本发明涉及一种类似护发素的农药喷雾助剂及其制备方法。该助剂由以下成分按重量百分比构成：A相组分：二十二醇，白油；B相组分：甘油，乙二胺四乙酸二钠，表面活性剂1631；C相组分：Silwet 408，AE0－9，Span－80，Tween－80；余量为白油。该制备方法包括：制备A相混合物，制备AB相混合物，制备ABC相混合物，以白油定容得成品。本发明农药助剂可有效提高农药制剂的药效及持续时间。
1. 一种农药喷雾助剂的制备方法，其特征是，所述农药喷雾助剂由以下成分按重量百分比构成：
 A相组分：1.0%～2.0%十二二醇，8.0%～10%白油；
 B相组分：2.0%～3.0%甘油，0.05%～0.06%乙二胺四乙酸二钠，1.6%～2.0%表面活性剂1631；
 C相组分：10%～12%Silwet 408，2.0%～3.0%AE0-9，2.0%～3.0%Span-80，4.0%～6.0%Tween-80；
 余量为白油。
 所述农药喷雾助剂的制备方法，包括以下步骤：
 第一步，将A相组分混合，并于75℃～80℃下搅拌均匀；
 第二步，将B相组分混合并加热搅拌至75℃～80℃，之后将B相混合物加至第一步所得A相混合物中并混合均匀，相同温度下保温搅拌10～12分钟；
 其中，第一步温度与第二步温度相同；
 第三步，将第二步所得AB相混合物降温至50℃～55℃，并向AB相混合物中加入C相组分，相同温度下保温搅拌均匀；
 第四步，将第三步所得ABC相混合物降至室温后，以白油定容至100%单位，即得成品。

2. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，所述农药喷雾助剂由以下成分按重量百分比构成：
 A相组分：1.0%十二二醇，8.0%白油；
 B相组分：2.0%甘油，0.05%乙二胺四乙酸二钠，1.6%表面活性剂1631；
 C相组分：10%Silwet 408，2.0%AE0-9，2.0%Span-80，4.0%Tween-80；
 余量为白油。

3. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，所述农药喷雾助剂由以下成分按重量百分比构成：
 A相组分：2.0%十二二醇，10%白油；
 B相组分：3.0%甘油，0.06%乙二胺四乙酸二钠，2.0%表面活性剂1631；
 C相组分：12%Silwet 408，3.0%AE0-9，3.0%Span-80，6.0%Tween-80；
 余量为白油。

4. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，所述农药喷雾助剂由以下成分按重量百分比构成：
 A相组分：1.7%十二二醇，9.4%白油；
 B相组分：2.3%甘油，0.058%乙二胺四乙酸二钠，1.8%表面活性剂1631；
 C相组分：11.2%Silwet 408，2.2%AE0-9，2.6%Span-80，5.1%Tween-80；
 余量为白油。

5. 根据权利要求1至4任一项所述农药喷雾助剂的制备方法，其特征是，所述十二二醇为化妆品级二十二醇，所述白油为化妆品级白油。

6. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，第一步的温度为75℃，第二步的温度为55℃，第三步的温度为50℃。

7. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，第一步的温度为80℃，第
步骤的温度为80℃，第三步的温度为55℃。

8. 根据权利要求1所述农药喷雾助剂的制备方法，其特征是，第一步的温度为76℃，第二步的温度为76℃，第三步的温度为53℃。

9. 一种权利要求1至5任一项所述农药喷雾助剂制备方法所制备的农药喷雾助剂的使用方法，包括：将所述农药喷雾助剂以重量百分比0.03~0.10％加入农药制剂中，混匀后施药。
农药喷雾助剂及其制备方法

技术领域
[0001] 本发明涉及一种农药喷雾助剂及其制备方法，该农药助剂适用于杀虫剂、杀菌剂、除草剂以及植物生长调节剂农药，属于农药助剂技术领域。

背景技术
[0002] 据发明人了解，喷雾助剂进入中国市场已有十几年的历史，但助剂在中国的发展却很缓慢，其原因有以下几点：(1) 助剂的应用虽能降低农药用药量，降低用药成本，但在国内农药制剂本身价格较低，即便应用助剂可以降低成本，也很难让农民花一份额外的钱去买助剂。(2) 在国内每公顷耕地喷液量过高削弱了由助剂带来的经济效益。一些助剂的应用量是和喷液量成正比的，一般是助剂占喷液量的0.125％-1%，由于有这样的比例存在，所以较高的喷液量自然提高了每公顷助剂的应用成本。同时，有的时候高喷液量反而会降低助剂的增效效果。(3) 国内对助剂研究较少，助剂品种单一。八十年代末、九十年代初，在我国推广的非离子表面活性剂类除草剂助剂多以乙醇作溶剂，如YZ-901、AA-921等，在一定的湿度范围内，对农药有增效作用，但是在干旱条件下增效不明显。此外，传统助剂以乳油制剂为主，其中往往存在有毒有害成分，造成诸多弊端。

发明内容
[0003] 本发明所要实现的发明目的是：克服现有技术存在的问题，提供一种农药喷雾助剂及其制备方法，该农药助剂可有效提高农药制剂的药效及持续时间。
[0004] 为实现上述目的，本发明的技术方案如下：
[0005] 一种农药喷雾助剂，其特征是，由以下成分按重量百分比构成：
[0006] A组分：1.0-2.0％二十二醇，8.0-10％白油；
[0007] B组分：2.0-3.0％甘油，0.05-0.06％乙二胺四乙酸二钠，1.6-2.0％表面活性剂1631；
[0008] C组分：10-12％Silwet 408，2.0-3.0％AEO-9，2.0-3.0％Span-80，4.0-6.0％Tween-80；
[0009] 余量为白油。
[0010] 本发明助剂进一步完善的技术方案如下：
[0011] 优选地，A组分：1.0％二十二醇，8.0％白油；
[0012] B组分：2.0％甘油，0.05％乙二胺四乙酸二钠，1.6％表面活性剂1631；
[0013] C组分：10％Silwet 408，2.0％AEO-9，2.0％Span-80，4.0％Tween-80；
[0014] 优选地，A组分：2.0％二十二醇，10％白油；
[0015] B组分：3.0％甘油，0.06％乙二胺四乙酸二钠，2.0％表面活性剂1631；
[0016] C组分：12％Silwet 408，3.0％AEO-9，3.0％Span-80，6.0％Tween-80；
[0017] 优选地，A组分：1.7％二十二醇，9.4％白油；
[0018] B组分：2.3％甘油，0.058％乙二胺四乙酸二钠，1.8％表面活性剂1631；
说明书

0019 C相组分:11.2%Silwet 408, 2.2%AE0-9, 2.6%Span-80, 5.1%Tween-80。
0020 优选地，所述二十二醇为化妆品级二十二醇，所述白油为化妆品级白油。
0021 本发明还提供：
0022 一种前述农药喷雾助剂制备方法，其特征是，包括以下步骤：
0023 第一步，将A相组分混合，并于75°C-80°C下搅拌均匀；
0024 第二步，将B相组分混合并加热搅拌至75°C-80°C，之后将B相混合物加至第一步所得A相混合物中并混合均匀；相同温度下保温搅拌10-12分钟；
0025 其中，第一步温度与第二步温度相同；
0026 第三步，将第二步所得AB相混合物降温至50°C-55°C，并向AB相混合物中加入C相组分，相同温度下保温搅拌均匀；
0027 第四步，将第三步所得ABC相混合物降至室温后，以白油定容至100％，即得成品。
0028 本发明制备方法进一步完善的技术方案如下：
0029 优选地，第一步的温度为75°C，第二步的温度为75°C，第三步的温度为50°C。
0030 优选地，第一步的温度为80°C，第二步的温度为80°C，第三步的温度为55°C。
0031 优选地，第一步的温度为76°C，第二步的温度为76°C，第三步的温度为53°C。
0032 本发明还提供：
0033 一种采用前述农药喷雾助剂的使用方法，包括：将所述农药喷雾助剂以重量比0.03-0.10％加入农药制剂中，混匀后施药。
0034 本发明人在深入地实践研究中发现，采用A相组分、B相组分作为“护发素”成分，采用C相组分作为农药乳化剂稳定剂成分，并采用上述制备方法，所得农药助剂可在农药表面形成护膜，从而提高农药制剂的药效及持续时间。
0035 与现有技术相比，本发明不仅能避免传统乳油制剂中存在有毒有害成分的弊端，还能在农药表面形成类似护发素的膜，可以把农药有效成分锁在植株关键部位充分发挥药效，而且雨水不易冲刷掉，延长药效维持时间。

具体实施方式

0036 下面通过实施例对本发明做进一步说明，但是本发明不仅限于这些例子。
0037 实施例1 制备农药喷雾助剂
0038 农药喷雾助剂由以下成分按重量百分比组成：A相组分：1.0-2.0%二十二醇，8.0-10%白油；B相组分：2.0-3.0%甘油，0.05-0.06%乙二胺四乙酸二钠，1.6-2.0%表面活性剂1631；C相组分：10-12%Silwet 408，2.0-3.0%AE0-9，2.0-3.0%Span-80，4.0-6.0% Tween-80；余量为白油。
0039 二十二醇采用化妆品级二十二醇，如原装巴斯夫二十二醇Lanette 22。白油采用化妆品级白油。Span-80、Tween-80：天津市科密欧化学试剂有限公司。Silwet 408：常州劲润化工有限公司。AE0-9：上海文华化工颜料有限公司。
0040 具体制备步骤如下：
0041 第一步，将A相组分混合，并于75°C-80°C下搅拌均匀；
0042 第二步，将B相组分混合并加热搅拌至75°C-80°C，之后将B相混合物加至第一步所得A相混合物中并混合均匀；相同温度下保温搅拌10-12分钟；
其中，第一步温度与第二步温度相同；
第三步、将第二步所得AB相混合物降温至50℃-55℃，并向AB相混合物中加入C相组分，相同温度下保温搅拌均匀；
第四步、将第三步所得ABC相混合物降温至室温后，以白油定容至100%，即得成品。
具体应用案例：
各案例的组成成分如表1所示，各案例的制备参数如表2所示。
表1 各案例组成成分

<table>
<thead>
<tr>
<th>案例</th>
<th>A 相</th>
<th>B 相</th>
<th>C 相</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0%二十二醇 8.0%白油</td>
<td>2.0%甘油 0.05%乙二胺四乙酸二钠 1.6%表面活性剂 1631</td>
<td>10% Silwet 408 2.0% AEO-9 2.0% Span-80 4.0% Tween-80</td>
</tr>
<tr>
<td>2</td>
<td>2.0%二十二醇 10%白油</td>
<td>3.0%甘油 0.06%乙二胺四乙酸二钠 2.0%表面活性剂 1631</td>
<td>12% Silwet 408 3.0% AEO-9 3.0% Span-80 6.0% Tween-80</td>
</tr>
<tr>
<td>3</td>
<td>1.7%二十二醇 9.4%白油</td>
<td>2.3%甘油 0.058%乙二胺四乙酸二钠 1.8%表面活性剂 1631</td>
<td>11.2% Silwet 408 2.2% AEO-9 2.6% Span-80 5.1% Tween-80</td>
</tr>
</tbody>
</table>

表2 各案例的制备参数

<table>
<thead>
<tr>
<th>案例</th>
<th>第一步</th>
<th>第二步</th>
<th>第三步</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75℃</td>
<td>75℃</td>
<td>50℃</td>
</tr>
<tr>
<td>2</td>
<td>80℃</td>
<td>80℃</td>
<td>55℃</td>
</tr>
<tr>
<td>3</td>
<td>76℃</td>
<td>76℃</td>
<td>53℃</td>
</tr>
</tbody>
</table>

实施例1 实施例1农药喷雾助剂的使用
分别取氯虫苯甲酰胺20%悬浮剂和啶虫脒40%水分散粒剂，将氯虫苯甲酰胺稀释4000倍，将啶虫脒稀释8000倍，使氯虫苯甲酰胺和啶虫脒浓度均达到50mg/kg。将实施例1各案例制得的农药喷雾助剂以重量百分比0.03-0.10%加入农药制剂中，混匀后施药即可。

各案例具体配制重量百分比见表3。

表3 各案例的配制比例

<table>
<thead>
<tr>
<th>案例</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>配制重量百分比</td>
<td>0.03%</td>
<td>0.06%</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

实施例3 实施例1案例3的使用效果实验
采用的农药制剂为60%甲维杀虫单，施药量为80g/亩，将农药制剂进行处理后，进行防治稻纵卷叶螟的药效实验。

处理方式有：(1) 不加助剂，直接施药。(2) 加普通助剂AEO-9后施药。(3) 按重量比0.10%加实施例1案例3制得的农药喷雾助剂后施药。

药效实验结果见表4。
表1 防治稻纵卷叶螟的药效实验结果

<table>
<thead>
<tr>
<th>处理方式</th>
<th>药后8天</th>
<th>药后16天</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>防效 (%)</td>
<td>保叶效果 (%)</td>
</tr>
<tr>
<td>不加助剂</td>
<td>69.1</td>
<td>70.9</td>
</tr>
<tr>
<td>加普通助剂 AEO-9</td>
<td>84.2</td>
<td>79.7</td>
</tr>
<tr>
<td>加案例3喷雾助剂</td>
<td>95.7</td>
<td>91.2</td>
</tr>
</tbody>
</table>

由该结果可知，实施例1案例3制得农药喷雾助剂的防治效果及持续性显著好于不加助剂和普通助剂处理。