007/019220 A2 |0 U000 000 0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
15 February 2007 (15.02.2007)

) IO O T OO O

(10) International Publication Number

WO 2007/019220 A2

(51) International Patent Classification:
GOG6F 3/06 (2006.01)

(21) International Application Number:
PCT/US2006/030242

(22) International Filing Date: 1 August 2006 (01.08.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/705,388 3 August 2005 (03.08.2005) US

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 McCarthy Boule-
vard, Milpitas, California 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SINCLAIR, Alan,
W. [GB/GB]; The Cottages, Broadhead, Candie, Maddis-
ton Falkirk FK2 0BU (GB). WRIGHT, Barry [GB/GB];
32 Flat, 9 Great Junction Street, Edinburgh Scotland EH5
6LA (GB).

(74) Agents: PARSONS, Gerald, P. et al.; 595 Market Street,
Suite 1900, San Francisco, California 94105 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: DATA CONSOLIDATION AND GARBAGE COLLECTION IN DIRECT DATA FILE STORAGE MEMORIES

Flow Chart for Garbage Collection Selection

Garbage Coflection

Is
Garbage Collection
in Progress
?
Do

Entries Exist in
Garbage Collection

Does

Open Edited

File Exist
?

Queues
?

Select Open
Yes

for Garbage Collection

Edited File

Select Entry from Queues

is
Garbage Collection
for File
?

Yes

Garbage Collection
for Common Biock
?

Garbage Collection
for Obsolete Block
?

Common Yes
File Garbage Block Garbage Block
Collection Collection Erase Block Consolidation

(Retun)

€ (57) Abstract: Host system data files are written directly to a large erase block flash memory system with a unique identification
of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space
for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its

o

W

controller, rather than by the host.

WO 2007/019220 PCT/US2006/030242

DATA CONSOLIDATION AND GARBAGE COLLECTION IN DIRECT
DATA FILE STORAGE MEMORIES

BACKGROUND AND SUMMARY

[0001] This application relates generally to the operation of re-programmable non-

volatile memory systems such as semiconductor flash memory, including
management of the interface between a host device and the memory system, and,
more specifically, to the efficient use of a data file interface rather than the common

mass memory logical address space (LBA) interface.

[0002] Described herein are developments in various operations of a flash memory
that are described in pending United States patent applications nos. 11/060,174,
11/060,248 and 11/060,249, all filed on February 16, 2005 naming either Alan W.
Sinclair alone or with Peter J. Smith (hereinafter referenced as the “Prior

Applications™).

[0003] Further developments are described in related United States patent
applications of Alan W. Sinclair and Barry Wright, namely non-provisional
applications nos. 11/382,224 and 11/382,232, and provisional applications nos.
60/746,740 and 60/746,742, all filed on May 8, 2006, and mnon-provisional
applications entitled “Indexing Of File Data In Reprogrammable Non-Volatile
Memories That Directly Store Data Files,” “Reprogrammable Non-Volatile Memory
Systems With Indexing of Directly Stored Data Files,” “Methods of Managing Blocks
in NonVolatile Memory” and “NonVolatile Memory With Block Management,” all
filed July 21, 2006.

[0004] All patents, patent applications, articles and other publications, documents and
things referenced herein are hereby incorporated herein by this reference in their
entirety for all purposes. To the extent of any inconsistency or conflict in the
definition or use of terms between any of the incorporated publications, documents or

things and the present application, those of the present application shall prevail.

[0005] Data consolidation is treated differently herein than garbage collection and the
two processes are implemented at least partially by different algorithms. When a file

or memory block contains obsolete data, a garbage collection operation is utilized to

WO 2007/019220 PCT/US2006/030242
move valid data of the file or block to one or more other blocks. This gathers valid

data into a fewer number of blocks, thus freeing up capacity occupied by obsolete
data once the original source block(s) are erased. In data consolidation, valid data of
one partially filled block, such as is usually created as the result of writing a new file,
are combined with valid data of another partially filled block. One or both of the
original blocks that were the source of the data, now containing obsolete duplicate
data, are then scheduled for garbage collection. Although queues are provided for
scheduling individual garbage collection operations to recover memory storage
capacity occupied by obsolete data, data consolidation preferably occurs when no
garbage collection is scheduled and conditions are otherwise satisfactory for

consolidation.

[0006] Rather than scheduling data consolidation of a newly written file right after the
file is closed, data of a newly written file are maintained in the original blocks to
which they were programmed after receipt from a host. This most commonly
includes a block that is partially filled with the new data. Since it is not uncommon
for a data file to be deleted or updated in a way that creates obsolete data,
consolidation of the data of the partially filled block is postponed as long as possible
after the file is closed. The file may be deleted without the need to relocate any data.
Therefore, if the file is deleted or updated before such a consolidation becomes
necessary, the consolidation is avoided. Such a consolidation can become necessary,
as the memory becomes full, for there to be enough erased blocks for further
programming of new data. But because the file based memory does not retain data
files that have been deleted by the host, contrary to the case when a logical interface is
used, the memory will usually have a sufficient number of erased blocks even though
the consolidation is delayed. The time taken by the omitted consolidation is therefore

saved, and the performance of the memory improved as a result.

[0007] There are several other developments in the direct file storage, described

below, that may be summarized:

1. Once a file is closed, it is not added to the file garbage collection queue

unless it contains obsolete data.

WO 2007/019220 PCT/US2006/030242
2. Garbage collection of a file does not create a common block that

contains data from another file. Data for the file, which must be copied during the
garbage collection, are programmed to the current program block for the file. The
program block remains partially programmed at the end of the garbage collection.

3. When data must be relocated from a common block as a result of a file
group in the block being made obsolete by deletion of a file, remaining valid data are
relocated into an available space of a program block.

4. Movement of host data written directly into a full or portion of a
program block is avoided.

5. During garbage collection of a file, data are relocated to a program
block for the file. There is no dedicated intermediate copy block.

6. Data are transferred between the memory system controller buffer
memory and the memory cell array in complete sectors of data. This allows the
generation of an ECC during programming and ch’ecking of an ECC during data read.

7. The start of a data group or file group in a common block is aligned to
the start of a metapage. On-chip copy may consequently be used for block
consolidation. Data groups in program blocks have no specific alignment to physical
structures.

8. A swap block within the flash memory is used to make a security copy
of data held in the volatile controller buffer memory for an open file that is not active;
that is, when the most recent write command relates to a different file. It may also be
used as part of a virtual buffer structure, to allow the available buffer memory
capacity to support a larger number of open files through the use of swap operations
between them.

9. When a FIT file is moved to another FIT range because its current
range overflows, the file data pointer in the directory is updated to reflect the new FIT
range. \

10. Data in a FIT update block for a FIT range is consolidated with data in
the FIT block for the range when the amount of data for the range in the FIT update
block exceeds a threshold value. This allows data for new files to be consolidated to a
FIT block.

WO 2007/019220 PCT/US2006/030242
11. During compaction of a FIT update block, a FIT file for a closed file is

relocated to the FIT block for its range if sufficient erased space exists. Otherwise, it
is relocated to the compacted FIT update block.

12. A host may use write_pointer and read_pointer commands to control
all files in a set to have equal size, the same as the size of a metablock, and may use
close and idle commands to cause a file in the set to be consolidated into a single
metablock immediately after the file is closed.

13. The set of host commands includes read and write commands for a
specified fileID that include companion commands for the values of the Write_pointer
and Read_pointer that give the memory addresses at which the commanded data write

or read is to begin.

DRAWINGS
[0008] The following listed drawings are included as part of the present application

and referenced in the descriptions below:
Figure 1-1: Memory Card with Direct Data File Platform;
Figure 1-2: Direct Data File Platform Components;
Figure 2-1: File Commands;
Figure 2-2: Data Commands;
Figure 2-3: Info Commands;
Figure 2-4: Stream Commands;
Figure 2-5: State Commands;
Figure 2-6: Device Commands;
Figure 3-1: Format of a Plain File;
Figure 3-2: Format of a Common File;

Figure 3-3: Format on an Edited Plain File;

WO 2007/019220 PCT/US2006/030242
Figure 3-4: Format of an Edited Common File;

Figure 4-1: Flow Chart for Device Operations;

Figure 5-1: Flow Chart for Programming File Data;

Figure 6-1: Flow Chart for Reading File Data;

Figure 7-1: Flow Chart for Deleting a File;

Figure 8-1: Interleaved Operations for Foreground Garbage Collection;

Figure 8-2: Principle of Operation for Adaptive Scheduling of Garbage

Collection;
Figure 8-3: Flow Chart for Garbage Collection Selection;
Figure 8-4: Flow Chart for File Garbage Collection;
Figure 8-5: Flow Chart for Common Block Garbage Collection;
Figure 8-6: Flow Chart for Block Consolidation;

Figure 8-7A through 8-7D: Common Block Garbage Collection Example,

showing four time sequential stages;
Figure 9-1: Continuous Host Data Programming;
Figure 9-2: Interrupted Host Data Programming;
Figure 9-3: Buffer Flush Programming;
Figure 9-4: Buffer Swap-Out Programming;
Figure 9-5: Host Data Programming after Buffer Flush;
Figure 9-6: Swap-In Data Read,
Figure 9-7: Host Data Programming after Buffer Swap-In;

Figure 9-8: Aligned Data Read to Buffer;

-5-

WO 2007/019220

PCT/US2006/030242

Figure 9-9: Aligned Data Programming from Buffer;

Figure 9-10:
Figure 9-11:
Figure 9-12:
Figure 9-13:
Figure 10-1:
Figure 10-2:
Figure 10-3:
Figure 10-4:
Figure 10-5:
Figure 10-6:
Figure 10-7:
Figure 11-1:
Figure 12-1:
Figure 12-2:

Figure 13-1:

Non-Aligned Data Read to Buffer;

Non-Aligned Data Programming from Buffer;
Non-Aligned Non-Sequential Data Read to Buffer;
Non-Aligned Non-Sequential Data Programming from Buffer;
File Indexing;

File Indexing Structures;

Directory Block Format;

File Index Table (FIT) Logical Structure;

FIT Page Format; |

Physical FIT Blocks;

Examples of FIT File Update Operations;

Block State Diagram;

Control Block Format;

Common Block Log Format; and

Command Set Used with Static Files (in parts A and B that

should be taken together).

WO 2007/019220 PCT/US2006/030242
DESCRIPTION OF EXAMPLE EMBODIMENTS

1. Direct Data File Platform

1.1 Summary

[0009] A memory card with a direct data file platform is illustrated in Figure 1-1.
The direct data file platform is a file-organized data storage device in which data is
identified by filename and file offset address. It acts as the storage platform in a
memory card that may incorporate functions other than data storage. File data is

accessed in the platform by an external file interface channel.

[0010] The storage device has no logical addresses. Independent address spaces exist
for each file, and the memory management algorithms organize data storage
according to the file structure of the data. The data storage organization employed in
the direct data file platform produces considerable improvement of operating
characteristics, in comparison with those of a file storage device that integrates a

conventional file system with conventional logically-blocked memory management.

1.2 Platform Components
[0011] The direct data file platform has the following components, structured in

layers of functionality as shown in Figure 1-2:

Direct Data File Interface: A file API that provides access from other
functional blocks in the card to data identified by filename and file offset
address.

File-to-Flash Mapping Algorithm: A scheme for file-organized data
storage that eliminates file fragmentation and provide maximum performance
and endurance.

Programming File Data: Programming file data in accordance with the
file-to-flash mapping algorithm.

Reading File Data: Reading data specified by file offset address from
flash memory.

Deleting File: Identifying blocks containing data for a deleted file and

adding them to garbage collection queues.

WO 2007/019220 PCT/US2006/030242
Garbage Collection: Operations performed to recover memory

capacity occupied by obsolete data. These may entail copying valid data to
another location, in order to erase a block.

File Indexing: File indexing allows the locations of the valid data
groups for a file to be identified, in offset address order.

Data Buffering & Programming: The use of a buffer memory for data
to be programmed, and the sequence of programming file data in program
blocks.

Erased Block Management: Management of a pool of erased blocks in
the device that are available for allocation for storage of file data or control
information.

Block State Management: Transitions between the eight states into
which blocks for storage of file data can be classified.

Control Data Structures: Control data structures stored in flash blocks

dedicated to the purpose.

2. Direct Data File Interface
[0012] The Direct Data File interface is an API to the Direct Data File platform,

which forms the back-end system for flash memory management within a device

incorporating flash mass data storage.

2.1 Command Set
[0013] The following sections define a generic command set to support file-based

interfacing with multiple sources. Commands are defined in six classes.

File commands

Data commands

File info commands

Stream commands (for modeling only)

State commands

SANELANEE D o S

Device commands

2.1.1 File Commands (see Figure 2-1)
[0014] A file is an object that is independently identified within the device by a

-8-

WO 2007/019220 PCT/US2006/030242
fileID. A file may comprise a set of data created by a host, or may have no data, in

which case it represents a directory or folder.

2.1.1.1 Create

[0015] The create command creates an éntry identified by <fileID> within the
directory in the device. If the <fileID> parameter is omitted, the device assigns an
available value to the file and returns it to the host. This is the normal method of

creating a file.

[0016] The host may alternatively assign a <fileID> value to a file. This method may
be used if a specific value of fileID denotes a specific type of file within the host
interface protocol. For example, a root directory may be assigned a specific fileID by

the host.

2.1.1.2 Open

[0017] This command enableé execution of subsequent data commands for the file
specified by <fileID>. If the file does not exist, an error message is returned. The
write_pointer for the file is set to the end of the file, and the read pointer for the file is
set to the beginning of the file. The info_write_pointer for the file_info is set to the
end of the file_info, and the info_read_pointer for the file is set to the beginning of the
file info. There is a maximum number of files that can be concurrently open. If this
number is exceeded, the command is not executed and an error message is returned.

The maximum number of concurrently open files, for example, may be 8.

[0018] Resources within the device for writing to the specified file are made available

only after receipt of a subsequent write, insert or remove command.

2.1.1.3 Close
[0019] This command disables execution of subsequent data commands for the
- specified file. Write_pointer, read_pointer, info_write_pointer and info_read_pointer

values for the file become invalid.

2.1.1.4 Delete
[0020] The delete command indicates that directory, file index table and info table
entries for the file specified by <fileID> should be deleted. Data for the files may be

-9.

WO 2007/019220 PCT/US2006/030242
erased. The deleted file may not be subsequently accessed.

2.1.1.5 Erase

[0021] The erase command indicates that directory, file index table and info table
entries for the file specified by <fileID> should be deleted. File data must be erased
before any other command may be executed. The erased file may not be subsequently

accessed.

2.1.1.6 List_files
~ [0022] FileID values for all files in the directory may be streamed from the device in
\numericai order following receipt of the list_files command. FileID streaming is
terminated when the last file is reached, and this condition may be identified by the
host by means of a status command. The list_files command is terminated by receipt

of any other command.

2.1.2 Data Commands (see Figure 2-2)

[0023] The data commands are used to initiate data input and output operations for a
specified file, and to define offset address values within the file. The specified file
must have been opened by the host. If this is not the case, an error is returned.

<fileID> is the file handle that was returned to the host when the file was last opened.

2.1.2.1 Write

[0024] Data streamed to the device following receipt of the write command is
overwritten in the specified file at the offset address defined by the current value of
the write_pointer. The write command is used to write new data for a file, append
data to a file, and update data within a file. The write command is terminated by

receipt of any other command.

2.1.2.2 Insert

[0025] Data streamed to the device following receipt of the insert command is
inserted in the specified file at the offset address defined by the current value of the
write_pointer. The file size is increased by the length of the inserted data. The insert

command is terminated by receipt of any other command.

-10 -

WO 2007/019220 PCT/US2006/030242
2.1.2.3 Remove

[0026] The remove command deletes sequential data defined by <length> from the
specified file at the offset address defined by the current value of the write_pointer.

The file size is reduced by <length>.

2.1.2.4 Read
[0027] Data in the specified file at the offset address defined by the current value of
the read pointer may be streamed from the device following receipt of the read

command.

[0028] Data streaming is terminated when the end of file is reached, and this
condition may be identified by the host by means of a status command. The read

command is terminated by receipt of any other command.

2.1.2.5 Save_buffer
[0029] Data for the specified file that is contained in the device buffer and has not yet

been programmed to flash memory is saved at a temporary location in flash memory.

[0030] The data is restored to the buffer when a subsequent write or insert command

is received, and is programmed to flash together with data relating to the command.

2.1.2.6 Write_pointer
[0031] The write_pointer command sets the write_pointer for the specified file to the
specified offset address. The write_pointer is incremented by the device as data is

streamed to the device following a write or insert command.

2.1.2.7 Read_pointer
[0032] The read_pointer command sets the read_pointer for the specified file to the
specified offset address. The read pointer is incremented by the device as data is

streamed from the device following a read command.

2.1.3 Info Commands (see Figure 2-3)

[0033] File_info is information generated by a host that is associated with a file. The
nature and content of file_info is determined by the host, and it is not interpreted by
the device. The info commands are used to initiate file info input and output

operations for a specified file, and to define offset address values within file_info.

-11 -

WO 2007/019220 PCT/US2006/030242
2.1.3.1 Write_info

[0034] File_info streamed to the device following receipt of the write_info command
overwrites file_info for the specified file at the offset address defined by the current
value of the info_write_pointer. The content and length of file_info for the specified
file is determined by the host. The write_info command is terminated by receipt of

any other command.

2.1.3.2 Read_info

[0035] File_info for the specified file at the offset address defined by the current
value of the info_read_pointer may be streamed from the device following receipt of
the read_info command. File info streaming is terminated when the end of the
file_info is reached, and this condition may be identified by the host by means of a
status command. The read info command is terminated by receipt of any other

command.

2.1.3.3 Info_write_pointer
[0036] The info_write_pointer command sets the info_write_pointer for the specified
file to the specified offset address. The info_write_pointer is incremented by the

device as file_info is streamed to the device following a write_info command.

2.1.3.4 Info_read_pointer
[0037] The info_read pointer command sets the info_read_pointer for the specified
file to the specified offset address. The info_read_pointer is incremented by the

device as file_info is streamed from the device following a read_info command.

2.1.4 Stream Commands (see Figure 2-4)
[0038] Stream commands are used only with a behavioural model of the direct data
file platform. Their purpose is to emulate streaming data to and from a host, in

association with the data commands.

2.1.4.1 Stream

[0039] The stream command emulates an uninterrupted stream of data defined by
<length> that should be transferred by a host to or from the platform. A variable
representing the remaining length of the stream is decremented by the model of the

platform as data is added or removed from the buffer memory.

-12 -

WO 2007/019220 PCT/US2006/030242
2.1.4.2 Pause

[0040] The pause command inserts a delay of length <time> that is inserted before
execution of the following command in a command list that is controlling operation of

the direct data file model. <time> is defined in microseconds.

2.1.5 State Commands (see Figure 2-6)

[0041] State commands control the state of the device.

2.1.5.1 1dle

[0042] The idle command indicates that the host is putting the direct data file device
in an idle state, during which the device may perform internal housekeeping
operations. The host will not deliberately remove power from the device in the idle
state. The idle state may be ended by transmission of any other command by the host,
whether or not the device is busy with an internal operation. Upon receipt of such
other command, any internal operation in progress in the device must be suspended or
terminated within a specified time. An example of this time is 10 milliseconds or

less.

2.1.5.2 Standby

[0043] The standby command indicates that the host is putting the direct data file
devicé in a standby state, during which the device may not perform internal
housekeeping operations. The host will not deliberately remove power from the
device in the standby state. The standby state may be ended by transmission of any

other command by the host.

2.1.5.3 Shutdown
[0044] The shutdown command indicates that power will be removed from the device
by the host when the device is next not in the busy state. All open files are closed by

the device in response to the shutdown command.

2.1.6 Device Commands (see Figure 2-6)

[0045] Device commands allow the host to interrogate the device.

2.1.6.1 Capacity

[0046] In response to the capacity command, the device reports the capacity of file

-13 -

WO 2007/019220 PCT/US2006/030242

data stored in the device, and the capacity available for new file data.

2.1.6.2 Status

[0047] In response to the status command, the device reports its current status.
[0048] Status includes three types of busy status:

1. The device is busy performing a foreground operation for writing or
reading data.

2. The device is busy performing a background operation initiated whilst the
device was in the idle state.

3. The buffer memory is busy, and is not available to the host for writing or

reading data.

2.1.7 Command Parameters

[0049] The following parameters are used with commands as defined below.

2.1.7.1 FileID
[0050] This is a file identifier that is used to identify a file within the directory of the

device.

2.1.7.2 Offset
[0051] Offset is a logical address within a file or file info, in bytes, relative to the

start of the file or file_info.

2.1.7.3 Length
[0052] This is the length in bytes of a run of data for a file with sequential offset

addresses.

2.1.7.4 Time

[0053] This is a time in microseconds.

3. File-to-Flash Mapping Algorithm
[0054] The file-to-flash mapping algorithm adopted by the direct data file platform is

a new scheme for file-organized data storage that has been defined to provide the
maximum system performance and maximum memory endurance, when a host

performs file data write and file delete operations via a file-based interface. The

-14 -

WO 2007/019220 PCT/US2006/030242
mapping algorithm has been designed to minimize copying of file data between

blocks in flash memory. This is achieved by mapping file data to flash blocks in a
manner that achieves the lowest possible incidence of blocks containing data for more

than one file.
3.1 File-to-Flash Mapping Principles

3.1.1 Files

[0055] A file is a set of data created and maintained by the host. Data is identified by
the host by a filename, and can be accessed by its offset location from the beginning
of the file. The file offset address may be set by the host, and may be incremented as

a write pointer by the device.

3.1.2 Physical Memory Structures

[0056] The direct data file platform stores all data for files in fixed-size metablocks.
The actual number of flash erase blocks comprising a metablock, that is, the erase
block parallelism, may vary between products. Throughout this specification, the

term “block” is used to denote “metablock”.

[0057] The term “metapage” is used to denote a page with the full parallelism of a

metablock. A metapage is the maximum unit of programming.

[0058] The term “page” is used to denote a page within a plane of the memory, that

is, within a flash erase block. A page is the minimum unit of programming,.

[0059] The term “sector” is used to denote the unit of stored data with which an ECC
is associated. The sector is the minimum unit of data transfer to and from flash

memory.

[0060] There is no specified alignment maintained between offset addresses for a file

and the physical flash memory structures.

3.1.3 Data Groups
[0061] A data group is a set of file data with contiguous offset addresses within the
file, programmed at contiguous physical addresses in a single memory block. A file

will normally be programmed as a number of data groups. A data group may have

-15 -

WO 2007/019220 PCT/US2006/030242
any length between one byte and one block. Each data group is programmed with a

header, containing file identifier information for cross reference purposes. Data for a
file is indexed in physical memory according to the data groups it comprises. A file
index table provides file offset address and physical address information for each data

group of a file.

3.1.4 Program Blocks

[0062] A file must be opened by the host to allow file data to be programmed. Each
open file has a dedicated block allocated as a program block, and data for that file is
programmed at a location defined by a program pointer within the program block.
When a file is opened by the host, a program block for the file is opened, if one does
not already exist. The program pointer is set to the beginning of the program block.
If a program block already exists for a file that is opened by the host, it continues to

be used for programming data for the file.

[0063] File data is programmed in a program block in the order it is received from the
host, irrespective of its offset address within the file or whether data for that offset
address has previously been programmed. When a program block becomes full, it is
known as a file block, and an erased block from the erased block pool is opened as a
new program block. There is no physical address relationship between blocks storing

data for a file.

3.1.5 Common Blocks

[0064] A common block contains data groups for more than one file. If multiple data
groups for the same file exist in a common block, they are located contiguously and
the contiguous unit is known as a file group. Data is programmed to a common block
only during a block consolidation operation or a common block garbage collection

operation.

[0065] The start of an individual data group or a file group within a common block

must align with the start of a metapage.

[0066] Data groups within a file group do not have intervening spaces. The boundary
between such data groups may occur within a page. A file should have data in only a

single common block (see 8.3.4 for an exception to this).

-16 -

WO 2007/019220 PCT/US2006/030242
3.2 File Types

3.2.1 Plain File

f0067] A plain file comprises any number of complete file blocks and one partially
programmed program block. A plain file may be created by the programming of data
for the file from the host, usually in sequential offset address order, or by garbage
collection of an edited file. An example plain file is shown in Figure 3-1. A plain file

may be either an open file or a closed file.

[0068] Further data for the file may be programmed at the program pointer in the
program block. If the file is deleted by the host, blocks containing its data may be
immediately erased without the need to copy data from such blocks to another
location in flash memory. The plain file format is therefore very efficient, and there is

advantage in retaining files in this format for as long as possible.

3.2.2 Common File

[0069] A common file comprises any number of complete file blocks and one
common block, which contains data for the file along with data for other unrelated
files. Examples are shown in Figure 3-2. A common file may be created from a plain

file during a garbage collection operation or by consolidation of program blocks.

[0070] A common file is normally a closed file, and does not have an associated write
pointer. If the host opens a common file, a program block is opened and the program
pointer is set to the beginning of the program block. If the file is deleted by the host,
its file blocks may be immediatély erased, but data for an unrelated file or unrelated
files must be copied from the common block to another location in flash memory in a

garbage collection operation before the common block is erased.

3.2.3 Edited Plain File

[0071] A plain file hlay be edited at any time by the hqst, which writes updated data
for previously-programmed offset addresses for the file. Examples are given in
Figure 3-3. Such updated data is programmed in the normal way at the program
pointer in the program block, and the resulting edited plain file will contain obsolete

data in one or more obsolete file blocks, or in the program block itself.

-17 -

WO 2007/019220 PCT/US2006/030242
[0072] The edited plain file may be restored to a plain file in a garbage collection

operation for the file. During such garbage collection, any valid file data is copied
from each obsolete file block to the program pointer for the file, and the resultant
fully-obsolete blocks are erased. The garbage collection is not performed until after

the file has been closed by the host, if possible.

3.2.4 Edited Common File

[0073] An open common file may be edited at any time by the host, which writes
updated data for previously-programmed offset addresses for the file. Examples are
shown in Figure 3-4. Such updated data is programmed in the normal way at the
program pointer in the program block, and the resulting edited common file will
contain obsolete data in one or more obsolete file blocks, in the common block, or in

the program block itself.

[0074] The edited common file may be restored to plain file format in a garbage
collection operation for the file. During such garbage collection, any valid file data is
copied from each obsolete file block and the common block to the program pointer for
the file. The resultant fully-obsolete file blocks are erased, and the obsolete common

block is logged for a separate subsequent garbage collection operation.

3.3 Garbage Collection and Block Consolidation

3.3.1 Garbage Collection

[0075] Garbage collection operations are performed to recover memory capacity
occupied by obsolete data. These may entail copying valid data to another location, in
order to erase a block. Garbage collection need not be performed immediately in
response to the creation of obsolete data. Pending garbage collection operations are
logged in garbage collection queues, and are subsequently performed at an optimum

rate in accordance with scheduling algorithms.

[0076] The direct data file platforms supports background garbage collection
operations that may be initiated by a host command. This allows a host to allocate
quiescent time to the device for internal housekeeping operations that will enable

bigher performance when files are subsequently written by the host.

-18 -

WO 2007/019220 PCT/US2006/030242
[0077] If sufficient background time is not made available by the host, the device

performs garbage collection as a foreground operation. Bursts of garbage collection
operations are interleaved with bursts of programming file data from the host. The
interleave duty cycle may be controlled adaptively to maintain the garbage collection

rate at a minimum, whilst ensuring that a backlog is not built up.

3.3.2 Block Consolidation

[0078] Each plain file in the device includes an incompletely filled program block,
and a significant volume of erased capacity can be locked up in such program blocks.
Common blocks may also contain erased capacity. An ongoing process of
consolidating program blocks for closed files and common blocks is therefore
implemented, to control the locked erased capacity. Block consolidation is treated as
part of the garbage collection function, and is managed by the same scheduling

algorithms.

[0079] Data in a program block or a common block is consolidated with data for one
or more unrelated files by copying such unrelated data from another common block or
program block. If the original block was a prdgram block, it becomes a common
block. It is preferable to consolidate a program block with an obsolete common
block, rather than with another program block. An obsolete common block contains
obsolete data, and it is therefore unavoidable to have to relocate valid data from the
block to another location. However, a program block does not contain obsolete data,

and copying data from the block to another location is an undesirable overhead.

3.3.3 Equilibrium State

[0080] When file data occupies a high percentage of the device capacity, a host must
perform delete operations on files in order to create capacity for writing new files. In
this state, most files in the device will have common file format, as there will be little

capacity available for erased space in program blocks for files in plain file format.

[0081] Deletion of a common file requires valid data for unrelated files to be
relocated from its common block during garbage collection. Data for such file groups
is most commonly relocated to available capacity in one or more program blocks for a
closed file. There is frequently equilibrium between available unused capacity in

program blocks for files recently written then closed by a host, and required capacity

-19 -

WO 2007/019220 PCT/US2006/030242
for relocating file data from common blocks as a result of files being deleted by a

host. This general state of equilibrium reduces the need to relocate file data from a
program block, and contributes to the efficiency of the file-to-flash mapping

algorithm.

4. Device Operation

4.1 Execution of Device Operations

[0082] The operating sequence of the device is determined by the flow of commands
supplied by a host. When a host command is received, the current device operation is
interrupted and the command is normally interpreted. Certain commands will cause

execution of one of the four main device operations, as follows:

1. Data reading;

2. Data programming;

3. File deleting; or

4. Garbage collection.

The device operation continues, until one of the following conditions is
reached:

1. The operation is completed;

2. Another host command is received; or

3. The end of an interleaved burst is reached in foreground garbage collection

mode.

[0083] If priority garbage collection operations are queued for execution, these are

completed before any new command is interpreted.
[0084] An overall flow chart showing the device operations appears as Figure 4-1.

5. Programming File Data

5.1 Principles for Programming File Data

[0085] Data for a file is programmed to flash memory as it is streamed to the device
from a host following a write or insert command from the host. When sufficient data
has been accumulated in the buffer memory for the next program operation, it is

programmed in the program block for the file. See chapter 9 for a description of this

-20 -

WO 2007/019220 PCT/US2006/030242
operation.

[0086] When a program block becomes full, it is designated as a file block and an
erased block from the erased block pool is allocated as the program block. In
addition, the file index table and garbage collection queues for common blocks and

obsolete blocks are updated.

[0087] The file data programming procedure initiates bursts of foreground garbage
collection, according to interleave parameter N1 that is established by the garbage
collection scheduling algorithm (see section 8.4). An interleave program counter is
incremented whenever a metapage program operation is initiated in flash memory,
and a garbage collection operation in foreground mode is initiated when this counter

exceeds the value N1.

[0088] File data programming continues in units of one metapage, until the host

transmits another command.

[0089] A flow chart illustrating an example of programming file data appears as

Figure 5-1.

6. Reading File Data

6.1- Principles for Reading File Data

[0090] In response to a read command from a host, data for file offset addresses
beginning at that specified by the read pointer is read from flash memory and
returned sequentially to the host, until the end of file is reached. The file index table
(FIT) is read, and FIT entries for the file evaluated to identify the location
corresponding to the read_pointer. Subsequent FIT entries specify the locations of

data groups for the file.

[0091] File data is read in units of one metapage until the end of file is reached, or

until the host transmits another command.

[0092] An example process of reading file data is given in Figure 6-1.

-21-

WO 2007/019220 PCT/US2006/030242
7. Deleting a File

7.1 Principles for Deleting a File

[0093] In response to a delete command for a file from a host, blocks containing data
for the file are identified and are added to garbage collection queues for subsequent
garbage collection operations. The procedure for deleting a file does not initiate these
garbage collection operations, and data for the file is therefore not immediately

erased.

[0094] FIT entries for the file are evaluated, initially to identify a common block that
may contain data for the file. Thereafter, FIT entries for the file are evaluated in
offset address order, and the data blocks in which data groups are located are added to
either the common block queue or the obsolete block queue, for subsequent garbage
collection. The file directory and file index table are then updated, to remove entries

for the file.

7.2 Erasing a File

[0095] In response to an erase command for a file from a host, the same procedure as
for a delete command should be followed, but with the blocks containing data for the
file being added to the priority common block queue and the priority obsolete block

queue for garbage collection.

[0096] The main device operations sequence then ensures that garbage collection
operations for these blocks are performed before any other host command is executed.
This ensures that data for the file identified by the erase command is immediately

erased.
[0097] A flow chart of a file deletion process appears as Figure 7-1.

8. Garbage Collection

8.1 Principles for Garbage Collection
[0098] Garbage collection is an operation that must be performed to recover flash
memory capacity occupied by obsolete file data. Garbage collection may be

necessary as a result of deletion of a file or of edits to the data of a file.

-7 -

WO 2007/019220 PCT/US2006/030242
[0099] Block consolidation is a form of garbage collection, which is performed to
recover erased capacity in blocks that are incompletely filled with file data, to allow
their use for storing unrelated files, Consolidation may be performed on program
blocks in plain files, to convert them to common blocks, or on common blocks, to

reduce their number.

[00100] The processes of garbage collection and block consolidation relocated valid
file data from a source flash block to one or more destination blocks, as dictated by

the file-to-flash mapping algorithm, to allow the source block to be erased.

[00101] Pending garbage collection operations are performed not immediately, but
according to a scheduling algorithm for phased execution. Entries for objects
requiring garbage collection are added to three garbage collection queues from time to
time during operation of the device. Separate queues exist for files, obsolete blocks,
and common blocks. Objects are selected from the queues for the next garbage
collection operation in a predefined order of priority. If the queues are empty, block

consolidation may be performed.

[00102] Garbage collection operations may be scheduled in two ways. Background
operations may be initiated by the host when it is not making read or write access to
the device, and are executed continuously by the device until the host makes another
access. Foreground operations may be scheduled by the device whilst it is being
accessed by the host, and are executed in bursts interleaved with bursts of program
operations for file data received from the host. The lengths of the interleaved bursts
may be adaptively controlled to maintain the garbage collection rate to the minimum

required at all times.

8.2 Garbage Collection Queues

[00103] Garbage collection queues contain entries for objects for which there is a
pending garbage collection operation. Three queues each contain entries for obsolete
blocks, common blocks and files, respectively. Two additional queues are given
higher priority than these three, and contain entries for obsolete blocks and common
blocks respectively. The five garbage collection queues are stored in the control log

in the control block in flash memory.

-23 .

WO 2007/019220 PCT/US2006/030242
8.2.1 Priority Obsolete Block Queue

[00104] This queue contains entries for blocks that have been made fully obsolete as
a result of an erase command from the host. It is the highest priority garbage
collection queue. Garbage collection operations on all blocks identified in the queue
must be completed before any other command is accepted from the host, or before

garbage collection operations are initiated on objects from any other queue.

8.2.2 Priority Common Block Queue

[00105] This queue contains entries for common blocks that have been made
partially obsolete as a result of an erase command from the host. It is the second
highest priority garbage collection queue. Garbage collection operations on all
common blocks identified in the queue must be completed before any other command
is accepted from the host, or before garbage collection operations are initiated on

objects from a lower priority queue.

8.2.3 Obsolete Block Queue

[00106] This queue contains entries for blocks that have been made fully obsolete as
a result of a delete command from the host, or of edits to the data of a file. It is the
third highest priority garbage collection queue. Garbage collection operations on all
blocks identified in the queue should be completed before operations are initiated on

objects from a lower priority queue.

8.2.4 Common Block Queue

[00107] This queue contains entries for common blocks that have been made

partially obsolete as a result of a delete command from the host, or of edits to the data
~ofa file. 1t is the fourth highest priority garbage collection queue. Garbage collection

operations on all blocks identified in the queue should be completed before operations

are initiated on objects from a lower priority queue.

8.2.5 File Queue

[00108] This queuve contains entries for files that have obsolete data as a result of
edits to the data of a file. It is the lowest priority garbage collection queue. When a
file is closed by the host, an entry for it is added to the file queue unless the file is a
plain file. It is therefore necessary to perform an analysis on the FIT entries for a file

at the time the file is closed by the host, to determine if the file is a plain file or an

-24 -

WO 2007/019220 PCT/US2006/030242

edited file (plain or common).
[00109] The procedure for this analysis is as follows:

1. The FIT entries in the relevant FIT file are evaluated in offset address
order.
2. The cumulative capacity of data groups and data group headers is
determined. “
3. The physical capacity occupied by file data is determined. This is the

é number of blocks other than the program block containing data for the file,
plus the used capacity in the program block.
4. If the data group capacity exceeds X% of the physical capacity, the file is
determined to be a plain file. An example of the value of X is 98%. X% is
less than 100%, to allow for unprogrammed space resulting from a buffer

flush operation to persist in a plain file.

8.3 Garbage Collection Operations
8.3.1 Obsolete Block (
[00110] An obsolete block contains only obsolete data, and may be erased without

the need to relocate data to another block.

8.3.2 Common Block
[00111] The common block is the source block, and contains one or more partially or
fully obsolete data groups for one or more files. Valid data must be relocated from

this source block to one or more destination blocks.

[00112] Data is relocated in units of a complete file group, where a file group
comprises one or more data groups for the same file within the common block. Each
file group is relocated intact to a destination block, but different file groups may be

relocated to different blocks.

[00113] A common block is the preferred choice for destination block, followed by
program block if no suitable common block is available, followed by an erased block

if no suitable program block is available.

[00114] The garbage collection operation can continue until the occurrence of one of

-925.

WO 2007/019220 PCT/US2006/030242

the following conditions; the operation is completed, the host sends a command, or

the end of an interleaved burst is reached in foreground mode.

[00115] A flow chart for the common block garbage collection operafion is shown in

Figure 8-5.

8.3.3 File Garbage Collection

[00116] File garbage collection is performed to recover capacity occupied by
obsolete data for the file. It restores a file in the edited plain file state or edited
common file state to the plain file state. The first step is to perform an analysis on the
FIT eniries in its FIT file, to identify obsolete file blocks and common block from
which data groups must be copied during the garbage collection. The procedure for

this analysis is as follows:

1. The FIT entries in the relevant FIT file are evaluated in offset address
order.

2. A data group list is constructed to relate data groups to physical blocks.
Data groups in the program block are excluded from this list.

3. The physical capacity occupied by data groups and data group headers in
each block referenced in the list is determined.

4. If the data group capacity exceeds X% of the capacity of a block, the block
is determined to be a file block. An example of the value of X is 98%. X% is
less than 100%, to allow for unprogrammed space resulting from a buffer
flush operation to persist in a file block.

5. Data groups in blocks that are determined to be file blocks are removed

from the data group list constructed above.

[00117] Data groups referenced in the revised data group list are contained in
obsolete file blocks or a common block, and are copied to a program block during the
file garbage collection operation. The data group structure of the file may be
modified as a result of the file garbage collection operation, that is, a relocated data
group may be split into two by a block boundary, or may be merged with an adjacent
data group. The program block for the file is used as the destination block. When

this is filled, another program block is opened.

226 -

WO 2007/019220 PCT/US2006/030242
[00118] The garbage collection operation can continue until the occurrence of one of

the following conditions; the operation is completed, the host sends a command, or

the end of an interleaved burst is reached in foreground mode.
[00119] A flow chart for the file garbage collection operation is shown in Figure 8-4.

8.3.4 Block Consolidation
[00120] Block consolidation is performed to recover erased capacity in program
blocks and common blocks that have been incompletely programmed, and to make

the capacity available for storing data for other files.

[00121] The source block for a consolidation is selected as the block in the program
block log or common block log with the lowest programmed capacity, to allow the
block to be erased after the minimum possible data relocation. Data is relocated in
units of a complete file group, where a file group comprises one or more data groups
for the same file within the program block or common block. Each file group is
relocated intact to a destination block, but different file groups may be relocated to
different blocks.

[00122] A common block is the preferred choice for destination block, followed by
program block if no suitable common block is available. In the rare event that no
destination block is available, a file group may be split to be relocated to more than a

single destination block.

[00123] The block consolidation operation can continue until the occurrence of one
of the following conditions; the operation is completed, the host sends a command, or

the end of an interleaved burst is reached in foreground mode.
[00124] A flow chart for a block consolidation operation is shown in Figure 8-6.

8.4 Scheduling of Garbage Collection Operations
[00125] Garbage collection is preferably performed as a background task during
periods when the host device is accessing the card. Background garbage collection

initiated by the host is supported in the direct data file platform.

-7 -

WO 2007/019220 PCT/US2006/030242
[00126] However, it may also be necessary to perform garbage collection as a

foreground task whilst the host is writing data to the device. In this mode, a complete
garbage collection operation need not be completed as a single event. Bursts of
garbage collection can be interleaved with bursts of programming data from a host,
such that a garbage collection operation may be completed in a number of separate

stages and there is limited interruption to availability of the device to the host.

8.4.1 Background Operation

[00127] Background garbage collection is initiated when the host sends an idle
command to the device. This indicates that the host will not deliberately remove
power from the device, and does not immediately intend'to access the device.
However, the host may end the idle state at any time by transmitting another

command.

[00128] In the idle state, the device performs continuous garbage collection
operations until the occurrence of one of the following conditions; the host transmits
another command, or all garbage collection queues are empty and no block

consolidation operations are possible.

8.4.2 Interleaved Operation

[00129] Interleaved garbage collection operations are initiated by the direct data file
process for programming file data. An interleaved operation is illustrated in Figure 8-
1. After a host data write phase within which the host interface is active and N1
program operations are made to flash memory, the device switches into a garbage
collection phase. In this phase, part of one or more garbage collection operations are

performed until N2 program operations to flash memory are completed.

[00130] A garbage collection operation in progress may be suspended at the end of a
garbage collection phase, and restarted in the next such phase. The values of N1 and

N2 are determined by an adaptive scheduling algorithm.

8.4.3 Adaptive Scheduling
[00131] An adaptive scheduling method is used to control the relative lengths of
interleaved bursts of host data programming and garbage collection, so that the

interruption to host data write operations by garbage collection operations can be kept

-08 -

WO 2007/019220 PCT/US2006/030242
to a minimum. This is achieved whilst also ensuring that a backlog of pending

garbage collection that could cause subsequent reduction in performance is not built

up.

8.4.3.1 Principle of Operation

[00132] At any time, the device state comprises capacity occupied by previously
written host data, erased capacity in blocks in the erased block pool, and recoverable
capacity that can be made available for writing further host data by garbage collection
operations. This recoverable capacity may be in program blocks, common blocks, or
obsolete file blocks shared with previously written host data, or in fully obsolete

blocks. These types of capacity utilization are shown in Figure 8-2.

[00133] Adaptive scheduling of garbage collection controls the interleave ratio of
programming incremental host data and relocating previously written host data, such
that the ratio can remain constant over an adaptive period during which all
recoverable capacity can be made available for host data. If the host deletes files,
which converts previously written host data to recoverable capacity, the interleave

ratio is changed accordingly and a new adaptive period started.

[00134] The optimum interleave ratio can be determined as follows:

If
The number of erased blocks in the erased block pool = erased_blocks;
The combined number of program and common blocks = data_blocks;
The total number of valid data pages in program and common blocks =
data_pages;
The number of obsolete blocks = obsolete_blocks; and
The number of pages in a block = pages_per_block,

Then

The number of erased blocks that can be created by garbage collection is given
by data_blocks — (data_pages | pages_per_block),

The total number of erased blocks after garbage collection is given by
erased_blocks + obsolete_blocks + data_blocks — (data_pages |
pages_per_block);

The number of incremental data metapages that may be written is given by

-29 -

WO 2007/019220 PCT/US2006/030242

If

Then

pages_per _block ™ (erased_blocks + obsotere_blocks + data_blocks) —

data_pages.

It is assumed that valid data is evenly distributed throughout the program and
common blocks (a pessimistic assumption, since blocks with low data page

counts are selected as source blocks for block consolidation operations)

The number of metapages relocated during garbage collection is given by
data_pages * (data_blocks — data_pages | pages_per_block) [data_blocks

The optimum interleave ratio N1:N2 is the ratio of the number of incremental

data metapages that may be written to the number of metapages that must be relocated

during garbage collection. Therefore,

N1:N2 = (pages_per_block * (erased_blocks + obsolete_blocks +
data_blocks) — data_pages) [(data_pages * (data_blocks — data_pages /
pages_per_block) / data_blocks)

[00135] Note that recovery of obsolete capacity in obsolete file blocks has not been

included in the adaptive scheduling algorithm. Such capacity results only from

editing of files, and is not a common occurrence. If significant capacity exists in

obsolete file blocks, the adaptively determined interleave ratio may not be optimum,

but switching to operation with minimum ratio (described in 8.4.3.2) will ensure

efficient garbage collection of such blocks.

8.4.3.2 Interleave Control
[00136] The interleave ratio N1:N2 is defined in three bands, as follows.

1) Maximum: A maximum limit to the interleave ratio is set, to ensure that
garbage collection can never be totally inhibited. An example of this
maximum limit is 10 to 1.

2) Adaptive: In the adaptive band, the interleave ratio is controlled to be
optimum for pending garbage collection of common blocks and obsolete
blocks, and the consolidation of program blocks and common blocks. Ifis

defined by the relationship

-30 -

WO 2007/019220 PCT/US2006/030242
NL:N2 = (pages_per_block * (erased_blocks + obsolete_blocks +

data_blocks) —data _pages) [(data_pages * (data_blocks — data_pages
| pages_per_block) | data_blocks),
where N1 and N2 are defined as numbers of page program operations.
A value of N2 is defined, representing the preferred duration of a burst of
garbage collection. An example of this value is 16.
3) Minimum: If the number of blocks in the erased block pool falls below a
defined minimum, the interleave ratio is not adaptively defined, but is set to a

fixed minimum limit. An example of this minimum limit is 1 to 10.

8.4.3.3 Control Parameters
[00137] The following parameters are maintained in the control log in the control

block in flash memory, for control of adaptive scheduling:

Erased block count: A count of the number of blocks in the erased block pool
is maintained. This is updated when blocks are added to and removed from
the erased block pool.

Program & common block count: A count of the combined number of
program blocks and common blocks is maintained. Common blocks may
contain obsolete data. The count is updated when blocks are added to and
removed from the program block log and the common block log,

Program & common block page count: A count of the number of valid data
pages in program blocks and common blocks is maintained. The count is
updated when blocks are added to and removed from the program block log
and the common block log.

Obsolete block count: A count of the number of fully obsolete blocks
awaiting garbage collection is maintained. The count is updated when blocks

are added to and removed from the obsolete block garbage collection queue.

8.5 Flow Charts for Garbage Collection

[00138] A flow chart of a specific algorithm for selecting one of several particular
garbage collection operations is given in Figure 8-3. Figure 8-4 is a flow chart for the
“File garbage collection” block of Figure 8-3. A flow chart for the “Common block
garbage collection” block of Figure 8-3 is the subject of Figure 8-5. The “Block

-31 -

WO 2007/019220 PCT/US2006/030242
consolidation” function of Figure 8-3 is shown by the flow chart of Figure 8-6.

[00139] Four Figures 8-7A through 8-7D show an example garbage collection of a
common block that can result from the process of Figure 8-5. Figure 8-7A shows an
initial condition, while Figures 8-7B through 8-7C illustrate three steps in the garbage
collection process. The arrows show the transfer of valid data from obsolete blocks
into file blocks that are not full, and these destination file blocks then become

common blocks.

9. Data Buffering & Progeramming

[00140] The data buffering and programming method described in this section is
constrained to use the same flash interface and error correction code (ECC) structures
that are employed on current products. Alternative optimised methods may be

adopted in the future if new flash interface and ECC structures are introduced.

9.1 Data Buffers

[00141] A buffer memory exists in SRAM in the controller (RAM 31 of the Prior
Applications), for temporary storage of data being programmed to and read from flash
memory. An allocated region of the buffer memory is used to accumulate sufficient
data for a file to allow a full metapage to be programmed in a single operation in flash
memory. The offset addresses of data for a file in the buffer memory is unimportant.

The buffer memory may store data for multiple files.

[00142] To allow pipelining of both write and read operations with a host, buffer
memory space with a capacity of two metapages should be available for each file
being buffered. The buffer memory comprises a set of sector buffers. Individual
sector buffers may be allocated for temporary storage of data for a single file, and
deallocated when the data has been transferred to its final destination. Sector buffers
are identified by a sector buffer number 0 to N-1. An example of the number of
sector buffers (N) is 64.

[00143] Available sector buffers are allocated cyclically in order of their sector
buffer number. Each sector buffer has a file label, and two associated pointers
defining the start and end of data contained within it. File offset address ranges

within the data in the sector buffer are also recorded. Both the sector buffers and the

-32 -

WO 2007/019220 PCT/US2006/030242
control information associated with them exist only within volatile memory in the

controller.
9.2 Data Programming

9.2.1 Metapage
[00144] A metapage is the maximum unit of programming in flash memory. Data
should be programmed in units of a metapage wherever possible, for maximum

performance.

9.2.2 Page
[00145] A page is a subset of a metapage, and is the minimum unit of programming

in flash memory.

9.23 Sector

[00146] A sector is a subset of a page, and is the minimum unit of data transfer
between controller and flash memory. A sector usually comprises 512 bytes of file
data. An ECC is generated by the controller for each sector (such as by the controller
ECC circuit 33 of Figure 2 of the Prior Applications), and is transferred to flash
appended to the end of the sector. When data is read from flash, it must be transferred

to the controller in multiples of a complete sector, to allow the ECC to be checked.

9.3 Buffer Flush

[00147] Data for a file is normally accumulated in sector buffers until sufficient data
is available for programming a complete metapage in flash memory. When the host
stops streaming data for a file, one or more sector buffers remain with file data for
part of a metapage. This data remains in buffer memory, to allow the host to write
further data for the file. However, under certain circumstances, data in buffer
memory must be committed to flash memory in an operation known as a buffer flush.
A buffer flush operation causes all data for a file that is held in sector buffers to be

programmed in one or more pages within a metapage.
[00148] A buffer flush operation is performed in the following two events:

1) The file is closed by the host, or

2) A shut-down command is received by the host.

-33-

WO 2007/019220 PCT/US2006/030242
[00149] If data for a file that is closed by the host has been swapped-out to the swap

block, it should be restored to the buffer memory and a buffer flush should be
performed. Data that is in the swap block during initialization of the device following
power removal should be restored to the buffer memory and a buffer flush should be

performed.

9.4 Buffer Swap

[00150] Buffer swap is an operation in which data for a file in one or more sector
buffers is programmed in a temporary location known as a swap block, to be
subsequently restored to buffer memory when the host continues writing data for the
file.

9.4.1 Format of Swap Block

[00151] The swap block is a dedicated block that stores data for files that has been
swapped-out from sector buffers. Data for a file is stored contiguously in one or more
pages dedicated to that file in the swap block. When data is subsequently swapped-in

back to buffer memory, it becomes obsolete in the swap block.

[00152] When the swap block becomes full, valid data within it is written in
compacted form to an erased block, which then becomes the swap block. This
compacted form allows data for different files to exist within the same page. Only a

single swap block preferably exists.

9.4.2 Indexing Data stored in Swap Block
[00153] A swap block index is maintained in flash memory, containing for each file
in the swap block a copy of the information previously recorded for the file in the

buffer memory (see 9.1).

9.4.3 Moving Data to Swap Block (Swap-Out)

[00154] A swap-out operation occurs when insufficient sector buffers are available to
be allocated to a file that has been opened by the host, or to a file that must be
swapped-in from the swap block as a result of a write command for the file from the
host. The file selected for swap-out should be the least recently written file of those

for which buffers exist in the buffer memory.

-34 -

WO 2007/019220 PCT/US2006/030242
[00155] Optionally, to improve security of data in the event of unscheduled removal

of power, a swap-out may be performed for any file in the buffer memory which is
not related to the most recent write command from the host. In this case, data for the
file may remain in buffer memory, and a subsequent swap-in operation is not required

if there has not been a removal of power.

9.4.4 Restoring Data from Swap Block (Swap-in)

[00156] The complete data for a file is read from the swap block to one or more
sector buffers. The file data need not have exactly the same alignment to sector
buffers as before its swap-out. Alignment may have changed as a result of a

compaction of the swap block. Data for the file in the swap block becomes obsolete.

9.5 Programming File Data from Host
[00157] Examples given in this section relate to a flash memory configuration with

two pages per metapage, and two sectors per page.

9.5.1 Programming Continuous Data from Host

[00158] Data for a file is streamed from a host and is accumulated in successively
allocated sector buffers. When sufficient sector buffers have been filled, their data is
transferred to flash memory together with an ECC for each sector, and the destination
metapage in the program block for the file is programmed. An example of continuous

host data programming is shown in Figure 9-1.

9.5.2 Programming Interrupted Data from Host

[00159] Data for a file is streamed from a host and is accumulated in successively
allocated sector buffers. Figure 9-2 shows an example of host data programming that
has been interupted. The stream is interrupted after data segment 2A, whilst a write
operation for a different file is executed. When a further write command for the file is
received, data streamed from the host is accumulated in the same sector buffer as
before, beginning at data segment 2B. When sufficient sector buffers have been
filled, their data is transferred to flash memory together with an ECC for each sector,

and the destination metapage in the program block for the file is programmed.

9.5.3 Programming Data being Flushed from Buffer

[00160] Data for a file is streamed from a host and is accumulated in successively

-35-

WO 2007/019220 PCT/US2006/030242
allocated sector buffers. However, insufficient data is present to be programmed in a

complete metapage. An example is given in Figure 9-3. Data segments 1 and 2A,
together with padding segment 2B, is transferred to flash memory together with an
ECC for each sector, and the destination page in the program block for the file is

programmed.

9.5.4 Programming Data being Swapped-Out from Buffer
[00161] This operation is identical to that for buffer flush programming, except that
the destination page is the next available in the swap block, instead of in the program

block for the file. Figure 9-4 illustrates this.

9.5.5 Programming Data from Host following a Flush from Buffer

[00162] File data supplied by a host subsequent to a buffer flush operation for the file
is programmed separately from the data flushed from buffer memory. Programming
must therefore begin at the next available page in the program block for the file.
Sufficient data is accumulated to complete the current metapage, and it is transferred

with ECC and programmed as shown for sectors 3 and 4 of Figure 9-5.

9.5.6 Programming Data from Host following a Swap-In to Buffer

[00163] When further data for a file that has been swapped-out from the buffer
memory is received, it is accumulated in sector buffers allocated in the buffer
memory. The swapped-out data is also restored to the buffer memory from the swap
block. When sufficient data has been accumulated, a full metapage is programmed in

a single operation.

[00164] As illustrated in Figure 9-6, data segments 1 and 2A, together with padding
segment 2B, is read from the swap block and restored in two sector buffers. The ECC

is checked on both sectors.

[00165] As shown in the example of Figure 9-7, file data from the host is
accumulated in buffer sectors. Data segments 1, 2A/2B, 3A/3B and 4A/4B are
transferred to flash memory together with ECC for each sector, and are programmed:

as sectors 1, 2, 3 and 4.

-36 -

WO 2007/019220 PCT/US2006/030242
9.6 Programming Data Copied from Flash

9.6.1 Copying Data from Aligned Metapage

[00166] Source and destination metapages are said to be aligned when data to be
copied to a full destination metapage occupies a single full source metapage, as
illustrated in Figure 9-8. Data sectors 1, 2, 3 and 4 are read from the source metapage

to four sector buffers, and the ECC is checked on each sector.

9.6.1.1 Write-Back from Buffer

[00167] Data is programmed from the four sector buffers to the destination
metapage, as shown in Figure 9-9. An ECC is generated and stored for sectors 1, 2, 3
and 4.

9.6.1.2 On-Chip Copy

[00168] When the metapage alignment of data to be copied is the same in the source
and destination metapages, on-chip copy within the flash chip may be used to increase
the speed of the copy operation. Data is programmed to the destination metapage if

the ECC check shows no error.

9.6.1.3 Metapage Alignment within Common Block

[00169] The start of each file group within a common block should be forced to align
with start of metapage. Data groups in a program block also align with the start of the
first metapage in the block. Therefore, all data copy operations for a common block,
such as consolidating program blocks into a common block and copying file groups
from one common block to a program block or to another common block, will operate
with data copy between aligned metapages. On-chip copy within the flash chip
should be used when copying data to or from a common block to increase the speed of

the copy operation.

9.6.2 Copying Data from Non-Aligned Sequential Metapages

[00170] Source and destination metapages are said to be non-aligned when data to be
copied to a full destination metapage is contiguous, but occupies two sequential
source metapages. An example of reading the source metapage is shown in Figure 9-
10. Data sectors 1A/1B, 2, and 3 are read from the first source metapage to three

sector buffers, and data sectors 4 and 5A/5B are read from the second source

-37 -

WO 2007/019220 PCT/US2006/030242
metapage to a further two sector buffers. The ECC is checked on each sector.

[00171] Data portions 1A/1B, 2A/2B, 3A/3B, and 4A/4B are programmed from the
sector buffers to sectors 1, 2, 3 and 4 in the destination metapage, as shown if Figure
9-11. An ECC is generated and stored for sectors 1, 2, 3 and 4.

[00172] When the metapage data being copied is part of a larger run of continuous
data, the copy may be partially pipelined. Data is read from the source location to the
buffer memory in full metapages. N+1 source metapages must be read in order to

program N destination metapages.

9.6.3 Copying Data from Non-Aligned Non-Sequential Metapages

[00173] Source and destination metapages are said to be non-aligned and non-
sequential when data to be copied to a full destination metapage is not contiguous,
and occupies two or more non-sequential source metapages. This case represents
copying part of two or more non-contiguous data groups within a file to a single
destination metapage. Data sectors 1A/1B, 2, and 3A/3B, as shown in Figure 9-12,
are read from the first source metapage to three sector buffers, and data sectors 4A/4B
and SA/SB are read from the second source metapage to a further two sector buffers.

The ECC is checked on each sector.

[00174] Data portions 1A/1B, 2A/2B, 3A/3B, and 4A/4B are then programmed from
the sector buffers to sectors 1, 2, 3 and 4 in the destination metapage, as shown in

Figure 9-13. An ECC is generated and stored for sectors 1, 2, 3 and 4.

10. File Indexing

10.1 Principles of File Indexing

[00175] File indexing is shown generally in Figure 10-1. Data for a file is stored as a
set of data groups, each spanning a run of contiguous addresses in both file offset
address space and physical address space. Data groups within the set for a file need
not have any specific physical address relationship with each other. A file index table
(FIT) allows the locations of the valid data groups for a file to be identified, in offset

address order. A set of FIT entries for a file is identified by a file data pointer.

-38 -

WO 2007/019220 PCT/US2006/030242
[00176] Information associated with a file that is generated by a host is stored as

file_info in an info table (IT). The nature and content of file_info is determined by
the host, and it is not interpreted by the device. File info may include filename,
parent directory, child directories, attributes, rights information, and file associations

for a file. File_info for a file in the IT is identified by a file info pointer.

[00177] A directory contains a file data pointer and file info pointer for every valid
file in the device. These directory entries for a file are identified by a fileID, which is

a numerical value.

10.2 File Indexing Structures
[00178] Figure 10-2 shows an example of the file indexing structures.

10.3 Directory

10.3.1 FileID
[001791 The fileID is a numerical identifier for a file existing within the direct data
file platform. It is allocated by the direct data file platform in response to a create

command, or may be specified as a parameter with a create command.

[00180] When a fileID value is allocated by the device, a cyclic pointer to entries in
the directory is used to locate the next available fileID. When a file is deleted or

erased, the directory entry identified by the file’s fileID is marked as available.

[00181] A fileID value defines an entry in the directory, which contains fields for the

file data pointer and file info pointer for a file.

[00182] The maximum number of files that may be stored in the device is determined

by the number of bits allocated for the fileID.

10.3.2 File Data Pointer
[00183] A file data pointer is a logical pointer to an entry for a file in the FIT block
list, and possibly also the FIT update block list, within the control log.

[00184] A file data pointer has two fields:

1) FIT range, and

-39 .

WO 2007/019220 PCT/US2006/030242
2) FIT file no.

[00185] A file data pointer for a file exists even when the file has zero length.

10.3.2.1 FIT Range
[00186] A FIT range is a subset of the FIT. Each FIT range is mapped to a separate
physical FIT block. A FIT range may contain between one FIT file and a maximum

number of FIT files, which may be 512, for example.

10.3.2.2 FIT File No.
[00187] A FIT file no. is a logical number used to identify a FIT file within the FIT.

10.3.3 File Info Pointer
[00188] A file info pointer is a logical pointer to an entry for a file in the info block

list, and possibly also the info update block list, within the control log.
[00189] A file info pointer has two fields:

1) Info range; and
2) Info no.

10.3.3.1 Info Range
[00190] An info range is a subset of the info table. Each info range is mapped to a
separate physical info block. An info range may contain between one set of file_info

and a maximum number of sets of file_info, which may be 512, for example.

10.3.3.2 Info No.
{00191} An info no. is a logical number used to identify a set of file_info within the
info block.

10.3.4 Directory Structure

[00192] The directory is stored in a flash block dedicated to the purpose. Figure 10-3
shows an example directory block format. The directory is structured as a set of
pages, within each of which a set of entries exists for files with consecutive fileID

values. This set of entries is termed a directory range.

- 40 -

WO 2007/019220 PCT/US2006/030242
[00193] The directory is updated by writing a revised version of a directory page at

the next erased page location defined by a control pointer. Multiple pages may be
updated simultaneously, if necessary, by programming them to different pages in a

metapage.

[00194] The current page locations for the directory ranges are identified by range

pointers in the last written page in the directory block.

10.4 Block Lists

[00195] Both the File Index Table and the Info Table comprise a series of logical
ranges, where a range has a correlation with a physical flash block. Block lists are
maintained in the control log to record the correlations between range defined in a file
data pointer or file info pointer and a physical block, and between logical number
defined in a file data pointer or file info pointer and the logical number that is used in

physical blocks within the File Index Table and the Info Table.

10.4.1 FIT Block Lists

[00196] The FIT Block List is a list in the control log that allocates a FIT file pointer
for entries in the FIT for a file. The FIT file pointer contains the address of the
physical flash block that is allocated to the range defined in a file data pointer, and the
same FIT file number that is defined in the file data pointer. An entry in the FIT

block list contains a single field, a block physical address.

[00197] The FIT Update Block List is a list in the control log that allocates a FIT file
pointer for entries for a file in the FIT that are being updated. The FIT file pointer
contains the address of the physical flash block that is currently allocated as the FIT
update block entry, and the FIT update file number that is allocated in the FIT update
block to the FIT file being updated. An entry in the FIT update block list contains
three fields:

1) FIT range,
2) FIT file number, and
3) FIT update file number.

-41 -

WO 2007/019220 PCT/US2006/030242
[00198] When a FIT file pointer corresponding to a file data pointer should be
determined from the FIT block lists, the FIT update block list is searched to determine
if an entry relating to the file data pointer is present. If none exists, the entry relating

to the file data pointer in the FIT block list is valid.

10.4.2 Info Block Lists

[00199] File info written by a host is stored directly in the info table, identified by a
file info pointer. Info block lists exist to allocate an info pointer to file info in the
info table. The indexing mechanisms for these info block lists is completely

analogous to those described for the FIT block lists.

[00200] An eﬂtry in the info block list contains a single field, a block physical

address.
[00201] An entry in the info update block list contains three fields:

1) Info range,
2) Info number, and

3) Update info number.

10.5 File Index Table

[00202] The File Index Table (FIT) comprises a string of FIT entries, where each
FIT entry identifies the file offset address and the physical location in flash rﬁemqry
of a data group. The FIT contains entries for all valid data groups for files stored in
the device. Obsolete data groups are no"t indexed by the FIT. An example FIT logical

structure is given in figure 10-4.

[00203] A set of FIT entries for data groups in a file is maintained as consecutive
entries, in file offset address order. The set of entries is known as a FIT file. The FIT
is maintained as a series of FIT ranges, and each FIT range has a correlation with a
physical flash block. The number of FIT ranges will vary, depending on the number
of data groups in the device. New FIT ranges will be created and FIT ranges
eliminated during operation of the device. The FIT block lists are used to create a FIT
file pointer from the file data pointer, by which a location in the FIT may be
identified. |

-42 -

WO 2007/019220 PCT/US2006/030242
10.5.1 FIT File

[00204] A FIT file is a set of contiguous FIT entries for the data groups within a file.
The entries in the set are in order of file offset address. FIT entries in a FIT file are
consecutive, and are either contained within a single FIT range, or overflow from one

FIT range to the next consecutive FIT range.

10.5.2 FIT Header
[00205] The first entry in a FIT file is the FIT header. It has three fields:

1) FileID,
2) Program block, and

3) Program pointer.

[00206] The FIT header has a fixed length equal to an integral number of FIT entries.

This number may be one.

10.5.2.1 FileID
[00207] The fileID identifies the entry for the file in the directory.

10.5.2.2 Program Block

[00208] The current physical location of the program block for a file is recorded in
the FIT heéder whenever an updated version of the FIT file is written in the FIT. This
is used to locate the program block for a file, when the file is re-opened by the host. It
may also be used to validate the correspondence between a FIT file and the program

block for the file, which has been selected for program block consolidation.

10.5.2.3 Program Pointer

[00209] The current value of the program pointer within the program block for a file
is recorded in the FIT header whenever an updated version of the FIT file is written in
the FIT. This is used to define the location for programming data within the program
block for a file, when the file is re-opened by the host, or when the program block has

been selected for program block consolidation.

10.5.3 FIT Entry
[00210] A FIT entry specifies a data group. It has four fields:

- 43 -

WO 2007/019220 PCT/US2006/030242
1) Offset address,
2) Length,
3) Pointer, and

4) EOF flag.

10.5.3.1 Offset Address
[00211] The offset address is the offset in bytes within the file relating to the first
byte of the data group.

10.5.3.2 Length

[00212] This defines the length in bytes of file data within the data group. The
length of the complete data group is longer than this value by the length of the data
group header.

10.5.3.3 Pointer
[00213] This is a pointer to the location in a flash block of the start of the data group.

The pointer has two fields:

1) Block address, defining the physical block containing the data group, and
2) Byte address, defining the byte offset within the block of the start of the

data group. This address contains the data group header.

10.5.3.4 EOF Flag
[00214] The EOF flag is a single bit that identifies a data group as being the end of
file.

10.5.4 FIT Block Format

[00215] A FIT range is mapped to a single physical block, known as a FIT block.
Updated versions of data in these blocks is programmed in a common update block,
known as a FIT update block. Data is updated in units of one page. Multiple pages

within a metapage may be updated in parallel, if necessary.

10.5.4.1 Indirect Addressing
[00216] A FIT file is identified by a FIT file pointer. The FIT file number field
within this pointer is a logical pointer, which remains constant as data for a FIT file is

moved within the physical structures used for indexing. Pointer fields within the

- 44 -

WO 2007/019220 PCT/US2006/030242
physical page structures provide logical to physical pointer translation.

10.5.4.2 Page Format
[00217] The page formats employed in FIT blocks and FIT update blocks are

identical.

[00218] A page is subdivided into two areas, the first for FIT entries and the second

for file pointers. An example is given in Figure 10-5.

[00219] The first area contains FIT entries that each specifies a data group or
contains a FIT header for a FIT file. An example of the number of FIT entries in a
FIT page is 512. A FIT file is specified by a contiguous set of FIT entries, within one
FIT page or overlapping two or more FIT pages. The first entry of a FIT file,

containing a FIT header, is identified by a file pointer in the second area.

[00220] The second area contains valid file pointers only in the FIT page that was
most recently programmed. The second area in all other pages is obsolete, and is not
used. The file pointer area contains one entryufor each FIT file that may be contained
in the FIT block, that is, the number of file pointer entries is equal to the maximum
number of FIT files that may exist in a FIT block. File pointer entries are stored
sequentially, according to FIT file number. The Nth file pointer entry contains a
pointer to FIT file N within the FIT block. It has two fields:

1) Page number, specifying a physical page within the FIT block, and
2) Entry number, specifying a FIT entry within the physical page.

[00221] The file pointer entries provide the mechanism for translating a logical FIT
file number within a FIT block to a physical location within the block. The complete
set of file pointers is updated when every FIT page is programmed, but is only valid
in the most recently programmed page. When a FIT file is updated in the FIT update
block, its previous location in either the FIT block or FIT update block becomes

obsolete, and is no longer referenced by a file pointer.

10.5.5 FIT Update Blocks
[00222] Changes to FIT files in a FIT block are made in a single FIT update block
that is shared amongst all FIT blocks. An example of physical FIT blocks is shown in

- 45 -

WO 2007/019220 PCT/US2006/030242
figure 10-6.

[00223] The file data pointer is a logical pointer to a FIT file. Its FIT range field is
used to address a FIT block list to identify the physical block address of the FIT block
that is mapped to this FIT range. The FIT file number field of the FIT file pointer
then selects the correct file pointer for the target FIT file in the FIT block.

[00224] Both FIT range field and FIT file number field of the file data pointer are
used to address a FIT update block list, to identify if the target FIT file has been
updated. If an entry is found in this list, it provides the physical block address of the
FIT update block, and the FIT file number within the update block of the updated
version of the FIT file. This may be different from the FIT file number used for the
FIT file in the FIT block. The FIT update block contains the valid version of the FIT

file, and the version in the FIT block is obsolete.

10.5.6 Update Operations

[00225] A FIT block is programmed only during a consolidation operation. This
results in the FIT files being close packed within the block. A FIT update block is
updated when FIT entries are modified, added or removed, and during a compaction

operation. Figure 10-7 shows examples of update operations on FIT files.

[00226] FIT files are closely packed in the FIT block, as a result of a consolidation
operation. The FIT block may not be entirely filled, as there is a maximum number of
FIT files that can exist within it. FIT files may overflow from one page to the next.
A FIT file in a FIT block becomes obsolete when it is updated and rewritten in the
FIT update block.

[00227] When a FIT file is updated, it is rewritten in its entirety in the next available
page in the FIT update block. Updating a FIT file may consist of either changing the
content of existing FIT entries, or changing the number of FIT entries. FIT files may
overflow from one page to the next. The FIT files within a FIT update block need not

all relate to the same FIT range.

10.5.7 Creation of a FIT Range

[002281 When a new FIT range must be created to accommodate additional storage

- 46 -

WO 2007/019220 PCT/US2006/030242
space for FIT files, a FIT block is not immediately created. New data within this
range is initially written to the FIT update block. A FIT block is subsequently created

when a consolidation operation is performed for the range.
10.5.8 Compaction and Consolidation

10.5.8.1 Compaction of Directory Update Block or FIT Update Block

[00229] When a FIT update block becomes filled, its valid FIT file data may be
programmed in compacted form to an erased block, which then becomes the update
block. There may be a little as one page of compacted valid data to be programmed,

if updates have related to only a few files.

[00230] If the FIT file to be relocated in the compaction operation relates to a closed
file, and the FIT block for the range contains sufficient unprogrammed pages, the FIT

file may be relocated to the FIT block, rather fhan to the compacted update block.

- 10.5.8.2 Consolidation of Directory Block or FIT Block
[00231] When FIT entries are updated, the original FIT file in the FIT block becomes
obsolete. Such FIT blocks should undergo garbage collection periodically, to recover
obsolete space. This is achieved by means of a consolidation operation. In addition,
new files may have been created within a range and have entries in an update block,
but no corresponding obsolete entries in the FIT block may exist. Such FIT files

should be relocated to the FIT block periodically.

[00232] FIT files in an update block may be consolidated into a FIT block for the
relevant range, and therefore be eliminated from the update block, whilst other FIT

files remain in the update block.

[00233] If the number of FIT entries in a FIT file has increased during the update
process, and valid data for the FIT range cannot be consolidated into a single erased -
block, some FIT files originally assigned to that FIT range may be assigned to another
FIT range, and consolidation may be performed into two blocks in separate
operations. In the case of such reassignment of a FIT file, the file data pointer in the

directory must be updated to reflect the new FIT range.

-47 -

WO 2007/019220 PCT/US2006/030242
[00234] A consolidation operation for a range should be performed when the

capacity of valid data for that range in a FIT update block reaches a defined threshold.
An example of this threshold is 50%.

{00235} Compaction should be performed in preference to consolidation for active
FIT files relating to files that are still open, and which the host may continue to

aCCess.

10.6 Info Table

[00236] The info table uses the same structures, indexing mechanisms and update -
techniques that are defined for the File Index Table in section 10.5. However,
file_info for a file comprises a single string of information that is not interpreted

within the direct data file platform.

10.7 Data Groups

[00237] A data group is a set of file data with contiguous offset addresses for a file,
programmed at contiguous physical addresses in a single memory block. A file will
normally be programmed as a number of data groups. A data group may have any

length between one byte and one block.

10.7.1 Data Group Header
[00238] Each data group is programmed with a header, containing file identifier
information for cross reference purposes. The header contains the FIT file pointer for

the file of which the data group forms part.

11. Block State Managsement

11.1 Block States
[00239] Blocks for storage of file data can be classified in the following eight states,

as shown in the state diagram of Figure 11-1.

11.1.1 Erased Block
[00240] An erased block is in the erased state in an erased block pool. A possible

transition from this state is as follows:

(a) Erased Block to Program Block

- 48 -

WO 2007/019220 PCT/US2006/030242
[00241] Data for a single file is programmed to an erased block, when it is supplied

from the host or when it is copied during garbage collection for the file.

11.1.2 Program Block

[00242] A program block is partially programmed with valid data for a single file,
and contains some erased capacity. The file may be either open or closed. Further
data for the file should be programmed to the block when supplied by the host, or

when copied during garbage collection of the file.
[00243] Possible transitions from this state are as follows:

(b) Program Block to Program Block

Data for a single file is programmed to a program block for that file, when it is
supplied from the host or when it is copied during garbage collection for the
file.

(¢) Program Block to File Block

Data for a single file from the host is programmed to fill a program block for
that file.

(f) Program Block to Obsolete Block

All data for a file in a program block becomes obsolete, as a result of ifalid
data being copied to another block during garbage collection, or of all or part
of the file being deleted by the host.

(h) Program Block to Obsolete Program Block

Part of the data in a program block becomes obsolete as a result of an updated
version of the data being written by the host in the same program block, or of
part of the file being deleted by the host.

(1) Program Block to Common Block

Residual data for a file is programmed to a program block for a different
closed file during garbage collection of the file or of a common block, or

during consolidation of program blocks.

11.1.3 File Block
[00244] A file block is filled with fully valid data for a single file.

-49 -

WO 2007/019220 PCT/US2006/030242
[00245] Possible transitions from this state are as follows:

(d) File Block to Obsolete File Block

Part of the data in a file block becomes obsolete as a result of an updated
version of the data being programmed by the host in a program block for the
file.

(g) File Block to Obsolete Block (g)

All data in a file block becomes obsolete, as a result of an updated version of
the data in the block being programmed by the host in a program block for the
file, or of all or part of the file being deleted by the host.

11.1.4 Obsolete File Block
[00246] An obsolete file block is filled with any combination of valid data and

obsolete data for a single file.
[00247] Possible transitions from this state are as follows:

(e) Obsolete File Block to Obsolete Block (e)

All data in an obsolete file block becomes obsolete, as a result of an updated
version of valid data in the block being programmed by the host in a program
block for the file, of valid data being copied to another block during garbage
collection, or of all or part of the file being deleted by the host.

11.1.5 Obsolete Program Block

[00248] An obsolete program block is partially programmed with any combination of
valid data and obsolete data for a single file, and contains some erased capacity.
Further data for the file should be programmed to the block when supplied by the
host. However, during garbage collection, data for the file should not be copied to the

block and a new program block should be opened.
[00249] Possible transitions from this state are as follows:

(i) Obsolete Program Block to Obsolete Program Block

Data for a single file is programmed to an obsolete program block for that file,
when it is supplied from the host.

(j) Obsolete Program Block to Obsolete Block

-50 -

WO 2007/019220 PCT/US2006/030242

All data for a file in an obsolete program block becomes obsolete, as a result
of valid data being copied to another block during garbage collection, or of all
or part of the file being deleted by the host.

(k) Obsolete Program Block to Obsolete File Block

Data for a single file is programmed to fill an obsolete program block for that

file, when it is supplied from the host.

11.1.6 Common Block
[00250] A common block is programmed with valid data for two or more files, and
normally contains some erased capacity. Residual data for any file may be

programmed to it during garbage collection or consolidation of program blocks.
[00251] Possible transitions from this state are as follows:

(m) Common Block to Common Block

Residual data for a file is programmed to a common block during garbage
collection of the file or a common block, or during consolidation of program
blocks.

(n) Common Block to Obsolete Common Block

Part or all of the data for one file in a common block becomes obsolete as a
result of an updated version of the data being programmed by the host in a
program block for the file, of the data being copied to another block during
garbage collection of the file, or of all or part of the file being deleted by the
host.

11.1.7 Obsolete Common Block
[00252] An obsolete common block is programmed with any combination of valid
data and obsolete data for two or more files, and normally contains some erased

capacity. Further data should not be programmed to the block.
[00253] Possible transitions from this state are as follows:

(o) Obsolete Common Block to Obsolete Block
Data for all files in an obsolete common block becomes obsolete as a result of

an updated version of the data for one file being programmed by the host in a

-51 -

WO 2007/019220 PCT/US2006/030242
program block for the file, of the data for one file being copied to another

block during garbage collection of the file, or of all or part of one file being
deleted by the host.

11.1.8 Obsolete Block
[00254] An obsolete block contains only obsolete data, but is not yet erased.

[00255] A possible transition from this state is as follows:

(p) Obsolete Block to Erased Block (p)
An obsolete block is erased during garbage collection, and added back to the
erased block pool.

12. Erased Block Management

121 Metablock Linking
[00256] The method of linking erase blocks into metablocks is unchanged from that

defined for an earlier 3rd generation LBA system.

12.2 Erased Block Pool
[00257] The erased block pool is a pool of erased blocks in the device that are
available for allocation for storage of file data or control information. Each erased

block in the pool is a metablock, and all metablocks have the same fixed parallelism.

[00258] Erased blocks in the pool are recorded as entries in the erased block log in
the control block. Entries are ordered in the log according to the order of erasure of
the blocks. An erased block for allocation is selected as the entry at the head of the
log. An entry is added to the tail of the log when a block is erased.

13. Control Data Structures

[00259] Control data structures are stored in flash blocks dedicated to the purpose.

Three classes of blocks are defined, as follows:

1) File directory block,
2) File index table block, and
3) Control block.

-52 .-

WO 2007/019220 PCT/US2006/030242
13.1 File Directory Block

[00260] The structure of file directory blocks is has been described previously.

13.2 File Index Table Block
[00261] The structure of file index table blocks has been described previously

13.3 Control Block

[00262] The control block stores control information in four independent logs. A
separate page is allocated for each of the logs. This may be extended to multiple
pages per log, if necessary. An example format of a control block is shown in Figure

13-1.

[00263] A log is updated by writing a revised version of the complete log at the next
erased page location defined by a control pointer. Multiple logs may be updated
simultaneously, if necessary, by programming them to different pages in a metapage.
The page locations of the valid versions of each of the four logs are identified by log

pointers in the last written page in the control block.

13.3.1 Common Block Log

[00264] The common block log records information about every common block
existing in the device. The log entries in the common block log are subdivided into
two areas, the first for block entries and the second for data group entries, as
illustrated in Figure 13-2. Each block entry records the physical location of a
common block. Entries are fixed size, and a fixed number exist in the common block

log. Each entry has the following fields:

1) Block physical address,
'2) Pointer to the next available page in the common block for programming,
3) Pointer to the first of the data group entries for the block, and

4) Number of data group entries.

[00265] A data group entry records information about a data group in a common
block. A set of contiguous data group entries defines all data groups in a common
block. There is a variable number of data groups in a common block. Each entry

preferably has the following fields:

-53-

WO 2007/019220 PCT/US2006/030242
1) Byte address within common block, and “

2) FIT file pointer.

13.3.2 Program Block Log
[00266] The program block log records information about every program block
existing in the device for closed files. One entry exists for each program block, and

has the following fields:

1) Block physical address,

2) Pointer to the next available page in the program block for programming,
and

3) FIT file pointer.

13.3.3 Erased Block Log

[00267] The erased block log records the identity every erased block existing in the
device. One entry exists for each erased block. Entries are ordered in the log
according to the order of erasure of the blocks. An erased block for allocation is
selected as the entry at the head of the log. An entry is added to the tail of the log
when a block is erased. An entry has a single field: Block physical address.

13.3.4 Control Log

[00268] The control log records diverse control information in the following fields:

13.3.4.1 Open File List
[00269] This field contains information about each of the currently open files, as

follows:

1) Pathname,

2) Filename,

3) FIT file pointer, and

4) Program block physical address.

~ [00270] The program blocks for open files are not included in the program block log.

13.3.4.2 Common Block Count
[00271] This field contains the total number of common blocks recorded in the

common block log.

-54 -

WO 2007/019220 PCT/US2006/030242
13.3.4.3 Program Block Count

[00272] This field contains the total number of program blocks recorded in the
program block log. The count is updated when blocks are added to and removed from

the program block log.

13.3.4.4 Erased Block Count
[00273] This field contains the total number of erased blocks recorded in the erased
block log. The count is updated when blocks are added to and removed from the

erased block log.

13.3.4.5 Program/Common Block Page Count
[00274] This field contains a count of the number of valid data pages in program
blocks and common blocks. The count is updated when blocks are added to and

removed from the program block log and the common block log.

13.3.4.6 Obsolete Block Count. ‘
[00275] This field contains a count of the number of fully obsolete blocks awaiting
garbage collection. The count is updated when blocks are added to and removed from

the obsolete block garbage collection queue.

13.3.4.7 FIT Block List
[00276] This field contains information for mapping FIT range to FIT block. It
contains an entry defining FIT block physical address for each FIT range.

13.3.4.8 FIT Update Block List
[00277] This field contains information for mapping FIT range and FIT file number
to FIT update file number. It contains an entry for each valid FIT file that exists in

the update block. An entry has the following three fields:

1) FIT range,
2) FIT file number, and
3) FIT update file number.

13.3.4.9 Directory Block List
[00278] This field contains information for mapping directory range to directory
block. It contains an entry defining directory block physical address for each

directory range.

-55-

WO 2007/019220 PCT/US2006/030242
13.3.4.10 Directory Update Block List

[00279] This field contains information for mapping directory range and subdirectory
number to update subdirectory number. It contains an entry for each valid

subdirectory that exists in the update block. An entry has the following three fields:

1) Directory range,
2) Subdirectory number, and

3) Update subdirectory number.

13.3.4.11 Buffer Swap Block Index
[00280] This field contains an index of valid data groups in the swap block. The

index for each data group contains the following fields:

1) FIT file pointer,
2) Byte address within swap block, and
3) Length.

13.3.4.12 Priority Obsolete Block Queue
[00281] This field contains the block addresses of all blocks in the priority obsolete

block queue for garbage collection.

13.3.4.13 Priority Common Block Queue
[00282] This field contains the block addresses of all blocks in the priority common

block queue for garbage collection.

13.3.4.14 Obsolete Block Queue
[00283] This field contains the block addresses of all blocks in the obsolete block

queue for garbage collection.

13.3.4.15 Common Block Queue
[00284] This field contains the block addresses of all blocks in the common block

queue for garbage collection.

13.3.4.16 File Queue
[00285] This field contains the FIT file pointers of all files in the file queue for

garbage collection.

-56 -

WO 2007/019220 PCT/US2006/030242
14. Static Files '

14.1 Static Files

[00286] Some hosts may store data in a direct data file device by creating a set of
files with identical sizes, and updating data periodically within files in the set. A file
that is part of such a set is termed a static file. The host may be external to the
memory card or may be a processor within the memory card that is executing an on-

card application.

[00287] An example application of the use of static files is described in a patent
application of Sergey Anatolievich Gorobets, entitled “Interfacing systems Operating
Through A Logical Address Space and on a Direct Data File Basis,” filed
concurrently herewith. In that application, the logical address space of a host is

divided by the memory controller into such static files.

[00288] The direct data file device manages the storage of a static file in exactly the
same way as for any other file. However, the host may use commands in the direct
data file command set in a way that optimizes behavior and performance of the device

with static files.

14.1.1 Static File Partition
[00289] Static files are stored as a set in a dedicated partition in the device. All static

files in a partition have identical file size.

14.1.2 Static File Size
[00290] File size is defined by host, via the range of offset addresses written to the

file. Static files have a size equal to the size of a metablock.

[00291] The host manages the file offset values represented by the write_pointer and
read_pointer, to maintain them within the range of values permitted for a static file at

all times.

14.1.3 Deleting Static Files

[00292] Unlike other files in a direct data file device, the host does not delete a static
file during normal operation. A static file is created by the host, then exists
continuously in the device. Data written at any time to the file overwrites existing file

data.

-57-

WO 2007/019220 PCT/US2006/030242
[00293] However, a host always has the ability to delete a static file, for example,

during an operation by the host to reformat the device or to reduce the size of the

partition for static files in the device.

14.2 Command Set used with Static Files
[00294] Figure 14-1 gives a command set for use with static files, a subset of that
shown in Figures 2-1 through 2-6, which support all operations required for static

files.

14.3 Creating Static Files

[00295] A static file is created in the device by use of the create command from the
host. The host will normally specify the fileID with which it wishes to identify the
file.

[00296] The host may either track which files it has created in the device, or it may
create a file in response to an error message from the device after the host has

attempted to open a file whose fileID does not already exist in the device.

14.4 Opening Static Files
[00297] The host opens a static file by sending an open command using the fileID for

the file as a parameter.

[00298] The host may operate with the set of static files in the device in such a way
that it controls the number of the files that are concurrently open in the device or the
number of files of a specific type defined by the host that are concurrently open in the
device. The host may therefore close one or more static files before opening another

static file.

14.5 Writing to Static Files

[00299] When a static file is first written, it occupies a single complete file block in
the device, because the file size is defined by the host as being exactly equal to the
size of a metablock in flash memory. The offset address range for the file is therefore

exactly equal to the size of a metablock in flash memory.

[00300] Subsequent writes to the static file cause data to be updated within this offset

address range. The host controls the file offset address at which data is being updated

-58 -

WO 2007/019220 PCT/US2006/030242

by controlling the write_pointer value for the file by means of the write pointer
command. The host does not allow the write_pointer value to exceed the end of the
offset address range relating to the size of a static file. Similarly, the host constrains

the read_pointer value to within this range.

[00301] When existing data in a static file is updated after the file has been opened, a
program block is opened to which updated data is programmed. Data with
corresponding offset address in the file block becomes obsolete. If the complete static
file is updated, all data in the program block is valid and the program block becomes
the file block for the file. All data in the previous file block for the file has become
obsolete, and the block is added to the obsolete block garbage collection queue. An -
erased block is assigned as a program block if further updated data is received for the

file.

[00302] If a program block for a static file becomes full, but it does not contain all
the valid data for the file, some of the data in the program block is obsolete because
multiple updates have been made to the same offset address. In this case, the program
block cannot become a file block, and another empty program block is not opened
when further data for the file is received. An erased block is allocated to which valid
data from the program block is copied (the program block is compacted), and this
partially filled block then becomes the program block for the file. All data in the
previous program block for the file is now obsolete, and the block is added to the

obsolete block garbage collection queue.

[00303] Note that the host can force a consolidation of a file block and a program
block, each of which contains some valid data for a file, by closing the file as
described in the following section 14.6. The host may elect to temporarily close a file
when a partially obsolete program block becomes full, rather than allow the direct
data file device to compact the program block when further data for the file is

received.

14.6 Closing Static Files
[00304] The host closes a static file by sending a close command using the fileID for

the file as a parameter.

-59.

WO 2007/019220 PCT/US2006/030242
[00305] Closure of a static file causes the file to be put into the file garbage
collection queue, if only part of the data for the file has been updated. This allows a
subsequent garbage collection operation for the file as described in the following
section 14.7. However, the host may force an immediate garbage collection operation

on the file, as also described in section 14.7.

14.7 Garbage Collection of Static Files

[00306] A static file with an entry in the file garbage collection queue has been
closed following the update of part of the data in the file. The file block for the file
contains some valid data and some obsolete data, and the program block contains

some valid data, possibly some obsolete data, and possible some erased capacity.

[00307] The file garbage collection operation consolidates all valid data for the file
to a single block. If the program block contains no obsolete data, valid data is copied
to the program block from the file block, and the file block is erased. If the program
block contains obsolete data, all valid data from both the file block and the program
block are copied to an erased block, and both the file block and program block are

erased.

[00308] File garbage collection is performed when the entry reaches the head of the
queue, at a time determined by the garbage collection-scheduling algorithm.
However, the host may force an immediate garbage collection operation on a file
when it closes the file. It does this by sending an idle command immediately after the
close command for the file, which causes the device to perform garbage collection or
block consolidation operations continuously, until another command is received. The
host monitors the internal busy status of the device, until it detects that the device is
no longer busy performing internal operations, before sending another command. By
this mechanism, consolidation of file and program blocks for a file immediately the

file has been closed may be ensured by the host.

OUTLINE OF AN EXAMPLE MEMORY SYSTEM ACCORDING TO THE
FOREGOING DESCRIPTION

[00309] Direct Data File Platform

[00310] The direct data file platform acts as a universal back-end system for

managing data storage in flash memory.

- 60 -

WO 2007/019220 PCT/US2006/030242
[00311] The direct data file interface is an internal file storage interface supporting

multiple sources of data.

[00312] File access interface with random rgad/write access of file data without

predefined length.

[00313] Object interface with transfer of complete file objects with predefined
length.

[00314] LBA interface to conventional hosts incorporating a file system. Logical

blocks are stored as logical files.
[00315] Embedded application programs with random access to data within files.

[00316] Direct data file storage is a back-end system that organizes data storage on a

file-by-file basis.
[00317] No logical address space for storage device.
[00318] No file system.

Direct Data File v. Prior Systems

[00319] The direct data file platform offers benefits over prior systems:
[00320] High data write speed:

Progressive performance reduction due to file fragmentation is
eliminated,;
Peak data write speed can be increased when files deleted by a host are

erased in a background operation.
[00321] Uniformity of data write speed:

Sustained write speed for streaming data can be improved when
garbage collection is performed in the background or in bursts

interleaved with writing of host data.

-61 -

WO 2007/019220 PCT/US2006/030242
[00322] Benefits are a consequence of the characteristics of th? algorithms used in

the direct data file platform:

Limited file fragmentation

Limited file and block consolidation
True file delete

Optimum file data indexing

Efficient garbage collection

Direct Data File Interface — Desirable Features

[00323] The direct data file interface should be independent of the operating system

in a host:

Files with a numerical identifier are managed in a flat hierarchy;
Data associated with a file may be stored, to allow construction and

maintenance of a hierarchical directory at a level above the interface.

[00324] The direct data file interface preferably supports various formats of file data

transfer:

Files whose size is undefined to which data can be streamed;
Files whose size is defined before they are written;

Files whose size is fixed and which exist permanently.

Direct Data File Interface - Implementation

[00325] Data within a file has random write and read access, with a granularity of

one byte.

[00326] Data may be appended to, overwrite, or be inserted within, existing data for

a file.

[00327] File data being written or read is streamed to or from the device with no

predefined length.
[00328] A current operation is terminated by receipt of another command.

[00329] Files are opened for writing data and closed at the end of the file, or when

-62 -

WO 2007/019220 PCT/US2006/030242

the file is inactive.

[00330] A file handle is returned by the device for files specified by the host.
[00331] A hierarchical directory is supported but not mainiained.

[00332] Associated information for a file may be stored.

[00333] A state within which the device may perform internal operations in the

background may be initiated by the host.

Direct Data File Interface - Command Set
[00334] File commands:

Commands for controlling file objects,

Create, Open, Close, Delete, Erase, List_files.

[00335] Data commands:

Commands for writing and reading file data,

Write, Insert, Remove, Read, Save_buffer, Write _pointer, Read_pointer.
[00336] Info commands:

Commands for writing and reading information associated with a file,

Write_info, Read_info, Info_write_pointer, Info_read_pointer.
[00337] State commands:

Commands for controlling the state of the device,
Idle, Standby, Shut-down.

[00338] Device commands:

Commands for interrogating the device,

Capacity, Status.

File-to-Flash Mapping Algorithm
[00339] Data structures:

-63 -

WO 2007/019220 PCT/US2006/030242
Files

Data groups
[00340] Block types:

Program blocks
File blocks

Common blocks
[00341] File types:

Plain file
Common file
Edited file

[00342] Memory recovery:

Garbage collection

Block consolidation

File-to-Flash Mapping Algorithm - Data Structures
[00343] Files:

A file is a set of data created and maintained by a host;

The host may be an external host or may be an application program within the
memory card;

A file is identified by a filename created by the host, or by a file handle
created by the direct data file platform; ’

Data within a file is identified by file offset addresses;

The sets of offset addresses for different files act as independent logical
address spaces within the device. There is no logical address space for the

device itself.
[00344] Data groups:

A data group is a set of data for a single file with contiguous offset addresses

within the file;

- 64 -

WO 2007/019220 PCT/US2006/030242
A data group is stored at contiguous physical addresses in a single block;

A data group may have any length between one byte and one block;
The data group is the basic unit for mapping logical file address to physical
flash address.

File-to-Flash Mapping Algorithm - Block Types
[00345] Program blocks:

All data written by a host is programmed in a program block;

A program block is dedicated to data for a single file;

File data in a program block may be in any order of file offset address, and a
program block may contain multiple data groups for a file;

Separate program blocks exist for each open file, and for an unspecified

number of closed files.
[00346] File blocks:

A program block becomes a file block when its last location has been

programmed.
[00347] Common blocks:

A common block contains data groups for more than one file;

A common block is created by programming data groups for unrelated files to
a program block during garbage collection of a common block or during a
block consolidation operation;

Data groups may be written to a common block during garbage collection of

another common block or during a block consolidation operation.

File-to-Flash Mapping Algorithm — File Types
[00348] Plain file (see Figure 3-1):

A plain file comprises any number of complete file blocks and one partially
written program block.
A plain file may be deleted without need to relocate data from any block prior

to its erasure.

- 65 -

WO 2007/019220 PCT/US2006/030242
[00349] Common file (see Figure 3-2):

A common file comprises any number of complete file blocks and one
common block, which contains data for the file along with data for other
unrelated files.

A garbage collection operation on only the common block must be performed

subsequent to the file being deleted.
[00350] Edited file (see Figures 3-3 and 3-4)

An edited file contains obsolete data in one or more of its blocks, as a resuit of
data at an existing offset address having been overwritten.

Memory capacity occupied by obsolete data may be recovered by a file
garbage collection operation.

A file garbage collection operation restores an edited file to plain file format.

File-to-Flash Mapping Alsorithm - Memory Recovery
[00351] Garbage collection:

Garbage collection operations are performed to recover memory capacity
occupied by obsolete data.

Pending operations are logged in garbage collection queues, and are
performed subsequently at an optimum rate according to scheduling
algorithms.

Garbage collection may be initiated by a host command and performed in the
background whilst the host interface is quiescent. Operations are suspended
on receipt of any other host command.

Garbage collection may also be performed as foreground operations, in bursts

interleaved with host data write operations.
[00352] Block consolidation:

An ongoing process of block consolidation may be implemented to recover

erased capacity locked up in program blocks and common blocks.

- 66 -

WO 2007/019220 PCT/US2006/030242
Only necessary if the distributions of capacities of file data in program blocks

and of capacities of obsolete data for deleted files in common blocks are
imbalanced.
Data in multiple program or common blocks is consolidated to allow erasure

of one or more blocks.

Programming File Data

[00353] Data for a file identified by a file handle is programmed to flash memory as

it is streamed from a host following a write or insert command.

[00354] The initial file offset address of the data is defined by a write pointer, whose
value may be set by the host.

[00355] When sufficient data has been accumulated in buffer memory, a metapage is

programmed in the program block for the file.

[00356] When a program block becomes filled, it is designated as a file block and an

erased block is allocated as a new program block for the file.

[00357] Data group indexing structures are updated in flash memory whenever a

program block becomes filled, or whenever another host command is received.

[00358] The file data programming procedure initiates bursts of foreground garbage
collection, at intervals in the host data stream that are determined by an adaptive

scheduling algorithm.

[00359] The file data programming procedure is exited when another host command

is received.

Reading File Data

[00360] Data for a file identified by a file handle is read from flash memory and is

streamed to a host following a read command.

[00361] The initial file offset address of the data is defined by a read pointer, whose
value may be set by the host.

[00362] File data is read in units of one metapage until the end of the file is reached,

or until another host command is received.

-67 -

WO 2007/019220 PCT/US2006/030242
[00363] Data is transferred to the host in file offset address order.

[00364] The location of data groups to be read for the file is defined by file indexing

structures.

[00365] The file data reading procedure is exited when another host command is

received.

Deleting a File
[00366] In response to a delete command for a file, blocks containing data for the file

are identified and added to garbage collection queues for subsequent garbage

collection operations.

[00367] The file directory and file index table are updated, to remove entries for the
file.

[00368] The procedure for deleting a file does not initiate garbage collection

operations, and data for the file is not immediately erased.

[00369] In response to an erase command for a file, the same procedure is followed
as for the delete command, but garbage collection operations are initiated and

completed before any other host command is executed.

Garbage Collection

[00370] Garbage collection is an operation to recover flash capacity occupied by

obsolete data.

[00371] Objects are added to 3 garbage collection queues from time to time during

operation of the device, to define subsequent garbage collection operations:

Obsolete block queue - When a block becomes fully obsolete as a result of
update of file data or deletion of a file, it is added to this queue.

Common block queue - When data in part of a block containing data for
multiple files becomes obsolete as a result of file data update, deletion of a
file, or garbage collection of a file, it is added to this queue.

File queue - When a file is closed by the host, it is added to this queue.
Objects may be designated for priority garbage collection.

- 68 -

WO 2007/019220 PCT/US2006/030242
Garbage collection operations may be scheduled in two ways:

Background operations may be initiated by the host when it it is not making
read or write access to the device.
Foreground operations may be initiated by the direct data file platform whilst

it is being accessed by the host.

Garbage Collection - Scheduling
[00372] Background garbage collection is initiated by a host. An idle state in which

the device is permitted to perform internal operations is initiated by the host via a
specific command at the direct data file interface. Garbage collection of objects from
the garbage collection queues continues whilst the idle state persists. Garbage
collection is suspended when any command is received from the host. The host may
optionally monitor the busy state of the device to allow garbage collection operations

to complete before sending the next command.

[00373] Foreground garbage collection is initiated by the direct data file platform
when a host has not initiated background operations. Garbage collection is scheduled
according to an adaptive algorithm. Bursts of program and erase operations for a
current garbage collection operation are interleaved with bussts of program operations
for file data received from the host. The lengths of the bursts may be adaptively

controlled to define the duty cycle of interleaved garbage collection.

Garbage Collection - Adaptive Scheduling (see Figure 8-2)

[00374] Flash memory normally has recoverable capacity that is required for writing
further host data, contained in program blocks, common blocks and obsolete file

blocks.

[00375] Adaptive garbage collection controls the interleave ratio of programming
further host data and relocating previously written host data. Recoverable capacity is
made available for new host data by converting it to erased capacity. The garbage

collection rate remains constant over the adaptive period

Garbage Collection - Priority of Operations

[00376] The operation for a scheduled garbage collection is selected from the

garbage collection queues with the following order of priority:

- 69 -

WO 2007/019220 PCT/US2006/030242
1. Obsolete block priority garbage collection:
The next entry for an obsolete block created as a result of a file erase
command is selected.
2. Common block priority garbage collection:
‘ The next entry for a partially-obsolete common block created as a
result of a file erase command is selected.
3. Obsolete block garbage collection:
The next entry for an obsolete block is selected.
4. Common block garbage collection:
The next entry for a partially-obsolete common block is selected
5. File garbage collection: |
The next entry for a partially obsolete file is selected.
6. Block consolidation:
When no entries exist in the garbage collection queues, a source block

and destination blocks are selected for a block consolidation operation.

Garbage Collection - Common Block Garbage Collection

[00377] Valid files contain some data in either a program block or a common block.

[00378] When a file is deleted, any common block containing obsolete data for the

file experiences a common block garbage collection operation.

[00379] Data groups for unrelated files are relocated to another common block or

program block (see Figures 8-7A through 8-7D).

[00380] During a common block garbage collection operation, valid file groups are

relocated from the source common block to one or more selected destination blocks.
[00381] The destination block is selected individually for each file group.
[00382] Priorities for selection of a destination block are as follows:

1. The common block with available erased capacity that is the best-fit for the
source file group to be relocated;
2. The program block with available erased capacity that is the best-fit for the

source file group to be relocated; and

-70 -

WO 2007/019220 PCT/US2006/030242

3. An erased block, which is then designated a program block.

Garbage Collection - File Garbage Collection

[00383] File garbage collection may be performed after a file has been closed, to
recover capacity occupied by obsolete data for file. This is only necessary if data for

the file has been over-written during an edit.

[00384] A file in the edited plain file state or edited common file state is restored to

the plain file state (containing a single program block and no common block).

[00385] File garbage collection is performed by copying valid data groups from

blocks containing obsolete data to the program block for the file.

[00386] Data groups are copied in sequential order from the offset address following

the initial program pointer, with wrap-around at the end of the file.

Garbage Collection - Block Consolidation

[00387] During a block consolidation operation, valid file groups are relocated from

a selected source block to one or more selected destination blocks.

[00388] The source block is selected as the common block or program block with the

lowest capacity of data.
[00389] The destination block is selected individually for each file group.
[00390] Priorities for selection of a destination block are as follows:

1. A common block with available erased capacity that is the best-fit for the
source file group to be relocated.

2. A program block with available erased capacity that is the best-fit for the
source file group to be relocated.

3. A program block or common block with the highest available erased
capacity, to which part of the file group is written In this situation, it is
permissible for a file to share two blocks with other unrelated files.

4. A second program block or common block with available erased capacity
that is the best-fit for the remainder of the source file group, to which the

remainder of the file group is written.

-71 -

WO 2007/019220 PCT/US2006/030242

5. An erased block, which is then designated a program block, to which the

remainder of the file group is written.

File Indexing (see Figure 10-1)
[00391] A file is identified by a FileID that is allocated by the direct data file device

when a file is created by a host.

[00392] A flat directory specifies a File Data Pointer and File Info Pointer for each
FileID.

[00393] The File Data Pointer identifies a set of entries in a File Index Table, with

each entry specifying a data group for the file to which the set relates.

[00394] The File Info Pointer identifies a string of information for the file in an Info
Table:

File_info is written by a host and is not interpreted by the direct data file
device.
File_info may include filename, parent directory, child directories, attributes,

rights information, and file associations for a file.

File Indexing - Indexing Structures

[00395] See Figure 10-2

File Indexing - File Index Table (FIT) - See Figure 10-4

[00396] The FIT contains entries for all valid data groups for files in flash memory.
Obsolete data groups are not indexed by the FIT.

[00397] The FIT is divided into logical ranges, each of which is mapped to a physical
block.

[00398] A FIT file is a set of consecutive entries for a file, in file offset address

order.

[00399] A FIT file is identified by a FIT file pointer, defining physical block and

logical file number.

-72 -

WO 2007/019220 PCT/US2006/030242

File Indexing - Updating File Indices (see Figures 10-6 and 10-7)

[00400] The same structure is used for file index table and info table.

3

[00401] Block lists are used to relate a logical file data pointer to FIT files within a
physical FIT block or FIT update block.

[00402] FIT files are stored in the FIT block in compacted format.

[00403] Updated versions of FIT files are stored in a shared FIT update block, with a
single FIT file in a page.

[00404] Compaction of the FIT update block and consolidation of FIT files in a FIT

block are performed from time to time.

File Indexing - Index Page Format (see Figure 10-5)
[00405] The same structure is used for, FIT block, FIT update block, info block, and

info update block.
[00406] Information is programmed in units of one page.
[00407] A page is subdivided into two areas, for FIT entries and file pointers.

[00408] File pointers translate a logical file number within a range to a page number

and entry number for the start of the corresponding FIT file.
[00409] A FIT file comprises physically consecutive FIT entries.

Data Buffering and Programming

[00410] Data written by host or being relocated within flash memory is buffered in a

set of sector buffers.

[00411] The resolution of data group boundaries is one byte, but data is transferred to

and from flash in multiples of one sector, for ECC generation and checking.

[00412] Data from the buffer is programmed in flash in units of a metapage, where

possible.

-73 -

WO 2007/019220 PCT/US2006/030242

[00413] A buffer flush operation programs only part of a page when a file is closed
or a shutdown is pending. The file indexing techniques allow the unprogrammed part

of the page to persist.

[00414] A buffer swap-out operation allows file data in the buffer to be stored
temporarily in a common swap block, for management of buffer space and back-up of

data in buffer.

[00415] The start of a file group in a program block or common block is aligned to

the start of a metapage.
[00416] On-chip copy may be used for most data relocation in flash.

Block State Management

[00417] The direct data file system maintains eight states for blocks associated with

the storage of data (see Figure 11-1).

Erased Block Manasement

[00418] Direct data file stores all data for files and all control information in fixed-

size metablocks. (The term “block™ is often used to designate “metablock.”).

[00419] The method of linking erase blocks into blocks is unchanged from that used
in a system with a logical address space (LBA) interface that is described in the
following pending United States patent applications: serial no. 10/749,831, filed
December 30, 2003, entitled “Management of Non-Volatile Memory Systems Having
Large Erase Blocks”; serial no. 10/750,155, filed December 30, 2003, entitled “Non-
Volatile Memory and Method with Block Management System”; serial no.
10/917,888, filed August 13, 2004, entitled “Non-Volatile Memory and Method with
Memory Planes Alignment”; serial no. 10/917,867, filed August 13, 2004; serial no.
10/917,889, filed August 13, 2004, entitled “Non-Volatile Memory and Method with
Phased Program Failure Handling”; and serial no. 10/917,725, filed August 13, 2004,
entitled “Non-Volatile Memory and Method with Control Data Management,” serial
no. 11/192,200, filed July 27, 2005, entitled “Non-Volatile Memory and Method with
Multi-Stream Update Tracking,” serial no. 11/192,386, filed July 27, 2005, entitled
“Non-Volatile Memory and Method with Improved Indexing for Scratch Pad and

-74 -

WO 2007/019220 PCT/US2006/030242

Update Blocks,” and serial no. 11/191,686, filed July 27, 2005, entitled “Non-Volatile
Memory and Method with Multi-Stream Updating”.

[00420] Erased blocks that are available for allocation for storing data or control

information are held in an erased block pool.

[00421] Erased blocks are recorded as entries in an erased block log.

[00422] An erased block for allocation is selected as the entry at the head of the log.
[00423] An entry is added at the tail of the log when a block is erased.

Control Data Structures

[00424] Control data structures are stored in a dedicated .control block.

[00425] Control information is stored in four independent logs. Each log occupies
one or more pages in the control block. Valid log pages are tracked by log pointers in

the last page written.

[00426] The common block log contains entries for all common blocks existing in

flash memory, in order of the available erased capacity they contain.

[00427] The program block log contains entries for all program blocks existing in

flash memory, in order of the available erased capacity they contain.

[00428] The erased block log contains entries for all erased blocks existing in flash

memory, in order of the sequence of their erasure.

[00429] The control log contains predefined fields for control parameters, counts and

lists.

[00430] A log is updated by writing a revised version of the complete log at the next

erased page location in the control block.

-75 -

WO 2007/019220 PCT/US2006/030242

IT IS CLAIMED:

1. For a re-programmable non-volatile memory system having a plurality
of blocks of memory cells that are individually erased prior to data being written
therein and that operates with an inventory of a minimum number of erased blocks
ready to have data stored therein, a method of operation, comprising:

receiving data logically addressed by unique file identifiers and offsets within
the files,

storing the received data of a first file as pages within one or more of the
erased blocks that only partially fill one of the erased blocks, thereby leaving erased
data storage capacity within the partially filled block, and

postponing consolidating valid data from the partially filled block with valid
data of a second file into another one of the erased blocks until at least the inventory
of the number of erased blocks is deemed insufficient to maintain the minimum

number.

2. The method of claim 1, additionally comprising, in response to a need
to provide another erased block, consolidating valid data from the first file and second
file into another one of the erased blocks and thereafter erasing at least the partially

filled block, thereby to add another erased block to the inventory.

3. The method of claim 1, additionally comprising, in response to
receiving a command to delete the first file, mark all the data of the first file in at least
the partially filled block as obsolete, thereby eliminating any valid data from the first
file in at least the partially filled block, whereby no consolidation of data of the first
file in the partially filled block is necessary.

4. The method of claim 1, additionally comprising maintaining a plurality
of records that identify groups of variable amounts of data making up the first file,
wherein the individual groups have both contiguous logical offset addresses and

contiguous physical addresses of data within the group.

-76 -

WO 2007/019220 PCT/US2006/030242
5. A method of operation of a re-programmable non-volatile memory

system having a plurality of blocks of memory cells that are individually erased prior
to data being written therein and which receives data having logical addresses of
unique file identifiers and offsets within the individual files, wherein:

valid data from a first group of two or more blocks partially programmed with
data of two or more files are occasionally consolidated into another block,

blocks containing valid data from a second group of one or more blocks that
also contain obsolete data are occasionally garbage collected,

only one of the data consolidation or garbage collection is carried out at one
time, and

priority is given to garbage collection over data consolidation.

6. A method of operation of a re-programmable non-volatile memory
system having a plurality of blocks of memory cells that are individually erased prior
to data being written therein and which receives data having logical addresses of
unique file identifiers and offsets within the individual files, wherein:

received data of individual files are programmed into one or more erased
blocks in a manner that data of at least a first file may only partially fill a first block
and thereby leave erased storage capacity in the first block,

subsequent operations on data within the memory system cause at least some
of the data of a second file stored in a second block to become obsolete,

in response to at least some of the data of the second file in the second block
becoming obsolete, any remaining valid data in the second block are copied into a
third block,

in response to the first block having erased storage capacity, valid data are
copied from the first block into a fourth block, and

priority is given to the above-recited copying of valid data from the second
block into the third block over the above-recited copying of valid data from the first

block into the fourth block.

7. The method of claim 6, wherein at least one of the third or fourth

blocks is an erased block into which the copied data are written.

-77 -

WO 2007/019220 PCT/US2006/030242
8. The method of claim 6, wherein at least one of the third or fourth

blocks contains data of a third file at the time the copied data are written therein.

9. The method of claim 6, additionally wherein a plurality of records that
identify groups of variable amounts of data making up the individual files are
maintained, wherein the groups individually have both contiguous logical offset

addresses and contiguous physical addresses of data within the group.

10. Are-programmable non-volatile memory system having a plurality of
blocks of memory cells that are individually erased prior to data being written therein,
wherein:

an inventory of a minimum number of erased blocks ready to have data stored
therein are maintained,

data of files logically addressed by unique file identifiers and offsets within
the files are stored in the memory blocks by storing the received data of a first file as
pages within one or more of the erased blocks that only partially fill one of the erased
blocks, thereby leaving erased data storage capacity within the partially filled block,
and

consolidation of valid data from the partially filled block with valid data of a
second file into another one of the erased blocks is postponed until at least the
inventory of the number of erased blocks is deemed insufficient to maintain the

minimum number.

11. The memory system according to claim 10, further wherein valid data
from the first file and second file are consolidated in another one of the erased blocks
in response to a need to provide another erased block, and thereafter at least the

partially filled block is erased, thereby adding another erased block to the inventory.

12. The memory system according to claim 10, further wherein all the data
of the first file in at least the partially filled block are marked as obsolete in response
to receiving a command to delete the first file, thereby eliminating any valid data from
the first file in at least the partially filled block, whereby no consolidation of data of

the first file in the partially filled block is necessary.

-78 -

WO 2007/019220 PCT/US2006/030242
13. A re-programmable non-volatile memory system having a plurality of

blocks of memory cells that are individually erased prior to data being written therein,
wherein:

data having logical addresses of unique file identifiers and offsets within the
individual files are accepted,

valid data from a first group of two or more blocks partially programmed with
data of two or more files are occasionally consolidated into another block,

blocks containing valid data from a second group of one or more blocks that
also contain obsolete data are occasionally garbage collected,

only one of the data consolidation or garbage collection is carried out at one
time, and

priority is given to garbage collection over data consolidation.

14. A re-programmable non-volatile memory system having a plurality of
blocks of memory cells that are individually erased prior to data being written therein,
wherein:

data having logical addresses of unique file identifiers and offsets within the
individual files are accepted,

received data of individual files are programmed into one or more erased
blocks in a manner that data of at least a first file may only partially fill a first block
and thereby leave erased storage capacity in the first block,

subsequent operations on data within the memory system cause at least some
of the data of a second file stored in a second block to become obsolete,

any remaining valid data in the second block are copied into a third block in
response to at least some of the data of the second file in the second block becoming
obsolete,

valid dataare copied from the first block into a fourth block in response to the
first block having erased storage capacity, and

priority is given to the above-recited copying of valid data from the second
block into the third block over the above-recited copying of valid data from the first
block into the fourth block.

-79 -

WO 2007/019220 PCT/US2006/030242

15. The memory system of claim 14, wherein the copied data are written

into at least one of the third or fourth blocks when an erased block.
16. The memory system of claim 14, wherein data of a third file at the time

the copied data are written therein are contained in at least one of the third or fourth
blocks.

-80 -

WO 2007/019220

FIG. 1-1

File Interface
o Platform

File Data Storage

1/33

PCT/US2006/030242

Memory Card with Direct Data File Platform

1L

3L

File Interface Channel

N
SN2

Host InterfaceModu!e

N

N2

Direct Data File Interface

3L

Direct Data File
Storage Management

3c

Flash Memory

DirectFile Platform

Memory Card

Direct Data File Platform Components

Direct Data File Interface

File-to-Flash Mapping Algorithm

Organization

Platform Programming Reading Deleting Garbage
Operations File Data File Data File Collection
S;Jopcpeodrﬂpgs File Indexing Data Buffering & Programming
I‘\:/llgﬁggBe:?nCeknt Erased Block Management Block State Management
Control Control Data Structures

Information

Y J

Y
FIG. 1-2

WO 2007/019220

PCT/US2006/030242

2/33

File Commands

Command Parameters Description

Create <filelD> Creates an entry identified by <fileID> in the directory
in the device.

If <fileID> is not specified with the command, it is
assigned by the device and is returned to the host.

Open <fileID> Enables execution of subsequent data commands for

' the specified file.

Close <fileID> Disables execution of subsequent data commands for
the specified file.

Delete <fileID> Indicates that directory, file index, and file info entries
for the specified file should be deleted. File data may
be erased.

Erase <fileID> Indicates that directory, file index, and file info entries
for the specified file shouid be deleted and that file data
should be erased immediately.

List_files Reads all valid <filelD> values from the device, in
numerical order.

Data Commands

Command Parameters Description

Write <fileID> Qverwrites data in specified file at offset address
defined by current value of write_pointer.

Insert <filelD> Inserts data in specified file at offset address defined
by current value of write_pointer.

Remove <fileID> <length> Deletes data of size <length> from specified file at
offset address defined by current value of write_pointer.

Read <fileID> Reads data from specified file at offset address defined
by current value of read_pointer.

Save_buffer <filelD> Saves data in buffer for specified file to a temporary

location in flash memory.

Write_pointer

<file]D> <offset>

Defines new current value for write_pointer for specified
file.

Read_pointer

<fileID> <offset>

Defines new current value for read_pointer for specified
file.

{

FIG. 2-2

WO 2007/019220 PCT/US2006/030242
3/33
Info Commands
Command Parameters Description
Write_info <filelD> Writes file_info for specified file at offset address
defined by current value of info_write_pointer.
Read_info <fileID> Reads file_info for specified file at offset address

defined by current value of info_read_pointer.

Info_write_poainter

<file]D> <offset>

Defines new current value for info_write _pointer for
specified file.

Info_read_pointer

<file]D> <offset>

Defines new current value for info_read_pointer for
specified file.

FIG. 2-3

Stream Commands

Command Parameters Description ,

Stream <length> Defines an uninterrupted stream of data that will be
transferred to or from the device.

Pause <time> Defines a delay that is inserted before execution of the
following command.

State Commands

Command Parameters Description

idle The device should enter an idle state, within which it
may perform internal operations.

Standby The device should enter a standby state, within which
it may not perform internal operations.

Shut-down The device will be shut down and power will be
removed when it is next not in a busy state.

Device Commands

Command Parameters Description

Capacity Request from host for the device to report capacities
occupied by file data and available for new file data.

Status Request from host for the device to report its curren

stafus. :

FIG. 2-6

WO 2007/019220 PCT/US2006/030242
4/33

Format of a Plain File

Program Pointer

Y
Plain File RS e EEEE 1

File ébok t' lgrdéram Block

Key: Data Group for File
N
FIG. 3-1

Format of a Common File
Closed iy RS
Common File File Block Common Block A

Open s 1
Common File File Block Common Block Program Block

Program Pointer

Key: Data Group for File Data Group(s) for Unrelated File(s)
N J

FIG. 3-2

Format on an Edited Plain File
Program Pointer

Y
Edited CZzZzZzd=3 e = Point
Plain File Obsolete File Block Program Block rogram Fointer

Y
Edited Plain File 1] EE

R e | | 1
after Garbage Erased Block File Block Program Block
Collection

Key: [=3 Data Group for File Obsolete Data for File
N J

FIG. 3-3

Format of an Edited Common File

Program Pointer

‘ *
Edited s oEEED T I Program Poainter

Common File Obsolete File Block Common Block Program Block

L

Edited Common [C l s 2=

File after Erased Block Obsolete File Block ‘P.fo.ghram Block
Garbage Common Block

Collection Key: Data Group Obsolete Data Group(s) for
for File Data for File Unrelated File(s)

. J

FIG. 3-4

WO 2007/019220

Flow Chart for
Device Operations

Reading

File Data

Programming
File Data

Deleting

A

Fite

Garbage

Yes

Yes

Yes

Yes

PCT/US2006/030242
517133
(Start)
A\ 4
Initialize System
‘<~
Is Is
ost Commana™~_No ost Interface™~_No |
Pending Idle
? ?
Yes Yes

Pending
Command is
Read
?

No

Pending
Command is Write,
Insert or Update

No

Pending
Command is

Delete or Erase
?

No

Pending

Collection

h

Command is ldle
?

No

Execute
Pending
Command

FIG. 4-1

Priority Garbage
Collection Queues

Are

Empty
?

WO 2007/019220 PCT/US2006/030242

6/33

Flow Chart for Programming File Data

Q:ile Data Programming)

Data in Buffer No

A %4

for Next Program

Operation
?

Program Block
Open for File
?

Yes Block for File

Open Program

Program Data from
Buffer in Metapage

'

Increment Interleave
Program Counter

Is

Program Block No

Is
Foreground Garbage
Collection Active

Interleave Program
Count > N1

Set Foreground Mode

v

Reset Interleave Program Counter

Y

Garbage Collection

'

Reset Interleave 'Program Counter

Full

Update File Index Table

l

Update Obsolete Block
& Common Block
Entries in Garbage
Collection Queue

l

FIG. 5-1

Is

Host Command

Pending
?

Yes

Update File Index Table

!

Update Obsolete Block &
Common Block Entries in
Garbage Collection Queue

WO 2007/019220

PCT/US2006/030242
7133
Flow Chart for Reading File Data
Read
File Data
\4
Read File Index Table

A 4
Initialize Data Group
Number Counter

Y.
Initialize Data Group
Length Counter

B
Ll
A

y

Read Metapage Data

A\ 4
Decrement Data Group
Length Counter

Is

Data Group

Length Count > 0O
?

Read File
index Table

Yes

Last Data Group
in File Been Read

Return

Update Data Group
Number Counter

A 4

Initialize Data Group
Length Counter

ost Commana
Pending
f)

Return

FIG. 6-1

WO 2007/019220) PCT/US2006/030242

8/33
Flow Chart for Deleting a File

(Delete File)

v

Evaluate FIT
Entries for File

A 4

Identify Common
Block for File

I
>

A
Select Next Data
Group from FIT
Entries

7 s Data Group
Data Group in in Block with Yes
Common Bloc Obsolete Block

Entry

Add Common Block Add Obsolete Block
Entry in Garbage Entry in Garbage
Collection Queue Collection Queue

P »i
«

Upda’te File
Index Table

Y
Update File
Directory

v
(Return)

FIG. 7-1

WO 2007/019220 PCT/US2006/030242

9/33

Interleaved Operations for Foreground Garbage Collection

_ HostData | Garbage | HostData | Garbage _
Write Phase | Collection | Write Phase | Collection
Phase Phase

Host Active A
interface

State yyaiting

- \,1 .
< ’l‘ o

N1 Pages N2 Pages
Programmed Programmed

FIG. 8-1

Principle of Operation for Adaptive Scheduling of Garbage Collection

Capacity

T Recoverable.

> | CapaCIty

So g

c @
8 o8
g =8
s |
]
©
o
®©
©
= Previously Written
l Host Data

>» Time
< Adaptive Period >

v J

FIG. 8-2

PCT/US2006/030242

WO 2007/019220

10733

!

! !

uoneplosuon
3o0id

A

|

3o0|d 9sel] Uoi199jj09
abeqies) yoo|g
Uowwo)

uono9|l0)
abeglen) aji4

A

%00}g 819]0Sq0) 40}
uonos|jon abegles

%00[g UoWIWOY) Jo}
uoljos)jon abegles)

-

£€-8 'Old

&
olld 10}

£

A

uonosjjon ebeqses) 1o}
9]l payp3 usdQ 10903

1sIXg sjid

ON

uo1osjeg uonos)jon abegies) 10) Jeyn Mo

paylpg usdQ
$20(]

Uoo8jj00) abeqies)
S|

ON

-
3

seneny) wolj Anug 198g

é
senany
uoosjjon abegies
Utisixg seijug
od

é
ssalboid u

9]

uolosj|o0) sbeglen

Qozom__oo mmmemov

WO 2007/019220

Flow Chart for File
Garbage Collection

11733

FIG. 8-4 |

(File Garbage Collection)

Garbage No

Collection in
Progy
?

!

PCT/US2006/030242

FIG. 8-4A:

Evaluate FIT Entries for File

v

Identify Obsolete File Blocks & Common Block

v

Construct List of Data Groups to be Copied

Y

Set Data Group Length Counter =0

Y

-

FIG. 8-4B'

1
L, R

Is Data

No

Group Length

Count>0
?
Yes

Y

Update File llndex Table

Has

Last Data

Group in File Been

Copied
?

Return

AA

Program
Block Open
for File

Open Program
Block for File

'

Y

Select Next Data
Group From List

'

Initialize Data Group
Length Counter

Data Group
in Common
Block

Add Common Block to

Garbage Collection Queue

'

FIG. 8-4A

WO 2007/019220 PCT/US2006/030242

Data in Buffer for
Next Program Operation
?

Read Metapége Data from
Selected Data Group

Y

Program Metapage Data to Program Black

Y

Decrement Data Group Length Counter

Is
Program Block Full
?

Yes

Update File Index Table

Is
File Block Fully Obsolete
?

Yes

Erase Block

Is
Foreground Mode Set
?

| Increment Interleave Program Counter

Is
Interleave Program

GCount > N2
?

Is Host Yes

Command
Pending
?

l

Reset Foreground Mode

Yes —l

Update File Index Table

' FIG. 8-4B '

WO 2007/019220

13/33

PCT/US2006/030242

Flow Chart for Common Block Garbage Collection

(Common Block Garbage Collection)

Is Garbage

No

Collection in Progress
?

'

List Entries for
Block from

Is Data
Group Length Count > 0
?

Yes

No Data in Buffer for Next

Program Operation
?

'

Read Metapage
Data from
Selected Data ;
Group Program Metapage
7 Data to Selected Block
Decrement'Data Group
. Length Counter

Increment
Interleave
Program Counter

N Is
© /Foreground \Y&s

Is Interleave
Program Count > N2

No

Is
Host

No Reset Foreground Mode
Command
Pending ’t
? '
Update File Index Table

Yes +

Update Common Block Log

Common Block Log

!

Set Data Group
Length Counter = 0

¥

Update File
Index Table

'

Update Common
Block Log

Has

Last Data

Group in List Been

Copied
?

No

Yes

Erase Common Block

FIG. 8-5A

WO 2007/019220

FIG. 8-5B
I

Select Next Data
Group from List

'

Initialize Data Group
Length Counter

Is ™
Data Group
in Same
File Group
?

Select Erased
Block as Copy
Destination

- '

14 /33

No

PCT/US2006/030242

FIG. 8-5A! FIG. 8-5B'

1
I
_______ O,

FIG. 8-5

No

Search Program
Block Log for
Best-fit Block for
File Group

Was
Suitable
Program Block

Found
- ?

'

Search Common
Block Log for
Best-fit Block for
File Group

Was
Suitable
Common Block

Found
?

Yes

Y

Select Program
Block as Copy
Destination

Select Common
Block as Copy
Destination

'

!

WO 2007/019220 PCT/US2006/030242

15/ 33
Flow Chart for Block Consolidation

(Block Consolidation)

Is Block

Consolidation in Progress
?

Is Data
Group Length Count > 0
?

Yes

No

'

Scan Common
Block Log &
Program Block Log

Y

Select Block with
L east Data as
Source Block

Y

Construct List of
Data Groups to

No Data in Buffer for Next be Copied
t Program Operation
? Y
Re%d i\/le]:ctapage Set Data Group
ata from Length Counter = 0
Selected Data Program Metapage
Gr
:up Data to Selected Block <) —-—-——-———j
DecrementvData Group I :
Length Counter IlrJ} ﬂ‘iiﬁ 8@‘2
N Is Increment l
0 /Foreground\\Yes Interieave
Mode Set / Program Counter Updéalte Ecl)_mmon
ock Log

Is Interleave
Program Count > N2

No

Has

Last Data

Group in List Been

Copied
I?

No

Is
Host
Command
Pending

? B

No Reset Foreground Mode

!

Update File Index Table
Yes +

Yes

Erase Source Block

Update Common Block Log

y
FIG. 8-6A -

4/

WO 2007/019220

FIG. 8-6B
'

Select Next Data
Group from List

'

Initialize Data Group
Length Counter

No

16/ 33

PCT/US2006/030242

FIG. 8-6A! FIG. 8-6B)

1
_______ b e e = =

Continuation of
File Group
?

Search Program Block
Log for Block with Largest
Available Space

Was
Suitable
Program Block
Found

Select Program

Block as Copy
Destination

Redefine Selected

Data Group to Fit
Available Space

I

Add Remainder of
Previously Selected
Data Group fo List

!

|

Search Common
Block Log for
Best-fit Biock for
File Group

Was
Suitable
Common Block

Found
?

No

Search Program

Block Log for Yes
Best-fit Block for
File Group
Was
Suitable
Program Block
Found
?
\
Select Program Select Common
Block as Copy Block as Copy
Destination Destination

"

Y

WO 2007/019220 PCT/US2006/030242

17 /33

Common Block Garbage Collection Example (Initial Condition)

I ST }':}l L ITEA 5 l I':.:.; :.,'.;‘,:;::,-_.1 l 1

Flle Block F|le Block Program Block
Files Written e s BEE]

Flle Block Program Block

[T S 7 S
Flle Block Flle Block Common Block

| v BESEL I REE

Obsolete Block Obsolete

Files Deleted Common Block

Vo szl A Vol Sl A T T
Obsolete Block Obsolete Block Obsolete
Common Block

Key: Data Group Obsolete Data Group(s) for
for File Data for File Unrelated File(s)

(N _J

Y
FIG. 8-7A

Common Block Garbage Collection Example (Step 1)

EErerr) T
: File Block File Block Common Block
Files Written D w A |
Flle Block Program Block
| oS i | s /] i
Flle Block Flle Block Common Block
Vo 2l A ¥ ,07/l’
Obsolete Block Obsolete

Files Deleted Common Block

% 77777 RT7TI7 7777
Obsolete Block Obsolete Block Obsolete

Common Block

== Data Group Obsolete Data Group(s) for
for File Data for File Unrelated File(s)

(. J

y
FIG. 8-7B

WO 2007/019220 PCT/US2006/030242

18 /33

Common Block Garbage Collection Example (Step 2)

| R S | | SRR S P h
Flle Block File Block Common Block
Files Written L 7 EE 1
Flle Block Program Block
CEE i B N pane:
F lle Block Flle Block Common Block

Ve LA
Files Deleted Obsolete Block Obsolete Block
Vil 2 /A Vi /7 A s
Obsolete Block Obsolete Block Obsolete
Common Block

Key: Data Group Obsolete Data Group(s) for
for File Data for File Unrelated File(s)

. 2

~
FIG. 8-7C

Common Block Garbage Collection Example (Step 3)

s B e K | B {:ji‘.}_.'_.‘f;.,i-
Flle Block Flle Block Common Block
Files Written)
Flle Block Common Block
] I RS AN B ¥
Flle Block Flle Block Common Block

V/ i/ r sl s e 2A
Files Deleted Obsolete Block Obsolete Block
| Y4 4 Vi iz rrs s s s A Vo A AL A

Obsolete Block Obsolete Block Obsolete Block

Key: Data Group Obsolete Data Group(s) for
for File Data for File * Unrelated File(s)

\ _J

o
FIG. 8-7D

PCT/US2006/030242

WO 2007/019220

19733

Continuous Host Data Programming

Page

N e
Eain

Destination Metapage

<
«

<«————Page

- Sector
Buffers

<« Sector—

G or o m mm e o e e o

FIG. 9-1

Interrupted Host Data Programming

Page —— >

K.
K

Destination Metapage

«———Page

-«— Sector—»

e

FIG. 9-2

Buffer Flush Programming

Page———>

-
-«

3
>

Destination Metapage

-
-~

«————Page
< Sector—

FIG. 9-3

WO 2007/019220 PCT/US2006/030242

20/33

Buffer Swap-out Programming

Sector L N _
-~ Buffers —> -« Destination Metapage >
<«—————Page > Page —————>
«— Sector—»
Program
T J

—
FIG. 9-4

Host Data Programming after Buffer Flush

Sector _ o R
" Buffers < Destination Metapage >
<«———Page e Page ———>
«— Sector—>
Program
N ‘ y,
FIG. 9-5
Swap-in Data Read
< Destination Metapage > gﬁfcfg?;
< Page > < Page >
<—Sector— B ,
Read . '
. TS

-~
FIG. 9-6

PCT/US2006/030242

WO 2007/019220

21/33

Host Data Programming after Buffer Swap-In

Destination Metapage

Page

N
Lol N

Page

< Sector—>

-
<

o e e o

FIG. 9-7

Aligned Data Read to Buffer

< Sector _
Buffers

Source Metapage

et
Fagiinn ¥

«——Page

«— Sector—»

T R T |

J

FIG. 9-8

WO 2007/019220 PCT/US2006/030242

22 /33

Aligned Data Programming from Buffer

Sector .
< Destination Metapage >
Buffers pag
< Page > Page >
[<« Sector—»
1] 1
: Program
\ Yy

FIG. 9-9

Non-Aligned Data Read to Buffer

< . Sector

< Source Metapage > - Buffers

<«——Page Page———>

«— Sector— FommmsmmT
Read

U N -J

FIG. 9-10

WO 2007/019220 PCT/US2006/030242

23 /33

Non-Aligned Data Programming from Buffer

Sector
Buffers

A
Y

Destination Metapage
< Page > Page —>

Frmmmm——- 1 <« Sector—»

Program

FIG. 9-11

Non-Aligned Non-Sequential Data Read from Buffer

Sector
< » <
Source Metapage Buffors
< Page > Page >

<« Sector—»

Read

y
FIG. 9-12

WO 2007/019220 PCT/US2006/030242

24/ 33

Non-Aligned Non-Sequential Data Programming from Buffer

Sector B o .
Buffers < Destination Metapage »>
<«———Page > Page —————>

pomTTTTTT ' <—Sector—>

-
FIG. 9-13

File Indexing

FileID

!

Directory

Y l v

File Data Pointer File Info Pointer
File Index Table (FIT) Info Table (IT)

!

Data Groups

FIG. 10-1

PCT/US2006/030242

WO 2007/019220

25/33

oju] 9|l

iepeaH oju] aji4

A

300ld
alepdn
Ojuj

Jajulod o]
]

1817 300]g @1epdn ou|

t

¢-0} "Old

sdnoig ejeq

]

Oju] ofi4

sauug 114

Japesi oju] 9|4

iepesH 1jd

%90lg
Oju

yoolg
ajepdn
AE

|
Jajuiod oy
|

1sI1>1901g o

}

.

Jajulod ou| ojld

{

I
19julod 9|l 114
l

1817 Mo0ig 81epdn LI

{

L

saljuz 114

JepeaH Lid

3o0lg
114

|
J8jul0d Olid LI
|

s 001 14

}

+

isjulod ejeq aji4

}

r

Aoyeaqg

!

areid

sainjonyg Buixspuj aji4

PCT/US2006/030242

WO 2007/019220

26 /33

£€-01L "Old

Foremmeee i

jewniod yooig Aioyoauaqg

lehmuc_on_ mmcwm >« mo mmcmm bo“oo__n_ Lov_ mecm >]
l< — .vn_. om:m.m_ .\Cmﬁm.:_n._ k.ﬁ m“m__.Em._ I >|
3 NQ omcmw_ \cowom:o Lou, mecm_ >|
< rn_ wmcmm ao“om:m_ LE mo:Em >|

(eq) ebed
Aioyoauiq

USNIMAN 1SET

@ ebed
Aioyoaliqg

Z2q obed
Mool

1Q ebed
Kioyoaung

WO 2007/0192

20

27133

PCT/US2006/030242

File Index Table Logical Structure

FIT Block

Block e—»

FIT File
Pointer

File No.e—

5520
2o

"ws

FIT Header

FlFIT Entry

File Data Block

Data Group

FlleID

FIG. 10-4

Data Group
Header

File Data

PCT/US2006/030242

G-0L "Old

28 /33

KRR
.kuvv i
A

2 %W%sm\

abed 114

Ty
LT T
-
EELCLLY
-
T
-
heemann
-
memmn

EE T

B USILAN 1SET]

TEIrTTy

l«———s.lajuiod 8|14 >l ssiug 114 >l

WO 2007/019220

T] e

A

seuug (4 >]

yewo- abed 1|4

WO 2007/019220

29/33

Physical FIT Blocks

File Data Pointer

FIT FIT
Range | File No.

i‘ ¢

L

PCT/US2006/030242

FIT FIT
Block List Update Block List
Y Y
File File
Pointers Pointers
FIT FIT
Entries Entries
FIT Block FIT Update Block
Examples of FIT File Update Operations
FIT Page FIT Page
FIT File A FITFleB.. | |
..... FIT File B FIT File C..... FIT File D e
..... FIT File C FIT File D _ FIT File A _
__________________ FIT File A (1)
__________________ FIT File B.....
_______________________ FIT File B o
_________________ FIT File A (2) L
FIT Block FIT Update Block

FIG. 10-7

2

sb=LL "OId

—<0©

>
[se]
&
Sueibelq 93e18 X920[g
=
(9]
721
2
2
&
=%
)
™
~—
o
135!
—1 ©12]0SqQ f

Xooig
8191080

WO 2007/019220

<0

9)9]0sq0

21810590 /
v elid

yoojg weiboid

vV ol

918|0S90

Y 9l

A201d 94
8j9|0sqQ

v el

paselg peseig
g aiid g siid
v ol <@

a18]0sq0 v oli4
v 8l

}o0ig uowwon
91910890 390]g uowwoH
o

peseig
v 9iid 22)

peseij

Qg

39019
a4

L AYIE

300]9
weiboud

@

pesei]

%o0jg
poseig

PCT/US2006/030242

Bo1>o0|g
UOWIwI0Ty

o g

|

.
v,
e @ umun
-

< SeMud »l«———SOLIUT }00jg—>

Jeuriog 507 201G LOWIWOD

A IIE |

31733

m (607 %o0ig

JdoE SEEEEE AR A N A A A A pese.)
P PP bbb bbb b b b b b1 | ebedypolg

R S S S SO YR U W S-S S WA S S S U S U R S N S W N jouon

le—sio)uiod Bo—ri< saijuz bo yooig pesel > USHLIM 1987
o P o P P Boy
S L IR i jo4uoQ

= spield BoT jolued >

WO 2007/019220

> S Bo3p00ig
SO N N SN - SO T SO N T O TS T L T O N O uowiwod

< selug 607 o0lg UoWWO >|

I 607 001g
SR A A O N AL N0 N O O O I O I welbold

A

ssiug Bo7 yoojg welboud =

JELLIO S Y20k 103U

WO 2007/019220

PCT/US2006/030242

32/33

FIG. 13-1. |

FIG. 13-1A

Command Set Used with Static Files (Part A)

Command | Parameters Description

Create <filelD> Creates an entry identified by <fileID> in the directory in the
device.
<fileID> should be specified with the command, to denote an
appropriate numerical identifier for the static file.

The Create command may be used after the direct data file
device has returned an error status following an Open command
for a file that does not exist in the directory in the direct data file
device.

Open <fileID> Enables execution of subsequent data commands for the
specified file.

The write_pointer is set to the end of the file and the read_pointer
is set to the beginning of the file.
If the file does not exist, an error status is returned.

Close <fileID> Disables execution of subsequent data commands for the
specified file.

The Close command for a static file causes an entry to be
inserted into either the obsolete block garbage collection queue
or the file garbage collection queue.

Delete <filelD> The Delete command is not normally used with static files.
However, it may be used if the size of the device partition
assigned for static files is reduced.

List_files Reads all valid <fileID> values from the device, in numerical
order.

Write <fileID> Overwrites data in specified static file at offset address defined
by current value of write_pointer.

The offset address should not be outside the range
corresponding to the file size used by the host for all static files.

Read <fileID> Reads data from specified file at offset address defined by

current value of read_pointer.
The offset address should not be outside the range
corresponding to the file size used by the host for all static files.

WO 2007/019220

PCT/US2006/030242

33/33

Command Set Used with Static Files (Part B)

Command

Parameters

Description

Save_buffer

<fileID>

Saves data in buffer for specified static file to a temporary
location in flash memory.

Save_buffer is used when the protocol in use for static files
requires that data that has been supplied for the file must be
committed to flash memory.

Write_pointer

<fileID> <offset>

Defines new current value for write_pointer for specified file.
Write_pointer is used to define the offset within the static file of
data to be written, for the first data after the file is opened, or for
data that is not sequential to previously written data.

The offset should not be outside the range corresponding to the
file size used by the host for all static files.

Read_pointer

<fileID> <offset>

Defines new current value for read_pointer for specified file.
Read_pointer is used to define the offset within the static file of
data to be read, for the first data after the file is opened, or for
data that is not sequential fo previously read data.

The offset should not be outside the range corresponding to the
file size used by the host for all static files.

Stream

<length>

Defines an uninterrupted stream of data that will be transferred
to or from the device.
Used for modeling only.

Pause

<time>

Defines a delay that is inserted before execution of the following
command.
Used for modeling only.

idle

The device should enter an idle state, within which it may perform
internal operations.

The idle command is used immediately after a Close command
for a static file, to force any pending garbage collection
operations to be performed.

No other command should be sent to the device until the device
shows not-busy staus for background operations.

Standby

The device should enter a standby state, within which it may not
perform internal operations.

Shut-down

The device will be shut down and power will be removed when
it is next not in a busy state.

Capacity

Request from host for the device to report capacities occupied
by file data and available for new file data.

Status

Request from host for the device to report its current status.
The status command does not terminate a command being
executed.

FIG. 13-1B

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings

