the MODMS preferably locates all instantiated objects of that object
type and modifies their contents accordingly to bring them up to date. Figures
9-12 describe some of the routines used to modify object type definitions and to
automatically adjust instantiated objects as a result.

Figure 29 is an example screen display of a configuration view of
an Administration Module of an example Enterprise Portfolio Management
System implemented using an example Meta-Object Data Management
System. The user interface illustrated by Figure 29 can be used, for example,
to invoke the MODMS routines used to modify object type definitions. One
skilled in the art will recognize that other user interfaces can be substituted. In
Figure 29, administration module dialog 2900 displays a set of actions 2901
that can be initiated by a user, views 2903 that can be selected to show other
setup and configuration aspects, and tabbed forms (dialogs) that can be
selected to configure investment types, attributes, milestones, etc. For
example, dialog 2902 allows the user to define various properties of a selected
investment type. Example dialog 2902 shows the current attributes 2911 for a
currently selected investment object 2910 named “folder” 2912. Additional
selectable attributes for the selected investment type 2910 are shown in
available attributes list 2913. The actions list 2901 provides functions for
creating and managing investment types. For example, the “New Investment

21

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Type” action will present a dialog similar to that shown in dialog 2902. The
different views 2903 allow the user to view and configure other aspects of the
MODMS. For example, a user selects the Workflow View 2904 to define object
transitions from one type of object to another type. Object transitions are
described further with reference to Figures 30-34.

Figure 9 is an example flow diagram of a Change Object Type
Definition routine for modifying an object type definition in an example Meta-
Object Data Management System. This routine can be used, for example, to
change the attributes of an investment type such as a “project.” The routine is
shown with steps for modifying an object type by adding a new attribute
definition, and assumes a higher level user interface for selection of the change
to be made (i.e., what attribute to delete or add). One skilled in the art will
easily recognize how to modify the routine to change an existing attribute by
deleting a designated one and replacing it with a new attribute definition or how
to modify it in other ways. The routine thus takes as input a designation of the
object type whose definition is to be modified, and a new attribute definition.

Specifically, in step 901, the MODMS retrieves the object type
definition designated by the object_type ID input parameter. In step 902, the
MODMS modifies the retrieved object type definition by adding the new
attribute definition that was designated as an input parameter to the routine.
This new atiribute definition is typically provided, for example, by an l/O
interface to an administrator that is permitted to change the definition of
attributes in a global attribute table. Next, in step 903, the MODMS queries the
meta-object instantiation hierarchy to locate all of the instantiated objects of the
designated object type. Since each stored meta-object includes an indication of
its object type, the instantiation hierarchy is searched based upon that field.
Steps 904-907 execute a loop that, for each matching meta-object, updates the
meta-object with the new attribute definition and adjusts attributes that have
rollup characteristics as necessary. More specifically, in step 904, the routine
determines whether there are more meta-objects to process and, if so,
continues in step 905, else continues in step 907. In step 905, the next
instantiated meta-object is determined. Then, in step 906, an Update Meta-
Object routine is invoked to add the new attribute definition to the current
instantiated meta-object being processed and to perform any specified
calculations, and the routine returns to the beginning of the loop in step 904.
The Update Meta-Object routine is described further with reference to Figure
10. In step 907, once all of the meta-objects that need to be updated have

22

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

been updated, an Adjust Rollups routine is invoked to update the entire
instantiation tree by adjusting any attributes with rollup values, since the
definitions of instantiated meta-objects may have changed. The Adjust Roliups
routine described further with reference to Figure 11.

Figure 10 is an example flow diagram of an Update Meta-Object
routine for modifying an instantiated meta-object in an example Meta-Object
Data Management System when its object type definition has changed. There
are different ways that an object type definition may have been changed and
subsequently affect instantiated objects. For example, a new attribute (hence,
a new attribute definition) may have been added to the object type, an attribute
may have been removed from the object type, or other parts of the definition of
an attribute may have been changed. One skilled in the art will recognize that
there are may ways to implement the Update Meta-Object function to update
instantiated objects of a modified object type and that, if an attribute was
changed in the underlying object type definition as opposed to added or
deleted, update operations can be simplified by treating modification the same
as an addition followed by a deletion. The example routine shown in Figure 10
either removes an existing attribute tag/value pair from an attribute block of an
instantiated meta-object or adds a new attribute tag/value pair to the attribute
block. Any calculations indicated by the corresponding new attribute definition
are performed as necessary. Thus, several input parameters are specified for
the Update Meta-Object routine including a designated meta-object instance to
update, the type of update needed (e.g., add or delete or both for a
modification), and a designated attribute tag (from which a new attribute
definition can be determined).

More specifically, in step 1001, if a new attribute is to be added to
the meta-object instance indicated by the designated object identifier, then the
routine continues in step 1002, else continues in step 1007. In step 1002, the
designated new attribute tag and a corresponding ending tag are added to the
attribute block (for example, attribute block 605 in Figure 6). In step 1003, the
attribute definition that corresponds to the designated tag is retrieved from, for
example, the global attributes table. In step 1004, if the retrieved attribute
definition indicates that the value of the attribute is to be calculated, then in step
1005 the calculation is performed and the resultant value stored in the afttribute
block of the indicated meta-object instance. Otherwise, in step 1006, a default
value indicated by the retrieved attribute definition is stored between the
attribute tag pair in the attribute block. In step 1007, if an attribute is to be

23

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

removed from the meta-object instance indicated by the designated object
identifier, then the routine continues in step 1008, else returns. In step 1008,
the attribute tag/value pair that corresponds to the designated attribute tag is
removed from or somehow nullified in the attribute block, and the routine then
returns.

Figure 11 is an example flow diagram of an Adjust Rollups routine
for adjusting rollup attributes. This routine takes a designated sub-tree of a
meta-object instantiation hierarchy and, from the leaf nodes on up, executes all
attribute rollup functions that exist in any node. The rollup functions are
preferably executed from the bottom of the tree upward so that they are
properly aggregated progressively at each higher level in the hierarchy and thus
properly reflect the values of the children nodes. There are many methods for
performing adjustment of rollups, and the one illustrated keeps track of in a
rollup event list (accumulates indicators to) all of the nodes that need to have
their rollup functions executed in the proper order, and then executes the rollup
functions of these nodes (as rollup events) in order accordingly.

Specifically, in step 1101, the routine obtains a graph of all the
objects in the meta-object instance hierarchy from the designated sub-tree
pointer downward to the leaf nodes. One skilled in the art will recognize that
the implementation of this step is typically dependent upon the storage
representation for the instantiation hierarchy. In step 1102, the routine
determines a list of the leaf nodes of that sub-tree. In steps 1103-1109, the
routine executes a loop for each leaf node to determine whether it has a rolled-
up attribute and, if so, adds an event corresponding to that rollup to a list of
rollup events to be executed. After the list is accumulated, the rollup events are
executed in the order that they were added to the list, thus insuring proper
aggregation. More specifically, in step 1103, the routine determines whether
there are any more leaf nodes in the graph, and, if so, continues in step 1105,
else continues in step 1104. In step 1105, the routine gets the next leaf node
indicated by the sub-tree graph. In step 1106, the routine determines from the
object type systerm whether the current node corresponds to a type of object
which has rolled-up attributes. In one embodiment, each object type has a list
of the attributes it contains (an object-specific rollup attribute list) that have
values that roll up (referred to for convenience as rollup attributes).
Alternatively, a list of attributes that need to be rolled-up for that object type can
be dynamically generated. Steps 1107-1109 execute a loop for each of these
roliup attributes to add a roliup event to the roll up list. Specifically, in step

24

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

1107, if there are more rollup attributes for that object to be processed, then the
routine continues in step 1108, else returns to look at the next leaf node in step
1103. In step 1108, the routine gets the next rollup attribute from the object-
specific rollup attribute list. In step 1109, the routine adds a rollup event that
corresponds to that rollup aftribute to the rollup event list. A rollup event
includes, for example, an indication of the current node in the instantiation sub-
tree and a pointer to an attribute that needs to be rolled up so that, when the
event is executed, the correct rollup function can be found and the
corresponding value(s) of the attribute can be determined. Example code for
an example rollup event is described with reference to Figure 12. In step 1104,
once the routine determines that there are no more leaf nodes to process, the
routine executes the Execute_Rollup_List routine (not shown) to execute all of
the rollup events on the rollup event list that have been accumulated thus far,
and then returns. Note that it is only necessary to examine the leaf nodes
initially and to add rollup events for the leaf nodes, because each rollup event
for a leaf node in turn will add rollup events for the parent node of each of these
nodes (see Figure 12). These nodes will in turn add rollup events for their
parent node, and the entire process will bubble up similarly so that eventually
all necessary rollup events from the leaf node all the way to the highest parent
node across each level of the instantiation sub-tree will be added and executed.

As described, rollup event code is executed for each rollup event
that has been added to the rollup event list. Figure 12 is an example flow
diagram of steps executed by a typical rollup event. One skilled in the art will
recognize that other code are possible and that this is just one example for
ensuring that attributes are rolled up from the leaf nodes all the way to the root
node of the designated sub-tree. In step 1201, the rollup event code
determines, based upon a designated attribute and node pointer, the particular
rollup function for the designated attribute. In step 1202, if there is no rollup
function specified (the definition is incomplete) then the code returns, other
continues in step 1203. In step 1203, the rollup event code determines a list of '
the children of the current designated node and the parent node of the
designated node. In steps 1204-1207, the routine executes a loop to aggregate
the corresponding attribute values of the designated attribute of the children
nodes with the designated node so that the aggregated value can be stored in
the parent node. The code also adds a rollup event corresponding to the
parent node and the designated attribute so that the process can bubble up the
hierarchy. More specifically, in step 1204, the routine determines whether there

25

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

are more children nodes of the designated node, and, if so, continues in step
1208, else continues in step 1205. In step 1206, the routine gets the next child
node to process. In step 1207, the routine updates an (accumulating)
aggregated value with the corresponding attribute value from the current child
and saves it until all of the values are retrieved from all the children of the
designated node. For example, if the total cost is the attribute being computed
and the rollup function is a summation function, then step 1207 contains a
temporary variable for collecting a sum of the total cost attribute of each of the
children nodes. The routine then returns to step 1204 to look for the next child
node to process. In step 1205, when there are no more children nodes of the
designated node to process, the routine adds a rollup event to correspond to
the parent node of the designated node and designates the current attribute
being processed, and then returns.

As mentioned in step 803 of Figure 8, a user (typically an
administrator) can define and manage object transitions between different or
the same types of objects. An object transition definition specifies source and
destination object types, a designated set of criteria if applicable, and,
optionally, an approvai list. Once instantiated, an object transition can be
invoked to change an associated meta-object from the source object type to the
destination object type after any designated set of criteria have been met and
any required approvals granted. When a meta-object of the source object type
is instantiated, any object transition definitions that are associated with the
source object type definition are used to instantiate object transitions that are
then associated with the instantiated meta-object. The criteria that are
designated for each instantiated object transition define the necessary values of
attributes of the associated instantiated meta-object for the transition to be
permitted to take place. For example, criteria may be defined for a project
investment object type that permit a project investment to be transformed into a
program investment object type only when the dollar value spent on the project

‘exceeds a specified amount. An approval list is specified when particular users .

(or users having a particular security role) are to be notified first to grant
permission for the transition to occur. Approval requests can be sent ordered
sequentially (requiring successive permissions granted before a next is
requested) or simultaneously requested.

Figure 30 is an example screen display of a workflow view of the
example Administration Module of an example Enterprise Portfolio
Management System used to create and manage object transition definitions.

26

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

One skilled in the art will recognize that other user interfaces can be
implemented to support the capabilities described. In the Administration
Module dialog 3000, the workflow view 3001 presents a list of currently defined
transitions 3004 and properties in properties field 3005 for a selected transition.
As shown, a new transition called “New transition” is being (or has been)
defined. The properties field 3005 allows a user to identify a transition name
3010; a source investment type (object type) 3011; a destination investment
type (object type) 3012; a description 3013 that may be displayed when
properties of a transition instance are requested; an approval list 3014 if
approvals are required to progress the transition; and one or more transition
criteria defined in criteria definition field 3007. In one embodiment, the
transition criteria need to be met before the transition from the source object
type 3011 to the destination object type 3012 can be initiated by a user. In
another embodiment, a potential transition is scheduled automatically by the
system, but it doesn’t progress until the criteria are met. Transitions can be
defined and then separately set as “active” by setting checkbox 3008, so that
object transaction instances will be created for instantiated meta-objects of the
source object type. The user can invoke the actions specified on action list
3002 to define a new transition, save a created transition, copy a transition, and
remove a transition. To return to defining object type definitions, the user -
selects the “Configurations View” action.

In addition, the user can invoke the action “Manage Approval
Lists” to create and modify approval lists. Existing lists are displayed for
potential selection in the approval list field 3014, if approvals are required for
the transition (by, for example, setting checkbox 3015). An approval list can be
defined as a list of specific users that need to approved object transitions of the
selected transition name or as a list of users that have a particular security role
defined (for example, by the application administrator). Figure 31 is an
example dialog to enter an approval list that is based upon security roles. The
user can also define characteristics of the approval list, such as whether ali
members or only some number of members of the list must grant approval for
the transition to progress. In addition, the user can specifiy whether the list of
specific users is to be approved in sequential order (successively, one after
another) or not. Other characteristics can be similarly incorporated.

The user defines criteria for the object transition definition in
criteria definition field 3007. One or more criteria can be defined for a single
transition, and may be combined as Boolean expressions such as by “AND” or

27

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

“OR” specifications. In the example shown in Figure 30, the user enters a rule
(a criterion) by specifying an attribute name 3018, a type of comparison to be
made (for example, “is greater than,” “is less than,” “is equal to,” etc.) 3019,
whether the comparison is to be made to another attribute or a value 3020, and
the value 3021 (or attribute if attribute comparison is to be made). The
application then constructs the Boolean expression, which is displayed in
criteria definition field 3007. One skilled in the art will recognize that other
forms of criteria and code other than Boolean expressions can be defined that
invoke other types of evaluations, including but not limited to subprograms,
functions, external modules, database inquiries, etc. Once the properties have
been completed, the user designates the object transition definition as active by
setting checkbox 3008 if desired and saves the transition as appropriate.

Figure 32 is an example flow diagram of a routine for defining an
object type transition in an example object type management subsystem of a
Meta-Object Data Management System. This routine is invoked in part or in
whole by a user interface for setting up aspects of an object transition definition,
such as the user interface described with reference to Figure 30. In step 3201,
the routine determines the transition definition name, source object type, and
destination object type and stores the determined values as appropriate. In one
embodiment, a table of object transition definitions is created in the MODMS to .
store (named) object transition definitions. The table may be persisted as
appropriate. In step 3202, the routine determines and sets up the approval list
for the defined object transition definition. In step 3203, the routine determines
the criteria for transitioning the object based upon the rules defined by the user
(or other rules) and creates code (e.g., Boolean expression(s)) to execute the
calculation if needed. In step 3204, the routine determines whether the user
has designated the definition as active, and, if so, continues in step 3205, else
returns or completes. In step 3205, the routine sets a flag in the data structure
that represents the object transition definition to indicate that the definition is to
be instantiated with meta objects of the source object type, and then returns or
completes.

Figure 33 is an example block diagram abstraction of an object
(type) transition table that contains transition definitions created and managed
by an example object type management subsystem of a Meta-Object Data
Management System. As mentioned, the table may be persisted as
appropriate. The records (e.g., rows) of this table are definitions used to
instantiate object transitions for meta-objects as they are created by the Meta-

28 .

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Object Instantiation Subsystem. One skilled in the art will recognize that other
equivalent data structures for storing a table may be used, and that different
fields may be stored and in different orders. In addition, the data in the table
may be directly or indirectly included in the various fields as desired in any
particular implementation. In the example shown, each record (e.g., rows 3310,
3311) in transition table 3301 contains an object transition definition. Each
object transition definition stores a name 3301, an identifier of the source object
typed 3302, an identifier of the destination object type 3303, an indicator of the
approval list 3304, and an indicator of the calculation(s) to be used to determine
whether the criteria for the transition have been met.

In the example illustrated, the indicator of the approval list 3304
refers to a separate approval list definition 3320, although different
architectures can certainly be substituted. In the example approval list
definition 3320, each entry 3321-3325 contains an identification of the person
(or role) to approve the transition, a notification path such as an email address,
and an indicator field to indicate that the identified person (or role) has
approved the transition. Note that other characteristics, such as how many
need to approve, whether it is ordered sequentially, etc. are not shown.

The indicator of the calculation(s) 3305 refers to code or some
type of expression to be evaluated by the MODMS to determine whether criteria
has been met. Purely as an example, criteria calculation 3330 is shown as
pseudo-code for evaluating the rule shown in the example of Figure 30. Any
implementation appropriate for the particular application that incorporates the
MODMS can be used.

Figure 34 is an example block diagram of an in-memory data
structure representation of a transition table instantiated for an example meta-
object. As described, when a meta-object is instantiated from an object type
definition, the MODMS determines whether there are any relevant object
transition definitions. For example, the MODMS can search the object
transition table 3300 of Figure 33 to retrieve a list of all definitions whose source
object type identifier (field 3302) is the same as the object type of the meta-
object being instantiated. For each such definition, an object transition instance
is created and added to an object transition table associated with the meta-
object. For example, Figure 4 shows a meta-object representation 400 that
includes a pointer to a transition table 410. Meta-object transition table 3400 is
an example of one such transition table. The entries 3401-3404 correspond to
the retrieved object transition definitions. Each such entry 3401-3404 maintains

29

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

state data regarding the transition and an indicator 3413 to an object transition
instance, such as transition 3420. The state data includes at least a transition
name 3410, whether the criteria for the transition has been met 3411, and
whether the transition has been approved 3412. Other state data may also be
present. Each transition instance, for example transition 3420, typically
includes an identifier of the destination object type 3421, an indicator 3422 of
the approval list for that transition, an indicator 3423 to the criteria calculation
3440 (or stores the calculation itself, and an indication of other characteristics,
such as whether the approval list is ordered 3424. Each approval list, for
example approval list 3430, comprises one or more approval entries 3431-
3434, each of which comprise an indicator of the approval person/role
("approver”), a notification path, and an indicator as to whether the approver
has granted approval. _

Figure 13 is an example block diagram of a general purpose
computer system for practicing embodiments of a Meta-Object Data
Management System. The general purpose computer system 1300 may
comprise one or more server and/or client computing systems and may span
distributed locations. In addition, each block shown may represent one or more
such blocks as appropriate to a specific embodiment or may be combined with
other blocks. Moreover, the various blocks of the Meta-Object Data
Management System 1310 may physically reside on one or more machines,
which use standard interprocess communication mechanisms to communicate
with each other.

In the embodiment shown, computer system 1300 comprises a
computer memory (“memory”) 1301, an optional display 1302, a Central
Processing Unit (“CPU”) 1303, and Input/Output devices 1304. The Meta--
Object Data Management System (“MODMS”) 1310 is shown residing in the
memory 1301. The components of the MODMS 1310 preferably execute on
CPU 1303 and manage the generation, management, and use of meta-objects,
as described in previous figures. Other downloaded code 1330 and potentially
other data repositories 1320 also reside in the memory 1310, and preferably
execute on one or more CPU’s 1303. In a typical embodiment, the MODMS
1310 includes an object type management subsystem 1311, a meta-object
instance management subsystem 1312, input/output interfaces 1315, and one
or more data repositories 1314, including, for example, investment data.

In an example embodiment, components of the MODMS 1310 are
implemented using standard programming techniques. One skilled in the art

30

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

will recognize that the components 1311-1315 lend themselves to distributed,
object-oriented implementations and can be implemented to use relational
database management systems, web-based (Internet or internet) interfaces,
etc. However, any of the MODMS components 1311-1315 may be
implemented using more monolithic programming techniques as well. In
addition, programming interfaces to the data stored by the MODMS process
can be available by standard means such as through C, C++, C#, and Java API
and through scripting languages such as XML, or through web servers
supporting such interfaces. The data repositories 1313 and 1314 are preferably
implemented for scalability reasons as database systems rather than as text
files, however any method for storing the application data and for storing the
instantiated meta-objects may be used. In addition, some routines of the object
type management subsystem 1311 and the meta-object instance management
subsystems may be implemented as stored procedures, or methods attached to
table “objects,” although other techniques are equally effective.

One skilled in the art will recognize that the MODMS 1310 may be
implemented in a distributed environment that is comprised of multiple, even
heterogeneous, computer systems and networks. For example, in one
embodiment, the object type management subsystem 1311, the meta-object
instance management subsystem 1312, and the data repositories 1313-1314
are all located in physically different computer systems. In another
embodiment, the type and instance subsystem components 1311 and 1312 of
the MODMS 1310 are hosted each on a separate server machine and may be
remotely located from the instantiated object and attribute tables which are
stored in the data repositories 1313-1314. Different configurations and
locations of programs and data are contemplated for use with techniques of the
present invention. In example embodiments, these components may execute
concurrently and asynchronously; thus the components may communicate
using well-known message passing techniques. One skilled in the art will
recognize that equivalent synchronous embodiments are also supported by an
MODMS implementation. Also, other steps could be implemented for each
routine, and in different orders, and in different routines, yet still achieve the
functions of the MODMS.

Figures 14 and 15 are example block diagrams of a client-server,
network-based tiered architecture for implementing embodiments of a Meta-
Object Data Management System. Figure 14 illustrates how an MODMS may
be implemented at the web services layer as web service interfaces. and how

31

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

the MODMS interacts with any type of presentation tier residing above it and.
with any data access tier residing below it.

So, for example, in Figure 14, the web services interfaces 1420,
which are typically structured application programming interfaces (‘API"),
communicate through encapsulated data access (data abstractions) to various
databases. The layers in a data access layer bind the data abstractions into
the various databases physically used in the system in order to manage the
physical storage. For example, the web services interfaces 1420 communicate
(eventually) through an accessor layer 1435 to a data access layer 1450, which
communicates to lower level data access libraries 1451 (for example,
ADO.NET). These access libraries 1451 provide interfaces to the various
physical database management systems such as a relational database
management systems 1452-1454. The web services layer 1430 contains web
service interfaces (API) 1420 which are used by the presentation tier 1410 to
access the various web services.

The web service layer 1430 provides support for the MODMS
functions. The various capabilities of a MODMS are implemented as services,
such as object services 1431, licensing services 1432, and user permissions
and related services 1433. Access to the MODMS services is provided by web
services framework 1434 through calls to the web services interfaces 1420.

As continued in Figure 15, presentation tier 1510 (1410 in
Figure 14) interfaces with the MODMS services through calls to the various web
services 1431-1433 using the web service interfaces 1520. In addition, various
connectors 1540 to other third-party environments can interface through the
web service interfaces 1520 to take advantage of the underlying technology.
For example, connectors to programs such as Microsoft Project Server, and
Pacific Edge’s Project Office can interface through the web services interfaces
1520 to import data into the MODMS and to export data to those the third-party
programs.

The presentation tier 1510 provides the input/output interface
between, for example, a client web browser 1540 and the web services layer
1530 of the MODMS. The presentation layer 1510 typically comprises some
type of page server 1514 (for example, ASP.NET); a navigation and user
interface framework 1515; and various page definitions 1512 which are
transported through the page server 1514 to the client web browser 1540. The
pages 1512 may reference various class libraries provided by the system 1513.

32

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

In addition, in some embodiments, the presentation layer 1510 may provide
charting support 1511 and other application-specific modules (not shown).

In an example embodiment, the majority of the functions that were
described with respect to Figures 1-12 are implemented in the object services
layer 1531 of the web services 1530. Figure 16 is an example block diagram of
components of an example object services layer of a Meta-Object Data
Management System used to implement an example Enterprise Portfolio
Management System. To implement an MODMS, the object services 1600
comprises a command layer 1601; and various engines/subsystems 1602-1606
for implementing the functionality of the object type system and meta-object
instantiation systems described earlier. For example, a typical object services
layer 1600 may comprise an object instance system 1607; an object type
system 1603 with an administration module 1604 for modifying object types; a
time-phased subsystem 1605; a milestone subsystem 1606; and a math engine
1602. As described earlier, administrators use the type system module 1603 to
define and manage object types in the system. The instance system 1607 . is
used to instantiate meta-objects of those types. The math engine 1602, time-
phased subsystem 1605, and milestone subsystem 1606 are shown as
supplemental components; however, one skilled in the art will recognize that
their functionality may be incorporated into the other modules as appropriate.

As described in Figures 1-12, a meta-object data management
system may be used to create applications such as an enterprise portfolio
management system. In an enterprise portfolio management system, object
types are created for each “investment” type to be managed by the system and,
as portfolios are added to the system that contain investments, corresponding
objects (meta-objects) are instantiated appropriately. '

Figure 17 is a block diagram of an example Enterprise Portfolio
Management System implemented using an example Meta-Object Data
Management System. In an example embodiment, the enterprise portfolio
management system 1700 comprises a portfolio manager 1702, a portfolio
analyzer 1703, and a portfolio administration interface 1704. These
components provide the different enterprise (investment) data management
and analysis capabiliies and are accessed by a user of the portfolio
management system through an input/output interface 1705. Components
1702-1704 communicate with the meta-object data management system 1701
through the different programmatic interfaces (e.g., the web service interfaces
shown in Figure 14) that access the object services layer of the MODMS 1701.

33

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

In addition, as discussed with respect to Figures 14 and 15, connector modules
1706 to external systems may also be present and access the meta-object data
management system 1701. For example, connector modules 1706 may
connect to accounting systems, human resource systems, and financial
systems otherwise available in the enterprise. Further, these systems may be
legacy applications that pre-existed the enterprise portfolio management
system 1701.

Figure 18 is a block diagram of an example investment instance
hierarchy of a hypothetical enterprise portfolio management system created
using a Meta-Object Data Management System. For the purposes of Figure
18, it is presumed that the enterprise organization comprises several sub-
organizations including corporate management 1810, engineering 1811,
finance 1812, and information technology 1813 portions of the organization. It
is presumed also that each of the sub-organizations 1810-1813 comprise
several departments, which each may desire to organize their own portfolio
data, hence maintain and analyze investments, in their own particular ways. In
addition, the investment data may be stored in data formats and on databases
that are specific to that portion of the organization. So for example, as with.
most portfolio management systems, some portions of organizations within the
enterprise may want to view the data in a partitioned fashion to analyze
investments at a lower (more detailed) level, while other portions of the
organization, such as the management executive committee members, may
want to view all of the data of the various sub-organizations at a summary level.
The different size boxes shown in Figure 18 and linked to other size boxes,
such as portfolio 1832, program 1840, project 1841, and project 1842 are
provided to demonstrate that any type of investment can be contained in any
other type of investment simply by virtue of its containment position within the
hierarchy. So for example, a portfolio type object 1832 contains a project type
object 1841, which contains a program type object 1853, even though
elsewhere in the hierarchy, a program type object 1840 contains a project type
object 1850 demonstrating the opposite containment relationship.

As described with respect to Figure 17, the example enterprise
porifolio management system comprises portfolio management functions,
portfolio analysis functions, and portfolio administrative functions. Example
screen displays of some of the functionality provided by these components are
illustrated in the appendices of U.S. Patent Application No.10/613,534. entitled
‘METHOD AND SYSTEM FOR OBJECT-ORIENTED MANAGEMENT OF

34

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

MULTI-DIMENSIONAL DATA,” filed July 3, 2003. The appendices therein
includes screen displays from a portfolio management interface and a portfolio
analysis interface to an executing portfolio management system. They also
illustrate screen displays that exemplify the capabilities of a charting
subsystem, which allows multi-dimensional data to be redisplayed in a chart
using modified sets of axes, without rebuilding the underlying chart definition.
In the examples shown, the charting system is integrated into the portfolio
analysis interface such that each chart is associated with a designated multi-
dimensional view of the data.

Figures 19-28 describe in greater detail example functions of the
portfolio manager and portfolio analyzer components of an example enterprise
portfolio management system such as that shown in Figure 17. One skilled in
the art will recognize that the capabilities shown can be modified using well-
known techniques to be suitable for the application desired.

Figure 19 is an overview flow diagram of example portfolio
management functions of a portfolio manager component of an example
Enterprise Portfolio Management System. The portfolio manager component of
an enterprise portfolio management system is responsible for creating and
managing the meta-object instances that correspond to investment data. One
skilled in the art will recognize that the functions displayed in Figure 19 are
merely examples, and a portfolio manager component may be built with the
same, similar, or altogether different functions. In step 1901, the portfolio
manager component determines what command the user has designated to be
executed. In step 1902, if the command indicates that a new investment object
is to be added, then the portfolio manager continues in step 1903, else
continues in step 1904. In step 1903, the portfolio manager invokes an Add
New Meta-Object routine to add a new meta-object instance that corresponds
to the type of investment object desired, and returns to step 1901 to determine
and process the next user command. An example Add New Meta-Object
routine is discussed further with reference to Figure 20. In step 1904, if the
command indicates that a particular investment object is to be deleted, then the
portfolio manager continues in step 1905, else continues in step 1906. In step
1905, the portfolio manager invokes a Delete Meta-Object routine to delete the
particular investment instance, and returns to step 1901 to determine and
process the next user command. An example Delete Meta-Object routine is
discussed further with reference to Figure 22. In step 1906, if the command
indicates that the user desires to move or copy an investment object to a

35

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

different location in the investment instance hierarchy, then the portfolio
manager continues in step 1907, else continues in step 1908. In step 1907, the
portfolio manager calls a Move/Copy Meta-Object routine to move or copy the
investment object indicated, and returns to step 1901 to determine and process
the next user command. An example Move/Copy Meta-Object routine is
discussed further with reference to Figure 21. In step 1908, if the command
indicates that an investment object is to be modified, then the routine continues
in step 1909, else continues in step 1910. In step 1909, the portfolio manager
invokes a Change Meta-Object routine to modify the object instance passing
appropriate information, and then returns to step 1901 to determine and
process the next user command. An example Change Meta-Object routine is
discussed further with reference to Figure 23. In step 1910, if the command
indicates that the user's view is to be changed to a different component of the
enterprise portfolio management system, then the portfolio manager continues
in step 1911, else returns to step 1901 to determine and process the next user
command. In step 1911, the portfolio manager relinquishes control to the -
indicated component. For example, the user may select a “Workflow View” to
view and manipulate object transitions for a selected meta-object. Example
screen displays that illustrate a workflow view are described further with
reference to Figures 35 and 36. An example routine for processing a Workflow
View is described further with reference to Figures 37A and 37B.

Figure 20 is an example flow diagram of an Add New Meta-Object
routine for adding a new meta-object (investment). The Add New Meta-Object
routine is responsible for instantiating and adding a new investment object to a
parent node in the investment object hierarchy. The routine takes as input a
designated object type and a destination location (new parent object). In step
2001, the routine instantiates a new meta-object to correspond to the
investment type. In step 2002, the routine populates the attribute block with
user specified values or defaults for unspecified values. In step 2003, the
routine invokes the Adjust Rollups routine (previously described with reference
to Figure 11) on the sub-tree of the instance hierarchy whose root is the parent
node of the added object. The routine then returns.

Figure 21 is an example flow diagram of a Move/Copy Meta-
Object routine for moving/copying a new meta-object (investment). The routine
takes as input a designated object, a source iocation (current parent object),
and a destination location (new parent object) in the instance hierarchy. In step
2101, the routine retrieves the instantiated object in the instance hierarchy that

36

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

corresponds to the designated object. In step 2102, the routine instantiates a
new object of the same type of object as the designated object. In step 2103,
the routine adds the newly instantiated object as a child of the desighated new
parent object (where the new object is being moved to or copied to). In step
2104, the attribute block, including the values, is copied from the designated
object to the new object. In step 2105, if the command has a indicated that a
move of the investment object is desired as opposed to a copy of the
investment object, then the routine continues in step 2106 to delete the
designated object from the current parent, else continues in step 2107. Thus, a
move operates similar to a copy except that the original investment object is
deleted. In step 2107, the routine invokes the Adjust Rollups routine
(previously described with reference to Figure 11) on the entire instance
hierarchy, and returns.

Figure 22 is an example flow diagram of a Delete Meta-Object
routine for deleting a meta-object (investment). The Delete Meta-Object routine
takes as input parameters a designated object to be deleted and a source
location (current parent object). In step 2201, the routine removes the
designated child object from the source location. In step 2202, the routine
invokes the Adjust Rollups routine (previously described with reference to
Figure 11) to adjust the rollups on the sub-tree whose root is the source
location, since one of its children objects has been deleted. The routine then
returns.

Figure 23 is an example flow diagram of a Change Meta-Object
routine for changing an existing meta-object (investment). The Change Meta-
Object routine takes as input a designate object and a list of attribute tag-value
pairs that describe values for the attributes of the designated object. This
routine is used, for example, to change the properties of a particular
investment. In step 2301, the routine retrieves the instantiated object that
corresponds to the designated object. In steps 2302 through 2304, the routine
executes a loop for each designated attribute tag-value pair to update the
attribute block in the retrieved object. Specifically, in step 2302, the routine
determines whether there are more designated attribute tag-value pairs and, if
so, continues in step 2303, else continues in step 2305. In step 2303, the
routines obtains the next attribute tag-value pair in the designated list. In step
2304, the routine updates the attribute block of the retrieved object with the
particular attribute tag designated by the current attribute tag-value pair, and
updates the value of that attribute in the attribute block of the retrieved object.

37

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

In step 2305, the routine invokes the Adjust Rollups routine (previously
described with reference to Figure 11) on the sub-tree whose root is the
retrieved object, and returns.

Figure 35 is an example screen display of a workflow view of an
example Enterprise Portfolio Management System that illustrates multiple
transitions to different types of investments defined for a single investment.
The workflow view 3500 of the example portfolio manager is illustrated as a part
of a client browser connected to a network, although one skilled in the art will
recognize that it could be implemented as a standalone application or through a
different client-side interface. The investment hierarchy that corresponds to a
selected portfolio is shown in area 3501. The current potential object
transitions that correspond to a selected investment 3502 are shown as
transition representations (or “transition paths”) in transitions area 3503. Each
transition is “potential” because it cannot be initiated until its defined criteria, if
any, ‘are met and until requested by an initiating user. An initiating user is
preferably one that has “write” access to the investment.

In an alternative embodiment, object transition management is
automatic and does not require user initiation. (However, some
implementations may optionally require user finalization to make sure that each
particular transition is desired before a meta-object is transformed.) For
example, when an investment is instantiated and corresponding object
transitions are instantiated, then corresponding “transition events” are placed
on an internal MODMS event list for processing. For example, in one
embodiment, whenever an investment object is modified (or the workflow view
is selected), the MODMS executes an event for each of the object’s transitions
to check the status of transition criteria and initiate the transition when the
criteria is met. Approval notifications are then automatically sent as well
according to the approval list that corresponds to the initiated transition.

There are four potential transitions represented by transition paths
3510-3513. Object transition path 3510 represents a potential transition from a
“project” type investment to a “program” type investment, which contains an
approval list (not yet approved) and no criteria. Thus, when a user initiates the
transition associated with transition path 3510, the approval notifications will be
sent approximately immediately. Since there are no criteria for the transition
assocated with transition path 3510, the transition is available to be initiated.
Object transition paths 3511-3513 represent potential transitions from a
‘project” type investment to an “asset” type investment. The transition

38

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

associated with transition path 3513 operates similarly to the transition
associated with transition path 3510, as no criteria are defined. The Transition
associated with transition path 3512 progresses approximately immediately
once the user initiates the associated transition as there are no criteria and no
approval required. The transition associated with transition path 3511 is only
available to be initiated once the criteria 3520 are met. Then, when the user
initiates the transition associated with transition path 3511, the transition
progresses to approval state 3521, where approval requests are sent via the
stored notification paths to the approvers. Once any of transitions associated
with transition paths 3510, 3511, or 3513 have been approved, the initiating
user is given the option to finalize them before the transition to the destination
object type occurs.

Figure 36 is an example screen display of another workflow view
of an example Enterprise Portfolio Management System that illustrates multiple
transitions to the same type of investment and to one other type of investment
based upon different transition paths defined for a single investment. In this
example, an object of type “user story” is transformed to the same type “user
story” by two different potential transitions and to an object of type “user
program” by one potential transition. Transitions to the same type of object
allow a user to designate a new location for the object if the corresponding
criteria are met and approvals granted. Because they are not automatic in this
embodiment, a user can choose which of three transitions to initiate. If a user
initiates more than one, then different heuristics can be implemented, including
letting the first successful transition go to completion and thereafter aborting the
not yet successful transitions. In Figure 35, three potential object transitions
represented by transition paths 3610-3612 are instantiated for the selected
investment 3602 shown in investment object area 3601. The “code” transition
represented by the transition path 3610 is not yet available to be initiated, as
shown by the “X” in criteria state 3620. Similarly, the “complete” transition
represented by the transition path 3611 is note yet available to be initiated, as
shown by the “X” in criteria state 3621. However, the “elaborate” transition
represented by transition path 3612 is available to be initiated, as shown by the
“v” in criteria state 3622. Figures 38 and 41-44 describe further the possible
operations and transition representations that can be displayed when the
transition represented by the transition path 3612 is initiated.

Figures 37A and 37B are an example flow diagram of the display
and processing that occurs in a workflow view of an example Enterprise

39

10

15

- 20

25

30

35

WO 2006/014672 PCT/US2005/025643

Portfolio Management System. This processing is invoked, for example, from
step 1911 in Figure 19 when workflow view is selected by a user. Note that
when workflow view is selected, a meta-object (an investment) has been
designated (by default or by the user). Thus, in step 3701, the MODMS
determines whether there are any active object transitions for the meta-object,
for example, by determining whether the pointer to the transition table 410 in
Figure 4 points to something or not. If not, then the routine continues in step
3702 to display a default screen for workflow view (possibly empty), and then
returns to the command processing in Figure 19 to await the next user
command. Otherwise, the MODMS continues processing in step 3703. In step
3703, the MODMS determines the transitions for the meta-object, for example,
by retrieving them from the meta-object transition table 3400 in Figure 34. In
step 3704, for each transition, the MODMS displays an appropriate diagram (a
“transition path” or “transition representation”) such as those displayed in
Figures 35 and 36. For example, the MODMS may retrieve each entry from
table 3400 and use the criteria met field 3411 and the approvals granted status
field 3412 to determine the “states” of the various portions of the transition
representation, such as criteria state 3622 in Figure 36. The MODMS then
awaits user input, for example initiation of a transition or a request for properties
from some state of a designated transition.

Specifically, in step 3705, the MODMS interprets the next user
command. In step 3706, if the command indicates that the user wishes to
initiate an indicated transition, then the MODMS continues in step 3707,
otherwise continues in step 3708. In step 3707, the MODMS invokes an Initiate
Transition routine designating the current transition, and then continues to the
beginning of the command processing loop in step 3705. An example display
screen displayed as a result of a user initiating the “elaborate” transition 3612 is
described with reference to Figure 38. An example Initiate Transition routine is
described further with reference to Figure 39. In step 3708, if the command
indicates that the user desires to display properties of some portion of an
indicated transition path, then the MODMS continues in step 3709, otherwise
continues in step 3710. in step 3709, the appropriate properties are displayed,
and then the MODMS continues to the beginning of the command processing
loop in step 3705. Example properties display screens are described further
with reference to Figures 41-43. In step 3710, if the command indicates that
the user desires to abort an initiated transition, then the MODMS continues in
step 3711, otherwise continues in step 3712. In step 3711, the MODMS re-

40

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

initializes the corresponding transition table entry, redisplays the transition path,
and continues back to the beginning of the command loop in step 3705. In step
3712, if the command indicates that the user desires to finish (complete) an
initiated transition, then the MODMS continues in step 3713, otherwise
continues in step 3714. The MODMS permits the “finish” command to allow a
transition to progress to step 3713 preferably when all approvals have been
granted. An example display screen of the state of a transition path ready for
finalization is shown in Figure 44. In step 3713, the MODMS invokes a
Transition Meta-Object routine designating the current meta-object and an
indication of the target (destination) object type. An example Transition Meta-
Object routine is described further with reference to Figure 45. In step 3714,
the MODMS determines whether the command is another valid command (for
example a change to a different user view), and if so, returns to Figure 19 for
further processing, otherwise returns to the beginning of the workflow view
command loop in step 3705.

Figure 38 is an example screen display in an example Enterprise
Portfolio Management System of a meta-object (investment) transition that has
been initiated after the criteria have been met. Specifically, in the embodiment
ilustrated, a user brings up a context-menu (not shown), for example by
selecting the representation of the destination object 3804 using an input device
such as a mouse (or by selecting some other location on the transition path
3801 that is not associated with the criteria state 3802 or the approval state
3803), to start the associated transition or to display overall properties
associated with the transition. In this example, this action is available
preferably only if the criteria state 3802 indicates that the criteria have been met
(as shown for example by the “v” displayed in criteria state 3802). The “busy”
indicator (as shown for example by the “8” icon) displayed in approval state
3803 indicates that approvals are being sought.

Figure 39 is an example flow diagram of a routine for initiating a
meta-object (investment) transaction in an example Enterprise Portfolio
Management System. A transaction to be initiated is designated as an input
parameter. In summary, the Initiate Transition routine sends off the appropriate
notifications according to the approval list associated with the designated
transition. In step 3901, the routine displays some kind of indicator that the
designated transition has been initiated to give feedback to the user. In step
3902, the routine determines the entities that are needed for granting approval
(the “approvers”). In step 3903, the routine determines whether the object

41

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

transition requires an “ordered” (sequential) approval, and, if so, invokes a
routine to handle sequenced approval in step 3904, and then returns.
Otherwise, then in step 3905, the routine determines whether there are more
approvers in the list to process and, if so, continues in step 39086, else returns.
In step 3906, the routine gets the next approval list entry to process starting
with the first on the list. In step 3907, the routine retrieves the notification
information from the approval list entry and sends an appropriate notification to
the retrieved entity with a request to approve the designated transition. In one
embodiment, notification is performed by sending email to the approver
identifying the designated transition. Other means of notification could be
employed, for example, sending network messages if the computer system is
on-line and on a known network. The routine then returns to the beginning of
the loop in step 3905 to process the next entry in the approval list. When
complete, all notifications have been sent for requested approvals.

Return responses from such notifications can be implemented
using well-known techniques for handling events that arrive asynchronously.
For example, according to one embodiment, when a return notification event
granting (or denying) permission is received by the MODMS, an event handler
is triggered within the MODMS to update the approval status of the designated
transition of the meta-object designated in the notification. The notification
event changes the approval status of the corresponding entity in the approval
list and determines whether all approvers have now approved the transition. If
so, then the MODMS changes the approved status of the transition to
“approved” in the appropriate entry in the transition table for the designated
meta-object. That way, the next time the workflow view is refreshed or
selected, the fransition path for the designated object will indicate that the
transition has been approved and ready for finalization.

Figure 40 is an example flow diagram of a routine for handling a
sequenced approval process in an example Enterprise Portfolio Management
System. According to this process, approvals are requested in order — after a
prior approval has been granted, then the next approval request is sent out by
the MODMS. Such a system can be implemented using well-known techniques
for handling events that arrive asynchronously, such as an event handler similar
to that described for handling return notifications. In this case, however, the
event handler invokes the Handle Sequenced Approval return after the last
nofification response is received.

42

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Specifically, in step 4001, the routine retrieves the next entry on
the designated approval list. An approval list is designated, since the routine is
invoked after each response notification. In step 4002, the routine determines
whether there are any more entries to process, and, if so, continues in step
4004, else continues in step 4003. In step 4003, the routine changes the
displayed transition path to show that the transition has been approved and is
ready for finalization, and then returns. In step 4004, the routine sends an
appropriate notification to the entity from the determined entry with a request to
approve the designated transition, and then returns. In one embodiment,
notification is performed by sending email to the entity identifying the
designated transition. Other means of notification could be employed, for
example, sending network messages if the computer system is on-line and on a
known network.

As indicated in step 3708 of Figure 37, the user may select
portions of a displayed transition path to display properties of the transition or of
components of the transition (criteria or approvals). Figure 41 is an example
screen display in an example Enterprise Portfolio Management System of a
properties dialog associated with a transition. It is displayed, for example, when
the user selects the representation of the destination object to bring up a
context menu, one menu item of which is “properties.” The MODMS displays
properties dialog 4100 in response. The properties dialog 4100 allows the
transition initiator to set possible destinations — to other portions of the portfolio
investment containment hierarchy - for the associated investment depending
upon whether the transition is approved or disapproved in fields 4101 and 4102,
respectively. That way, if the investment is transitioned to a same or a new
type of investment, the initiator can choose a destination in the containment
hierarchy for the adjusted investment. Accordingly, to simply transition an
investment when particular criteria have been met or when approved, the
initiator can define appropriate target locations without changing the investment
type. Alternatively, the initiator can indicate that a change to the investment
type is aiso desiréd, if a corresponding potential transition has been previously
defined for the source object type that transitions to a different object type when
the same criteria are met. In addition, the initiator can choose to set an
expiration date for the transition to be effective in field 4103. Any notes are
indicated in field 4104. One skilled in the art will recognize that other or
different information may be displayed.

43

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

When the user brings up a context menu on a criteria state of a
transition path, then the MODMS displays the properties associated with the
criteria of the associated transition. For example, if the user requests
properties of the criteria state 3622 in Figure 36, then the MODMS displays the
status of the criteria calculation and the result of the calculation. Figure 42 is an
example screen display in an example Enterprise Portfolic Management
System of a properties dialog associated with the criteria component of a
transition. In properties dialog 4200, the MODMS displays the current status of
the criteria calculations in field 4201 using some kind of indicator, for example,
a colored icon. The result of the criteria evaluation is displayed in field 4202.
One skilled in the art will recognize that other or different information may be
displayed.

When the user brings up a context menu on an approvals state of
a transition path, then the MODMS displays the properties associated with the
approvals list of the associated transition. For example, if the user requests
properties of the approval state 3632 in Figure 36, then the MODMS displays
the approval list entities along with status of approval notifications. Figure 43 is
an example screen display in an example Enterprise Portfolio Management
System of a properties dialog associated with the approval component of a
transition. In properties dialog 4300, the MODMS displays an entry for each
entity on the approval list. Each entry, for example entries 4301 and 4302, lists
the name of the approver, the date an approval or other action was received,
and any notes sent by the approver. The MODMS displays the actions that the
associated entity can yet perform in action fields 4303. Possible actions may
include, for example: clear approval, reject, or approve. A status indicator that
indicates the approval state of an entry (for example, a colored indicator) is
displayed next to each entry, and the properties dialog 4300 reflects the overall
status of the approval list (for example, approved, rejected, or not yet approved)
using an indicator 4304. One skilled in the art will recognize that other or
different information may be displayed and that different indicators including
sound or animation may be used.

Figure 44 is an example screen display of a transition ready to be
finalized in an example Enterprise Portfolio Management System. The
transition associated with transition path 4412 is ready for finalization, as is
represented by the successful indicators (e.g., “v”)in the criteria state 4422 and
the approvals state 4432. The initiator can bring up a context menu on the
target state 4442, which includes a menu item to finalize the associated

44

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

transition. Once the transition is finalized, the meta-object is transformed to a
new type if appropriate and placed in any designated target location in the
containment hierarchy if one had been indicated, for example in the properties
dialog 4100 displayed by Figure 41. Once transformed the workflow view is
typically refreshed because the displayed transition paths may no longer be
applicable if, for example, the object type has been changed.

Figure 45 is an example flow diagram of routine for performing the
transition of meta-object (investment) from one type to another type in an
example Enterprise Portfolio Management System. An indicator to the meta-
object and the destination object type are designated as input parameters. In
summary, the MODMS transforms a meta-object from one type to another type
by determining what attributes of the object are no longer included in the
destination type and what new attributes need to be added to transform to the
destination type. Then, for each of these attribute adjustments, the routine
invokes a routine described with reference to Figure 10 for updating a meta
object with a new attribute/value pair. (This routine is also invoked when the
definition for an object type is modified.) Once the meta-objects attributes have
been adjusted, then the routine invokes the Adjust Rollups routine described
with reference to Figure 11 to recalculate any attributes that roll up due to new
or modified attributes being added to an object in the containment hierarchy.

Specifically, in step 4501, the routine retrieves the current object
type of the designated meta-object. In step 4502, the routine determines
whether the object type is to be changed, and, if so, continues in step 4503,
otherwise continues in step 4508. In step 4503, the routine retrieves the object
type definitions associated with the current object type and the designated
destination object type, so that they can be compared. In step 4504, the routine -
generates a list of attribute/value pairs that need to be deleted in the meta-
object and the attribute/value pairs that need to be added in the meta-object to
conform with the type definition for the destination object type. (For new
attributes, default values may be used initially when the meta-object is
transformed.) In step 4505, the routine determines whether there are any pairs
left in the list(s) to process, and, if so, continues in step 4506, else continues in
step 4508. In step 4506, the routine obtains as the current attribute the next
attribute/value pair from the list starting with the first. Instep 4507, the routine
invokes the Update Meta-Object routine with the current attribute and indicates
whether the attribute is to be added or deleted, and then returns to process the
next attribute/value pair in step 4505. In step 4508, after all new/deleted

45

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

attribute/value pairs have been processed, the routine determines whether a
new location has been designated for the current object and calls the
Move/Copy Meta-Object routine to do so if appropriate. (The Move/Copy Meta-
Object routine is described with reference to Figure 21.) In step 4509, the
routine invokes the Adjust Rollups routine to recalculate attributes that roll up
for the entire portfolio, and then returns.

Figure 24 is an overview flow diagram of example portfolio
analysis functions of a portfolio analyzer component of an example Enterprise
Portfolio Management System. The portfolio analyzer component of an
enterprise portfolio management system is responsible for creating and
managing multi-dimension views of the meta-object instances and charts that
correspond to investment data. One skilled in the art will recognize that the
functions displayed in Figure 24 are merely examples, and a portfolio analyzer
component may be built with the same, similar, or altogether different functions.
In step 2401, the portfolio analysis component determines the command that
was selected by the user as input. In step 2402, if the command indicates that
a new datasheet is to be added, then the routine continues in step 2403, else
continues in step 2404. In step 2403, the portfolio analyzer component invokes
a Create Muiti-Dimensional View routine to add a new multi-dimensional view to
the enterprise portfolio management system, and then returns to step 2401 to
determine and process the next user command. An example Create Multi-
Dimensional View routine for adding a new multi-dimensional view is described
further with reference to Figure 25. In step 2404, if the command indicates that
the user desires to move or copy a datasheet, then the portfolio analyzer
component continues in step 2405, else continues in step 2406. In step 2405,
the portfolio analyzer component invokes a Move/Copy Multi-Dimensional View
routine to move or copy an existing multi-dimensional view, and then returns to
step 2401 to determine and process the next user command. An example
Move/Copy Multi-Dimensional View routine is described further with reference
to Figure 27. In step 2406, if the command indicates that a particular datasheet
is to be deleted, then the routine continues in step 2407, else continues in step
2408. In step 2407, the portfolio analyzer component invokes a Delete Multi-
Dimensional View routine to delete an existing multi-dimensional view, and then
returns to step 2401 to determine and process the next user command. An
example Delete Multi-Dimensional View routine is described further with
reference to Figure 28. In step 2408, if the command indicates that the user's
view is to be changed to a different component of the enterprise portfolio

46

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

management system, then the portfolio analyzer continues in step 2409, else
returns to step 2401 to determine and process the next user command. In step
24009, the portfolio analyzer relinquishes control to the indicated component.

Figure 25 is an example flow diagram of a Create Multi-
Dimensional View routine for creating a multi-dimension view (datasheet) of an
example portfolio. As described earlier, new datasheets (also referred to as
multi-dimensional views) can be defined for a particular portfolio or other object
instance by populating values in a datasheet property sheet using well-known
interfaces such as dialog windows or forms. One skilled in the art will also
recognize that the equivalent input may be specified in a more “batch” oriented
process, so that other code can use the routine to build a datasheet.
Specifically, in step 2501, the routine implements a mechanism to define the
various columns for the new datasheet view. In some environments, “columns”
are also known as axes, views, dimensions, or by similar terminology. In step
2502, the routine implements a mechanism to define filtering rules. These rules
are used filter out instances that do not match the specified rule or that match
the specified rule, however indicated. In step 2503, the routine implements an
interface to define how instances that match the column specification and
filtering rules are to be grouped in the resultant datasheet. In step 2504, the
routine implements an interface to define the particular sorting algorithm to be
used to order matching instances within each grouping. In step 2305, the
routine invokes a Build Presentation routine to build a presentation that
corresponds to the new datasheet properties defined in steps 2501-2504. This
presentation is referred to herein as a “virtual object tree” since objects are
temporarily instantiated that correspond to the datasheet, which are not stored
in the actual hierarchy or using persistent storage. An example Build
Presentation routine is described further with reference to Figure 26.

Figure 26 is an example flow diagram of a Build Presentation
routine for building a presentation for a muiti-dimension view. The routine takes
as input a indicator of a sub-tree in the instance hierarchy (typically a portfolio
node) and other attributes specified by the datasheet attribute specification,
such as an object type, list of relevant columns, filter definition, grouping list,
sorting list, and a indication of an applicable security role. In summary, the
build presentation routine queries the investment object instance hierarchy to
determine all of the investment objects that match the attribute specification of
the datasheet and builds a virtual object tree that corresponds to the matching
instances. In essence, a virtual object is a temporary object instance that is

47

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

used to group the real investment object instances based upon the groups
indicated in the attribute specification. That is, since an instance does not exist
that directly corresponds to the “group” itself and a grouping is a mere
abstraction, in order for all of the rollup functions etc. to work properly, a virtual
object needs to be created to correspond to each matching group, as if the
group were an entity. The virtual objects look and behave like other investment
objects to a user; however they live for the life of the datasheet, and are
instantiated when needed to present the datasheet. Once the virtual object tree
is created, then rollups are adjusted appropriately. One skilled in the art will
recognize that there are other ways to implement a datasheet, and that Figure
26 and Table 1 correspond to one of these implementation approaches.

Specifically, in step 2601, the routine queries the investment
object instance hierarchy at the designated sub-tree according to the
designated parameters specified in the datasheet attribute specification (see
input parameter list) to determine a results tabie. Specifically, the query locates
objects of the designated object type that have the designated columns and
that correspond to the grouping, filtering, and sorting rules previously indicated
and designated as input parameters. The designated group list is a list of each
grouping of matching instances. For example, investments may be grouped by
‘rank” and then by geographic region. Once grouped, then the designating
sorting rules are used to order matching instances within a group (the results of
the query).

In step 2602, the routine filters the resulting table of instances
based upon the security roles that are indicated by the designated security
roles. For example, different security roles can be defined for different users
and organizational groupings, etc., and the roles can be used to filter the data
users have access to and what types of investment data can be viewed via the
datasheets. Different security roles may be defined that correspond to
modification access permissions as well as what data may be viewable. The
security roles may directly correlate to the organizational hierarchy, which may
also be reflected in the actual containment hierarchy of the investment
instances.

In step 2603, a new virtual object tree root node (a virtual object)
is created. In step 2604, a Build_VO_Tree routine is invoked to build a virtual
object tree from the resultant table of instances that was returned as a result of
the query. The pseudo code for an example Build VO Tree routine is
described further with reference to Table 1. In step 2605, the routine invokes

48

WO 2006/014672 PCT/US2005/025643

the Adjust Rollups routine described with reference to Figure 11 on the newly
created virtual object tree so that rollups can be properly computed for the
datasheet. The routine then returns the instantiated virtual object tree, which
corresponds to the datasheet.

—

Build_VO_Tree (root, group_list, query_string) {

2

3 curr_group = head (group_list);

4 new_grp list =rest (group_list);

5 # for each value in current group, starting with the first, ending with the last
6 for value = first_value (curr_group), next (curr_group, last_value (curr_group) {
7

8 subroot = create_new_virtual_object;

9

10 if (new_grp list =null) {

11 # find all data that matches current sent of group values

12 leaf_table = query_results_table (concat (query_string,

13 curr_group, value));
14 for row in leaf_table {

15 # add pointers from subroot to all data that matches
16 add_row_as_child (subroot, row);

17 # update subroot attributes based on row data

18 update_subroot_attributes (subroot, row);

19 b

20 if (result !=0) {

21 # integrate new leaf node (virtual object) into VO tree
22 ' add_child (root, subroot);

23 # update root attributes based upon those of new VO
24 update_root_attributes (root, subroot);

25 } #no data exists with current group value

26 else delete (subroot);

27 }

28 else {

29 # recurse to build a child sub-tree with current group = value
30 child =Build_VO_Tree (subroot, new_grp_list,

31 : concat (query_string, curr_group, value)),
32 # add the newly built child into the current sub-tree

49

10

15

20

25

WO 2006/014672 PCT/US2005/025643

33 add_child (root, child);
34 # update root attributes based upon those of child
35 update root_attributes (root, child);
36 3
37 }; # end loop on current group values
38
39 return (root);
40 }
Table 1

Table 1 contains pseudo code for an example Build_VO_Tree
routine. As illustrated, the Build VO_Tree routine implements a recursive
process for building up a virtual object tree from the results of a query of the
investment instance hierarchy based up a datasheet attribute specification. Itis
assumed that the results of the query are in tabular form, or otherwise easily
decomposed, and that the results are grouped and sorted in the order that they
should be displayed. One skilled in the art will recognize that this is not a
requirement and that the pseudo code for the Build_VO_Tree routine could be
modified appropriately. Also, iterative equivalents of the recursive process
could be equivalently substituted.

In summary, the routine builds a virtual object tree whose leaf
nodes point to investment data. The routine operates from the “inside” out (leaf
nodes up). That is, the datasheet is effectively a tree turned sideways, where
the innermost groupings are the leaf nodes, the investment data that matches
the innermost grouping are indicated in these leaf nodes, and the next level of
grouping is the next “level” of intermediate virtual object nodes in the tree, and
so forth. Virtual objects need to be created for each intermediate (group) node
in the tree, since instantiated objects exist only for investment data. Thus,
examining a datasheet excerpt shown in a Summary View of the Portfolio
Analyzer, a subset of which is aiso displayed in Table 2 below, the investment
data results are grouped first by Region values and grouped second by Score
values. Under each combination of Region/Score values, there are 0 to N
investment objects instances with those values. There are M levels of virtual
objects for each M levels of groups. Thus, a virtual object is preferably created
for each grouping (combination) value, with indicators to the instantiated

50

10

15

20

WO 2006/014672 PCT/US2005/025643

investments, and a virtual object is needed for each discrete value (or
combined value) of each group of groups, and so on.

Name Budget | Region | Score | Status | Total Cost
Region:2 $81,000 | 2 $72,000
Score:2 $27,000 2 $24,000
Project 3 $13,000| 2 2 Green | $12,000
Project 2 $9,000 |2 2 Red $8,000
Project 1 $5,000 (2 2 Green | $4,000
Score:3 $26,000 3 $23,000
Project A | $11,000] 2 3 Yellow | $10,000
Project 4 $8,000 |2 3 Green | $7,000
Region:1 1
Score:1
1
Score:3 3
Table 2

For example, looking at Table 2, a virtual object is created for a
[region=2; score=2] leaf node; a [region=2; score=3] leaf node; a [region=1,;
score=1] leaf node; and a [region=1; score=3] leaf node. Each of these
become children of an “intermediate” virtual object node, in this case, on the
outermost grouping level: a virtual object is created for a [region=2] node and a
virtual object is created for a [region=1] node, and so on. Thus, the resuiting
virtual object tree has 2 levels (since there are 2 levels of groups) with a
topmost root, the first level corresponding to region values, and the second
level corresponding to scorefregion values.

The pseudo code of Table 1 demonstrates an implementation of
this approach. The loop of lines 6 — 37, examines each value of a current
group. If the innermost group (leaf nodes) has not yet been reached, then the
routine is invoked recursively in line 30 to build a virtual object tree starting with
a newly created virtual object sub-tree and the rest of the group list. This
process continues until the innermost group is reached, in which case line 10 is
true. At that point, all of the matching investment instances for that combination
of group values is determined (line 12), each matching instances is added fo
the virtual object leaf node (line 16), and the attributes of the virtual object leaf

51

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

node are determined (line 18). Once all of the matching instances have been
referenced by the virtual object leaf node (line 20), then the newly created leaf
node is added into the virtual object sub-tree whose root is the next closest
intermediate node (the parent virtual object of the leaf node) (line 22). The
attribute values of the current root (the parent virtual object) are then updated
based upon the attributes of the newly created virtual object leaf node (line 24).
When the current invocation of the routine then pops back up to a prior
recursive invocation (line 30 results), then the newly build virtual object sub-tree
is added a child node to the current root of that sub-tree (line 33). The
attributes of the current root are then updated to reflect the built sub-tree (line
35). In the example shown in Table 2, the current root at that point is the root of
the datasheet — the entire virtual object tree. One skilled in the art will
recognize that other implementations, such as those that actually persist the
virtual objects that correspond to a datasheet are also feasible.

As described earlier with respect to Figure 24, once a datasheet is
created, it can be moved or copied to another investment object. In one
embodiment, datasheets are associated with portfolio objects only; however,
one skilled in the art will recognize that it is possible to associate datasheets
with other investment objects as well. Figure 27 is an example flow diagram of
a Move/Copy Multi-Dimensional View routine for moving/copying a multi-
dimension view. The routine takes as input a virtual object tree, an indication of
a source node, and an indication of a target (destination) node. Note that, if
more than one datasheet can be associated with a node, then an indication of
which datasheet is also an input parameter. In step 2701, the designated
virtual object tree is associated with the designated target node so that the
datasheet will become part of that investment object. The property sheet that
defines the datasheet is also copied as appropriate to the properties of the
designated target node so that the target node then has access to maintain the
datasheet. In step 2702, the routine invokes the Build Presentation routine
described with reference to Figure 26 so that a new virtual object tree that
corresponds to the moved datasheet can be created for the target node. This
step is necessary since the values of the datasheet typically depend upon the
sub-tree of nodes associated with the datasheet. In step 2703, if the portfolio
analyzer interface has specified that the datasheet is to be moved, then the
routine continues in step 2704, otherwise returns. In step 2704, the routine
calls a Delete Multi-Dimensional View routine to delete the datasheet
associated with the designated source node, and then returns.

52

10

15

20

25

30

35

WO 2006/014672 PCT/US2005/025643

Figure 28 is an example flow diagram of a Delete Multi-
Dimensional View routine for deleting a multi-dimension view. This routine
allows a user to delete an existing datasheet. The routine takes as input an
indication of the parent (portfolio) node where the datasheet is to be deleted
from, and an indicator to the virtual object tree. In cases where more than one
datasheet is supported, an indicator to the datasheet is included as a
parameter. In step 2801, the reference to the datasheet that is specified by the
virtual object tree is removed from the designated parent node. In step 2802,
the property sheet is disassociated from the parent node that corresponds to
the designated virtual object tree. In step 2803, the routine then invokes the
Adjust Rollups routine described with reference to Figure 11 to recalculate the
rollups on the sub-tree indicated by the parent node, in case values have been
modified. The routine then returns.

In addition to creating and managing datasheets, the example
portfolio analyzer also supports dynamic charting capabilities. the appendices
of U.S. Patent Application No.10/613,534, entitled “METHOD AND SYSTEM
FOR OBJECT-ORIENTED MANAGEMENT OF MULTI-DIMENSIONAL DATA,”
filed July 3, 2003 show detailed display screens for a charting sequence from a
charting subsystem of an example enterprise portfolio management system. A
chart “vector,” which defines all of the potential axes for a particular set of
charts is associated with a datasheet. The axes thus preferably correspond to
all of the dimensions viewable in the datasheet. Once a chart vector is created
for a particular chart type (e.g., a bubble chart), the axes that correspond to the
currently displayed presentation are dynamically selectable. Thus, the charts
can redisplay the underlying datasheet investment data, without having to be
rebuild the chart structure.

From the foregoing it will be appreciated that, although specific
embodiments of the invention have been described herein for purposes of
illustration, various modifications may be made without deviating from the spirit
and scope of the invention. For example, one skilled in the art will recognize
that the methods and systems for creating, managing, and analyzing
heterogeneous investment data discussed herein are applicable to other types
of data management systems other than enterprise portfolio management. For
example, the techniques used herein can be applied to homogeneous data
such as streamlined inventory control systems or project management systems.
One skilled in the art will also recognize that the methods and systems

53

WO 2006/014672 PCT/US2005/025643

discussed herein are applicable to differing network protocols other than the
Internet and web-based communication, communication media (optical,
wireless, cable, etc.) and devices (such as wireless handsets, electronic
organizers, personal digital assistants, portable email machines, game
machines, pagers, navigation devices such as GPS receivers, etc.).

54

PCT/US2005/025643

WO 2006/014672

N . N X3}
N - N N
N - N N
N . N ey
N - N x93
A - N Juadsad
A - N juazsad
A . N Ju3dsad
A - N juansad
A - N juadsad
A - N juadsad
A . N Jusdsad
A - N juadtad
A . N juadsad
A - N Juadsad

adA]) wajsAs

ojes s dnjoy dnjjoy s) s) adAy

uejq aujaseg
ueyd
pELSL-IR uodlyesIuLpy
- SAY
- syuaystidwoddy
1enRy

o}JBUDG

ueld autjaseg

ueld

198l 2321dwon 1503 %

teny

o181)4

ue)d aunaseg

ueyd

J981e) aj9)dwod %

suoisusawig

318Y.L SALNENLLY TVE0T9 WOHL LdYZOX3 I1dWVX3

uoyIBIISIUIWPY
MY
sjuBWYsHAWodDY

a319)1dwo) 3507 JuadIdd

aj91dwio?) Jus2iad

Vv xipusddy

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

WO 2006/014672

wns
wns
wns
wins
wns

Z ZT ZZZZTZZZZZZZO>D>>ZTZZTZTZZZ >

adA)

ojea sy dnjjoy dnjjoy s

A719V1 SALNGRILLY TVE01D WOHL 1dY30X3 ITdNVYX3

Z ZZT ZZZZTZZZZZZ > > >>> AL ZTZIZZZIZ >

W3)sAg
S]

Asuow
%33
judziad
juadtad
™A
xa)
X8}
Ixa3
Asuow
Aauow
Aauow
Aauow
Aauow
>
XN
phs]
>33
X33
>N
%3
XA
X
%3}
X33
™A
x3)

adAL

jo81e

a3eq 031 3509
eaH /smyels 3500

SS303NS 1RIYIAY JO ANIGRGOld

jeny
oLleuadS
ue|d au)aseg
ueld
J@bley
1emay
oLIeuddS
ue|d aut)aseg
ueld
pEY-E1-TR
ey
VLTS

suolsuauilq

1249WW0) Jo ANjigeqold

aweN apo)

Jun ssautsng
wa)qoid ssautsng
paaN ssauisng

33EQ 0} JYySuag
s)ijauag aiqduey
s531youag sjqiuely|
sjtjouag
punosdyoeg
suopdwnssy
yoeosddy

23RPY

23eq 01 3500
ylieaH/snieis 1s0)
$5323NS 1EIUYDIIL
$S9I0NS 1B12I3WW0)
BWeN apo)

Jjuf) ssaujsng
wa)qo.d ssauisng
poaN ssauisng

33eq 03 Y3uag
s)yauag a)qisuel
sjlyauag siqrauely|
siyysusg
puno.Byoeg
suopdunssy
yaeosddy

PARYIY

v Xipuaddy

56

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

WO 2006/014672

N . N
N . N
N . N
N - N
N - N
N . N
N - N
N . N
N . N
N . N
A wns A
A wns A
A wns A
A wns A

ELTYN

ojea sy dmjoy dnjjoy s}

378VL S3LNGRILLY TVEOTO WOXD Ldd30OXH ITdWVXT

wa)sAg
St

N
31
WA
=N
N
>al
aep
ajep
13s017S3d
1asnTs3d
Aauow
Kauow
Asuow
Asuow

yenpy
oLIRURIS
ur)g Bunaseg
uBld

suolsuswlq

ABaze.3s Juswioydaq A3a3e035 Juswhoidag

$91qRIDANRG S31qRISANSG
sapuspuadag sapauapuadagq
uolyduasaq uepduasag
Juduiedaq Jjuauwsedsg

S4010B4 SSIIONS 1BIIUD SJ03IBJ S59DING 1M
31eg uoneal) (393ysereq) aleg uoneas)
a1eg uoneas) (193lqQ) aieg uopeas)

Agpajeasy (isayseleq) Ag pareasd
kg payean) (392[a0) Ag pajeas)

Vv Xipuaddy

57

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

N A loge) A .

N A Joge) A .
N N loqe) A . uotjesisiutwpy
N A - N . DALY
N A - N . syuswys|dwoddy

N N - N (pua 199{qo 01 1ieds 373[qo=a5uR.} 3500 J2Y3IO0 JO WNS'E + 150D

Joge) Jo wns e/ {Aepoy 01 11835 3133[q0=35uel) 150D J3YI0 JO WINS'B + ISOD JOGR) JO WNS"e

N N - N (pua 123[qo 03 1Je3s II2{qo=a8urL) 3507 J3UI0 JO WNS'S + I50D

Joge) jo wns*s/(Aepoy 03 34e3s 193{qo=a5ues) 1502 JAY30 JO WNS'S + IS0 JOGR) JO WNS'S

N N - N {pua 12{qo 03 14e3s 122[go=a8uel) 1505 JaY3C Jo wns dg + 3502 Joge)

Jo wns*dqy(Aepo) 01 1e3s 392[qo=a8uel) 3502 IS0 JO wns'dq + 3502 Joge} Jo wns*dg

N N - N {pua 322{qo 03 1Je3s 123(go=38uel) 1503 13Y30 Jo Wwns*d + 3500

Joqe] jo wns'd/(Aepoy 03 1B3S 139(qo=a8uel) 3500 Jay3o Jo wns*d + 3502 Joge) jo wns'd

0010 N N - N {pua 122{qo 03 3JelS IV3{qo=aFuerJ) 1503 JBLFO JO WINS'Y + JSOD
Joge) jo wns*37(Kepo3 03 3se3s 122{qo=38url) 1502 JoU30 JO WNS'] + 350D J0oge) Jo Wns'y 3391dwo) 150D JUIdIAd

N N . N {pua 322{qo 03 We3s

123lqo=asue.) sinoy Joge) Jo je103°e/{Aepol 03 1JeIS 13[qo=aBuel) sInoy Joge) Jo wns'e

N N - N {pus 122[qo 03 LIS

3lqo=abues) sinoy Joge) jo |eJ03°s/(Aepoy 03 Jiels 323{o=a5ue.) SN0y Joge} JO Wns's

N N - N (pus 323[qo 03 3.e3s J23[qo=a8uel)

sinoy soge) Jo je103 dq/{Aepo) 03 JJels 33a{qo=a8uel) sinoy Joge) Jo wns*dq

N N - N (pua 333[qo 03 Lels

139{qo=a8ue.) sinoy Ioqe) Jo 1e303°d/{Aepol 01 11e1s 133{qo=3BueJ) sinoy Joge] jo wns'd

0010 N N - N . {pua 133[qo 03 1e3s
193{qo=a8uEri) sinoy Jogej jo 1e303°3/{Aep0] 03 JJe3s 323(qo=aBurl) sIinoy Joqe) jo wns*y 3391dwo) Ju3dIad

58

WO 2006/014672

sanjeA s 2uuod adAj paseyd

neseq si s| aseydswi) -awins| uope|ndje)

379v1 S3LNTIYLLY TVEO0TO NOXH Ldy30X3 ITdNVX3 v Xipusddy

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

WO 2006/014672

smes

pautyag-Jasn

sanjeA
ney=q

loqe)
Joge)
Joge)
Joqe)
Joge]
laqe)
loge)

Z X2 ZZTZZTITZZZZRZZZZZZZZE>ZTZZ >
Z > Z X > Z > > > > > ZTZEZLZ D > > > Z

IS duuod adAj

{Repo1 03 11B35 399(qo=aBuel) 150D 12301 JO WNs*}

{Aepo3 03 3Je3s 103[qo=08Ue)) Jysuaq Jo wns'e
{Aepo1 03 11e3s 109[qo=a8uel) IJoUaq Jo wns's
{Aepo) 03 1e3s I99[qo=a5ues) Jyauaq Jo wns-dq
{Aepoy 03 1e3s 393(qo=aduel) Wauaqg Jo wns'd
{Aepoy 03 1e3s 129{qo=a8ury) 13uUaq J0 wWNs*y

P> > > > T ZZZRZTZZZZZZZZZIZZEZEZ

PES

5| s| aseydauny -awj 5| uoijejnjer

F78V.1L S3LNTIILLY TVBO1D WO Ldd30X3 31dNvX3

o3eQg 03)s0D
YaleaH/smeys 3503
$5390N§ 1e3JUYIS)
539905 JRI2I3UNL0Y
aweN apoy

3lup ssauisng
wayqoud ssaujsng
poaN ssausng

ajeq 01 Jyausg
s)suag AqiBuey,
siysuag aiqisueiy|
sjyauag
puno.gxyoeg
suonduwinssy
yoeouddy

1YY

¥V Xipuaddy

59

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

WO 2006/014672

paulyag-1asn

EGTETN
3ineyaq

N A
N A
N A
N A
A A
N A
N N
N N
N N
N N
N N
N N
N N
N N
ISt DUUO0D

s

5]

.
ZZZTZTZTZXZZT ZT ZTZZZZ

z

adA] paseyd
aseydaw] -a2uij s

I7gV.L SILNSRILLY WO T WOBL 1dHd30X3 31dINvX3

(Kepoy 03 31e3s 109(qo=a7ue) 1502 1BJ0} JO WNs*e
(Kepo3 03 RIS 193(qo=3BURI) 3SOI 1e10] JO WNS"S
{Aepoy 03 3se3s 10a(qo=a5uel) 1502 12303 Jo wns-dq
(Kepoy 03 1Le3s 3r2lqo=a8ue) 350D Je303 jo wns'd

uoLyejnaje)

Adayens juswhoidag
$31qeIaAleg
saruspuadag
uerduasag

jusunsedag

$J0}0B4 $$92INS 121D
{193yseieq) S1eq uoess)
(399{qQ) ayeq uoneas)
(199yseeq) Ag pajeald
(123[q0) Ag pateas)

SQUIENTWX

v xipuaddy

60

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

CLAIMS

1. A method in a computer system for managing a plurality of
types of enterprise portfolio data as investment items, each investment item
having an investment type and associated with a transition from a source
investment type to a destination investment type, comprising:

presenting on a presentation device associated with the computer
system a representation of a one of the investment items including a
representation of the associated transition ;

receiving an indication to perform the associated transition to
transform the one of the investment items from the source investment type to
the destination investment type; and

transparently performing the indicated transition to transform the
one of the investment items to the destination investment type such that the
one of the investment items now appears as the destination type of investment
item.

2. The method of claim 1 wherein the source investment type
is the same as the destination investment type and the transition associated
with the one of the investment items specifies a target location, and wherein the
transparently performing the indicated transition to transform the one of the
investment items to the destination investment type comprises moving the one
of the investment items to the specified target location.

3. The method of claim 1 wherein the source investment type
is different than the destination investment type.

4, The method of claim 1, further comprising:

receiving approval of the transition from at least one entity prior to
transparently performing the transition of the one of the investment items to the
destination investment type.

61

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

5. The method claim 4 wherein the receiving approval of the
transition from at least one entity, further comprises:

when a list of entities needing to approve the transition is
associated with the transition, notifying entities specified by the list to request
approval of the transition; and

receiving responses from the notified entities that the transition is
approved.

6. The method of claim 5 wherein responses need to be
received from all of the notified entities before the transition is approved.

7. The method of claim 6 wherein responses need to be
received from a subset of the entities specified by the list before the transition is
approved.

8. The method of claim 6 wherein the entities specified by the
list to request approval are notified sequentially.

9. The method of claim 4 wherein the receiving approval of
the transition from at least one entity further comprises receiving approval from
at least one entity identified by a security role.

10. The method of claim 1, further comprising:

determining whether the transition is associated with at least one
criterion to be evaluated;

when it is determined that the transition is associated with at least
one criterion to be evaluated, evaluating the criterion prior to performing the
transition.

11. The method of claim 10 wherein the evaluating the criterion

prior to performing the transition determines whether to permit initiation of the
transition.

62

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

12. The method of claim 10 wherein the evaluating the criterion
to prior to transparently performing the transition further comprises:

evaluating the criterion to determine if the criterion is met, and,
when the evaluated criterion is met, indicating that the potential transition is
available to be initiated.

13. The method of claim 10, further comprising:
when the evaluated criterion is not met, preventing the transition
from being initiated.

14. The method of claim 10 wherein the at least one criterion
comprises a Boolean expression to be evaluated.

15. The method of claim 10 wherein the at least one criterion
specifies a comparison of a value of an attribute of the investment item to
another value.

16. The method of claim 10 wherein the at least one criterion
specifies a comparison between at least two attributes of the investment item.

17. The method of claim 1 wherein the presenting the
representation of the one of the investment items including the representation
of the transition further comprises:

presenting a transition path having an indication of a source
investment type and a destination investment type.

18. The method of claim 17 wherein the presenting the
transition path further comprises an indication of any criteria to be met before
initiation of the transition is permitted.

19. The method of claim 17 wherein the presenting the
transition path further comprises an indication of whether there is a list of
entities to approve the transition and whether the transition has been approved.

20. The method of claim 1, further comprising:

63

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

moving the transitioned investment item to a different location in a
containment hierarchy associated with the enterprise portfolio data.

21. The method of claim 1 wherein the investment items are at
least two of financial investments, project management, collections of projects,
products, programs, assets, human resources, portfolios, initiatives,
applications, operations, processes, and activities.

22. The method of claim 1, the enterprise portfolio data
comprising at least two of engineering, marketing, product management,
manufacturing, sales, information technology, finance, human resources,
research, development, and professional services portfolios.

23. A memory medium containing instructions for controlling a
computer processor to manage a plurality of types of enterprise portfolio data
as investment items, each investment item having an investment type and
associated with a transition from a source investment type to a destination
investment type, by:

presenting a representation of a one of the investment items
including a representation of the potential transition on a presentation device
associated with the computer system;

receiving an indication to perform the transition to transform the
one of the investment items from the source investment type to the destination
investment type; and

transparently performing the transition of the one of the
investment items to the destination investment type such that the one of the
investment items now appears as the destination type of investment item.

24. The memory medium of claim 23 wherein the source
investment type is the same as the destination investment type and the
transition associated with the one of the investment items specifies a target
location, and wherein the instructions further control the computer processor by
moving the one of the investment items to the specified target location.

64

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

25. The memory medium of claim 23 wherein the source
investment type is different than the destination investment type.

26. The memory medium of claim 23, further containing
instructions that control the computer processor to receive approval of the
transition from at least one entity prior to performing the transition of the one of
the investment items to the destination investment type.

27. The memory medium claim 26 further containing
instructions that control the computer processor to notify a plurality of entities
specified by a list to request approval of the transition.

28. The memory medium of claim 27 further containing
instructions that control the computer processor to perform the transition only
after approval is received from the at least one entity.

29. The memory medium of claim 23 further containing
instructions that control the computer processor by:

determining whether the transition is associated with at least one
criterion to be evaluated;

when it is determined that the transition is associated with at least
one criterion to be evaluated, evaluating the criterion prior to performing the
transition.

30. The memory medium of claim 29 wherein the at least one
criterion is evaluated to determine whether to permit initiation of the transition.

31. The memory medium of claim 29 wherein, when the
evaluated criterion is met, indicating that the potential transition is available to
be initiated, and when the evaluated criteria is not met, indicating that the
potential transition is not available to be initiated.

32. The memory medium of claim 29 wherein the at least one
criterion comprises a Boolean expression to be evaluated.

65

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

33. The memory medium of claim 29 wherein the at least one
criterion specifies a comparison of a value of an attribute of the investment item
to another value.

34. The memory medium of claim 23 wherein the presented
representation of the transition comprises a transition path having an indication
of a source investment type and a destination investment type.

35. The memory medium of claim 34 wherein the transition
path further comprises an indication of any criteria to be met before initiation of
the transition is permitted.

36. The memory medium of claim 34 wherein the transition
path further comprises an indication of whether the transition has been
approved.

37. The memory medium of claim 23, further containing
instructions that control the computer processor by:

moving the transitioned investment item to a different location in a
containment hierarchy associated with the enterprise portfolio data.

38. A computer-implemented portfolio management system,
comprising:

a plurality of investment items of an organization displayed in a
portfolio containment hierarchy, each item having an investment type and
associated with a transition from a source investment type to a destination
investment type;

a portfolio management component that is structured to

display a representation of a one of the investment items
including a representation of the transition associated with the one of the
investment items on a display device;

receive an indication to perform the transition to transform
the one of the investment items from the source investment type to the
destination investment type; and

66

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

as a result of the received indication, transition the one of
the investment items to the destination investment type such that the one of the
investment items now appears on the display as the destination type of
investment item.

39. The system of claim 38 wherein the source investment type
is the same as the destination investment type and the transition associated
with the one of the investment items specifies a target location, and wherein the
portfolio management component is further structured to move the one of the
investment items to the specified target location.

40. The system of claim 38 wherein the source investment type
is different than the destination investment type.

41. The system of claim 38 wherein the portfolio management
component is further structured to:

receive approval of the transition from at least one entity prior to
transitioning the one of the investment items to the destination investment type.

42. The system claim 41 wherein a list of entities that need to
approve the transition is associated with the transition and wherein the portfolio
management component is structured to notify the entities specified by the list
to request approval of the transition and to receive responses from the notified
entities.

43. The system of claim 42 wherein the entities specified by
the list are notified sequentially.

44. The system of claim 41 wherein the at least one entity is
identified by a security role.

45. The system of claim 38 wherein the portfolio management
component is further structured to:

determine whether the transition is associated with a set of
criteria; and

67

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

when it is determined that the transition is associated with the set
of criteria, evaluate the criteria prior to transitioning the one of the investment
items.

46. The system of claim 45 wherein the criteria is evaluated to
determine whether to permit initiation of the transition.

47. The system of claim 45 wherein when the evaluation
indicates that the criteria has been met, indicating that the potential transition is
available to be initiated.

48. The system of claim 45 wherein when the evaluation
indicates that the criteria has not been met, preventing the transition from being
initiated.

49. The system of claim 45 wherein the criteria comprises at
least one Boolean expression to be evaluated.

50. The system of claim 45 wherein the criteria specifies a
comparison between a value of an attribute of the investment item and another
value.

51. The system of claim 45 wherein the criteria specifies a
comparison between at least two attributes of the investment item.

52. The system of claim 38 wherein the displayed
representation of the transition associated with the one of the investment items
displays a transition path that indicates a source investment type and a
destination investment type.

53. The system of claim 52 wherein the displayed transition
path indicates any criteria to be met before initiation of the transition is
permitted.

68
SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

94. The system of claim 52 wherein the displayed transition
path indicates whether there is a list of entities to approve the transition and
whether the transition has been approved.

, 55. The system of claim 38 wherein the portfolio management
component is further structured to:

move the transitioned investment item to a different location in the
containment hierarchy.

56. A method in a computer system for managing a plurality of
types of enterprise portfolio data, the portfolio data having a plurality of
investment items, the computer system defining an object type to correspond to
each type of investment item, comprising:

for each investment item, instantiating an object as an instance of
the object type that corresponds to the type of the investment item, wherein at
least two of the instantiated objects have different object types;

receiving an indication to transition one of the investment items of
a first type of investment item into a second type of investment item; and

transforming the instantiated object of a first object type that
corresponds to the one of the investment items into a second object type that
corresponds to the second type of investment item to effectuate the transition of
the one of the investment items into the second type of investment item.

57. The method of claim 56 wherein the transforming is
performed without recompiling code or instantiating a new object.

598. The method of claim 56 wherein the transforming is
performed while representations of the enterprise portfolio data including the
one of the investment items are displayed on a display screen of the computer
system.

59. The method of claim 56, each object type defining a
plurality of attributes, and the instantiated object containing a plurality of
attributes whose values are set based upon data associated with the one of the
investment items, wherein the transforming is performed by adjusting the

69

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

attributes of the instantiated object to correspond to the attributes defined for
the second object type.

60. The method of claim 59 wherein additional attributes are
added to the instantiated object.

61. The method of claim 59 wherein attributes are removed
from the instantiated object.

62. The method of claim 56 wherein the transforming the
instantiated object of a first object type that corresponds to the one of the
investment items into a second object type that corresponds to the second type
of investment item is performed after at least one criterion has been met.

63. The method of claim 56 wherein the criterion specifies a
comparison of a value of an atiribute of the instantiated object to another value.

64. The method of claim 56 wherein the criterion specifies a
comparison between at least two attributes of the instantiated object.

65. The method of claim 56 wherein the transforming the
instantiated object of a first object type that corresponds to the one of the
investment items into a second object type that corresponds to the second type
of investment item is performed when at least one entity on an approval list has
approved the transition.

66. The method of claim 56 wherein the at least one entity on
the approval list is notified by email to request approval of the transition.

67. The method of claim 56 wherein the approval list
comprises a plurality of entities defined by at least one security role.

68. The method of claim 56 wherein at least one of the
investment items is a financial investment item that reflects financial investment

70

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

data and at least another one of the investment items is a project management
item that reflects project related data.

69. A memory medium that contains instructions for controlling
a computer process to manage a plurality of types of enterprise portfolio data,
the portfolio data having a plurality of investment items, by:

for each investment item, instantiating an object as an instance of
the object type that corresponds to the type of the investment item, wherein at
least two of the instantiated objects have different object types;

receiving an indication to transition one of the investment items of
a first type of investment item into a second type of investment item; and

transforming the instantiated object of a first object type that
corresponds to the one of the investment items into a second object type that
corresponds to the second type of investment item to effectuate the transition of
the one of the investment items into the second type of investment item.

70. The memory medium of claim 69 wherein the transforming
is performed without recompiling code or instantiating a new object.

71. The memory medium of claim 69 wherein the transforming
is performed by adjusting a plurality of attributes of the instantiated object to
correspond to attributes defined for the second object type.

72. The memory medium of claim 71 wherein additional
attributes are added to the instantiated object.

73. The memory medium of claim 71 wherein attributes are
removed from the instantiated object.

74. The memory medium of claim 69 wherein the transforming
is performed after evaluating criteria associated with the transition and
determining that the criteria has been met.

75. The memory medium of claim 69 wherein the criteria
specifies an expression to be evaluated.

71

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

76. The memory medium of claim 69 wherein the transforming
is performed when at least one entity on an approval list has approved the
transition.

77. The memory medium of claim 69 wherein the at least one
entity on the approval list is notified by email to request approval of the
transition.

78. The memory medium of claim 69 wherein the approval list
comprises a plurality of entities defined by at least one security role.

79. A computer system for managing a plurality of types of
enterprise portfolio data, the portfolio data having a plurality of investment
items, comprising:

an object type management system that contains an object type
that corresponds to each type of investment item; and

an investment item management system that is structure to:

for each investment item, instantiate an object as an
instance of the object type that corresponds to the type of the investment item,
wherein at least two of the instantiated objects have different object types;

receive an indication to transition one of the investment
items of a first type of investment item into a second type of investment item;
and

transform the instantiated object of a first object type that
corresponds to the one of the investment items into a second object type that
corresponds to the second type of investment item.

80. The system of claim 79 wherein the transformation is
performed without recompiling code or instantiating a new object.

81. The system of claim 79 wherein the transformation is
performed while representations of the enterprise portfolio data including the
one of the investment items are displayed on a display screen of the computer
system.

72

SUBSTITUTE SHEET (RULE 26)

WO 2006/014672 PCT/US2005/025643

82. The system of claim 79 wherein the transformation is
performed by adjusting a plurality of attributes of the instantiated object to
correspond to attributes defined for the second object type.

83. The system of claim 82 wherein additional attributes are
added to the instantiated object.

84. The system of claim 82 wherein attributes are removed
from the instantiated object.

85. The system of claim 79 wherein the transformation is
performed after evaluating criteria associated with the transition and
determining that the criteria has been met.

86. The system of claim 79 wherein the criteria specifies
Boolean expressions to be evaluated.

87. The system of claim 79 wherein the transformation is
performed when at least one entity on an approval list has approved the
transition.

88. The system of claim 79 wherein the at least one entity on
the approval list is notified by email to request approval of the transition.

89. The system of claim 79 wherein the approval list comprises
a plurality of entities defined by at least one security role.

73

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/025643

WO 2006/014672

| .wi

-7
onepprad ——

[_wawnbvvny

N

OIWSWT
Hral99-al

[N

.\ \

v wnlouyy
20y w200

sol

jol —

A4

Tiput/Qutout Tatedlace

Wis hg w2 oo el 92090 wa Wy

QoI

7

>

1/46

WO 2006/014672 PCT/US2005/025643

C T Overdiew of
Meeri-Olppect Dadac

N2 cnent” sySten
| Setup (eleake) %@g 8'/[

201 =7 Glasel adir bedles
+ahles

Sevp krente)”
Oljeer 1™ 203
tUpes

\

Tushwmnale
ANYetx-0b Jccrs ~ 203

/

Veyzst
Meta-Dbjeds ~ 204y

A
Tuvwe e

Comwmamd.
Titeqprerel o | oS
“handle @goests

(e D FQZ

2/46

PCT/US2005/025643

WO 2006/014672

c by

e e
01z
L9y s
5dnl 2079 CC %v '
2d .
~wiyudad R .Efwrmwméw Wi 2079/
[0/ 2 MY P — laus log
ore ECUCQ\ A‘Q_JQ\U St _ \ o=
< 4 0N iy do10g < 1
o B | SP°¢
hTe £oon9y <! -
]1!“1!1! wQT\,\\uEd\/ i L QUL gog¢
L UIISE | fee P— i P oo
\e :
. ol ¥l | BWON [— e o 20 | tog
2 Iy . ! ,

Uy 2dh) alg O

3/46

WO 2006/014672

Metw Object

PCT/US2005/025643

o yoo

Ot Tope Tdeanfier

T~ {o

,_loz N g

L Atvibwte | > ﬂl‘s s &sf:;vj

ok alphinunedes ov oth
Yevr reprlesensuin The value

o atabute | 7 Advhute | >

< Atvibute 27 .. valve fiv

Odvibule 2 <7 Adnbute 25 LAt
Mbwre 23, ...

o ®

CAtvbute > L valve for
oo L Mbhuwde >

7 Yol

i (meMods) —
44(2 ~ Parent- TD | 1 ‘;{Aﬂggf’ﬁ}fg e
4o Alnldrea”| powmters v cild objects| 7 [otatetecy)
Jod T Lifecy cle Tafovmanoy 4o Pudnl)
c oo add—chdd(y
yis ~T Powter o transdion. +uble fepme_chld ()
—
l:{ Gk 4 ger-patfent()

4/46

PCT/US2005/025643

WO 2006/014672

I

]

/A N
o werier |
B
0 TIN
(g L) £
/ =7 b0 Yal Y
i B sla A%,mmpqi; ap syd | hOS
Amzm?fﬁ.mrév wusn@ | hS — cos
e\q| Ty -
|8 soron | 2y Yrron) aw ifeadhl | €05
B e

D\S \

5/46

PCT/US2005/025643

WO 2006/014672

(o4

200N | a10 |Q2dhiry | suweN9 ity (#ED ECH U9 JaE
20197 | Q10 [d172d bl Y | 2won oAy
) 7
D 2 uo o9 | MMy 29WoN
°© ¢ &oow,m.
A Y _—~509
p 19 €ld 1o \
m M m { G -20hl M9
ot+op &s@@ﬁ%wrgv@r AMd [al-adhL [2woN] alo Qa0 €09
QWYN [0 D

109~ a0 -0

6/46

PCT/US2005/025643

WO 2006/014672

mws%)Y) m,.,I FOVILSWT
\S@QQ -2

10/

v
(o]] ﬂowt o

7/46

WO 2006/014672 PCT/US2005/025643

75\ Commend Tateipreber

L %»egr Overvi e

Add | wioddu /) 20\
Derete global
o virwiee

\.

Add/ wwd,c
aelele 802
ype d,eﬁmh(}vt—-

v
Dﬁfume Obgec’f | Q0%
Ty pe

FFoNS V-

/ —
Add f rmoddy |
de(efeod(%@cﬁs o

Ko mefr-obieed| .
INs tanee lﬂf@—(ﬁ«\}y/ﬂ/’) (Forthlio

Manane werlcfpa] ~OnogEMEAT
"'VV\MCL%L tafecycle

AVMZQ. },\J ans

Povtlpnos (Povtfolio ﬁmuaf &8

8/46

WO 2006/014672

PCT/US2005/025643

(7 Chunge Object Type

J/
Letyele obect

e pedenirin
0) a (‘gdj)eu" k}?pe-lD)

Defurttone
[iobeet -hpe 1D, few-
atnlo-defn)

e.q. CMmﬂe Tawestwent

Modi{y. object
fype defnibiv
witn new - ™90
athnb_.deﬁx
Y
Quens Meta- y
e { tiuied
f\i &mé?%m 703
Ogject Ty p€
‘ \/
A Uﬁ’l@dk}ps
Y oF
(Tee 2oot) 7

76
Ug%%ﬁa—
G0, def)

(NN

9/46

WO 2006/014672

N

PCT/US2005/025643

T Updake et Ooject

(ol@ed‘.,ibmpdare,’rjpe)
mw,arwzbufeﬁ%)

Add e
odirute ~" 002
arr 10 ctablle
dock. of objedt

Rebviele (odwes- 03
Povdis, nw {o
CPy bt

ﬁ%%MMhm&

\0O+

Kemode
aﬁ@?df —

Remove asvibute

"uﬁ/\)a.\ue paw

B otinbTe
latocle. v%ob)ccuw

~N00%

(Retwm)

10/46

Fla. 1o

WO 2006/014672 PCT/US2005/025643

C T Adyost Kollups,

(Subtree piv)
Obtaat qraph |
of objects u 1ol
Subtee
J/ s lloz
Pctea%«ke bt (Rerwi_)
% nodeg N
7 ol
f)/ewl'e,—
Rollup _List
Crer next
v&% node
o6 |09
. Add Lollup
“Tope Susten ZJent wgw
’EOHD{)A \buﬂ’ﬁ US" node) Y?/Olll)p ’fh’ll))
< /V /l/ 0%

\ e | 0% |
N ol y Ger next
< foltop Aitvibuies "Collup Attvibare

HG. 11

11/46

WO 2006/014672 PCT/US2005/025643

. :;}ﬂ”?b wp Eent™ (Node_pt,
\J/ Attvibvte)
_%efei/)mmc ' o
{ fioni |~ Lo
i

l

Deremuine (50
of chldren ¢
Pasled iode

Add %llu A
ﬁleud’(Wm’f‘ Ho5
Advilbwie

/_15\07
Updite a
ated va,l
hild aHf.buer &q. totalcost=
Value

S cld totdcost

9’5\. 12

12/46

PCT/US2005/025643

WO 2006/014672

\
¢) 914

@aﬁ%.v% s A B \ﬂ.ﬁle_&JDll_
Aad4no /_mehvr J T
nog) cogl~ 2o~
worBosk (g awstnauo ~
JIN)0 vasksapuT 0 SUT)
ogs1 , w0 W
> #15) . eig) W
Q.M_H%P @ " S5 ﬂ
Ao | vawabauo)y Q
72O 20h). pabio B
Y =
./ |¥ el Swaow
oyel -~ 0/ g1 A \w ’
SOV
6&\
Wayshe pamdno)

13/46

WO 2006/014672

| 7 Hresomahon, Ter

PCT/US2005/025643

- o

17 1111

S~ 1420
Wely Sevices Inlzifaces

(stvuchwied ALT)

WW %UNM% WMWWMKf“\
U34
430
Obyect Licensm Usess
Sediices) | Poanissons
l)x Lf‘l?)l \ \
. ‘4’3 . |45:3 '4 5g
OWIM /
Vi [Thueseor tayjer inzapsnlatid Dat
‘ H-So /1%‘565)
; . v a
gM;/EI: i‘ ") Indo Access mee'fi (Apetvacts difterens
n | -
Kéjfwtr’ 56 g w 4 Parnbost Wizefuces >
47
0 Thes u\o-rmg

" Low leted Doda Aaess
Lilpranes (ADo NET)

L '

RO MS

145 5

14/46

LN
5

45

EPBMS

{

1454

WO 2006/014672

PCT/US2005/025643

Clignt(Web Browee)™ =%

/ 15/0
TPaqe Seter (Koo, NET) T
c L. Nawignon andd Dhsaatotg A5
“ MW@E;A’MMW@ Framewovle %W
Puge | Page Page Yy Yage fage w%jg §ﬁ/§/a
A Class A
Libvaries =1
[\
(purr Tnfaichme Twrongl 1o
v/ \ Wel seliee Ca,ble) 7 -
Connectors
O 0 0QO0O0~Fr ST T
el I N I 0 O R £ 37/ =
— » /(v% .
Wey Senvices :§ /;Q%\ 7 %
|5 30 2 ,//,f g:’? %
/ %
S

PCT/US2005/025643

WO 2006/014672

9 it

Q09 _~

wouj
~waishsoms
909Y— , 25z W B W2l sh <
é@%ﬂ?&ﬁm ATV
Se9l %\Q.nvﬁﬁmimé;_\—l
ho £091 %wa -\Q\Sm
u , : . V]
m wayishe 20h) W
SN2

16/46

PCT/US2005/025643

WO 2006/014672

AR

\W

A

SWaIShs wWatAz ot r
w@ﬁﬂﬁ 277 W.»\m«ﬂgm}\\d ..
¥ el wef
PR VYWPY
NP o)) Qbreg %/m
wm poll A ,M
WaShS ~ozhwy |, | &
v coll — W
Jpalag ey | 2eomvw
R s
.
_ot\ NQT\

§m?mg§m@d§%§ E.E%tamw 25Ud 2

ooll

_/

\

17/46

PCT/US2005/025643

WO 2006/014672

|
|
|
|

458/ \MMm\ MM@ _%m\ \Q,wm\
[[[
(2d

n 20, Rﬁﬂﬂ .Hd?F%QW

&
2£8(\hwf J aegr | — e
-T \ { | m (T TS9P]
| | sy
| g
== >~ _ _/ N
| s7meckia QDo sy vyl

NN

%ix&%ﬁ

N At

(st
e :@t»&
63)

SaMd

. oz gl

.388 a m\é%sg

dﬂﬁw _ —Lg ‘
ez = / e

1021

—_—

18/46

WO 2006/014672 PCT/US2005/025643

(")T el Mancgement

> ce-s (wour foy uSer unpur of
\ Switziv modvle)

~ pol

1903

//
A New
Meta-0bject
(typ€ > node)

— Qo<
| Tetere 1
- Mebi - Object
(p-object)

N

~ y[OF

Move/Copd
M.UW.'ODJW 7

- (p-obgcer)

~ 701

0l " / p- Ob\}ed“,

(bus-elve prs)

~N/

H6.9

/\/'I?H
™

e A l
Vieaw | Piocess

19/46

WO 2006/014672 PCT/US2005/025643

C) Ads New Metn-Olgect
(Objed’«w@@,vlﬁ”’[w)

[
P-new =
Instunhode
New) ety 0bjed F;@O\ €9, 034 new

(objeatype) |0jestent
\

-

odmbuwte. blode
U USer @Aries

o defu It%

0

L
Ad st ollops
(parent)

~J2003

(Returte)

Fl1&. 0

20/46

WO 2006/014672 PCT/US2005/025643

C o V\on/a/coa% M-eta -Object
@olg’)act, Sowl e objeel
N4 mﬁet,,o/bjed)
ervied e
@nsfﬁm‘a’rﬁi 21 0
dbject (pobjec)
N/
new =
rnstauhale new~ 21 03
“etn -Objed”
(Ty e of poobje)

Aa piew

as cndd o {7 2103
HW%@ROB;&CJ’

!

C oty bute
P-object +o punew)

Dedete Metn-
Ovject (p.ogect, [~ AUO6
| 'S0y ce-obyect)

|

Adj OS“",?O”‘PS | ~ Qo7
(Hwrgerobect)

th‘ 2

y

(Retwrr)

21/46

WO 2006/014672

W/

PCT/US2005/025643

Deletre Meta. Object
(p-objecl) Sows cevoqed-)

Remave _chukl

LYo sowree.
oby ect~

~ 20\

|

Adjust_{ollops

B8OUL CE —
C ob:;e:c‘%')

L J0 T

(Taejnuw)

FG, 22

22/46

WO 2006/014672 PCT/US2005/025643

C) Clsage Meta-Object
(p-object, listof
(bciowte - valve. prirs)

N
peiviede
rstwnated | hange
. BOl €4, CRANGE
ob)ﬁ&(P«DbJ@GL) g\x;é SrvEnt”

Properhes

Gef neyt
gt lute-vilve ™~ 2303

Pty

|

Viddote
atbure blode ™~2304
of Vefvieled d{)ecr

N\

4
Adjustollyps
(retieved ob J')

2305

(R)

FIG. d3

23/46

WO 2006/014672

\/

Deternumn

PCT/US2005/025643

" Peafilio Autyss

) 0o &

F,;zLIOB

Wt - dimensing] |

Create New

View

r/Q‘/Og

Move/ aapL(
Muth'-Divensinal
View)

/\/ﬂO%

Pelgte
- DnvieSond |

ey rr——————t

7

(ot €y user uiouk
6 Swien. mod 0 1€3)

]“ﬁzw ‘

Vigw)

NV

24/46

WO 2006/014672

4

PCT/US2005/025643

3’\ Cveare. lbi-dimensionad

View (ORject—type)

(aka.oiyes, viads,
d;mens 128

Dﬁ’ﬁf)f_ CD‘Um{IS }, 1‘3{3‘) Y} ‘a'i/x} daﬂ%ﬁfiﬁ‘é’
50\

~

[

C msmn

D ine

éj wles Kb~
Irec)

WV

(how

Define atoup:

withed

09

nNstances a@
Qrouped)

503

«.Dﬁé\wu‘ﬁ Somhj .
within eadn

growp

S0\

N4

[voTree - puild

505
e

€ 5 cols £l
(0\\’0‘:’3 ySowy’ e

4

(Retvin (VOTCee))

F{q_ A5

25/46

WO 2006/014672 PCT/US2005/025643

C T Buld_ Preseartnon

(sulstree_ptry obj -type,
Colss filter | g roup- ot
sovt Se(,uﬂ%foleva)

W

| Quéf msmﬂ(e Wierarchy
: ot Sw ’M@&pﬁ"f occovadn
Lnd nakzning foi obj-fype, Cols, d

metn— objeds flrer, @fmp ~lst) 8o{+—

=zel

W

FIHW (et tad e

4Seel es [b0
S (0
/Scawzgq{)%leeg%w

N/

New NOTVee = cleate . |03
o Mtued o lojeer

|

1 Budd Vo Free

[New NO_Tvee 5rmp_hs\-> Jwaéo‘{
huil)

{ New OJ’e,e,)

AY%OS{’ QO l ~ 260C

F lék . AG Cﬁ‘ e (New-NO_T (€€D

26/46

WO 2006/014672 PCT/US2005/025643

(7j\ Nove or

A u i cimenavead View
(VO_Tvee, sowate-naode,

%@@r_,_node)
Associare NOTee
2701] Wik n{;@dw wgdm;, 24, moVe /ij
%K yur- dde dofrgheet
\/

[Buld Presentahon.
| (Augernode y ..

(;70:1 {651*60{/ pearvetess

ofe Ao propwtal

<heet)

Delere— MDNiew

' 0
(aoutcenade> || 270
VO _Tyee)

27/46

WO 2006/014672 PCT/US2005/025643

(3/\]76’/{61”6 _Multi-0, mm&gm
View ("prani, VOTE)
Vi 2.9, delere datusheet”
Remove (efecence
o Muh-diensinal
view {(VO-Tvee)™ [77280I
e praent node
\/
Dt‘ﬁas%cra‘are
provec: cneer |
s (o Tree o, [9892
patend Nod €
- W

l A‘Z‘/j%ﬁ' _ o lups
‘ (purent) —~— 5802

(Red;f/u)

Flg. 28

28/46

PCT/US2005/025643

WO 2006/014672

6Z i3

[SIUf} Sy J9UQ [ejo)
. fousun) sy Jaylo [elo)
SINOH 8y J0qeT |B10]

- 314 &y Joqe el
- fousuny sy Joqe 1o}
o 81807 [eIo)
Aouaung sy Weueg ele]
Helg

IS

Sujulewsy

Qf wiaied

o =Y =¥
| awep
.. a2 paypop 2]
! Ag paypoy| 157
! adf) juewsaAy]
al Mewsaay
pu3

Holg
Aousong
uonduasag
aje(] peiEal)
g pereai)

SO/ [BNI0Y

vojusef

S2INGUEY Ju21n7)
npe <

ases asf)
udg

aaneg

Bupjuey

weiboig

Pnpaug

fpouy

SRUNGISY

agr
paeiodiooy]
uoys|dwo)
spdun]
lojdeazy

58] acueideoy

— SeInqumy 2jqelieny
bl

sainquuy 8dA] juswjsany).|

51507 |2J0 : Bnyeba) uasayealg

foualiny) sy Jeuag |1 L

BAIS04 USASHESIT

ageieay pf anlsy A

' <o o B ooy

[« y5:mpiey 09|
sapiog swep

glve /-

€obe

o le] 1+ r\

Olpl

el
iudg
ojjojuod

saiHadold SdA] UAWISIAL] -

mmmmmm senbay JuswseA| TcomcmE_o | s @wquiny *mmcoﬁm Iy _amﬁncﬁ uds ”mmﬁnﬁi satf) JuswisaAy]

sadf] uswsanuy

LA MOpSI0M

MBIA 543507 |

malp sbuyes

MaIA, 5310Y AJLINoas
el sadedsawe)y
MBI/ 535U33M

HBIA S10133UU0D
SMIIA 12130

250D
o 6

“di=H

‘...‘.Emumxw adAy podxa
uweysAs adAL yodwy

‘#dA) uaunssau] Adod
"84 1 usunNsaAUL anes

adi| JUSWSBAUT MON

SuosdY |

V-

maip ubisaq |

pe

lob?

29/46

PCT/US2005/025643

WO 2006/014672

wsm; N By A

e
o/ oc
Q m0mw m SNGUES JoyoUe 5 BnEAOyosds S o 0] 2sEdWo)

21=pdp) m—nm ./.\Maha

< o f =nquEy
gl ~ _

L10g S

ueyyJoeais m._m ‘uosHEdwosy

3y
PR &

._O.lu

~ sRE0

umog

suayny-

T..i ~ 3817 |Rroaddy sjeroiddy sannbay _f \“
Slog = sjenoiddy.

L uopsues; vap|

4E|g wanduasag

21N | 1B04) JWwasaA| uonRulSag

Kioyg “ 204 JuswissAU|E0IN0g

BB} UOIYSUBS)

_ LoQg

saiusdoid.]

S 00 S

oo

T LogisURIE MON Y

cusipsuely |

¢ e {oog

\L Moo

FMBIA S350

. a3ty sbumes

" m3IA 530Y Ansas
Mmarp, saoedsawe)y

, ?mi sasuaon

. M3 SI0JIBUUDY
A e suchrinByuoy
‘ SMRIA 42110 |

250]9

.40 B0

diaH

g8 {easaddy atieueyy |,

UORISURLY, 3A0WRY

ueisuely >,n_ou =
UORISURLL 24RS
uopIsueLL MY

@ N suonIy |

smayp ubiseq M

ERg

Coog

30/46

WO 2006/014672 PCT/US2005/025643

| Portfalic Owner
| Program Manaeer
Sprinter
View Only

£ Reguire spproeal by &l rale menbers

role members)

ok | cancel |

31/46

WO 2006/014672 PCT/US2005/025643

C o Defure Object T& o€
\L Transhoe (p- oL@@a‘-iype)

Determme 4 Store.
TYoune oA e, cpleli
Sowice , Af%;?‘“a'

J

Decenmuna 3203

DA o pisvel
higt-

)

eddena_ ¢
Qeate ¢odeda-
R 15,79

330 Y

<

=

(
Set flogq to
wdlooTe Gy 3505

/
\

CDowe)

G, 82

32/46

PCT/US2005/025643

WO 2006/014672

e "4

SN aalc fermwovs
Al T %, TWHyU
() vyl i
(oM =420 vany - . vee
@ L 20701 D H. WU *
A._,\.Co&m nw == ~ thl i Rladd
(wronbe L quiy ' 90 =3)) IT LN U | Zawgu
L (98 Tyl 1A oW dwou L e
MOLEY NPTy RO Wa@dsn roaeddy
- ggee ™ owge ~
¢ olo
_
h smmJ fomﬂ <0%¢ N 0% o)
wyyoroo -~z D3| wen-proddy -d | Qe adby —Raa | Q1200 -0z |[Fywgy
KON o — éﬁcwo,. SN eoddy -8 | gT20hl™8S2Q | QI 20hl voumMoe 742\3

_

2197 vayisuv)]

0%e ~

33/46

WO 2006/014672

PCT/US2005/025643

~ 2 oo
Meta-Obyect Trersdhine Tella
qol < T nemd et 7 | opp'd? d/‘/‘_\\}
3401] T ngrng nt7 |épp'd? m——\/
T +7 Y 7
R e v (ot
% lo Al 341z 3413 Wanshowe
NN J/ lastances
LA Y
AoV T et | et [aprdi] —
r~ 34320 %30
N Transthy ~
: ! o Apovoved List
34 21 /| desthype-id N, | et | w7 343
2423 PPogo 1 7 - A
3423 A Colculaton - . ee
. RV e i S
' RY 7 ovdetedope?
A i 3Ado
(Coé;e Lov
Caic(ucuxm)

FlG. 24

34/46

PCT/US2005/025643

WO 2006/014672

SOSE ~ s¢Hbd

_DmmJ

i JRURU R0 Fy, | [

uopisuey 1oy 193fq0 353 35

/
C

[{uasin] 3essy 03 Pafosg

T - uciisuesy 404 2aigo 359, ﬂmm B ‘_sra_ncd‘ o__umfuﬁ _\..u |
Ng B \/\ uoRIsUEs] 4Oy Pafgo u.mw‘_._ﬂ
=11 . " 2
¥ n({ussin] 3955y 03 3aloiy =, voRzues 403 aiqo 5oy ...umm . i} ns-:vaz ._U;uo :
. wolosd moan E frewwng -
! efoid s m
2 “ 1Y 1
-lwm \ .\\\\1/ H pafoig maN m 4 mwu l
huz.m_._m.:. 10§ Paiqe 3551 30 Adod [l . apAasn r_m_a

™ - eaein) 3855y 03 yasloig
lesg~Y ozsg S

e
rd

Olse

[ussag] Boigzloig

IR P

\\\ . -aieSe pabuesys swen) 5foid 3L] .
o

uoIsues] Joj 13afgo 353 § ﬂ,mm
uopisues Joj P3fqo 3saL [l
vonIsues Joj 393[Q0 355, m

O1j03P0g ISTL _U =
oyosod 359 [£ m.nw,»[s
~

. ®seD ssowsng mﬁ_
" : dX

Z ofjosiod @ = (LA . SRIUA 12430
T oyoed @ : srugisuswg Aden @ [
olosog maY g £212d0osd JUBWISHAUL Tn& |
Sunazuew [. L equBtigsaaur ;nooxu\.ozﬁ
i " B) [ERSRN—— i
SP3fQo Jopduue] _W& E] SjuBURESAUT MY QA._

Eﬂa,,ﬂl N ~ uoRIsueay

oijojiag Bstsdsajug g & G

QASE

mcoanom ' WL i _:a. = scummwaL ! ﬁw ‘

GoR tpiEas ﬁm M

|-

T-=PIAO}SI -« 05 T 1930010 OS5 3cke BY=PISNDIUMRIGO RN GGBMSTdexX s FRUNMOYAIOMINARHASIAASHEDOY/: R [@I_ ss2pPy

ETal=Es

1 »T}u * _. elpajy @ saponed M.._M tpieag mﬂ.) .: @ .

n__wz u*noH

35/46

PCT/US2005/025643

WO 2006/014672

elo9te

hhac

0)9%

9¢ b4 \V

um:mhc:BSm/.JH) {

X3pUL YDIeas B S8 SjngLaje Ul AJjuspi @

ey
weabodd

; Auniss ﬁv
.(wac_ PUNOJ JO 35I| I5B] S MATIA -

m me . ' Y2895 snojasud 2 P35 m

wwegssau) punoy e oy 2ebiaey m
boipas & se #30qL3Ie L AjjuBp] m

L

| st &)

sj=i0q=)3 JUBWIISBAUL UR puiy m

O

=ADIA BjqEINUG Q =]

,, | YIS S|qESHBY/PEZISIBWRIES ﬂw

Axoyg avsf) &

——

syejduion juswabeusy vop=aynan G

3

531055 238Q nww.«.
L3

Aoys aasny ;n

3ebiey

{RACuddy

eusi0

) Jaaoyy - Aypgesn Buninsuol Nwﬂm
- e3ep paseydsw|y - J0P3BUCD muwv.
- wuoz 3 £40443 JB|NPBYIS - JopauueD ﬂ\h
! 3581 B3OS O'E PIIEWAIny Q =
Bo7 pny g)

_ ,
| Ascrg.ansn;

ENTLEEY]

Loysty

‘.wrm.mca« o._éﬁoa _'IM

A 7 sompenssyo|

yuesg m.nw =]

i Suluonizog piald paxid Sk n

- 29038 200 ﬂw\m = m@d . maus ;uﬁo

EmEEswm

sppAaain —mm_a

si035 Jusiunioq
" aseq sswupEng w_ﬂ_ i

osdfen) g

i I o u:o_au< !

uereuRLy = oljojpog)6y n

’ ug)EuIWIg %noo@

) umm?unuhn JuBLSBALY w:&
...w:ufamu>c~ ddonjeroyy xﬁ\._
*UBLRSBAUL 939|190 w.d_
euBLLgSaA] gwa Oﬂ&

s

. i ; i Rl
i mcoﬁom \ __rc,vr@ nmﬁozﬁ _m d.:ﬂw”mm'a.ﬂm | @ Lo goR ﬁhmwm@m T« _ ~31Ba0m)
“en ﬁ _m/._ =pIadec HIANG= 66566 amwnasu_mmPomu%umunmgchumﬂo ﬂmmﬁamm%émmém?sia;\m%mg@su?mi\ BE [&) ssanfy

KL RN

mm(u w aw\ mﬁuz‘ﬁaﬁ mmu_._gm..?w,sw ﬁ.mmmn\\ ﬂ E ﬂ

O

o.T: AoE. mﬂ:gmm §m> N__um mhﬂ]

36/46

WO 2006/014672 PCT/US2005/025643

T Disp lay & Process

2903 \/\/WLCﬁO\/\) View
[~ 1 ~ BIOI
Dis _ Acnie
Al I
S
l LY 2303
A
Totr 1o Detesnune
G?‘N‘? p(oCeSSm; Hamsrhovwo
/ —~ 575y
Dip
Wangihpw .
re{reSentahons
4 I
(wout fov =0 - g
Lse uput)), B}
MO/W ~ 3105
207
It
Thete . R
Transchove |-
(p-cuxt-Nans)
| ~ 3709
Dspl
Assocated 7
Propuhua ||
S~ B
| Bemehalize

“ramnsthonfelle
& ledisp [aﬁt

WO 2006/014672

(

Renun o
Fg 19 processing

Flg 578

38/46

PCT/US2005/025643
271%
/\/ 3
Trasma thowe .
Meto— 0(2}801' D
(P-0bj 5 dest-type)

PCT/US2005/025643

WO 2006/014672

¢ bid

K JBURRW 2201 mu T ‘ , XBpU] YIESS B 52 3jNU0E Us Aauspl @

¥

v

‘ , L Aumisg @w
nw>5 punay jo 35 358} 33w 5] .

Yugss snossd © 3985 m

: A ’ b O
IN> w ,aE.Emm 1wl punoy B 03 ;=bey B i km;:msq o__etouﬂm.

Baeas 2 se anquiie ue Ajquapy m

wivabosd

Gutuamisog pia paxd ‘azen mmxn:_m:mwﬂ

1250 : % m //-mv ~ a3250083 : FUBWISBAUS U PUld m @ N m!:vas _350
M) =9 wiess B [i EmEE:m m
e ! _ o sasn Sqenvd B & BPASBI IR
w \«M& &q% { s IR 3)qesN2Y /pIRNsELeIEd mv - 344
i T . 19 X g A —— oo s W i s U -
; Aaog assn s o R ! JusweSsuey uoREUHON n”\ . =3 »cmEauoo@ d

; i
W X i B35 399 u.Um ! SN .—usao

_\ s32M35 212 @ : =
w ASDG EE] roteomnt e s i e sl e o .IM,\ T I3r04 - Apgesh Bupinsucs m .) :.co_mcmE_ﬂ Adod @
U eep peseEydawy). - JOPFVUCD M‘\w_‘ EE Mm_tmao._n JUBWIIESAUT W&
Ez W SI043 IBNPSYIG ~ JOPBUUCT @m qusunssau] AdCD/PA0H 2

i
]

m : _.

w :) .“ IS3L OWS (g pIjRWIaIny mw]
; : : L 6oy 3Py B2 [
w {enoiddy 1 LT s w 2UNOZ o osddjen g

UG UENGLE RIS BT] wwqw)
S qUBURSSAUT B i
£l 3 T ,Z nlwﬂ i

Lsoymn _ uoIIsURay el oljosyicy)6y n

& Eoﬁo- * - . papag Y ,m Sy mmw Pe G Eamm@a T
«EmUmnmmEnzamsmuaenzawfdmmmmm.«mmx>.QmmmPOmm?mmzam:chuwBo LI5S IgERdse MRl ><oﬁko\ammvma;gho&mmsm\\ dny @ &mnc

ﬁ& ;w.mw mﬁw&f@ mﬂ_aﬁmfr.v ypias ~ - ﬁ n\w/_ . xumm.

u*w: SOl SANeAEL

MR Y3

39/46

WO 2006/014672 PCT/US2005/025643

C 7 Tahare Tramoihoe
(p-tronsthow)
Desp!
oD 3101
wacalhy |

et et
Gl ol candiddte

sTwrtwg w/ st

3907

/

Seud nohficanmm
By v
|

HlG, 29

40/46

WO 2006/014672

PCT/US2005/025643

C 7 thawdle S%UW&(}

v

Fond noset

Conddase ow
Lot Eoveppioia)

4001

Vo
! /-14

Apptoval

(apprvet Leot)

ﬂ‘w

Mﬁm_ appfd\/éa?

o nextanidae ™~ Y004
{ gféoeghﬁg appivled

|

Cyenr 10
Collbaty Lhon
(eceve appat

nehfAcahan

gﬁ?iup sythren 1

|~
<

(Tono

Ha. 4o

41/46

PCT/US2005/025643

WO 2006/014672

1+ Old

X3pul Y24e3s e se Jynqupe ue Aguspl [

. E, S

X [I

| R;M\N | i

ball

- \ : Et:uwm@]

| LS3AUY PUNO JO 3SI ISBY BUYF MBIA m

, yauess snoaid & P3|eS m

|

JN— CRET " L Ta ' .NmENuwm.....: punoy B o3 ay=biney m o Jezdjeuy o:omﬁonmm
Eﬂu.me..nx.. : . - g , fBoieas & se 2inquIR UR A4nuspl m | RS .
- v us) ue pul v SaNpop Y30
_ JusURSaAU) Ue P Aum e e _ :
. . =f yaeag FM.
- B) £y FABIN SIq83uld ﬁH\ B ’ PN
AT036 IIST STUD 3IBACATTI| - iearon uonisueil] . - pew sigesnsy/pszusisweiey B - sicas wswinang g |
= - o | : a. q
_ . uonendsxa zcﬁ_mcwt. : uswsbeusly uolEsRON .\h\u @
o e : i Buinonisog pisid pERY ﬁul\.l\.u = asen mmw:.w:mm,m_
:papelad 31 Gopeunssg : - | TS . i
nNm WVMIJ yoeag L pawslel jt Gopeunsed : sie35 200 G Elllics snain w00
= * * . . S o L saiwmiag e1eqg B2 D e R
2123 ipoacidde 5 uoheEuRsa |2 =
AIys 4350 4 S w : - A . Jsaopy - Aypigesn Sugnsucn @. .‘to_mcmrED >u00@
g ¢ 7 .
[ejep paseydswi} - J0135UUOY mnﬂ\w ' sa|Bdoly JUSWISIAUL md_
- : 7Y
~Q~¢ 1ON ¥ $10413 JSNPBYIS ~ JOPIUVOY ﬁllw - smquzLysaau] Adon ea0lk ﬁ
{ B
: IS8l 2jOws gTE pajRwioIny mw =8 S—— ﬂaw_mnﬁ |
H 6o 3ipny 5 . g
o . ey Q B JUBLUISIAUL BN T
abiey jeacaddy BMBIID Sunog - osdAED @ nwueu_
.] . . ﬁ £10351H uontsuey by ojoniog BBy n .

7 suondofa | o B, P09 TT 0F Smameen | (R |« Pmwpesse A | »u%aou
luHmumamemza wSﬁlmEmzam IABE65666-« mutﬂmbw_.rOmm%um)_um:u_cBumBo SIEIS03MMSIdExdse may bzocﬁo?a\mmvmo_éu._o&mmzm\\ QEL mmm.ﬁnq

ﬁm _I . wﬁi LM.,U "mmmw mﬁmit@ sajuoned ammm». :Emwm - ﬁ Yo xumm.

uﬁm

w_m

a_wx m_ook mm.:._gmu_ 3mS

42/46

PCT/US2005/025643

WO 2006/014672

j2uequ) |eao m,n.d :

X3pu| YaIeas € S8 F{NgUe tie AYJusp] @N

wesboig
20250

Soah g |

Aamqg assn

Guoan]

eoey.

13
r

loey -

t
|
1
i

{

,(. Aunsss B =l
, {S9AUL pUNDy JO 3sif 358 BUFMABIA m
(- yaieas snoassd € P3Es m
: *.meuan.: punoj 2 03 2326)ael m

Boieas v sB sINgUYR UE AJUlp] m

35

: i wsunsaau ve pud [

..mn&m:«.o__owﬁoum

Q

mu-:nai SYI0 ||

182

puesg B)

’a

N3

._s_ﬁmE S|qesnsy/paTusisweley ﬂ\.«
juswabeuey uoneEIyROYN ﬁ\M‘

W

[Pe3sonbay, o3 jenbs &

euaguy -

[Poisanbay, snEIsAIeIsiasn

e Bsl01g 30 «Ww. =

;o s2018195 e32Q 15

[E2acsdedy

M BuID

aunog

Janop - Appgesn Supihsucs
eep peseydawi} - 103es0U0S

7
74
" joN 9 sson3 JB|ApaYylg - JopPIuLe) H«l%w
m IS8 L JMowWs g°s pIjRWoInNy @m
e 607 3pny
I osd{|eD g

yoRsuSLy .

2a31p 3jgEjUlS ma = g

Buiuonisod plaid paxiy mwv =l

meE:m .
BPABIN r_m.u
035 .;EmE..ﬁoD@

ssep ssamsng w.m_

w\n\..\u. S u%u.s..ufo

*r*UQ)SUBLIIG >n00@

‘sapsadolyd JUsERAL] mwﬂ

qUBLISBAU] Adeyjenop A\nb
ruUBLIEBAUY wuu_mnw‘\.ﬂ .

' UBLUISIAUL BN n.g

suogoy
7

ojjosysod by —u

o m:o.pamm ,,‘

oy - pwoa T nmu e | ﬁw ~ < g wseas ﬁ&

_\L

uEmum%usngusmuuengw,sqmmmm%umm*tsw.&?om%mzuvmggceuwﬂo yﬂmﬁsmm&x&mﬁ,mgaeﬁa\&m%mg_ﬁa&amwm%%x@ ssapPy

ﬁxm »ﬂi}u pmww mﬁwz.ﬁmww mﬂ_._gmm q.u Ehmmmo @W ﬂ ﬂ

dpF

e

LT

wi a3

mB_B.)mm. M3R

43/46

PCT/US2005/025643

WO 2006/014672

Jauequ (e3o] Tw P ~ o xmmcm Y2Jess @ 2 Jngupe ue ﬁncu,E @.

' 1 g
DG | :
{ \V : -
" i
R . ,]
¢
O
S - N . ~ I Ajunass mn\Vu =
g = " Mhm...:_ punoy Jo 3si| ISE| BYF M3 m
- 5 i yasess snoald e PIBS m)
- o T Nmr:wumw.:.: punoy B 03 S3eblaeEy m s ._mrx._m..i a:owfouv.l..m _
R — B : s . i i
& - TR L S T N - S u._mmm B sB 3jnquyE ue AJnuapl m IR -
Ea.v.ouo_.u_n S - e ! R e - i jusunsaAUl UE PuUld m Y e m!:voz ..u_—uO i
: : : . i 3 o yasess Gz = = EmEE:m. i
I - - . S v «ﬂ \587 saspoiqeiund Gk | - SpABI L
m T Wd 2+ $O0T/IT/L {pasnbas |eaosdde} p24 2| I ._E_.ﬁmE s|geEsnaY/pazLusPWeRIEY ﬂ.\ ‘ 0
EITT X! uswnIeq
| RADYG ADEy - FLUTYET N \u —OmT ” SO e — ﬂm , 035 3 @
! weey spon o] WA LT YOOZ/BTLL ssjesonwmg wior | 327 || N bumonoq et P G || ss=0 ssmusnagg) |
= : et ~ N . N
” , - i siissea B A T o
L STTITI s@joN | . 2Ll L . asacaddy |suennv|}. : s mumnm mK,\tw L . SM3IA 50
§ - 77 = . -
. Asoxg g e . 2401 - Ajigesn Supnsued ruojsUBILIQ >u00@]
: : ejep paseydawi - sopauued B ‘saRIpdosd JUBLLISIAUL Ra
| ﬂoz %3 £10413 13|NPBYIS ~ JoPIUUCD ﬁV. - quBLLySSAUY >noU\a>oEQ
1 1.
% 1531 jOWS ' pIRWOINY ﬁM« ER——— ﬂw_wn_mw«&
i seraeny (7 B s1qUBLLISTAU] ABY
obiey i w eusun : 2N0g L osdijen g o) %a
: : _ MoIJISUBAY, o oljo30d a)iby n:ﬁ”\.v.. suonay |

AT T ey af . aaﬁﬁmﬁ [~ _émoou
qumnmmsmz., AUg=3ueNY) %mmmmm.«mm*rzmmmp,ommaamm»Em:gc:ﬁmso 3mmﬁ§ﬁ%§mm ,sm>aoﬁa\s\mmnmo__ﬁs&mmum: BE s524pRY

s

oﬂmm 54.,. »w u o m.vms@ sawones .w (pieag r.u , .r . . Am\.,w « peg 3

Sm: ﬂoo._. mﬂ a;mm AR :um, ‘m__.n_.
wb o__ob_oam\

44/46

PCT/US2005/025643

WO 2006/014672

B JRuequ] 2307 m,w o . X3pu; pIeas e sz 3pnquNe ue Anuspl [F

i ' : i [.
i ! ~ “
! : !
‘ : — ;
! \ _ _
: i o
| O
f N
t , ! .
. fpnIss ﬂn = ’
[
|N v .vv S@AUL PUNDY JO 3S|| IS} DY MBIA m
; f ya1ess snojasud e PIjes m “
||N4 i Hiswmsasut punoy 2 o3 332Biaey m ._m...:mnd. o:&fonﬂw i
wesbold _ : foieas e se snquie e Ajnuspi m I
m~vv N ..00: 1 sieingeig ! “ JuBWNSBAUL Ue Puld m i . . mu—:vos 4230
m m‘m yueas B [i EmEE:mm
B w p SABIA Bjqejund ﬂ.\ = . sphas kO
-vv B) 4 .—EﬁnE S|qESN2 Y /pEZUSIBLIRIEd ﬂl o I [51]
_ — AEYS IS8} rem e ’ B \.lwfi,i:inﬂ:.ﬁ:.}‘),.. 4 uSBBEUE) UOREIYRoH m\ww . o35 3 Q@ !
m ! Buiuonisoq pistd paxid HWNM.] : . T @=ed mmuEm:mmﬁm_
3 3 m . 4035320 % = «@J T SMIA 43410
oo : ; sanaiag ejeq B EEraraanan sz ‘
} e B 7 1 - wer)
Q_.vv AJORGIBER) < oo o e ' . . . | e . Jacy - AJpgesn Sunpsuo)d F.m\w. . ug)sud|g AdoD @ _
: ~ o - ejep paseydswy) - JOJPFUUOD W. soppdold JusLLSBAUL qu._
H H X - . N
m \ Aioyg 2asn ~. 3ON % S10143 JBINPLIS - JEBLLED @.) S —— .EOU\.;OEQ |
: ‘ - i IE5L jog g's pIRLLOINY @‘ = S mua_wov.m,m_ i
! ~ - Borapny B [A
ebiey _ |eAcsddy BUBIND * aunog) X o0sake0 [. JUBLIIEDAU] ..>mzm.u_
.) L . . w Aoy _ UoIPSURSY = ojjosod s|i6y n ; - :

¢7 sunda g | i 5- Bﬁoﬁ 153 _m_ St - ‘ [+ 9o ﬁﬁumﬁ _> | »uﬁoou
=PI33edsSWENVIING=3WENM %mmmmmm.«mmx 41018135 053d. FY=PIRNbILN3[GO ﬂﬂmnm.imm%xamm M3 >ao§8>~<mmvm9_eh.5&mmwm\\ iy _MM_ ssaPy

nav. va a&J &5 fu epsy f@ sajoAE Vw&w piess m““ Fm @ ﬁ ﬂ\u,, . xumm@

S3UoABd MR 3pT

dsl S0l

45/46

WO 2006/014672 PCT/US2005/025643

(%\ Trangihion M—OG}M
(p—obj, dest. Hpegmget locohaw>

\

Greteuprent D}“ o

object-fyPe-
of O—O;b

(no d/),,[x[lﬁ@ +o rjpg)

Ketvieve ‘ch ot ypel
Cwvent € dectr

obect pes

V4

GememTe ist6f

US04~ odivibute/vedve
s 1o add
4 1o delete

~ 4SO

ATViowe/Copy
LBl Mera- O tjecr

('fa%k%&iﬁ&!

)WV
Adust

Lalops
(tree redt)

- - J

(Renom D)

FlG. 45

46/46

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

