PARTICLE SIZING REFINEMENT SYSTEM

Inventors: Steven J. Carnegie, Portland, OR (US); Meindert J. Kleeistra, Vancouver, WA (US); Isaac S. Simpson, Portland, OR (US); John N. Skardon, Vancouver, WA (US)

Assignee: AirAdvice, Inc., Portland, OR (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 80 days.

Appl. No.: 11/220,783
Filed: Sep. 6, 2005

Prior Publication Data
US 2006/0009920 A1 Jan. 12, 2006

Related U.S. Application Data
Continuation of application No. 10/678,589, filed on Oct. 2, 2003, now Pat. No. 7,016,791.

Provisional application No. 60/415,910, filed on Oct. 2, 2002.

Int. Cl.
G01N 31/00 (2006.01)

U.S. Cl. 702/29

Field of Classification Search 702/29

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,205,384 A 5/1980 Merz et al.
4,488,248 A 12/1984 Okada et al.
4,736,311 A 4/1988 Takeuchi
4,889,815 A 12/1989 Bradwell et al.
5,085,500 A 2/1992 Blesener
5,379,113 A 1/1995 Niwa
5,770,152 A 6/1998 Schuster et al. 422/73
5,870,190 A 2/1999 Unger
5,999,250 A 12/1999 Hibston et al.
6,683,975 B2 1/2004 Wang et al.
6,694,799 B2* 2/2004 Small 73/24.02

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner—Bryan Bui
Assistant Examiner—Aditya S Bhagat
Attorney, Agent, or Firm—Schwabe, Williamson & Wyatt, P.C.

ABSTRACT

A plurality of particle size reference values are specified. Data are obtained based at least in part on the specified plurality of particle size reference values.

11 Claims, 3 Drawing Sheets
Fig 1.

Particle Detection Appliance

Communication Channel

Controlling Process

Airflow containing airborne particulates

Changed particle size reference values

Fig 2.

101 Analog Pulse Discriminator

102 Particle Size Info

103 Particle Size Levels

104 Discriminator

105 Discriminator

106 Discriminator

107 Discriminator

108 Particle Size Processing

100 Communications Device
Fig 3.

1. Particle Detection Appliance

4. Particle count data by channel using existing reference values

5. Controlling Process

6. Changed particle size reference values

7. Particle size data is collected using changed reference values

8. Refined particle count data collected using changed reference values

Fig 4.

9. Algorithm to evaluate conditions and determine changed reference values

10. Clock passing of time might cause change in reference values

11. Factors that might initiate or affect changing particle size reference values

12. User Interface: to allow human to set reference values

13. Environmental Data: data from other sensors might affect change in particle size reference values
Obtain current particle count per channel from Particle Sizing Appliance

Recheck in 10 minutes

Does a sufficient number of particles exist in the "pollen" size range?

Yes

Change reference values to "focus" on particle sizes within "pollen" size range

Transmit changed reference values to Particle Sizing Appliance

Obtain new particle count per channel from Particle Sizing Appliance

Do sufficient number of particles exist in the "ragweed pollen" size range?

Yes

Issue alert for ragweed pollen presence in the air

No

Reset reference values to original value and transmit to Particle Sizing Appliance
PARTICLE SIZING REFINEMENT SYSTEM

RELATED APPLICATION

FIELD

The present invention relates to the field of measuring systems and more specifically, for some embodiments, to systems for measuring particles in the air.

BACKGROUND INFORMATION

Indoor air quality is a term that describes the cleanliness or livability of air inside a structure where people live, work, or play. Particulates are a major component of indoor air quality, and the size and quantity of airborne particulates are key indicators of indoor air quality. The mixture of particles inside a building can include many sizes of particles from many origins such as: plant and animal allergens, mold/mildew allergens, insect allergens, outdoor air contaminants, tobacco smoke and a wide variety of other materials. Sufficiently small particles, those less than 10 microns in diameter, can stay airborne for extended periods. Larger particles are only airborne when disturbed by airflow or human activity such as cleaning. It is a primary objective in particulate measurement investigations to identify the distribution of the particle count by size, and then use the size information to further define the possible origin of particles.

Size distribution can be as simple as large and smaller particles. Existing EPA regulations have explicit limits on particulate matter at 10 micron and 2.5 micron size ranges. Particles with a diameter of 2.5 microns are called fine particulates. For example, a basic separation of particulates around the regulatory-based 2.5 micron cut point allows for the identification of larger “dust” and smaller “fine” particles. The time varying relationship between these two measurement provides a distinct advantage in identifying the source of particulate problems inside a structure.

A major problem confronting the diagnosis of indoor air quality problems and particulate measurement is the constant change common in the indoor environment. The individual constituents of the indoor aerosol vary continuously due to many reasons such as: changes in the climate or weather, proximity to major outdoor pollution sources or human activity inside the building. Hence, the government mandated fine particulate level of 2.5 microns may not be sufficient or the right way to separate particles based on size in every case. Depending on the conditions mentioned earlier, it might make sense to look for particles over 10 microns only. Or in other cases it is necessary to look for particles between 1 and 10 microns such as mold, mildew and chemical weapon spores. Regardless of the reason, the ability to change the particle sizing criteria based on various initiating events will be a substantial refinement in particulate detection systems and will be a major improvement over existing art.

Light scattering photometers, usually calibrated against a known standard of particulate such as Arizona road dust, provide an estimation of total suspended particulate matter in the air. These instruments are sensitive to particle sizes (diameter) from 0.1 micrometer to around 10 micrometers. The major advantage of these instruments is their relative low cost, ease of use, and portability. The major disadvantage of these instruments is their inability to separate particles based in size.

Laser particle counters are similar to photometers, however they normally come equipped with particle sizing or other physical means to remove or screen out particles of a certain size. Particle sizing or selection of the “cut point” is done manually to the instrument prior to putting the instrument in use. There is no method for dynamically changing the size selection. These instruments are also easily overwhelmed with high particulate levels typical in second hand tobacco smoke.

Dynamic particle sizers are also available. These instruments use more complex methods than light scattering to determine the composition and size of aerosols. While able to output the quantity of particles in specific size brackets, the major limitations of these instruments are their inability to handle large quantities of particles commonly found in indoor environments, the need to manually adjust the specific cut point of the particle sizer, and the need to recalibrate the instrument in a laboratory environment before it can return to service in the field.

TERMINOLOGY

Throughout the remaining specification, including the claims, usage of the term “particulate” or “particle” refers to a general class of airborne particles capable of scattering light that are suspended in the air. The term “PM” is an abbreviation for particulate matter. The term “air quality monitoring appliance” refers to an appliance whose primary purpose is to use one or more sensors to measure various aspects of the quality of air presented.

SUMMARY

The invention is targeted at improving the effectiveness of determining air quality based at least in part on sizing airborne particulates by utilizing novel improvements in key measurement functions.

Towards this objective, embodiments of the invention provide for:

a. A plurality of indoor air quality monitoring appliances installed in a fixed or temporary fashion inside a structure such as a home or building, where, one or more of these monitoring appliances has a particulate measuring subsystem that is capable of identifying presence of particulates of different ranges of particulate sizes by comparing particle size estimation data to a plurality of particle size reference values.

b. Most preferably, each appliance has an ability to control the sensors in the appliance and communicating with the particulate subsystem. In one embodiment, this control is exercised via a microcontroller.

c. Most preferably, each appliance has the ability to vary the number and/or value of the particle size reference values. In one embodiment, this is an array of voltages levels used to identify particle size based on comparison to reference values.

d. Most preferably, each appliance has the communication capability to communicate with a controlling process. In one embodiment, this controlling process is a remotely located server. In another embodiment, the controlling process is integral to the appliance itself.
e. Most preferably, each appliance, during the course of communication with said controlling process, can be supplied with new settings for the number and/or value of the particle size reference values.

f. One or more conditions may initiate change of said particle size reference values. In one embodiment, the detection of particles of a certain size range may cause the particle size reference values to be changed in order to further refine the measurements inside the initial size range.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram showing an overview of the invention, in accordance with one embodiment.

FIG. 2 illustrates a particle sizing apparatus capable of comparing particle size data against a plurality of particle size reference values, in accordance with one embodiment.

FIG. 3 illustrates the flow of a communication session between an apparatus and a controlling process, in accordance with one embodiment.

FIG. 4 illustrates the logical components of a controlling process, in accordance with one embodiment.

FIG. 5 illustrates a flowchart for changing particle size reference values, in accordance with one embodiment.

DETAILED DESCRIPTION

Embodiments of a particle sizing data refinement system, its components, and their applications are described herein. In the following description, numerous specific details are set forth to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.

Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

OVERVIEW

By re-thinking the design and programmability of the basic light scattering photometer, more information about particle size can be extracted from the light scattering signal by the use of a subsystem with multiple, programmable, pulse height discriminators as described in contemporaneously filed patent application by Kleefstra entitled “Particle Sizing Method” (U.S. Pat. No. 6,970,799), which is hereby fully incorporated by reference. This combination of particle sizing with remote control of the number and/or thresholds of particle size reference values provides the potential for dramatic improvement over existing methods and apparatus.

FIG. 1 shows the three components of a particle sizing data refining apparatus in accordance with one embodiment. A Particle Sizing Appliance 1 samples the air and estimates particle counts within several channels. Particle size reference values are employed to define the channel boundaries.

For example, sizing channels might be defined as 0-2.5 micron diameter, 2.5-5 micron diameter, and 5 micron and over diameter. The particle size reference values would be 0, 2.5 and 5.0 for three channels. In some embodiments, the lower bound value “0” may be inferred, that is for the above example, the 3 channels may be defined through the provision of the values 2.5 and 5.0.

A controlling process 3 has the ability to communicate via communication channel 2 with the particle sizing appliance. The controlling process 3 can change the reference values to cause the particle sizing appliance to obtain particle count based on different channels. For example, changed reference values of 2.5, 3.0 and 3.5 may be communicated to the particle sizing appliance 1. Once this occurs, the appliance will use channels of 2.5-3.0 micron diameter, 3.0-3.5 micron diameter, and 3.5 micron and greater diameter. Using this technique the controlling process 3 is able to affect the particle size range and sensitivity reported by the particle sizing appliance 1.

In various embodiments, the controlling process 3 comprises a remote server, a desktop computer, and/or a portable hand held device. In other embodiments, the controlling process 3 may be practiced with other computing devices.

In various embodiments, the controlling process 3 may change the particle sizing reference values based on other data, including one or more of indoor air quality data, outdoor air quality data, temperature, humidity, carbon monoxide, carbon dioxide, radon, other gasses and compounds, organic and inorganic compounds.

In various embodiments, the communication channel 2 may comprises a selected one of Internet, Ethernet, wireless, 802.11, power-line, RF, direct wiring or printed circuit board traces.

FIG. 2 provides additional detail of an embodiment of a particle size detection appliance 100. As described in the earlier identified contemporaneously filed co-pending application, analog pulse particle sizing information 101 can be obtained from a nephelometer. Analog pulse particle sizing information 101 is essentially an analog pulse where the pulse height is proportional to the particle size. When this pulse is connected to a device that provides an output when an input is over a given voltage or trigger level such as voltage discriminators 104, 105, 106 and 107 then over time, these discriminators provide digital pulses that represent particles that produced pulses that exceeded said discriminator levels. These levels can be programmed with a particle size level device 102 and can be controlled remotely via communications device 103.

FIG. 3 describes a logical communication session between the particle sizing appliance 1 and the controlling process 3, in accordance with one embodiment. The communication channel is not represented but is assumed to exist. The figure shows messages 4, 6, 8 and events 5, 7. The communication proceeds as follows: The controlling process 3 receives the current particle count data by channel from the particle sizing appliance 1 via a message 4. The controlling process 3 then uses a software or firmware algorithm to determine new particle sizing reference values (shows as event 5). The controlling process 3 communicates the change reference values to the appliance via message 6. Using the changed reference values, the particle sizing appliance 1 re-samples the air to determine refined particle sizing data based on the changed reference values (shown as event 7). Finally, the particle sizing appliance 1 communicates the refined sizing data to the controlling process 3 via a final message 8. Changing the reference values 5, communicating the values 6, and re-sam-
receiving by the particle detection arrangement, from the controlling process, instructions to change said first plurality of particle size reference values to a second plurality of particle size reference values; and controlling, based at least in part on said second plurality of reference values, the plurality of voltage discriminators to obtain second data.

2. The method of claim 1, wherein said second plurality of particle size reference values comprise sub-ranges of one of said first plurality of particle size reference values.

3. The method of claim 1, wherein the particle detection arrangement is disposed in a particle detection appliance and the controlling process is disposed in a computing device coupled to the particle detection appliance.

4. The method of claim 3, wherein the particle detection appliance and the controlling process are situated at two geographically dispersed locations.

5. The method of claim 3, wherein the particle detection appliance is remotely coupled to the computing device.

6. The method of claim 1, wherein the particle detection arrangement and the controlling process are co-disposed in a particle detection appliance.

7. The method of claim 1, wherein the plurality of discriminators provide at least two channels and the method further comprises:

 simultaneously providing, with the at least two channels, data on at least two ranges of particle sizes.

8. A system comprising:

 a controlling process; and

 a particle detection arrangement, coupled to the controlling process, and configured to receive, from the controlling process, a first plurality of particle size reference values indicating a range of particle sizes;

 to control, based at least in part on said first plurality of particle size reference values, a plurality of voltage discriminators to obtain first data on particles within the range of particle sizes;

 to send, to the controlling process, the first data, to receive, from the controlling process, instructions to change said first plurality of particle size reference values to a second plurality of particle size reference values; and

 to control, based at least in part on said second plurality of particle size reference values, the plurality of voltage discriminators to obtain second data.

9. The system of claim 8, wherein the second plurality of particle size reference values comprise sub-ranges of one of said first plurality of particle size reference values.

10. The system of claim 8, wherein the particle detection arrangement is disposed in a particle detection appliance and the controlling process is disposed in a computing device remotely coupled to the particle detection appliance.

11. The system of claim 8, wherein the particle detection arrangement and the controlling process are co-disposed in a particle detection appliance.