

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

O 100 126
A2

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: **83201076.3**

⑮ Int. Cl.³: **G 03 C 1/72**

⑭ Date of filing: **20.07.83**

⑯ Priority: **26.07.82 US 402120**

⑰ Applicant: **ENERGY CONVERSION DEVICES, INC.,**
1675 West Maple Road, Troy Michigan 48084 (US)

⑲ Date of publication of application: **08.02.84**
Bulletin 84/6

⑳ Inventor: **Yu, Terry Ta-Jen, 19832 White Oaks Drive, Mt.**
Clemens Michigan 48043 (US)

㉑ Designated Contracting States: **AT BE CH DE FR GB IT**
LI LU NL SE

㉒ Representative: **Urbanus, Henricus Maria, Jr. et al, c/o**
Vereenigde Octroibureaux Nieuwe Parklaan 107,
NL-2587 BP 's-Gravenhage (NL)

㉓ **Self-fixing imaging film, composition for forming and method of making said film and method for recording electromagnetic radiation using said film.**

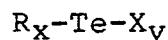
㉔ Improved imaging film-forming compositions and improved organo-tellurium imaging films are provided that require no separate fixing. Normal development of the film by application of heat results in a fixed film.

EP O 100 126 A2

Title: Self-fixing imaging film, composition for forming and method of making said film and method for recording electromagnetic radiation using said film.

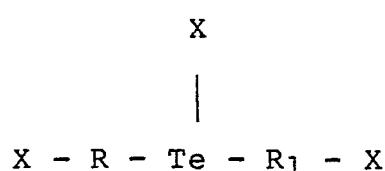
-1-

This application relates to improved imaging films and more particularly to improved imaging films containing reducible organo imaging compounds, such as organo-tellurium imaging compounds, and reductant precursors which are fixed as a result of development.


5 Various methods are known for producing images or duplicates of images. The imaging materials used are, in certain cases, particular organic compounds. Some of these heretofore known methods employ mixtures of inorganic compounds such as 10 silver halide with one or more particular types of organic compounds as sensitizers.

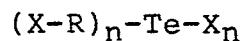
A new photographic process using tellurium 15 compounds to provide the image is disclosed in U.S. Patent No. 4,142,896, issued March 6, 1979 to Chang and Ovshinsky. In accordance with U.S. Patent No. 4,142,896, an emulsion is formed using certain reducible tellurium compounds in combination with a reductant precursor in a binder or 20 matrix suitable for forming a film-like coating on a substrate. The film prepared therefrom is exposed image-wise to activating energy and is thereafter developed as is known in the art hereinafter described. Heat development is preferred.

-2-


Some tellurium compounds described for use in the photographic process of U.S. Patent No. 4,142,896 may be represented, for example, by the formula

5

in which R is an organic radical containing at least one carbonyl group, X is halogen, preferably chlorine, and x is 1, 2 or 3, and $x + y = 4$. The organic radical R may be either two independent 10 radicals or may be joined together to form a cyclic compound. Another group of compounds mentioned in U.S. Patent No. 4,142,896 are organic tellurium compounds which may be considered or characterized as tellurium tetrahalide adducts of 15 ethylenic or acetylenic hydrocarbons. Some of such compounds can be represented by the formulae


20

|

X

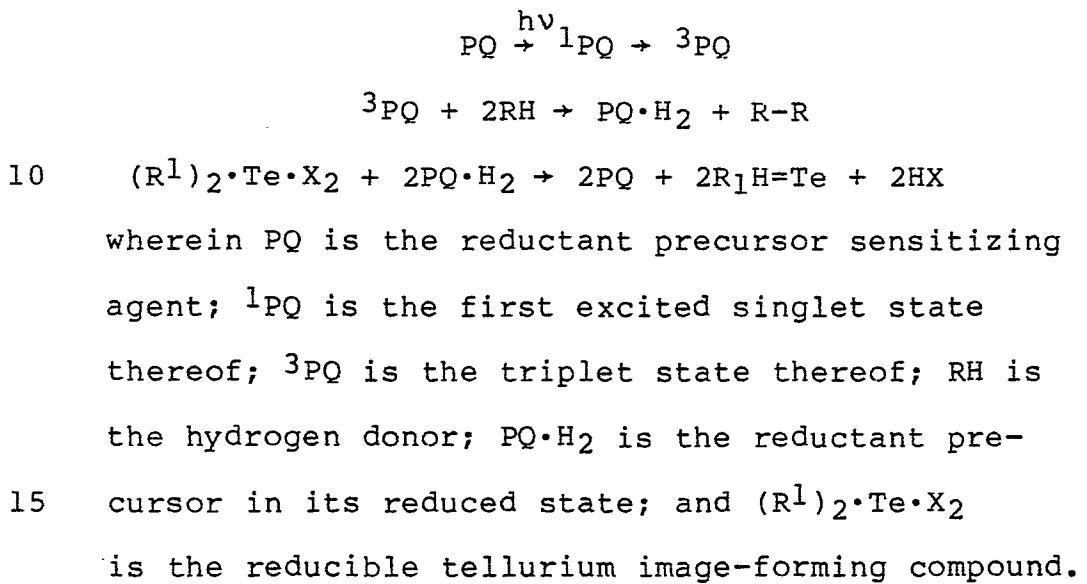
and

wherein R and R_1 are each the residue of an ethylenic hydrocarbon and X is a halogen, preferably 25 chlorine.

-3-

Another category of photosensitive tellurium compounds which have been found useful are halogenated tellurium compounds, such as compounds of the formula

where n is an integer from 2 to 4, and n + m = 4.

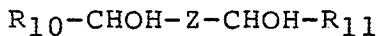

The use of such halogenated tellurium compounds in imaging processes is disclosed in U.S. Patent 4,066,460 issued January 3, 1978 to Chang et al.

10 Still another category of useful tellurium compounds are described in U.S. Patent 4,106,939 issued August 15, 1978 to Chang, Ovshinsky and Strand. These compounds are tellurium tetrahalide adducts of aromatic amines in which nitrogen attached directly or indirectly to the aromatic ring is substituted by alkyls of 1-4 carbon atoms, the adduct being free of diazo groups.

15 The tellurium compounds such as the foregoing may be employed in conjunction with a reductant-precursor which serves as a sensitizer. The reductant-precursor is a compound which, under the influence of activating energy, will absorb radiation energy and abstract labile hydrogen from an appropriate hydrogen donor to become a strong reducing agent. The strong reducing agent reduces

-4-

the tellurium compound to a divalent tellurium compound or to elemental tellurium. In either event, a change in optical density occurs which results in an imaging suitable for recording information. In general terms, the foregoing reaction may be represented by the following mechanism:

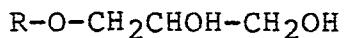

In this connection, it should be noted that the hydrogen donor need not be specifically provided, although a variety of alcohols can be used if desired. In the absence of a specially-provided hydrogen donor, the labile hydrogen can sometimes be abstracted from the organic resins used as binders. In other cases, the sensitizer can be its own hydrogen donor, and this is known to be

-5-

the case with at least one sensitizer, namely,
isoproxynaphthoquinone.

Desirable materials for the binder or matrix
include, for example, polymers such as poly(vinyl
5 alcohol), poly(acrylonitrile), poly(butadiene),
poly(ethylene), poly(ethyleneglycol), polymers
marketed by the Monsanto Co. under the trade mark
"FORMVAR" and polymers marketed by the Eastman
Kodak Company under the trade designation "CAB",
10 especially "CAB-500-5".

A modification of the tellurium photographic
process is described in Belgian Patent No.
854,193, wherein certain diols of the formula



15 may be employed as the hydrogen donor for use in
conjunction with the photosensitizer described
above. In the foregoing formula, R_{10} and R_{11} rep-
resent hydrogen and various organic substituents.
Z may be a direct carbon-carbon linkage between
20 the two hydroxy substituted carbon atoms, or may
be any of various linking groups. Reference is
made to Belgian Patent No. 854,193 for a fuller
description of the diols referred to. In the
Belgian patent, these diols are said to serve as

-6-

hydrogen donors. Subsequent research has suggested that this is not completely accurate. In fact, a major portion of the diol appears to form a complex with the tellurium compound.

5 This finding has led to the discovery of diols of the general formula

which have improved characteristics when used in tellurium-based photographic films.

10 The radical R may be a simple aliphatic group (for example, alkyl or alkenyl). Alternatively, the radical R may contain a carbonyl group (for example, an acyl radical). Preferably, however, the radical R is aromatic. Best results are obtained where the aromatic ring is separated from the ether oxygen by one methylene grouping. A more complete description of these diols is contained in United States Patent No. 4,281,058, issued July 28, 1981 to Ovshinsky et al. and reference is made thereto for additional descriptions thereof.

15

20

Still another modification in the use of tellurium compounds as photosensitive agents involves what is known as a "masked reducing agent". A number of compounds are known, such as phenidone,

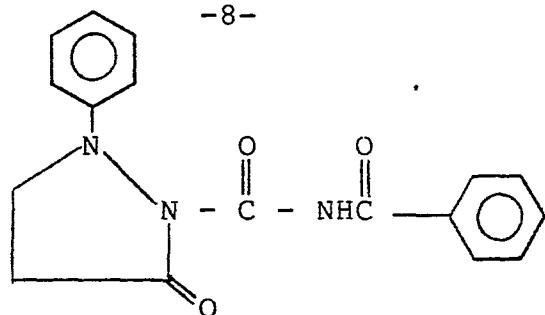
25

- 7 -

which will reduce organo-tellurium compounds. The reducing capacity of such compounds may be

"masked" - i.e., inhibited - by appropriate substitution. In such cases, if the substituent is

5 one which can be cleaved by the reaction products liberated upon the photoreduction of the tellurium compound, the masked reducing agent can be used to amplify the photoresponse through the mechanism

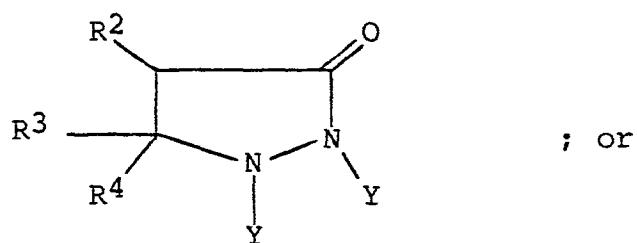

10 Photoactive Reducing Agent + Tellurium Compound \rightarrow
Tellurium
+
By-Products

15 By-Products + Masked Reducing Agent \rightarrow
Demasked Reducing Agent

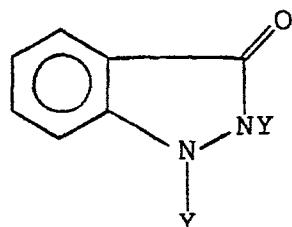
Demasked Reducing Agent + Tellurium Compound \rightarrow
Tellurium
+
By-Products

20 Since the organo-tellurium compounds commonly used release hydrogen halides (particularly hydrogen chlorides) as by-products of the reduction reaction, and the reducing agents, such as phenidone, are amino compounds, the masking agents most effectively employed are compounds which will convert the amino nitrogen into an amide. A typical masked reducing agent thus is the compound
25 1-phenyl-2-benzoylamido-3-pyrazolidinone:

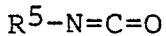
-8-



A more complete description of masked reducing
 5 agents may be found in Belgian Patent 863,052 of
 July 19, 1978, and reference thereto is made for
 additional descriptions thereof.


As an alternative to the masked reducing
 agents described in Belgian Patent 863,052, a new
 10 class of masked reducing agents may be substitut-
 ed, represented by the general formulae

15


20

-9-

O

wherein Y is hydrogen or CNHR⁵, said compound containing at least one C-NH-R⁵ group. In the foregoing formulae, R¹ may be alkyl, alkanoyl, alkoxy-carbonyl, phenyl, benzyl, benzoyl, nitrophenyl, 5 benzylcarbonyl, phenylmethyl, phenylethyl or phenylpropylcarbonyl, or aminocarbonyl. R², R³ and R⁴ each, and independently, may be hydrogen, alkyl or phenyl and amino. R⁴ may be phenyl, nitrophenyl, halophenyl, alkyl, mono-, di- or tri-10 haloalkyl, benzoyl, alkylphenyl, or alkylcyano-phenyl. The masking group may be substituted at either one or both of the amino hydrogen sites of the reducing agent. The alkyl groups referred to above may contain up to seven carbon atoms. Such 15 compounds are conveniently accessible through reaction of the parent hydrazine or pyrazoline with an isocyanate of the formula

In practice, the foregoing ingredients, i.e., 20 a tellurium derivative, a reductant precursor sensitizer, and additional ingredients such as the

-10-

glycol and masked reducing agent, are combined in a suitable matrix to form an emulsion which may be spread into a film on an appropriate carrier or substrate. A latent image in the film is formed 5 by exposure to imaging energy, for example, a light image.

After formation of the latent image, a visible image is developed, such as by heating the exposed film as described in United States Patent 10 No. 4,142,896. After development of the visible image, the film is desirably fixed to avoid darkening or other undesirable modification of the film resulting from exposure to light or the passage of time. United States Patent No. 4,142,896 15 also describes a method of fixing the tellurium imaging film by removing the sensitizer and inactivating unreacted imaging organo-tellurium material. In accordance with the teaching of that patent the film is fixed by contacting the film with 20 a chloroform/toluene (20:80 by volume) solution saturated with ammonia or with organic amines. However, this fixing is relatively slow, generally taking about thirty minutes. Further, that fixing method requires the use of relatively toxic and 25 hazardous compounds. The use of chloroform/

-11-

toluene is unsuitable for several types of desirable matrix polymers, such as the CAB type, because the chloroform/toluene mixture dissolves such polymers. Another type of fixing method is 5 possible in which the film is fixed by contacting the film with an alcohol, such as isopropanol, for example. A small amount of ketone such as acetone, for example, may also be included with the alcohol. Especially useful is a solution of 50 10 parts isopropanol/1 part acetone (by volume).

Thus, it would be desirable to provide an imaging film of the foregoing type which does not require separate fixing.

In accordance with the present invention, 15 methods and dry process imaging films which utilize a reductant precursor and a reducible imaging compound are provided which are self-fixing. A separate fixing step or fixing chemicals are not required and a fixed film is provided as a result 20 of normal developing conditions, such as heating at from about 150-155°C for about 30-90 seconds, for example. Thus, the above described imaging system containing a reducible imaging compound and a reductant precursor is improved.

25 More specifically, I have discovered that self-fixing dry process imaging films can be made

-12-

by controlling the amount of reductant precursor present in the film. The amount of reductant precursor present in the film is present in a limited amount such that under normal developing conditions, essentially all of the reductant precursor is extracted by heat development of the film. As used herein, the time of normal development is about five minutes or less. Preferably, the film is such that substantially all of the reductant precursor is removed from the film after less than about two minutes of development at about 150°C. It is the unreacted reductant precursor (i.e. that which is not changed to a reducing agent as a result of exposure to imaging energy) that must be removed. The type of reductant precursor utilized should be heat-extractable when combined with the other film components in a matrix. The actual physical phenomenon that takes place, which could be, for example, evaporation, sublimation or some other phenomenon, is not important to practicing the present invention. It is only necessary that essentially all of the reductant precursor be removed from the film as a result of heat development. Thus, in formulating imaging films in accordance with the invention, the film-forming composition, comprising an image-forming compound and

-13-

a reductant precursor, contains a proper amount of reductant precursor so that when film made from the film-forming composition is developed by heat, essentially all of the reductant precursor is removed. As used herein, "essentially all of the reductant precursor" means that a sufficient amount such that the amount remaining does not cause the film to be significantly altered by the passage of time or exposure to light. The film-forming compositions may contain other components, as discussed.

The amount of reductant precursor present in the film-forming compositions is variable. Generally, sufficient reductant precursor is present such that film made from the composition produces the desired change in optical density to allow formation of an image. The specific amount of reductant precursor will be dependent upon the type of reductant precursor and the other components present in the film-forming composition. However, the amount of reductant precursor should not be so great as to be present in the film after normal development in amounts which cause the film to darken significantly or produce significant undesirable modification of the film as a result of

-14-

exposure to light or the passage of time. Other than this limitation, the amount of reductant precursor can be as desired, and preferably is that amount for a particular composition which provides 5 the desired film speed and optical density. The optimum amount of a particular reductant precursor for a particular formulation can easily be determined simply by formulating film-forming compositions containing various amounts of reductant precursor and testing the performance of the films 10 made therefrom.

Accordingly, a first object of the invention is to provide a film for forming an image made from a film-forming composition. The composition 15 includes a reducible image-forming compound and a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming compound. 20 The composition also includes a source of labile hydrogen for reaction with the reductant precursor and a matrix in which the tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form

-15-

a composition which may be applied to a substrate. The film is characterized by the reductant precursor being present in such an amount that when the film is developed normally by heating essentially all of the reductant precursor is removed from the film.

A second object of the invention is to provide a film for forming an image made from a film-forming composition. The composition includes an image-forming tellurium compound and a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming tellurium compound. The composition also includes a source of labile hydrogen for reaction with the reductant precursor and a matrix in which the tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form a composition which may be applied to a substrate. The film is characterized by the reductant precursor being present in such an amount that when the film is developed normally by heating essentially all of the reductant precursor is removed from the film.

-16-

A third object of the invention is to provide a composition responsive to activating energy for forming an imaging film. The composition includes an image-forming tellurium compound and a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming tellurium compound. The composition also includes a source of labile hydrogen for reaction with the reductant precursor and a matrix in which the tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form a composition which may be applied to a substrate. The composition is characterized by the reductant precursor being present in such an amount that when the film is developed normally by heating essentially all of the reductant precursor is removed from the film.

A fourth object of the invention is to provide a method for recording electromagnetic radiation. The method includes impinging the radiation upon a photosensitive film to produce a change in at least one property thereof. The film is made from a photosensitive composition which includes

-17-

an image-forming tellurium compound and a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with 5 respect to the image-forming tellurium compound. The composition also includes a source of labile hydrogen for reaction with the reductant precursor and a matrix in which the tellurium compound, reductant precursor and source of labile hydrogen 10 are combined in amounts effective to form a composition which may be applied to a substrate. The composition is characterized by the reductant precursor being present in such an amount that when the film is developed normally by heating essentially 15 all of the reductant precursor is removed from the film.

A fifth object of the invention is to provide a method of making a self-fixing film for forming an image, the film being made from a film-forming 20 composition. The composition includes a reducible image-forming compound and a source of labile hydrogen. The method including providing in the composition a reductant precursor which will abstract hydrogen from the source of labile hydrogen 25 under the influence of imaging energy to become a

-18-

reducing agent with respect to the image-forming compound. The composition is characterized by the reductant precursor being present in such an amount that when the film is developed normally by 5 heating essentially all of the reductant precursor is removed from the film.

An emulsion formulated in accordance with the present invention contains a tellurium compound, a reductant precursor and an appropriate matrix. 10 Optionally, other components may also be included in the emulsion. A diol may be included, preferably a glyceryl compound of U.S. Patent No. 4,281,058. A masked reducing agent or water may be included in the emulsion. A base may also be 15 included, preferably when a masked reducing agent is included. Finally, an alcohol may also be included, preferably when a glyceryl compound of U.S. Patent No. 4,281,058 is included.

It is anticipated that reducible organo-met- 20 tallic imaging compounds and other reducible metal compounds, other than tellurium compounds, may be utilized in accordance with the invention. For example, other metals which can form organo-metallic imaging compounds, include copper, silver, 25 nickel, mercury and cobalt. For example, cobalt

-19-

imaging compounds are disclosed in U.S. Patent No. 4,201,588 to Adin et al. Specific organo-metallic compounds which may be used include, for example, copper-2,4-pentanedionate, nickel-2,4-pentanedionate, mercury acetate and silver behenate.

The image-forming tellurium: A number of image-forming tellurium compounds are described in the prior art and such compounds are generally useful in the present invention. In general, the present invention contemplates using these and other tellurium compounds which undergo analogous reduction reactions in the presence of a reductant precursor as hereinafter described. Preferably, the image-forming tellurium compound is of the type that requires the presence of a reducing agent, such as a reducing agent formed from a reductant precursor upon exposure to imaging energy, to form a significant image. Thus, without the presence of a reducing agent, exposure of the film to light does not result in the formation of a significant increase of optical density.

It has been found that many tellurium compounds possess certain properties which adapt them

-20-

especially for use in imaging processes. In general, these are compounds from which, as a result of the imaging and developing steps generally referred to above, elemental tellurium is deposited
5 from the tellurium compounds. Tellurium is chain-forming in character, and it is generally deposited from the tellurium compounds useful for photographic purposes (preferably including thin needles), the compounds being capable of rapid
10 nucleation and growth as crystallites, which crystallites grow as chains and largely or mainly as needles. Such chains or needles are opaque and are characterized by excellent light scattering properties to produce good optical density ob-
15 served after thermal or other development.

Effects which may involve oxide formation are substantially restricted to surface effects as distinguished from effects which cause degradation through the bodies of the needles or chains.

20 Preferably, the tellurium imaging compound is an organo-tellurium compound such as disclosed in U.S. Patent No. 4,142,896 of Chang et al. These compounds are organic tellurium compounds which inherently possess sensitizer properties (and/or
25 may be mixed with a separate sensitizer) in which

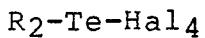
-21-

the tellurium is linked directly to, at least one carbon atom or the organic radical of the organo-tellurium material, the organic tellurium compound being of one structure and having a detectable 5 characteristic which is capable of undergoing a change in response to the application of imaging energy in the form of particle or wave radiation to produce a material of different structure having another detectable characteristic. The material 10 having a different structure and different detectable characteristics resulting from the imaging step is sometimes referred to as the "image-forming compound".

The tellurium imaging compound may be an 15 organo-metallic compound such as disclosed in U.S. Patent No. 4,062,685.

A particularly advantageous subgroup of the imaging organo-tellurium compounds utilized in the practice of the present invention comprises organic 20 compounds which contain an organo radical and halogen attached directly to the tellurium atom, there being at least one carbonyl group in the organo radical. Certain of them are adducts of tellurium halides, notably tellurium tetrachloride, 25 with organic compounds, notably ketones or similar

-22-

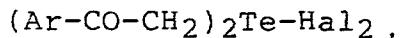

chromophores, containing at least one carbonyl group in the organic compound. They may, thus, be considered or characterized as organo-tellurium compounds or adducts containing halogen, namely, 5 chlorine, bromine, iodine, and fluorine, attached directly to the tellurium atom. Most of this particular class or group of said imaging compounds have two carbonyl-containing organo radicals. Those which are especially useful in the practice 10. of the present invention have chlorine as the halogen but, in certain cases, although generally less satisfactory, other halogens can be present. The imaging compounds should be selected to be soluble or homogeneously dispersible in any particular matrix material which may be utilized, as 15 is described hereafter. Many of this group of imaging organo-tellurium compounds may be represented by the formula

$$R_x\text{-Te-Hal}_y$$

20 where R is an organo radical containing at least one carbonyl group, Hal is halogen, especially chlorine, x is 1, 2 or 3, and $x + y = 4$, subject to the proviso that Te is linked directly to carbon in an organo radical. Preferably, x is 2 or 25 3.

-23-

Others can be represented by the formula



where R is a carbonyl-containing organic radical, and Hal is halogen.

5 The R radical can be aliphatic, cycloaliphatic or aromatic (mononuclear or dinuclear) or a combination thereof and may contain one or more hetero atoms in the chain or rings. It may be unsubstituted or substituted by various organic or 10 inorganic radicals, which may assist in or at least do not interfere with the desired imaging effect, illustrative of such radicals being C₁-C₆ alkyl, corresponding oxyalkyl radicals, acetyl, nitro, C≡N, Cl, Br, F, etc. Generally speaking, 15 the aforesaid organo-tellurium imaging compounds which contain a trihalide group as, for instance, acetophenone tellurium trichloride, tend to have relatively low melting points (about 70-80°C), and are more hygroscopic and less stable than those 20 generally similar compounds containing two halogen atoms and, therefore, such trihalides are less desirable for use in the practice of the present invention.

A more limited class of this particular sub- 25 group of imaging organo-tellurium compounds may be represented by the formula

-24-

where Ar is an aromatic hydrocarbon radical, which may be substituted or unsubstituted, as indicated above, and Hal is halogen, especially chlorine.

5 This subgroup of compounds, particularly where Hal is chlorine, represents especially advantageous embodiments of the invention, with respect to the imaging organo-tellurium compounds which are used in the practice of the present invention.

10 Another subgroup of imaging organo-tellurium compounds, useful in the practice of and contemplated by the present invention, which do not contain a carbonyl group in an organo radical but in which tellurium is linked directly to carbon are

15 compounds which may be considered or characterized as tellurium tetrahalide adducts of ethylenic or of acetylenic hydrocarbons. These compounds are generally conveniently produced by reacting 1 to 2 moles, particularly 2 moles, of the ethylenic or

20 acetylenic hydrocarbon with 1 mole of tellurium tetrahalide, especially preferred for such use being $TeCl_4$. Certain of such compounds can be represented by the formulae:

-25-

Hal

|

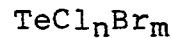
Hal— R⁷— Te— R⁶— Hal ; and

|

5 Hal

(Hal— R⁷)_x— Te— Haly

where R⁶ and R⁷ are each the residue of an ethylenic hydrocarbon, for instance, an alkene or a cycloalkene, Hal is chlorine, bromine or iodine, especially chlorine, x is 1 to 3, and x + y = 4.


Illustrative of the ethylenic and acetylenic hydrocarbons which can be adducted with tellurium tetrahalides to produce such imaging organo-tellurium compounds are propylene; butene-1; isobutylene; butene-2; 2,3-dimethyl-2-butene; 3,3-dimethyl-1-butene; 2,4-dimethyl-1-pentene; 4,4-dimethyl-1-pentene; 2,5-dimethyl-3-hexene; dipentene; 1,1-diphenylethylene; 1-heptene; 1-hexene; 2-methyl-1-hexene; 3-methyl-1-hexene; 4-methyl-1-hexene; 2-ethyl-1-hexene; 2-isopropyl-1-hexene; 2-methyl-1-pentene; 2-methyl-2-pentene; 2-ethyl-2-pentene; 3-methyl-1-pentene; piperylene; vinylcyclohexene; vinylcyclopentene; 2-vinylnaphthalene; 1,2,4-trivinylcyclohexene; 4-methyl-1-cyclohexene; 3-methyl-1-cyclohexene; 1-methyl-1-cyclohexene; 1-methyl-1-cyclopentene; cycloheptene;

-26-

cyclopentene; cyclohexene; 4,4-dimethyl-1-cyclohexene; 2-methylbutene-1; 3-methylbutene-1; and 1-octene; lower alkyl and lower alkoxy derivatives of various of the alkenes such as cyclohexene; 1-pentyne; 2-pentyne; 1-hexyne; and 3-methyl-1-butyne.

The preparation of the aforementioned organic tellurium compounds as well as many examples thereof are more fully set forth in U.S. Patent 10 4,142,896.

As indicated above, tetrahalides of tellurium in which the halide is at least one member selected from the group consisting of chlorine and bromine are also useful as the image-forming material 15 in the present invention. Such tellurium halides are fully described in U.S. Patent No. 4,066,460. Certain of these imaging materials can be represented by the formula

20 where n is an integer from 1 to 4 and m + n = 4. Typical tellurium tetrahalides which may be used are TeCl_4 ; TeCl_2Br_2 ; and TeClBr_3 . TeCl_4 is especially useful. Reference is made to U.S. Patent 4,066,460 for a fuller description of these tellurium tetrahalides and their use as image-forming 25 compounds.

-27-

Still another group of image-forming compounds are certain compounds derived from tellurium tetrahalides which are described in U.S. Patent 4,106,939 to Chang et al. These involved compounds are adducts of tellurium tetrahalide with aromatic amines exemplified by the tellurium tetrachloride adduct of dimethylaniline, which adduct is free of diazo groups. More specifically, these tellurium tetrahalide adducts are formed by combining a tellurium tetrahalide with an aromatic amine in which nitrogen attached directly or indirectly to the aromatic radical is substituted by alkyls containing from 1 to 4 carbon atoms, the imaging organo-tellurium material being free from diazo groups.

These aromatic amine adducts of the tellurium tetrahalides are fully described in U.S. Patent 4,106,939 to Chang et al.

The active tellurium compounds may, if desired, be formed in situ, for example, by using bis(acetophenone) tellurium dichloride or a tellurium oxide or a tellurium salt in combination with a suitable organic compound. Sometimes the in situ formation is promoted by the presence of an acid. For example, tellurium oxide or alkali

metal tellurates may be combined with one of the glycols described below to form a tellurium-organic compound complex which is active. It is believed that the reaction is analogous to the reaction between organic tellurium compounds such as described above and a diol. Preliminary information suggests that the reaction is favored by an acidic medium. Small amounts of an acid such as anhydrous hydrogen chloride may be added. Alternatively, halogen-containing tellurium compounds will provide the requisite acidity.

The reductant precursor: In addition to the tellurium image-forming compound, the imaging systems of the present invention include a reductant precursor, or sensitizer, which, as described above, is a compound that, under the influence of activating energy, has the property of extracting labile hydrogen from a hydrogen donor to become a reducing agent with respect to the image-forming tellurium compound. The activated reducing agent then reduces the tellurium compound to produce the desired image. The hydrogen donor may be an external source of hydrogen such as an alcohol specifically provided for the purpose. However, the

-29-

hydrogen donor may equally well be an appropriate group which is a part of the molecular structure of the reductant precursor.

Preferred reductant precursors useful in the present invention are quinones, particularly 2-isopropoxynaphthoquinone; 9,10-phenanthrenequinone; and 2-t-butylanthraquinone. Other specific reductant precursors include: 3-chloro-2-isopropoxy-1,4-naphthoquinone; 3-chloro-2-isopropoxy-1,4-anthraquinone; 3-chloro-2-isopropoxy-6,7-diphenyl-1,4-naphthoquinone; 3-chloro-2-(3'-Pentoxy)-1,4-naphthoquinone; 3-chloro-2-(2'-butoxy)-1,4-naphthoquinone; 3-chloro-2-(3',3'-dimethyl-2'-butoxy)-1,4-naphthoquinone; 2,3-diisopropoxy-1,4-naphthoquinone; 3-chloro-2-methoxy-1,4-naphthoquinone; 2,3-dimethoxy-1,4-naphthoquinone; 3-chloro-2-(t-butoxy)-1,4-naphthoquinone; 3-chloro-2-ethoxy-1,4-naphthoquinone; 3-chloro-2-(n-butoxy)-1,4-naphthoquinone; 3-chloro-2-(2'-methylpropoxy)-1,4-naphthoquinone; and 2-isopropoxy-1,4-anthraquinone. Especially useful reductant precursors from the aforementioned group include 3-chloro-2-isopropoxy-1,4-naphthoquinone, 3-chloro-2-isopropoxy-1,4-anthraquinone and 2,3-diisopropoxy-1,4-naphthoquinone. These reductant

-30-

precursors exhibit good sensitivity to electromagnetic radiation in the visible range, while allowing the film to have good speed.

Benzophenone, although not a quinone, is also 5 useful as a reductant precursor, as are a number of the simpler ketones.

A factor of importance in the selection of reductant precursors is the spectral range to which the reductant precursors respond. For that 10 reason, the simple ketones are not generally useful for recording visible light since their spectral sensitivity is in the far ultraviolet region.

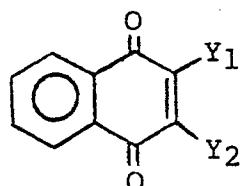
The following are illustrative reductant precursors which are sensitive in the range of up to 15 about 400 nm and, therefore, are useful only in the ultraviolet range: Benzophenone; acetophenone; 1,5-diphenyl-1,3,5-pantanetrione; ninhydrin; 4,4'-dibromobenzophenone; and 1,8-dichloroanthraquinone.

20 Various other reductant precursors can be utilized, particularly those of the type of substituted or unsubstituted polynuclear quinones, of which class some have been mentioned above, and others of which are 1,2-benzanthraquinone; 2-methylanthraquinone; 1-chloroanthraquinone;

-31-

7,8,9,10-tetrahydronaphthacenequinone; 9,10-anthraquinone; and 1,4-dimethylanthraquinone. It will be understood that not all reductant precursors will be effective or equally effective, with each given imaging material, even taking into account the utilization of imaging energy in the sensitivity range of the reductant precursor employed and that suitable selections of combinations of particular imaging materials and particular reductant precursors will be required to be made for achieving desirable or optimum results. Further, various reductant precursors will require different amounts of heating during development in order to remove substantially all of the reductant precursor from the film. Such selections, however, can be made relatively readily.

In general, in connection with the foregoing matters, it may be noted that reductant precursors have $\eta\pi^*$ states, both singlet and triplet, of lower energies than π, π^* states and, at least in most cases, compounds which have their π, π^* states of lowest energy will not be photosensitively effective, although, in certain limited cases, compounds which fulfill the test of having lower energy $\eta \rightarrow \pi^*$ than $\pi \rightarrow \pi^*$ transitions do


-32-

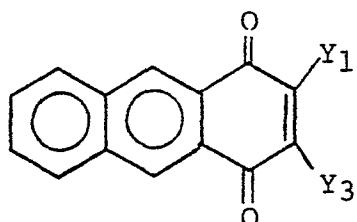
not function as reductant precursors. However, the above consideration is, in the main, an effective one for determining in advance whether a given compound will function as a reductant precursor for use in the practice of the present invention. In any event, a simple preliminary empirical test in any given instance can readily be carried out if necessary by preparing a test emulsion using the desired imaging compound and reductant precursor.

Preparation of certain preferred reductant precursors in accordance with the invention is now described. Generally, to form the naphthoquinones or anthraquinones in accordance with the invention, a suitable starting material is reacted with a suitable alkoxide to form the desired reductant precursor.

When it is desired to form a reductant precursor of the general formula

20

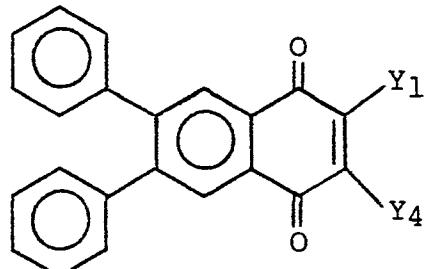
wherein Y_1 is alkoxy and Y_2 is alkoxy or chloro,
25 2,3-dichloro-1,4-naphthoquinone is reacted with a
metal alkoxide, such as a sodium alkoxide, the


-33-

alkoxide corresponding with the desired alkoxy group. The metal alkoxide can be formed by reacting an alcohol with an active metal, such as sodium. For example, the reaction of sodium with isopropanol yields sodium isopropoxide. Thus, to prepare 2,3-diisopropoxy-1,4-naphthoquinone, sodium isopropoxide is reacted with 2,3-dichloro-1,4-naphthoquinone, preferably at room temperature, forming 2,3-diisopropoxy-1,4-naphthoquinone. 2-chloro-3-isopropoxy-1,4-naphthoquinone is prepared in a similar manner, except that the alkoxide is added slowly to a cooled (preferably 0-5°C or about ice bath temperature) suspension of 2,3-dichloro-1,4-naphthoquinone. In this manner, only one of the chloro groups is replaced by an isopropoxy group. Other reductant precursors in accordance with the invention having one alkoxy group and one chloro group, such as 3-chloro-2-(2'-butoxy)-1,4-naphthoquinone, 2-chloro-3-isopropoxy-1,4-anthraquinone and 2-chloro-3-isopropoxy-6,7-diphenyl-1,4-naphthoquinone, can be prepared in a similar manner. The latter two compounds would be prepared from 2,3-dichloro-1,4-naphthoquinone and 2,3-dichloro-6,7-diphenyl-1,4-naphthoquinone, respectively.

-34-

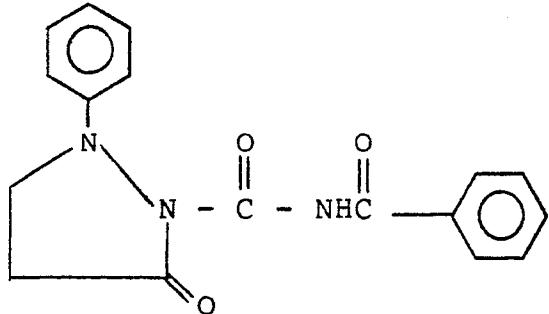
If Y_1 and Y_2 are different alkoxyl, one alkoxide is added slowly to replace one chloro and the product recovered and then the product is reacted in a similar manner with the other alkoxide.


5 Reductant precursors of the general formula

10 where Y_1 is alkoxyl and Y_3 is hydrogen, chloro or alkoxyl can be prepared by reacting 2-chloro-1,4-anthraquinone (if Y_3 is to be hydrogen) or 2,3-dichloro-1,4-anthraquinone (if Y_3 is to be chloro or alkoxyl) with a suitable metal alkoxide as previously described with respect to the naphthoquinones.

15

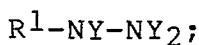
Reductant precursors of the general formula

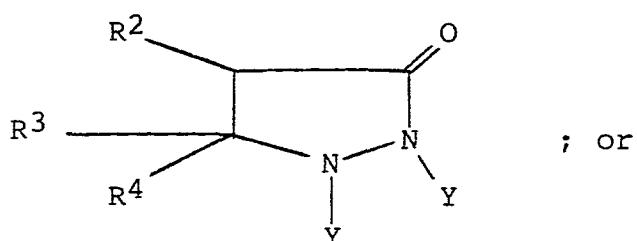

20

-35-

where Y_1 is alkoxy and Y_4 is hydrogen, chloro or alkoxy can be prepared by reacting 2,3-diphenylbutadiene with 2,3-dichlorobenzoquinone in acetic acid to give 2,3-dichloro-6,7-diphenyl-1,4-naphthoquinone, which is then reacted with a metal alkoxide as previously described with respect to 2,3-dichloro-1,4-naphthoquinone. Alternatively, where Y_4 is hydrogen, 2-chlorobenzoquinone is utilized in place of 2,3-dichlorobenzoquinone.

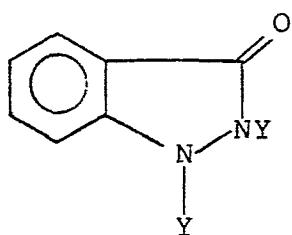
10 The Masked Reducing Agent: In accordance with the invention, a masked reducing agent may be included. A typical masked reducing agent thus is the compound 1-phenyl-2-benzoylamido-3-pyrazolidinone:


15


20 A more complete description of masked reducing agents may be found in Belgian Patent 863,052 of July 19, 1978, and reference thereto is made for additional descriptions thereof.

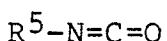
25 As an alternative to the masked reducing agents described in Belgian Patent 863,052, a new

class of masked reducing agents may be substituted, represented by the general formulae



5

10


15

wherein Y is hydrogen or CNHR^5 , said compound containing at least one $\text{C}-\text{NH}-\text{R}^5$ group. In the foregoing formulae, R^1 may be alkyl, alkanoyl, alkoxy-carbonyl, phenyl, benzyl, benzoyl, nitrophenyl, benzylcarbonyl, phenylmethyl, phenylethyl or phenylpropylcarbonyl, or aminocarbonyl. R^2 , R^3 and R^4 each, and independently, may be hydrogen, alkyl or phenyl and amino. R^4 may be phenyl, nitrophenyl, halophenyl, alkyl, mono-, di- or tri-haloalkyl, benzoyl, alkylphenyl, or alkylcyano-phenyl. The masking group may be substituted at either one or both of the amino hydrogen sites of

-37-

the reducing agent. The alkyl groups referred to above may contain up to seven carbon atoms. Such compounds are conveniently accessible through reaction of the parent hydrazine or pyrazoline with 5 an isocyanate of the formula

The Base: When a masked reducing agent is utilized, a base can be included. The inclusion of a base provides the unexpected result of improving the speed (light sensitivity) and/or improving the optical density of the exposed portions after development of imaging film made with such compositions. The inclusion of a base may also reduce the background fog or optical density 15 of unexposed portions of the film. The compositions may contain other components, as discussed.

The base may be organic or inorganic and should be sufficiently alkaline to ionize the masked reducing agent. In general, any base which 20 improves the performance of the film, such as, for example, increased speed, increased optical density of exposed portions or decreased fog of unexposed portions, can be utilized. Preferably, bases which produce unwanted deleterious effects 25 will be avoided. Suitable inorganic bases include, for example, metal hydroxides and ammonium

-38-

hydroxide. More specifically, alkali metal hydroxides and alkaline earth metal hydroxides can be utilized. Useful alkali metal hydroxides include those of lithium, sodium, potassium, rubidium and cesium. Lithium hydroxide is the preferred alkali metal hydroxide. Useful alkaline earth metal hydroxides include those of magnesium, calcium and barium. The hydrated form of the metal hydroxide can be used. It is anticipated that more than one base can be included in the imaging film composition.

Alternatively, the organic base may be an aliphatic amine compound or a nitrogen atom containing heterocyclic compound.

Suitable amines for use in accordance with the invention include primary, secondary and tertiary amines which may be aliphatic or aromatic. More particularly, suitable amines are those such as, for example, methylamine, di-methylamine, tri-methylamine, ethylamine, diethylamine, triethylamine, n-, di-n- and tri-n- propylamine, isopropylamine, n-butyamine, isobutylamine, sec-butylamine, tertbutylamine, and n-tetradecylamine. In general, those amines of the following formula may be suitable:

R - NH₂

-39-

where R is aliphatic (for example CH₃, C₂H₅, C₃H₇, etc.).

The R radical may be unsubstituted or substituted by various organic or inorganic radicals,
5 which do not interfere with the desired imaging effect.

Cyclic compounds, such as pyridine and piperidine, are also suitable, and may be unsubstituted or substituted by various organic or inorganic
10 radicals, which do not interfere with the desired imaging effect.

While not wishing to be bound by theory, it is believed that the base ionizes the masked reducing agent facilitating the formation of a complex between the ionized masked reducing agent,
15 positive tellurium ions and the latent image formed by the reductant precursor after exposure of the film to imaging energy. The complex is believed to be very susceptible to electron transfer, facilitating formation of a visible image.
20

In general, alkaline earth or alkali metal hydroxides are preferred over organic bases. The metal ions from the base may form a beneficial complex with the reductant precursor which makes
25 the reductant precursor more active.

-40-

The amount of base present in the film-forming composition is variable. Generally, there is no minimum amount of base required to provide an improved film. However, the degree of improvement 5 is related to the amount of base present, up to a certain amount, for each particular film formulation and base. Beyond that amount, generally the photoresponse of the film diminishes. The optimum amount of a particular base for a particular formulation can easily be determined simply by formulating film-forming compositions containing various amounts of a particular base and testing the 10 performance of the films made therefrom.

The Diol: In accordance with the present invention, there may also be included a diol which reacts with the tellurium compound to form an active intermediate complex. While the chemistry of 15 the complex is not well understood, we believe that, in general, the complex requires approximately 2 moles of diol for each mole of tellurium. Preferably, the diol, when present, is used 20 in excess of the minimum amount to form a complex since the diol will also function as a source of labile hydrogen to provide the source of hydrogen 25 required in the reaction of the reductant precursor.

-41-

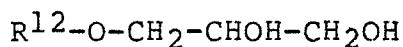
While the present invention can be practiced without the inclusion of a diol, the presence of a diol is preferred especially when a masked reducing agent is present. The presence of a diol 5 serves to markedly reduce the optical density of unexposed areas (i.e., thus increasing the contrast between the exposed and unexposed areas). Thus, while masked reducing agents can be used in the absence of a diol, tellurium film compositions 10 containing masked reducing agents tend to have a relatively high optical density in the unexposed areas because the reducing capacity of the masked reducing agent is not fully inhibited by the masking group.

15 One group of diols which may be used in formulating imaging compositions are diols of the formula

wherein each of R^8 and R^9 independently represents 25 hydrogen, a hydrocarbon group, including straight chain, branched chain and cyclic hydrocarbon

-42-

groups, hydroxyalkyl groups, alkoxy carbonyl groups, cycloalkyl groups or aryl groups; and Z represents an arylene group (for example, phenylene), the group (-C≡C-), the group 5 (-CR¹⁰=CR¹¹)_n, wherein n represents a whole number, for example, 1 or 2, and each of R¹⁰ and R¹¹ represents hydrogen or an alkyl group or taken from part of a carbocyclic or heterocyclic ring. Z also may be omitted - that is, the two hydroxy-10 substituted carbons are joined directly to each other. The following table illustrates a number of diols which may be used:


15	No. of the Compound	R ⁸	Z	R ⁹	Boiling Point (BP)	
					°C or Melting Point (MP)	°C
	1	H	-	H	BP	198
	2		-	H	MP	67
	3	H ₃ C-	-	H	BP	189
	4	H ₃ C-	-	-CH ₃	BP	183
20	5	H		H	MP	52-54
	6	H		H	MP	112
	7	HO(CH ₂) ₄	-	H	BP	178/5 mm Hg
	8	C ₂ H ₅ OC-		C ₂ H ₅ O-C-	BP	280

-43-

A fuller description of the foregoing diols may be found in the disclosure of Belgian Patent 854,193.

Preferably, however, the diol is of a more complex type than disclosed in the above-mentioned Belgian patent application. These more complex diols are the subject matter of U.S. Patent No. 4,281,058.

The preferred diols, as described in U.S. Patent No. 4,281,058, are compounds of the formula

In the foregoing compound, R^{12} may be alkyl, acyl, thiazolinyl, alkenyl, phenyl, alkylphenyl, alkenylphenyl, hydroxyalkylphenyl, benzyl, alkylbenzyl, alkoxybenzyl, hydroxyalkylbenzyl, or halo-benzyl and similar radicals.

The "thio" analogs of the foregoing compounds can be used (i.e., compounds in which the radical R^{12} is joined to the glycerol residue by a thio linkage in place of the oxy linkage).

Preferred compounds of the foregoing structure are those in which the radical R^{12} is benzyl or a substituted benzyl. The use of the diols of the foregoing structure has been found to be preferred since they are more effective in reducing

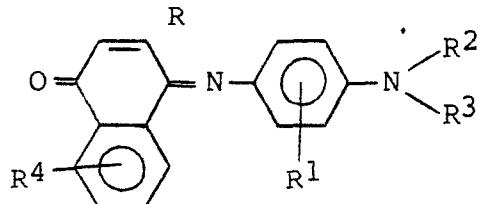
-44-

the optical density of the unexposed areas than are the diols described in Belgian Patent 854,193.

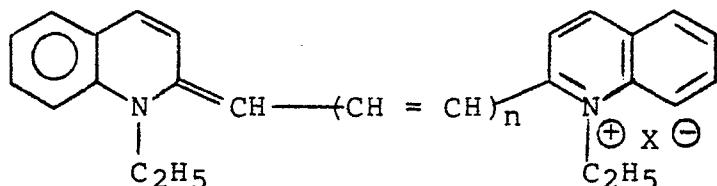
Ancillary Ingredients: In addition to the foregoing principal ingredients of the present formulation, ancillary ingredients may be included for various purposes. Thus, for example, it has been found that certain materials enhance the shelf life of unexposed virgin dry film compositions of the present invention, and in certain instances, they also enhance the sensitivity of said film compositions. Illustrative embodiments of such additional or supplemental materials, which contain ether or polyether linkages in the molecules thereof, are such materials or polymers as polyethylene-20 sorbitan monolaurate; polyethylene-20 sorbitan monooleate; Polyox-10; Polyox-80; Polyox-750; polyethylene glycol-400 distearate; polyethylene glycol-600 distearate; poly (1,3-dioxolane); poly (tetrahydrofuran); poly (1,3-dioxepane); poly (1,3-dioxane); polyacetaldehydes; polyoxymethylenes; fatty acid esters of polyoxymethylenes; poly (cyclohexane methylene oxide); poly (4-methyl-1,3-dioxane); polyoxetanes; polyphenylene oxides; poly [3,3-bis (halomethyl) oxocyclobutane]; poly (oxypropylene) glycol epoxy

-45-

resins; and copolymers of propylene oxides and styrene oxides. Such materials can be incorporated in the imaging film compositions in varying amounts, generally from 5 to 20% by weight of the 5 solid imaging film compositions. In certain cases they enhance or prolong the shelf life or storage life, under given storage conditions, as much as 50% or even very substantially more timewise, and, as indicated, they also, in various cases, effectively increase film sensitivity.
10


Again, the inclusion in the imaging films of reducing sugars has been found, generally speaking, to bring about an enhancement in density of the image area (O.D. image - O.D. background), 15 when the film is imaged as disclosed above and then developed, for instance, at about 120-150°C and for the order of about 15 seconds, especially where the imaging film is freshly prepared or not older than about a day after initial preparation.
20 Such films, when exposed to imaging energy and then developed resulted in the production of a positive image (i.e., the optical density is greater in the nonexposed areas than in the exposed areas) in contrast to the negative working system which exists in the usual practice of the
25

-46-


present invention. The inclusion of reducing sugars in the imaging compositions also enables development of the image, after exposure to imaging energy, to take place at lower temperatures, even at room temperatures, in a period of several hours, for instance, commonly in 10, 12 or 15 hours. The reducing sugars which can be employed are many, illustrative of which are dextrose, glucose, arabinose, erythrose, fructose, galactose, fucose, mannose and ribose. Especially effective are dextrose, arabinose, galactose, fucose and ribose. The reducing sugars can be used in variable amounts, but generally in equivalent amounts, or somewhat smaller or greater, in relation to the amount of imaging organo-tellurium materials in the imaging compositions.

It may be desirable in many cases to include a small amount of silicone oil or similar material as is well known to aid in coating of smooth continuous films.

Several other ancillary ingredients may be utilized, which can have the effect of increasing the sensitivity of the film and/or optical density after exposure. These ancillary ingredients include: indoaniline dyes of the general formula

where $R^1 - R^4$, may be, each and independently by hydrogen or alkyl (N,N -(*p*-dimethylamino-phenyl)-1,4-naphthoquinone(indophenol blue) for example); indane-1,3-dione derivatives such as 2-phenylindane-1,3-dione; and cyanine dyes of the general formula

15 where $n=1, 2$ or 3 and x is chloro or iodo ($1,1'$ -diethyl-2,2'-carbocyanine chloride (pinacyanol chloride) for example).

The matrix material: A film composition in accordance with the present invention is completed 20 by dissolving the ingredients and optional ingredients described above in a suitable matrix. The matrix should be as concentrated as is practicable in the active ingredients, i.e., the least amount of matrix is preferably used. The amount of matrix 25 should be sufficient as to just retain the various active ingredients in a solid solution.

-48-

An additional quantity of matrix may be used, however, that obviously tends to dilute the concentration of active ingredients, thereby slowing down the photo-response of the film composition.

5. The selection of matrix materials, of course, must be related to the active ingredients used so as to provide the maximum solubility for any particular composition.

The matrix materials, into which the imaging 10 organo-tellurium materials, and the separate sensitizers when employed, are incorporated to produce the imaging film or coating, are solids at room temperature, and they can be selected from a relatively large number of materials. Care should 15 be taken to insure that the matrix material does not absorb undesired components, such as excess water from the atmosphere. They should desirably be at least in part of amorphous character and it is especially desirable that they be glassy, polar 20 amorphous materials having a glass transition temperature, which desirably should not exceed about 200°C and may be as low as about 50°C, and, better still, should be within the range of about 80-120°C. They are generally polymeric materi- 25 als. Illustrative thereof are cyanoethylated

-49-

starches, celluloses and amyloses having a degree of substitution of cyanoethylation of ≥ 2 ; polyvinylbenzophenone; polyvinylidene chloride; polyethylene terephthalate ("MYLAR"); cellulose esters and ethers such as cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, acetyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinylcarbazole; polyvinyl chloride; polyvinyl methyl ketone; polyvinyl alcohol; polyvinylpyrrolidone; polyvinyl methyl ether; copolymers of vinylidene chloride and acrylonitrile; polyvinyl acetate, polyvinyl butylral; polystyrene; polymethyl methacrylate; polyvinyl pyrrolidone; styrenebutadiene copolymers; polyamides; polyacrylic and polymethacrylic alkyl esters such as polymethyl methacrylate and polyethyl methacrylate; copolymer of polyvinyl methyl ether and maleic anhydride; various grades of polyvinyl formal resins such as so-called 12/85, 6/95E, 15/95S, 15/95E, B-79, B-98, and the like, sold under the trademark "FORMVAR" - (Monsanto Company). Of special utility is polyvinyl formal 15/95% which is a white, free flowing powder having a molecular weight in the range of 24,000-40,000 and a formal content

-50-

expressed as percent polyvinyl formal of approximately 82%, possessing high thermal stability, excellent mechanical durability, and resistance to such materials as aliphatic hydrocarbons, and mineral, animal and vegetable oils. These polymeric materials or resins and their preparation are well known to the art. Also of special utility are various grades of cellulose acetate butyrate polymers sold by the Eastman Kodak Company under the 5 trade designation "CAB", particularly "CAB 500-5".
10

In addition to their functioning as carriers for and holding together in a unitary composition the imaging organo-tellurium materials, sensitizers and any other ingredients which may be incorporated into the imaging film or coating or layer 15 and their functioning as dry or essentially dry film-forming materials to provide thin films and providing mechanical durability in the finished imaged film, at least many of them appear also to play a chemical or physical role in the imaging process by providing, importantly, a source of readily easily abstractable hydrogen and, thus, appear to play a significant role in the latent image formation mechanism, as discussed hereafter. In certain instances, it may be desirable 20
25

-51-

to decrease the viscosity of the matrix, which can be done, by way of illustration, by the addition of certain plasticizers, for instance, dibutylphthalate or diphenylphthalate, which additions tend

5 to result in the production of images desirably of higher optical densities but which, however, also tend to have the disadvantage of increasing background fogging.

It may be noted that matrix materials of the 10 type which contain basic groups may complex with the imaging organo-tellurium materials and, therefore, to the extent that such complexing may occur, the use of such matrix materials should be avoided.

15 Alcohol: The compositions of the invention may include an alcohol. Preferably, the alcohol will be utilized when a diol as previously described is present in the composition. The alcohol and diol may form a complex with the tellurium 20 compound, providing a film having enhanced speed and/or improved background fog. The alcohol may be primary, secondary or tertiary. Primary monohydric alcohols are preferred, such as n-butanol and n-propanol, for example.

-52-

Water: The composition may also include water. A small quantity of water, generally added to the matrix material, prior to combination with the other film-forming components, serves to improve the speed of the film. However, too much water may cause a tellurium oxide to be precipitated when the components of the film-forming composition are combined, and this should be avoided.

Formulation of Film Compositions: In the production of the films or thin layers of the imaging material compositions, which are generally prepared in the form of solutions or homogeneous dispersions and coated or laid down on a substrate, it is especially desirable to dissolve or homogeneously disperse the ingredients in an organic solvent. Illustrative of suitable solvents are methyl ethyl ketone (MEK), dimethylformamide (DMF), chloroform, tetrahydrofuran (THF), dimethylacetamide (DMA), dioxane, dichloromethane and ethylene dichloride, or compatible mixtures of such organic solvents or with other organic solvents. A particularly useful solvent is a 50:50 mixture of dichloromethane and methyl ethyl ketone. After the solution or homogeneous dispersion is formed on a substrate in any suitable manner, the major proportions of such organic solvent

or solvents are evaporated off, preferably at a relatively low temperature and, sometimes desirably, under subatmospheric pressures or in vacuo, until the film or coating is substantially dry to 5 the touch, such dry-to-the-touch coating being especially desirable for handling and processing purposes. Although such films or coatings may be, generally speaking, dry to the touch, it should be understood that this does not mean that the film 10 is free from organic solvent. Indeed, it has been found that it is frequently very desirable that the finished films or coatings, prior to exposure to imaging energy, contain a small percentage, commonly of the general order of about 2 to 3%, by 15 weight of the film or coating, or organic solvent, for instance, dimethylformamide (DMF) since its presence appears to play a favorable role in the sensitivity of the system in relation to the latent image formation and/or ultimate image obtained after the development step. The elimination 20 of all or essentially all of the DMF, or other organic solvent or solvents, from the virgin film prior to the imaging and development frequently leads to a decrease in sensitivity. In 25 any event, in any given instance where drying of

-54-

the virgin imaging film has been carried out to a point where essentially no organic solvent is present, and whereby sensitivity is unduly reduced, sensitivity can be increased or restored by 5 adding a small amount of organic solvent to the film prior to exposing it to imaging energy.

The imaging film or coating thickness are variable but will usually fall within the range of about 1 to about 35 μm with about 5 to 15 μm generally being a good average. Preferably, the thickness of the coating is about 20 μm . Generally, increases in the coating thickness make removal of the reductant precursor as a result of heat development more difficult.

15 The production of the imaging organo-tellurium materials, and the coating, handling and processing operations, to the extent which may be required, are carried out under appropriate light conditions, as those skilled in the art will readily understand. For instance, the formulation of 20 the coating compositions and the coating and drying operations are conveniently carried out under amberlite filtered light (weak transmission at 550 nm). The dry film prior to imaging, is desirably 25 stored in the dark. In certain cases, avoidance

-55-

of contact of certain of the ingredients with cer-
tain metals may be in order where undesired reac-
tions, such as reductions, may occur. In general,
the vessels or containers, stirrers, etc., uti-
5 lized should be made of glass or other vitreous
materials or other materials inert to the coating
ingredients to insure against contamination or
possible undesired reactions. It is advantageous,
in general, to prepare the imaging compositions
10 shortly prior to coating them on the selected sub-
strate. Under suitable storage conditions, which
generally are conditions of darkness and reason-
able avoidance of air or oxidizing atmospheres and
humidity conditions, the stability of the imaging
15 compositions is good.

In the imaging compositions, the proportions
of the matrix, the imaging organo-tellurium mate-
rial and the reductant precursor are variable. In
any event, generally speaking, excluding the or-
20 ganic solvent or solvents, where employed as
described below, at least in most cases the matrix
material, which is a normally solid material, that
is, solid at room temperature, will be employed in
amounts in excess of any one of the other materi-
25 als and will also usually be present in major

-56-

amount, that is more than 50% and broadly in the range up to 90% by weight, of the total materials present in the imaging composition. The imaging organo-tellurium material, generally also a normally solid material, will ordinarily constitute from about 1 to above 20 parts per 100 parts of matrix, usually about 5-10 parts per 100 parts of matrix. The reductant precursor, where it is a separate ingredient, which is usually a solid, 5 will usually be employed in lesser proportions, commonly of the order of about 0.5 to 3%, usually about 0.8 to 2.0%, by weight, of the imaging composition. With further regard to the proportions of the aforesaid ingredients, it may be stated 10 that the area density of the reductant precursor is desirably selected so that up to about 70-95% of the photons falling on the film in the region of the absorption bands of the reductant precursor are absorbed. Considerably higher concentrations 15 of reductant precursor would leave the dark side of the film unexposed and no advantage would thus be served. In general, for optimal results in many cases, the mole concentration of the imaging organo-tellurium material to that of the reductant 20 precursor should be about 5:2. The concentration 25

-57-

of the polymer matrix material should be sufficient to produce an essentially amorphous film without bringing about precipitation of the imaging organo-tellurium material, the sensitizer and 5 other supplemental ingredients when utilized.

Excess polymer matrix material also tends to decrease the sensitivity of the film.

The amount of diol should be present in a concentration sufficient to provide at least 2 10 moles of diol for each mole of tellurium compound, and preferably to provide up to a ratio of 6:1 moles. As indicated above, our work has suggested that a complex is formed between the diol and the tellurium compound in a molar ratio of 2:1, and 15 that excess diol above that is useful to provide a source of labile hydrogen for reaction with the reductant precursor. Larger amounts of the diol may be used if desired. To some extent, improved results are obtained when these larger amounts of 20 diol are used; however, there is a point of diminishing returns above which increasing the amount of diol will not provide commensurate improvement in photoresponse of the finished film.

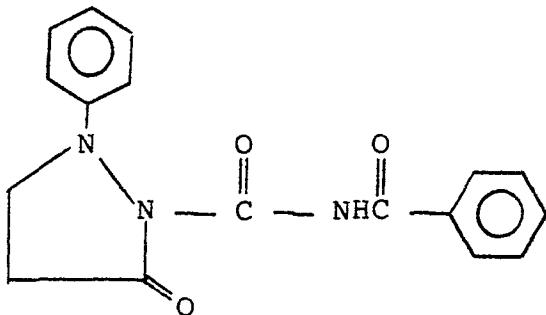
The masked reducing agent may be present in 25 amounts of 1% up to 200% by weight of the tellurium compounds. Measurably improved sensitivity can

-58-

be found in accordance with the present invention with even very small amounts of masked reducing agent and within limitations the degree of improvement is in proportion to the amount of masked reducing agent which is incorporated in the film. 5 Again, however, a law of diminishing returns is observed, and while large amounts of the masked reducing agent will be incorporated, on the order of 2 to 4 times the amount of tellurium compound, 10 beyond these large amounts the increase in photo-response obtained is not commensurate with the increased amount of masked reducing agent incorporated.

The film-forming compositions as described 15 above will be applied to any suitable substrate. Glass, porcelain, paper and various plastic substrates have been found suitable. For the purposes of forming film-like materials, transparency is obviously desirable. For this purpose, film of 20 polyethylene terephthalate have been found particularly suitable. Other substrates include, for example, polyimides, nylon and triacetyl cellulose.

-59-


Additional considerations which those skilled in the art in formulating and using tellurium-based film compositions may utilize are apparent from U.S. Patent No. 4,142,896.

5 This invention is further illustrated by the following examples:

Example 1

A tellurium imaging film in accordance with the invention was made and tested. 0.625 grams of 10 bis(acetophenone) tellurium dichloride, 0.15 grams of isopropoxy-1,4-naphthoquinone (IPNQ), 0.625 grams of masked 1-phenyl-3-pyrazolidone of the formula:

15

2.4 grams of ortho-methoxy benzyl glyceryl ether, 20 10.42 grams of CAB-500-5, 3.0 milliliters of n-butanol and 160 milliliters of a 50:50 mixture (by volume) of methylene dichloride and methyl ethyl ketone were stirred together in complete darkness at room temperature until a homogeneous 25 viscous solution was obtained. The solution was

-60-

then coated on a polyester substrate at a thickness of 20μ and the resulting film heated in an oven at 50°C for three hours.

The film was tested by exposing the film to
5 imaging energy through a photographic step tablet
having eleven steps and an optical density range
of approximately 0.3 to 3.05. The step tablet was
in contact with the film during exposure. A
Honeywell Strobonar Model No. 710 Xenon flash tube
10 was utilized to provide imaging energy, spaced approximately nine inches from the film. After exposure, the film was developed by heating the film
at a temperature of 150°C for either 45 or 90
seconds. The developed film was tested to determine
15 how well the film was fixed by placing a
frame of the film in a Bell & Howell Model SR-VIII
microfilm reader for one or more hours in the
viewing position. The minimum and maximum optical
density (OD) of the film was thereafter measured
20 with a MacBeth Model T-P 504 Densitometer using a
red filter. The following results were obtained:

0100126

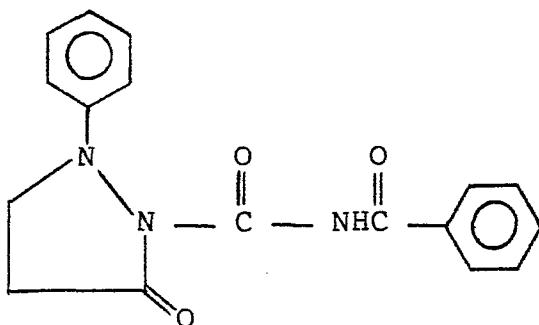
-61-

<u>Time In Microfilm Reader</u>												
<u>Development Time</u>	<u>0 Hour</u>	<u>1 Hour</u>	<u>2 Hours</u>	<u>4 Hours</u>	<u>8 Hours</u>	<u>20 Hours</u>						
45 seconds												
5	OD Min 0.23	0.28	0.31	0.36	0.42	-						
	OD Max 1.79	1.78	1.78	1.77	1.78	-						
90 seconds												
	OD Min 0.29	0.29	0.29	0.30	0.30	0.30						
	OD Max 1.88	1.88	1.87	1.86	1.86	1.84						
10	<u>Example 2</u>											
The same procedure set forth in Example 1 was utilized to make and test film made as in Example 1 except that 0.190 grams of 3-chloro-1-isopropoxy-1,4-naphthoquinone (CIPNQ) was utilized in place of IPNQ. The following results were obtained:												
<u>Time in Microfilm Reader</u>												
<u>Development Time</u>	<u>0 Hour</u>	<u>4 Hours</u>	<u>20 Hours</u>									
20	45 seconds											
	OD Min 0.23	0.35	0.35									
	OD Max 1.94	1.95	1.91									
	90 seconds											
	OD Min 0.35	0.31	0.26									
25	OD Max 2.12	2.01	1.97									

-62-

Example 3

The same procedure set forth in Example 1 was utilized to make and test film made as in Example 1 except that in place of IPNQ, 0.315 grams of 5 2,3-diisopropoxy-1,4-naphthoquinone was utilized.


The following results were obtained:

<u>Time In Microfilm Reader</u>			
<u>Development Time</u>	<u>0 Hour</u>	<u>20 Hours</u>	
10 90 seconds	OD Min 0.36	0.28	
	OD Max 1.65	1.65	

Example 4

The same procedure set forth in Example 1 was utilized to test film made as in example 1, 15 from the following composition: 0.625 grams of bis(acetophenone) tellurium dichloride, 0.15 grams of isopropoxy-1,4-naphthoquinone (IPNQ), 0.625 grams of masked 1-phenyl-3-pyrazolidone of the formula:

20

-63-

2.4 grams of ortho-methoxy benzyl glyceryl ether,
 10.42 grams of CAB-500-5, 3.0 milliliters of
 n-butanol, 0.3 grams of 2-phenylidone-1,3-dione
 (PID), 4 milligrams of pinacyanol chloride (QB), 3
 5 milligrams of lithium hydroxide ($\text{LiOH} \cdot \text{H}_2\text{O}$), 3
 milligrams of indophenol blue (IPB) and 160
 milliliters of a 50:50 mixture (by volume) of
 methylene dichloride and methyl ethyl ketone. The
 following results were obtained:

10

		Time in Microfilm Reader						
Development Time		0 Hour	1 Hour	2 Hours	4 Hours	8 Hours	20 Hours	48 Hours
45 seconds								
	OD Min	0.24	0.31	0.33	0.40	-	-	-
15	OD Max	2.07	2.07	2.11	2.11	-	-	-
90 seconds								
	OD Min	0.28	0.29	0.30	0.30	0.27	0.24	0.24
	OD Max	1.95	1.95	1.95	1.94	1.95	1.93	1.91

Example 5

20

The same procedure set forth in Example 1 was utilized to make and test the film of Example 4 except that in place of IPNQ, 0.190 grams of CIPNQ was utilized. The following results were obtained:

-64-

Time In Microfilm Reader

<u>Development Time</u>	<u>0 Hour</u>	<u>20 Hours</u>
90 seconds	OD Min 0.23	0.21
5	OD Max 2.11	2.04

Example 6

The same procedure set forth in Example 1 was utilized to make and test the film of Example 4 except that in place of IPNQ, 0.315 grams of DIPNQ 10 were utilized. The following results were obtained:

Time in Microfilm Reader

<u>Develop- ment Time</u>	<u>0 Hour</u>	<u>1 Hour</u>	<u>2 Hours</u>	<u>4 Hours</u>	<u>8 Hours</u>	<u>20 Hours</u>	<u>48 Hours</u>
15 90 seconds	OD Min 0.27	0.27	0.27	0.27	0.27	0.24	0.24
	OD Max 1.75	1.75	1.75	1.75	1.75	1.75	1.71

While the invention has been described with respect to specific embodiments, it is to be understood that various changes and modifications 20 will be suggested to one skilled in the art, and it is intended to encompass such changes as fall within the scope of the appended claims.

-65-

C L A I M S

1. A film for forming an image made from a film-forming composition, which composition includes a reducible image-forming compound, a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming compound, a source of labile hydrogen for reaction with said reductant precursor, a matrix in which said tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form a composition which may be applied to a substrate, said film characterized by,

15 said reductant precursor present in an amount such that when the film is developed normally by heating, essentially all of the reductant precursor is removed from the film.

2. The film according to claim 1, further characterized by said image-forming compound being selected from the group consisting of

$R_x\text{-Te-Hal}_y$

$(\text{Hal} - R^2)_x - \text{Te} - \text{Hal}_y$; and

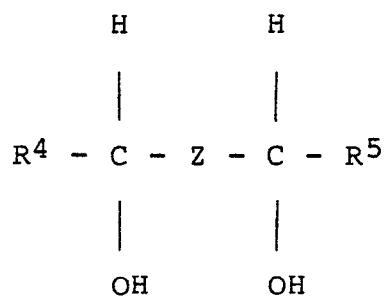
TeCl_nBr_m

-66-

in the foregoing formulae, R being an organic radical containing at least 1 carbonyl group, R² being the residue of an ethylenic hydrocarbon, Hal being halogen, x being 1, 2 or 3; and x + y = 4; n 5 being an integer from 1 to 4 and m + n = 4.

3. The film according to any one of claims 1 or 2, further characterized by the thickness of the film-forming composition being between about 1 and 35 micrometers.

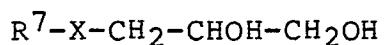
10 4. The film according to any one of claims 1 to 3, further characterized by the thickness of the film-forming composition being about 20 micrometers.


15 5. The film according to any one of claims 1 to 4, further characterized by said reductant precursor being present in an amount such that when the film is developed at about 150°C for about two minutes or less, substantially all of said reductant precursor is removed from the film.

20 6. The film according to any one of claims 1 to 5, further characterized by said image-forming compound being an organo imaging compound selected from the group consisting of organo compounds of copper, silver, nickel, mercury, cobalt 25 and tellurium.

-67-

7. A film for forming an image made from a film-forming composition, which composition includes an image-forming tellurium compound, a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming tellurium compound, a source of labile hydrogen for reaction with said reductant precursor, a matrix in which said tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form a composition which may be applied to a substrate, and characterized by,
said reductant precursor present in an amount such that when the film is developed normally by heating, essentially all of the reductant precursor is removed from the film.


8. The film according to claim 7, further characterized by said composition further including a diol of the formula

-68-

wherein each of R⁴ and R⁵ independently represents hydrogen, a hydrocarbon group, including straight chain, branched chain and cyclic hydrocarbon groups, hydroxyalkyl groups, alkoxycarbonyl groups, cycloalkyl groups or aryl groups; and Z represents a direct C-C bond between the carbon atoms on either side of it, or an arylene group, the group (-C≡C-), the group (-CR⁶=CR⁷)_n, wherein n represents 1 or 2, and each of R¹² and R¹³ represents hydrogen or an alkyl group or taken from part of a carbocyclic or heterocyclic ring, said diol being provided in an amount equivalent to at least 2 moles thereof per 1 mole of said tellurium forming compound.

15 9. The film according to claim 7, further characterized by said composition further including a diol of the formula

wherein R⁷ is alkyl, alkanoyl, thiazolinyl, alkenyl, benzyl, alkylbenzyl, alkoxybenzyl, hydroxyalkylbenzyl, or halobenzyl; the alkyl radical having from 1 to 7 carbon atoms; and

X is oxygen or sulphur.

-69-

10. The film according to any one of claims
7 to 9, further characterized by said tellurium
compound being selected from the group consisting
of:

5 $R_x\text{-Te-Hal}_y$,
 $(\text{Hal} - R^2)_x - \text{Te} - \text{Hal}_y$ and
 TeCl_nBr_m ;

wherein R is an organic radical containing at
least 1 carbonyl group; R^2 is the residue of an
10 ethylenic hydrocarbon; Hal is a halogen; x is 1, 2
or 3; $x + y = 4$; n is an integer from 1 to 4 and
 $m + n = 4$.

11. The film according to any one of claims
9 or 10, further characterized by said composition
15 including a masked reducing agent.

12. The film according to any one of claims
9 to 11, further characterized by said composition
including an alcohol.

13. The film according to any one of claims
20 7 to 12, further characterized by said tellurium
compound being bis(acetophenone) tellurium dichlo-
ride.

14. The film according to any one of claims
7 to 13, further characterized by the thickness of
25 the film-forming composition being between about 1
and 35 micrometers.

-70-

15. The film according to any one of claims 7 to 14, further characterized by the thickness of the film-forming composition being about 20 micrometers.

5 16. The film according to any one of claims 7 to 15, further characterized by said reductant precursor being present in an amount such that when the film is developed at about 150°C for about two minutes or less, substantially all of 10 said reductant precursor is removed from the film.

17. The film according to any one of claims 7 to 16, further characterized by said composition including water.

18. A composition responsive to activating 15 energy for forming an imaging film which composition includes:

an image-forming tellurium compound, a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence 20 of imaging energy to become a reducing agent with respect to the image-forming tellurium compound, a source of labile hydrogen for reaction with said reductant precursor, a matrix in which said tellurium compound, reductant precursor and source of 25 labile hydrogen are combined in amounts effective

to form a composition which may be applied to a substrate, which composition is characterized by,

5 said reductant precursor present in an amount such that when the film is developed normally by heating, essentially all of the reductant precursor is removed from the film.

19. A method for recording electromagnetic radiation, wherein said method includes impinging said radiation upon a photosensitive film to produce a change in at least one property thereof, which film is made from a photosensitive composition including an image-forming tellurium compound, a reductant precursor which will abstract labile hydrogen from a labile hydrogen source under the influence of imaging energy to become a reducing agent with respect to the image-forming tellurium compound, a source of labile hydrogen for reaction with said reductant precursor, and a matrix in which said tellurium compound, reductant precursor and source of labile hydrogen are combined in amounts effective to form a composition which may be applied to a substrate, and characterized by,

said reductant precursor present in an amount such that when the film is developed normally by heating, essentially all of the reductant precursor is removed from the film.

5 20. The method according to claim 19, further characterized by the thickness of the film-forming composition being between about 1 and 35 micrometers.

10 21. The method according to claim 19 or 20, further characterized by the thickness of the film-forming composition being about 20 micrometers.

15 22. The method according to any one of claims 19 to 21, further characterized by development at about 150°C for about two minutes or less causing substantially all of said reductant precursor to be removed from the film.

20 23. A method of making a self-fixing film for forming an image, the film made from a film-forming composition, which composition includes a reducible image-forming compound and a source of labile hydrogen, said method including providing in said composition a reductant precursor which will abstract hydrogen from the source of labile hydrogen under the influence of imaging energy to

-73-

become a reducing agent with respect to the image-forming compound, said composition characterized by,

5 said reductant precursor present in an amount such that when the film is developed normally by heating, essentially all of the reductant precursor is removed from the film.

24. The method according to claim 23, further characterized by said image-forming compound 10 being an organo imaging compound selected from the group consisting of organo compounds of copper, silver, nickel, mercury, cobalt and tellurium.

25. The method according to any one of claims 23 or 24, further characterized by said 15 imaging forming compound being a tellurium imaging compound.

26. The method according to any one of claims 23 to 25, further characterized by the thickness of the film-forming composition being 20 between about 1 and 30 micrometers.

27. The method according to any one of claims 23 to 27, further characterized by development at about 150°C for about two minutes or less causing substantially all of said reductant precursor to be removed from the film.