(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
17. August 2006 (17.08.2006)

(51) Internationale Patentklassifikation:
F02M 21/02 (2006.01) F02B 37/04 (2006.01)

(21) Internationales Aktenzeichen:
PCT/EP2006/000682

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
10 2005 005 958.9

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): VOLKSWAGEN AKTIENGESELLSCHAFT
[DE/DE]; 38436 Wolfsburg (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): ANDERSEN, Jens
[DE/DE]; Tiete Strasse 5c, 38162 Cremlingen (DE).

(74) Anwalt: Pohlmann, Bernd, Michael; Reinhardt &
Pohlmann Partnerschaft, Günthersburgallee 40, 60316
Frankfurt am Main (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL,
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(Fortsetzung auf der nächsten Seite)

(54) Title: GAS-OPERATED INTERNAL COMBUSTION ENGINE

(54) Bezeichnung: BRENNKRAFTMASCHINE MIT GASPETRIEB

(57) Abstract: The invention relates to a gas-operated, particularly a natural gas-operated, internal combustion engine and a method for operating an internal combustion engine with gas, especially natural gas, with a charged downsized Otto engine and blowing in of the gas. According to the invention, a homogeneous stoichiometric gas-air mixture is adjusted, and the charging process is performed with the aid of an exhaust gas turbocharger and a compressor which can be switched off and is disposed upstream of the exhaust gas turbocharger in the air intake path.

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Brennkraftmaschine mit Gasbetrieb

Die Erfindung betrifft ein Verfahren zum Betrieb einer Brennkraftmaschine mit Gas, sowie eine gasbetriebene Brennkraftmaschine, insbesondere für einen mit Erdgas betriebenen Kraftfahrzeugantrieb, wobei die Brennkraftmaschine mit Aufladung betrieben wird.

Als Kraftstoff wird Erdgas in hoch verdichteter Form unter der Bezeichnung CNG (Compressed Natural Gas) verwendet. Das komprimierte Gas wird unter einem Druck von ca. 200 bar in den Tank gefüllt und dabei auf ein Zehntel seines Volumens reduziert.

Monovalente Fahrzeuge werden nur mit Erdgas betrieben oder haben einen Nottank mit bis zu 15 Litern Benzin. Die Brennkraftmaschine ist in diesem Fall auf den Erdgasantrieb optimiert.

Erdgasbetriebene Brennkraftmaschinen wurden in der Vergangenheit vor allem unter dem Gesichtspunkt niedriger Schadstoffemission konzipiert. Um auch im dynamischen Betrieb eine optimale Schadstoffumwandlung im Katalysator zu gewährleisten, ist eine präzise stochiometrische Zusammensetzung des Erdgas-Luft-Gemisches (\(\lambda=1\)) erforderlich. Die Gaszumischung erfolgt deshalb in einigen Anwendungsfällen mit
elektronisch geregelter Gaszufuhr, beispielsweise mittels einer Lambda-Regelung mittels Sauerstoffsensor, und „Multipoint“-Einblasung vor das Einlassventil eines jeden Zylinders der Brennkraftmaschine.

Ein teilweiser Ausgleich der Minderleistung ist, wie in der DE 100 62 391 A1 offenbart, durch eine Aufladung der Brennkraftmaschine bei Betrieb mit Erdgas möglich.

Verdichtungsverhältnis nach der Betriebsart mit der höchsten Klopfneigung, also bei homogener Gemischbildung. Dadurch ist der Betrieb der Brennkraftmaschine unzuverlässig und nicht aussetzfrei, insbesondere unter instationären Betriebsbedingungen und der Wirkungsgrad der Brennkraftmaschine bei Volllast nicht optimal.

Aufgabe der Erfindung ist es, die CO₂-Emission sowie Schadstoffemission von Brennkraftmaschinen deutlich zu senken bei gleichzeitig niedrigen Gesamtbetriebs- und Herstellungskosten der Brennkraftmaschine sowie verbesserten Leistungseigenschaften der Brennkraftmaschine.

Die Lösung der Aufgabe gelingt mit einer Brennkraftmaschine gemäß Anspruch 1 und einem Verfahren zum Betrieb einer Brennkraftmaschine gemäß Anspruch 9.

Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Brennkraftmaschine mit Gas, insbesondere mit Erdgas, wird ein „Downsizing“-Otto-Motor mit einem Abgasturbolader sowie einem stromauf des Abgasturboladers in einem Luftansaugpfad angeordneten Kompressor aufgeladen, das Gas in den Luftansaugpfad der Brennkraftmaschine eingeblasen, wobei ein homogenes Gas-Luftgemisch mit $0,9 < \lambda < 1,1$ eingestellt wird, das Gas-Luftgemisch in Zylindern der Brennkraftmaschine hoch verdichtet und gezündet.

Um auch im dynamischen Betrieb eine optimale Schadstoffumwandlung in einem Katalysator der Brennkraftmaschine zu gewährleisten, wird vorzugsweise eine präzise stöchiometrische Zusammensetzung des Gas-Luftgemisch mit $\lambda = 1$ eingestellt.

Beim "downsizing" werden bezüglich des Hubraums kleinere, dafür aufgeladene Brennkraftmaschinen verwendet, die die Leistungsdaten größerer, nicht aufgeladener Brennkraftmaschinen abbilden, wobei diese durch eine Lastpunktverschiebung in wirksungsgradseitig besseren Betriebsbereichen der Brennkraftmaschine betreiben werden. Der Vorteil liegt in der deutlichen Verminderung von Reibungsverlusten, Gewicht und Bauraum. Insgesamt wird ein Fahrzeug mit einem "Downsizing - Motor" sparsamer und abgasärmer. Vorzugsweise ist das Hubvolumen der Brennkraftmaschine um 30% bis 50%, insbesondere um 35% bis 45% verringert und beträgt insbesondere 1,0 Liter bis 1,8 Liter für eine mit CNG betriebene Brennkraftmaschine mit doppelter Aufladung.

Das bei 200 bar in einem Tank gespeicherte Gas, insbesondere CNG, wird in einer vorteilhaften Ausgestaltung der Erfindung in einem Gas-Einblasungssystem auf Umgebungsdruck entspannt und über Gasinjektoren unmittelbar vor Einlassventilen der Zylinder, vorzugsweise über je ein Ventil pro Zylinder eingeblasen. Die homogene Gemischaufbereitung erfolgt durch die Einblasung des Gases in ein Saugrohr, wobei vorzugsweise ein Gas-Luftgemisch mit $\lambda = 1$ durch Regelung über λ-Sonden eingestellt wird.

Das Gas-Luftgemisch wird in den Zylindern auf ein Verdichtungsverhältnis, welches zur Wirkungsgradoptimierung vorzugsweise höher als bei dem Basis-Ottomotor ist, von vorzugsweise 12 bis 14, verdichtet. Das Verdichtungsverhältnis ist dabei definiert als der Quotient aus maximalem und minimalem Zylindervolumen. Das maximale Zylindervolumen liegt vor, wenn sich der Zylinderkolben im unteren Totpunkt befindet, das minimale Zylindervolumen liegt vor, wenn sich der Zylinderkolben im oberen

Im Brennraum der Zylinder wird das verdichtete Gemisch vorzugsweise mittels einer Zündkerze entflammt. Die Bereitstellung der Zündenergie erfolgt dabei über eine Zündspule, gesteuert durch eine Steuereinheit der Brennkraftmaschine.

Drehzahlen, bei welchen der Abgasturbolader eine ausreichende Aufladung gewährleistet, der Kompressor abgeschaltet werden kann, so dass es zu keinen weiteren Verlusten durch den Kompressor kommen kann.

Damit wird eine gasbetriebene Brennkraftmaschine mit fülligem Drehmomentverlauf über einen breiten Drehzahlbereich bei gleichzeitig reduziertem Hubvolumen zur Verfügung gestellt.

Die erfindungsgemäße Brennkraftmaschine kann auch für einen quasi-monovalenten Betrieb ausgelegt werden, bei welchem im „Notbetrieb“ oder zur Reichweitenerhöhung über ein zusätzliches Einspritzsystem ein Ottokraftstoff (Benzin) aus einem Nottank (< 151 Volumen) in das Saugrohr eingespritzt werden kann.

Die Erfindung wird im Weiteren an Hand eines Ausführungsbeispieles näher erläutert.

Die in Fig.1 dargestellte und mit Erdgas betriebene Brennkraftmaschine eines Mittelklassefahrzeugs ist als „Downsizing“-Otto-Motor mit einer Leistung von 100 kW bis 125 kW konzipiert und weist ein Volumen von 1,4 Liter auf.

Im Luftansaugpfad der Brennkraftmaschine ist ein Luftfilter 15, ein Kompressor 3, eine den Kompressor 3 überbrückende Bypass-Leitung 4 mit einer Verdichterdrosselklappe 5, ein Verdichter des Abgasturboladers 2, ein Ladeluftkühler 14, ein EGR-Ventil 27, eine Drosselklappe 13 und ein Saugrohr 12, welches in die jeweiligen Zylinder in einem Zylinderkurbelgehäuse 10 mündet, angeordnet. Im Abgaspfad der Brennkraftmaschine
ist ein Abgaskrümmer 11, die Turbine des Abgasturboladers 2 und ein Wastegate 26 angeordnet.

Über einen Betriebsartenwahlselector 24 und ein Motorsteuergerät 16 kann über ein zusätzliches Einspritzsystem (nicht dargestellt) Benzin aus einem Nottank in das Saugrohr 12 eingespritzt werden. Eine Umstellung auf Benzin kann beispielsweise dann notwendig werden, wenn über die Kontrollanzeige 25 angezeigt wird, dass der Tank 1 nicht mehr ausreichend befüllt ist.

Die beispielhaft beschriebene Brennkraftmaschine weist trotz reduziertem Hubvolumen gegenüber einem vergleichbaren Dieselmotor vergleichbare Leistungs- und Drehmomentwerte auf. Durch den Erdgasbetrieb wird die CO₂-Emission um ca. 25 % gesenkt. Die Herstellungskosten eines Fahrzeuges mit einer erfindungsgemäßen Brennkraftmaschine liegen dabei nicht höher als die für Dieselfahrzeuge mit Partikelfilter und vergleichbaren Leistungswerten. Der Verbrauch liegt bei ca. 7,3 kg/100km, wodurch die Betriebskosten aufgrund des geringeren Kraftstoffpreises reduziert werden können.
BEZUGSZEICHENLISTE

1 Tank
2 Abgasturbolader
3 Kompressor
4 Bypass-Leitung
5 Verdichterdrosselklappe
6 Schubumluftventil
7 Kurbelwelle
8 Kupplung
9 Riemen
10 Zylinderkurbelgehäuse
11 Abgaskrümmer
12 Saugrohr
13 Drosselklappe
14 Ladeluftkühler
15 Luftfilter
16 Motorsteuergerät
17 Gasinjektor
18 Gasrail
19 Druckmanometer
20 Druckregler
21 Absperrventil
22 Befüllanschluss
23 Thermosicherung
24 Betriebsartenwahlschalter
25 Kontrollanzeige
26 Wastegate
27 EGR-Ventil
28 Tankventil
PATENTANSPRÜCHE

2. Gasbetriebene Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Hubvolumen um 30% bis 50%, insbesondere um 35% bis 45% gegenüber einem nichtaufladbaren Otto-Motor mit gleicher Leistung reduziert ist.

3. Gasbetriebene Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hubvolumen 1,0 Liter bis 1,8 Liter beträgt.

5. Gasbetriebene Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gas-Einblasungssystem Gasinjektoren (17) aufweist, über welche das Gas unmittelbar vor Einlassventilen der Zylinder mit einem einstellbaren Druck einblasbar ist.

7. Gasbetriebene Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine den Kompressor (3) überbrückende und wahlweise verschließbare Bypass-Leitung (4) im Luftansaugpfad vorgesehen ist.
8. Gasbetriebene Brennkraftmaschine nach Anspruch 7, **dadurch gekennzeichnet**, dass in der Bypass-Leitung (4) eine Regelklappe, insbesondere eine Verdichtungsdrosselklappe (5) angeordnet ist.

9. Gasbetriebene Brennkraftmaschine nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, dass** der Kompressor (3) einen Antrieb (9) aufweist, welcher über eine Kupplung (8) mit einer Kurbelwelle (7) der Brennkraftmaschine verbunden oder verbindbar ist.

 - mit einem Abgasturbolader (2) sowie einem stromauf des Abgasturboladers (2) in einem Luftansaugpfad angeordneten Kompressor (3) aufgeladen wird,
 - das Gas in einen Luftansaugpfad der Brennkraftmaschine eingeblasen wird, wobei ein homogenes Gas-Luftgemisch mit $0.9 < \lambda < 1.1$ eingestellt wird,
 - das Gas-Luftgemisch in Zylindern der Brennkraftmaschine hoch verdichtet und
 - gezündet wird.

11. Verfahren nach Anspruch 10, **dadurch gekennzeichnet, dass** der Kompressor (3) über eine Kupplung (8) von einer Kurbelwelle (7) der Brennkraftmaschine angetrieben wird.

12. Verfahren nach einem der vorhergehenden Ansprüche 10 oder 11, **dadurch gekennzeichnet, dass** der Ladedruck mit einer den Kompressor (3) überbrückenden Bypassleitung (4) mit einer Regelklappe (5) eingestellt wird.

13. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 12, **dadurch gekennzeichnet, dass** der Kompressor (3) im mittleren Drehzahlbereich, insbesondere ab einer Drehzahl von 1700 U/min abgeschaltet wird.
14. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 13, **dadurch gekennzeichnet, dass** das Gas unmittelbar vor Einlassventilen der Zylinder eingeblasen wird.

15. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 14, **dadurch gekennzeichnet, dass** das Gas in einem Gas-Einblassystem von einem Druck von 200 bar auf Umgebungsdruck entspannt wird.

16. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 15, **dadurch gekennzeichnet, dass** ein stöchiometrisches Gas-Luftgemisch mit $\lambda = 1$ eingestellt wird.

17. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 16, **dadurch gekennzeichnet, dass** das Gas-Luftgemisch auf ein wirksungsgradoptimales Verdichtungsverhältnis von 12 bis 14 verdichtet wird.

18. Verfahren nach einem der vorhergehenden Ansprüche 10 bis 17, **dadurch gekennzeichnet, dass** das verdichtete Gas-Luftgemisch auf Basis eines für den Gas-Betrieb wirksungsgradoptimierten Kennfelds gezündet wird.
INTernational Search Report

A. Classification of Subject Matter

INV. F02M21/02 F02B37/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. Fields Searched

Minimum documentation searched (classification system followed by classification symbols)

F02M F02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. Documents Considered to be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 329 908 A (TARR ET AL) 19 July 1994 (1994-07-19) cited in the application column 3, line 11 - column 4, line 30</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>US 5 315 973 A (HILL ET AL) 31 May 1994 (1994-05-31) column 5, line 5 - line 51</td>
<td>1,10</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C.

☒ See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

16 June 2006

Date of mailing of the international search report

27/06/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-3040, Tx 51 651 epo nl

Fax: (+31-70) 340-3016

Authorized officer

Raposo, J
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5329908 A</td>
<td>19-07-1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003213463 A1</td>
<td>20-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004118118 A1</td>
<td>24-06-2004</td>
</tr>
</tbody>
</table>
INTERNATIONALER RESEARCHENBERICHT

A. KLAASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

INV. F02M21/02 F02B37/04

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpräzisierung (Klassifikationssystem und Klassifikationssymbole)
F02M F02B

Recherchierte, aber nicht zum Mindestpräzisierung gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Datum des Abschlußstages der internationalen Recherche

Abschlußdatum des Internationalen Rechercheberichts

27/06/2006

Name und Postanschrift der Internationalen Rechenerbehörde

Europäisches Patentamt, P.B. 5618 Patentlaam 2 NL – 2280 HV Rijswijk
Tel.: (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Raposo, J
<table>
<thead>
<tr>
<th>Im Referenzbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5329908</td>
<td>19-07-1994</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003213463 A1</td>
<td>20-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004118118 A1</td>
<td>24-06-2004</td>
</tr>
</tbody>
</table>