INVENTION AND CHARACTERIZATION OF
HEAT SHOCK PROTEIN

Inventors: Thomas E. Elthon, Lincoln, NE (US);
Adrian A. Lund, Niantic, CT (US);
Dinakar Bhattramakki, Newark, DE (US); David Rhoads, Omaha, NE (US)

Correspondence Address:
SHOOK, HARDY & BACON L.L.P.
ONE KANSAS CITY PLACE
1200 MAIN STREET
KANSAS CITY, MO 64105-2118 (US)

Publication Classification

Abstract
This invention relates to the identification and characterization of the maize HSP22 protein including the corresponding nucleic acid molecules, nucleic acid fragments and protein fragments. Further, this invention relates to both polyclonal and monoclonal antibodies to HSP22 and the production thereof. These antibodies can be used in a method for detecting the presence of HSP22 expression in whole leaf samples. Further, the nucleic acid molecule and fragments thereof can be used in assays to detect the levels of nucleic acid molecules involved in HSP22 expression. The levels of both HSP22 and HSP22 mRNA are then utilized as an indication of a plant’s ability to tolerate heat stress. Additionally, plants can be transformed to express increased levels of HSP22.
Figure 2.
Figure 5.
Figure 6.
Figure 7.
Figure 10.

The figure shows a gel electrophoresis analysis with two columns labeled 'Heat-shock (hrs at 42°C)' and 'Recovery (hrs at 29°C)'. The gel lanes are numbered from 0 to 21 for heat-shock and recovery. The molecular weight markers are indicated at 97.4, 66.2, 45.0, 31.0, 21.5, and 14.4. Below the gel, the expression of HSP22 is indicated with bands at various time points.
Induction and Decay of HSP22 protein in the mitochondrial Fraction of B73 Maize etiolated shoot mesocotyls during HS and recovery.
Figure 12.
Induction of HSP22 in 3 day-old B73 Maize mesocotyls under continuous heat-shock
Figure 14.

<table>
<thead>
<tr>
<th>Mito</th>
<th>Total Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HSP22
Figure 15 A,B,C.

Mono-Q elution profile

Coomassie stained gel of 20 µl from 500 µl Mono-Q fractions

Affinity purified HSP22 polyclonal
Figure 16A.
16B
16C

Absorbance at 215nm

Total ion count

LCMS peaks

M_i (kD) 8 9 10

Coomassie stained gel (20μl of each)

Western blot of similar gel probed with affinity purified HSP22 polyclonal

Blot on left reprobed with cpn60B monoclonal
Analysis of Peak 8 and Peak 9

Differential Splicing Introns

Peak 9

19,428 → 19,508 (less abundant)

Possible Phosphorylation

+80

19,371

19,508

Major

+56.7

19,451

Minor

19,428

80

19,428

(more abundant)

Peak 9

80

19,428

(more abundant)

(more abundant)

Less abundant

(more abundant)

Figure 19

1 CCACACAGGGAAAGGAGAAGCAGACCCCTAGCTTTACCCGCGGAAAGAGAGGCCAAAG

61 GGAGGGGAAGTCTGCGACATGGGCTCTCCCATGTGTCTTCCAGGCGGGGCTCTCTTACTGG
 MetAlaSerIleValAlaSerArgArgAlaValProLeuVal

121 CGGCCTCGAGGAAAGCCTACATGGGCGGCTCTGCGGATCTGCGGGCGCTCGGCGCTCAG
 ArgAlaLeuGluLysLeuValAlaSerAlaProGlyThrGlySerAlaLeuArg

181 CGCGCTGGGACGCTGGGCGCGCTCGGCTCGGCTCGGCGCTCGCTAC
 ProValAlaValAlaGlyGlyLeuArgGlyThrAlaProLeuArgArgArg

241 GAGGCGGGCGGCGGCTGGAACAGTCAGATCGTGGGCGGCTCGGCGGCGGCGCGCGG
 GluGlyAlaGluSerGluAspSerValArgGlyThrAspGlyArgHisGlyGlyArg

301 GACTACGGCTGGCCAGCCCGCTTGCTCAAGCATGGTCTGCGGCGCGCTCAGG
 AspThrAlaValProSerLeuPheSerAspIlePheArgAspProLeuSerAlaProHis

361 AGCATGGCCGAGCGCTGAAACTTGGGCGGCTGGGCGGCGGCGGCAAGGCGGCTGGG
 SerIleGlyArgLeuLeuGluAspLeuValAspAspLeuAlaValAlaProGlyArgAla

421 GTACGGCCGCTGGGCGGCTGGAACAGTCAGATCGTGGGCGGCTCGGCGGCGGCGG
 ValArgArgGlyTrpAsnAlaAlaGluAspGluAlaLeuHisLeuArgValAspMet

481 CCAGCCCTGGGAAAGGAGCAGTCAAGGTGGGCGGAGCAACGACCCTGTGTGATCAAG
 ProGlyGlyGluLysHisValAlaTrpAlaGluGlnAsnSerLeuValLeuLys

541 GGCGAGGGGAGGAGGAGGATAGCGGAGACGGCGCGCCCGCGCCCTCGAGATACAGCGG
 GlyGlyGlyGluAspSerGluAspGluAlaAlaProProArgSerGly

601 CGCATCGAATCGACCCAGACCGGTATACAGGAGATCAAGAGAGGAGAGAAGAC
 ArgIleGluLeuLeuProValAlaTyrArgMetAspPheIleLysAlaGluMetAsn

661 GCGCTGGTCTCGAAGTGTGGCTGCGGCGGAGCTGAGCAGCGCGCCAGGCGGTCG
 GlyValLeuLeuValValValProLeuValValValGluGlnGlnArgLysAspValPheGln

721 GTCAAGGCGAGTAGTGTTTTTCAATAAGCAAACTGTGCCTCGGATGGGATGGAGATTG
 ValAsnValGluEnd

781 AGGGGCCCTCCAAACTAGGATTTCTCCTCCTCCTCCTCAGACATCTGATTCGATGCCATTG

841 TTTCTCTCTCTACTTTTCTCGTCTCTCTTCTCATAGTATGAAATAAACACGCTCGTTC

901 AGTATGCTCAAGGGCCGCGGATGCGCCTGCTATTTTATTTATTTTTTTTGTATTTTCTT

961 ACCGCGACAGCTTTCTCTCTATGGCTGTTTGGTTTCCGGCGGAGATTTAAAAATATGCGATG

1021 TCAAACCC 1028
HSP22 Northern Blot Analysis

Time course of recovery at 29° C after 4 hour heat-shock at 42° C.

<table>
<thead>
<tr>
<th>No HS</th>
<th>4hrs HS</th>
<th>Minutes</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

HSP22

18s rRNA
HSP22 Northern Blot Analysis

Continuous heat-shock at 42° C.

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 10 30</td>
<td>1 2 3 4 6 8 12 14 19 24 36 48</td>
</tr>
</tbody>
</table>

HSP22

rRNA
HSP22 Southern Blot Analysis

<table>
<thead>
<tr>
<th>Enzymes giving one band:</th>
<th>Size (kb):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kpnl</td>
<td>22</td>
</tr>
<tr>
<td>BgIII</td>
<td>20</td>
</tr>
<tr>
<td>NcoI</td>
<td>12</td>
</tr>
<tr>
<td>XbaI</td>
<td>7</td>
</tr>
<tr>
<td>EcoRV</td>
<td>5.8</td>
</tr>
<tr>
<td>HindIII</td>
<td>2.8</td>
</tr>
<tr>
<td>BamHI</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Genomic DNA probed with mature HSP22 protein cDNA.
Figure 23

Binary Vector for Plant Transformation

- TEV
- pre-HSP22
- RB
- nptII
- pZP-HSP22(PCR)
- LB
- sta
- aadA
- bom
- ori
- Enhanced 35S promoter
- 35S promoter for nptII
- 35S terminator
ISOLATION AND CHARACTERIZATION OF HEAT SHOCK PROTEIN

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Serial No. 60/076,014, filed on Feb. 26, 1998.

BACKGROUND OF THE INVENTION

[0002] The effect of environmental stress on agronomic plants has been a major focus of plant research. Plant productivity is related to the ability of plants to respond to and adapt to environmental stress (Sachs and Ho 1986). The proteins produced by higher plants in response to stress have been well-characterized (Key et al., 1981; Cooper and Ho, 1983; Sachs and Ho, 1986). Many stress proteins have recently been found to be chaperones, a class of proteins involved in the folding of newly synthesized proteins (Ellis and van der Vies, 1991; Gething and Sambrook, 1992; Craig et al., 1993). The chaperones have been proposed to function during stress in binding partially denatured proteins, thus preventing their degradation. Additionally, the chaperones assist in the refolding of these partially denatured proteins into their native structure in an ATP-dependent manner following the relief of stress (Rochester et al., 1986; Ellis and Hemmingsen, 1989; Hendrick and Hartl, 1993; Schroder et al., 1993). The two most extensively studied classes of chaperones are heat shock protein (HSP) 70 homologs and cpn60 homologs.

[0003] HSP70 homologs have been found in higher plant cytoplasm (Giorini and Galli, 1991), endoplasmic reticulum (Dencit et al., 1991), chloroplasts (Marshall et al., 1990; Ko et al., 1992; Marshall and Keegstra, 1992; Madueño et al., 1993; Wang et al., 1993), and mitochondria (Watts et al., 1992; Neuman et al., 1993). Genes for mitochondrial HSP70 are nuclearly encoded and have been isolated from pea (Watts et al., 1992), potato and tomato (Neuman et al., 1993).

[0004] The cpn60s are a group of ubiquitous proteins with a subunit size of approximately 60 kDa that share a functional and structural similarity to the tetradecameric E. coli GroEL complex (Gatenby, 1992). The maize and Arabidopsis thaliana mitochondrial cpn60 genes have been isolated and found to be encoded in the nucleus (Prasad and Stewart, 1992). The maize cpn60 was hypothesized to aid in the assembly of new mitochondrial protein complexes during the rapid organellar biogenesis of seedling germination and heterotrophic growth (Prasad and Stewart, 1992).

[0005] Neither the HSP70 homologs nor the cpn 60 homologs are very effective indicators of a heat resistant plant’s ability to tolerate heat stress. However, there is another group of heat shock proteins that may be effective indicators. This group is the low molecular mass (17-30 kDa) HSPs (Waters et al., 1996). Recent reports have established that the cytosolic forms of plant small HSPs (sHSPs) can function as molecular chaperones in vitro (Lee et al., 1995a). Lene and Douce (1994) identified a mitochondrial matrix-localized low molecular mass HSP identified as HSP22. Pea leaf mitochondrial HSP22 is conditionally expressed only at high temperatures and the protein level remained high for at least three days following heat stress (Lene and Douce, 1994). A cDNA for pea mitochondrial HSP22 has been identified and establishes this protein as a member of the sHSP superfamily (Lene et al., 1995). cDNAs for mitochondrial sHSPs have also been characterized in soybean (La Fayette et al., 1996), A. italiana (Willett et al., 1996), and Chenoepodium rubrum (Lene et al., 1995; Waters et al., 1996). However, there has not been an shSP isolated from a mitochondria of a heat resistant plant. For example, maize is a heat-resistant plant and is one of the world’s greatest food sources. The isolation of an shSP from maize would allow for testing of plants to determine their ability to tolerate heat stress resistance. This testing could take several forms if a shSP were isolated. Additionally, vectors could be constructed containing the nucleic acid molecule for the shSP.

[0006] There is a need for the discovery of an isolated shSP protein from a heat resistant plant. This shSP could be utilized to indicate a heat resistant plant’s ability to tolerate heat stress. Additionally, if a shSP were isolated from a heat resistant plant and cloned into an expression vector, there would be large quantities of HSP for research, the production of antibodies, and the generation of nucleic acid probes.

SUMMARY OF THE INVENTION

[0007] Accordingly, it is an object of the present invention to provide a method for determining a plant species’ ability to tolerate heat stress by comparing levels of HSP22 expression.

[0008] A further object of the present invention is to provide a combination comprising the necessary materials needed to determine a plant species’ ability to tolerate heat stress by comparing levels of HSP22 expression.

[0009] A further object of the present invention is to provide an isolated nucleic acid molecule encoding a protein that is expressed during heat stress conditions and that hybridizes, under stringent conditions, to SEQ. ID. NO. 7.

[0010] A further object of the present invention is to provide isolated protein comprising SEQ. ID. NO. 6.

[0011] A further object of the present invention is to provide an isolated nucleic acid molecule encoding a protein that is expressed during heat stress conditions and that hybridizes under stringent conditions to a nucleic acid molecule corresponding to an amino acid molecule of SEQ. ID. NO. 6.

[0012] A further object of the present invention is to provide fragments of the nucleic acid molecule encoding HSP22 that hybridize to SEQ. ID. NO. 7 and that code for proteins that have substantially the same physical characteristics as HSP22. These fragments can be either recombinant, synthetic, or a combination thereof.

[0013] A further object of the present invention is to provide a recombinant vector comprising a nucleic acid molecule encoding a protein that has physical characteristics substantially similar to HSP22. The definition of a vector for the purposes of this invention is any nucleic acid molecule into which a foreign nucleic acid molecule may be inserted wherein the nucleic acid molecule containing the foreign nucleic acid molecule may be used to introduce the foreign nucleic acid molecule into a host cell. This vector may also comprise regulatory elements operably linked to the nucleic acid molecule.
[0014] A further object of the present invention is to provide various cells transformed with a vector comprising a nucleic acid molecule encoding a protein that has physical characteristics substantially equal to HSP22. Additionally, these cells could be plant cells capable of producing plants that have an increased ability to survive in heat stress conditions.

[0015] A further object of the present invention is to provide a methodology for the production of various products of the present invention. Examples include, but are not limited to, isolated nucleic acid molecules encoding HSP22, isolated HSP22, isolated SEQ. ID. NO. 7, isolated SEQ. ID. NO. 6, and the protein products of SEQ. ID. NO. 7.

[0016] Another object of the present invention is to provide novel and purified antibodies to HSP22. The antibodies can be polyclonal, monoclonal, or fragments thereof.

[0017] It is a further object of the present invention to provide a hybridoma for the production of HSP22 monoclonal antibodies.

[0018] It is a further object of the present invention to provide a method for the production of the hybridoma capable of producing monoclonal antibodies for HSP22.

[0019] By providing the above-stated objects, several advantages are realized. For example, plants can be screened for their ability to tolerate heat stress by comparing levels of HSP22 expression.

[0020] Another advantage realized by the present invention is the ability to screen plants with either antibodies to HSP22 or with nucleic acid probes that bind to HSP22 mRNA.

[0021] Still another advantage realized by the present invention is the ability to produce large quantities of HSP22, HSP22 antibodies, and HSP22 nucleic acids, for both commercial and scientific purposes.

[0022] Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention.

[0023] The mouse cell line HSP22 vector as described in this specification has been deposited with the American Type Culture Collection (ATCC), Manassas, Va., USA. The deposit was filed with ATCC on Dec. 9, 1998. The vector is identified as mouse cell line HSP22, and by the ATCC accession No. CRL-12611. These deposited materials are available pursuant to all requirements of the United States Patent and Trademark Office.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The accompanying drawings form a part of this specification and are to be read in conjunction therewith.

[0025] FIGS. 1A, 1B, and 1C illustrate the identification of *E. coli* DNAK (HSP70) and cpn60 protein homologs in maize mitochondria using two-dimensional SDS-PAGE and immunoblots. Two-dimensional gels were prepared with approximately 500 µg of maize mitochondrial protein and were either stained with Coomassie Brilliant Blue R-250 or blotted to nitrocellulose. Approximate molecular mass markers are on the left (kD). FIG. 1A is a two-dimensional immunoblot probed with polyclonal antisera against *E. coli* DNAK. FIG. 1B is a similar two-dimensional gel stained with Coomassie. FIG. 1C is a two-dimensional immunoblot probed with polyclonal sera against maize cpn60. The positions of mitochondrial HSP70 and cpn60 are indicated by brackets in FIG. 1B;

[0026] FIGS. 2A and 2B demonstrate the identification of maize mitochondrial HSP70 and cpn60 monoclonal antibodies (MAbs) with two-dimensional immunoblots. Two-dimensional immunoblots were prepared with approximately 300 µg of maize mitochondrial proteins and probed with MAbs. FIG. 2A was probed with MAb HSP70B and FIG. 2B with MAb cpn60A. Approximate molecular masses are indicated to the left (kD);

[0027] FIG. 3 is a two-dimensional Coomassie-stained gel of heat-shocked seedling mitochondrial proteins. Three-day-old etiolated maize seedlings grown at 29°C were heat-shocked for four hours at 42°C and the mitochondria isolated. Three hundred micrograms of mitochondrial protein were run on a two-dimensional gel and stained with Coomassie blue. The two spots that are indicated by arrows are HSP22A (acidic) and HSP22B (basic). HSP22 protein approximate molecular mass is indicated to the left (kD);

[0028] FIGS. 4A, 4B, and 4C illustrate mitochondrial HSP22 polyclonal antibodies, affinity purified polyclonal antibodies, and monoclonal antibody, respectively. FIG. 4A is a two-dimensional immunoblot of heat-shocked maize mitochondrial proteins probed with polyclonal antisera to HSP22. A similar unprobed blot was stained with Ponceau S to reveal the proteins, the spots corresponding to HSP22 were cut out, destained, incubated with the HSP22 polyclonal antisera, and the antibodies eluted with a low pH wash. FIG. 4B is a two-dimensional immunoblot probed with these affinity purified polyclonal antibodies. FIG. 4C is a similar two-dimensional immunoblot probed with the monoclonal antibody generated to the HSP22 proteins;

[0029] FIG. 5 illustrates distinct subcellular fractions from maize seedlings. Immunoblots were prepared from the chloroplastic, cytosolic, and mitochondrial fractions (20 µg per lane) and probed with antibodies to known marker enzymes. The chloroplast (Chlpt) proteins were isolated from two-week-old maize seedlings. The cytoplasmic (Cyto) and mitochondrial (Mito) fractions were isolated from three-day-old etiolated shoots grown at 29°C. The chloroplast marker is the 45 kD NADP-malate dehydrogenase protein (NADP-MDH); the cytoplasmic marker is the 50 and 52 kD enolase proteins, and the 35 and 36 kD proteins of the alternative oxidase (Alt. Ox.) represent the mitochondrial marker;

[0030] FIG. 6 illustrates HSP70 and cpn60 monoclonal antibody cross-reactivity to different subcellular fractions of maize. Immunoblots similar to those in FIG. 5 were prepared and probed with the MAbs to HSP70 and cpn60. The top panels illustrate blots probed with MAbs HSP70A, HSP70B, and HSP70C which identify the 70 kD species. The bottom panels illustrate blots probed with cpn60A, cpn60B, and cpn60C which identify a 64.5 kD species;

[0031] FIG. 7 illustrates subcellular cross-reactivity of the HSP22 monoclonal antibody. The top panel is a Coomassie-stained SDS-PAGE gel of subcellular fractions (20 µg per lane) isolated from heat-shocked and control maize tissue.
The chloroplast (Chlpt) proteins were isolated from two-week-old maize seedlings treated for four hours at 42°C in the dark (HS) or left at the 21°C growth temperature (Con). The cytoplasmic (Cyto) and mitochondrial (Mito) fractions were isolated from three-day-old etiolated shoots grown at 29°C (Con) and heat-shocked for four hours at 42°C (HS). The bottom panel is an immunoblot of a similar gel probed with the monoclonal antibody to HSP22. Approximate molecular mass markers are indicated on the left (kD);

[0032] FIG. 8 illustrates the effect of temperature on the induction of mitochondrial cpn60, HSP70 and HSP22 proteins. Three-day-old etiolated maize seedlings were treated for four hours at either 29°C (control), 33°C, 37°C, or 42°C. The mitochondria were isolated and analyzed by SDS-PAGE and immunoblots. The top panel is a Coomassie stained SDS-PAGE gel loaded with 20 μg of mitochondrial protein per lane. Approximate molecular mass markers are on the left (kD). The four other panels are immunoblots of similar gels probed with the cpn60B monoclonal (center left), the HSP70B monoclonal (center right), the β-ATPase D monoclonal as a control (bottom left), and the HSP22 monoclonal (bottom right);

[0033] FIG. 9 illustrates SDS-PAGE and immunoblot analysis of the time course of induction for maize mitochondrial HSP70, cpn60, and HSP22 proteins. Three-day-old etiolated maize seedlings grown at 29°C were placed at 42°C (0 hours at 42°C) and samples were removed after 0.5, 1, 2, 3, and 4 hours of heat shock, and the mitochondria were immediately isolated. Seedlings that received four hours of heat shock were returned to the 29°C incubator and allowed to recover for 24 or 50 hours prior to mitochondrial isolation. The top panel is a Coomassie-stained SDS-PAGE gel loaded with 20 μg of mitochondrial protein per lane. Approximate molecular mass markers are on the left (kD). The three bottom panels are immunoblots of similar gels probed with the Mabs HSP70A, cpn60B and HSP22;

[0034] FIG. 10 illustrates SDS-PAGE and immunoblot analysis of the time course of HSP22 decay from heat-shocked maize mitochondria. Three-day-old etiolated maize seedlings were grown at 29°C and heat shocked at 42°C for four hours and then returned to 29°C to recover for 3, 6, 9, 12, 15, 18, or 21 hours. Mitochondria were isolated from samples taken just prior to and following heat-shock (0 and 4 hours at 42°C) and immediately after the above recovery times. The top panel is a Coomassie-stained SDS-PAGE gel loaded with 20 μg of the mitochondrial isolations per lane. Approximate molecular mass markers are on the left (kD). The bottom panel is an immunoblot of a similar gel probed with the HSP22 MAb;

[0035] FIG. 11 illustrates the induction and decay of HSP22 in the mitochondrial fraction of B73 maize etiolated shoot mesocotyls during heat shock and recovery. Analysis of this graph demonstrated that the half life of HSP22 protein is about four hours;

[0036] FIG. 12 illustrates SDS-PAGE and immunoblot analysis of the effect that continuous heat shock has on the levels of maize mitochondrial HSP70, cpn60, and HSP22 proteins. Three day-old etiolated maize seedlings grown at 29°C were placed at 42°C. Samples were removed after 0, 2, 4, 6, 8, 12, 16, 24, and 44 hours of heat shock. The mitochondria were immediately isolated. The top panel illustrates a Coomassie-stained SDS-PAGE gel loaded with 20 μg of mitochondrial protein per lane. Approximate molecular mass markers are on the left (kD). The three bottom panels are immunoblots of similar gels probed with the Mabs HSP70B, cpn60B and HSP22, respectively;

[0037] FIG. 13 illustrates a graph of the induction of HSP22 in three-day-old B73 maize mesocotyls under continuous heat shock. These results were obtained by quantitating the areas from the SDS-PAGE and immunoblot analysis of continuous heat shock of maize mitochondria at 0, 2, 4, 6, 8, 12, 16, 24 and 44 hours as seen in FIG. 12. The graph demonstrates that after maximal induction, the levels remained high until the experiment was terminated at 44 hours of heat shock. Additionally, the graph illustrates a 30 kDa band that is believed to be a precursor form of HSP22;

[0038] FIG. 14 illustrates a SDS-PAGE and immunoblot analysis of HSP22 levels in protein extracts of whole leaves. The top panel is a Coomassie-stained SDS-PAGE gel loaded with mitochondrial isolations from control and heat shock and total leaf extracts from leaves of ten-day-old light grown maize seedlings at various heat shock temperatures. The bottom panel illustrates an immunoblot of a similar gel probed with the HSP22 MAb. As shown, the HSP22 MAb is able to detect mitochondrial HSP22 in whole leaf extracts of 38°C heat-stressed seedlings;

[0039] FIG. 15A illustrates the UV trace and the salt gradient from the elution profile from membrane fractions isolated from heat-shocked mitochondria containing HSP22 protein applied to a Pharmacia FPLC Mono-Q anion exchange column and eluted with a linear NaCl gradient from 0 to 350 nm. FIG. 15B depicts SDS-PAGE gels of the HSP22 containing fractions collected and stained with Coomassie blue. FIG. 15C depicts these fractions transferred to nitrocellulose and probed with affinity purified HSP22 polyclonal antibody;

[0040] FIG. 16A depicts the doublet HSP22 peak recovered by Mono-Q followed by Phenyl Superose chromatography which was concentrated and applied to a C8 microbore reverse-phase HPLC column, the column was eluted with a 2% to 60% (v/v) acetonitrile/H2O gradient containing 0.1% (v/v) TFA. The eluate was directed through a 1:10 split with 90% of the eluate passing through a UV flow cell and collected. FIG. 16B represents the total ion count which was taken by subjecting the sample to real time analysis on a VG Platform mass spectrometer utilizing an electrospray ionization source and a quadrupole analyzer with an eight second scan time from 700 to 1800 m/z. The first scan of FIG. 16C illustrates a Coomassie-stained SDS-PAGE gel of 20 μl from the sample that was applied to the column and of the fractions that were recovered (peaks 8, 9, and 10 in 16A). The middle panel of FIG. 16C is a similar gel which was immunoblotted with affinity purified HSP22 polyclonal antibodies. This blot demonstrates that both peak 8 and peak 9 contain HSP22. The right panel is the same gel of the middle panel after being recorded and then probed with cpn60B monoclonal antibody, revealing that cpn60 was present in the sample prior to chromatography and that it was not present in peaks 8, 9, and 10 after the chromatography;

[0041] FIGS. 17A-D are the mass spectral data from peaks 8 and 9, which were analyzed using the Mass.inks software package. FIG. 17A is an analysis of peak 8 protein mass spectrum. The raw spectrum was transformed to reveal the masses of the proteins in peak 8 as illustrated in
FIG. 17B. FIG. 17C is an analysis of peak 9 mass spectrum. FIG. 17D is the transformed data from peak 9 which reveals the masses of the proteins from peak 9;

FIG. 18 is a schematic representation of the four potential forms of HSP22 revealed in the mass spectral data gathered from peaks 8 and 9. The 80 Da difference in the two components of both peaks 8 and 9 indicates a phosphorylation. Comparison of the two primary components of peaks 8 and 9 reveals a mass difference of 56 Da, which is most likely due to alternative intron splicing of the cDNA;

FIG. 19 is a complete cDNA nucleotide molecule and protein translation for maize mitochondrial HSP22. A partial cDNA clone for HSP22, ZmHSP22P (P8), was isolated by screening a lambda phage cDNA expression library using the HSP22 monoclonal antibody. The library was constructed using mRNA from heat-stressed etiolated maize seedlings. The nucleotide molecule was completed using homologous overlapping molecules identified in the Pioneer Hi-Bred EST database. The mitochondrial transit peptide molecule and the 5' untranslated region of the cDNA were added from molecules CHSSH24R and CTSCG49R from the Heat Shock Recovery Seeding (6 h) and the Tassel Shoot EST libraries, respectively (underlined nucleotide sequence). The putative translational start is at nucleotide 79. The complete mitochondrial transit peptide is encoded from nucleotide 79 to 213. The mature HSP22 protein molecule is from nucleotide 214 to 735. The N-terminal amino acid molecule obtained from spot HSP22B is illustrated in bold type. The amino acid molecule from spot HSP22A is identical to the first 13 residues of the molecule from spot HSP22B (bold and underlined type). The identity of the 18th residue (Ser⁹) from spot HSP22B could not be determined during the Edman degradation. The 3' untranslated region is from 736 to 1028 plus a 15 nt polyadenylated tail;

FIG. 20 depicts HSP22 northern blot analysis of results from experiments where the P8 cDNA clone was used as a probe to investigate levels of HSP22 mRNA. Seedlings were subjected to heat stress at 42°C for four hours and then returned to normal growth temperature for recovery. mRNA was isolated at 0, 10, and 30 minutes after the start of the recovery period, and then at 1, 2, 3, 6, and 9 hours of recovery. HSP22 mRNA levels remained high for 5-, 10- and 30-minute time points, but had dropped significantly after one hour of recovery. The bottom panel depicts the 18s rRNA control for loading which demonstrates that the 18s rRNA levels were similar in all of the lanes;

FIG. 21 depicts HSP22 northern blot analysis from experiments where the P8 cDNA clone was used as a probe to investigate levels of HSP22 following continuous heat shock treatment at 42°C. mRNA was isolated at 0, 10, and 30 minutes, and then at 1, 2, 3, 4, 6, 8, 12, 14, 19, 24, 36 and 48 hours after the onset of heat stress. HSP22 mRNA was first observed after 30 minutes, and the levels peaked at four to six hours of heat stress;

FIG. 22 depicts experiments where the P8 probe was used on southern blots to evaluate the copy number of the genomic copy of the gene. The genomic DNA was probed with mature HSP22 protein cDNA. The procedure utilized seven different restriction enzymes. Because only one band was observed with each restriction enzyme on the southern, the probe most likely recognized only one gene;

FIG. 23 illustrates the vector containing the partial genomic nucleic acid molecule illustrated in SEQ. ID. NO. 4.

DETAILED DESCRIPTION OF THE INVENTION

Heat stress response of maize mitochondria in planta was evaluated. It was found that levels of HSP70 and HSP60 do not change to any significant extent during heat stress treatments. In contrast, levels of mitochondrial HSP22 increase dramatically during stress and decrease after the stress is relieved. HSP22 has been identified as a member of the mitochondrial shSP superfamily, the first identification of a mitochondrion localized shSP in a heat tolerant plant. Experiments have indicated that mitochondrial HSP22 is responsible for protecting heat tolerant plants during heat stress.

Methods are disclosed for determining a plant’s ability to survive in heat stress conditions by analyzing the level of expression of HSP22 in heat-stressed plants and comparing the amount of expression to a standard or a sample population. This expression can be measured through the use of antibodies (polyclonal, monoclonal, or fragments thereof) or nucleic acid probes that are sufficiently homologous to bind the mRNA encoding HSP22.

Combinations are disclosed for determining a plant’s ability to tolerate heat stress conditions. These combinations will include the components necessary to determine a plant’s ability to tolerate heat stress conditions. These combinations will incorporate the methods and principles disclosed in the examples listed below.

Nucleic acid molecules presented in this disclosure will enable the creation of full-length nucleic acid molecules encoding maize HSP22 and fragments thereof. Specifically, the disclosed oligonucleotides of SEQ. ID. NOs. 2 and 3, or any other molecules that hybridize to selected portions of SEQ. ID. NO. 7, may be utilized to produce copies of the selected portions of the disclosed nucleic acid molecules which may be utilized for expressing the disclosed protein. Additionally, it is well-known by those of ordinary skill in the art that oligonucleotide design allows an unlimited choice for incorporating restriction endonuclease sites into a vector and a product. The flexibility in oligonucleotide selection and restriction endonuclease site selection allows several choices for the method of preparation of the nucleic acid molecules of the present invention.

It is also well-known to practitioners of the art that the nucleic acid molecules may be recombinant or synthetic or partly synthetic and partly recombinant. Recombinant implies the use of molecular biology tools. Synthetic refers to the use of chemical synthetic procedures.

The present invention includes vectors containing nucleic acid molecules encoding HSP22. For example, the vector could comprise SEQ. ID. NOs. 1, 4, 5, 7, or a nucleic acid molecule encoding SEQ. ID. NO. 6. In one embodiment, the vector includes regulatory molecules operably positioned within the vector, whereby the nucleic acid molecules encoding HSP22 are expressed. These vectors used for expressing a given protein, or a portion thereof, are commonly referred to as expression vectors. Often these expression vectors comprise at least one origin of replica-
tion, at least one promoter, at least one ribosome binding site, and at least one terminator. Vectors often contain many other elements known to those of ordinary skill in the art. These vectors can be viral, prokaryotic or eukaryotic in origin and may serve a variety of functions not limited to expression.

[0055] The present invention includes cells transformed with various vectors. In one embodiment, this cell is an *E. coli* cell of the appropriate genetic makeup, transformed with an expression vector of the present invention and is capable of expressing HSP22. Such cells, commonly known as host cells, can be either prokaryotic or eukaryotic. It is understood by those of ordinary skill in the art that a recombinant molecule containing the nucleic acid sequence of the present invention can be used to transform a variety of hosts using any known technique for transformation. Additionally, there are other methods besides transformation for the introduction of nucleic acids into host cells. These methods include, but are not limited to, transfection and direct introduction of nucleic acid molecules.

[0056] Vectors transformed with the nucleic acid molecules of the present invention may also be utilized to transform plant cells to form plants that have the ability to better survive in heat stress conditions. Specifically, a plant species modified to express an amount of HSP22 in excess of a naturally occurring amount of HSP22.

[0057] In addition to the nucleic acid molecules, vectors, and transformed cells, the present invention further includes a method for the production of HSP22. This method involves the insertion of a nucleic acid molecule that encodes HSP22 into an expression vector. This vector is transformed into an appropriate host bacterial cell so that the nucleic acid molecules encoding HSP22 may be expressed. The HSP22 is then isolated from the bacteria through protein purification techniques. Through this process, HSP22 can be produced in large quantities for use in industry and research. Additionally, it is known to those skilled in the art that there are several methods besides transformation with expression vectors that allow the expression of protein from a given nucleic acid molecule. One example is transfection of certain host cells with mRNA. In another example, expression may be achieved from a nucleic acid molecule in vitro rather than in vivo.

[0058] The present invention further includes a product of the above discussed method. This product is isolated HSP22.

[0059] The present invention includes isolated nucleic acid molecules that encode for HSP22. The procedures listed below may be implemented to produce large quantities of the disclosed nucleic acid molecules. Additionally, these molecules can be produced through synthetic or recombinant means. These procedures allow the industrial and scientific community access to the nucleic acid molecule of the present invention for further studies or for the purpose of expression in order to produce and isolate HSP22.

[0060] An antibody for HSP22 is disclosed. The antibody can be polyclonal, monoclonal, or a fragment thereof. Additionally a hybridoma producing functional monoclonal antibodies for HSP22 is disclosed.

[0061] The following discussion will assist in defining the structure for a portion of the claimed invention. The genetic code is degenerate. This means that several combinations of three nucleotides will code for the same amino acid. For example, Leu can be coded for by 6 combinations of 3 nucleotides. Many nucleic acid molecules can code for a particular amino acid molecule. Thus, there is a multitude of nucleic acid molecules that could code for the sequences of the present invention. It is intended that those nucleic acid molecules that both hybridize under stringent conditions with the nucleic acid molecule of the present invention and that code for a peptide having substantially the same physical characteristics as HSP22 are included within the scope of this invention.

[0062] Stringent conditions are defined as hybridization in a medium containing 6×SSC or 6×SSPE and 40% formamide at a temperature of 37°C and a wash at 37°C with 2×SSC or 2×SSPE containing 0.1% SDS. These solutions can be prepared from 20×SSC or SSPE which comprise the following compositions. The 20×SSC is formed by mixing 175.5 g of sodium chloride and 88.2 g of sodium citrate in 1 L of water with a final pH of 7.0. The 20×SSPE is formed by mixing 210 g of sodium chloride, 27.6 g NaH₂PO₄, H₂O, and 40 µl of 0.5 MEDTA in 1 L of water. Any nucleic acid molecules that hybridize to SEQ. ID. NO. 7 in a solution containing 6×SSC or 6×SSPE and 40% formamide at 37°C and remains bound to SEQ. ID. NO. 7 when the milieu is changed to 2×SSC or 2×SSPE containing 0.1% SDS are those nucleic acid molecules defined as hybridizing under stringent conditions. Additionally, it is well known in the art that several factors affect hybridization including the length and nature of the probe, nature of the target, concentrations of salts, components in the hybridization solution, and temperature. Therefore, this description of stringency includes equivalent hybridization and wash conditions. The results of the hybridization can be easily determined by one skilled in the art through Southern blot analysis.

[0063] In describing the nucleic acid molecules of the present invention, both structure and function or physical characteristics are utilized. The structure is provided by the above description of stringency; those nucleic acid molecules that hybridize under stringent conditions. The function or physical characteristics are provided by the following discussion of the physical characteristics of HSP22. Therefore, those nucleic acid molecules that hybridize to SEQ. ID. NO. 7 and whose protein products have physical characteristics substantially similar to HSP22 are included within the scope of the present invention. Additionally, those nucleic acid molecules that hybridize to SEQ. ID. NO. 7 and whose protein products have physical characteristics substantially similar to HSP22 may code for peptide fragments which are also included within the scope of the present invention.

[0064] Those of ordinary skill in the art will recognize that methods for vector construction and protein expression provided in the following examples are the preferred embodiment and that there are other techniques, vectors, and cell lines that could be implemented for constructing and expressing proteins or fragments thereof in either prokaryotic or eukaryotic systems. The preferred embodiment disclosed herein does not limit the scope of the invention. There are a variety of alternative techniques and procedures available to those with ordinary skill in the art that would permit one to perform modifications on the present invention. It is also well-known in the art that commercially available kits allow the modification and incorporation of the present invention. It is further recognized that those with ordinary
skill in the art could employ any of a number of known techniques to modify the nucleic acid molecules of the present invention, in vitro or in vivo, and develop them further by established protocols for gene transfer and expres-

IDENTIFICATION OF MITOCHONDRIAL HSP22

[**0065**] Experiments have been conducted to evaluate the expression of mitochondrial proteins of maize during conditions of heat stress. Mitochondria were isolated from three-day-old etiolated shoots grown at 29°C. Three hundred μg of the mitochondrial protein was analyzed on two-dimensional SDS-PAGE gels stained with Coomassie Brilliant Blue, as seen in FIG. 1B. These methods are disclosed in Example I. The designated protein spots in FIG. 1B correspond to plant mitochondrial HSP70 and chaperonin 60 (cpp60). FIG. 3 is of mitochondria isolated from similar seedlings, except these seedlings were treated with a four-hour heat shock at 42°C. Analysis of these Coomassie-stained gels indicates that very few protein spots increased in intensity during heat stress, including the HSP70 and cpp60 proteins. However, visual inspection of the gel in FIG. 3 demonstrates that two protein spots were significantly increased when compared to a non-heat-shocked gel. The two protein spots that demonstrate the increase have apparent molecular weights 15 of approximately 22 kDa. This indicates that a response to heat stress in a heat tolerant mitochondria is an increase in the level of this 22 kDa protein. These protein spots have been designated as HSP22.

PRODUCTION OF ANTIBODIES TO MITOCHONDRIAL HSP22

[**0066**] The antibody production was accomplished by injecting mice independently with one 20 of the two HSP22 protein spots from the two-dimensional SDS-PAGE gels from the heat-shocked maize mitochondria. The upper panel of FIG. 4 illustrates a two-dimensional western blot of heat shock mitochondrial proteins probed with the polyclonal scra. On several occasions, the polyclonal antibodies were not specific to HSP22 and also bound to cpp60.

[**0067**] Polyclonal antibodies specific to the HSP22 spots were affinity purified using HSP22 protein blots. The specificity of these affinity purified antibodies is demonstrated in the western blot of heat shock mitochondria at the middle panel of FIG. 4. These mice were eventually sacrificed for the production of monoclonal antibodies. After three fusions, a monoclonal antibody was obtained that was specific for HSP22. The specificity of this monoclonal antibody is shown in the western blot of heat shock mitochondria at the lower panel of FIG. 4. The polyclonal and monoclonal antibodies for maize HSP22 were found to bind to minor proteins of about 30 kDa. These are most likely precursor forms of HSP22.

[**0068**] In addition to the monoclonal antibodies, fragments were generated using immobilized papain and immobilized pepsin as described by Pierce Chemical Company, Rockford, Ill., which is hereby incorporated by reference. Methods for the production of the antibodies and fragments thereof are disclosed in Example II.

CHARACTERIZATION OF MITOCHONDRIAL HSP22

[**0069**] Experiments were performed to determine if the monoclonal antibodies to HSP22 would recognize homologs in the chloroplast and cytoplasmic subcellular fractions. Chloroplasts, cytoplasm, and mitochondria were isolated and the distinctness of the fractions was evaluated using immunoblots and antibodies to marker enzymes (FIG. 5). The cytoplasm and mitochondrial fractions were from three-day-old etiolated shoots, while the chloroplast fraction was from ten-day-old light grown seedlings. NADP-malate dehydrogenase was used as a marker for the chloroplast stroma (Edwards and Huber, 1981), endonuclease as a maize cytoplasmic marker (Lal et al., 1994), and the alternative oxidase as a mitochondrial marker (Eilhon et al., 1989). FIG. 5 demonstrates that the subcellular fractions were indeed distinct.

[**0070**] Control and 42°C heat-shocked seedlings were fractionated into chloroplast, cytoplasm, and mitochondrial fractions and then probed with the HSP22 monoclonal antibody. The upper panel of FIG. 7 is a Coomassie-stained gel of the cellular fractions. The lower panel is an immunoblot probed with the HSP22 monoclonal. These results indicate that the monoclonal is specific to the mitochondrial fraction. Methods for the determination of homolog recognition of proteins in subcellular fractions by HSP22 monoclonal antibodies is disclosed generally in Examples I and II.

[**0071**] Subcellular mitochondrial distribution of HSP70, cpp60, and HSP22 was determined through the following: Mitochondria from control and heat-shocked seedlings were subfractionated into membrane, soluble, and complex fractions. Immunoblots of the fractions from control and heat shock mitochondria were run and probed with the monoclonals to HSP70, cpp60, and HSP22. The results indicated that the heat shock treatment had no effect on the distribution of HSP70 and cpp60. HSP70 was found primarily in the soluble fraction, cpp60 was most prevalent in the complex fraction, and HSP22 was found primarily in the soluble fraction.

[**0072**] Experiments were done to determine the temperature necessary for HSP22 to appear in maize mitochondria. To accomplish this, etiolated shoots were subjected to three different heat shock treatments. After the four-hour heat shock at the respective temperatures, the mitochondria were isolated. The upper panel of FIG. 8 depicts a Coomassie-stained SDS-PAGE gel loaded with 20 μg of mitochondrial protein per lane. The four-hour heat-shock treatments were done at 29°C (control), 33°C, 37°C, and 42°C. The remaining panels in FIG. 8 illustrate western blots of gels similar to Coomassie-stained SDS-PAGE gels probed with cpp60 monoclonal (mid left), HSP70B monoclonal (mid right), B-ATPase D monoclonal (lower left), and HSP22 monoclonal (lower right). These gels demonstrate that cpp60, HSP70, and the B-ATPase subunit proteins are not significantly affected by the heat shock treatments, whereas the HSP22 protein expression begins somewhat above 33°C. It appears from the gel that the quantity of HSP22 present at 37°C is significantly less than at 42°C. These experiments indicate that at some point between 33°C and 37°C expression of HSP22 begins, and further, that the expression increases between 37°C and 42°C.

[**0073**] Experiments were performed to determine the decay time for HSP22. Three-day-old etiolated maize shoots
were placed at 42°C and samples were removed at various time intervals. The mitochondria of these interval samples were then isolated. After the heat-shock treatment, two samples were returned to the 29°C incubator and allowed to recover for 24 and 50 hours. The upper panel of FIG. 9 illustrates a Coomassie-stained SDS-PAGE gel loaded with 20 μg of mitochondrial protein per lane. The two middle panels of FIG. 9 illustrate western blots of similar SDS-PAGE gels probed with the monoclonal antibodies HSP70B and cpn60B. The bottom panel of FIG. 9 is a western blot probed with the HSP22 monoclonal antibody. These experiments demonstrate that HSP22 protein begins to appear about one hour after the onset of the heat shock and continues to increase steadily to four hours. These experiments further demonstrate that neither HSP70 nor cpn60 change their expression when exposed to heat shock. In addition to the increased expression of HSP22, essentially all of the HSP22 is degraded after relief of the heat stress for 24 hours. Both the increased expression after exposure to heat shock and the degradation after relief of heat shock indicate that HSP22 expression and degradation are related to the timing of heat shock.

These initial experiments were further refined to better characterize the induction and decay of mitochondrial HSP22. This was accomplished by taking samples at various times after the relief of heat stress. The results are illustrated in FIG. 10 and indicate that HSP22 levels drop gradually, but are essentially absent at 21 hours. The areas on the induction and recovery blots were quantitated and a half-life for HSP22 was calculated. The half-life was found to be about four hours (FIG. 11). Additionally, levels of HSP22 expression were further evaluated under a continuous heat shock for various time intervals, as indicated in the upper panel of FIG. 12. This upper panel is a Coomassie-stained gel of mitochondria isolated at various time intervals. The lower three panels are immunoblots probed individually with the monoclonals HSP70B, cpn60B, and HSP22. This illustrates that two hours of heat shock yields significant induction of HSP22 expression, with maximum expression occurring between four and six hours. After maximal induction, the levels remained high until the experiment was terminated after 44 hours of heat shock. The levels of HSP22 were quantitated at the different time intervals and the resulting graph is illustrated in FIG. 13. The 30 kDa band, which is believed to be a precursor form of HSP22, was included in the calculation. Methods utilized for the determination of expression and degradation of HSP22 are disclosed generally in Examples I and II.

These characterization studies demonstrate that the monoclonal antibody is useful in tracking HSP22 expression during the induction and relief of heat stress. Thus, the monoclonal antibody to HSP22 can be used to evaluate the ability to tolerate heat stress in plants by determining the amount of HSP22 expression.

Experiments were done to determine if the monoclonal antibody was useful in evaluating HSP22 levels in protein extracts from whole maize leaves. This was tested using maize seedlings grown at 21°C and then heat shocked for four hours at either 31°C or 38°C. FIG. 14 illustrates the results from the whole leaf experiments. The upper panel of FIG. 14 is a Coomassie-stained gel of both mitochondrial and whole leaf fractions. The left two lanes are mitochondria isolated from control and heat shocked (42°C for four hours) etiolated maize shoots and the right three lanes are of proteins extracted from leaves of ten-day-old light grown maize seedlings grown at 21°C. The first whole leaf lane is a control, the second whole leaf lane was heat shocked for four hours at 31°C, and the third whole leaf lane was heat shocked for four hours at 38°C. The lower panel of FIG. 14 is an immunoblot of a gel similar to the upper gel probed with the HSP22 antibody. The results clearly demonstrate that mitochondrial HSP22 was detectable in whole leaf extracts of 38°C heat-stressed seedlings by the monoclonal antibody to HSP22. This demonstrates that the monoclonal antibody to HSP22 is useful in evaluating the ability to tolerate heat stress by testing whole leaf extracts. Further, it was found that fab and (Fab)2 antibody fragments show greater specificity and have better access characteristics in certain types of assays such as immune detection in whole tissues.

Additionally, this test can be used to determine a plant’s ability to tolerate heat stress by the level of expression of HSP22. The level of expression can be compared to a large sample population or to a known sample to determine if the particular plant has the ability to tolerate heat stress. Those plants with the highest level of HSP22 expression will best tolerate heat stress due to the chaperone qualities of HSP22. Methods for the detection of HSP22 expression in whole leaf samples are disclosed at Example III. The above discussion accompanied by Section III would enable those skilled in the art to identify and isolate those plants that express HSP22 in heat stress conditions so that plants can be selected that better tolerate heat stress due to the chaperone characteristics of HSP22.

The antibodies and fragments thereof are useful for diagnostic assays to detect amounts of HSP22 present in whole leaf samples. A person skilled in the art will readily recognize that combinations can be put together that would allow an individual to test a particular plant’s ability to tolerate heat stress. These combinations include an aliquot of an antibody or fragment thereof that specifically binds to a portion of HSP22. The combination further comprises an immunologic detection reagent such that identification of HSP22 levels can be determined. Additionally, nucleic acid probes could be utilized to determine levels of HSP22 mRNA and one skilled in the art will readily recognize that combinations can be formed to utilize nucleic acid probes for testing heat stress resistance.

PURIFICATION AND ANALYSIS OF MITOCHONDRIAL HSP22 FROM MAIZE

Purification of HSP22 was done using anion exchange chromatography. The upper panel of FIG. 15 depicts the UV trace and the salt gradient from the elution profile of HSP22. SDS-PAGE gels of the HSP22 containing fractions collected were either stained with Coomassie blue, as seen in the middle panel of FIG. 15, or transferred to nitrocellulose and probed with affinity purified HSP22 polyclonal antibody, as seen in the lower panel of FIG. 15. The elution profile appears to vary occasionally, resulting in the presence of other proteins in the HSP22 peak fractions. Cpnp60 is one of the proteins that occasionally appears in these fractions. Subsequent chromatography of the pooled HSP22 peak on a hydrophobic interaction column (Phenyl Superose) removes nearly all other proteins except cpn60. The anion exchange methods are disclosed in Example V.
An analysis was then done on the purified HSP22 by reverse phase liquid chromatography and electrospray ionization mass spectroscopy. FIG. 16A depicts the elution profile measured at 215 nm. The most prevalent peaks were collected and labeled as 8, 9, and 10. The remaining sample was subjected to real-time analysis on a VG Platform mass spectrometer utilizing an electrospray ionization source and a quadrupole analyzer with an 8-second scan time from 700-1800 m/z. FIG. 16B represents the total ion count that was detected by the instrument. The observed downshift of peaks and band broadening were due to the elutes travel time to the detector. FIG. 16C illustrates a Coomassie-stained SDS-PAGE gel of 20 µl aliquot from the sample applied to the column and the three fractions (8, 9, and 10) that were recovered. To ensure that these proteins were HSP22, a similar gel was immunoblotted with the affinity purified HSP22 polyclonal at FIG. 16C middle panel. This blot demonstrates that both peak 8 and peak 9 contain HSP22. After recording the blot, the same gel was reprobed with the cnp60B monoclonal antibody. This is shown in FIG. 16C in the lower right panel which reveals that cnp60B was present in the sample prior to chromatography and that it was not present in peaks 8, 9, and 10. Analysis of the mass spectrum data showed that scans 303-321 contained proteins with masses of 57,650 and 57,870 and are likely to be the cnp60 component.

The mass spectral data from peaks 8 and 9 were analyzed using the MassLynx software package. Scans 228-233, representing analysis of the peak 8 protein, were combined and this mass spectrum is illustrated in FIG. 17A. The raw spectrum was transformed to reveal the masses of the proteins in peak 8, as shown in FIG. 17B. Peak 8 was found to be primarily composed of a protein with mass 19,428 Da and less abundant components with masses of 19,370 and 19,508 Da. The raw data for peak 9 is shown in FIG. 17C and is the combined scans 236-242. The transformed data shown in FIG. 17D reveals that there are two major components present, with the major being at 19,371 and the minor at 19,451 Da. The 19,370 Da component of peak 8 appears to be the major component in peak 9 and is probably due to incomplete separation of the two peaks. The difference between the remaining two components in both peak 8 and peak 9 is 80 Da, which may indicate a phosphorylation. Comparison of the two primary components of peak 8 and peak 9 reveals a mass difference of 56.7 Da. This mass difference is most likely due to differential intron splicing of the cDNA. A schematic of the four potential forms of HSP22 is shown at FIG. 18. Methods for the online reverse phase HPLC-MS are disclosed at Example VI.

PEPTIDE SEQUENCING OF PURIFIED HSP22

The relevant peaks from the C8 microbore reverse-phase HPLC column were sequenced using trypsin. The tryptic digestions of the peaks were found to have several peptide fragments of common mass and are thus believed to be very similar. Tryptic peptides that were the same between the peaks were subjected to FAB-MS/MS sequencing. To date, four tryptic peptides with masses of 727.4, 815.4, 1088.5, and 1285.7 have been sequenced. Previously, N-terminal amino acid was sequenced from the HSP22 spots by Edman degradation off of protein blots. MassLynx software was used to obtain the molecular mass of tryptic peptides present in the N-terminal amino acid sequence. Only one tryptic fragment was present and it was the N-terminus with a mass of 727.4. One reason why the tryptic peptide of mass 727.4 was sequenced by FAB-MS/MS was to confirm the N-terminal sequence and to link the two experiments. Methods for peptide sequencing are disclosed at Example VII.

ISOLATION AND CHARACTERIZATION OF HSP22 CDNA

A cDNA expression library was prepared from heat-shocked etiolated maize seedlings using the UniZAP XR phage lambda expression vector kit from Stratagene. The library was constructed using mRNA from heat-stressed etiolated maize seedlings. This expression library was initially screened with the HSP22 monoclonal antibody and one positive (P8) was obtained. After in vitro excision of the selected phage, the plasmid (ZmHSP22P8) was sequenced from both directions. Cloning and sequencing methods are disclosed at Example VIII.

As seen in FIG. 19, the sequence for the ZmHSP22P8 clone was found to contain the entire mature HSP22 protein coding sequence, bases 214-735, and the 3' untranslated region, bases 736-1028, and a 15 bp polyadenylated tail, which is not shown. The N-terminal sequence identified for spots HSP22A and B matched this sequence exactly and identified HSP22 spot B residue 18 as Ser. Six more clones have now been sequenced and have a sequence similar to the P8. One of these clones had an additional 15 amino acids of transit peptide and these have been added to the P8 sequence. In an attempt to obtain the full sequence for the transit peptide, the P8 clone was used as a probe to screen the library again. Twenty-four additional clones of various lengths were obtained after screening 3.2x10^10 plaques. All clones were sequenced and all but one contained sequence identical to the P8 clone, but none contained the full transit peptide. The one odd clone showed signs of differential intron splicing resulting in a +56.7 D shift in molecular weight as observed by mass spectrometry. Comparison of the incomplete HSP22 cDNA molecule to the Maize Expressed Sequence Tag Database developed by Pioneer Hi-Bred International allowed identification of three clones that contained identical sequence to the N-terminal region of the mature HSP22 protein. Two of these clones extended the molecule to include a putative N-terminal transit peptide and 78 nt of the 5' untranslated region, which is shown by the underlined nucleotides in FIG. 19. The predicted protein molecule for the entire coding portion of the putative HSP22 precursor cDNA and the cDNA nucleotide molecule are also shown in FIG. 19. The predicted mass of the entire 218 amino acid molecule is 23,816 D.

In addition to utilizing the monoclonal antibody, the P8 cDNA clone was utilized as a probe to investigate levels of HSP22 mRNA in experiments similar to those described earlier where HSP22 protein levels were evaluated with immunobLOTS. Example IX discloses the method for using probes to determine HSP22 expression levels. Etiolated seedlings were subjected to heat stress at 42 C. for four hours and then returned to the normal growth temperature for recovery. mRNA was isolated at 5, 10, and 30 minutes after the start of the recovery period and then at 1, 2, 3, 6, and 9 hours of recovery. FIG. 20 illustrates the northern blot analysis of these experiments. HSP22 mRNA levels remained high for 5-, 10-, and 30-minute time points, but had dropped significantly after one hour of recovery. A probe was used against the 18s rRNA as a control for RNA
Northern blots were prepared from an experiment following a continuous heat shock treatment at 42°C. Etiolated seedlings were exposed to 42°C and mRNA extracted at 0, 5, 10, and 30 minutes and 1, 2, 3, 4, 6, 8, 12, 19, 24, 36, and 48 hours after the onset of heat stress. The results of this experiment are given in FIG. 21. Significant levels of HSP22 mRNA were observed after 30 minutes and levels peaked at four to six hours of stress. Thereafter, the levels of HSP22 mRNA decreased becoming low at 19 to 24 hours after the imposition of stress.

Those skilled in the art would appreciate that this probe, along with the methods in example X, can be utilized in experiments designed to identify and isolate particular plants that express HSP22 in heat stress conditions so that plants can be identified that are more heat tolerant due to the chaperone characteristics of HSP22. Additionally, those skilled in the art will readily recognize that combinations can be put together that would allow an individual to test a particular plant's ability to tolerate heat stress. These combinations would include an aliquot of a nucleic acid molecule that hydridizes to a portion of HSP22 mRNA. The combination would further comprise a detection method used to identify the bound nucleic acid. Those skilled in the art will recognize that there are many different detection methods that may be utilized such as the one illustrated in example IX. Additionally, one skilled in the art would be able to make nucleic acid probes from the disclosed sequence that would work as well as the preferred embodiment disclosed above.

Evaluation of the copy number for mitochondrial HSP22 was conducted with southern blots. The P8 probe was used on the southern blots to evaluate the copy number of the genomic copy of the gene. Seven different restriction enzymes were used and only one band was observed on the southern blot, indicating that the probe most likely recognizes only one gene, as seen in FIG. 22.

EXAMPLE I

Isolation of Mitochondria, Cytoplasmic Proteins, and Chloroplasts

Maize (Zea mays L. inbred B73) seeds were imbibed for three days, planted 1 cm deep on a 3 cm bed of coarse vermiculite in 25×40×15 cm trays, covered with a well-ventilated lid, and grown at 29°C for three days in the dark. For heat-shock experiments, entire trays were placed in a high temperature incubator for the desired duration. Mitochondria were isolated from etiolated shoots of maize as previously described (Hayes et al., Plant Physiology 97:1381-1387, 1991; Luethy et al., Plant Physiology 97:1317-1322, 1991). The protein content of various fractions was measured using the Lowry procedure as modified by Larson et al., Analytical Biochemistry 155:243-248, 1986. Isolated mitochondria were suspended in a medium consisting of 250 mM sucrose and 30 mM Mops (pH 7.2). Mitochondria were sub-fractionated into membranes, soluble proteins, and soluble proteins that are part of large complexes as described by Hayes et al., Plant Physiology, 1991, 97:1381-1387. The cytoplasmic fraction of etiolated maize shoots was obtained during isolation of mitochondria as the supernatant from the second centrifugation step (20,000xg for 5 min) that initially pellets the mitochondria. This supernatant was concentrated two-fold above a Centricon-10 membrane (Amicon) before use.

Maize chloroplasts were isolated using a combination of procedures from Leegood and Walker, Plant Physiology 63:1212-1214, 1979 and Mouriaux and Douce, Plant Physiology 67:470-473, 1981. Maize seeds were imbibed, planted in vermiculite and watered as needed for two weeks in a growth room with a 12 h photoperiod under fluorescent lighting (PPFD=130-160 μmol m⁻² s⁻¹). The ambient temperature was 21°C/13°C C. (light/dark). Fifty grams of leaves were cut transversely with a razor blade into 1 cm segments and placed into 150 μl of semi-frozen grinding medium (330 mM mannitol, 10 mM EDTA, 5 mM MgCl₂, 0.2% (w/v) sodium D-sodium phosphate, and 30 mM Mops pH 7.5) and homogenized with three two-bursts at full speed in a Waring blender. The brei was squeezed through two layers of cheesecloth and allowed to drip through eight layers of muslin wetted with grinding medium. The homogenate was centrifuged in a SS-34 rotor at 6,000xg for 90 s. Crude chloroplast pellets were re-suspended in 5 μl of 1× Percoll gradient buffer (330 mM mannitol, 2 mM EDTA, and 50 mM Mops pH 7.8) and layered on top of two 25 μl 50% Percoll (12.5 μl 2× Percoll gradient buffer and 12.5 μl Percoll each) gradients that had been pre-centrifuged for 2 h at 10,000xg in an SS-34 rotor. The crude chloroplasts were then centrifuged on the gradients for 10 min at 5,000xg and the intact chloroplasts were collected from the rapidly sedimenting diffuse green band. The purified chloroplasts were diluted by adding 2 volumes of 1× Percoll gradient buffer and pelleted in a microfuge at 3,500xg for 90 s. The supernatant was aspirated and the chloroplasts re-suspended in a minimal volume of 30 mM Mops pH 8.0 and stored at -80°C for subsequent gel analysis.

One- and Two-Dimensional Gel Electrophoresis

One dimensional SDS-PAGE was performed with a Bio-Rad Mini-Protean II apparatus using a 14% (w/v) resolving gel and a 5% (w/v) stacking gel. Other conditions are as described by Elthon and McIntosh, Plant Physiology
Molecular mass markers used were Bio-Rad Low Molecular Weight Standards. Two-dimensional IEF/SDS-PAGE was performed as described by Barent and Elthon, Plant Molecular Biology Reporter 10:338-344, 1992. Pharmalyte 3-10 ampholytes (Pharmacia) were used in the first dimension.

EXAMPLE II

[0097] Polyclonal Antibodies, Monoclonal Antibodies, and Immunoblotting

[0098] Polyclonal antiserum was raised in mice against purified *E. coli* DnaK protein as described by Kirska et al., Journal of Bacteriology 175:6433-6440, 1993. Rabbit polyclonal sera produced against maize mitochondria cpn60 was a gift from Dr. T. Prasad, Iowa State University, Ames, Iowa, USA. Polyclonal sera raised to an over-expressed fusion protein of maize enolase was a gift from Dr. D. T. Dennis, Queens University, Ontario, Canada. Antibodies raised to NAPD-malate dehydrogenase were a gift from Dr. R. Chollet, Univ. of Nebraska, Lincoln, Nebr., USA. Polyclonal antisera for the mitochondrial HSP22 proteins were produced by injecting proteins electro-eluted from the separate HSP22A and HSP22B protein spots cut out after Coomassie blue visualization of 2D SDS-PAGE gels. For each mouse injected, protein spots from eight gels were electro-eluted using the Bio-Rad 422 Electro-Eluter fitted with 12.5 kD cut-off membrane caps at 10 mA per sample for 3 h.

[0099] For the production of the HSP70, cpn60 and β-ATPase subunit MAb, female BALB/c mice were immunized with whole maize mitochondrial proteins. Mice producing HSP22 polyclonal antisera were used for the HSP22 monoclonal line development. Hybridomas were produced according to Elthon et al., Plant Physiology 89:1311-1317, 1989 except that growth media contained 20% (v/v) fetal calf serum, 2 mM L-glutamine, 25 μg/ml ampicillin, 100 μg/ml streptomycin sulfate, and 0.1% (w/v) amphotericin B in a base culture medium of 1x Dulbecco’s Modified Eagle’s Medium (Sigma). Hybridomas secreting useful antibodies were selected using immunoblots of mitochondrial proteins. Culture supernatant containing the MAbs was stored at ~80°C and used at a 1:100 dilution. For immunoblots, protein gels were transferred to nitrocellulose and probed with antibodies according to Hayes et al., Plant Physiology 97:1381-1387, 1991. Goat anti-mouse IgG and anti-rabbit IgG antibodies conjugated with alkaline phosphatase were purchased from Sigma. Proteins transferred to nitrocellulose were reversibly visualized by staining with 0.2% (w/v) Ponceau S in 3% (w/v) TCA for 2 minutes followed by rinsing with distilled H2O. Blots were fully destained prior to antibody probing by washing with PBS containing 0.3% (v/v) TWEEN-20.

[0100] Methods for producing fab or (Fab)_2, fragments are well-known in the art. The methods used for this work are described by Pierce Chemical Company, Rockford, Ill., which is hereby incorporated by reference.

EXAMPLE III

[0101] Detection of HSP22 in Whole Leaf Samples

[0102] Leaf samples were frozen in dry ice as collected and stored at ~80°C until used. One gram of plant tissue was ground in liquid nitrogen in a mortar and pestle until a fine powder was achieved. For standard immunoblot assays, the powders were extracted with 1xSDS-PAGE sample buffer and centrifuged in a microfuge at maximum speed for 5 min. The supernatants were used to run standard SDS-PAGE gels for immunoblot analysis. For ELISAs, the fine powder was extracted with 30 mM MOPS (pH 8.0). In some instances, the fine leaf powders were resuspended in the normal grinding medium and subjected to the first two centrifugation steps of mitochondrial isolation. The crude mitochondrial pellets were resuspended in ddH2O and subjected to standard SDS-PAGE and immunoblot analysis.

[0103] For detection of mitochondrial HSP22 using an ELISA, 20 μl of extracted samples were placed in separate wells of 96 well ELISA plates. The solutions PBS, PBS-Tween, and pH 9.5 buffer are as described by Elthon and McIntosh, PNAS 84:8399-8403, 1987. PBS (200 μl) was added to each well and the plate incubated overnight at 4°C. The solution was then shaken out of the plate and the plate rinsed with PBS-Tween twice. The HSP22 monoclonal antibody or antibody fragments were added to each well as a 1/50 dilution in PBS-Tween (200 μl per well). The plate was incubated for 4 hours at 37°C. The solution was then shaken out of the plate and the plate rinsed with PBS-Tween twice. Secondary antibody (anti-mouse alkaline phosphatase) was added to each well at a 1/5000 dilution in PBS-Tween (200 μl per well). The plate was incubated at 4°C for 2 hours. The plate was shaken out and rinsed three times with PBS-Tween. The plate was then rinsed with pH 9.5 buffer. pNPP (para-nitrophenyl phosphate) substrate was prepared as a 0.8 μg/ml solution in pH 9.5 buffer and 200 μl added to each well and color developed before reading at 405 nm.

EXAMPLE IV

[0104] Purification of Mitochondrial HSP22 using Monoclonal Antibody Affinity Chromatography

[0105] HSP22 monoclonal antibody was purified using a FPLC protein G Superose column. The column was equilibrated with 20 mM phosphate buffer at pH 7.0 and the antibody solution applied. The column was washed with phosphate buffer until all unbound proteins were eluted. The monoclonal antibodies were then eluted with 100 mM glycine at pH 2.7. The eluted monoclonal antibodies were collected and neutralized to pH 7.0.

[0106] An antibody affinity column was prepared using 4 mg of protein G Superose-purified HSP22 monoclonal antibody in a minimal volume of PBS. The antibody was bound to 1 μl of protein A Sepharose 4B beads and crosslinked for 1 hr using 20 mM diethylpimelimidate in 200 mM triethanolamine, pH 8.2. The anti-HSP22 beads were washed with PBS and pre-eluted with 50 mM CAPS buffer, pH 11.5, prior to addition of sample. Mitochondria (HS mito) from 4 hr heat-stressed seedlings were isolated, sonicated in 2 μl PBS, and centrifuged to remove the membrane (HS membrane) fraction (Hayes et al., Plant Physiology 97:1381-1387, 1991. The cytoplasmic fraction (HS cytoplasm) was isolated according to Lund et al., Plant Physiology 116:1097-1110, 1997. Approximately 5 mg of mitochondrial matrix proteins (HS matrix) was applied to the anti-HSP22 column and the proteins which did not bind were collected (HS matrix flow thru). The anti-HSP22 column was washed with 50 mM CAPS buffer pH 11.5 to elute essentially pure HSP22.
EXAMPLE V

[0107] Chromatographic Purification of HSP22

[0108] Isolated mitochondria were suspended in a medium consisting of 250 mM sucrose and 30 mM Mops (pH 7.2). Mitochondrial membranes were removed by sonication of 6 μg of washed mitochondria in 1 ml of 30 mM Mops pH 8.0 followed by ultracentrifugation in a TLA-100.2 rotor (Beckman) for 30 min at 100,000 x g. The supernatant contained the soluble mitochondrial proteins and the large protein complexes as described by Hayes et al., Plant Physiology 97:1381-1387, 1991. Approximately 5 μg of mitochondrial proteins (after removal of the membrane fraction) from heat stressed maize seedlings was applied to a Pharmacia FPLC HR5/5 Mono-Q anion exchange column. The column was washed at a flow rate of 0.5 ml min⁻¹ with 10 ml of 30 mM Mops pH 8.0 and then developed with a 25 ml linear gradient to 35% (v/v) 1 M NaCl, 30 mM Mops pH 8.0. The gradient was increased to 100% (v/v) 1 M NaCl, 30 mM Mops pH 8.0 during the following 3 ml and then maintained at 100% (v/v) 1 M NaCl, 30 mM Mops pH 8.0 for 5 ml. The eluate was analyzed using a UV flow cell with a 1 cm path-length and an illuminated volume of 8.7 μl and collected in 0.5 ml fractions. The samples were analyzed for the presence of HSP22 using SDS-PAGE immunoblots. The HSP22 containing fractions were pooled and concentrated using an Amicon device with a 10 kD cut-off membrane (YM-10 Diaflo Ultrafiltr, Amicon, Beverly, Mass., USA). Solid NaCl was added to the pooled fraction to a concentration of 4M and the sample applied to a hydrophobic interaction column (Pharmacia HR5/5 Phenyl Superose) equilibrated with 4M NaCl, 30 mM Mops pH 8.0. Nearly pure HSP22 was collected from the column elute prior to application of a decreasing salt gradient. The HSP22 containing fractions were again pooled and concentrated using the same Amicon device.

EXAMPLE VI

[0109] Online Reverse Phase HPLC-MS (high pressure liquid chromatography-mass spectrometry) Analysis of Purified HSP22

[0110] The pooled and concentrated HSP22 peak recovered from Phenyl Superose chromatography was applied to a Gilson HPLC (Gilson Inc. Middleton, Wis., USA) fitted with a C8 microbore (1.0x50.0 mm Zorbax C8 300 Å) reverse-phase HPLC column and the column developed at 50 μl min⁻¹ over 40 min with a 2-60% (v/v) acetonitrile/ ddH₂O gradient containing 0.1% (v/v) trifluoroacetic acid. Through the use of a splitting tee, 90% (v/v) of the eluate was directed through a UV flow cell (0.5 μl illuminated volume) with the detector response set to 0.02 AU full scale. The other 10% (v/v) of the sample was analyzed on a Micromass Platform II mass spectrometer (Micromass, Manchester, UK) utilizing an electrospray ionization (ESI) source and a quadrupole analyzer with an 8 second scan time from 700-1800 m/z. The detector was calibrated using horse heart myoglobin (MW 16,951.4 4+/-.5 D) and was found to be accurate to +/-0.01%. Mass spectra were analyzed using the Masslynx software (Micromass, Manchester, UK).

EXAMPLE VII

[0111] Sequencing of HSP22 Tryptic Peptides Using CID MS/MS

[0112] HSP22 Peak I and Peak II samples from HPLC were lyophilized and each digested with freshly prepared trypsin (treated with n-tosyl-L-phenylalanine chloromethyl ketone) (T-8642 Sigma) at 25:1 HSP22/trypsin molar ratio in 0.1 M Tris pH 7.8 for 4 hr at 37°C. N-tosyl-L-phenylalanine chloromethyl ketone inhibits the chymotryptic activity (non-specific cleavage at aromatic amino acids) of trypsin, therefore trypsin cleaves the protein only at the C-terminal side of Arg and Lys residues. The tryptic peptides were separated and analyzed using the online HPLC-MS system described above but using a microbore C18 reverse phase column and developed with a gradient of 2-40% (v/v) acetonitrile/ddH₂O containing 0.1% (v/v) TFA over 40 min at a flow rate of 50 μl min⁻¹. The Platform II mass spectrometer was calibrated with NaI using an 8 second scan time from 400-2000 m/z. Peptide mass determinations are accurate to ±0.3 D. Tryptic peptides were sequenced using CID MS/MS on a Micromass AutoSpec (Micromass, Manchester, UK) fitted with an orthogonal acceleration time of flight analyzer (oaTOF) using FAB as the source of ionization. A 2 μl aliquot of the fraction containing the tryptic peptide of interest was mixed with a small amount of 1:1 (v/v) glycerol/thioglycerol and placed on the FAB probe and desorbed using a 25 keV cesium ion beam. The monoisotopic (M+H)⁺ ions of the peptides of interest were selected by the first MS, the double focusing magnetic sector instrument, and then guided into the collision cell where the ions are collisionally activated by interactions with xenon. The masses of the resulting fragments were determined by the second mass spectrometer, the oaTOF analyzer. Masses of fragment ions were used to determine peptide amino acid composition and sequence. This technique for sequence determination is described in depth by Papayanopoulos, Mass Spectrometry Reviews, 14:49-73, 1995. Because this technique relies solely on the masses of the amino acids, their side chains, and fragmentation products, the isomeric amino acids Leu and Ile cannot be readily distinguished.

[0113] Mitochondrial HSP22 Protein N-terminal Sequencing

[0114] Washed mitochondria from heat stressed etiolated seedlings were separated on 2D gels (300 μg per gel) and transferred to PVDF membranes as described by Dunbar et al., Plant Molecular Biology Reporter 15:46-61, 1997. The total protein profile was visualized by amido black staining and the spots corresponding to HSP22A and HSP22B were cut out and sequenced by Edman degradation according to Dunbar et al., Plant Molecular Biology Reporter 15:46-61, 1997.

[0115] Protein and Nucleotide Sequence Analysis and Comparison

[0116] All sequence analysis and comparison was performed with the Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, Wis., USA. Protein molecular mass predictions were performed using the BioLynx software package (Micromass, Manchester, UK).
EXAMPLE VIII

[0117] Cloning and Sequencing of HSP22 cDNA

[0118] Total RNA was isolated from etiolated maize mesocotyls using TRIZol reagent (Life Technologies, Grand Island, N.Y., USA) as described by the manufacturer's published protocol for use with whole tissues. The total RNA extracts were applied to Oligotex poly dT beads (Qiagen Inc., Chatsworth, Calif., USA) and the mRNAs were purified as described in the manufacturer's protocol. A cDNA expression library was created using the ZAP-cDNA Gigapack Gold Cloning kit (Stratagene, La Jolla, Calif., USA) with mRNAs isolated from 3-day-old etiolated maize (inbred B73) mesocotyls that were grown at 29°C and heat shocked at 42°C for 2 hours. The library was screened using the monoclonal antibody for HSP22 using the pix6Bb immunoreagent (Stratagene, La Jolla, Calif., USA). DNA sequencing was done using Thermo Sequenase and cycle sequencing using infrared dye-labeled dATP according to the protocol of the manufacturer, which is Amersham Corporation (2636 S. Clearbrook Drive, Arlington Heights, Ill., 60005). The sequence was analyzed using a model 4000L sequencing apparatus, which was run according to the protocols of the manufacturer, which is LI-COR (4421 Superior Street, Lincoln, Nebr. 68504).

EXAMPLE IX

[0119] Northern and Southern Blot Hybridization

[0120] The HSP22 probe was produced by digesting the HSP22 clone N27 (which contains only the C-terminal 10 residues of HSP22 and the entire 3' UTR) with EcoRI and DraI to reveal a 319 nt fragment. The fragment was separated from the vector sequence using GeneClean (Bio101, Vista, Calif.) and was labeled with 32P using the random primer extension method, Prime-It II (Stratagene, La Jolla, Calif., USA), and used as a HSP22 specific probe. The mRNA probe was produced in a similar fashion using a 1.25 kb fragment of the Saurornatum guttatum (Schott) 20S rRNA gene. All northern blot procedures were performed essentially according to Selden. In Ausbel et al., eds., Current Protocols in Molecular Biology, Wiley, 4.9.1-4.9.5, 1987. Following the heat stress treatment, seedling mesocotyl regions were excised and immediately frozen in liquid nitrogen and stored at −80°C until needed. Total cellular RNA was extracted as described above and approximately 8 μg of RNA per lane was separated on 1.2% (w/v) agarose-formaldehyde gels and transferred to Magnagraph nylon membranes (Msi, Westboro, Mass., USA) and fixed by UV cross-linking. Prehybridization was done for at least 2 hours at 42°C in a solution containing 50% (v/v) formamide, 5x Denhardt solution [100x=2% (w/v) Ficoll 400, 2% (w/v) PVP, 2% (w/v) BSA], 5xSSC [750 mM NaCl, 75 mM Na3 citrate pH 7.0], 1% (w/v) SDS, 2.5% (w/v) dextran sulfate, 50 mM NaH2PO4 buffer, pH 6.8 and 100 μg/ml of sheared and denatured salmon sperm DNA. Hybridization was performed in prehybridization solution modified as follows: 1x Denhardt, 5% (w/v) dextran sulfate, 20 mM phosphate buffer, and the radiolabeled probe. The blot was washed at room temperature and then at 68°C in a solution containing 2xSSPE and 0.5% (w/v) SDS for 15 minutes each. A final wash at 68°C for 15 minutes in a solution containing 0.2xSSPE and 0.2% (w/v) SDS was followed by autoradiography on X-OMAT AR film using an intensifying screen. Southern blot analysis was formed as described in Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) In Molecular Cloning: A Laboratory Manual, 2nd Ed., (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory).

EXAMPLE X

[0121] Construction of Partial Genomic

[0122] Genomic DNA was prepared from heat shocked B73 corn tissue. This was accomplished by utilizing the protocol described in Ausbel, F. M., et. al., (1987), Current Protocols in Molecular Biology, Green Publishing Associates and Wiley-Interscience, New York, pp. 2.3.1-2.3.3, which is hereby incorporated by reference.

[0123] The genomic DNA was then utilized as a template in a PCR reaction. The reaction utilized two primers. The 5' primer, designated as HSP-NC0-3F, was a 39 mer comprising SEQ. ID. NO. 2. The 3' primer, designated as HSP-IR1, was a 40 mer comprising SEQ. ID. NO. 3. In the preferred embodiment, the reaction solution was as follows: 20.0 mM Tris-HCl, 50.0 mM KCl, 0.2 mM each of (dATP, dCTP, dGTP, and dTTP), 500 nM SEQ. ID. NO. 2,500 nM SEQ. ID. NO. 3,800 ng template DNA, 1.25 units GIBCO/ BRL® Taq polymerase, and distilled deionized water to final volume of 50 μl. The preferred thermocycler conditions were as follows: 1 cycle at 94°C for 180 seconds, 35 cycles of 94°C for 45 seconds, then 60°C for 30 seconds, then 72°C for 90 seconds, and 1 cycle at 72°C for 60 seconds. This reaction produced SEQ. ID. NO. 4, which is a partial genomic nucleic acid molecule for HSP22.

EXAMPLE XI

[0124] Vector Construction and Plant Transformation

[0125] The partial genomic of SEQ. ID. NO: 4 was cloned into a pRTL2, which is similar to the pRTL-GUS vector as described in Carrington, J C and Freed, D D, Journal of Virology, 64:1590-1597, 1990, which is hereby incorporated by reference. The only major difference between the pRTL2 vector and the pRTL-GUS vector is the removal of the GUS gene. After SEQ. ID. NO: 4 has been inserted into pRTL2 a region containing the enhanced 35S promoter, a translation enhancing region from tobacco etch virus (TEV), SEQ. ID. NO: 4, and the 35S stop region were restricted endonuclease out of the construct with Hind II. The resulting fragment was inserted into the binary vector pZP212. The pZP212 vector is described in Hajdukiewicz et. al., Plant Molecular Biology 25:989-994, 1994, which is hereby incorporated by reference. This binary vector construct was introduced into tobacco and Ababidopsis plants utilizing Agrobacterium mediated transfer and leaf disk transformation as described in Horsch, et. al., Science 227:1229-1231, 1985, which is hereby incorporated by reference, or vacuum infiltration of intact plants as described in Bechtold et. al., Acad. Sci., Paris, Sci. de la vie/Life Sciences, 316:1194-1199, 1993, which is hereby incorporated by reference. The Agrobacterium is prepared utilizing the protocol in Ditta, G. et. al., 1980, Proc. Natl. Acad. Sci., USA 77:7347-7351, which is hereby incorporated by reference.

[0126] All references discussed herein are specifically incorporated in their entirety in all respects.

[0127] From the foregoing, it will be seen that this invention is one well-adapted to attain all the ends and objects
hereinabove set forth together with other advantages which are obvious and which are inherent to the invention. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. The above examples discussed the techniques and procedures used in the current invention are examples, and it is understood that there are many other techniques and procedures that could be employed that would allow an individual of ordinary skill in the art to perform the claimed invention and that these other techniques and procedures are contemplated by and are within the scope of the claims. Since many possible embodiments may be made of the invention without departing form the scope thereof, it is to be understood that all matter herein set forth, and shown in the drawings are to be interpreted as illustrative and not in a limiting sense.

SEQUENCE LISTING

<210> NUMBER OF SEQ ID NOS: 7
<211> LENGTH: 1028
<212> TYPE: DNA
<213> ORGANISM: Zea mays
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (79) . . . (735)
<221> NAME/KEY: gene
<222> LOCATION: (1) . . . (1028)
<221> NAME/KEY: misc_feature
<222> LOCATION: (424) . . . (693)
<223> OTHER INFORMATION: Heat Shock Domain
<221> NAME/KEY: exon
<222> LOCATION: (1) . . . (328)
<221> NAME/KEY: exon
<222> LOCATION: (329) . . . (1028)
<221> NAME/KEY: Poly A site
<222> LOCATION: (1028) . . . (1028)
<221> NAME/KEY: mRNA
<222> LOCATION: (1) . . . (1028)
<221> NAME/KEY: source
<222> LOCATION: (1) . . . (1028)
<223> OTHER INFORMATION: Zea Mays L., Line B73
<221> NAME/KEY: transit_peptide
<222> LOCATION: (79) . . . (213)
<221> NAME/KEY: 3'UTR
<222> LOCATION: (736) . . . (1028)
<221> NAME/KEY: 5'UTR
<222> LOCATION: (1) . . . (76)

<300> PUBLICATION INFORMATION:
<301> AUTHORS: Lund, Adrian A.
 Blum, Paul H.
 Bhattrajesh, Dinakar
 Ethlon, Thomas E.
<302> TITLE: Heat-Stress Response of Maize Mitochondria
<303> JOURNAL: Plant Physiol.
<304> VOLUME: 116
<306> PAGES: 1097-1110
<307> DATE: 1998-03-00

<400> SEQUENCE: 1

ccacaacagc gaagagaaag gcagaccacac ctgcccaccgc agggagaag aagcacaag

60

ggaggggaag gtgctgctg atg gct tag tcc att gtc gct tcc agg egt ggg cct
Net Ala Ser Ile Val Ala Ser Arg Arg Ala Val
1 5 10

111
cct cta gtt gct gct gtt gag aag ctc gta gta gaa gcc tcc cct gct tcc gct gcc cct gcc
Pro Leu Val Arg Ala Leu Glu Leu Ile Ala Ala Ser Ser Ala Pro
15 20 25

159
ggg act ggc tcc ccc cct ccc cgg ccc gtc gca gta gcc ggg gcc cct cgg
Gly Thr Gly Ser Ala Arg Pro Val Ala Val Ala Gly Leu Arg
30 35 40

207
ggc tac aac acc ggc gtt ccc ctc ccc cga ccc tac gag ggg gcc ggg ccc
Gly Tyr Asn Thr Gly Ala Pro Leu Arg Arg Tyr Glu Ala Glu Ser
45 50 55
---continued

gaa gac gat agc gtc cgc gac ggg cac ggc gcc ggc cgg gac
 Glu Asp Asp Ser Val Arg Glu Tyr Asp Gly Arg His Gly Gly Arg Asp
 60 65 70 75

tac gct gtg ccc agc ctc tcc cca gat att ttc cgt gat ccc ctt gct
 Tyr Ala Val Pro Ser Leu Phe Ser Asp Ile Phe Arg Asp Pro Leu Ser
 80 85 90 95

gcg ccc ccc agc att gcc cgc ctc gac ccc ctt gtc gac gcc tgg ggc
 Ala Pro His Ser Ile Gly Arg Leu Leu Val Asp Pro Leu Ala
 95 100 105

gtg cgc ggc cca ggt cgt ggc gcc cgc gtg tgg aac ggc aag gag
 Val Ala Ala Pro Gly Arg Ala Val Arg Arg Gly Trp Aan Ala Lys Glu
 110 115 120

gac gag ggg ggc ctc ggc ctg cag gcc gag atg gcc caa ggc gtt gcc gca
 Asp Glu Gru Ala Leu His Leu Arg Val Asp Met Pro Gly Leu Gly Lys
 125 130 135

gag cac gcc cag gtc cag tgg gcc gag cag cac gtc gtc ctc cag gcc
 Glu His Val Lys Val Trp Ala Glu Asn Ser Leu Val Ile Lys Gly
 140 145 150 155

gag gcc ggg ggg ggt gcc gag gcc ggc cgg ctc ccc gcc gc
 Glu Gly Glu Lys Gru Ala Ser Ser Glu Asp Ala Ala Pro Pro Pro
 160 165 170

tac aac gcc ctc gag gct gcc cca gac gat tcc aag cag gtt gac aag
 Tyr Ser Gru Arg Gly Leu Ala Pro Gly Val Tyr Arg Met Asp Lys
 175 180 185

tac aac gcc ctc gag gct gcc cca gac gat tcc aag cag gtt gac aag
 Ile Lys Ala Gru Met Lys Asn Gru Val Leu Val Val Leu Val Val Phe
 190 195 200

gtg aag gac gac cag cgc aag gcc ggg ggt gcc ctc gtc cgt ggc ccc gag
 Val Lys Gru Gln Gru Arg Lys Asp Val Phe Glu Gln Val Asn Val Glu
 205 210 215

tagtttccaa atagsagcga gttccggtact gggtagggagg atggagggg cacagccgaa
 795

ttagattcc tcttttccaa tctgtacctg atgcggagct cagattttcct tcttttacct
 855

tttcctctt atctctttact atgtgatgag aacacagctgc gttcagtttttg tggcagttc
 915

gocgggtagg tagcctgttt tttttttttg ttttctttgc ttctacggc gacagcagtt
 975
tctactgcgg ttggtggggg tcagctagtct ttaatctgcgtt ctcaggggg cc
 1028

<210> SEQ ID NO 2
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 2

ggaggagg aeratggcat gattttcgct gctgctttcc

<210> SEQ ID NO 3
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 3

gttccccctct acctctggtacct ccctacctgt ccctgctttc

<210> SEQ ID NO 4
<221> LOCATION: (447)..(1163)
<222> LOCATION: (1)..<(1163)
<221> NAME/KEY: gene
<222> LOCATION: (1)..<(1163)
<221> NAME/KEY: intron
<222> LOCATION: (329)..(463)
<221> NAME/KEY: misc_feature
<222> LOCATION: (559)..(629)
<221> OTHER INFORMATION: Heat Shock Domain
<221> NAME/KEY: mRNA
<222> LOCATION: (1)..<(337)
<221> NAME/KEY: mRNA
<222> LOCATION: (447)..(1163)
<221> NAME/KEY: Poly A site
<222> LOCATION: (1163)..(1163)
<221> NAME/KEY: source
<222> LOCATION: (1)..<(1163)
<223> OTHER INFORMATION: Zen Mays L., Line B73
<221> NAME/KEY: transit_peptide
<222> LOCATION: (79)..(213)
<221> NAME/KEY: 5'UTR
<222> LOCATION: (1)..<(78)
<221> NAME/KEY: 3'UTR
<222> LOCATION: (871)..(1163)

<400> SEQUENCE: 5

caacaacgcc gaggagaaaa gaaacccaac ctgagccccc aggagaag aggccaasag
60
ggaggagaga gttgtgtccct gttcgttaaa ggaggccggt tcctctagtt
120
cgcgtcttc aggaggtcct cggagcgctg gagggtgctc ggacgctctgg cggccctgg
180
cogtggcccg ggcagcggcgc tttcccagcg cggcctgtcc cggccgctac
240
gaggggaggc gttacacgag cggagtatgc ggcgcacgc ggaggcgccgg
300
gactacgtg gcgcacgcgt gcggccggtt aatgtgttttc ttcgtcgtcc gcgcggcacc
360
ttcgttttcgc ctctctcttt ctcgaatggag atgcgggtgag gacatcaactg ctgggaatgt
420
gctgcgtttc gcgttagtct gcgtttggtt ggccgtccgtc cagatatttt cgcgtgctcg
480
cctattgcg cgcacgcatgg cgcgctgctgt gctgaacctctgg tcgaacagtgg gcgggtggcg
540
ggcgcctgg gcgggttgcc gcgtgctttgc aacgcggaggg aggacaggag gcggctgcgcac
600
cggaggtggc acatgcaacc cgggggggag gcgcaggtcgc aagttcggtgg gcggcagggaa
660
gcgtgctgca tcaagggcgg gcggcggagg gagccctagcg agggacgggag ccgcgcgcccgcct
720
cggatcgcgg gcgcgctgct gcgcaggttt acaggttgag gcgcggggaa
780
gcggtgatt gacacggtgct gcgtcggcg gcgtgagaggg agggcgggcaca gcgcagcgccgcgcgc
840
aagagcgtgt ctcagcgtct gcgcgaagctg atgttcttcaat atagaaagcata atgcggcga
tgggtgggcctag
900
gggggtggctatcgagggg acatgcgcac gcccgtgccc ctcgctctcc ctcgctctcc ctcgctctcc
960
attcggatcag ctcgctctcc ctcgctctcc ctcgctctcc ctcgctctcc ctcgctctcc
1020
aacgcgcgc ggctctttgt ctgctgttgt gcgcgtgctgc gcgcgtgctgc gcgcgtgctgc gcgcgtgctgc gcgcgtgctgc
tcttttctt tcttctctct tcttctctct tcttctctct tcttctctct tcttctctct
ttttttctt tctttttttt tctttttttt tctttttttt tctttttttt tctttttttt
ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt
Met Ala Ser Ile Val Val Ala Ser Arg Arg Ala Val Pro Leu Val Arg Ala
1 5 10 15

Leu Glu Lys Leu Ile Ala Ala Ser Ser Ala Pro Gly Thr Gly Ser Ala
20 25 30

Leu Arg Pro Val Ala Val Ala Gly Leu Arg Gly Tyr Asn Thr Gly
35 40

Ala Pro Leu Arg Arg Tyr Glu Gly Ala Ser Glu Asp Asp Ser Val
50 55 60

Arg Glu Tyr Asp Gly Arg His Gly Gly Arg Asp Tyr Ala Val Pro Ser
65 70 75 80

Leu Phe Ser Asp Ile Phe Arg Asp Leu Ser Ala Pro His Ser Ile
85 90 95

Gly Arg Leu Leu Asn Leu Val Asp Leu Ala Val Ala Ala Pro Gly
100 105 110

Arg Ala Val Arg Arg Gly Trp Asn Ala Lys Glu Asp Glu Ala Leu
115 120 125

His Leu Arg Val Asp Met Pro Gly Leu Gly Lys Glu His Val Lys Val
130 135 140

Trp Ala Glu Gin Asn Ser Leu Val Ile Lys Gly Glu Gly Glu Lys Glu
145 150 155 160

Asp Ser Glu Asp Glu Ala Ala Pro Pro Pro Arg Tyr Ser Gly Arg Ile
165 170 175

Glu Leu Ala Pro Glu Val Tyr Arg Met Asp Lys Ile Lys Ala Glu Met
180 185 190

Lys Asn Gly Val Leu Lys Val Val Val Pro Lys Val Lys Glu Gln Gln
195 200 205

Arg Lys Asp Val Phe Gln Val Asn Val Glu
210 215
We claim:

1. A method for identifying individual entities of a plant species with an increased level of HSP22 during heat stress by comparing the respective quantities of HSP22 comprising:
 a) collecting a batch of randomly selected individual entities of the plant species;
 b) subjecting the plant species to heat stress; and
 c) comparing the respective quantities of HSP22.

2. The method claimed in claim 1, wherein the respective quantities of HSP22 are determined by utilizing an antibody to HSP22.

3. The method claimed in claim 2, wherein the antibody to HSP22 is monoclonal.

4. The method claimed in claim 3, wherein a fragment of the monoclonal selectively binds to HSP22.

5. The method claimed in claim 2, wherein the antibody to HSP22 detects precursor HSP22.

6. The method claimed in claim 1, wherein the plant species is maize.

7. The method claimed in claim 1, wherein the respective quantities of HSP22 are determined by utilizing a nucleic acid probe that binds HSP22 mRNA.

8. In combination:
 at least one aliquoted substance that selectively binds to HSP22 or an HSP22 precursor to form a detectable combination; and
 a detection method for detecting the combination.

9. The combination as claimed in claim 8, wherein the aliquoted substance is an antibody.

10. The combination as claimed in claim 9, wherein the antibody is monoclonal.

11. The combination as claimed in claim 9, wherein the antibody is an antibody fragment.

12. The combination as claimed in claim 8, wherein the aliquoted substance is a nucleic acid sequence.

13. An in vitro method for determining a plant species ability to tolerate heat stress, comprising the step of determining if HSP22 is over expressed in a tissue sample, such over expression correlating directly with a plants ability to tolerate heat stress.

14. A first isolated nucleic acid sequence that hybridizes to a second isolated nucleic acid sequence comprising SEQ. ID. NO. 7 under stringent conditions, and the first isolated nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

15. A vector comprising a first nucleic acid sequence that hybridizes to a second nucleic acid sequence comprising
SEQ. ID. NO. 7 under stringent conditions, and the first nucleic acid sequence encodes a protein that has physical characteristics substantially equal to HSP22.

17. A plant transformed with the vector of claim 15.
18. The plant of claim 17 wherein the plant is a dicot.
19. The plant of claim 17 wherein the plant is a monocot.
20. The plant of claim 17 wherein the plant is maize.
21. The plant of claim 17 wherein in the plant is Arabidopsis.

22. A host cell transformed with a vector comprising a first nucleic acid sequence that hybridizes to a second nucleic acid sequence comprising SEQ. ID. NO. 7 under stringent conditions, and the first nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

23. The host cell of claim 22 wherein the host cell is prokaryotic.
24. The host cell of claim 22 wherein the host cell is eukaryotic.

25. Isolated protein encoded by a first nucleic acid sequence that hybridizes to a second nucleic acid sequence comprising SEQ. ID. NO. 7 under stringent conditions, and the first nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

26. A method for the production of an isolated protein encoded by a first nucleic acid sequence that hybridizes to a second nucleic acid sequence comprising SEQ. ID. NO. 7 under stringent conditions, and the first nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22 comprising the steps of:
 a) causing a host cell to produce the protein; and
 b) isolating the protein.

27. A method for the production of isolated nucleic acid sequences that hybridize to a nucleic acid sequence comprising SEQ. ID. NO. 7 under stringent conditions, and the isolated nucleic acid sequences encode a protein that has physical characteristics substantially equal to maize HSP22 comprising the steps of:
 a) causing a host cell to produce the nucleic acid sequence; and
 b) isolating the nucleic acid sequence.

28. The vector of claim 15 wherein the vector is capable of expressing HSP22.

29. An isolated nucleic acid sequence encoding maize HSP22.

30. A nucleic acid sequence comprising SEQ. ID. NO. 1.
32. A nucleic acid sequence comprising SEQ. ID. NO. 5.
33. A nucleic acid sequence comprising SEQ. ID. NO. 7.

34. A first isolated nucleic acid sequence that hybridizes to a second isolated nucleic acid sequence comprising SEQ. ID. NO. 1 under stringent conditions, and the first isolated nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

35. A first isolated nucleic acid sequence that hybridizes to a second isolated nucleic acid sequence comprising SEQ. ID. NO. 4 under stringent conditions, and the first isolated nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

36. A first isolated nucleic acid sequence that hybridizes to a second isolated nucleic acid sequence comprising SEQ. ID. NO. 5 under stringent conditions, and the first isolated nucleic acid sequence encodes a protein that has physical characteristics substantially equal to maize HSP22.

37. An antibody that selectively binds to a portion of HSP22.
38. The antibody of claim 37 wherein the antibody is polyclonal.
39. The antibody of claim 37 wherein the antibody is monoclonal.
40. The antibody of claim 37 wherein HSP22 is from maize.
41. A hybridoma cell line that produces a monoclonal antibody that selectively binds to HSP22.
42. The antibody of claim 37 wherein the antibody is directed against at least a portion of SEQ. ID. NO. 2.
43. The antibody of claim 37 wherein a fragment of the antibody will selectively bind HSP22.
44. A process for producing a monoclonal antibody that selectively binds to a portion of HSP22 comprising the steps of:
 a) culturing a hybridoma that produces the monoclonal antibody; and
 b) isolating the monoclonal antibody.
46. An isolated nucleic acid sequence that encodes a protein comprising SEQ. ID. NO. 6.
47. A vector comprising a first nucleic acid sequence that hybridizes to a second nucleic acid sequence comprising SEQ. ID. NO. 5 under stringent conditions, and the first nucleic acid sequence encodes a protein that has physical characteristics substantially equal to HSP22.

48. The vector of claim 47 wherein the vector contains regulatory elements operably linked to the nucleic acid sequence.
49. A plant transformed with the vector of claim 47.
50. The plant of claim 49 wherein the plant is a dicot.
51. The plant of claim 49 wherein the plant is maize.
52. The plant of claim 49 wherein the plant is Arabidopsis.
53. A plant species modified to express an amount of HSP22 in excess of a naturally occurring amount of HSP22.