
US 20060277435A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0277435 A1

Pedersen et al. (43) Pub. Date: Dec. 7, 2006

(54) MECHANISM FOR STORING AND (52) U.S. Cl. .. 71.4/30
EXTRACTING TRACE INFORMATION
USING INTERNAL MEMORY IN
MCROCONTROLLERS (57) ABSTRACT

(76) Inventors: Frode Milch Pedersen, Trondheim
(NO): Are Arseth, Trondheim (NO) It is the object of the present invention to provide a mecha

nism to store and retrieve trace information in on-chip
system memory of microcontrollers. A microcontroller com
prises a microprocessor and a memory device accessible
through a data bus and an address bus coupled to the
microprocessor. The microcontroller includes on-chip debug

Correspondence Address:
SAWYER LAW GROUP LLP
PO BOX S1418
PALO ALTO, CA 94.303 (US)

logic coupled to the microprocessor. The on-chip debug
(21) Appl. No.: 11/148,049 logic includes a low speed debug port and a mechanism for
(22) Filed: Jun. 7, 2005 temporarily storing trace data on the memory, wherein the

trace data can be retrieved via the low speed debug port by
Publication Classification a debug tool. A method and system in accordance with the

present invention will lower the cost of implementation of
(51) Int. Cl. trace features in microcontrollers, and strongly reduce the

G06F II/00 (2006.01) cost of Supporting Such features in debug tools.

Host computer

Computer link

12

Debug tool 14
High-speed

trace capture
and processing

Low-speed
debug interface

On-chip
debug logic

Patent Application Publication Dec. 7, 2006 Sheet 1 of 5 US 2006/0277435 A1

FIG.1
10

Computer link

12

Debug tool 14
High-speed

trace capture
and processing

LOW-speed
debug interface

On-chip
debug logic

US 2006/0277435 A1 Patent Application Publication Dec. 7, 2006 Sheet 2 of 5

++) Sng

US 2006/0277435 A1

QUIEJ? ?SQM0N
ZIZ 80Z ZZI ZOZ

Patent Application Publication Dec. 7, 2006 Sheet 3 of 5

US 2006/0277435 A1

- - - - -–I- — — — —- -– – – – – – – – – – –L – – – – – – – – ZQUIEJ?[QUIEJ?

Patent Application Publication Dec. 7, 2006 Sheet 4 of 5

US 2006/0277435 A1

+ – – – – – –

(IMYI

Patent Application Publication Dec. 7, 2006 Sheet 5 of 5

US 2006/0277435 A1

MECHANISM FOR STORING AND EXTRACTING
TRACE INFORMATION USING INTERNAL
MEMORY IN MICROCONTROLLERS

FIELD OF THE INVENTION

0001. The present invention relates generally to on-chip
debug functionality in microcontrollers and microprocessors
that contain on-chip memory and more specifically to Stor
ing trace information in and extracting Such information
from on-chip memory.

BACKGROUND OF THE INVENTION

0002 FIG. 1 shows a conventional debug system 10 with
direct memory access and trace Support. The debug system
10 comprises a host computer 12, a debug tool 14, a low
speed debug interface 16, a high speed trace capture and
processing unit 18, a low-speed debug port 15, a high-speed
trace port 17, a microcontroller device 20 and a system
memory 36. The microcontroller device 20 includes an
on-chip debug logic 22, a frame buffer 24, an on-chip debug
control 26, a bus monitor 28, a memory interface 30, a CPU
32 and a bus matrix 34. Traditionally, electronic systems
with advanced control or data processing requirements
would contain separate CPU 32 and memory devices, sol
dered onto the same printed circuit board. During develop
ing and debugging embedded Software, it was thus possible
to use logic analyzers to probe the system bus to identify and
capture events useful for software debugging. With the
advent of powerful microcontrollers with on-chip memories,
the system bus resides within the device, and the bus events
are no longer available for direct capture. The problem
becomes particularly noticeable as microcontrollers become
ever more complex, with a corresponding increase in Soft
ware complexity. As many embedded systems involve real
time communication, control, or data processing, the debug
ging task becomes further complicated, as more debug
features have to be non-intrusive, i.e., not disrupt the real
time software execution.

0003) To avoid software development time increasing
exponentially, on-chip debug (OCD) logic 22 is required to
assist in observing and controlling the embedded processor
through a set of debug features. A debug tool 14 interfaces
between the development software on a host computer 12
and the OCD logic 22 through a debug port 15 (e.g. JTAG)
and a trace port 17.
0004 The most basic debug features involve intrusive
control of CPU 32 operation. This includes breakpoints, to
selectively halt the CPU 32 based on a specific condition,
and methods to examine the CPU 32 registers and restart the
CPU 32 to normal operation. These debug features are
normally controlled by a set of debug registers, accessible
through a debug interface, e.g., JTAG. As all real-time
events are handled by the OCD logic 22, the debug tool 14
does not have to contain high-speed logic, and can be
designed in a simple, low-cost fashion.
0005 The basic debug features allow intrusive debug
access to system memory 36 by halting the CPU 32, and
issuing instructions to examine or alter the system memory
36. However, with the increasing complexity of embedded
real-time systems, non-intrusive direct memory access to
system memory 36 has become a requirement (e.g. Nexus
2.0 standard, IEEE ISTO5001TM-2003, class 3). This enables

Dec. 7, 2006

the debug tool 14 to use the low-speed debug port 15 to
observe and alter memory without requiring the CPU 32 to
be halted.

0006 More advanced are trace features, which replace
the traditional logic analyzers, and thus constitute an impor
tant part of on-chip debugging in complex microcontroller
applications. This involves reconstructing the program or
data flow of the embedded software to identify the point of
incorrect program execution. This is accomplished by log
ging a sequence of characteristic debug events, collectively
known as trace information, such as program branches, and
system bus accesses, during the Software execution. Data is
supplied with each event to relate the event to the execution,
allowing the exact execution sequence to be reconstructed.

0007 Trace information is formatted into messages, con
sisting of frames, corresponding to one set of data on the
trace port 17 of the device. The trace information is gener
ated in bursts, resulting in a very high peak frame rate. The
average frame rate is usually much lower, and it is therefore
economical to keep the generated frames in a frame buffer
24, and transmit them through the trace port 17 at a frame
rate closer to the average frame rate. The trace information
can then be captured, stored, and analyzed by the debug tool
14.

0008. The trace features are nevertheless very bandwidth
intensive. The frame buffer 24 and dedicated trace port 17
add to the cost of the microcontroller 20. The high band
width also strongly increases the cost of the debug tool 14,
which requires complex and expensive hardware to capture
and process the vast amount of high-speed trace informa
tion.

0009. The trace frames are normally stored in a large
buffer within the debug tool 14, allowing for a relatively
long real-time trace sequence to be captured. However,
many software debug situations do not require the entire
trace sequence, only the first messages (e.g. exit from an
interrupt handler), or last messages (e.g. illegal entry to a
trap). Thus, trace implementations with a limited trace buffer
would still be highly valuable.
0010. Accordingly, what is needed is a system and
method for lowering the cost of implementing trace features
both for the microcontroller and for the debug tools. The
present invention addresses such a need.

SUMMARY OF THE INVENTION

0011. It is the object of the present invention to provide
a mechanism to store and retrieve trace information in
on-chip system memory of microcontrollers. A microcon
troller comprises a microprocessor and a memory device
accessible through a data bus and an address bus coupled to
the microprocessor. The microcontroller includes on-chip
debug logic coupled to the microprocessor. The on-chip
debug logic includes a low speed debug port and a mecha
nism for temporarily storing trace data on the memory,
wherein the trace data can be retrieved via the low speed
debug port by a debug tool.

0012. A method and system in accordance with the
present invention will lower the cost of implementation of
trace features in microcontrollers, and strongly reduce the
cost of Supporting Such features in debug tools.

US 2006/0277435 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 shows a conventional debug system with
direct memory access and trace Support.
0014 FIG. 2 illustrates a debug system in accordance
with the present invention.
0015 FIG. 3 illustrates the debug system with an
expanded view of the trace extractor module and the system
memory.

0016
0017 FIG. 5 shows reconstructing a message from the
trace buffer.

FIG. 4 shows RWD register organization.

DETAILED DESCRIPTION

0018. The present invention relates generally to on-chip
debug functionality in microcontrollers and microprocessors
that contain on-chip memory and more specifically to Stor
ing trace information in and extracting Such information
from on-chip memory. The following description is pre
sented to enable one of ordinary skill in the art to make and
use the invention and is provided in the context of a patent
application and its requirements. Various modifications to
the preferred embodiments and the generic principles and
features described herein will be readily apparent to those
skilled in the art. Thus, the present invention is not intended
to be limited to the embodiments shown, but is to be
accorded the widest scope consistent with the principles and
features described herein.

0019. The present invention presents a mechanism for
storing trace events in system memory and allowing them to
be extracted over the low-speed debug port in the device.
0020. The present invention includes an implementation
of an on-chip trace buffer and a frame buffer, as well as a
memory interface for non-intrusive memory access. Frames
are extracted from the buffer and routed to the memory
interface, to be stored in a circular trace buffer in system
memory, instead of transmitted on a trace port. The position
and size of the trace buffer in System memory are configured
by debug registers, accessible by a debug tool. In a preferred
embodiment, the high-speed trace port is eliminated, and the
frame buffer can be reduced in size, as the bandwidth of the
memory interface is close to the peak frame rate.
0021. The trace sequence that can be captured is much
Smaller than when using an external debug tool for trace
capture, since the trace buffer is limited to the size of the
allocatable internal memory. However, as stated above,
many debug situations do not require a large trace sequence,
if the user can control which sequence is captured. In a
system and method in accordance with the present inven
tion, the user is presented with several options when the
trace buffer becomes full:

0022 1. Continue writing at the start of the buffer,
overwriting the oldest frames.
0023 2. Stop writing, discarding any further frames
generated.
0024) 3. Halt the CPU automatically, to avoid further
messages to be generated.
0025. In any case, the debug tool can at any time halt the
CPU explicitly, which prevents further trace information

Dec. 7, 2006

from being generated. The debug tool can Subsequently
extract the previous trace information by reading out the
trace buffer from system memory, without any specific
bandwidth requirement. Also, the regular debug port can be
used to extract the information, eliminating the need for a
dedicated trace port. In addition, mechanisms are provided
to identify the portion of the buffer containing valid frames,
and to extract remaining frames not yet written to the buffer.
Finally, mechanisms are also provided to protect the CPU
from accessing the system memory area reserved for the
trace buffer, to prevent incorrect trace reconstruction.

0026. To describe the features of the present invention in
more detail refer now to the following description in con
junction with the accompanying figures.

0027 FIG. 2 illustrates a debug system 100 in accor
dance with the present invention. The debug system 100
comprises a host computer 12", a debug tool 114, a micro
controller device 120 and system memory 36". The micro
controller device 120 includes on-chip debug logic 12, CPU
32 and a bus matrix 34. Although system memory 36' is
shown on-chip here, the memory can reside on-chip or
off-chip depending on the implantation of the microcontrol
ler device. The on-chip debug logic 121 comprises a trace
extractor module 122, a trace buffer protect module 129, a
frame buffer 124, an on-chip debug control 126, a bus
monitor 128, and memory interface 130. In this architecture,
the trace extractor module 122 is added to on-chip debug
logic 121 provide a mechanism for storing trace events
without adding significant cost to the microcontroller device
120. The trace extractor module 122 is an extension of the
memory interface, and contains a plurality of debug regis
ters, which can be written by the debug tool 114, and that
configure the behavior of the on-chip memory trace mecha
nism. To describe the function of the trace extractor module
122 in more detail refer now to the following description in
conjunction with the accompanying figure.

0028 FIG. 3 illustrates the debug system 100 with an
expanded view of the trace extractor module 122 and the
system memory 36". FIG. 3 comprises a frame buffer 124,
on-chip debug control 126, bus monitor 128, CPU 32', bus
matrix 34", memory interface 130, and trace extractor mod
ule 122. The trace extractor module 122 comprises a trace
buffer 122, a RWD register 202, CNT register 204, trace
buffer access protection 206, a RWA register 208, status
registers 210 and a plurality of control registers 212.

0029. As before mentioned, the trace extractor module
122 includes a plurality of debug registers which can be
written by the debug tool 114. The registers can be summa
rized as follows:

0030 RWA register 208: An automatically incremented
register, reflecting the next system memory address to be
written.

0031 RWD register 202: a register collecting frames into
bus-sized units.

0032 CNT register 204: the logarithmic size of the trace
buffer.

0033 Control register 212: a control register indicating
the actions taken when the trace buffer is full. Valid states are
WRAP, STOP, and BREAK.

US 2006/0277435 A1

0034 Status registers 210: a plurality of single-bit read
only registers indicating the status of the trace buffer 206.
0035. The following definitions describe the status of the
trace buffer 206:

0036 WRAPPED: The trace buffer 206 has been over
written, and old messages have been discarded.
0037 NTBF: A breakpoint has been issued due to the
trace buffer 206 being full.
0038 NTAE: A breakpoint has been issued due to the
CPU 32 trying to access the trace buffer 206.
0039) Referring further to FIG. 3, the debug tool 114
reserves a portion of system memory 36" for the trace buffer
206 by writing the RWA register 208 to the START AD
DRESS, and writing the CNT register 204 with the loga
rithmic buffer size, creating a buffer END ADDRESS=
(START ADDRESS+2N-1). The implicit address unit
used is the system bus access width, e.g. word=32 bits.
0040. The trace extractor module 122 accumulates
frames from the frame buffer 124 into the RWD register 202,
which is the same width as the system data bus. This register
202 collects frames until full, e.g., if the frame size is 8 bits,
and the data bus 32 bits, the RWD register 202 can hold 4
frames.

0041) When RWD 202 is full, the contents of the register
are written through the memory interface 130 to the system
memory 36' address pointed to by the RWA register 208.
After this operation, the RWA register 208 is auto-incre
mented to point to the next location in the buffer. The RWD
register 202 is cleared, i.e., filled with only empty frames.
0042. When RWA 208 increments beyond END AD
DRESS, the MODE register defines the resulting behavior:
0043. In a=WRAP mode: the RWA register 208 is reset to
START ADDRESS, and the trace buffer 206 is overwritten
without halting the CPU 32". The WRAPPED status bit is
set. The debug tool 114 must halt the CPU 32' before
reconstruction of trace data can begin. The captured trace
data will contain the last frames before the CPU 32' was
halted.

0044) In a=STOP mode: No further trace frames are
written to system memory 36', but the CPU 32' is not halted.
The debug tool must halt the CPU 32' before reconstruction
of trace data can begin. The captured trace data will contain
the first frames after the capture sequence was started.
0045. In a=BREAK mode: No further trace frames are
written to system memory 36', and the CPU 32' is halted.
The NTBF status is set, to identify this breakpoint. Recon
struction of the trace frames can commence immediately.
The captured trace data will contain all frames after the
capture sequence was started.
0046) Once the CPU 32' is halted, regardless of reason for
the breakpoint, the debugger can read out the valid trace
frames from the system memory 36' using the low speed
debug port 15 and the memory interface 130.
0047. The location of valid frames in the trace buffer 206
depends on whether the circular trace buffer in system
memory 36' was overwritten or not, as indicated by the
WRAPPED status bit. The WRAP status bit has the follow
ing states:

Dec. 7, 2006

0.048 WRAPPED=0: The trace buffer 206 contains valid
trace frames from START ADDRESS through (RWA-1).

0049 WRAPPED=1: The trace buffer 206 contains valid
trace frames from END ADDRESS plus START AD
DRESS through (RWA-1).

EXAMPLE

0050 Assuming an implementation using 8-bit Nexus
compatible frames (2-bit MSEO control and 6-bit MDO
data), and a big-endian 32-bit system bus, the RWD register
202 will be organized as shown in FIG. 4. Accordingly this
register collects frames into bus-sized units.
0051 FIG. 5 shows reconstructing a message from the
trace buffer 206 (FIG. 3). In this example a message from
the trace buffer 206 is shown after the CPU 32' has been
halted, with the RWA register 208 starting at 0x1000 and the
CNT register=10 (i.e. the buffer size is 1024 words, or 4096
frames). When the trace was stopped, the WRAPPED status
bit is set and the RWA register 208=0x 1234, so the last word
of frame data written to the memory is located at 0x1230.
The last two frames of the message still reside in the RWD
register 202, which has been only partially filled.

0.052) If the RWD register 202 was not full by the time the
breakpoint occurred, these frames are not written to the trace
buffer 206. If the debug tool intends to read out the trace
buffer 206, the last frames can be found by reading the RWD
register 202, after reading out to the trace buffer 206.

0053 If the debug tool 114 does not intend to read out the
trace buffer 206, e.g. due to a non-trace-related breakpoint,
it can let the CPU 32 return to normal operation, and the
trace operation will continue, transparently to the debug tool
114.

0054 The mechanism described above assumes that the
system memory 36' is a shared resource between CPU and
OCD logic. This means that a software error in the CPU 32
can potentially corrupt the trace data by accidentally writing
to the trace buffer 206 in system memory 36". This is
particularly unfortunate, since loss of trace data increases the
difficulty in locating this software error. To prevent this, a
trace buffer protection module 129 (FIG. 2), containing a
comparator unit, monitors CPU accesses to system memory
36', ensuring that any accesses between START ADDRESS
and END ADDRESS will result in halting the CPU 32
through a breakpoint, with the NTAE status bit set.

0055. A system and method in accordance with the
present invention lowers the cost of implementing trace
features for the microcontroller and for the debug tools by
offering a mechanism to temporarily store data in on-chip
memory, to allow this data to be retrieved at an arbitrarily
low bandwidth via a low speed debug port by the debug tool
at a later time. A system and method in accordance with the
present invention eliminates the need for a dedicated trace
port in the device, reduces the size of the frame buffer, and
eliminates the need for high-speed logic in the debug tool.

0056. A system and method in accordance with the
present invention allows for the implementation of more
powerful trace features in microcontrollers without increas
ing the pin cost of debug features. It also allows strongly
improved support for third party debug tools with trace

US 2006/0277435 A1

capability, allowing more customers to take advantage of
microcontrollers with on-chip trace features.
0057 Although the present invention has been described
in accordance with the embodiments shown, one of ordinary
skill in the art will readily recognize that there could be
variations to the embodiments and those variations would be
within the spirit and scope of the present invention. Accord
ingly, many modifications may be made by one of ordinary
skill in the art without departing from the spirit and scope of
the appended claims.
What is claimed is:

1. A microcontroller comprising:
a microprocessor,

a memory device accessible through a data bus and an
address bus coupled to the microprocessor,

on-chip debug logic coupled to the microprocessor; the
on-chip debug logic including a low speed debug port;
and a mechanism for temporarily storing trace data on
the memory, wherein the trace data can be retrieved via
the debug port by a debug tool.

2. The microcontroller of claim 1 wherein the memory
device can reside on-chip or off-chip.

3. The microcontroller of claim 1 wherein the mechanism
includes a trace extractor module.

4. The microcontroller of claim 3 wherein the trace
extractor module includes a plurality of debug registers
which can be configured to determine the behavior of the
mechanism.

5. The microcontroller of claim 4 wherein the plurality of
registers includes a first register (RWA), reflecting the next
system memory address to be written; a second register
collecting frames into bus-sized units; a third register (CNT)
for storing the size of the trace buffer; a fourth register
(control) for indicating the actions taken when the trace
buffer is full; and a plurality of status registers, wherein each
of the plurality of status registers are single-bit read-only
registers indicating the status of the trace buffer.

6. The microcontroller of claim 1 which further includes:

an on-chip debug control in communication with low
speed debug port and the microprocessor;

a bus monitor coupled to the on-chip debug control, the
address bus and data bus;

a frame buffer in communication with the bus monitor;
a trace extractor module in communication with the frame

buffer, on-chip debug control and bus monitor;
a memory interface in communication with the trace

extractor module; and
a bus matrix coupled to the memory interface and for

communicating with the system memory;
a trace buffer protection module in communication with

the on-chip debut control, trace extractor module, and
the bus matrix.

Dec. 7, 2006

7. The microcontroller of claim 6 wherein the trace
extractor module comprises:

a first register (RWD) for receiving data from the frame
buffer in bus-sized units; and providing data to the
memory interface;

a second register (CNT) which provides the size of the
trace buffer and communicates that data to the trace
buffer;

a third register for providing the next memory address to
be written;

a fourth register for indicating actions to be taken when
the trace buffer is full; and

a plurality of status registers.
8. The microcontroller of claim 6 wherein the comparator

module comprises:
a comparator identifying illegal CPU access to system
memory locations within the trace buffer; and

a breakpoint generator for halting the CPU when an
illegal access id detected.

9. The microcontroller of claim 8 wherein a status bit
identifies a breakpoint due to illegal access to the trace
buffer.

10. A method for storing and extracting trace information
in a microcontroller, the microcontroller comprising a
microprocessor, a memory device accessible through a data
bus and an address bus coupled to the microprocessor,
on-chip debug logic coupled to the microprocessor, the
method comprising:

accumulating trace frames into a first register until the
first register is full;

providing the contents of the first register to the memory
device after the first register is full; and

reading out of the memory device the valid trace frames
using a debug port.

11. The method of claim 10 wherein the valid trace frames
are within a trace buffer.

12. The method of claim 11 wherein trace buffer is
implemented as a circular buffer, thus repeatedly overwritten
by new trace frames until the end of the trace capture
Sequence.

13. The method of claim 11 wherein a status register
indicates that the trace buffer has been overwritten at least
OC.

14. The method of claim 11 wherein the trace capture
sequence ends when the trace buffer is full.

15. The method of claim 14 wherein the CPU receives a
breakpoint when the trace capture sequence ends.

16. The method of claim 15 wherein a status bit identifies
the breakpoint issued due to the trace buffer being full.

