woO 2007/111751 A2 |00 00 0 000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 October 2007 (04.10.2007)

fﬂﬁ A0 0 000

(10) International Publication Number

WO 2007/111751 A2

(51) International Patent Classification:
GOG6F 7/00 (2006.01)

(21) International Application Number:
PCT/US2006/062444

(22) International Filing Date:
20 December 2006 (20.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/752,629
11/613,347

20 December 2005 (20.12.2005) US
20 December 2006 (20.12.2006) US

(71) Applicant and
(72) Inventor: SPRINGETT, John C. [US/US]; 3510 Fair
Oaks Boulevard, -, Sacramento, California 95864 (US).

(74) Agent: NGUYEN, Joseph, A; IPSG, P.C., PO Box
700640, San Jose, California 95170 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: ARCHITECTURE FOR A SMART ENTERPRISE FRAMEWORK AND METHODS THEREOF

Client 922

&

Users B4

Sty 928

§ Pressatstion 93

2
{

Oonversion 93¢ | Gomponenta 336

L UtComponenta 638 |
i |

{ Gt Aosess Logic Componenis 947

E\ Dala Preparationand | Bushess Logis
L Metartata Gonversion Crmponants Hid

A ! L3 |
| I

|
¢ I Remole Database 303
o ¥ Ramole Database ‘j\

User Data 948

A

A,

Replication ¢26

i

Communication network ¢80

Server 9602

Sentrzt Databese Server 308

Replication §08

S

(57) Abstract: A system for enabling a user to execute an application
on a client device is disclosed. The system includes a first datastore
for storing metadata pertaining to design, development, deployment,
presentation, and/or execution of the application. The design, devel-
opment, deployment, presentation, and/or execution of the application
may pertain to user interface and/or business logic of the application.
The system also includes a second datastore storing application data
pertaining to utilization of the application. The system further includes
a third datastore residing in the client device for storing replicated meta-
data and replicated application data. The replicated metadata are a copy
of the metadata, and the replicated application data are a copy of the ap-
plication data. The system further includes logic residing in the client
device for converting at least the replicated metadata into the at least
one of user interface and business logic of the application.

WO 2007/111751 PCT/US2006/062444
ARCHITECTURE FOR A SMART ENTERPRISE FRAMEWORK
AND METHODS THEREOQF
BACKGROUND QF THE INVENTION
5 Lacking good alternatives, organizations often baild proprietary software apphcations
in order to manage mereasing volumes of digital information, However, the proliferation of
multiple incompatible data formats, stored on different database systems, and accessed across
distriibuted networks, has made the application development process overly complex, and
hence extremely costly. Because of substantial time pressure, or a fack of technical design
10 experience, many applications are often quickly designed and poorly implemented.
Consequently, the development cosis often exceed the software and hardware costs by an
order of magnitude or more. In addition, complex systems often require sophisticated,
substantial, and costly perpetual support.
Enterprise applications with two or more components that are connected over a
15 network are often referred to as n-tier architectures, where n is an integer greater than or
equal to two. For example, a web browser and a web server. If a database is refatively sunple,
and the majority of client access is local (as opposed to geographically distnibuted), a client
application may be all that 1s required for database access. That is, a two-tier implementation,
tn which a custom fat or thick client 1s created {in a client laver) in order to retrieve and
20 update information that is stored 1 a database (in a database layver). Thick client generally
refers to an additional and/or relatively large {e.g., » 1 MB) application, not commonly
mcladed with the operating system, but may provide a graphical user interface in order to
access the database, as well as business logic in order to simplify and optimize user data

nteraction.

2
LA

In general, traditional databases are organized by fields, records, and tables. A field is
a single piece of information; a record is one complete set of fields; and a table is a collection
of records. For example, a telephone book is analogous to a table. 1t contains a list of records,
each of which consists of three fields: name, address, and telephone number. Tables, in turn,

are organized into schema. A schema is commoniy a conceptual model of the structure of a

bk
<

database that defines the data contents and relationships. A database definition language
specitication is an implementation of a particuiar schema. In general, the database schema
must be properly designed, or the overall application will not function correctly. In addition,

database applications also generally include a collection of programs that enables the

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
modification and extraction of information from a database, called a DBMS (database

management systen}.

Referring not to FIG. 1, a simplified diagram of a two-tier implementation
architecture is shown, The diagram can be divided into a data layer 102 and a chent {ayer
106. Data layer 102 typically comprises elements that are primarily focused on accumulating,
processing, and transforming data, such as database 108, For example, a small office may
mantain customer records in an Oracle database. Client laver 106 typically comprises
elements that are primanily focused on both providing business logic and rendering the
processed data for a user, such as thick client 110, For example, the small office may have
created a proprietary thick chient {e.g., MS Access, Visual Basic, Visual C++ etc) that is
tocally installed on each user’s computer, In addition, thick client 110 generally interfaces
with database 108 through a query language such as SQL (structured guery language), a
standardized query language for requesting information tfrom a database.

Thick client 110 may be further developed with IDE (infegrated development
environment) 112, {e.g., Microsoft Visual Studio, Eclipse, etc.). In general, an IDE s a GUI
workbench tor developing code, featuring facilities like symbolic debugging, version control,
and data-structare browsing. In addition, SQL editor may be used for prototyping and
creating views (subsets) of the data in database 108, In general, a SQL editor 114 display the
text being edited on the screen as it is being edited. In general, the more complex the view,
the more prone it may be to being displayved unproperly at thick client 110,

However, the two-tier implementations are not optimized for scaling beyond just a
few clients. For exanmple, the application fogic (e.g., the rules of how the application should
run) is generally divided between a centrally located database and a distributed set of clients.
Consequently, updating and/or maintaining software often requires physically modifying
cach chent device, which s time consuming. In addition, since the queries are generated by
the client, the database access may not be optimized, creating additional network traffic and
decreasing application performance. Furthermore, security may also be problematic, since
database access is controlled at each client. If the client is compromised, the database may
also be compromised,

in contrast, decentralized enterprise applications are generally configured
with at least three components connected over network, in which etther a thick client or & thin
client {e.u., browser, ete.} in a client layer, may be coupled to one or more application servers
in an application laver, that in turn, may be coupled to one ar more databases in a data layer.

An application server, or appserver, 1s generally a centralized software application that

b3

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
generally shares processing burden with client and pertorms the business togic necessary to

provide clicnts with access to the databases. In web environments, an application server
generally sits besude a web server or between a web server and enterprise information
systemns. A thin client generally refers to an application that is commonly included with the
operating system, such as a browser, or an installed application that is relatively small (e.g., <
1 MB) that must be mstalled to access the database.

Consequently, updating and/or maintaining software 15 substantially easier than the
two-tier implemeantation because much of the software {e.g., application {ogic and database
togic) 1s generally centrally maintained at a data center, and not distributed throughout the
organization. In addition, the application server also may minmmize the chent data processing
toad, and hence improve the overall performance of the application.

Furthermore, since the client does not directly access the database, but rather interacts
with the database through the application server, which itself mayv be protected, secunity may
be enhanced.

Referring not to FIG. 2, a simplified diagram of a three-tier implementation is shown.
The diagram can be divided into a data laver 102, ap application layer 104, and a client layer
106. As previously described, data layer 102 typically comprises elements that are primarily
focused on accumulating, processing, and transforming data, such as a database 108, For
example, a medium size manufacturing organization may have customer information in
database 108. Application layer 104 mcludes the application server 122, such as the order
entry application server. Client layer 106 includes the clients that are used to access
application, such a thuck client 110 and thin client 111, In addition, IDE 112 (e.g., Microsoft
Visual Studio, Eclipse, ete.) may be used to thick client 110, thin client 111, and application
server 122 In the case of a thin client 111, such as a browser, IDE 112 may be used to create
an installable component {e.g., java applet, ActiveX, Flash, etc.). In addition, a visual editing
tool such as SQL visual editor may be used for prototyping and creating views of the data in
database 108,

However, although three-tier enterprise software implementations may be scalable
and reliable, they also tend to be difficult to design and time consuming to develop. For
example, a major reason for redesigning the database schema is a poor understanding of the
problem, and hence an mcomplete model of the solution. In general, customer needs are used
1o create a model of the problem (e g, order entry system, reservation system, client record
system, etc.). From this model, detatled application specifications are derived to develop,

among other things, a sound database structure. However, since correcting a problem in one

ted

STGL-POOIPCT

16

20

13]
]

WO 2007/111751 PCT/US2006/062444
area {e.g., schema, etc.y may in turn affect other areas (e.g., application logic, user interface,
etc.), the revision process may be substaptially time consuming, often taking weeks or
months for large processes.

In addition, in most n-tier implementations, the client is not generally designed to be
decoupled from the application server or the database. However, for performance reasons;, it
may be advantageous o decouple the client from the database, locally caching the data iiself
For example, the client application may not have a readily available network connection, or
perhaps network performance has degraded. However, in many applications, such as in
browser environment, if the connection is broken to the web server or the application server,
an error generally occurs potentially causing a data loss.

In view of the foregoing, there is desired architecture for a smart enterprise
framework and methods therefore,

SUMMARY OF THE INVENTION
One or more embodiments of the present invention relate to a system for enabling a

user to execute an application on a client device ts disclosed. The system may include a first
datastore for storing metadata pertaining to design, development, deplovment, presentation,
and/or execution of the application. The design, development, deplovment, presentation,
and/or execution of the application may pertain 1o user interface and/or business logic of the
application. The system may also include a second datastore staring application data
pertaining to utilization of the applhication. The system may further include a third datastore
residing in the client device for storing replicated metadata and replicated application data.
The replicated metadata are a copy of the metadata, and the replicated application data are a
copy of the application data. The system may further include logic residing in the client
device for converting at least the replicated metadata into the at least one of user interface and
business logic of the application.

The above summary relates to only one of the many embodiments of the invention
disclosed herern and 15 not intended to fimit the scope of the imnvention, which is set forth in
the claims herein. These and other features of the present invention will be described in more
detail below m the detailed description of the invention and n conjunciion with the following
figures,

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is iHlustrated by way of example, and not by way of imitation,

in the figures of the accompanying drawings and in which like reference numerals refer to

similar elements and in which:

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
FIG. | illustrates a simplified functional diagram of a two-tier implementation

architecture.

FIG. 2 ithustrates a simplified diagram of a three-tier implementation.

FIG. 3 illustrates a simplified diagram of a smart enterprise framework (SEF)
architecture, a clienmt-server system according to one or more embodiments of the invention.

FIG. 4 llustrates a simplified diagram of a SEF system {a chient-server system),
according to one or more embodiments of the mvention,

FIG, 5 iflustrates a simplified diagram showing a process of creating or updating an
enterprise application with the SEF system, according to one or more embodiments of the
fnvention.

FIG. 6 tlustrates a simplified diagram of a SEF system deployment, according to one
or more embodiments of the invention;

FIG. 7 illustrates a sumplified diagram of a SEF authentication process, according 1o
one or more embodiments of the invention,

FIG. 8 illustrates a simplified diagram of a SEF authentication process, according to
one or more embodiments of the present invention.

FIG. 2 sftustrates a simplified block diagram of a deploved SEF system {a client-
server svstem) according to one or more embodiments of the invention.

FIGs, 10A-D iltustrate example user interfaces and associated metadata according to
one or more embodiments of the invention,

DETAILED DESCRIPTION

The present invention will now be described in detail with reference 1o a few
preferred embodiments thereof as llustrated in the accompanying drawings. In the following
description, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the art,
that the present invention may be practiced without some or all of these specific details. In
other instances, well-known process steps and/or structures have not been deseribed in detail
in order to not unnecessarly obscure the present invention. The features and advantages of
the present invention may be better understood with reference to the drawings and
discussions that follow,

Varous embodiments are described herein below, including methods and technignes.
it should be kept in mind that the invention might also cover an article of manufactore that
includes a computer readable medium on which computer-readable instructions for carrying

out embodiments of the inventive technique are stored. The computer readable medium may

STGL-POOIPCT
WO 2007/111751 PCT/US2006/062444
mclude, for example, semiconductor, magnetic, opto-magnetic, optical, or other forms of

computer readable medium for storing computer readable code. Further, the invention may
also cover apparatuses for practicing embodiments of the invention. Such apparatus may
include circuits, dedicated and/or programmable, to carry out operations perfaimng to
5 embodiments of the invention. Examples of such apparatus include a general purpose
computer and/or a dedicated computing device when appropriately programmed and may
inchude a combination of 8 computer/computing device and dedicated/programmable cireuits
adapted for the various operations pertaining to embodiments of the invention,
One or more embodiments of the present invention relate 1o a systent for enabling a
13 user to execute an application on a client device. The system may include a first database
configured to store metadata pertaining to design, development, deplovment, presentation,
and/or execotion of the application. The design, development, deployment, presentation,
and/or execution of the application may pertain to user mterface and/or business logic of the

application. The system may also include a second database configured to store application

-
(¥4}

data pertaining to utilization of the application. The system may further include a third

database {or a third datastore) residing in the chient device and configured to store replicated

metadata and rephicated application data. The replicated metadata may be a copy of the

metadata, and the replicated application data may be a copy of the application data. The

system may further include {ogic residing in the client device and configured to convert at

20 least the replicated metadata into the at least one of user interface and business logic of the
application.

One or more embodiments of the present invention relate t¢ a method for deploving
an application on a client device used by a user. The method may include creating a first
database for storing metadata pertaining to at {east one of design, development, deployment,

2! presentation, and execution of the application. The at feast one of design, development,
deplovment, presentation, and execution of the application may pertain to at least one of user
mterface and business logic of the application. The method may also include creating a
second database for storing application data pertaining to utilization of the application. The
method may further include creating a third database in the client device for to storing

30 replicated metadata and replicated application data. The replicated metadata may be a copy of

the metadata, and the replicated application data may be a copy of the application data. The
nwethod may further mclude implementing logic in the client device for converting at least the
replicated metadata into the at least one of user interfuce and business ogic of the

application.

&

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
One or more embodiments of the present invention relate to a method for updating an

application on a chient device used by a user. The method may include connecting the client
device to a first database. The first database may store metadata pertaining to at least one of
design, development, deplovment, presentation, and execution of the application. The at least
one of design, development, deployment, presentation, and execution of the application may
pertain to at least one of user interface and business logic of the application. The method may
further mclude replicating the metadata to produce replicated metadata. The method may
further include converting at least the replicated metadata into the at least one of user
mterface and business fogic of the application.

In accordance with one or more embodiments of the present invention, a Smart
Enterprise Framework™ (SEF), a client-server system, is advantageously employed to
rapidly create a decentralized n-tier enterprise application. In general, SEF may include a set
of smart clients {e.g., development clients, runtime clients, etc.) and optimized metadata
constrocts that may be used by a business analyst to rapidly design, develop, and deploy
decentralized data applications n a substantially secure, highly available, and scalable
fashion. In general, a business analyst is a person with experience that 1s greater than an
application user, but less than an application developer. Development clients (e.g., SEF
Content Designer™, SEF Report Designer™, SEF Folder Designer™ et¢.) mav be used to
create the metadata constructs (based on customer requirements) in a SEF Master Database™
(a first datastore or a first database in a first datastore}, that naay in turm be used to rapidly
deploy the application for access by the runtime clients. SEF Master Database™ may be a
central information repository about all the deploved systems and/or apphications. The SEF
Master Database™ may contain all the necessary information about every deployment and
gvery build, including relevant SEF user and security data.

In general, 2 smart client is a web service application that may be deploved and
updated from a centralized server. Web services are typically self-describing software
modules, semantically encapsulating discrete functionality, wrapped in and accessible via
standard faternet communication protocois like XML and SOAP. Based on XML, a universal
tanguage of Internet data exchange, web services can communicate across platforms and

operating systems, regardless of the programming language in which the applications are

wrttten. In general, each Web service is a discrete wmit of code that handles a limited set of
tasks. However, although web services remam independent of each other, they can loosely

link themselves nto a collaborating group that performs a particular task.

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
Designed to consume web services, a smart client may also be decoupled from the

ceptralized server in order to run in occasional of intermittent connectivity situations, such as
those used by traveling workers or even those running on laptops, tablets, PDA's, and so on,
where connectivity cannot be guaranteed at all times, being able to work while disconnected
is essential. In addition, the need for an application server may be reduced or even eliminated,
since a smart client (unlike a traditional thin client or thick client) may be able to optimize
performance and usability by caching data and managing the connection, as well as
efficiently utilize local client resources {e.g., CPU, local memory or disk, focally installed
software applications, etc.}. A smart client may also be able to manage its deployment and
updates in a much more intelligent way than traditional thin and thick chient applications,
further simplifying development and deployment. In addition, evidence-based code access
security allows smart clients to be given hmited permissions in order to restrict their
functionality in semi-trusted scenarios,

As previously discussed, developing an enterprise application generally involves
substantially understating the customer need or problem {2.g., order entry system, reservation
systern, client record system, ete.), creating a conceptual model of the problem, developing a
sound database schema from that conceptual model, deploying the application including the
clients if needed, and then testing the application to ensure usability, reliability, scalability,
auditability, elc.

However, as with most software development, the later a problem is discovered, the
harder the problem is to correet, since correcting a problem in one area (e.g., schema, etc .}
may in turn affect other areas {e.g., application logic, user mtertace, etc.). Consequently, the
revision process may be substantially time consuming, often taking weeks or months for large
processes. However, in an inventive way, the SEF may accelerate the development process
from weeks 1o hours, allowing the application to have multiple testing cyveles. This is
particutarly useful when the conceptual model s incomplete or not conipletely understood by
the intended apphication users.

Referring now to FIG. 3, a simiplified diagram of a SEF architecture (a client-server
systera) is shown, according to one or more embodiments of the invention. Unlike traditional
n-tier implementations, an application server may not be required, altowing the data and
apphcation layers to be combined, and thus reducing overall application latency. The diagram
can be divided 10 a combined data/application laver 302, and a client layer 306, 1o addition,

in an embodiment, a SEF Browser™ 310 smart client 15 used to access the application,

¥ 5]

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444

In an embodiment, SEF Browser™ 310 may represent a run time NET Windows
module to render forms created by SEF Content Designer 314, based on folders created by
SEF Folder Designer 312, In general, SEF Folder Designer 312 generates the application
database tables, including the data fields, while the SEF Content Designer defines the
application. In addition, the SEF Browser leverages ASP.NET / Windows Forms for
rendering the data.

Data transactions occur through generated business objects which use a data hbrary
that manages connections, handles data encryption and decryption, and caching of the data
for improved performance. Furthermore, SEF Browser 310 15 also able to display XSLT
reports created by SEF Report Designer™ 316, XSLT 15 an extensible stylesheet language
transformation {XSLT) is a language for transtforming XML documents into other XML
documents. XSLT is designed for use as part of XSL, which is a stylesheet tanguage for
XML.

In a configuration, SEF Browser 310 accesses SEF Remote Database™ 308, which
may be coupled to SEF Central Database™ 309 through a network conpection, such as the
laternet or a LAN. SEF Central Database Server 309 15 generally the central repository of the
actual apphcation data. There 1s usually a single SEF Central Database per deployment. SEF
Remote Database™ 308 may be utilized when SEF Browser 310 is decoupled from SEF
Central Database Server 309,

Data Encryption keys are built as one set of cryptographic keys per SEF svstem
configuration. Each system commuonly has an encrypted metadata database, business data
database and archive database. All datsbases may be based on SQL 2005 Enterprise engine.
In general, the same cryptographic data keys are used for all three databases, but different
types of encryptions are applied to metadata (simple encryption} and to business (highly
secure encryption) databases.

In order to support both online and oftfine remote working modes, clients may be
corfigured with system metadata and business databases data {(excluding retived records)
replicated down to client {e.g., laptop, Tablet PC, etc.) using pull replication the first time
after chient installs SEF asserablies and pertodically thereafler (e.g., every 14 days after ast
successful replication, ete.). In general, if replication attempt has faded, SEF application may
be locked. SEF application may also be locked down if the license has expired or is not valid.

Remaote client assemblies may be updated as soon as new updates are published. In
general, an update happens proactively without a user’s explicit request for. In addition, CAS

[

{code access security principal} may be applied to deploved signed assemblies. ClickOnce

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
deplovment may control distribution of prerequisites on client machines {e.g., NET

framework 2.0, SQL Express, FarPoiat 1.09 Windows Spread, ete.), wnstalls the correct
version if needed, and reboots a machine afterwards 1f necessary. ClickOnce deployment also
generally gives control over granulated limited assemblies” access configuration to different
resources on client machines and on intranet zone,

In addition, an offline database snapshot may be creaied on another server for
reporting purposes. The database snapshot would be created datly and an unencrvpted version
of each table of such snapshot will be displayed in a corresponding view.

Referring now to FIG. 4, a simplified diagram of typical SEF deplovment, according
to one or more embodiments of the invention. In general, a SEF Central Database Server 309
maintains 3 SEF Master Database 319 (a first database or a second datastore) as well as at
teast one SEF Central Database 329 (a second database or a second datastore) for each client
application. SEF Master Database 319 may generally store metadata, or information about
how systems and/or applications have been or are to be presented, executed, designed,
developed, and/or deploved with the SEF ("deploved systems™). For exaniple, the metadata
may tnclude data that describe user expertence, authonzation rules, ete. The metadata may
be interpreted by logic residing 1 a client device and may be converted {or constructed) mto
viewable and/or updatable user entry controls, Likewise, SEF Central Database 329 is
generally the central repository of the actual application/business/user data pertaining to
utitization of the application. The application data also may be interpreted and converted by
the logic in the client device to be useable by a user. There is usnally a single SEF Central
Database per application deplovment,

SEF Content Designer 314 renders forms based on folders created by SEF Folder
Designer 312, and stored in a particular SEF Central Database™ (e.g., SEF Central Database

sner 316, In order to allow &

&

329}, along with generated reports created with SEF Report Desi
remote user to work offline, as well as improve overall performance by caching application
data near the appropriate SEF Browser 310, each SEF Central Database™ may replicate with
a SEF Remaote Database™ (e g, SEF Remote Database 308, a third database}. For example,
if the SEF Browser 1s installed on a PC, a copy of the SEF Remote Database may also be
mnstalled. SEF Central Database 329 may be replicated to SEF Remote Database 308
whenever the remote computer (the PC) becomes online {e.g., connected with SEF Central
Database Server 309). Each SEF Remote Database 308 also may be replicated to the SEF
Central Database Server 309 whenever the remote computer becomes online, For example, if

the remote computer is attached to a wireless network, if that connection is disrupted, a user

10

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
through SEF Browser 310 may still access the latest replicated version of the data in the SEF

Central Database 309

In general, a SEF Remote Database 308 communicates with SEF Browser 310 by
XS messages. XSD (XML Schema Definition) is an nstance of an XML schema written in
the XML Schema language. An XSD defines a type of XML docoment in terms of
constramts upon what elements and attributes may appear, their relationship to each other,
what types of data mav be in them, and other things. It can be used with validation software
in order to ascertain whether a particular XML document is of that type, and to produce a
Post-Schema Validation Infoset. SEF Browser 310 may, itself, be secured through standard
authentication mechanisms {e.g., smart card, PIN, biometric scan, etc.).

In addition, SEF Central Database Server 309 may itself be coupled to other
applications within the same organization, or to applications in other organizations through
an igerface tool such as through a Microsoft Biz Talk application. BizTalk is an induastry
mitiative started by Microsoft and supported by a wide range of organizations like SAP,
CommerceOne and Anba. This initiative ts establishing a set of gutdelines for how to publish
schemas in XML and bow to ase XML messages to easily integrate software programs
together in order to build rich new solutions.

Subsequently, enterprise application developed with SEF may have substantial
advantages. For example, the system may be 100% fail over safe and available at all time,
both on and off line, In addition to data encryption, welr based security such as HTTPS, and
Biometrics Access Control using Smart Card Technology, the security is further enforced by
defining a network of svstem independent users and roles, and imposing vertical and
hosizontal data access control and {iltering Complying with the underiving widely used OS,
database, process management, and other system level requirements and architecture, SEF
can easily be farmed and clustered to scale. SEF emphasizes a highly productive environment
for RADD {Rapid Application Development and Deployment} allowing for business abjects
1o he reused.

In addition, SEF has fiiendly and freshly designed tools to trace, monitor, deploy and
debug. Written on top of widely used and well known software products such as SQL Server
2008, BizTalk (e.g., BizTalk 2006), 1S, and SharePoint Portal Server, the system may
comply to SQL, XML, HTTP and other standards for quick and easy interoperability as well
as availability. The system may utilize BizTalk 2006 for native unparaliel support for
Business Intelligence. The system 1s fully aware of high performance features of SQL Server

for replication, or IS for load balancing, or BTS for process deployment and further aliows

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
for fine tunimg such services for C2R Replication (Central to Remote), R2C Replication

(Remote to Central), and SEFZSEF, SEF records and maintains every transaction, and every

change made to any record and is capable or reproducing any version of any record.

A. DEVELOPMENT CLIENTS

SEF development clients are generally responsible for creating and populating
database tables, creating stored procedures, friggers, data management objects, user interfaces
and reports. Additionally, the development clients may create scripts to load responsible
applications in the appropriate directories as well as set up the correct runtime environment
{PATH vanable, etc.).

In an embodiment, at least three development clients are used to develop and deploy a
decentralized enterprise application: a SEF Content Designer, SEF Folder Designer, and a
SEF Report Designer. For example, 1o a typical “Design” scenarnio, after detailed analysis of a
system’s reqoirements, a field expert (e ¢ Business Analyst) with minimal knowledge of SEF
may be able to use the SEF Content Designer and a SEF Folder Designer to design a custom
systern. A custonuzed system 1s may be generated from a complex collection of metadata.
These tools generate and configure the application/s as well as all the necessary objects,
mcloding databases and their relevant tables, ready to launch. The generated system, by
design, generally lacks any security features which are expected to be added by the client as
the final step.

The final step, defined and configured by the customer, is to detail the authorization
and authentication security requirements for different users and roles.

Onee the system 1s deployed, additional changes, from data model moditications to
changes in the actual code, are then pushed to the client systems through SEF's powertul
publish and subscribe model.

1) SEF Content Designer

As previously explained, the SEF Content Designer allows a business analyst to
define entities and the application GUIL SEF Content Designer is a user friendly, drag and
drop, NET smart client module that is used to define entities and the apphication (Ul
{graphical user interface). In an embodiment, SEF Content Designer utilizes SQL Server
2003 DDLU to replicate the changes to production systems,

In general, entities may be saved n the sefEntity metadata table, entity attributes may
be saved in sefEatity Attribute metadata table, and the relationships anvong primary and

foreign keys of entities may be saved in the sefRelationship metadata table. After all entities

12

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
and their relationships are generally defined, an application may present a publishing option

which would serialize design to @ metadata database.

In addition, since entities and the application GUI must mitially be created 1n the SEF
Central DB, SE¥F Content Designer may generally only be used while connected to the SEF
Central DB. Once started, the system will detect 111t is connected to the SEF Central DB I
the SEF Content Designer detects a connection, it then prepares for authentication. fa
connection is not present the SEF Content Designer asks for a connection from the SEF
Central DB or shuts down.

Once the user enters the credentials, if the user is not an authorized “Content
Designer” the application will generally close indicating the correspondent error. In an
embodiment, an authenticated user will be allowed to see an environment in an SEF Browser
with the following components:

Menu Bar — inclades the following Menus

File — allows saving the definitions to X8D;

Edit - allows undoing last action, copy and paste.

View — cormmon view options, tootbars, zoom, ete

Administration

User Seitings

Compilation ~ determines if the folder definution 1s correct

Deployment — allows the deplovment

Publishing - allows the folder to be published into the server and then started being
used by all users.

Help - Data about the program

ToolBoxes

System Objects ~ includes all the system entity attributes that the user will be able to
define i a folder

Properties — indicates the type of folder — Pavent, Chuld, Super, ete,

Results - shows the results of compiling, deploving and publishing the folders.

Schema — contains a representation of all of the system entities and their
dependencies/relationships.

Folder Dependencies — contains a list of dependencies of the pnmary entity for the
current folder

An entity s generally a database table that contains a collective definition of customer

svstem related artifacts and helps bridge dynamically built user interface (forms) exposed to

—
L

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
an end user with underlying dynamically built business database/tables/fields repository

structures, and with data filtered according to security permissions resirictions unposed on an
end user or group of users. Entity attributes are generally fields in the entity database,

In general, an entity is a primary fundamental butlding block of the smart enterprise
framework, In an advantageous manner, entities allow for greater flexibility in system
construction than most common configurations, by defiming major system components i
generic fashion. An entity may be further defined via metadata, which may allow fora
dvnamic construction of system artifacts - both data tables and GUI forms/Tabs content.

In addition, an entity and entity atiributes may also enable the near-real fime data
exchange among 1) business partners' legacy applications and SEF {CustomerApp)
application and 2) between different Customer App locations' SEF (Customer) applications,
In general, Customer-App refers to customer software {e.g., MS Word, Excel, etc).

AL Example: User Interface Component - Tab Named Person

In a first example, in a user interface window, a tab user interface component is
displaved named Youth (yvouth tab). Controls on the vouth tab interface pane may, in turn, be
linked to the business database table (entity) also named Youth (youth table).

Atter imtially selecting the tab, a grid may be displaved with the list of youth records
corresponding to entries in the youth table. In general, the pane would contain Save, Edit and
Delete buttons for each vouth record, as well as an Add button above the grid in order to
insert a new record. When, for example, the Add or Edit buttons are selected, the grid
generated by selected vouth tab may be replaced by simple controls from the selected single
record from vouth table (e.g., a record desenibing Joe Young). After a record i1s newly entered
or changed, selecting the Save bution would save the record into the vouth table, as well as
refresh the display grid.

For example, for a record relating to Joe Young, controls on the vouth tab pane may
be mapped to the following vouth table (entity) fields:

textbox LastName = Young

textbox FirstName = Joe

datatimepicker DOB =1/1/2000

textbox caseNo='1111111¢1

textbox MedicareNo =22222222

mumericcontrol CRISEENg=99990000

textbox SSID='122-222-3333"

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
B. Example: User Interface Component - Tab Named Emplovee

In a second example, in a user nterface window, a tab user interface component 1s
displayed named Employee (employee tab). Cantrols an the employee tab interface pane
may, in turn, be linked to the business database table (entity) also named Emplovee
{(employee table).

After initially selecting the tab, a grnid may be displayed in the employee tab pane with
the list of emplovee records corresponding to entries in the employee table, including last and
first names and addresses. In general, the pane would contain Save, Edit and Delete buttons
for each employee record, as well as an Add bution above the giid in order to insert a new
record. When, for example, the Add or Edit buttons are selected, the grid generated by
selected employee tab may be replaced by simple controls from the selected single record
from employee table (e.w., a record describing Iim Hunt)., After a record is newly entered or
changed, selecting the Save button would save the record into the youth table, as well as
refresh the display grid.

For example, for a record relating to Jum Hunt, controls on employee tab pane may be
mapped to the following emplovee table {(entity) fields:

textbox LastName = Hunt

textbox FirstName = lim

textbox Addressl =111 Veirs Mili Rd

textbox Address2 = Suite 101

textbox City =Bethesda

listhox State= dropdown list of USA states with pre-selected state MD

textbox Zip=22222

€. Security Subsystem Entity: User Interface Component: Tab named Customer-App Use

In a third example, in a user imterface window, a tab user interface component is
displaved named Customer-App User (user tab), Controls on the user tab interface pane may,
in turn, be linked to the business database table {entity) named Customer-App User {user
table).

After initially selecting the tab, a grid may be displayed with the list of authorized
users {e.g., entries in the table emplovee, including login mformation and keys for accessing
Customer-App’s data). In general, the pane would contain Save, Edit and Delete buttons for
cach user record, as well as an Add button above the grid in order to insert a new record.

When, for example, the Add or Edit buttons are selected, the grid generated by selected user

STGL-POOIPCT

5

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
tab may be replaced by simple controls from the selected single record from user table {(e.g., a

record describing Lorenzo Vallone), After a record 15 newly entered or changed, selecting the
Save button would save the record into the user table, as well as refresh the display gnid.

For example, for a record relating to Lorenzo Vallone, controls on user tab pane may
be mapped to the following user table {entity) fields:

textbox LastName = Vallone

textbox FirstName = Lorenzo

textbox Password = hiddenPassword

texbox Email = LorenzoVallone@frb com

texibox MetadataKey =RTRILHOIPLMNBCBCBCVC

textbox BusinessDataKey=2222{ X banmbNBhghjghpyhg)2

D Security Subsvstem Entity: AuthorizationGroup Interface component - Tab Named
AuthorizationGroup

In a fourth example, 1n a user interface window, a tab user interface component is
displayed named Customer-App AuthorizationGroup (authonzation tab), Controls on the
authorization tab interface pane may, 1o turn, be finked to the business database table (entity)
named AuthornizationGroup (authorization table).

Alier initially selecting the tab, a grid may be displayed with the hst of authorized
users {e.4., entries in the authorization table which would describe groups of users and
corresponding access permissions). In general, the pane would contain Save, Edit and Delete
buttons for each authorization recard, as well as an Add button above the grid in order to
insert a new record. When, for example, the Add or Edit buttons are selected, the grid
generated by selected authorization tab may be replaced by simple controls from the sefected
single record from authorization table (e.g., a record describing an authorization record, such
as Group Administrators), After a record is newly entered or changed, selecting the Save
button would save the record into the authorization table, as well as refresh the display gnd.

For example, for a record refating to Group Administrators, controls on the
authorization tab may be mapped {o the following authorization {able (entity) fields:

textbox AuthorizationGroupName = Administrators

textbox AuthonizationGroupDese = Read, Write, Delete Access

E. Security Subsystem Entity: Userauthorizationgroup Interface Component - Tab Named

Userauthonzationgroup

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
In a fifth example, in a user mterface window, a tab user interface component is

displayed named Userauthorizationgroup Interface Component {(user-authorization tab),
Controls on the user-authorization tab interface pane may, in turn, be linked to the buginess
database table {entity) named UserAuthonzationGroup {user-authorization table).

Afier inttially selecting the tab, a grid may be displayed with the hst that maps users
1o groups, including the difference application specific access permissions, In general, the
pane would comtain Save, Edit and Delete buttons for each authorization record, as well as an
Add button above the grid in order to insert a new record. When, for example, the Add or
Edit buttons are selected, the grid generated by selected user-authorization tab mav be
replaced by simple controls from the selected single record from user-authorization table
{e.g., a record describing an user-authorization record, such as the names of users who are
members of Group Administrators). After a record is newly entered or changed, selecting the
Save button would save the record into the user-authorization table, as well as refresh the
display grid.

In addition, SEF Content Designer may provide a facility for editing textual design
source, to facilitate the development of complex applications. In general, the format of the
design source will depend on whether ASP NET or Windows Forms is feveraged for GUI
rendering. The user may be able to guery each folder by fields assigned for the effect (not ali
the fields will be searchable).

Furthermore, SEF Conmtent Designer may allow specific attributes (table colunmns) to
be defined as confidential or containing sensitive information. The data in these coluwmas will
be encrvpted for storage i the local DB and decrypted at run-time for presentation to
authorized users. It may also generate Business Objects that will contain all of the code for
database fransactions,

In general, a business object contains code to perform the following database
transactions:

Insert

Delete (setting the deletion flag on a record AND on all of its child records)

Update (one update will update all fields)

Query {one per field elected to be searchable)

2y SEF Folder Designer
The SEF Content Designer generally allows a business analyst to define and generate

the application tables that will, in turn be used by SEF Content Designer, as previously

3

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
described. In general, there are no standards for separating the business/data entity design

process and the GUT design process,
SEF Content Designer generally presents a hierarchy of tabs/folders as shown in the
SEF Browser, and 1s visually and functionally presented as a Tree View. Data produced by

Navigation Designer may generally be persisted to metadata database into setUlINavigation

table.

In addition, SEF Folder Designer avoids complex which-came-first dependencies
during GUI design. For example, in many-to-many relationships, an entity needs o be first
defined to be referenced but at the same fime that same entity wants to reference other entities
that are not yet defined. The SEF Folder Designer is also generally able to validate GUI
components’ type against the eatity atiribute data type {(i.e. Boolean, Date) or entity type {i.e.
tookup or parent entity with one-to-many-relationship with primary tolder entity, or an entity
with a many-to-many relationship to the primary folder entity}.

Furthermore, SEF Folder Designer is able to drive GUI design from entities. For
example, by dragging an entity onto a folder which has a many-to-many relationship with the
primary folder entity, a multi-select list box would be displayed. The SEF Content Designer
could then be presented with the option of having a related entity section with addiremove
capability (g complex, multi-clement component), but these two component types would be
the only valid options for this type of enfity. In an embodiment, in order to implement full
data versioning for SEF Folder Designer generated tables on the Server (Central DB} only,
and using an “archiving” versioning methodology.

In addition to generating the tables, indexes and relationships based on the entity
design in the SEF Folder Designer, and storing metadata relaied to GUI lavout, there is a
need to generate additional metadata. For instance, for a one-to-many relationship it is

important to design and record whether or not the setting of deletion flags cascades. If this

one-to-many relationship is a troe parent-child relationship, then the setting of deletion flags
will cascade. However, if the one-to-many relationship references a lookup/control table, then
the references to the retired record will simply be set to pull or a default value.

3) SEF Report Designer

As previously described, SEF Report Designer may create XSLT reports. XSLT is an
extensible stvlesheet language transformation (XSLT) 18 a fanguage for transfornung XML
documents into other XML documents. XSLT 15 demigned for use as part of XSL, whichis a

stylesheet language for XML,

18

STGL-POOIPCT

20

13]
]

WO 2007/111751 PCT/US2006/062444
Report Designer enables a business analvst to ereate printable report GUI for each

simple form of tab/folder of the remote client application front end. For example, content
would include simple data bound and none-bound controls such as text box, list/combe
boxes, lookup buitons, labels, images, check boxes. Data produced by Ul Browser Designer
are to be persisted into sefUlControl, sefUltLookup, setUlElement, sefUlElementNav
metadata database tables with sefUlElementType = “report’.

Reports could have groups defined based on a collection of fields or one field.
Print preview would be supported from dynamically rendered remote clhient GUI

4) SEF Formy/U1 Browser Designer

Form/Li1 Browser Designer generally designs the GUT for each simple form of
tab/folder of a remote client application. Tabs content would generally include simple data
bound and none bound controls such as text box, list/combo boxes, lookup buttons, labels,
images, check boxes. Data produced by Ul Browser Designer may be persisted into
sefUlControl, sefUlLookup, sefUlElement, setUlElementNav metadata database tables with
sefUTElementType = “form™.

33 SEF Database Generator

The SEF Database Generator generally builds a business database for a particular SEF
Framework deployment, based on data stored in metadata created by the SEF Content
Designer, SEF Folder Designer, SEF Report Designer, and the Form/Ul Browser Designer. It
would generally also automatically add Audit Fields to each table, would build views needed
for GUY rendering and non normalized views for reporting. After business database is buily,
the tool may also configure new database’ tables for replication (as replication articles}, and
apply scripts 1o build archive triggers dynamically. This tool 1s generally used when a
customer business database is being built and deployed.

&) SEF Remote Client Dynamic Rendering Components

In general, the SEF Remote Chent Dynamic Rendering Components build tab
mterfaces and display data for remote user based on metadata and business databases
contents. Upon selecting a tab, for example, a grid pane would present list of all records in a
fable associated with the tab. The user could select any record in the grid for editing or delete,
add a new record, or filter data in the grid using search box and bution per any field in a gnd.

Grids are generally serollable and sortable by any field.

19

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444

B. RUNTIME CLIENTS

The SEF factory further includes several runtime clients, such as a SEF Browser™, an
SEF Aunditor Browser™ SEF EAI™ gnd SEF B2B™

1) SEF Browser

The SEF Browser allows user interaction with the back-end-system for data
manipulation and reporting. This module generatly performs the basic Runctionality of a
comunton browser once it interprets and presents GUI pages m a dynanuc wav {aka not
hardcode) as folders. Unlike most commercial available browsers, SEF Browser may not be
able to be compromised throngh the use of scripts, examination of underlying code, or
replacement of components.

In general, the SEF Browser iz a windows application that accesses a MS-SQL
database to generate the different folders that will be used in a specific implementation of the
framework. Rendering generally happens every time a new session is initiated and when new
data is available posted by the central database. Afier the application starts and when the user
is authenticated, control will be passed to the “rendering engine” that will render each form
the user has access to. Rendering will also be aware of the user rights to each individual
folder component. The “rendenng engine” i3 an out of process service that is called every
time the data is changed in the local database and after new user authentication.

For example, an application could have the following folders: Persons, System Files,
SEM (smart) Card programmung, SIM (smart} card management, Roles and permissions,
Reports, and Forms. In general, authentication can be performed by the use of a smart card or
any other industry standard authentication protocol. When the application starts up no folders
will be available, only a login screen displaving ‘please inseri smart card”. When a smart card
is inserted the user will enter a password. The password contained in the card will be
compared with the password entered by the user. In an embodiment, SEF Browser may have
a XP look. The toolbar and folder control will reflect that look, and niay support multiple
layers (sets) of folders to a maximum of three.

In one or more embodiments, the folder control will only expose up to three layers of
tabs at a time. Because each layer can have multiple rows of tabs, this is a screen real estate
concern. When the number of lavers goes bevond three, only three will be displaved. When
the cursor 1s moved over the tab area all the tabs wall become visble. When the cursor leaves
the tab area, three layers of tabs maximuom will be displaved.

The service will recognize user’s privilege level, passed from the authentication

—

service for each available folder: View, Add, Change, Delete.

20

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
User’s privilege level will be at the folder level. Recognizes user’s privilege level,

passed from the anthentication service for each available folder: View, Add, Change, and
Delete

Uses xml to communicate fayout information to the component and constructs only
the appropriate screen elements that aser is authonzed to access

2y SEF Auditor Browser

SEF Auditor Browser is a NET smart client that will have online access to the SEF
Central DB, In general, it has access to ali the data, active and non-active, and is used 10
manually correct improper data. Unlike the SEF Browser that was connected to the locally
replicated database, the SEF Auditor Browser 13 connected directly to the Central Archive
database and can only be used online.
C. METADATA

SEF further includes a set of metadata constructs that may be stored in the SEF
Master Database: high-evel system, security / authentication, entity definition, presentation
fayer.

High-level system metadata may be stored in the following tables.

sefDBMS - Svstemy DBMS specifics

sefModuleType - Type of module / assembly Determines how the module 13
handled (XCOPY, nstall, etc)

sefModulePredecessor - Establishes module / assembly order Used to determine

module deplovment order

sefSystemAuthenticationRequirement - Authentication steps reqguired to gain access

to this svstem. {See related elements in section below)

sefSystemDatabase - Database configuration details Connection string,

setSystemType - System / application type Such as "“Foster”

sefSvstemWebServer - WebServer configuration details

Security/ Authentication metadata may be stored in the following tables:

sefAuthonizationGroup - Defimition of groups of users that share permissions

sefAuthonizatonGroupModule - Modules that are distnbawted to an authonzation

group

STGL-POOIPCT
WO 2007/111751 PCT/US2006/062444
setAuthorizationGroupAttribute ~ Definttion of attribute/column pernuissions for

authorization groups Defines vertical filtering for an authorization group

sefAuthonzationGroupEntity - Definttion of entity permissions for authorization

Sroups

5 sefAuthorizationGroupFilter ~ Association of data filters with authorization groups

Filters are used for horizontal filtering

sefAuthonzationGroupType - Authorization group type Such as “Organization™

and “Role”

sefAuthenticationType - Definition of types of supported system authentication

-

10 SmartCard {separate type for each API), Biometrics, User fogin

sefEntityFilter - Association between an entity and a filter

sefFilterAtinibute - Attnbutes/columns that are part of the filter definition

seffilterAttributeGroup - Association between attributes/columns and filter groups

-
(¥4}

sefFilterGroup - Grouping of attributes/columuns for filtering and whether an AND or
OR should be applied
seftiser - System / application user details

setUserAttoibute - Definition of user permissions to attributes / columns Defines

vertical [Utering for users

20 sefUserAuthonizanonGroup - Association of users to authorization groups. Used to

define roles and organizations or any other authorization groups that a user belongs to
sefUserEntity - Definition of user pernussions to entities
seflUserFilter - Association of daia filters with users Filters are used for honizontal

filtering

28 sefUserSmartcard - Association of smart card data with specific user

Entity definition metadata may be stored in the following tables:

sefAtributeValidation - Validation rules that are applied to specific attributes /

columns

sefbatity Astibute - Atinbutes / columns of entities

sefRelationship - Relationships between entities

22

STGL-POOIPCT
WO 2007/111751 PCT/US2006/062444
setRelationshipType - Type of relationship One-to-many/parent child, one-to-

manvAocokup, many-to-many

sefTransferRequirement - Definttion of transfer rules / prerequisites for specific

entities

3 setVahidationType - Types of validation Determines the type of validation

controls that are used in the Ul

Presentation layer metadata may be stored in the following tables:

sefFolder - Definition of presentation folder

10 sefFolderParent - Definttion of folder hierarchy

sefUTIC ontral - Definition of control for U1

sefUlC ontrol Attribute - Association of Ul control with attribute / column

-
(¥4}

sefUTC ontrolFont - Font definttion for control

sefUIContolProperty ~ Property defimuions for control

seftUIControl Type ~ Control type and type mapping for ASPNET, WinForms and

Reporis
sefUlElement - Definition of UT Element Used to define standard UL reports and
20 forms

sefllIElementFolder - Association of Ul Element with folder

sefUlElementType - Tvpe of Ul Element Standard UL Report or Form

25 ASP.NET, WinForms, and Reports
seft I8¢elect - Definition of presentation of list / selection cantrals in the Ul

sefUlSelectCaption - Defirution of displayed items in a list / selection control

fn addition, several database methods are also associated with the metadata:
seftintityMethod - Association of entities with methods

30 sefEntityMethodParam - List of parameters for specific entity methods
setMethod - System / application methods
sefMethodParam - Definition of parameters that are required for specific methods
sefUlControlMethod -Association of Ul controls with methods

seft/IControlMethodParam- List of parameters for specific Ul control methods

b2
L

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444

D DEPLOYMENT DATABASES

Qnce created, the following databases are generally created: SEF Master Database,
SEF Central Database, and SEF Remote Database.

1) SEF Master Database

In general, the SEF Master Database stores mnformation about all of the systems that
have been designed and deployed with the SEF (“deploved svstems™). The SEF Central
Database generally stores all application’s data in the following sections:

Folder and Report -~ Containg the XSD and XSLT defintions. The repository will

allow version conlrol

Application’s Data -~ This is the part of the application that will be specific to each

deployment. The SQL artifacts will be created by the Content Designer,

Folder Migrations - Used to archive data that no longer s being used by the

application. This can occur every time a column is dropped from on the of the application
tolders.
Users - Contains all the user information

Folder Secusity ~ Contains the definitions of every role.

Archive ~

System Configuration - Contains alf system configurations which include

In general, cach user role will have the following priviteges: Update, View, Delete,
Add, and Batch update. Deletion of record will happen by marking a record with the deleted
flag. Physical deletion will generally never occur,

The database will have several jobs which include: archiving. That is, non-current
versions of all records in the database will be copied to the Central Archive DB using triggers
and stored procedures. Non-current versions of records will not be replicated to the Remote
DB mstances.

23y SEF Central Database

As previously described, SEF Central Database is generally the central repository of
the actual application data. There 1s usually a single SEF Central DB per deployment.

3) SEF Remote Database

The SEF Remote Database™ allows remote users to work offline and stores all
application’s data in the following sections. In general, the SEF Remote DB will use MS-
SOQL Server 2005 Express. The SEF Central Database will be replicated to an SEF Remote

Database whenever the remote computer becomes ontine. Each SEF Remote Database will be

24

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
replicated to the SEF Central Database whenever the remote computer becomes online. The
other SEF updates will then be replicated from the SEF Central Database

Referring now to FIG. 5, simplified diagram showing the process of creating or
updating an enferprise application with the SEF, according to one or more embodiments of
the invention. The process may be divided into five phases: an application design phase 502,
an entity design phase 510, a user interface design phase 324, a pavigation design phase 544,
and a deplovment phase 560, The first four phases may be considered a design-development
phase. In general, during the application 302 and entity 516 phases, a SEF Folder Destgner is
principally used, whereas during the User Interface 524 and Navigation 544 phases, a SEF
Content Designer is principally used.

fnitially, during the application design phase 502, at step 504, a business analyst
determines if the application already exists. If so, then an existing application is chosen at
506. It not, the business analyst determines if an existing application should be cloned at 508,
If not, an empty application is created at 516, If so, an existing application to be cloned is
selected at 310, after which the application 1s cloned at 512, Next, regardiess of whether the
application existed, created, or cloned, the application 1s set active for editing at 314, at which
poot 1t enters the entity design phase S16.

Duoring the entity design phase 516, initially at $18, entities are created or modified.
Next attributes are created or modified at 320, Finally relationships are created or modified at
322, at which point it enters the user intertace development phase 524,

During the user interface design phase 524, initially at 526, a primary entity for tab is
selected. If a control for attribute of primary entity 1s required at 528, entity attributes to tab
design surface s dragged at S30. Next, if required, the control type is changed it the default
control for the entity attribute data type 1s not wanted at 332, Next, if reguired, control
properties (e.g., position, labeling, ete.) are modified at 534. Next, design elements,
navigation elements, instructions, etc. are added at 542, If a contral needs to be added for
child records at 536, the associated entity s dragged to tab design surface. Next, if required,
the control type is changed if the default control (e.g., grid, multi-select list, etc.) at 540,
Next, as before, design elements, navigation elements, istructions, etc. are added at 542,

During the navigation design phase, a navigational node is created at 546. A
navigational node is generally displayed as a node 1 hierarchical tree navigator and a s tab in
main postion of user intertace. Next, a tab/UH element 1s defined at the navigation node to

which to lak, at 548. Next, navigation nodes are dragged and dropped to modifv display

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
order and hierarchical organization (“nesting™), at 550. Finally, tab-specific properties (such
as tab color and tab style) are modified.

One or more of the above steps may not be performed in updating but not creating an
application. Metadata {(including user data construct/structure) created during one or more of
application design phase 502, entity design phase may be stored in a deplovment master
database {e.g , deployment master database 602 shown in the example of FIG. 6).

During the deployment phase, at 554, the metadata are deploved/updated 1n a central
database server {e.g., central database server 309 shown in the example of FI(G. 4 and 6). The
metadata may be stored in a master database (¢ g, master database 319 shown 1 the example
of F1G. 4) and may cause update of user data stored in a central database (e.g., central
database 329 shown in the example of F1G. 4).

At 556, the metadata may be replicated/updated in one or more remote databases
{e.u., remote database 308 shown in FIG. 4) in one or more client devices,

At 538, logic in the one or more client devices may convert the metadata and relevant
user data to present useful user interface and information to one or more users for user
interaction. When the application is run, a user is authenticated, and the application 1s
presented according to the user’s permissions. Ul metadata and navigation metadata (from
predetined tables) are used to construct the application with folders (or tabs) and controls that
are available according to the user’s permissions.

Updating the application may become simple and transparent. Because data are
synchronized between the central database server {e.g., central database server 309 shown in
the example of FIG. 6) and the remote database (e.g., remote database 308 shown i the
example of FIG. 6} in a remote client by replication and there is a copy of the deployed
databases on the deplovment master database (e g, deployment master database 602 shown
in the example of FIG. 6}, updating may become a matter of making changes to the copy and
then updating the database on the central database server, In one or more embodiments, only
metadata changes o the master database (e.g., master database 319 shown in the example of
FIG. 4) and structural changes in the central database {e.g., central database 329 shown in the
example of FIG. 4) may be made, since no copy of actual user data is kept on the master
server. Once the database on the central server has been changed, then replication to the
client may facilitate transparent changes to the application. Advantageously, in accordance
with one or more embodiments of the present mvention, there 1s no need for modifying code,
compiling code, and then upgrading an application as typically required by legacy

applications and even smart client applications.

26

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
Referring now to FIG. 6, a simplified diagram of a SEF deployment 1s shown,

according to one of more embodiments of the invention. Imtially at 1, an administrator 604
{admin 604) may mmtiate a deployment process. Admin 604 may create one or more of the
following metadata in a deployment master database 6(2: entity and relationship metadata,
L1 (user interface) metadata, navigation metadata, ete. Alternatively or additionally, one or
maore of the above metadata also may be created with different hardware andfor software, and
then be transferred to deplovment master database 602, The entity and relationship metadata
may used by a system deplovment tool 1o create user database structure in preparation tor
deployment to central database server 309, The entity metadata may produce tables, and the
relationship metadata may become foreign key-primary key refationships in user database
stored in central database server 309

When the metadata are completely prepared on deployment master server 602, the
metadata are ready to be deployed to central database server 309,

Next at 2, two databases {(1.¢. a master database for storing metadata and a central
database for storing application/business/user data) are created/deploved 1o central database
server 309, Next at 3, initial values may be loaded by system administrator 606, At 4, a
publisher application may be created, along with archive triggers, ete. At §, websites may be
generated. At 6, modules may be generated. At 7, the design phase may begin, At §, a remote
user may access an intranet site for subsequent operations. At 9, a smart client s downloaded.
At 10, a smart client may be installed then launched. Next at 11, the smart client may retnieve
modules, such as the SEF browser. At 12, smart client may retrieve MSDE installation file,
mstall MSDE, and create DB instance. At 13, remote database 308 may be loaded with new
or updated data, Metadata stored in central database server 309 may be replicated in remote
database 308. At 14, the Windows service package may be retrieved and installed. And
finally at 15, other smart client managed mstallation tasks may be performed.

With traditional three or even n-tier applications, changing data requirements
typreally require modifications in several tiers. A prior art Smart Client application may
require changes to some ASPENET components. In contrast, a SEF system may reduce or
ehiminate coding requirements by using metadata to configure user experience {e g.,
presentation of an application). The SEF svstem may be completely data driven by providing
complete data objects (data, methods, and properties) and business processes described in
netadata.

Referring now to FIG. 7, a simplified diagram of SEF authentication 1s shown,

according to one or more embodiments of the invention. In an advantageous manner, the SEF

]
w3

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
framework maintains a substantially high level of trust. For example, 1t a server is

compromised, a laptop or smartcard stolen, or a password compromised, overall system
integrity is maintained.

In general, data stored at the server is encrypted such that if the database where
compromised, the intruder would not be able to read the information. In addition, data is
generally encrypted or decrypted on client machines when necessary, providing several
advantages:

Improved server security - if a server is compromised and an intruder has physical
access to a server, data mav not be read out of i)

Improved remote security -when a machine has a local copy of data, it1s also
encrypied, so that even if the machine is lost or stolen {as common with laptops), the data
may not be read out of the database; and

Better performance - the database server manages data delivery, and not
cryptography.

fa general, there are two types of data encryption used in the system: Very secure
encryption and fast encryption. Very secure encrypiion, using the Blowfish algorithm, may
be used tor all business data. Blowfish is an extremely secure encryption scheme that 13
refatively resistant to brute force attacks. Fast, less secure encryption is may be used for non-
business data necessary to support the system. While this data does not necessanity need {o be
encrypted to satisty business requirements, encrvpting it helps decrease the chance that
soneone with physical access 1o a machine could glean useful information from the system.

In general, one way to attack an encrypted system is to examine the encrypted data to
see what can be learned. The Blowfish algorithm already provides an excellent defense
against such inspection, but a hacker might be able to notice similarities between different
pieces of data in the system. Or, someone with access to some records, might be able to glean
mformation about other records that they do not have permission to access. To prevent these
attacks, every single column of data is generally encrypted differently from all other coluwmns.
In addition, it 1s possible to set up a column so that every individual value encrypted
differently from all other values, providing near perfect security of the data.

When a system is setup, two encryption keys are generally created for the system and
all data stored in the system 1s encrypted with those keys. Separate keys arve created for the
Blowfish encryption and the fast encryption, so that a compromise of the Fast encryption
does not compromise the Blowfish keys. The encryption kevs are random bit strings

generating using a cryptographic random number function and are tested for quality using a

28

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
Blowfish-specific algonithm. In addition, the encryption keys themselves are not stored

anywhere. Instead, each encryption kev 1s sphit it half (using a random algorithn, with halt
of the key stored in the database and half of the key stored in a Smart Card. The halves are
somewhat misnamed because each is actually the same size as the key. When examined
mdependently, each half of the key provides no mformation about the other half of the key or
the key itself

The actual encryption kev is generally only available when g Smart Card is provided
atong with access to the system and the two halves of the key are combined into the actual
key. The actual key is onlv available in memory and is never written out to disk or
transmitted over a network connection. The encryption key may be split independently for
each Smart Card. The way this actually works is that an admunistrator Smart Card must be
provided in order to provision a new user. This allows the system to obtain the actoal key in
memory. When the new Smart Card is written, the key 1s split in half randomly, which results
1 two halves which have no relationship to the halves used for any other key. Again, one of
these halves is stored in the database and one of the halves ts stored in the Smart Card.

A single Smart Card can provide access to muduple systems. When the user inserts the
Smart Card, they will be presented with a list of all systems and can fogin to any one of them.
They may have a separate password for each system and the Smant Card contains a one-way
MIS hash that is used to vertfy that the user has the correct password for the specified
systery. The Smart Card can also allow for a separate card PIN which is the same for all
systers. Although the password is checked by the Smart Card, it is checked again in the
database. This also uses a one~way MD35 hash, but it uses different data to prevent any attack
here.

Should a hacker manage to bypass the password checks (for example, using a
hardware debugger to circumvent application security), he would not generally have the
proper decryption key, since the key on the Smart Card 15 encrypted with the password that
woudd have to be circursvented. Without the proper key. they cannot decrypt data out of the
database, even if they can read it.

In addition, a user can be a member of multiple user groups, each of which has
different permissions for the database. For example, an administrator may also be a member
of a user group. If the user is a member of more than one group, they will be asked which
group they want 1o use for this session afier they have successtully authenticated.

Each user group and possibly each user have a set of data access restrictions assigned

to them. These restrictions are read from the database after togin is complete and stored in

29

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
memory. In addition, each form may have specific restrictions assigned to it. These

restrictions are combined in every database querv to prevent users from secing data that they
do not have authority 1o access.

The application itself is geverally secured using Microsoft’s NET security and
signing. Each component within the system will be signed as being part of the same system,
using a sigmng key that 1s only known by Smart Technologies Group. Fach component will
be marked as only trasting other signed components, which prevents hackers from etther
modifving or inspecting running code in the system.

In addinton, after login is complete, the local machine knows where to reach the server
and can begin downloading and/or updating local data from the server. Once a given server
system has been used by a given local machine, the focal machine can continue to get updates
to the server, given a certain level of Windows domain security and network security.

FIG. 8 illustrates a sumplified diagram of a SEF authentication process, according 1o
one or more embodiments of the present invention. Each group of users may be given
permissions for or authorization to specific data. The permissions assoctated with the users
may be stored as application data i a EFS Central Database and rephicated in a EFS Remote
Database. When a user is authenticated, the application may be configured using the group’s
permissions to restrict to a specific set of data.

FIG. @ idlustrates a simplified block diagram of a deployed SEF system {a client-
server system) gecording to one or more embodiments of the invention. The client-server
system {the system} may be deploved using the steps desaribed with reference to FIG. 6. The
system may include a client 922 for executing an application and a server 902 for providing
metadata for constructing and supporting the application. Client 922 and server 902 may be
connected through communication network 990, which may include one or more of the
Internet and a wireless network.

Server 902 mav include central database server 309 for storing metadata 919 and user
data 920, Metadata 919 may be configured to support assembling the application and to
coordinate data with control(s) of the application. User data 929 may include data entered by
one or more users of the system such as, for example, user names.

Client 922 may include remote database 308 for storing metadata 939 and user data
949. Metadata 939 may mclude data replicated from metadata 919, User data 949 may
mclude data entered or generated during use of the apphcation as well as user data

structure/construct replicated from user data 929, Data i user data 949 also may be

e
g
L

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
replicated and included in user data 829, Replication may be performed by one or more of

replication logic 906 and 926 included in one or mare of server 902 and chient 922,

Client 922 may include presentation logic for converting/rendering metadata and
relevant {decrypied} user data to present usetul user interface and information to one or more
users for user interaction. Client 922 may store user authentication and authorization
mformation pertaining to the one or more users. Chient 922 may include security modude for
performing user authentication and authorization, Client 922 may include data preparation
and conversion module 934 for decrypting data from user data 949, Client 922 may include
business logic components that define property and methods for processing data from one or
more or user data 949 and metadata 939, Chient 922 may include Ul components, which
include controls displaying and entering user data. Client 922 may include data access logic
components 942 for providing methods to process, primarily decrypt, data from user data
949, Client 922 may include metadata conversion conponents for providing methods to
decrypt and utilize metadata from metadata 239 to build entry screens and to coordinate the
metadata with appropriate control{s}.

FIGs. 10A-D illustrate example user interfaces and associated metadata according to
one or move embodiments of the invention and corresponding to an entity design phase, a
user interface design phase, a navigation design phase, and a deplovment phase, respectively,
such as entity design phase 516, user interface design phase 524, navigation design phase
344, and deployment phase 360 shown in the example of FIG. 5.

FIG. 10A ilinstrates entity design user interface 1010 and entity metadata 1020 In
entity design user interface 1010, entities (such as persons 1012) may be created on a
graphical design area, and then attributes (such as states 1014) may be added with a nght
mouse click. Entity metadata 1020 pertaining to attributes of the entity design may be
constantly updated 1n tables (such as entity table 1022 and entity attribute table 1024)in a
master database (such as master database 319 shown in the example of FIG. 4) and may be
replicated in a remote database (such as remote database 308 shown in the example of FIG.
4} in a client device (such as client 922 shown in the example of FIG. 9),

FIG. 108 illustrates UFReport design user interface 1030 and UlReport metadata
1040, Ulfreport design may be driven by entity-component mapping. A Ul/report designer
may interpret metadata that describe entity attributes. Accordingly, toolbox 1032 may show a
primary entity related to a folder and all atiributes (correlating to table columns) of the
primary entity. In addition, related entities may be displaved. Dragging these attributes and/or

related entities to Ul design area 1034 may result in a default Ul control being rendered based

(8]
s

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
on data type(s) of the attributes andfor relationship type(s) of the related entities. Ulfreport
metadata 1040 pertaining to the default U1 control may be stored and constantly updated i
Ul Control table 1042 1n a master database and mav be replicated in a remote database in a
chient device.

FIG. 10C illustrates navigation design user interface 1050 and navigation metadata
1060, Navigation design may begin with developing a hierarchical structure of elements
indented as appropriate in a treeview control, such as treeview 1052, As elements may be
added to treeview 1032 in a vertical manner, the elements may ultimately be displayed
horizomtally or vertically as folders with a tab for each folder. Caption for the tab may be the
text entered for an element associated with the folder/tab in treeview 1052, Navigation
metadata 1060 pertainming to the elements may be stored and constantly updated in navigation
clement table 1062 in a master database and may be replicated 1 a remote database in a
client device,

FIG. 10D illustrates user mterface 1070, navigation metadata 1061, and user data
1080, As discussed above, metadata including eatity metadata 1020, Lilfreport metadata
1040, and savigation metadata 1060, such as navigation metadata 1061, may be stored in the
master database and replicated in the remote database n the client device. Logic i the client
device may convert/interpret the metadata to present user interface 1070, Entity metadata
1020 may be used to create a user database and to establish relationships for user interface
1070, Ul metadata 1040 may be used to "build” and lavout data entry controls for user
mnterface 1070. Navigation metadata 1060 is used to “build’, group, and layout folders tor
user nterface 1070, For example, navigation metadata 1061 may be converted and presented
as tab 1052, User data such as user data 1080 may then be entered through user interface
1070, stored in a remote database (such as remote database 308 shown in the example of FIG,
4). and replicated in a central database {such as central database 329 shown in the example of
FIG. 4).

An application designed, developed, and deployed in accordance with one or more
embodiments of the present invention may have all the advantages of a desktop application
because the apphcation may maintain a local copy of a whole database, but not just a portion
of the database. Further, the application may be conveniently tatlored according to
permissions for specific users by using metadata to "bwild® data entry screens. Still further,
the application may be updated asynchronously and seamilessly without code changes,

recompiling, and updating binaries.

Ly
b

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
As can be further appreciated from the foregoing, embodiments of the present

tnvention may effectively combine data and application layvers, thereby advantageously
simplifving system management and reducing overall application latency. Embodiments of
the present invention also may provide complete and up-to-date data at chent devices such
that the client devices may have full, npdated functions of applications without keeping
connected with a server. Further, embodiments of the present invention may update
applications by updating and providing metadata, without going through lengthy cading,
compiling/recompiling, and/or debugging processes. Further, embodiments of the present
mvention may proactively and simultaneousty update multiple applications on multiple client
devices without requining each chient device to individually download and execute individual
update programs for individual applications.

While this invention has been described in terms of several preferred embodiments,
there are alterations, permutations, and equivalents which tall within the scope of this
mvention, Advantages of the invention include an architecture for a simart enterprise
framework and methods thereof. Additional advantages include avatlability, security,
scalability, reusability, manageabiiity, interoperability, extensibility, performance, and an
audii trail.

It should also be noted that there are many alternative ways of implementing the
methods and apparatuses of the present invention. Furthermore, embodiments of the present
invention mayv find utility 1n other applications. The abstract section is provided herein for
convenience and, due to word couat limitation, 1s accordingly written for reading
convemence and should not be emploved to Timit the scope of the claims. 1t 1s therefore
tntended that the following appended claims be interpreted as including all such alternations,

permutations, and equivalents as fall within the true spinit and scope of the present invention,

e
Lt

STGL-POOIPCT

30

WO 2007/111751 PCT/US2006/062444
CLAIMS

What 1s claimed i3

1. A system for enabling a user to execute an application on a client device, the system
comprising;

a first datastore configured to store metadata pertainming to at least one of design,
development, deployment, presentation, and execution of the application, the at least one of
design, development, deployment, presentation, and execution of the application pertaining to
at least one of user interface and business logic of the application;

a second datastore configured to store application data pertaining to ntilization of the
application;

a third datastore residing in the client device and configured to store replicated
metadata and replicated application data, the replicated metadata being a copy of the
metadata, the replicated application data being a copy of the application data; and

logic residing n the client device and configured to convert at least the replicated

metadata into the at least one of user interface and business logic of the appheation.
2. The systers of claim 1 wherein the at least one of user interface and business logic of

the application is the business logic of the application,

3. The system of claim 1 wherein the fogic is configured to convert the veplicated
metadata and the replicated application data into the at least one of user interface and
business logic of the application.

4. The system of claum 1 further comprising a development client configured to perform
the at least one of design, development, deployment, preseniation, and execution of the
application using the metadata.

5. The system of claim 1 further comprising a development client configured to create
metadata constructs according to requirements of at least one of the user and a customer of
the system, the metadata constructs pertaining to the at least one of design, development,
deplovment, presentation, and execution of the application and being stored in the first
datastore.

6. The system of claim 1 wherein the metadata includes data pertaining to at least one of
the system, secunty for the apphcation, authentication for the user, entity defimtion for at

least one of the user and the apphication, and presentation {ayer for the application.

(¥8]
oo

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
7 The system of claim 1 further comprising second logic configured to replicate the
metadata into the replicated metadata when the metadata is changed without requiring manual
user involvement for each change of the metadata.
8. The systems of claim 1 further comprising second logic configured to replicate,
without a request of the user, the metadata into the replicated metadata whenever the cliemt
device is connected with the first datastore.
9, The system of claim 1 wherein the logic 1s configured to convert the at least the
replicated metadata into the at least one of user interface and business logic of the application
whenever the client is connected with the first datastore.
10, The system of claim 1 wherein the at feast one of user interface and business logic of

the application includes at least one of a navigation function and an authentication function.

11, A methoed for deploving an application on a client device used by a user, the method
COMPprISINg:

creating a first datastore for storing metadata perfaining to at feast one of design,
development, deployment, presentation, and execution of the application, the at least one of
design, development, deployvment, presentation, and execution of the application pertaining to
at least one of user interface and business logic of the application;

cregting a second datastore for storing application data pertaining to ytilization of the
application;

creating a third datastore in the client device for to storing rephicated metadata and
replicated application data, the replicated metadata being a copy of the metadata, the
replicated application data being a copv of the application data; and

implementing logic in the client device for converting at least the replicated metadata
into the at least one of user interface and business logic of the application.
12, The system of claim 11 wherein the at least one of user interface and business logic of
the application 1s business logic of the application.
13, The method of claim 11 further comprising:

cloning an existing application, using existing metadata pertaining to the existing
application and without coding, to produce an active application; and

editing the active application to create the application.
14, The method of claim 11 further compnising:

creating an empty application, using the metadata and without coding, to produce ap
active application; and

editing the active application to create the application.

(PN
¥

STGL-POOIPCT

16

-
(¥4}

WO 2007/111751 PCT/US2006/062444
15, The method of claim 11 further comprising replicating the metadata into the

replicated metadata when the metadata is changed without requiring manual user
involvement for each change of the metadata.
16. The method of claim 11 further comprising rephicating. without a request of the user,
the metadata into the replicated metadata whenever the client device is connected to the first
datastore.
17, The method of claim 11 further comprising converting, without a request of the aser,
the at {east the replicated metadata into the at teast one of user interface and business {ogic of
the application whenever the client device is connected to the first datastore.
18. A method for updating an application on a chent device used by a user, the method
comprising;

connecting the client device to a first datastore, the first datastore storing metadata
pertaining to at least one of design, development, deployment, presentation, and execution of
the application, the at least one of design, development, deployment, presentation, and
execution of the application pertaining to at least one of user interface and business logic of
the application;

rephicating the metadata to produce replicated metadata; and

converting at least the replicated metadata into the at least one of user imerface and
business logic of the application.
19, The method of claim 18 wheremn the at least one of user interface and business logic
of the application is business logic of the application.
20, The method of claim 18 further comprising storing the replicated metadata in the
client device.
21, The method of claim 18 further comprising connecting the client device to a second
datastore, the second datastore storing application data pertaining to utilization of the
application,
22, Themethod of claim 21 wherein the converting includes converting the replicated
metadata and the application data into the at least one of user interface and business logic of
the application.
23, The method of claim 21 further comprising replicating the application data to produce
replicated application data.
24, The mathod of claim 23 whersin the converting includes converting the replicated
metadata and the replicated application data into the at least one of user interface and

business logic of the application.

Lo
8

STGL-POOIPCT

16

WO 2007/111751 PCT/US2006/062444
25, The method of claim 18 wherein the rephicating is performed without a request of the
user.

26, The method of claim 18 wherem the converting is performed without a request of the
user.
27 The method of claim 18 further comprising simulianeousty updating the application

on a second client device used by a second user without requiting an exphicit manual
tnvolvement by the second user,

28. The method of claim {8 wherein the at least one of user interface and business logic
of the application includes at feast one of a navigation function and an authentication

function.

L
wd

PCT/US2006/062444

1413

WO 2007/111751

(LMY ¥OIMd) L 'Ol

(ri1) :

HOLIAR “““ ,.._ “““““““““““““

TWNSIATOS

e ettt

(0L1)

~ IN3MO

AOHL

{(goL)

1= 6]

e

HIAY
NI

ol

HIAVY
Viv{Q

PCT/US2006/062444

2i13

WO 2007/111751

(LMY HONMd) 2 Ol

{711)
HOLIaHE
TWNSIA DS

{111) (ZL1) . (oLL)

ANIFIO NIHL 34l ANIO MOIHL

A

A _ L

(zz1)
HAANES
NOLLYDITddY

(801)

ASYav.Lvd

901
0

<
HIAV]

ANITO

YOl

o

)

HAAYT
NOILYOlddY

>
HIAYT
Viv{l

PCT/US2006/062444

313

WO 2007/111751

¢ Ol

(o1€) - (r1€)
MINOISIA | HINDISIA
180434 IN3INOD

438 - 438

4SYavivd
TYHLINZO

(z1€)
HANDISHA
¥3A104
448

(01L€)
HASAAONY
43S

4A8VEYLlvd
F1L0N3Y

90¢

HIAYT
NGO

<0t

e

HIAVT
NOLLYOITddVY.LYA
QINIGINDD

WO 2007/111751

4{13

PCT/US2006/062444

et

SEF REMOTE |
DATABASE
{308}

N

SEF REMOTE
DATABASE

—————— — —

SEF BROWSER | SEF SROWSER
(310) (310}
CLIENT CLIENT
- SERVER (3023
. . o

CENTRAL

DB (329
g SEF

it FOLDER DESIGNER

(312)

MICROGOFT

SEF CONTENT

CRosor - DESIGNER
£402) {314}
SEF
REPORT DESIGNER
(318)
SERVER

RN
PARTNER

$39)

FIG. 4

WO 2007/111751 5/13 PCT/US2006/062444

500 \,-‘ bTﬁs

~ e)(“

efwmbcr ietnl Ewm

LS -&&Een:{ ks,\ Sfey e
tha Enfibe i cesd

vareiies
o T nesing

DEPLOYMENT
{560
; y Duplicate
miifézygzgd ti:ze metadata Convert metadats
and oentral P (including user e and user date and
database . dats construct) in {\\jpfesem Ulto user | |
554J sis | femote database e FIG. 5

PCT/US2006/062444

WO 2007/111751

6/13

el ™
T
B
BARIOI b
pesda sy
o T
7 Bsey Wisen L \afi.ﬂt\f: Gl * Sieff erkiIR SRR T IBUSINd B b
B0 { 9104 JOWIBIIRLEY) BN [BRI O80T K
UDR LUPY WsisAS BAIBG » SHQ SBAIL T
%
i aa o BANE
nmfiw - 105 i
\\\
7 s peieeusl BINPoK] "G
L ‘pepzsuslt SORSUBAX G

SHGEY
GRSy pafieueut
WY JLG B G
SRS

iz abeyned sosg
SHMONULNR SEASLTRN Pl
| esRgERED SpR0T g}

i e

BOUREISIY BT |
SO0 "s5audNyg
W sHEsW

‘@it LONRIEIS

sealdug

TS SRsRel

GUS SRS aps
W 0) S80f
JBEF) BURUEL R

ABSMOIG 4TS

1B oW

SO 475 S8 4INs
SOIPOLL SOAGL
WO NG Ty

RSy Ty Lelg YOUNE L8 pul sy 0 w||.||l

A,\
5 4
/ \
/..\
wenguwews 438 L0 T i
1] £ 435 4 w\ v
BB VORIIRIEU] UBED s
MEUIS PROIMO B

Joney
218

e i
208
.......... H Jepsey
RICBIESN T
O — peaphuos Appeiy
S SGEf mw e
W P | sseyd ubissn
........... 08 FOG Uiy
\ p
Y 4
% \
W
N
S

{soufiisecy Jann 435 U
HORY) seaand JuBwAcKED SoEIE URpy |

{ mddng) saifojoune tmEmi\\

dnougy

‘ufiisep jo aseyd) o vonsidwio) ¢
‘S8 Onoigy jo uonenByuon 7

‘SEYS BGIENT)

a4y pue (siddng) seificouyns) HewWg

18 SUONRINGLIUOD PUR SUOERIRISU BIMUS 'L
sapsnbassid pewlodsg

wuswiAcideg aseyd-g

WO 2007/111751

7113

PCT/US2006/062444

e

.
User asked to
chunse 8 group

for this session

LoginChalleape
A &
Inflrated

M""‘
Ulser 1s asked

or nsert their

S

Renart Cand

)

b cand
vk

Is user in
maore than
b ogroup?

A 4

vabid?

{rom
Seart Card

Retreve sl key

Y

Retrieve hatf key
{renm
Database

Combing key
ftashves fnso full

User given o list
of swsterns aad
asked to login
with g password

Password chechad
aguinst database

encryplion key

Retreve data

pestrigtions for
st
A

ﬁ‘ Login Complets

FIG.

7

WO 2007/111751 813 PCT/US2006/062444

e Lo
Chenk

el tal
i

TS

SUfOaeieay

TONTY

el ey
dopitabs

sohine B o

s B v

¥
cad credential duta
is gyt o e § s

Avwsin and weked ~ kst -

paRthbic

e fogin wh

& pavsward

pos e

il

biire hev halves Hetrieve dats
veriviotions S wsay

Y

Hawnd

h 4

¥

WO 2007/111751 8913 PCT/US2006/062444
Client 832
& ™
|
§ Usass G624 §
“ ‘ &
Securily 528 ™
&
™~
Preseniation 933
T “\;;‘ .. —_—
Data Preparation and § Business Logio ‘ e AR
Conversion 934 ; Components 536 Ul Components 938
Data Access Logic Componenia 848
Metadata Conversion Componants 8944
3 A .
3 ¥ Remote Dalabase 308 | ¥ N
SEF
Metadats 938 |
A
w
& ")
Repfication $26 §
N
AN " A
Communication network 990
4 Server 802
Central Database Server 309 5
; Replication 908 {
i H
g

SEF

User Data 929 Nietadata 919

\

FIG. 9

WO 2007/111751 1013 PCT/US2006/062444

Entity Dassg}nﬁt{iger interface Entity Metadata 1020

When saved, "
ntity attibutes | ?n-ity 1z

re stored in twa Name X ¥ Widih %Heighté

\ A graphical

| interface is used
| to design and

| Isyout entiies.

{ast

First
fiddle
Addressl
Address?
City
Stafe

Lip

0

Addresst | 2 | 50

Abbreviation
Name

el Address2 | 2 | 66

FIG. 10A

WO 2007/111751 11113 PCT/US2006/062444

UliReport Design User Interface UiReport Metadata 1040
1030 ’ TR

Toolbox 1032 ; ;
ooniaining the i U design area

primary entity 1034 . Ul Lol ol 104s ,

Attribute

| First gt
[Middie o
| Addreast w «ie

4
{ Address? w v -
L=V RN N :
[State wemew s g fowm iy Address?
i Zip g o R

FIG. 10B

WO 2007/111751

12113

PCT/US2006/062444

Navigation Design User inferface
1058

- Community
£ Persons

Organizations
Reports
Forms
Hesources
Security

Phones

§
i
3
i

R I CURUENRLE F REE

e
g
N
T ek
i
ooy !
§
v
LI & . _\

Navigation Metadata 1060

Navigation Eiement 1082

Parsons

Phones

Crganizations

FIG.10C

WO 2007/111751 13113 PCT/US2006/062444

User databese tu mtue

User data 1080

1082
Parsons

Name Deac

don 4 tast Doe

‘: First John

Navigation metadala 1061
Navigation Element

Mame Parent {rder

Root 1

Heended Community (] 1

T T T S L S T S S T T S T T S

User interface 1070

FIG. 10D

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings

