A 00 0 OO

WO 02/103984 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2002 (27.12.2002)

PCT

(10) International Publication Number

WO 02/103984 A2

(51) International Patent Classification”: HO04L 29/06

(21) International Application Number: PCT/US02/18808

(22) International Filing Date: 14 June 2002 (14.06.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/882,733 15 June 2001 (15.06.2001) US

(71) Applicant: INFORMATICA CORPORATION
[US/US]; 3350 West Bayshore, Palo Alto, CA 94303
(US).

(72) Inventors: SANKARAN, Mohan; 4605 Korbel Street,
Union City, CA 94587 (US). BUTSKY, Volodymyr;
3314 Cannongate Court, San Jose, CA 95121 (US).

L))

381

(84)

KORITALA, Sridhar, C.; 3939 Monroe Avenue, #139,
Fremont, CA 94536 (US). TANG, Zhenyu; 37242 Rico
Common, 3044, Fremont, CA 94536 (US).

Agents: GALLENSON, Mavis, S. et al.; LADAS &
PARRY, 5670 Wilshire Boulevard, Suite 2100, Los Ange-
les, CA 90036-5679 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR TRANSFERRING DATA OVER A NETWORK

(57) Abstract: A method and system pro-
viding a high speed and secure data link for

moving large amounts of data across a net-

work, such as the data used in ananalytic ap-
plication. Featured are simultaneous com-

pression and encryption of the data, as well
as means for recovery in the event the net-
work connection is lost.

100
DATAFILE
120
107
s
DATABASE
SERVER
110
CLENTMASS (5ATRFILE
STORAGE 120
DEVICE > CLIENT
1160
DATA || OPERATIONAL
WAREHOUSE || DATABASE
102

w0 02/103984 A2 NI 000000 ORS00

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, ance Notes on Codes and Abbreviations" appearing at the begin-
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent ning of each regular issue of the PCT Gazette.

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

15

20

WO 02/103984 PCT/US02/18808

METHODS AND SYSTEMS FOR TRANSFERRING DATA OVER A NETWORK

FIELD

The disclosure relates generally to computer system networks, and more
particularly, to securing rapid, reliable, and private communication between

networked computers in a multiple data warehouse/analytic application
environment. The disclosure relates to method and system for providing transfer of

analytic application data over a network.

BACKGROUND

Computers are used to perform a wide variety of applications in such
diverse fields as finance, traditional and electronic commercial transactions,
manufacturing, health care, telecommunications, etc. Most of these applications
typically involve inputting or electronically receiving data, processing the data
according to a computer program, then storing the results in a database, and
perhaps transmitting the data to another application, messaging system, or
client in a computer network. As computers become more powerful, faster, and

more versatile, the amount of data that can be processed also increases.

Unfortunately, the raw data found in operational databases often exist as

rows and columns of numbers and codes which, when viewed by individuals,

10

15

20

WO 02/103984 PCT/US02/18808

appears bewildering and incomprehensible. Furthermore, the scope and
vastness of the raw data stored in modern databases is overwhelming 1o a
casual observer. Hence, applications were developed in an effort to help
interpret, analyze, and compile the data so that it may be readily and easily
understood by a human. This is accompvlished by sifting, sorting, and
summarizing the raw data before it is presented for display, storage, or
transmission. Thereby, individuals can now interpret the data and make key

decisions based thereon.

Extracting raw data from one or more operational databases and
transforming it into useful information (e.g., data "warehouses” and data "marts")
is the function of analytic applications. In data warehouses and data marts, the
data are structured to satisfy decision support roles rather than operational
needs. A data warehouse utilizes a business model to combine and process
operational data and make it available in a consistent way. Before the data are
loaded into the data warehouse, the corresponding source data from an
operational database are filtered to remove exiraneous and erroneous records;
cryptic and conflicting codes are resolved; raw data are transiated into
something more meaningful; and summary data that are useful for decision
support, trend analysis and modeling or other end-user needs are pre-
calculated. A data mart is similar to a data warehouse, except that it contains a
subset of corporate data for a single aspect of business, such as finance, sales,

inventory, or human resources.

10

15

20

WO 02/103984

In the end, the data warehouse or data mart is comprised of an
"analytical” database containing extremely large amounts of data useful for
direct decision support or for use in analytic applications capable of
sophisticated statistical and logical analysis of the transformed operational raw
data. With data warehouses and data marts, useful information is retained at4
the disposal of the decision makers and users of analytic applications and may
be distributed to data warehouse servers in a networked system. Additionally,
decision maker clients can retrieve analytical data resident on a remote data

warehouse servers over a computer system network.

An example of the type of company that would use data warehousing is
an online Internet bookseller having millions of customers located worldwide
whose book preferences and purchases are tracked. By processing and
warehousing these data, top executives of the bookseller can access the
processed data from the data warehouse, which can be used for sophisticated
analysis and to make key decisions on how to better serve the preferences of

their customers throughout the world.

The rapid increase in the use of networking systems, including Wide
Area Networks (WAN), the Worldwide Web and the Internet, provides the
capability to transmit operational data into database applications and to share

data contained in databases resident in disparate networked servers. For

PCT/US02/18808

WO 02/103984 PCT/US02/18808

example, vast amounts of current transactional data are continuously generated
by business-to-consumer and business-to-business electronic commerce
conducted over the Internet. These transactional data are routinely captured
and collected in an operational database for storage, processing, and

distribution to databases in networked servers.

The expanding use of "messaging systems” and the like enhances the
capacity of networks to transmit data and to provide interoperability between
disparate database systems. Messaging systems are computer systems that
allow logical elements of diverse applications to seamlessly link with one
another. Messaging systems also provide for the delivery of data across a
broad range of hardware and software platforms, and allow applications to
interoperate across network lir;ké despite differences in underlying
communications protocols, system architectures, operating systems, and
database services. Messaging systems and the recent development of Internet
access through wireless devices such as enabled cellular phones, two-way
pagers, and hand-held personal computers, serve to augment the transmission

and storage of data and the interoperability of disparate database systems.

In the current data warehouse/data mart networking environment, one
general concem involves the sheer volume of data that must be dealt with.
Often massive, multi-terabyte data files are stored in various server sites of data

warehouses or in operational databases. Transmitting these massive amounts

10

WO 02/103984 PCT/US02/18808

of data over WANs or the Internet is a troublesome task.. The time needed to
move the data is signiﬁcant,'and the probability that the data may contain an
error introduced during transmission is increased. Also, the data are also
vulnerable to interception by an unauthorized party. Furthermore, when the
connection is lost in the process of transmitting the data over a network, there
often is a need to retransmit large amounts of data already transmitted prior to |

the loss of connection, further increasing the time needed to move the data.

Accordingly, there is a need for a reliable, secure, authenticated,
verifiable, and rapid system and/or method for the transmission of huge
amounts of data, such as data in a data warehouse/mart, over networks such as
WANSs and the Internet. The present invention provides a novel solution to this

need.

10

20

WO 02/103984 PCT/US02/18808

SUMMARY OF THE INVENTION

The present invention satisfies a currently unmet need in a neiworked
data warechouse/analytic application environment to provide a method and
system that provide reliable, secure, authenticated, verifiable, and rapid system
and method for the transmission of huge amounts of data over a network (e.g.,
operational data, and transformed data in a data warehouse/data mart). The
data can be moved from a source to a target (e.g., from a server to a client, or
from a client to a server) in thevcomputer system network. The source

represents any centralized source on the network, while the target can

~represent a remotely located device (e.g., at a customer site) or a local device

(e.g., a device in communication with the source via a local area network).

In one embodiment, in a source (e.g., server) computer system, an
incoming request is received from a target (e.g., client) for a large amount of
data (e.g., a data file) resident in a mass storage unit on the server, for example.
The incoming request is authenticated and is then used to spawn a session
thread between the server and the client. The incoming request includes a
command that, in one embodiment, uses Extensible Markup Language (XML).
The command is parsed and translated into a set of tasks which can be

executed by the server as part of the session thread.

10

15

WO 02/103984 PCT/US02/18808

in one embodiment, the data are separated into blocks, and each block is
sequentially compressed and encrypted, then sent to the client. In one
embodiment, the blocks are processed in parallel, saving time. The transfer of

the data to the client is checked to make sure it is complete and accurate.

On the client side, the session thread between the server and client is
spawned in response to a message from the server. The compressed and
encrypted data blocks are received from the server, then decompressed,

decrypted, and assembled into the requested data.

The present invention provides a recovery mechanism for automatically
or manually restoring a connection between the server and client when the
connection is lost. As part of the recovery mechanism, data transfer is resumed
from the point where it was terminated when the connection was lost, so that

previously transmitted data do not have to be retransmitted.

WO 02/103984 PCT/US02/18808

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like

5 reference numerals refer to similar elements and in which:

Figure 1A illustrates a schematic block diagram of an exemplary

client/server computer system network upon which embodiments of the present
invention may be implemented.

10

Figure 1B illustrates an exemplary computer system upon which

embodiments of the present invention may be practiced.

Figure 2A illustrates a general functional block diagram of a computer

15 system network in accordance with one embodiment of the present invention.

Figure 2B illustrates a more detailed functional block diagram of the

computer system network generally illustrated in Figure 2A.

20 Figure 3A illustrates data flow through a first embodiment of an output

channel of the present invention.

WO 02/103984 PCT/US02/18808

Figure 3B illustrates data flow through a first embodiment of an input

channel of the present invention.

Figure 4A illustrates data flow through a second embodiment of an output

5 channel of the present invention.

Figure 4B illustrates data flow through a second embodiment of an input

channel of the present invention.

10 Figure 5 illustrates data flow through one embodiment of a session’

thread in accordance with the present invention.

Figures 6A, 6B, and 6C illustrate data transfer recovery after a failure of a
network connection in accordance with one embodiment of the present

15 invention.

Figure 7A is flowchart of the steps in a server-side process for
transferring data over a network in accordance with one embodiment of the
present invention.

20

Figure 7B is flowchart of the steps in a client-side process for transferring

data over a network in accordance with one embodiment of the present

invention.

10

15

20

WO 02/103984 PCT/US02/18808

DETAILED DESCRIPTION

Reference will now be made in detail to the preferred embodiments of the:
invention, examples of which are illustrated in the accompanying drawings.
While the invention will be described in conjunction with the preferred
embodiments, it will be understood that they are not intended to limit the
invention to these embodiments. On the contrary, the invention is intended to
cover alternatives, modifications and equivalents, which may be included within
the spirit and scope of the invention as defined by the appended claims.
Furthermore, in the following detailed description of the present invention,
numerous specific details are set forth in order to provide a thorough
understanding of the present invention. However, it will be obvious to one of
ordinary skill in the art that the present invention may be practiced without these
specific details. In other instances, well-known methods, procedures,
components, and circuits have not been described in detail so as not to

unnecessarily obscure aspects of the present invention.

Some portions of the detailed descriptions that follow are presented in
terms of procedures, logic blocks, processing, and other symbolic
representations of operations on data bits within a computer memory. These
descriptions and representations are the means used by those skilled in the
data processing arts to most effectively convey the substance of their work to

others skilled in the art. In the present application, a procedure, logic block,

10

10

15

20

WO 02/103984 PCT/US02/18808

process, or the like, is conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, although not necessarily, these
guantities take the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise manipulated in a
computer system. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as sessions, objects, blocks, parts,

threads, or the like.

It should be borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing terms such as
"establishing,” "issuing,” "authenticating,” "spawning,” "transmitting,"
“accumulating,” “restoring,” resuming,” "translating,” “storing,” “executing,”

bR 1

“receiving,” "writing,” “compressing,” “decompressing,” “encrypting,”
“decrypting,” “sending,” “verifying,” or the like, refer to actions and processes
(e.g., processes 700 and 750 of Figures 7A and 7B, respectively) of a computer
system or similar electronic computing device. The computer system or similar

electronic computing device manipulates and transforms data represented as

physical (electronic) quantities within the computer system memories, registers

11

WO 02/103984

10

15

20

or other such information storage, transmission or display devices. The present

invention is well suited to the use of other computer systems.

Figure 1A illustrates a block diagram of client/server computer system
network 100 upon which embodiments of the present invention may be
practiced. This server/client system 100 is made up of server computer systenﬁ
110 (e.g., Unix or NT server computer), client computer system 102, and remote
computer systems 103-105, (e.g., personal computers, laptop computers,
workstations, terminals, etc.) V\;hich may be used to access the information
accessible o server computer system 110. Server 110 can represent any
centralized source on the network 100, while client 102 and remote computer
systems 103-105 can represent a remotely located device (e.g., at a customer
site) or a local device (e.g., a dev‘ice in communication with server 110 via a

local area network).

Each remote computer system 103-105 has its own physical memory
system (e.g., hard drive, random access memory, read only memory, etc.) for
storing and manipulating data. Client computer system 102, server computer
system 110, and remote computer systems 103-105 are connected for
intercommunication and transfer of data by network bus 107. However, it is

appreciated that these devices may instead by coupled in a wireless network.

12

PCT/US02/18808

10

15

20

WO 02/103984 PCT/US02/18808

-Server computer system 110 is coupled to server mass storage device
112 that is or is not accessible by client computer system 102 and computer
terminals 103-105 through network bus 107 directly. Client system 102 also
has its own client mass storage device 170. The present invention includes
threads and objects within the application software that are executed by server
computer system 110 and/or client system 102 to transfer data therebetween A

(refer to Figure 2B, below).

Located within mass storage device 112 is operational database 116a,
which receives and stores the current raw data for a data mart or data
warehouse. Raw data received and stored within operational database 116a
are transformed by an analytic application into information that is more
meaningful for decision support. Data maris/warehouses 113a, located within
mass storage device 112, include transformed data processed by the analytic
application. It is important to point out that data marts/warehouses 113a and
operational database 116a could each reside within a separate mass storage

devices and each mass storage device could be connected by network bus 107

to a separate server.

A data file 120 is a file stored within either operational database 116a,
within the database of data warehouse/data mart 113b, or elsewhere in server
mass storage device 112. In accordance with the present invention, data file

120 is securely, quickly and reliably transmitted over network bus 107 to client

13

WO 02/103984 PCT/US02/18808

10

15

20

computer system 102 or to remote computer systems 103-105 for display or
storage on these systems or for use in analytic applications resident on these
systems. Data file 120 is a large file containing, for example, operational data
such as cuétomer data or third party data. Data file 120 may instead contain
data transformed according to an analytic application. It is appreciated that the
present invention also can be used to transmit a data stream from server
computer system 110 to a target device (e.g., client computer system 102 or to

remote computer systems 103-105).

Operational database 116b and data warehouse 113b are also shown
residing within client mass storage device 170. A data file 120 is shown also
residing in client mass storage device 170 to represent the transmission and
receipt of the data file as mentioned in the precéding paragraph. ltis
appreciated that the present invention can likewise be used to transmit a data
file (or a data stream) from client 102 to server 110, or from these devices to any
other device on network 100. Generally speaking, the present invention can be
used to transmit a data file or a data stream from a source device to a target
device. For simplicity of discussion, the present invention is described in the

context of a transfer of a data file from a server to a client.

Refer now to Figure 1B, which illustrates an exemplary computer system

1090 upon which embodiments of the present invention may be practiced.

14

10

15

20

WO 02/103984 PCT/US02/18808

Computer system 1090 exemplifies server 110, client 102, and remote

computer systems 103-105 of Figure 1A.

In general, computer system 1090 of Figure 1B comprises bus 1000 for
communicating information, one or more processors 1001 coupled with bus
1000 for processing information and instructions, random access (volatile)
memory (RAM) 1002 coupled with bus 1000 for storing information and
instructions for processor 1001, read-only (non-volatile) memory (ROM) 1003
coupled with bus 1000 for storing static information and instructions for
processor 1001, data storage device 1004 such as a magnetic or optical disk
and disk drive coupled with bus 1000 for storing information and instructions, an
optional user output device such as display device 1005 coupled to bus 1000
for displaying information to the computer user, an optional user input device
such as alphanumeric input device 1006 including alphanumeric and function
keys coupled to bus 1000 for communicating information and command
selections to processor 1001, and an optional user input device such as cursor
control device 1007 coupled to bus 1000 for communicating user input
information and command selections to processor 1001. Furthermore, an
optional input/output (//O) device 1008 is used to couple computer system 1090

onto, for example, a network.

Display device 1005 utilized with computer system 1090 may be a liquid

crystal device, cathode ray tube, or other display device suitable for creating

15

WO 02/103984 PCT/US02/18808

10

15

20

graphic images and alphanumeric characters recognizable to the user. Cursor
control device 1007 allows the computer user to dynamically signal the two-
dimensional movement of a visible symbol (pointer) on a display screen of
display device 1005. Many implementations of the cursor control device are
known in the art including a trackball, mouse, joystick or special keys on
alphanumeric input device 1006 capable of signaling movement of a given
direction or manner of displacement. It is to be appreciated that the cursor
control 1007 also may be directed and/or activated via input from the keyboard
using special keys and key se;;uence commands. Alternatively, the cursor méy
be directed and/or activated via input from a number of specially adapted cursor

directing devices.

Figure 2A illustrates a functional block diagram of aﬁ embodiment of the
client/server computer system network 100 of Figure 1A in accordance with one
embodiment of the present invention. In this embodiment, with reference also to
Figure 1A, the present invention provides a secure data stream 118 that
transfers data file 120 from server computer system 110 to client computer
system 102. Data file 120 is originally resident in data warehouse 113a or
operational database 116a in server mass storage device 112, and is

transmitted to client mass storage device 170.

For simplicity of discussion, communication is shown as occurring from

server 110 to client 102; however, it is appreciated that communication can

16

10

15

20

WO 02/103984 PCT/US02/18808

similarly occur from client 102 to server 110. In this latter case, the arrows
indicating the direction of data flow would be in the opposite direction, the
“output channel” would refer to the channel on client 102, and the “input

channel” would refer to the channel on server 110.

Figure 2B is a functional block diagram providing additional details of the
client/server computer system network 100 in accordance with one embodiment
of the present invention. Listener object 130a is designed to receive an
incoming connection request énd to spawn a session thread 140a in response
(specifically, listener ‘object 130a calls session manager object 138a to create
session thread 140a). Server listener object 130a receives, at a well known
port 132, an incoming request 134 from client computer system 102. In the
present embodiment, the request 134 is generated in the session thread 140b
executing on client 102. The request 134 is a request to establish a client
socket connection 136 and to transmit data from server mass storage device

112 (e.g., data file 120) to client computer system 102.

A request 134 may be received from a remote device on the network 100,
or from a local device. That is, for example, a request 134 may be received over
the Internet from a device that is outside of a firewall or a company’s intranet
(e.g., a local area network), or the request 134 may be from a local device within

the company’s intranet. However, in the present embodiment, instead of trying

17

10

15

20

WO 02/103984 PCT/US02/18808

to determine the source of request 134, all requests are delivered/received in

encrypted form.

In the present embodiment, all computers in the network 100 are
considered as non-secure. All keys are stored in encrypted form, with a

password-based encryption algorithm used to encrypt and decrypt keys.

All registered users seeking to implement the data retrieval process of
the present invention have their own account. Keys for each account are stored
in separate files. Each file has the name of the account and is encrypted using
the account password. All registered account keys are stored in a central
repository (not shown) and are encrypted using a repository password. In the
present embodiment, the repository is initialized with a single password hidden
and secured by an administrator password. The repository password is used

for all secured (encrypted) objects.

The central repository resides in main memory of the server 110 (and
likewise, a central repository resides in main memory of client 102). The central
repository has the capability to encrypt any stored object using password-based
encryption. In one embodiment, the central repository asks the object if it needs

encryption.

18

10

15

20

WO 02/103984 PCT/US02/18808

In the present embodiment, there are three repository object types: an
object to represent an account, an object that represents a repository password -
for the administrative account, and an object to represent each session instance
for recovery purposes. The object representing an account contains a key (or
password) that is used to establish a secure connection between client 102 and
server 110 of Figures 2A and 2B. The object representing the repository
password for the administrative account is used to gain access to all repository
objects, and is secured with an administrator account password. The object
representing each session insfance contains all needed information for session

recovery (refer to Figures 6A, 6B and 6C, below).

With reference again to Figure 2B, in the present embodiment, listener
object 130a is part of a multi-thread software application that is capable of
parallel execution in coordination with other threads of the present invention. A
“thread” is a part of the application that can execute independently of the other
parts that may be executing simultaneously in this parallel mode. Parallel
execution of threads in this embodiment of the present invention is
accomplished by sharing as much as possible of the application execution
between the different threads. Such a multi-threading embodiment increases

the speed of the transfer of data in the present invention.

Listener object 130a establishes client socket connection 136 at well

known port 132 requested by client computer system 102 on server computer

19

10

15

20

WO 02/103984 PCT/US02/18808

system 110. When a user request 134 is received, listener thread 130a calls
the session manager object 138a to create a new session thread and to start to
handle the user request. After completing these tasks, listener object 130a
returns to the task of listening for another incoming user request (e.g., another
request from client computer system 102 or from another computer system in

network 100 of Figure 1A).

In the present embodiment, session manager object 138a of Figure 2B .
spawns the session thread 140a that reads a command from the connection
that is established by listener object 130a, parses the command, and executes it
(refer also to Figure 5, below). Session manager object 138a includes (tracks)

information regarding all of the ongoing sessions.

A session 140a includes a channel object with multiple threads (e.g.,
channel 139a), over which the data are actually transferred. Channel object
139a is designed to transfer data in a secure manner. Additional information
regarding channel object 139a4 is provided below in conjunction with Figures

3A, 3B, 4A and 4B.

With reference to Figure 2B, for security purposes, only clients authorized
to access data warehouse 113a and operational database 116a are allowed to
receive data file 120. A protocol incorporated within the present invention is

designed to authenticate that incoming request 134 originated at a client

20

10

15

20

WO 02/103984 PCT/US02/18808

computer system 102 that is authorized to receive data file 120. Authentication
protocols could include passwords, intelligent tokens, or other well-known

techniques.

In the present embodiment, session manager object 138a provides the
application program interfaces (APls) for monitoring and managing sessions.
An object is an application data item that includes instructions for the operations
to be performed on it. After listener object 130a receives a user request 134,
session manager object 138a receives a call from listener object 130a to creéte
and start a session thread 140a for processing user commands. In this

embodiment, session manager object 138a spawns session thread 140a.

Session manager object 138a provides the functionality to generate a
unique identifier (ID) for a session, and to maintain logs of sessions for recovery
purposes. The APIs provided by session manager object 138a include an API
to create a session, an API to run the session, an APl to stop the session by
passing the session ID, an API to update the session’s status by passing the
session ID, an API to query session information, and an API to recover a failed

session.

In the present embodiment, after session manager object 138a creates a
new session, it assigns a unique ID to that session. Session manager object

138a saves (e.g., into an internal hash table) a session information object.

21

10

15

20

WO 02/103984 PCT/US02/18808

Session manager object 138a, when it creates a new session, passes its own
reference as an initialization parameter to the session. The session then uses
this reference, in combination with its unique session ID, to invoke a session
manager callback function to provide an update of its status information to

session manager object 138a.

Thus, in the present embodiment of the present invention, listener object
130a of server 110 receives an incoming connection request from client 102
and passes the incoming connéction request to the session manager object
138a. Session manager object 138a of server 110 spawns session thread
140a that reads the command from the connection request 134 (e.g., a
command requesting transfer of data file 120 of Figure 2A). The command
contains all of the information needed to open data file 120 and to send data file
120 through a connection between client 102 and server 110. The session
140a parsés the command and creates and initializes a channel object 139a
(with its threads), and runs the channel. Channel object 13%a will be initialized
with the currently established network connection between server 110 and

client 102.

Channel object 139a represents the set of objects needed for sending
and receiving a file (e.g., data file 120). In the present embodiment, these set of
objects include the reader, compressor, encryptor, decompressor, decryptor,

and writer objects described in conjunction with Figures 3A-3B and 4A-4B.

22

10

15

20

WO 02/103984 PCT/US02/18808

On the client side, listener object 139b receives the incoming connection™
from server 110 and passeé this connection to session manager 138b. Session
manager 138b spawns a session 140b. Session 140b reads the command
from the connection. This command contains all of the information needed to
connect to server 110, read the data file 120, and to have the data file 120 senf
to client 102. Session 140b parses the command and executes the following:
establishes a connection with server 110, sends the command to start the

transfer of data file 120, and initializes and runs the channel.

Figure 3A illustrates data flow through an embodiment of an output
channel object 139a in accordance with the present invention. In this
embodiment, output channel 139a comprises four data transformation threads
or objects: reader channel object 142a, compressor channel object 146,
encryptor channel object 156, and writer channel object 152a. The data
transformers (reader channel object 142a, compressor channel object 146,
encryptor channel object 156, and writer channel object 152a can work in
parallel (e.g., they each can have their own threads). Output channel 139a also

comprises block manager object 154a.

Block manager object 154a contains multiple data blocks (e.g., vectors of
data blocks). A data block is designed to store byte arrays between

transformations. In the present embodiment, each data block is associated with

23

10

15

20

WO 02/103984 PCT/US02/18808

one data transformation object, and only that object can write to the data block;
however, a data transformation object may be associated with muitiple data
blocks. A size of a data block can vary, so that if a data transformation object
finds that it cannot fit output data into the data block buffer, the data
transformation object can create a new (larger) buffer that replaces the old
(smaller) buffer. Also, for example, a data block containing compressed data

can be smaller than one containing uncompressed data.

Block manager object 154a controls the total count of data blocks for
each data transformation object; that is, the block manager object 154a has a
parameter limiting the number of data blocks per data transformation object.
Generally, about four data blocks are specified ber data transformation object. If
a data transformation object requests a data block, but the amount of available
data blocks is equal to the maximum allowed for the transformation object (that
is, there are no free data blocks), then block manager object 154a and the data

transformation object will wait for a data block to be freed.

Referring still to Figure 3A, in the present embodiment, reader channel
object 142a reads a part of data file 120 and writes that part into a first data
block buffer in the main memory of server computer system 110. Data file 120 is
typically a large file. By reading a only a part of the file, downstream

transformations relating to compression and encryption may commence in

24

WO 02/103984 PCT/US02/18808

parallel, while subsequent parts of data file 120 are read and writien to first data

block buffer.

Compressor channel object 146 reads the data in the first data block
5 buffer, transforms it (compresses it), and writes the compressed data to a
second data block buffer. Compressor channel object 146 encodes the data

contained in data file 120 in a way that makes it more compact.

Encryptor channel object 156 reads the compressed data from the

10 second data block buffer, encrypts it, and writes it a third data block buffer.

Writer channel object 152a reads the encrypted data block and writes it

to the network socket stream (to the input channel 139b; Figure 3B).

15 In the present embodiment, output channel 139a functions as follows.
Output channel 139a receives data file 120. Data file 120 may be received by
output channel 139a in its entirety aﬁd then broken into smaller blocks of data,
or data file 120 may be read from mass storage device 112 (Figure 1A) a
portion at a time.

20

Reader channel object 142a request a free data block. Block manager
object 154a searches for the free data block, and if there is no such block, then

block manager object 154a creates a new block, marks it as free, and assigns it

25

10

15

20

WO 02/103984 PCT/US02/18808

to reader channel object 142a. Reader channel object 142a writes data from
data file 120 to the data block and marks the data as ready for compression.
Compressor channel object 146 receives this data block from block manager
object 154a and requests a free block (for its output). Block manager object
154a creates a new data block, marks it as free, and assigns it to compressor

channel object 146.

In parallel, reader channel object 142a requests another data block, and
as described above, block manager 154a creates a new block, marks it as free,
and assigns the new data block to reader channel object 142a. Reader
channel object 142a can then write another portion of data file 120 to this block

and mark it as ready for compression.

In the meantime, compressor channel object 146 compresses (encodes)
the data contained in its respective data block, marks it as ready for encryption,
and frees its respective data block. Encryptor channel object 156 receives this
(compressed) data block from block manager object 154a and requests a free
block for its output. Block manager object 154a creates a new data block,

marks it as free, and assigns it to encryptor channel object 156.

Encryptor channel object 156 encrypts the data contained in its
respective data block, marks it as ready for ready for writing, and frees its

respective data block. Writer channel object 152a receives the encoded

26

10

15

20

WO 02/103984 PCT/US02/18808

(compressed) and encrypted data block from block manager object 154a and

writes to the network socket output stream 307.

The process described above is repeated until the reader channel object
142a reads the last block of data in data file 120. Each block of data is stepped
through output channel 139a, with data blocks being created and freed as
needed by the respective transformation objects. In this manner, the number of
data blocks can be reduced so that memory resources are not unduly

consumed.

In this embodiment of the present invention, means well known to those
of ordinary skill in the art are utilized to verify that data file 120 was completely

and accurately transmitted to client 102.

Thus, the goals of the present invention are achieved. A data file 120 is
sent on request from server computer system 110 to at least one computer
system remote from server computer system 110 (e.g., client 102). The data

transfer is accomplish securely, rapidly, and reliably.

Figure 3B illustrates data flow through an embodiment of an input
channel 139b of the present invention. As shown in Figures 2B and 3B, in
another aspect of the present invention, the operations of server computer

system 110 may be mirrored on the client computer system 102. A network

27

10

15

20

WO 02/103984 PCT/US02/18808

stream of compressed/encrypted data blocks 307 are received from server
computer system 110 by client computer system 102 and are decrypted,
decompressed, and ultimately assembled into data file 120. Alternatively, the

data blocks may received by client 102 en masse from server 110.

On the client side, reader channel object 142b reads formatted
{(encrypted and compressed) data from network input stream 307. A decryptor
channel object 164 reads data from a data block in block manager object 154b,

decrypts the data, and writes the data to a data block in block manager object

154b.

A decompressor channel object 158 reads data from a data bfock in
block manager object 154b, decompresses (decodes) the data, and writes thé
data to a data block in block manager object 154b. Writer channel object 152
writes the data to the data file 120 output stream to mass storage device 170

(Figure 2A), for example.

The data transformers (reader channel object 142b, decryptor channel
object 164, decompressor channel object 168, and writer channel object 152)
function similar to that described above in conjunction with Figure 3A. Means
well known to those skilled in the art can be utilized to verify that data file 120

was completely and accurately transmitted.

28

10

15

20

WO 02/103984 PCT/US02/18808

Thus, the goals of the present invention are again achieved in the client-
side embodiment of the present invention. A data file 120 is sent on request of
client computer system 102 from server computer system 110 to client computer

system 102. The data transfer is accomplished securely, rapidly and reliably.

The forgoing discussion illustrates a "pull” of data from the server
computer system 110 by client server system 102. As can be appreciated, in
another aspect of the present invention, data transfer could be accomplished by
"push" of data from the server (;omputer system 110 wherein, server computer
system 110 would command a "listening” client computer system 102 to receive
data. Appropriate socket connections, threads, and objects would be created in
accordance with the present invention, and data would be transfer over the
computer network from the server computer system 110 to the client computer

system 102.

Figures 4A and 4B illustrate altemative embodiments of output channel
139a and input channel 139b of Figures 3A and 3B (the alternative
embodiments are designated output channel 122 énd input channel 124). The
operation and function of numbered elements in Figures 4A and 4B is the same

as like numbered element in Figures 3A and 3B, respectively.

in the embodiment of Figure 4A, a streaming mechanism is used for

compressing data file 120, encrypting data file 120, and then sending data file

29

10

15

20

WO 02/103984 PCT/US02/18808

120 over the network to the client 102 or another remote device. Thus, instead
of dividing the file into blocks as described above in conjunction with Figure 3A,
and treating each block as a smali file, the file can instead be treated as a

contiguous file.

The compressor channel object 164 and the encryptor channel object
156 may produce an output that is different in size from their input. The stage
output streams 186 and 188 write data to an output data block buffer until that
block is full, or until there is no m‘ore data to write; If the current output data
block is full, then output streams 186 and 188 indicate that the current block is
ready to be read by the next transformation object, and asks block manager
object 154a for the next available output data block. By accumulating streaming
parts of data file 120 from compressor channel object 146 and encryptor
channel object 156, better management of data block buffers by block manager

object 154 may be realized.

For example, compressor channel object 146 may be capable of a 10:1
compression ratio. Instead of specifying an output data block buffer size equal
to one-tenth the size of the input buffer, better use of the data block buffers may
be achieved by accumulating ten parts of compressed data blocks in the stage
output stream 186 before writing to the output data block buffer, so that the

output buffer is sized the same as the input buffer size.

30

10

15

20

WO 02/103984 PCT/US02/18808

In Figure 4B, similar to the discussion above, stage output stream 190
and stage output stream 192 accumulate data for decryptor channel object 164
and decompressor channel object 158, respectively. Additionally, stage input
stream 194 is provided in input channel 124 to receive the entire stream of
compresséd data blocks until the end of data file 120 is reached, because
decompressor channel object 168 may require a complete compressed data fiAle

120 in order to operate.

Figure 5 illustrates data flow through one embodiment of a session
thread 140a in a server computer system 110 (Figure 2B) in accordance with
the present invention. It is appreciated that a similar data flow occurs through a
session thread 140b in a client computer system 102 (Figure 2B). Session
threads 140a and 140b are exeputed under direction 6f the session manager

objects 138a and 138b, respectively (refer to Figure 2B).

Referring to Figure 5, a session thread 140a is created for each incoming
request 134. Requests can include commands such as status commands,
commands to send one or more files (e.g., data file 120) to one or more remote
devices (e.g., client 102), and commands to receive one or more files from a
remote device. In one embodiment, the commands in request 134 use the

Extensible Markup Language (XML).

31

10

15

20

WO 02/103984 PCT/US02/18808

‘In this embodiment, protocol 174 validates incoming request 134 and
directs it to XML command translator 173. Protocol 174 is used to send and
receive commands in an encrypted format, and is used for authentication.
Protocol 174 is used by channel factory 182 1o open a communication socket for
a channel (e.g., input channels 139b or 124, or output channels 139a or 122 of

Figures 3B, 4B, 3A and 4A, respectively).

Continuing with reference to Figure 5, XML command translator object
173 parses the incoming request 134, generates optimized low-level internal
tasks, and inserts the tasks with associated parameters into task table 176.
Each parameter is passed to all of the taské that require it using the “declare”
task (mentioned below), so that when a parameter is declared, it is shared at

multiple locations and in multiple tasks where it is needed.

Incoming request 134 is translated into low-level incoming tasks because
the number of these tasks can be limited, while the number of XML commands
in incoming request 134 could be large. However, the XML commands can be
translated into low-level internal tasks to facilitate implementation and to make
the implementation more extensible. Also, use of low-level internal tasks
instead of XML commands facilitates parallel processing and avoids the need

for redundant processing steps.
The low-level internal tasks include but are not limited to the following:

32

WO 02/103984 PCT/US02/18808

Connect: to establish a connection between two devices (e.g., server
110 and client 102), to create and initialize protocol 174, and to pass an
initialization command to session manager object 138g;
Create Channel: to create and initialize a channel;
5 Run Channel: to perform the file transfer;
External Execute: to execute an external command on the local device;
Get Session Status: to get a status report on one or more sessions;
Stop Session: to stop a session;
Declare: toinsert a row in a separate variable vector maintained by task
10 executor 178 (the variable vector provides a mechanism to share objects across
multiple tasks);
Wait: to wait until a channel has finished transferring a file or files;
Terminate: to terminate a session;
Create Account: to create a new account;
15 Edit Account: to edit an existing account; and

Remove Account: to remove an existing account.

XML command translator 173 places these tasks into task table 176 for
execution by task executor 178. Task table 176 is a memory object and

20 comprises a hash table of the tasks.

Task executor 178 executes the tasks from task table 176 in a given

order. Task executor 178 uses an API of session manager object 138a (Figure

33

10

15

20

WO 02/103984 PCT/US02/18808

2B) to execute the tasks. Task executor 178 executes in a loop through task
table 176 until terminate command is found. Once XML command translator
173 creates a task table 176 for a command 141, task executor 178 takes
control of the session thread and starts executing the tasks in the session
thread. Task executor 178 also updates session statistics for the recovery

option described below in conjunction with Figures 6A, 6B, and 6C.

With reference to Figure 5, a channel object (e.g., channel object 139a,
and also channel object 122 of Figure 4A) is generated and initialized by a
channel factory 182. In the present embodiment, channel factory 182 initializes

channel object 139a with input and/or output streams.

Continuing wiih reference to Figure 5, channel object 139a represents
the set of data transformation objects needed for sending and receiving a file
(e.g., data file 120). In the present embodiment, the set of data transformation
objects includes the reader, compressor, encryptor, decompressor, decryptor,
and writer objects described in conjunction with Figures 3A-3B and 4A-4B.

Protocol 174 direct executed tasks to a remote session 184.

Figures 6A, 6B and 6C illustrate another aspect of the present invention
relating to data transfer recovery after a temporary loss and/or failure of a
network connection. Because large amounts of data are being transferred in

accordance with the present invention, recovery is an important consideration.

34

10

15

20

WO 02/103984 PCT/US02/18808

In the present embodiment, two recovery modes are considered: automatic

network connection recovery, and manual session recovery.

Automatic network connection recovery means that both the input
channel 139b and the output channel 139a (Figure 2B) are running but the
network connection is lost or has failed. In this case, the network connection

can be recovered automatically.

When a network connection fails, both channels get notification via an
“exception.” When a channel receives an exception, it calls the APl for its
respective session manager (e.g., session manager object 138a or 138b of
Figure 2B) to restore the connection. The APl returns a new session thread for

the connection if the connection can be restored, or a NULL if the connection

cannot be restored.

Referring to Figures 6A, 6B and 6C, there are two session threads
involved with the recovery process. In Figure 6A, session manager object 138a
(Figure 2B) creates session 1 (e.g., session thread 140a) on server computer
systemn 110 and initiates the connection with client computer system 102.
Session manager object 138b (Figure 2B) receives the request to start a
session and creates session 1 (e.g., session thread 140b) on client computer

system 102.

35

WO 02/103984 PCT/US02/18808

-In Figure 6B, the connection is lost. In Figure 6C, once the connection is
lost and the initiating session manager (session manager object 138a on server
110) gets called to recover the session, session manager object 138a sends a
request to client 102 (session manager object 138b) to restore the network

s connection for session 1. When client 102 (specifically, session manager object
138Db) receives the request from server 110, it spawns a second session thread
(session 2, e.g., session thread 140c). Session 2 passes the connection to the
waiting session 1 on client 102. Once the connection is restored, both channels
(output channel 139a and inpu‘t channel 139b) continue to transfer data from

10 the point at which they stopped.

Information about a session is stored in session manager objects 138a
on server 110. Session manager 138a stores alll session parameters and the
count of bytes of data written in session 1 before the failure. Accordingly,

15 reading can start reading from the correct byte offset, and writing can proceed

by appending those data blocks created but not yet sent.

In the recovery mode, task table 176 (Figure 5) contains the same tasks
but, when executed, some of the tasks may be skipped depending on the

20 results of previous task execution and settings.

36

10

15

20

WO 02/103984 PCT/US02/18808

Manual session recovery is used when either of the channels fails.
Recovery typically does not occur automatically because it is desirable to first

determine and resolve the cause of the failure.

Figure 7A is a flowchart of the server side steps in a process 700 for
transferring data over a network 100 (Figure 1A) in accordance with one
embodiment of the present invention. In this embodiment, process 700 is
implemented by a server computer system 110 (Figure 1A), exemplified by
computer system 1090 (Figure; 1B), as computer-readable instructions stored in
a memory unit (e.g., ROM 1003, RAM 1002 or data storage device 1004 of
Figure 1B) and executed by a processor (e.g., processor 1001 of Figure 1B).
However, it is appreciated that some aspects of process 700 may be
implemented on server computer system 110 with other aspects of the process

700 performed on client computer system 102 (Figure 1A).

In step 702 of Figure 7A, server 110 receives a request 134 (Figure 2B)
for a data file residing in a mass storage unit on the server (e.g., data file 120
residing in mass storage device 112 of Figure 1A). In one embodiment, a
listener object 130a (Figure 2B) is listening for such a request. In the present
embodiment, the request 134 includes commands; refer to Figure 5. iIn one

embodiment, request 134 uses XML.

37

10

20

WO 02/103984 PCT/US02/18808

In step 704 of Figure 7A, the request 134 is authenticated to make sure
that the request is from an authorized user. In one embodiment, protocol 174

(Figure 5) validates incoming request 134.

In step 706 of Figure 7A, a session thread (e.g., session thread 140a) is
spawned in response to the user request 134 (Figure 2B). In one embodimenf,
listener object 130a (Figure 2B) calls session manager object 138a (Figure 2B),
and session manager object 138a creates session thread 140a and assigns a
unique D to it. Session threa& 140a reads the command(s) contained in the
user request 134, and translates the request 134 into a set of low-level

incoming tasks that are to be executed for session thread 140a (refer to Figure

~ 5). Session manager 138a also sends a message to client 102 directing it to

spawn a session thread (e.g., session thread 140b). A channel object 139a is
also generated, providing the set of data transformation objects needed for

sending and receiving data file 120; refer to Figures 3A and 4A.

In step 708 of Figure 7A, the data in data file 120 are read from server
mass storage device 112 (Figure 1A) and compressed as described in

conjunction with either Figure 3A or Figure 4A.

In step 710 of Figure 7A, the compressed data are encrypted as

described in conjunction with Figure 3A or Figure 4A.

38

10

15

20

WO 02/103984 PCT/US02/18808

-In step 712 of Figure 7A, the data are sent to the requesting device (e.g.,
to client 102 over network bus 107 in network 100 of Figure 1B), and complete

and accurate data transfer are verified.

Steps 708, 710 and 712 are performed in parallel for different parts of the

data file 120.

Figure 7B is a flowchart of the client side steps in a process 750 for
transferring analytical data ovér a network in accordance with one embodimeﬁt
of the present invention. In this embodiment, process 750 is implemented by
client computer system 102 (Figure 1A), exemplified by computer system 1090
(Figure 1B), as computer-readable instructions stored in a memory unit (e.g.,
ROM 1003, RAM 1002 or data storage device 1004 of Figure 1B) and executed
by a processor {e.g., processor 1001 of Figure 1B). However, it is appreciated
that some aspects of process 750 may be implemented on client computer
system 102 with other aspects of the process 750 performed on server

computer system 110.

In step 752 of Figure 7B, a requesting device (e.g., client 102 of Figure
1A) issues a request 134 (Figure 2B) to a server (e.g., server 110 of Figure 1A)

for a data file 120 (Figure 1A).

39

WO 02/103984 PCT/US02/18808

In step 754 of Figure 7B, client 102 receives from server 110 (specifically,
from session manager object 138a of Figure 2B) a message directing client 102

to spawn a session thread (e.g., session thread 140b of Figure 2B).

5 In step 756 of Figure 7B, client 102 receives from server 110 encrypted
and compressed data blocks that represent data file 120; refer to Figure 3B or

Figure 4B.

In step 758 of Figure 7B, the data are decrypted as described by Figure

10 3B or Figure 4B.

In step 760 of Figure 7B, the data are decompressed as described by

Figure 3B or Figure 4B.

15 Steps 756, 758 and 760 are performed in parallel for different parts of the

data file 120.

In summary, the present invention provides a reliable, secure,
authenticated, verifiable, and rapid system and method for the transmission of
20 huge amounts of data over a network, such as the data used in an analytic
application (e.g., operational data, and transformed data in a data

warehouse/data mart).

40

10

WO 02/103984 PCT/US02/18808

- The foregoing descriptions of specific embodiments of the present
invention have been presented for purposes of illustration and description.
They are not intended to be exhaustive or to limit the invention to the precise
forms disclosed, and obviously many modifications and variations are possible
in light of the above teaching. The embodiments were chosen and described in
order to best explain the principles of the invention and its practical applicatidn,
to thereby enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as are suited to the particular
use contemplated. Itis intendéd that the scope of the invention be defined by‘

the Claims appended hereto and their equivalents.

41

WO 02/103984 PCT/US02/18808

CLAIMS

What is claimed is:

5 1. In a source computer system, a method for transferring data over a
computer system network, said method comprising the steps of:
a) receiving an incoming request for data resident in a mass storage unit
on said source computer system;
b) authenticating said incoming request;

10) spawning a session thread that reads and parses a command

received via said incoming request.

d) writing at least a part of said data into a first data block buffer;
e) compressing said part of said data in said first data block buffer into a
15 compressed data block that is written to a second data block buffer; and
f) encrypting said compressed data block in said second data block
buffer into an encrypted and compressed data block that is written to a third data

block buffer.

2. The method of Claim 1 wherein in step ¢) said command is for sending

said data over said computer system network to a second computer system; said
method further comprising the step of g) sending said encrypted and compressed

data block to said second computer system over said computer system network.

42

WO 02/103984 PCT/US02/18808

3. The method of Claim 2 comprising the steps of:
verifying that data transfer to said second computer system is complete; and

verifying that data transfer to said second computer is without error.

4. The method of Claim 1 wherein said computer system network is

the Internet.

5. The method of Claim 1 wherein said data comprises data

10 processed by an analytic application.

6. The method of Claim 1 wherein said incoming request uses

Extensible Markup Language (XML).

15 7. The method of Claim 1 wherein said step ¢) comprises the steps
of.
translating said command into a plurality of tasks;
storing said tasks in a task table in a given order; and
executing said tasks in order until a task ending said session thread is

20 found.

43

WO 02/103984 PCT/US02/18808

8. The method of Claim 1 wherein said first data block buffer and
said second data block buffer are substantially equal in size and wherein said
step e) comprises the step of:

accumulating compressed data blocks before data are written to said

s second data block buffer, wherein enough compressed data blocks are

accumulated to fill said second data block buffer.

9. The method of Claim 1 wherein said second data block buffer and
said third data block buffer are substantially equal in size and wherein said step
10 f) comprises the step of:
accumulating encrypted and compressed data blocks before data are
written to said third data block buffer, wheréin enough encrypted and

compressed data blocks are accumulated to fill said third data block buffer.

15 10. The method of Claim 1 comprising the steps of:
restoring a connection with said second computer system when an
ongoing connection is lost; and
resuming transfer of data to said second computer system at the point in
said data where said ongoing connection was lost.

20

44

WO 02/103984 PCT/US02/18808

-11. In atarget computer system, a method for receiving data
transferred over a computer system network, said method comprising the steps
of:

a) issuing a request for data to a source computer system on which said
5 data resides;
b) spawning a session thread in response to a message from said source
computer system;
c) receiving from said source computer system at least one encrypted .
and compressed data block of sand data, said encrypted and compressed data
10 block transferred over said computer network;
d) writing said encrypted and compressed data block to a first data block
buffer;
e) decrypting said encrypted and compressed data block into a
compressed data block that is written to a second data block buffer; and
15 f) decompressing said compressed data block in said second data block

buffer and writing a resultant data block to a third data block buffer.
12. The method of Claim 11 comprising the step of:

verifying that data transfer from said source computer system was

20 complete.

45

WO 02/103984 PCT/US02/18808

13. The method of Claim 11 comprising the step of:

verifying that data transfer from said source computer system was without

error.

5 14. The method of Claim 11 wherein said computer system network is

the Internel.

15. The method of Claim 11 wherein said data comprises data

processed by an analytic application.

10
16. The method of Claim 11 wherein said step e) comprises the step
of:
accumulating eﬁcrypted and compressed data blocks before data
decryption is performed.
15
17. The method of Claim 11 wherein said step f) comprises the step of:
accumulating compressed data blocks before data decompression is
performed.
20 18. The method of Claim 11 comprising the steps of:

restoring a connection with said source computer system when an

ongoing connection is lost; and

46

WO 02/103984 PCT/US02/18808

resuming transfer of data from said source computer system at the point

in said data where said ongoing connection was lost.

19. A source computer system comprising:

a bus;

a memory unit coupled to said bus; and

a processor coupled to said bus, said processor for executing a method
for transferring data over a computer system network, said method comprising

the steps of any one of claims 1 through 10.

20. A target computer system comprising:

a bus;

a memory unit coupled to said bus; and

a processor coupled to said pus, said processor for executing a method

for receiving data transferred over a computer network, said method comprising

the steps of any one claims 11 through 18.

47

WO 02/103984

SERVERMASS [SATAFILE
STORAGE 120
DEVICE -

13a

DATA
WAREHOUSE

116a
OPERATIONAL

DATABASE

11

CLIENTMASS [GATATILE
STORAGE 190
DEVICE =

1714

—t
(o)

107
s

PCT/US02/18808

103
5

SERVER

Y
—
L]

|

113b

DATA
WAREHOUSE

116b
OPERATIONAL
DATABASE

170

104
32

105
5

CLIENT

Figure 1A

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

2/14

00} MHOMILINOL

L0}

g} einbi4

o e 008 5007
30IA30 TOHLNOD LNNI OIHINAN
1NdLNOILNGNI HOSHND “VHd Y 20IA30 AV1aSI
000}
o o 00t oo
30IA30 TULYION TILYIOANON
29VHOLS YLVa WyH NOH (s)HOSS300Hd

(e
(2]
o
-~

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

3/14

vg ainbi4

0c}

9]ld eled

acti
asnoyaiep

eleq

¢0}
Welo

8l

P

9|l eled

0ct

wesns
ele(21ndeg

BELL
asnoysiep

eleq

o
—

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

4714

dg 8.nbi4

qoyL pesiyl B0y} peslyL
co_wmmm g6€l 266l uoISSeg
\ / \)
C [\ 7
] —
100lq 103100
e C s# HOMSN)
- 09t opeziEem > %€

s N7
Esmam_l_ / Esmam_l_

108190 198100

Jsldo 19890
hmw_m,w_w_\md lausist _%AMMW_.M.% lausisiy

aget BGET
N q0¢t N B0S |
20t oLt
IN3IT0 ENEN
vElL 26l 00T

15enbay 104

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

5/14

L0€

V€ 8inbi

egG} 108lq0 o} 108lqo
WESAS IndinQg auue aue
HIOMIEN | hﬁ_m% wa_maEuw
Z\ VAN
9ql ecrl
) N
J0elqO [euuey) 108qQ [euuey)
J01dAsous lapesy A
\/ N/

.

BYST 108[qO Jebeuey yooig

wieals ;nauj
0cl @8lid efeQ

[suueys indino

6E1

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

6/14

ge e.nbi4

weangs inding
Oc} 314 eleg

ges) 109lqo 91 108[q0
jpuueyn louuey)
18JUM JloydAioe(
\4 AN |
8g1 dcv}
))
108[qQ puuey) J08[qO Ieuuey)
lossaidwiodssq lapesy A

\/

\/

GyST 108lq0 ebeuepy ¥ooig

)

jouuey) indy

a6et

L0

\Ieens 1nauj
3IOMISN

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

7114

L0€ weans indino
MIOM]ON

L

Vi 8inbi4

Bgy!
- ‘
ezSk 108100 || 951 welao || 9pk welgo || 1alao
jpuueyn jouuey) jpuueyn jpuueyn
1BIUM loydAious lossaidwo) lapeay
t 88| 98}
])
wealis IndinQ || ||weang indino
ClijY 8Delg
: V
BIRT 10890 JeBeuBy 00| q
leuuey) IndinQo

—

¢

}

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

8/14

weans indinQ
0c} Siid eled

R

g 8inbi

g}
{
gest 108lq0 || 85k 108la0 || || ¥9I Wela0 || wela0
jouuey) jouuey) juueyn || jeuury).
18l | | Jossaldwiooss(loydAios(lapeay
\ ﬂ 61
L
weains
ndu| ebeIg 061}
)
wea) weang dino
IndinQ sbelg abelS
)
v ey [v
qr5T sl Jebeueyy ool w
[suueyq indyj

e,

val

YIOMIBN
woj induy

L0

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

9/14

G aInbi4

mKJ
e6gL—~F [OUUBUD |
I —— | JoreIsuel|
| AH_ucmEEou
0108 L
val @8 jeuueyd oLt i vel
/N _osn”mxm_ w__mwm L] A (
(1015883 sjoway ,
0} pUBLLLLO? _oom“en_ ¥Rl _ooos& A/ Jsenbay
w o1y " UoIsseg

)
hmqﬂ

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

10/14

V9 8Inbi4

SM_.

d6et 108[a0 u>_8mm 01 uoisseg | BBET 108100 sw__“_ TeJSUBI |

lBuuey) 1Ue)S 0} 15enbay]BuUBy) 0} Jsenbay
N N
| | uoisses | 1 uoissas
A
Sqi\. N B0V}

jsuueys indyj jpuueyn Indino

/Nov

/12._.

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

11/14

a0y

G6ET Joelqo S

|puuey)

[} uoIssas

/

lsuuey) Indy

/Nov

g9 ainbi4

- B0yl

/ MMIIMW
Bulisjsuel] B0 | jauueyy
HSVHO
[1 uoissag |
lsuuey) indino

/o_,_,

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

12114

aegt 198lq0

09 ainbi4

e6el 108[00

~ B0Vl

[puuey) q [puueyd ,V
1 ‘ i
AN LT] _ N\
ot! u“. s..,:.:.....:....:cd%&@rcqu:u@.&zauww_
/ | |PUUBYD)/ | UOISSaS \
UOHOBUUOD | Yionaauuo 10} UOROBULIO uotsuug
18A008Y A/. 98uuo) o >owmm. Rl isonbey | L_1enoosy
N
MRS ATEES [U0ISS63
83\\ N
jauuey?) Induy lsutey) nding

L

vfo:

SUBSTITUTE SHEET (RULE 26)

WO 02/103984

13/14

702
RECEIVE INCOMING REQUEST FOR A DATA FILE

'

704
AUTHENTICATE INCOMING REQUEST

'

: 106
SPAWN SESSION REQUEST AND PARSE
INCOMING REQUEST

'

708
COMPRESS DATA

l

710
ENCRYPT DATA

l

12
SEND DATA TO REQUESTING DEVICE

Figure 7A

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

WO 02/103984

14 /14

152
ISSUE REQUEST FOR DATA FILE

:

. 754
RECEIVE MESSAGE FROM SERVER AND
SPAWN A SESSION THREAD

'

756
RECEIVE ENCRYPTED AND COMPRESSED
DATA FROM SERVER

i

758
DECRYPT DATA

:

760
DECOMPRESS DATA

Figure 7B

SUBSTITUTE SHEET (RULE 26)

PCT/US02/18808

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

