PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 96/18941
GO6F 1/00 A2

(43) International Publication Date: 20 June 1996 (20.06.96)

(21) International Application Number: PCT/US95/16543 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE,

(22) International Filing Date: 15 December 1995 (15.12.95) KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,

MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK,
TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT,

(30) Priority Data: BE, CH, DE, DK, ES, FR, GB, GR, [E, IT, LU, MC, NL,

08/357,467 15 December 1994 (15.1294) US PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
‘ ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW,
SD, SZ, UG).
(71) Applicant (for all designated States except US): NOVELL,
INCORPORATED [US/US]J; 1555 North Technology Way,
Orem, UT 84057 (US). Published
Without international search report and to be republished
(72) Inventors; and upon receipt of that report.

(75) Inventors/Applicants (for US only): KINGDON, Kevin, W.
[US/US); 1331 East 600, North Orem, UT 84057 (US).
CHILDERS, Randal, E. [US/US]; 747 East 30 North, Orem,
UT 84057 (US). HIGLEY, Deeanne [US/US]; 545 East 2875
North, Provo, UT 84601 (US). OLDS, Dale, R. [US/US];
1623 East Edgecliff Drive, Sandy, UT 84092 (US).

(74) Agent: LILES, James, D.; Dinsmore & Shohl, 1900 Chemed
Center, 255 East Fifth Street, Cincinnati, OH 45202 (US).

(54) Title: METHOD AND APPARATUS TO SECURE DISTRIBUTED DIGITAL DIRECTORY OBJECT CHANGES

4A

COMFPANY B

OBJECT EQUIVALENT TO ME
PRINTER C BOYD

Ao
— -

COMPANY A

OBJECT SECURITY EQUALS
PRINTER C

BOYD
a’ 48
0o
43 43A
'
—=|

(57) Abstract

A method and apparatus for providing access control to objects in a distributed network directory employing static resolution to
resolve object attributes. A first object has a Security Equals attribute and a second object has an Equivalent To Me attribute. Upon
receiving a request for the first object to access the second object, authorization of such access is verified by checking if the two attributes
are synchronized. The attributes are synchronized when the Security Equals attribute of the first object includes the second object, and the
Equivalent To Me attribute of the second object includes the first object. A method of synchronizing the two attributes is also disclosed.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Ctte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

GB
GE
GN
GR

IT
JP

KG

KZ
LI
LK
LU
LY
MC

MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SI
SK
SN

TG
T

UA

vz

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

WO 96/18941 PCT/US95/16543

1
METHOD AND APPARATUS TO SECURE .
DISTRIBUTED DIGITAL DIRECTORY OBJECT CHANGES

The present invention relates generally to resolving attributes of objects, and
will be specifically disclosed in connection with a system for resolving such object

attributes in a distributed digital network directory.

Technological advances in microelectronics, digital computers, and software
have resulted in the proliferation of computer networks. In such networks, computers
telecommunicate between each other and share information, applications and services.
One type of computer network employs a client-server architecture, wherein the
portions of network applications that interact with human users are typically separated
from the portions of network applications that process requests and information. often,
the portions of an application that interact with the user are called client applications
or client software, and the portions of the application that process requests and
information are called server applications or server software. In a client-server
network environment, client applications and server z_lpplications are generally executed
on different computers, known as clients and servers, respectively, although servers

can be clients as well.

WO 96/18941 PCT/US95/16543

10

15

20

2

An early form of digital networks were local area networks, commonly referred
to as LANs, which consist of a physical collection of computers generally
interconnected with network cabling and network interface cards. Historically, LANs
comprised a single network server and multiple network clients. The network server
manages the network resources, such as files, printers, printer queues, server
applications, etc. As part of this management, the network server maintained
information on each of the network resources, the identities of the network clients and
users, and the scope and the nature of the access available to the network clients and

users.

As LANs became more popular, these networks grew in size requiring several
servers to manage the needs of clients and users, which made the management of the
network increasingly difficult. Logistically, this was difficult because users required
access to an increasing number of network resources that were located on an increasing
number of network servers. Adding to the difficulty was the multiple server structure
itself: macro management of the network servers within a LAN was essential,
however, each network server maintained a discrete directory that stored its own
unique information and networking services, which required independent micro
management. Further adding to the difficulty was the lack of a standard scheme of
providing networking services information. As a result, a variety of vendors began
offering their own particular networking servers each having a unique and idiosyncratic

schemes.

10

15

20

WO 96/18941 PCT/US95/16543

3

The associated difficulties with this insular method of maintaining information
of networking services fueled research and development of distributed network
directories. With distributed directories, a single directory spans and is shared by
multiple networking servers. Thus far, research has resulted in several distributed
directory protocols, some of which hold great promise for replacing the large number
of insular and idiosyncratic directories that now litter many of the existing LANs and
electronic-mail systems. One of the more popular solutions exploits the X.500 network
services protocol developed and published by the CCITT (now called ITU-T) and Open
Systems Interconnect Consortium. Part of the X.500 protocol specification describes
a distributed directory wherein information can be created, read, modified, and shared
by network clients who have applicable access rights across a plurality of servers. The
structure of the information stored in the distributed directory is enforced by the
directory schema. While the X.500 protocol appears to hold great promise to provide
a robust distributed directory, the X.500 protocol has been slow to gain acceptance.
The X.500 protocol specification describes a technical framework, interoperability
requirements and compliance criteria, however, it does not describe specific
implementations. Therefore, many of the details of implementation have been deferred
to systems providers, which has resulted in variability and ultimately the lack of a true

standard.

A distributed directory contains a collection of objects with associated attributes
or properties tied together by their relationship to each other. For example, Fig. 1

shows an object named "Computer" with some of its associated properties, such as

10

15

20

WO 96/18941 PCT/US95/16543

4

"Owner", "Operator”, "Status”, etc. The values of the associated attributes are not
shown in Fig. 1, but an example of a value for the property "Owner" might be
"George". Often, objects in a distributed directory and their names (e.g. "Computer”
in Fig. 1) represent things that humans relate to when dealing with computers. For
instance, some typical objects might represent users, printers, print queues, network
files, resources, etc. In addition, objects could represent non-computer related things,
such as countries, companies, organizations, departments, buildings, etc. As one with
ordinary skill in the art will readily appreciate, an object can represent virtually

anything, whether imaginary or real.

Often, the objects contained within a distributed directory can be viewed by a
user in a hierarchial structure, generally in the form of a tree, where objects are
organized in subtrees and partitions. Fig. 2 shows such a hierarchial structure. Each
of the branches and terminating points represent objects in the distributed directory,
and each of the circles represent partitions. Each partition contains a set of objects
wherein the root-most object is referred to as the partition root. Multiple replicas of
a partition can be stored in the distributed directory, wherein each insular server could
hold a unique set of partitions and at the same time hold a unique hierarchy of objects
within that insular machine. A server that maintains a partition is referred to as a name
server, which is responsible for updating and making modifications to objects within
the partition. Through the distributed directory framework, changes made by the name
server to the partition will be distributed to the various replicas. Directory schemas

define and determine the types of replicas of each partition, such as master partitions,

WO 96/18941 PCT/US95/16543

10

15

20

5

read only partitions, duplicate partitions, etc. This hierarchial structure of objects and
partitions is an effective way to reduce network storage, control network traffic, and

ultimately speed access to the distribute directory.

The hierarchial structure or tree provides a logical means of searching for
information within the distributed directory. The tree is generally patterned after
logical groupings such as organizations, organizational units, computers, users, etc.
For example, in Fig. 2 Partition A could represent the legal department of a company
and Partition C could represent the tax group, a subordinate group to the legal
department. Each partition forms a major subtree of the distributed directory. Taken
together, the partitions form a hierarchial structure of partitions that lead back to the
Root Partition. Where boundaries of two partitions meet, the partition closer to the
Root Partition is considered superior, and the partition further from the Root Partition
is considered subordinate. Thus, in Fig. 2 Partition E is subordinate to Partition B and
subordinate to the Root Partition, and Partition B is superior to Partition E and

subordinate to the Root Partition.

These logical groupings, while extremely useful in helping users find relevant
information, can create logistical challenges in managing the distributed directory. As
objects in the distributed directory change, the distributed directory must be changed
as well. For example, organizations, organizational units, computers and users all
move. Today, the legal department may be reporting through the finance department.

Tomorrow, one of the employees of the finance department might be moved to

WO 96/18941 PCT/US95/16543

10

15

20

6

marketing. The day after, another employee could receive a promotion granting him
or her new rights and privileges. Therefore, objects and partitions in the distributed

directory must be capable of being changed.

A distributed directory can become accessible to non-trusted parties, and such
parties could make unauthorized changes within the distributed directory. This is
particularly true as a distributed directory proliferates and more name servers are added
to the network. For example, two companies may participate in the same distributed
network. While complete trust may not exist between the two companies, each
company could have a name server that maintains a partition within the distributed
directory and have replicas of other partitions. As is readily apparent to one with
ordinary skill in the art, such access could take a variety of forms and is not limited by
the previous example. Because non-trusted parties could access information contained
in the distributed directory, these non-trusted parties may tamper with or change
important information in the distributed directory. If such tampering is allowed, the

success of a distributed directory could be severely impacted.

Tampering may occur in objects that employ a static means of resolving object
attributes, also referred to as static resolution. Another means of resolving object
attributes is referred to as dynamic resolution. Resolving object attributes refers to
comparing an attribute value or a set of values within one or more objects with another
value or set of values to determine if they match. Generally, static resolution is

employed to decrease network traffic in larger networks, whereas dynamic resolution

10

15

20

WO 96/18941 PCT/US95/16543

7

is generally used in smaller networks. For example, Fig. 3 compares these two means
to resolve object attributes. The people and things Boyd 31, Group A 32, and Printer
C 33 are all represented by objects 31a,b, 32a,b, and 33a,b. As represented by the
Dynamic resolution table 34, upon receiving request from Boyd 31 to print to Printer
C 33, a dynamic system searches through random access memory ("RAM") for the
object Printer C 33a in Column 36a. Next, the dynamic system 34 searches through
the associated attributes 37a of the object Printer C 33a. When the dynamic system 34
finds the object Group A 32a, it then searches through the associated attributes 37a of
the object Group A 32a until it finds the object Boyd 31a. Having resolved the object
attributes and checked that the values match, the system has verified that the object
Boyd 31a has authorization to access the object Printer C 33a, and the dynamic system
34 then accepts the request from the Boyd 31 to print to the Printer C 33. On the other
hand, a static system 35 searches the associated attribute 37b the object Boyd 31b for
the object Printer C 33b. If the object Printer C 33b is an attribute of the object Boyd
31b, the static system 35 then accepts the request from Boyd 31 to print to Printer C
33. While a dynamic system 34 tends to be faster in smaller computer systems, a static

system 35 tends to be faster in larger computer systems.

While providing superior performance in larger computer systems, static
resolution can introduce a potential security problem, particularly in a distributed
directory having multiple replicas of partitions. For instance, if the object Boyd 31b
is maintained by a name server that is physically located in Company A, and the object

Printer C 33b is maintained by a separate name server that is physically located in

WO 96/18941 PCT/US95/16543

10

15

20

8

Company B, someone could, without Company B's consent, tamper with the attributes
37b of the object Boyd 31b and add Printer C 33b as an attribute. As a result, Boyd
31 could access Printer C33 even though Company B did not authorize such access.
This is true because a static system 35 looks at the attributes 37b associated with the
object 36b requesting access, which object 36b is beyond the control of Company B.
Thus, there is a need for a means for resolving object attributes without the attendant

problems with the prior art.

Accordingly, an object of this invention is to increase security in computers.

An additional object of this invention is to provide an improved method for

resolving attributes of objects.

Another object of this invention is to provide an improved method for

synchronizing attributes associated with objects.

Yet another object of this invention is to provide an improved method for

securing object changes.

A further object of this invention is to provide an improved method for

enhancing static object resolution.

WO 96/18941 PCT/US95/16543

10

15

20

9
Still a further object of this present invention is to achieve the foregoing objects

in a distributed directory.

Additional objects, édvantages, and novel features of the invention will be set
forth in part in the description that follows and in part will become apparent to those
skilled in the art upon examining or practicing the invention. The objects and
advantages of the invention may be realized and obtained by means of the

instrumentalities and combinations particularly pointed out in the appended claims.

To achieve the foregoing and other objects of this invention, a method is
provided for verifying that a first object has authorization to access a second object.
The first object has a Security Equals associated attribute, which attribute contains a
list of other objects from which the first object derives or inherits rights. The second
object has an Equivalent To Me associated attribute, which attribute contains an
authoritative list of all objects that have security equal to the second object.
Authorization is verified if the Security Equals attribute in the first object and the
Equivalent To Me attribute in the second object are synchronized. The two associated
attributes are synchronized when the Security Equals attribute of the first object
includes the second object, and the Equivalent To Me attribute of the second object
includes the first object. If the two attributes are not synchronized, a further aspect of
the invention provides for the system to notify a person or a computer that

unauthorized access to the second object was attempted.

10

15

20

WO 96/18941 PCT/US95/16543

10

The present invention also provides a process for synchronizing the Security
Equals and the Equivalent To Me attributes. The process of synchronization can be
initiated upon receiving a request to modify the Equivalent To Me attribute of the
second object. For example, such a request could suggest that the first object be added
to the Equivalent To Me list of the second object. Next, the process verifies that the
Equivalent To Me attribute may be modified. Verification can be achieved in a variety
of ways, including checking that the requestor has proper system authorization or
checking through business administrative procedures that the first object has
authorization to access the second object. Once verified, the first object can be added
to the Equivalent To Me attribute of the second object. Then, the Security Equals
attribute of the first object can be synchronized to the modified Equivalent To Me

attribute by adding the second object to the Security Equals attribute.

Still other aspects of the present invention will become apparent to those skilled
in the art from the following description of a preferred embodiment, which is simply
by way of illustration is one of the best modes contemplated for carrying out the
invention. As will be realized, the invention is capable of other different obvious
aspects all without departing from the invention. Accordingly, the drawings and

descriptions are illustrative in nature and not restrictive.

WO 96/18941 PCT/US95/16543

11

The accompanying drawings, incorporated in and forming part of the
specification, illustrate several aspects of the present invention and together with their

5 description serve to explain the principles of the invention. In the drawings:

Fig. 1 shows a typical object with some of its associated attributes;

Fig. 2 shows a typical distributed directory;

10

Fig. 3 illustrates the difference between dynamic and static resolution;

Fig. 4 illustrates the use of the Security Equals and Equivalent To Me attributes
in a distributed directory employing static resolution of object attributes where the

15 attributes are synchronized; and

Fig. S illustrates the use of the Security Equals and Equivalent to Me attributes
in a distributed directory employing static resolution of object attributes where the
attributes are not synchronized.

20

Reference will now be made in detail to the present preferred embodiment of

the invention, an example of which is illustrated in the accompanying drawings,

wherein like numerals indicate the same elements throughout the views.

WO 96/18941 PCT/US95/16543

10

15

20

12

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The software of the preferred embodiment of the invention supports a security
mechanism for deterring the tampering of objects contained in a distributed directory.
The distributed directory of the preferred embodiment has a schema that includes a
collection of class definitions and attribute definitions. Each object in this schema
belongs to a class, which class has a textual name within a class hierarchy. Descending
the class hierarchy corresponds to increasing specialization. For example, a server
is a specialization of a device, and a print server is a specialization of a server. The
objects also has a name hierarchy, which can be analogized to a tree structure. Objects
at interior nodes, or objects closer to the root of the tree, are "container” objects that
are considered superior to relatively exterior nodes, or objects closer to the leaves of
the tree, which are considered subordinate. In addition to belonging to a class, these
objects have attributes whose values can be read and written. Each attribute has a
textual name and a syntax by which its values are represented, wherein the name can
be from one to 32 characters in length (excluding null termination). A given attribute
can have a range of valid values and a variety of other attribute characteristics, such

as whether an attribute is mandatory or optional.

Objects can reference other objects. Such references are organized or
controlled by specialized access attributes associated with such objects. In the
preferred embodiment, when a first object references a second object, the first object

contains an access attribute named "Security Equals" and the second object contains

10

15

20

WO 96/18941 PCT/US95/16543

13

an access attribute named "Equivalent To Me." Both access attributes are statically
resolved and may have multiple values. The Security Equals attribute, which as used
in the present specification and claims shall mean any attribute that contains a list of
other objects from which the first object derives or inherits rights, or to which the
object has access rights. For instance, a user object named Boyd, having the objects
George and Group A in its Security Equals attribute list, inherits the rights that George
and Group A have for other objects. As a further example, a user object named Heidi
could have the object Tape Drive in its Security Equals attribute list whereby Heidi
would have access rights to the Tape Drive. The Equivalent To Me attribute, which
as used in the present specification and claims shall mean any attribute that contains
a list of all objects that have security equal to the object associated with that attribute.
In the present embodiment, the Equivalent To Me attribute is used as the authoritative
attribute for access control of a given object. So, in the foregoing examples, the
objects George and Group A would have Boyd in their Equivaleat To Me attribute
lists, and the object Type Drive would have Heidi in its Equivalent To Me attribute

list.

Fig. 4 illustrates how the Security Equals and Equivalent To Me attributes are
used in the preferred embodiment. In this example, Company A 41a and Company B
41b work with one another in separate offices, however complete trust does not exist
between the two companies. The two companies 41a, 41b both share and participate
in a distributed network 40, wherein each company operates a name server 47a, 46b

that maintains a partition 42a, 42b for the respective companies 41a, 41b. Each of

WO 96/18941 PCT/US95/16543

10

15

20

14

these partitions 42a, 42b are subordinate to the root partition 42. An employee of
Company A 41a named Boyd 43 operates a client computer 43a that communicates
with the name server 47a as part of their working relationship. Boyd 43 has been
authorized to print to and otherwise access Printer C 45 located in the offices of
Company B 41b. The partition 42a includes an object Boyd 44 representing employee
Boyd 43, which object 44 has a Security Equals attribute 48. Similarly, the partition
42b includes an object Printer C 46 that has an Equivalent To Me attribute 49, which
object 46 represents the physical Printer C 45. The name server 47a controls and

maintains the object Boyd 44, and the name server 47b controls and maintains the

object Printer C 46.

As one skilled in the art will readily appreciate, the two servers 47a, 47b can
telecommunicate between each other either directly or indirectly in any of a variety of
ways, such as modem, physical connections, internetworking, gateway links, satellite
links, etc. Although the present example demonstrates an embodiment of this invention
in the context of a distributed directory 40, the teachings of this disclosure could be
readily applied by one with ordinary skill in the art in multiple other arrangements,
such as between two machines having discrete non-distributed directories or within a

single machine that maintains both the objects in question 44, 46.

In the present example, when Boyd 43 uses an application running on the client
computer 43a to request access to Printer C 45, such as the form of a print job, the

client 43a passes the request to the server 47a in the form of a request such as "Resolve

WO 96/18941 PCT/US95/16543

10

15

20

15

Name." Resolve Name is an operation whereby a client may start determining the
values of the various attributes. This operation takes an object's Distinguished Name
and returns "Entry IDs" or addresses of the object that can be used to access a
corresponding value. Thfough the request parameters, the client computer 43a
indicates the various characteristics of the desired Entry ID. In the present example,
Resolve Name can additionally identify the Distinguished Name of Printer C 45,
namely CN =Printer C.OU=Domain B.O=Company B which represents where the
object Printer C 46 is located within the distributed directory hierarchy. In this
example, “CN” is the common name, "O" is the organization name, "OU" is the

organizational unit.

Next, the preferred embodiment looks into the list of values in the Security
Equal attribute 48 of object Boyd 44 using a function such as "Read". Read is a
function used to determine the value of an attribute, which function returns the values
of a given attribute for a specified object. When used in the context of the present
example, the server 47a uses Read to resolve the Security Equals attribute 48 and
return the value "Printer C". After resolving the Security Equals attribute 48, the
server 47a issues a Read request to the server 47b located in Company B 41b. Similar
to the Read request for the object Boyd 44, the server 47b references the object Printer
C 46 and returns the access control list associated with the Equivalent To Me attribute
49. In the present example, a value in the Equivalent To Me attribute 49 is "Boyd."
Next, synchronization between the attributes 48, 49 is checked. Synchronization is

determined by comparing the values for Security Equals attribute 48 and the Equivalent

10

15

20

WO 96/18941 PCT/US95/16543

16

To Me attribute 49, and determining if the respective attributes 48, 49 reference the
opposite objects 44, 46. The example illustrated in Fig. 4 shows synchronization
between the attributes of the two objects: "Printer C" is the value of the Security
Equals attribute 48 and "ded" is the value of the Equivalent To Me attribute 49.
Having established that there is synchronization, the servers 47a, 47b acknowledge that
employee Boyd 43 has authorization to access the physical Printer C 45, and the print

job is then processed.

While Fig. 4 demonstrates what happens when the values of Security Equals
and Equivalent To Me attributes 48, 49 are synchronized, Fig. 5 demonstrates when
the attributes are not synchronized. Like the prior example, Company A 51a and
Company B 51b work together, however complete trust does not exist between two
companies. In this example, an employee named Joyce 53 of Company A 51a will
attempt to gain unauthorized access to Printer C 55 located in Company B 51b. The
companies 51a, 51b participate in a distributed directory 50, wherein each company
has a name server 57a, 57b that maintains a partition 52a, 52b, respectively. Server
57a maintains the object Joyce 54, and server 57b maintains the object Printer C 56.
The two companies 51a, 51b in their working relationship have agreed that Joyce 53
should not have access to Printer C 55, thus the value "Printer C" has not been added
as a value to the Security Equals attribute 58 of the object Joyce 53, and "Joyce" has
not been added as a value to the Equivalent To Me attribute 59 of the object Printer C

56.

WO 96/18941 PCT/US95/16543

10

15

20

17

Disregarding this agreement, employee Joyce 53 will attempt to access Printer
C 55 by modifying the values associated with the object Joyce 54. In the present
example, such modification takes the form of adding the value "Printer C" to the
Security Equals attribute 58 (shown in italics to indicate an illicit modification). In this
example, Joyce 53 had the ability to modify the object Joyce 54 because she had

physical access to the server 57a. However, access can take a variety of other forms.

Having modified the Security Equals attribute 58 of the object Joyce 54, the
employee Joyce 53 makes a request to access Printer C 55, such as sending a print job
through the client computer 53a. The client computer 53a forwards a request such as
Resolve Name to server 57a. Using a function such as Read, the server 57a resolves
the values of the Security Equals attribute 58 for the object Joyce 54. Because the
employee Joyce 53 added the value "Printer C" to the Security Equals attribute 58, the
server 57a will not detect an anomaly and will issue a request to server 57b located in
Company B 51b using a function such as Read. Next, the server 57b accesses the
Equivalent To Me values 59 for the object Printer C 56. Because the value "Joyce"
is not a value in the Equivalent To Me attribute, there is no synchronization, and
access to Printer C55 will be denied. The server 57a will notify Joyce 53 through a
message that she does not have rights to Printer C 55. In addition, either one of the
servers 57a, 57b could notify the system administrator (not shown), a separate name
server (not shown), or Printer C 55 that employee Joyce 53 attempted an unauthorized

access to Printer C 55.

WO 96/18941 PCT/US95/16543

10

15

20

18

While the examples illustrated in Figs. 4 and 5 concern access to a printer, one
with ordinary skill in the art will readily appreciate that the present invention can be
applied to virtually anything represented by objects, such as computers, print servers,
fax servers, storage devices, databases, etc. In addition, the present invention is not
limited to things represented by objects located in different physical locations or
separate computers. For example, the present invention could be applied in a wing of
an advertising firm having one server that maintains objects representing an expensive
color printer and the employees, wherein only certain graphic designers are allowed
access to the printer. The present invention could also be applied to non-physical
objects, such as subdirectories, partitions, files, databases, applications, etc. For
instance, a company could implement the present invention to limit access to a
subdirectory containing sensitive company information relating to a corporate merger.
The system administrator of the company LAN, which could have only one server,
could establish a subdirectory object named "Merger" having an Equivalent To Me
attribute with a list of values of user objects representing the privy employees: Jay,
Heidi, and Rob. For each of these user objects, the system administrator could add the
value "Merger" to their Security Equals attribute. In doing so, only the users Jay,
Heidi, and Rob could access the subdirectory Merger. The present invention could
also be applied within a program or on a system level. For example, in an insular
stand-alone machine, one object variable could attempt access to a second object
variable as part of a program organization, wherein the request is initiated
automatically without a human prompt. These examples are intended to illustrate that

the present invention can be applied wherever object attributes are resolved.

10

15

20

WO 96/18941 PCT/US95/16543

19

The specifically described embodiment includes a mechanism for securely
synchronizing the Security Equals and Equivalent To Me attributes. Using the example
illustrated in Fig. 4, Boyd 43 could be granted access to Printer C 45 by synchronizing
the Security Equals and Eqﬁivalent To Me attributes 48, 49 of the respective objects
44, 46. The process of synchronization can be initiated in a variety of ways. For
example, synchronization can be initiated when a network client application, possibly
operated by the system administrator, passes a request to server 47b to add the value
"Boyd" to the Equivalent To Me attribute 49 of the object Printer C 46. Such a
request could take the form of a request such as "Modify Object." Modify Object is
a function used for modifying attribute values for a specified object, wherein the act
of modifying can include adding, deleting or changing the values of a given attribute.
The distributed directory schema of the preferred embodiment allows most attributes
to have multiple values, so there may be several kinds of individual changes to the
same attribute in a Modify Object request, each modification adding, deleting or

changing an attribute value.

After receiving the Modify Object request, the server 47b verifies the existence
of the object Boyd 44 by making the request Resolve Name. In the present example,
where the object Boyd 44 is maintained by the server 47a, this request must be sent to
server 47a, which responds whether or not the object Boyd 44 exists. If the object
Boyd 44 exists, the server 47b verifies that employee Boyd 43 has access rights to
Printer C 45. This verification can be accomplished in any number of different ways.

For example, the server 47b can read a database of the various objects and the

WO 96/18941 PCT/US95/16543

10

15

20

20

corresponding access rights, possibly located in the root partition 42. As a further
example, the server 47b could prompt the system administrator or some other user
having the appropriate corporate authority to confirm that employee Boyd 43 has
access rights. Having verified that employee Boyd 43 has access rights to Printer C
45, the server 47b modifies the Equivalent To Me attribute 49 of the object Printer C

46 by adding the value "Boyd" in the Equivalent To Me attribute 49.

Next, the server 47b issues a "Check Sev" request to server 47a. Check Sev
is a request to check the security equivalence of an object. After receiving the Check
Sev request, the server 47a notes that server 47b suggests that a change has been made
to the Equivalent To Me attribute 49 of the object Printer C 46 and that the object
Boyd 44 was involved in the change. Then, server 47a issues a request to the server
47b in the form of Resolve Name for the object Printer C 46, and server 47b returns
the corresponding Entry ID. Next, server 47a issues a request in the form of "Read
Entry Info" to determine the partition root (not shown) of partition 42b containing the
object Printer C 46. Read Entry Info is different from Read. While Read obtains
values of an object's attributes, Read Entry Info obtains other values associated with
the object. For instance, using Read Entry Info a client can read an entry's
modification time stamp, the Entry ID of its containing parent, or any other of a

variety of values associated with the object.

The server 47a then issues a request in the form of Read to determine the

attribute values of Printer C's object 46. Next, server 47a issues a request to server

10

15

WO 96/18941 PCT/US95/16543

21

47b in the form of "Compare" to verify the presence or absence of the value "Boyd"
in the Equivalent To Me attribute 49 of the object Printer C 46. The Compare
operation reports whether a client-supplied value is one of the entry values for an
attribute identified in the réquest. A common use of the Compare operation is to
determine if a user object is a member of a specific group. Lastly, the server 47a
modifies the Security Equals attribute 48 of the object Boyd 44 based on the presence
or absence of Equivalent To Me attribute 49. If the value is present, the server 47a
adds the value "Printer C" in the Security Equals attribute 48. On the other hand, if
the value is not present the server 47a does not add the value "Printer C" to Security

Equals attribute 48.

The foregoing description of the preferred embodiment of the invention has
been presented for purposes of illustration and description. It is not intended to be
exhaustive nor to limit the invention to the precise form disclosed. Many alternatives,
modifications and variations will be apparent to those skilled in the art in light of the
above teaching. Accordingly, this invention is intended to embrace all such
alternatives, modifications and variations that fall within the spirit and broad scope of

the appended claims.

10

WO 96/18941 PCT/US95/16543

22

1. A method of resolving object attributes in a computer system, wherein a first

object and a second object each have at least one associated attribute,

comprising the steps of:

a) determining an associated attribute of the first object;

b) checking that the second object is included in the associated attribute of

the first object;

c) determining an associated attribute of the second object; and

d) checking that the first object is included in the associated attribute of the

second object.

2. A method as recited in Claim 1, further comprising the step of notifying that
the attributes of the first and second objects are not synchronized if at least one

of the following events occurs:

a) the second object is not included in the associated attribute of the first

object; or

WO 96/18941

PCT/US95/16543

23

b) the first object is not included in the associated attribute of the second

object.

A method as recited in Claim 1, further comprising the step of allowing the

first object to access the second object if:

a) the second object is included in the associated attribute of the first
object; and

b) the first object is included in the associated attribute of the second
object.

A method as recited in Claim 1, wherein the first and second objects employ

static resolution.

A method as recited in Claim 1, wherein the associated attribute of the first
object is a Security Equals attribute, and the associated attribute of the second

object is an Equivalent To Me attribute.

A method as recited in Claim 1, wherein the first and second objects are

contained within different partitions in a distributed directory.

10

15

WO 96/18941

PCT/US95/16543

24

A method as recited in Claim 6, wherein the different partitions are maintained

by different servers.

A method of synchrbnizing an associated attribute of a first object and an

associated attribute of a second object in a computer system, comprising the

steps of:

a)

b)

d)

receiving a request to modify the associated attribute of the second

object;

verifying that the associated attribute of the second object may be

modified;

modifying the associated attribute of the second object; and

synchronizing the associated attribute of the first object and the
associated attribute of the second object by modifying the associated
attribute of the first object to correspond to the modified associated

attribute of the second object.

A method as recited in Claim 8, further comprising after Step (c) and before

Step (d) the step of verifying that the associated attribute of the second object

has been modified.

WO 96/18941 PCT/US95/16543

25

10. A method as recited in Claim 8, wherein the act of modifying an associated

attribute includes one or more of the following steps:

a) adding a value to such an attribute;
b) deleting a value to such an attribute; or
c) changing a value to such an attribute.

11. A method as recited in Claim 8, wherein the step of modifying the associated
attribute of the first object to correspond to the modified associated attribute of
the second object is achieved by adding the second object to the attribute of the

first object if the first attribute was added to the attribute of the second object.

12. A method as recited in Claim 8, wherein the step of modifying the associated
attribute of the first object to correspond to the modified associated attribute of
the second object is achieved by deleting the second object from the attribute
of the first object if the first object was deleted from the attribute of the second

object.

13. A method as recited in Claim 8, wherein the first and second objects are

contained within different partitions in a distributed directory.

10

15

WO 96/18941 PCT/US95/16543

26

14. A method as recited in Claim 13, wherein the different partitions are

maintained by different servers.

15. A method of verifying that a first object has authorization to access a second
object in a computer system wherein the first object and the second object each

have at least one associated attribute, comprising the steps of:

a) receiving a request for the first object to access the second object;

b) determining the associated attribute of the first object and the associated

attribute of the second object;

c) checking that the second object is included in the associated attribute of
the first object and that the first object is included in the associated

attribute of the second object; and

d) verifying that the first object has authorization to access the second

object if:

i the second object is included in the associated attribute of the

first object; and

WO 96/18941 PCT/US95/16543

27

ii. the first object is included in the associated attribute of the

second object.

16. A method as recited in Claim 15, further comprising the step of: notifying that
an unauthorized access to the second object was attempted if one of the

following events occurs:

a) the second object is not included in the associated attribute of the first
object; or

b) the first object is not included in the associated attribute of the second
object.

17. A method as recited in Claim 15, wherein the first and second objects employ

a static resolution to resolve object attributes.

18. A method as recited in Claim 15, wherein the associated attribute of the first
object is a Security Equals attribute, and the associated attribute of the second

object is an Equivalent to Me attribute.

19. A method as recited in Claim 15, wherein the first and second objects are

contained within different partitions in a distributed directory.

10

15

WO 96/18941

20.

21.

22.

PCT/US95/16543

28
A method as recited in Claim 19, wherein the different partitions are

maintained by different servers.

In a computer network, comprised of network client and network server
computers, that employs a distributed network directory using a static means
of resolving object attributes, a method to provide authoritative access control

comprising the steps of:

a. accepting the request of a first object under the physical control of the
administrator of one partition of the distributed network directory to
access a second object that is under the physical control of the

administrator of another partition of the distributed network directory;

b. verifying that the access control list of the first object includes the

second object; and

c. verifying that the access control list of the second object includes a
reference to the first object as an object that is permitted access to the

second object.

In a distributed network directory where the authoritative access control list and
the objects associated with the authoritative access control lists are under the

physical control of a system administrator of a partition of the distributed

10

15

WO 96/18941

PCT/US95/16543

29

network directory, a method of synchronizing object access control lists based
upon an authoritative access control list where such access control lists are

resolved using static object attribute resolution comprising the steps of:

a. issuing an advisory from a first name server that maintains a replica of
the distributed netowrk directory to a second name server that maintains
a replica of the distributed network directory where the access control
list of an attribute of an object under the control of the first name
servers has incorporated a reference to an object under the control of
the second name server wherein the reference object has been granted

some level of access to such object; and

b. modifying the partition under the control of the second name server to
change the access control list of the object referenced in the access
control list of the first name server to conform to the attribute of the

object under the control of the same first name server.

WO 96/18941 PCT/US95/16543

1/4

OPERATOR

COMPUTER SERIAL

NUMBER
NETWORK
ADDRESS
FIG. 1
PRIOR ART
PARTITION A ROOT PARTITION
PARTITION B

PARTITION C

PARTITION D PARTITION E

FIG. 2
PRIOR ART

SUBSTITUTE SHEET (RULF 2A)

PCT/US95/16543

WO 96/18941

2/4

1Y A0rdd

\ Ve
Y dN0d9

- veg

¢ Old
vig—1 arod
dee~\ 2 33LNIA axod |—aqig ¥ Y dN0d¥o 2 J3ALNINd
Q3HOAYIS AINI¥LLY | 123rdo vze - | aanodvas angiiy | 103argo
ac” VIS N vie - JINVYNAD
\,\ daog voe
2 3AININd
Ge
— ¥e
ce
Y dN0¥O arod

ST

SUBSTITUTE SHEET (RULE 26)

PCT/US95/16543

WO 96/18941

S/4

=
r—" =

diy ~

6v J \ 114
aAod D AJINIAd
I 04 INITVAIND3 123rdo

d ANVdNOD

<

diy

/ 2

¥ 'Ol

8.

Vivy |

—4

(%24
N =
D AALINIRd asogd
SIVNO3A ALRINO3S 123argo

Y ANVdWOO

Viv

SUBSTITUTE SHEET (RULE 26)

PCT/US95/16543

WO 96/18941

4/4

G ol

=
sg—" =

==
a.G ~|

ST

64 g4 ¥G
N\ = % A =
J A41INI&d J AAUINIAd 01010
AN OLINTIVANDA] _ 153rdo STVND3 ALNND3S| 193rdo

d ANYdWOD Y ANVJWNOD

o

dlg
ViG

W 26

(0]°]

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

