发明名称

深水单壁钢吊箱围堰及其施工方法

摘要

本发明涉及一种深水单壁钢吊箱围堰及其施工方法。所述钢吊箱包括围护体系、内支撑体系和承吊体系。所述承吊体系由吊装牛腿、上横梁、下横梁及吊杆组成，吊装牛腿焊接在侧板的内侧，上横梁位于纵向钢板的内侧，与吊装牛腿通过吊杆连接，下横梁焊接在柱顶位置处，与上横梁平行。在施工过程中通过一台吊车整体下沉钢吊箱，承吊横梁设二道，第一道安装在护壁筒上，第二道安装在柱顶，采用二次封底，对基坑进行深水围堰施工。本发明解决了传统围堰封底混凝土质量难以保证、容易出现渗水及漏水的技术问题。可广泛应用于深水区柱承台和桥墩的施工。
1. 一种深水单壁钢吊箱围堰，包括围护体系，内支撑体系和承吊体系。围护体系为侧面围护体系(1)和底部围护体系(2)围成的长方形箱型，侧面围护体系包括侧板(1.1)，水平背楞(1.2)，竖向背楞(1.3)和角钢(1.4)，底部围护体系底板(2.1)，纵背楞(2.2)和横背楞(2.3)，内支撑体系支撑在侧板内侧，承吊体系连接在侧面围护体系上，其特征在于：所述横背楞(2.3)底面焊接有箱底支撑牛腿(14)，所述承吊体系由上装牛腿(10)、上横梁(6)、下横梁(9)及吊杆(8)组成，吊装牛腿(10)焊接在侧板的内侧，上横梁(6)位于纵向钢护筒的顶面，与吊装牛腿(10)通过吊杆(8)连接，下横梁(9)焊接在桩顶位置处，与上横梁(6)平行。

2. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述侧板(1.1)的外侧面焊接有纵横交错水平背楞(1.2)和竖向背楞(1.3)，侧板底边缘焊接有角钢(1.4)，角钢肢背紧贴侧板外表面，且侧板外侧板面以下30cm位置处焊接有排气液(12)。

3. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述底板(2.1)的底面焊接有纵横交错的纵背楞(2.2)和横背楞(2.3)，纵背楞(2.2)位于横背楞(2.3)底面，所述两列横背楞之间间隔开有与钢护筒匹配的孔洞(2.4)，纵背楞(2.2)遇孔洞(2.4)断开，孔洞周围水平焊接有短加固肋(2.5)。

4. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述内支撑体系由支撑牛腿(7)、围樑(4)、水平钢管(3)及型钢支撑(11)组成，围樑(4)焊接在侧板的内部，型钢支撑(11)间隔焊接在两铰长相对侧板内侧，在其底面有纵横交错的水平钢梁(3)，水平钢梁(3)的端部焊接在侧板内表面，所述支撑牛腿(7)焊接在水平钢梁(3)底面并与侧板内表面焊接连接。

5. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述下横梁(9)顶面焊接有下横梁连接牛腿(13)。

6. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述下横梁(9)和上横梁(6)为双工字型钢或双槽钢槽对称拼接成的箱型梁。

7. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述吊装牛腿(10)为双工字钢对拼焊接，其上表面工字钢腹板对应位置焊接有钢板。

8. 根据权利要求1所述的深水单壁钢吊箱围堰，其特征在于：所述吊杆(8)为螺纹钢筋，其两端通过螺帽分别与上横梁(6)和吊装牛腿(10)固定，且接触面之间有垫板。

9. 一种权利要求1～8任意一项所述深水单壁钢吊箱围堰的施工方法，其特征在于：

步骤如下：

步骤一、在现场加工场地分别进行侧面围护体系(1)和底部围护体系(2)，内支撑体系及承吊体系的加工；

步骤二、将侧面围护体系(1)和底部围护体系(2)焊成整体的箱型围护体系，将内支撑体系的支撑牛腿(7)、围樑(4)、水平钢梁(3)及型钢支撑(11)及排水管(12)焊在侧板(1.1)上；

步骤三、将承吊体系的吊装牛腿(10)焊在侧板(1.1)上；

步骤四、在钢护筒(5)上焊接下横梁连接牛腿(13)；

步骤五、对钢吊箱下沉范围进行清淤；

步骤六、将加工好的钢吊箱运至安装区域，用一台吊车整体下沉安装；
步骤七. 调整钢吊箱位置及标高，安装上横梁(6)及吊杆(8)；
步骤八. 在底板上表面进行第一次混凝土封底；
步骤九. 封底混凝土强度达到要求后，抽干钢吊箱内的水，拆除钢吊箱承吊体系及水平钢管(3)和型钢支撑(11)，将位于承台部位的钢护筒(5)割除，凿除桩头，在下横梁连接牛腿(13)的下表面焊接下横梁(9)；
步骤十. 进行第二次混凝土封底并找平。
10. 根据权利要求9所述的深水单壁钢吊箱围堰的施工方法，其特征在于：步骤八所述第一次混凝土封底的厚度为80cm；步骤十中所述第二次混凝土封底的厚度为30cm。
说明书

深水单壁钢吊箱围堰及其施工方法

技术领域

0001 本发明涉及一种围堰及其施工方法，特别是一种适合在深水区使用的单壁钢吊箱围堰及其施工方法。

背景技术

0002 在淤质粘土层深水基础围堰施工中，传统方法是采用拉森钢板桩围堰或钢吊箱围堰施工，钢板桩围堰具有施工周期长，进度慢，封底混凝土厚，封底混凝土施工质量难以保证，钢板桩施工容易出现渗水及漏水现象，影响后续工程施工等缺点。普通的钢吊箱围堰存在深水区围堰下沉过程的起重荷载相当大，不利施工和控制往往需要吊千斤顶进行调整，施工难度大，工程进展慢，同时钢吊箱底部一般无支撑，钢吊箱下沉合适位置后由于桩与护筒间有淤泥，摩擦力减少，钢吊箱可能继续下沉而需要吊车继续工作等缺点。

发明内容

0003 本发明的目的是提供一种深水单壁钢吊箱围堰及其施工方法，要解决传统钢吊箱下沉过程中需要采用千斤顶进行调整，施工难度大，工程进展慢的技术问题；并解决钢吊箱下沉合适位置后仍需吊车的问题。

0004 为实现上述目的，本发明采用如下技术方案：

0005 一种深水单壁钢吊箱围堰，包括围护体系、内支撑体系和承吊体系，围护体系为侧面围护体系和底部围护体系围成的长方形箱型，侧面围护体系包括钢板、水平背楞，竖向背楞和角钢，底部围护体系包括底板、纵横背楞和横背楞，内支撑体系支撑在侧板内侧，承吊体系连接在侧面围护体系上，所述承吊体系由吊装工具，上横梁、下横梁及吊杆组成，吊装工具焊接在侧板的内侧，上横梁位于横向钢护筒的顶面，与吊装牛腿通过吊杆连接，下横梁焊接在桩顶位置处，与上横梁平行。

0006 所述侧板的内侧面焊接有纵横交错水平背楞和竖向背楞，侧板底边缘焊接有角钢，角钢支背紧贴侧板外表面，且侧板外侧面下方30cm位置处焊接有排气阀。

0007 所述底板的底面焊接有纵横交错的纵横背楞和横背楞，横背楞位于前端底面，横背楞底面焊接有箱底支撑牛腿，所述两列横向背楞之间间隔开有与钢护筒匹配的孔洞，纵向背楞隔孔洞断开，孔洞周围水平向焊有短加劲肋。

0008 所述内支撑体系由支撑牛腿、围护管、水平钢架及型钢支撑组成，围护管焊接在侧板的内侧，型钢支撑间隔焊在两根长相对侧板内侧，在其底部有纵横交错的水平钢杆，水平钢杆的端部焊接在侧板内表面，所述支撑牛腿焊接在水平钢杆底部并与侧板内表面焊接连接。

0009 所述下横梁顶面焊接有下横梁连接牛腿。

0010 所述下横梁和上横梁为双工字型钢或双槽钢槽口相对拼接成的箱型梁。

0011 所述吊装牛腿为双工字钢对拉焊接，其上表面工字钢腹板对应位置焊接有钢杆。

0012 所述吊杆为螺纹钢筋，其两端通过螺帽分别于上横梁和吊装牛腿固定，且接触面之间有垫板。
说明书

[0013] 一种深水单壁钢吊箱围堰的施工方法，步骤如下：

[0014] 步骤一、在场加工场地分别进行侧面围护体系和底部围护体系，内支撑体系及
承吊体系的加工；

[0015] 步骤二、将侧面围护体系和底部围护体系焊成整体的箱型围护体系，将内支撑体
系的支撑牛腿、围板、水平钢管和型钢支撑及排水阀焊在侧板上；

[0016] 步骤三、将吊箱体系的吊装牛腿焊在侧板上；

[0017] 步骤四、在钢筋箱下焊接下横梁焊接牛腿；

[0018] 步骤五、对钢吊箱下沉范围进行清淤；

[0019] 步骤六、将加工好的钢吊箱运至安装区域，用一台吊车整体下沉安装；

[0020] 步骤七、调整钢吊箱位置及标高，安装上横梁及吊杆；

[0021] 步骤八、在底板上表面进行第一次混凝土封底；

[0022] 步骤九、封底混凝土强度达到要求后，抽干钢吊箱内的水，拆除钢吊箱承吊体系及
水平钢管和型钢支撑，将位于承台部位的钢护筒外侧，凿除桩头，在下横梁连接牛腿的下表面
焊接下横梁；

[0023] 步骤十、进行第二次混凝土封底并找平。

[0024] 步骤八所述第一次混凝土封底的厚度为 80cm，步骤十中所述第二次混凝土封底
的厚度为 30cm。

[0025] 与现有技术相比本发明具有以下特点和有益效果：

[0026] 首先，本发明通过在桩顶有加一道下横梁防止桩与护筒间有淤泥，摩擦力减少，导
致钢吊箱下沉；不用千斤顶调整使得施工过程更简便，降低施工难度，缩短工期。

[0027] 其次，本发明在底板体系的底面焊接有箱底支撑牛腿用于支撑钢吊箱，钢吊箱下
沉过程中确保钢吊箱支撑，同时钢吊箱下沉后可撤掉吊车，增加设备周转。

[0028] 最后，为了确保下横梁的顺利施工，本发明将传统方法中的封底混凝土改为分两次
封底，同时两次封底还可以减少对封底不平而进行修正，确保封底表面平整。

[0029] 本发明克服了传统钢板桩施工周期长，进度慢，封底混凝土厚，封底混凝土施工质
量难以保证，施工容易出现漏水及漏水现象，影响后续施工等缺点以及普通的钢吊箱
围堰存在深水区围堰下沉过程的起重施工相当大，不利施工和控制往往需要用千斤顶进行
调整，施工难度大，工程进展慢，同时钢吊箱箱底一般无支撑，钢吊箱下沉合适位置后由于
桩与护筒间有淤泥，摩擦力减少，钢吊箱可能继续下沉而需要吊车继续工作等缺点，解决了
钢吊箱下沉无尘千斤顶调整，下沉至承台位置后可撤掉吊车的简便有效的实现围堰的技术
问题。

[0030] 本发明可广泛应用于深水区桩承台和桥墩的施工。

附图说明

[0031] 下面结合附图对本发明做进一步详细的说明。

[0032] 图1是本发明深水单壁钢吊箱正立面示意图。

[0033] 图2是本发明深水单壁钢吊箱侧面示意图。

[0034] 图3是本发明深水单壁钢吊箱平面示意图。

[0035] 图4是底板体系详图。
具体实施方式

[0038] 实施例参见图1～图5所示，一种深水单壁钢吊箱围堰，围护在深水区域拟建桩基15的钢管筒5周围，包括围护体系、内支撑体系和承吊体系，围护体系为侧面围护体系1和底部围护体系2围成的长方形箱型。侧面围护体系包括侧板1.1、水平背楞1.2、竖向背楞1.3和角钢1.4，底部围护体系底板2.1、纵背楞2.2和横背楞2.3，内支撑体系支撑在侧板内侧，承吊体系连接在侧面围护体系上，所述承吊体系由吊装牛腿10、上横梁6、下横梁9及吊杆8组成，吊装牛腿10焊接在侧板的内侧，上横梁6位于纵向钢护筒的顶面，与吊装牛腿10通过吊杆8连接，下横梁9焊接在桩顶位置处，与上横梁6水平。

[0039] 所述侧板1.1的外侧面焊接有纵横交错水平背楞1.2和竖向背楞1.3，侧板底边缘焊接有角钢1.4，角钢肢背紧贴侧板外表面，且侧板外侧面水平以下30cm位置处焊接有排气阀12。

[0040] 所述底板2.1的底面焊接有纵横交错的竖背楞2.2和横背楞2.3，竖背楞2.2位于横背楞2.3底面，横背楞2.3底面焊接有同底支撑牛腿14，所述两列横背楞之间隔开有与钢护筒匹配的孔洞2.4，纵背楞2.2遇孔洞2.4断开，孔洞周围水平向焊有短加劲肋2.5。

[0041] 所述内支撑体系由支撑牛腿7、围楼4、水平钢管3及型钢支撑11组成，围楼4焊接在侧板的内侧，型钢支撑11间隔焊在两较长相对侧板内侧，在其底面有纵横交错的水平钢管3、水平钢管3的端部焊接在侧板内表面，所述支撑牛腿7焊接在水平钢管3底面并与侧板内表面焊接连接。

[0042] 所述下横梁9顶面焊接有下横梁连接牛腿13。

[0043] 所述下横梁9和上横梁6为双工字型钢或双槽钢槽口相对拼接成的箱型梁。

[0044] 所述吊装牛腿10为双工字钢对拼焊接，其上表面工字钢腹板对应位置焊接有钢板。

[0045] 所述吊杆8为螺纹钢筋，其两端通过螺帽分别于上横梁6和吊装牛腿10固定，且接触面之间有垫板。

[0046] 一种所述深水单壁钢吊箱围堰的施工方法，步骤如下：

[0047] 步骤一、在现浇加工场地分别进行侧面围护体系1和底部围护体系2，内支撑体系及承吊体系的加工；

[0048] 步骤二、将侧面围护体系1和底部围护体系2焊成整体的箱型围护体系，将内支撑体系的支撑牛腿7、围楼4、水平钢管3和型钢支撑11及排风阀12焊在侧模1.1上；

[0049] 步骤三、将承吊体系的吊装牛腿10焊在侧板1.1上；

[0050] 步骤四、在钢护筒5上焊接下横梁连接牛腿13；

[0051] 步骤五、对钢吊箱下沉范围进行清理；
步骤六，将加工好的钢吊箱运至安装区域，用一台吊车整体下沉安装；
步骤七，调整钢吊箱位置及标高，安装上横梁6及吊杆8；
步骤八，在底板上表面进行第一次混凝土封底；
步骤九，封底混凝土强度达到要求后，抽干钢吊箱内的水，拆除钢吊箱承吊体系及水平钢管3和型钢支撑11，将位于承台部位的钢护筒5割除，凿除桩头，在下横梁连接牛腿13的下表面焊接下横梁9；
步骤十，进行第二次混凝土封底并找平。
步骤八所述第一次混凝土封底的厚度为80cm；步骤十中所述第二次混凝土封底的厚度为30cm。
底板21采用6mm厚钢板，纵背楞22为工25b和横背楞23为[8，短加劲肋2.5为80×6mm钢板，侧板1.1采用6mm厚钢板，水平背楞1.2为[8和竖向背楞1.3为[14，角钢采用∠75×75×8等肢角钢；支撑牛腿7，横梁连接牛腿13和箱底支撑牛腿14由10mm厚钢板加工而成，围模4为双拼工25b工字钢，水平钢管3采用φ325×8mm钢管和型钢支撑11为双拼工25b工字钢，吊装牛腿10采用工25b工字钢及10mm厚钢板焊接而成，上横梁6采用双拼工45b工字钢，下横梁9采用双拼工25b工字钢，拉杆8为25号的精轧螺纹钢筋。
底板与侧板、侧板与侧板连接处每隔1m加焊一道6mm厚加劲钢板，确保钢吊箱整体刚度。
图2
图3
图4
图5