(51) International Patent Classification:
B60B 35/10 (2006.01)

(21) International Application Number:
PCT/EP20 17/079241

(22) International Filing Date:
15 November 2017 (15.11.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
16461574.2 24 November 2016 (24.11.2016) EP

(71) Applicant: TRIGGO S.A. [PL/PL]; Warszawska 17/1, 30-069 Krakow (PL).

(72) Inventor: BUDWEIL, Rafał; ul. Obopolina 4/1, 30-069 Krakow (PL).

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

(54) Title: A VEHICLE HAVING VARIABLE TRACK

(57) Abstract: A vehicle comprising: a front axle with a pair of front wheels (111, 112) having a track width adjustable between a wide track and a narrow track; a rear axle with at least one rear wheel (121); steering means configured to control the turn of the rear wheel (121) when the front wheels (111, 112) are set to the narrow track; track width control means configured to change the track width of the front wheels (111, 112) and to change the wheel base between the front axle and the rear axle such that for the wide track of the front wheels (111, 112) the wheel base is longer than for the narrow track of the front wheels (111, 112); a locking mechanism (181) configured to lock the track width; wherein each of the front wheels (111, 112) is connected to a dedicated front wheel motor (161, 162) for driving that front wheel and to a dedicated front wheel brake (171, 172) for breaking that front wheel (111, 112).
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(b))
A VEHICLE HAVING VARIABLE TRACK

TECHNICAL FIELD

The present invention relates to vehicles with a variable track.

BACKGROUND ART

There are continuous attempts made to enhance the maneuverability and stability of vehicles.

For example, variable track axles are known to facilitate the use of vehicles in different environments, adjustment of vehicle aerodynamics at different speeds or adjustment of vehicle stability at different driving conditions.

There are also known three-wheeled vehicles with a tiltable frame for increasing the driving capabilities of the vehicle at higher speeds.

For example, a US patent No. US6902022 presents a tractor having a convertible front end and a variable track width. The tractor has a steerable, interchangeable front wheel assembly and an adjustable rear track width. The removable front wheels assembly allows easy conversion between a single wheel and a two wheel front wheel assembly. In combination with the interchangeable front wheel assembly, the adjustable rear wheel track width allows changing of the turning radius of the tractor. The configuration is clearly directed to large and heavy vehicles of wide turning radius, the turning radius being adjustable by the width of the rear track.

In turn, a PCT application No. WO9950128 presents a short, narrow motor vehicle having a parallelogram linkage at each side, to which the front or rear wheels are connected, enabling displacement of wheels in a coordinated way. The vehicle is steered via front wheels and the steering mechanism is configured to enable the front wheels to be steered irrespective of the extent of their displacement, although in the retracted position the range of turn is limited. The rear wheels are non-steerable.
A US patent US471 7164 presents a road vehicle comprising a rotatable chassis section rotatable with respect to a fixed chassis section, a steering mechanism and a banking mechanism for automatically rotating the rotatable chassis section about the horizontal axis whenever the steering mechanism is actuated to steer the vehicle. Such vehicle may become unstable at low speed and taking a sharp turn.

A US patent US5927424 presents a self-balancing vehicle with at least three wheels: one steerable and two non-steerable, wherein at least one section of the vehicle is tiltable about the longitudinal axis of the vehicle via a power-assisted tilt element. The tilt is produced as a function of a sensor measurement of the magnitude and/or the direction of a change in direction of the steerable wheel during travel. The vehicle has limited steering capabilities due to only one steerable wheel.

A US patent application No. US20060170171 presents a vehicle with a tiltable chassis and front wheels adapted to move transverse to their axes of rotation in order to tilt said chassis. The front wheels have variable track width, configured to be set to wide track for low speeds and to narrow track for high speeds, so as to allow tilting at high speeds. The vehicle is tiltable by tilting the whole chassis together with all wheels.

The disadvantage of the above-mentioned vehicles is that they occupy relatively lot of space when parked and/or have a limited steering capabilities at low speeds due to wide track or low turning radius.

A PCT Application WO201144574 discloses a vehicle comprising: a front axle with a pair of front wheels having a track width adjustable between a wide track and a narrow track; a drive rear axle with a rear wheel; track width control means configured to change the track width of the front wheels and to change the wheel base between the front axle and the rear axle such that for the wide track of the front wheels the wheel base is longer than for the narrow track of the front wheels. The vehicle further comprises steering means configured to control the turn of the rear wheel when the front wheels are set to the narrow track, wherein the front wheels are non-turnable when the front wheels are set to the narrow track.
The above-cited inventions require complex and thus heavy and expensive systems for operating the variable-width suspension.

The aim of the present invention is to provide a vehicle which can be driven in an easy and stable manner at high speeds, while allowing high maneuvering capabilities at low speeds and requiring little parking space, while at the same time being characterized by a simple and economic system for operating the variable width suspension, which draws efficiency from synergies between the suspension and propulsion systems.

SUMMARY

There is disclosed a vehicle comprising: a front axle with a pair of front wheels having a track width adjustable between a wide track and a narrow track; a rear axle with at least one rear wheel; steering means configured to control the turn of the rear wheel when the front wheels are set to the narrow track; track width control means configured to change the track width of the front wheels and to change the wheel base between the front axle and the rear axle such that for the wide track of the front wheels the wheel base is longer than for the narrow track of the front wheels; a locking mechanism configured to lock the track width; wherein each of the front wheels is connected to a dedicated front wheel motor for driving that front wheel and to a dedicated front wheel brake for breaking that front wheel.

The track width control means can be configured to change the track width of the front wheels by controlling the front wheel motors and the front wheel brakes.

The front wheel motors can be electric motors.

The front wheel motors can be integrated with the front wheel brakes.

The front wheel motors can be integrated with the front wheel axles.

The at least one rear wheel can be driven by a rear wheel motor.

The rear wheel motor may have a higher power than each of the front wheel motors.

The rear axle with the at least one rear wheel can be a dead axle.
The locking mechanism can be movable and configured to lock at predefined locking points which are fixed still with respect to the vehicle chassis. The locking mechanism may comprise a latch configured to be coupled with pins.

The locking mechanism may comprise a pin configured to be coupled with latches.

The locking mechanism may comprise a magnetic element configured to be coupled with electromagnets.

The locking mechanism can be fixed still with respect to the vehicle chassis and configured to lock the pivotable wishbone pairs.

BRIEF DESCRIPTION OF DRAWINGS

The invention is shown by means of exemplary embodiments on a drawing, in which:

Figs. 1A-1C show side views of different types of vehicles according to the invention in a wide track configuration, corresponding to a high speed driving mode and in a narrow track configuration, corresponding to a low speed parking mode.

Figs. 2A, 2B show front views of the vehicle in a wide track and in a narrow track configuration.

Fig. 3A, 3B show perspective visualizations of the vehicle in a wide track and in a narrow track configuration.

Figs. 4A and 4B show a top view of a first embodiment of a chassis of the vehicle in a wide track and in a narrow track configuration;

Figs. 5A-5C show a top view of a second embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration.

Figs. 6A-6C show a top view of a third embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration.
Figs. 7A-7C show a top view of a fourth embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration.

Figs. 8A-8C show a top view of a fifth embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration.

Fig. 9 shows a flow diagram of operation of the selector.

MODES FOR CARRYING OUT THE INVENTION

The vehicle according to the invention is shown in side views on Figs. 1A-1C in a wide track configuration, corresponding to a high speed driving mode, and in a narrow track configuration, corresponding to a low speed parking mode. Figs. 2A and 2B show a front view of the vehicle in a wide track and a narrow track configuration, respectively. Figs. 3A and 3B show a perspective view of the vehicle in a wide track and a narrow track configuration, respectively. Preferably, the vehicle is a passenger vehicle for one or two persons, having a width of about 1m in the narrow track configuration and a length of about 2-3 m. Fig. 1A shows a typical passenger transport vehicle with a closed boot portion, Fig. 1B shows a transport vehicle with a transparent boot portion and Fig. 1C shows an open-roof recreational transport vehicle. The vehicle is preferably a three-wheeled vehicle having a front axle with a pair of front wheels 111, 112 and a rear axle with a rear wheel 121. However, in certain embodiments, the vehicle may have more axles and/or wheels on each axle.

The front wheels 111, 112 have a track width adjustable between a wide track, as shown in Figs. 2A and 3A and a narrow track as shown in Figs. 2B and 3B. For the wide track of the front wheels 111, 112, the wheel base, i.e. the distance between the front wheels axle and the rear wheel axle, is longer than for the narrow track of the front wheels 111, 112, as seen in Fig. 3A compared to Fig. 3B.

Preferably, in the wide track configuration, the track width of the front wheels equals at least 150% of the track width in the narrow track configuration, i.e. it is substantially wider.
Preferably, in the wide track configuration, the wheel base equals at least 120% of the wheel base in the narrow track configuration, i.e. it is substantially longer.

Such structure allows increasing the stability of the vehicle at higher speeds by setting the front wheels to a wide track and extending the wheel base, while maintaining narrow vehicle dimensions to allow parking in narrow spaces and increasing maneuverability at low speeds, by setting the front wheels to a narrow track and shortening the wheel base.

Figs. 4A and 4B show a top view of a first embodiment of a chassis of the vehicle in a wide track and in a narrow track configuration.

The vehicle chassis comprises a front axle, which is a split axle with a pair of front wheels 111, 112 having a track width adjustable between a wide track, as shown in Fig. 4A, and a narrow track, as shown in Fig. 4B. In a simple embodiment, the front wheels may be set to one of the wide or narrow track only. In a more elaborate embodiment, the front wheels may be set to a plurality of positions between the wide track and the narrow track, e.g. depending on the desired speed or comfort. In one embodiment, the track-adjustable front wheels are non-turnable and only the rear wheel is turnable to allow directional steering of the vehicle. In another embodiment, when the front wheels 111, 112 are set to the wide track, the front wheels 111, 112 are turnable around individual axes, defined by steering knuckle bearings 131, 132, to allow directional steering of the vehicle at higher speeds via the front wheels. When the front wheels are set to the narrow track, they are non-turnable and the vehicle is directionally steered by turning of the rear wheel. The non-turnable configuration of the front wheels 111, 112 may be activated electrically, e.g. by the central processing unit of the vehicle, or mechanically, by disconnecting or blocking the steering means of the front wheels 111, 112. Due to the fact that the front wheels 111, 112 are non-turnable when set to the narrow track, the front wheels 111, 112 may be brought very close to the vehicle bodywork, without the need to provide extra space for the turn of the wheels in the bodywork, thereby achieving particularly narrow width of the vehicle, as shown in Figs. 2B and 3B.

The track width of the front wheels 111, 112 is changed by track width control means, which can be configured to change the wheel base between the
front axle and the rear axle such that for the wide track of the front wheels 111, 112 the wheel base is longer than for the narrow track of the front wheels 111, 112.

According to the present disclosure, the track width is controlled by use of front wheel motors 161, 162 and front wheel brakes 171, 172, assigned individually to each of the front wheels 111, 112, as well as a locking mechanism 181 configured to lock the track width to a particular configuration. When change of the track width to a wider track is desired, the locking mechanism 181 is unlocked to enable displacement of the elements of the front suspension and the front wheel motors 161, 162 are governed to apply additional propulsion force onto the wheels 111, 112, which results in extension of the variable width suspension. When change of the track width to a narrower width is required, additional breaking force is applied to the wheels 111, 112 by the front wheel brakes 171, 172 and the wheels 111, 112 force the variable width suspension to retract. When the desired position is reached, the locking mechanism 181 locks the elements of the variable width suspension and prevents the suspension from any extending, or retracting movement.

The "additional propulsion force" as indicated above is understood as a force necessary to extend the track width. This force may be dependent on the current speed and track width of the vehicle and may be calculated by an electronic controller of the track width control means according to predetermined equations defined for the particular type of the vehicle and elements of the suspension. The same applies in an equivalent manner to the "additional breaking force". In order to keep the speed of the vehicle unchanged while changing the track width, the rear wheel can be employed as well. For example, in order to avoid acceleration while extending the track width, or even to reduce the overall vehicle speed while extending the track width, a braking force can be applied to the rear wheel. On the other hand, in order to avoid braking while reducing the track width, a driving force can be applied to the rear wheel (in an embodiment wherein the rear wheel is a driven by a motor).

The front wheel motors 161, 162 are preferably mounted directly in the axles of the front wheels. They are preferably electric motors.
The front wheel brakes 171, 172 can be standard brakes. Alternatively, the functionality of the brakes 171, 172 can be provided by the front wheel motors 161, 162, which can generate both propulsion and braking force. Therefore, the brake 171 or 172 and the motor 161 or 162 may form a single component of the system.

In the embodiment presented, the locking mechanism 181 is presented as a latch pivotable about a pivot axis 182, that can be forced by a spring (not visible on the drawing) to the alignment as shown in Figs. 4A, 4B and may pivot about the axis 182 by a counter-force (from an actuator (not shown) or another spring, not shown) generated by the track width control means. The locking mechanism 181 is configured to lock about locking points 183, 184 (which can be also called anchoring points) to lock the track width at the wide track (Fig. 4A) and at the narrow track (Fig. 4B). In other embodiments, more predefined locking points may be defined.

The track width control means may comprise wishbone pairs 113, 114 connected to the front wheels 111, 112, each wishbone pair 113, 114 connected pivotally at one point to a central frame 117 and at another point to one end of a push-pull rod 115, 116, the other end of which is pivotally connected with an element 118 movable along a linear guide 119, such that its movement controls the change of the wheel base and the track width of the front wheels 111, 112. The central linear guide 119 is particularly useful for change of the track width when the vehicle moves with low speed. The central linear guide 119 can be used as an element that supports the control of the track width control means, in addition to the front wheel motors 161, 162 and the front wheel brakes 171, 172.

Another embodiment of track width control means may comprise, instead of the central linear guide 119, variable-length steering rods 141, 142 which change their effective length temporarily for time of retraction or extension of the track of the front wheels 111, 112. Increasing the length of the steering rod 141, 142 causes both front wheels 111, 112 to be turned towards the central axis of the vehicle, which during movement of the vehicle is pushing the wheels towards the center of the vehicle and narrowing the track. Shortening the steering rods 141, 142 causes both front wheels 111, 112 to be turned away
from the central axis of the vehicle, and causes simultaneous movement of the front wheels 111, 112 outside, thereby widening their track. The steering rods 141, 142 can be used as an element that supports the control of the track width control means, in addition to the front wheel motors 161, 162 and the front wheel brakes 171, 172.

The track width control means may also comprise both the variable-length steering rods 141, 142 and the central guide 119, in addition to the front wheel motors 161, 162 and the front wheel brakes 171, 172.

In another embodiment, the track width control means may comprise only the front wheel motors 161, 162 and the front wheel brakes 171, 172 to control the track width.

Alternatively, apart from the double-wishbone suspension described above, other types of suspension can be used, such as a swingarm suspension or a MacPherson suspension, providing an individual axes of rotation for each wheel.

The vehicle chassis further comprises a rear axle with a rear wheel 121. The rear wheel 121 is turnable, for example by a linear actuator 124, around an axis defined by a bearing 123 offset from the centre of the rear wheel 121 by a distance larger than the radius of the rear wheel 121, which facilitates maneuvering of the vehicle. If the front wheels are turnable, the rear wheel 121 can be blocked when the front wheels 111, 112 are set to the wide track, so as to steer the vehicle only via the front wheels 111, 112 when the vehicle drives at higher speeds.

The rear axle may also be a drive axle of the vehicle, coupled with a rear wheel motor 122. In such a case, the front wheel motors 161, 162 can be low-power motors used only to generated additional propulsion force necessary to adjust the track width. In other words, the motor 122 driving the rear wheel 121 may have a higher power than each of the front wheel motors 161, 162. In other embodiments, the front wheel motors 161, 162 can be higher-power motors used also to generate propulsion force for driving the vehicle, in addition to the propulsion force generated by the rear axle motor 122. In yet another embodiment, the rear axle can be a dead axle and the vehicle can be driven only by the front wheel motors 161, 162. The vehicle further comprises steering
means, e.g. a steering wheel, not shown in the drawing for simplicity, configured to control the turn of the rear wheel 121. In the embodiment wherein the front wheels are turnable, the same steering means may be also used to control the front wheels 111, 112 when the front wheels 111, 112 are set to the wide track.

In a particular embodiment, the steering means may be configured to control the turn of the front wheels 111, 112 when the front wheels 111, 112 are set to the wide track and to control the turn of the rear wheel 121 when the front wheels 111, 112 are set to the narrow track. The term "turn" is to be understood as the turn of the wheels around a non-horizontal axis, preferably around a substantially vertical axis. In another embodiment, the turn of the front wheels 111, 112 and the rear wheel 121 may be controlled simultaneously, when the front wheels 111, 112 are not set to the narrow track. In another embodiment only rear wheel 121 is controlled irrespective of the track of the front wheels 111, 112. The steering means can be coupled and decoupled with the front wheels 111, 112 and the rear wheel 121 in any conventional mechanical or electrical manner.

The front wheels are used for directional steering when in wide track configuration. This can be achieved by known means, for example such as described in the PCT application WO201 1144574. The principles of operation of the turning of the front wheels and of the rear wheel are equivalent to that described with reference to Figs. 5, 6 and 7 of the PCT application WO201 1144574. Other embodiments of the chassis of the vehicle can be employed as well, such as for example the chassis of the embodiment of Figs. 8 and 9, or the chassis of the embodiment of Figs. 10 and 11A-11B, or the chassis of the embodiment of Figs. 14A-14C as presented in the PCT application WO201 1144574.

Figs. 5A-5C show a top view of a second embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration. The elements numbered 2xx are equivalent to elements numbered 1xx of the first embodiment, unless described as different below. The
principle of operation of the second embodiment is equivalent to that of the first embodiment, unless described as different below.

The second embodiment differs from the first embodiment by employing a different configuration of individual steering rods 241, 242.

The locking latch 281 is movable by a linear actuator 285 between the locking points 283, 284.

Figs. 6A-6C show a top view of a third embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration. For clarity, the elements corresponding to the elements of Fig. 2 have not been indicated by reference numerals. The principle of operation of the third embodiment is equivalent to that of the embodiments presented previously, unless described as different below.

The third embodiment differs from the other embodiments by employing a different locking mechanism. The locking mechanism comprises a pin 381 movable by a linear actuator 385 between the locking points 383, 384. At the locking points, pivotable latches are installed, that can be forced by a spring (not visible on the drawing) to the alignment as shown in the drawing and may pivot about the axes 383, 384 by a counter-force (from an actuator (not shown) or another spring, not shown) generated by the track width control means. The locking mechanism is configured to lock the pin 381 about the locking latches at the locking points 383, 384 (which can be also called anchoring points) to lock the track width at the wide track (Fig. 6A) and at the narrow track (Fig. 6B).

Figs. 7A-7C show a top view of a fourth embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration. For clarity, the elements corresponding to the elements of Fig. 2 have not been indicated by reference numerals. The principle of operation of the fourth embodiment is equivalent to that of the embodiments presented previously, unless described as different below.

The fourth embodiment differs from the other embodiments by employing a different locking mechanism. The locking mechanism comprises a magnetic element 481 movable by a linear actuator 485 between the locking points 483,
At the locking points 483, 484, electromagnets are installed that are controllable by the track width control means. The locking mechanism is configured to lock the magnetic element 481 by the electromagnets at the locking points 483, 484 (which can be also called anchoring points) to lock the track width at the wide track (Fig. 7A) and at the narrow track (Fig. 7B).

Figs. 8A-8C show a top view of a fifth embodiment of a chassis of the vehicle in a wide track configuration, during a transition and in a narrow track configuration. For clarity, the elements corresponding to the elements of Fig. 2 have not been indicated by reference numerals. The principle of operation of the fifth embodiment is equivalent to that of the embodiments presented previously, unless described as different below.

The fifth embodiment differs from the other embodiments by employing a different locking mechanism. The locking mechanism comprises a still element 581 with two protruding pins 582, 583. The position of the pins 582, 583 can be controllable by the track width control means or other elements, such as springs mounted inside the still element 581. The wishbone pairs 513, 514, which are pivotable at their ends, are rigidly coupled with semi-circular discs 584, 585, each having a pair of with apertures 586, 587. The apertures 586, 587 are configured to receive the protruding pins 582, 583 and thereby to lock the discs 584, 585 and thereby the wishbone pairs 513, 514 in a narrow track position (Fig. 7A) or in a wide track position (Fig. 7B). More apertures can be defined in order to lock the chassis in other positions, between the narrow and wide track, if desired.

The vehicle according to the above embodiments may be operated in the following way. When the vehicle is to be driven at high speed, the front wheels may be set to the wide track and the vehicle can be controlled via the steering means configured to control the turn of the front wheels and/or of the rear wheel. Such "driving mode" provides good stability for the vehicle. When the vehicle is to be parked at a narrow space or driven slowly in space-constrained conditions, the front wheels may be set to the narrow track and the vehicle can be controlled via the steering means configured to control the turn of the rear
wheel. Such "parking mode" provides narrow dimensions of the vehicle and good maneuvering capabilities. Therefore, the vehicle can be easily parked in narrow parking spaces. When the wheel base shortens for a narrower front track width, the turning radius decreases and the maneuvering capabilities are further increased.

The operation of both the track width control means and the steering means may be controlled by a common selector to be activated by the vehicle driver. The selector may be set to the "parking mode" or to the "driving mode". The selector can be a dedicated switch on the vehicle dashboard. Optionally, the selector can be coupled with a gear lever, wherein the "parking mode" can be coupled with a dedicated position of the gear lever or the reverse gear position and the "driving mode" can be coupled with the position indicating a forward gear.

Fig. 9 shows a flow diagram of operation of the selector. The operation may be controlled mechanically or electrically by a central processing unit of the vehicle. When in step 201 a change of selector mode to the "parking mode" is detected, the track width control means are activated to in step 202 set the narrow track of the front wheels 111, 112 and next in step 203 the steering means are configured to control the turn of the rear wheel 121. In turn, when in step 201 a change of selector mode to the "driving mode" is detected, the track width control means are activated in step 204 to set the wide track of the front wheels 111, 112 and next in step 205 the steering means are configured to control the turn of the front wheels 111, 112 and/or of the rear wheel 121.

All the embodiments of the chassis of the vehicle as described above can be coupled with a tiltable frame, for example such as described in the PCT application WO201 1144574.

The embodiments presented above are exemplary embodiments of the invention. Various modifications can be made without departing from the scope of the invention, which is defined by the attached claims. For example, the rear axle may comprise more than one wheel, provided that the track width of the rear wheels is not wider than the narrow track of the front wheels. The vehicle may also comprise more than two axles.
Elements referred to as e.g. x_{11}, x_{12} in the claims are considered to encompass elements of various embodiments ending with the same numerals, such as $111, 112, 211, 212$.
CLAIMS

1. A vehicle comprising:
 - a front axle with a pair of front wheels \((x1_1, x1_2)\) having a track width adjustable between a wide track and a narrow track;
 - a rear axle with at least one rear wheel \((x2_1)\);
 - steering means configured to control the turn of the rear wheel \((x2_1)\) when the front wheels \((x1_1, x1_2)\) are set to the narrow track;
 - track width control means configured to change the track width of the front wheels \((x1_1, x1_2)\) and to change the wheel base between the front axle and the rear axle such that for the wide track of the front wheels \((x1_1, x1_2)\) the wheel base is longer than for the narrow track of the front wheels \((x1_1, x1_2)\);
 - a locking mechanism \((x8_1)\) configured to lock the track width;
 - wherein each of the front wheels \((x1_1, x1_2)\) is connected to a dedicated front wheel motor \((x6_1, x6_2)\) for driving that front wheel and to a dedicated front wheel brake \((x7_1, x7_2)\) for breaking that front wheel \((x1_1, x1_2)\).

2. The vehicle according to claim 1, wherein the track width control means are configured to change the track width of the front wheels \((x1_1, x1_2)\) by controlling the front wheel motors \((x6_1, x6_2)\) and the front wheel brakes \((x7_1, x7_2)\).

3. The vehicle according to any of previous claims, wherein the front wheel motors \((x6_1, x6_2)\) are electric motors.

4. The vehicle according to any of previous claims, wherein the front wheel motors \((x6_1, x6_2)\) are integrated with the front wheel brakes \((x7_1, x7_2)\).

5. The vehicle according to any of previous claims, wherein the front wheel motors \((x6_1, x6_2)\) are integrated with the front wheel axles.
6. The vehicle according to any of previous claims, wherein the at least one rear wheel (x21) is driven by a rear wheel motor (x22).

7. The vehicle according to claim 6, wherein the rear wheel motor (x22) has a higher power than each of the front wheel motors (x61, x62).

8. The vehicle according to any of claims 1-5, wherein the rear axle with the at least one rear wheel (x21) is a dead axle.

9. The vehicle according to any of previous claims, wherein the locking mechanism (181-481) is movable and configured to lock at predefined locking points (183-483; 184-484) which are fixed still with respect to the vehicle chassis.

10. The vehicle according to any of previous claims, wherein the locking mechanism (181, 281) comprises a latch (181, 281) configured to be coupled with pins (183, 184, 283, 284).

11. The vehicle according to any of previous claims, wherein the locking mechanism (381) comprises a pin (381) configured to be coupled with latches (383, 384).

12. The vehicle according to any of previous claims, wherein the locking mechanism (481) comprises a magnetic element (481) configured to be coupled with electromagnets (483, 484).

13. The vehicle according to any of claims 1-8, wherein the locking mechanism (581) is fixed still with respect to the vehicle chassis and configured to lock the pivotable wishbone pairs (513, 514).
Fig. 9

- Parking
- Change of selector mode?
- Driving

201

202
- Set the narrow track of the front wheels

203
- Control the rear wheel

204
- Set the wide track of the front wheels

205
- Control the front wheels
INTERNATIONAL SEARCH REPORT

PCT/EP2017/079241

A. CLASSIFICATION OF SUBJECT MATTER

INV. B60B35/10

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B60B B60G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

B. FIELDS SEARCHED

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 02/14086 AI (GEE DAVID HOWARD [GB] ; COOPER ROBERT [GB]) 21 February 2002 (2002-02-21) page 3, lines 4-6 page 7, lines 5-9 figures -----</td>
<td>1-13</td>
</tr>
</tbody>
</table>

See patent family annex.

Further documents are listed in the continuation of Box C.

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 February 2018</td>
<td>26/03/2018</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer:

Landri sci na, V

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 99/50128 AI (GEE DAVID HOWARD [GB]) 7 October 1999 (1999-10-07) cited in the application figures 1,2 page 4, lines 9-13 page 6, lines 27-31 page 7, lines 14-17 page 4, lines 1-4</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>wo 2006/112732 AI (MAHY GRAHAM JOHN [NZ] ; TOBIN GORDON JAMES [NZ] ; GLOSSOP BENJAMIN MARK) 26 October 2006 (2006-10-26) page 18, lines 4,5 ; figures</td>
<td>1,2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2799898 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103124668 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2388153 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2393907 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2388179 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2523755 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5849363 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013530079 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130124455 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012154241 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013062133 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011144574 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2365828 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0214086 A1</td>
</tr>
<tr>
<td>WO 2008020861 A1</td>
<td>21-02-2008</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6845898 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69805859 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69805859 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2175699 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9950128 A1</td>
</tr>
<tr>
<td>WO 2006112732 A1</td>
<td>26-10-2006</td>
<td>AU 2006237754 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2604534 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2440300 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 539543 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008190682 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006112732 A1</td>
</tr>
</tbody>
</table>