

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/026477 A1

(43) International Publication Date

26 February 2015 (26.02.2015)

(51) International Patent Classification:

C09K 3/14 (2006.01) B24B 37/04 (2012.01)

(21) International Application Number:

PCT/US2014/047980

(22) International Filing Date:

24 July 2014 (24.07.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

13/974,588 23 August 2013 (23.08.2013) US

(71) Applicant: DIAMOND INNOVATIONS, INC. [US/US];
6325 Huntley Road, Worthington, Ohio 43085 (US).

(72) Inventor: JI, Shuang; 9135 Parkpoint Lane, Lewis Center, Ohio 43035 (US).

(74) Agent: GAO, Frank; Diamond Innovations, Inc., 6325 Huntley Road, Worthington, Ohio 43085 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: LAPPING SLURRY HAVING A CATIONIC SURFACTANT

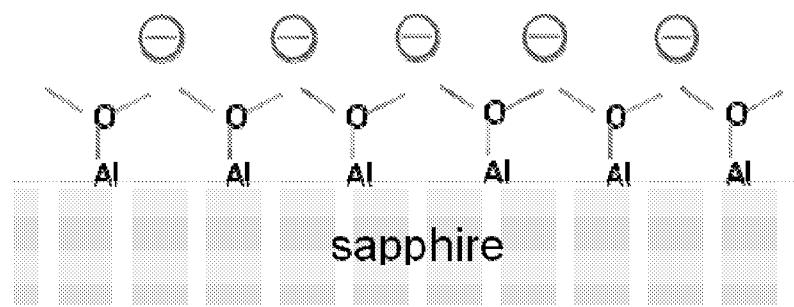


FIG. 1

(57) **Abstract:** A lapping slurry and method of making the lapping slurry are provided. The lapping slurry comprises abrasive grains dispersed in a carrier. The carrier comprises water, ethylene glycol and between about 0.5 wt% to about 60 wt% surfactant. Abrasive particles are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials.

LAPPING SLURRY HAVING A CATIONIC SURFACTANT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is based on and claims the priority benefit of previously filed U.S. Patent Application No. 13/974,588, filed August 23, 2013.

TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY

[0002] The present disclosure relates generally to lapping compounds and its method of manufacturing them, more specifically, to lapping slurries, compounds or gels which are used in industrial production application for eliminating or minimizing residues on the work pieces and lapping equipment.

SUMMARY

[0003] In one embodiment, a lapping slurry may comprise abrasive particles dispersed in a carrier, wherein the carrier comprises water, ethylene glycol and between about 0.5 wt% to about 60 wt% surfactant.

[0004] In another embodiment, a lapping composition may comprise superabrasive materials; and a cationic surfactant or cationic polymer, wherein the cationic surfactant or cationic polymer is adsorbed onto the surface of superabrasive materials.

[0005] In yet another embodiment, a lapping slurry may comprise abrasive particles which are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials; and defoamer dispersed in ethylene glycol.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The foregoing summary, as well as the following detailed description of the embodiments, will be better understood when read in conjunction with the appended drawings. It should be understood that the embodiments depicted are not limited to the precise arrangements and instrumentalities shown.

[0007] FIG. 1 is a schematic view of sapphire surface with negative charges during a lapping process according to an embodiment;

[0008] FIG. 2 is a bar chart illustrating material removal rate between formulations A, B, C, and D;

[0009] FIG. 3 is a bar chart illustrating wafer roughness Ra processed with slurries A, B, C, and D; and

[0010] FIG. 4 is a bar chart illustrating wafer roughness Rz processed with slurries A, B, C, and D.

DETAILED DESCRIPTION

[0011] Before the present methods, systems and materials are described, it is to be understood that this disclosure is not limited to the particular methodologies, systems and materials described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope. For example, as used herein, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. In addition, the word “comprising” as used herein is intended to mean “including but not limited to.” Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art.

[0012] Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as size, weight, reaction conditions and so forth used in

the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[0013] In describing and claiming the invention, the following terminology will be used in accordance with the definitions set forth below.

[0014] As used herein, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.

[0015] The term “abrasive”, as used herein, refers to any material used to wear away softer material.

[0016] The term “material removal”, as used herein, refers to the weight of a workpiece removed in a given period of time reported in milligrams, grams, etc.

[0017] The term, “material removal rate”, as used herein, refers to material removed divided by the time interval reported as milligrams per minute, grams per hour, or microns of thickness per minute etc.

[0018] The term “monocrystalline diamond”, as used herein, refers to diamond that is formed either by high-pressure/high-temperature synthesis or a diamond that is naturally formed. Fracture of monocrystalline diamond proceeds along atomic cleavage planes. A monocrystalline diamond particle breaks relatively easily at the cleavage planes.

[0019] The term “particle” or “particles”, as used herein, refers to a discrete body or bodies. A particle is also considered a crystal or a grain.

[0020] The term “pit”, as used herein, refers to an indentation or crevice in the particle, either an indentation or crevice in the two-dimensional image or an indentation or crevice in an object.

[0021] The term “polycrystalline diamond”, as used herein, refers to diamond formed by explosion synthesis resulting in a polycrystalline particle structure. Each polycrystalline diamond particle consists of large numbers of micro crystallites less than about 100 angstroms in size. Polycrystalline diamond particles do not have cleavage planes.

[0022] The term “superabrasive”, as used herein, refers to an abrasive possessing superior hardness and abrasion resistance. Diamond and cubic boron nitride are examples of superabrasives and have Knoop indentation hardness values of over 3500.

[0023] The term “weight loss”, as used herein, refers to the difference in weight of a group of particles before being subject to the modification treatment and the weight of the same mass of diamond particles or abrasive particles after being subjected to the modification treatment.

[0024] The term “workpiece”, as used herein, refers to parts or objects from which material is removed by grinding, polishing, lapping or other material removal methods.

[0025] The term “perimeter”, as used herein, refers to the boundary of a closed plane figure or the sum of all borders of a two-dimensional image.

[0026] The term “surface area” as used herein, refers to the external surface of a particle. When used with a plurality of particles, i.e., powder, the term specific surface area is used and is reported as surface area per gram of powder.

[0027] The term “wafer roughness” when referring to the surface of the sapphire are the features on the surface of the wafer. These features, which include the fine

scratches or track marks from abrasive polishing, are measured using a contact or non-contact profilometer.

[0028] The terms diamond particle or particles and diamond powder or powders are used synonymously in the instant application and have the same meaning as “particle” defined above.

[0029] The term “superabrasive,” as used herein, refers to materials having a Knoop hardness greater than about 4000. The term “Ra,” as used herein, refers to an arithmetic average value of departure from profile from the center line. The term “Rz,” as used herein, refers to a ten point height measurement and in U.S., is the mean peak-to-valley height.

[0030] It is important to note that although the terms defined above refer to measuring two-dimensional particle profiles using microscopic measuring techniques, it is understood that the features may extend to the three-dimensional form. Automated image analysis of particle size and shape is recognized by one skilled in the art as a reliable, reproducible method of measuring particle characteristics. Although the Wyko image analyzer was used, similar devices are available that will reproduce the data.

[0031] In one embodiment, monocrystalline diamond particles may be used. Monocrystalline diamond particles in sizes of less than about 100 microns are useful. However, diamond particles in sizes over about 100 microns may be used as well. The sizes of the diamond particles range from about 0.1 to about 1000 microns. One example of diamond particles that may be used is SJK-5 4-8 micron, synthetic industrial diamond particles manufactured by Diamond Innovations, Inc. (Worthington, Ohio, U.S.A.).

[0032] In another embodiment, natural diamond particles, sintered polycrystalline diamond or shock synthesized polycrystalline diamond particles may be subjected to the modification treatment discussed below.

[0033] In an embodiment, other abrasives may be subjected to a modification treatment. Examples of abrasives include any material, such as minerals, that are used for shaping or finishing a workpiece. Superabrasive materials such as natural and synthetic diamond and boron, carbon and nitrogen compounds may be used. Suitable diamond materials may be crystalline or polycrystalline. Other examples of abrasive grains may include calcium carbonate, emery, novaculite, pumice dust, rouge, sand, ceramics, alumina, glass, silica, silicon carbide, and zirconia alumina.

[0034] In another embodiment, a reactive coating is used to modify the abrasive or superabrasive particles. Such reactive coatings include, but are not limited to alkali metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium peroxide, potassium dichromate and potassium nitrate, etc. The reactive coatings may also include a combination of alkali metal hydroxides.

[0035] The abrasive particles are also useful in slurries and other carrier liquids. A typical slurry solution may include abrasive particles dispersed in a carrier. The carrier may comprise water, ethylene glycol and between about 0.5 wt% to about 60 wt% surfactant. The abrasive particles may be selected from a group of cubic boron nitride, diamond, surface modified diamond and diamond composite material. The abrasive particles may range in size of from about 0.1 to about 100 microns present in a concentration of about 0.2 to about 50 percent by weight. The carrier may include a water-based carrier, glycol-based carrier, oil-based carrier or hydrocarbon-based carrier and combinations thereof and defoamers, pH and color adjusters, and viscosity modifying agents.

[0036] The surfactant may be at least one of cationic surfactant or cationic polymer. Cationic surfactants are a group of surfactants that have a positive charge on their head group. The composition of the molecules may vary, but is typically a fatty acid-derived, hydrophobic tail with a nitrogen-containing head group. When these surfactants or cationic polymers are added to slurries with diamond, the cationic surfactants or cationic polymers may be adsorbed onto the surface of

superabrasive materials, such as diamond, so that superabrasive particles may be positively charged. More specifically, the abrasive particles which dispersed in ethylene glycol having a pH in a range of from 5 to 9 may be evidenced by zeta potentials. Defoamer dispersed in ethylene glycol may be chemical additive that reduces and hinders the formation of foam in industrial process liquids. The specific defoamer used in the examples may be polydimethylsiloxane emulsion, for example.

[0037] The nitrogen-containing group is most likely a quarternary amine salt or tertiary amine salt. More specifically, the cationic surfactant may be at least one of alkyl-quaternized ammonium salt, alkyl amine, and amine salt. The cationic polymer may comprise at least one of quarternium based polymer or polyelectrolyte. The alkyl-quaternized ammonium salt may comprise at least one of chloride, methosulfate, or bromide salt. The chloride salt may comprise at least one of stearalkonium chloride, cetrimonium chloride, behentrimonium chloride, benzalkonium chloride, cinnamidopropyltrimonium chloride, cocotrimonium chloride, dicetyldimonium chloride, dicocodimonium chloride, hydrogenated palm trimethylammonium chloride, lauryltrimonium chloride, quaternium-15, quaternium-22, quaternium-82, for example. The alkyl amines or amine salts may comprise at least one of stearamidopropyl dimethylamine lactate, stearamidopropyl dimethylamine citrate, stearamidopropyl dimethylamine propionate, isostearamidopropyl dimethylamine, isostearamidopropyl morpholine, wheatgermamidopropyl dimethylamine, and behanamidopropyl dimethylamine.

[0038] As shown in FIG. 1, sapphire wafers require lapping processes to remove the sub-surface damage resulted from previous steps, such as wire sawing and rough lapping with slurries containing coarse diamond or SiC. The fine lapping process, which usually involves fine diamond abrasives and complimentary slurry carriers, requires fast material removal to achieve high productivity. Also, the measurement of surface roughness, such as Ra or Rz, together with customized inspection for level of scratches, may be often conducted to make sure the subsequent polishing steps are adequate for removing surface damages. Therefore,

it is always desirable if a lapping composition would improve on lap rate and decrease or maintain the level of defects on the sapphire wafers.

[0039] During the lapping process of sapphire, the surface of the wafers is constantly being removed and renewed, and the fresh new surface emerges with broken chemical bonds which may provide surface charge on the sapphire wafers. It is plausible that the surface of sapphire wafers may possess negative charges as shown in FIG. 1, due to the continuous exposure of new surface made up of dangling oxygen bonds.

[0040] Diamond particles are positively charged due to the adsorption of cationic surfactants. As a result, there is enhanced affinity between diamond particles and work piece due to the electrostatic attraction. The efficiency of lapping may improve as a result of longer residence time from diamond working on the work piece, which improves the material removal rate on the sapphire wafers.

[0041] Example 1

[0042] Five different formulations were listed here. Formulations A and B served as baselines with a Ninol 11CM, and different levels of surface modified diamond concentrations. Formulations C, D and E contained the claimed Quaternium 82 at different levels and different levels of surface modified diamond concentrations as well.

Formulation A	Weight (gram)
Ethylene Glycol	1030
Ninol 11CM	50
DI Water	30
Defoamer	2
Diamond 4-6 μ m	4

[0043]

Formulation B	Weight (gram)
Ethylene Glycol	1030
Ninol 11CM	50
DI Water	30
Defoamer	2
Diamond 4-6µm	8

[0044]

Formulation C	Weight (gram)
Ethylene Glycol	1030
Quaternium 82	10
Diamond 4-6µm	4
Defoamer	2

[0045]

Formulation D	Weight (gram)
Ethylene Glycol	1030
Quaternium 82	10
Diamond 4-6µm	8
Defoamer	2

[0046]

Formulation E	Weight (gram)
Ethylene Glycol	1030
Quaternium 82	15
Diamond 4-6µm	8
Defoamer	2

[0047] Example 2

[0048] Some chemical and physical properties of the formulated slurries are listed below in Table 1. It is clearly shown that Formulations C, D and E contain positively charged diamond particles, as indicated by the positive zeta potentials.

[0049]

Slurry	pH	Viscosity (cps, Brookfield, #2 spindle, 30 rpm)	Zeta Potential (mv)
A	9.0	25	-17
B	8.9	20	-30
C	6.0	33	10
D	5.9	35	13
E	5.9	50	20

[0050] Table 1 Some chemical and physical properties of diamond slurries

[0051] Example 3

[0052] The lapping test conditions are listed in Table 2. All tests were performed on 15 inch Lapmaster tin composite plate with spiral grooves. The work piece was 2 inch c-plane sapphire wafer. There were a set of 3 wafers for each run of the lapping test. The material removal rate was measured by weighing the wafers before and after the test. Surface quality was determined by Veeco Wyko NT1100, in PSI mode with magnification of 20. Both Ra and Rz results were reported.

Lapping Material	c-plane, 2" sapphire wafers, rough lapped
Lapping Machine	LapMaster 15"
Lapping plate	Tin Composite
Groove Pattern	Spiral, Groove Width = 1.3mm

	Pitch = 3.1mm Groove Depth = 2mm
Lapping Pressure	3.3 psi
Table rotation speed	55-60 rpm
Slurry Flow	4ml/min

[0053] Table 2. Sapphire lapping test conditions

[0054] Example 4

[0055] As shown in Fig. 2, formulation A and C had the same diamond concentration, while formulation B and D had the same diamond concentration. Formulation C improved the MRR over formulation A by about 25%, and Formulation D improved the MRR over formulation B by about 20%. At the same diamond concentration, formulation D with Quaternium 82 outperformed formulations with anionic surfactant significantly. As discussed previously, while the new sapphire surface was being exposed by the lapping process, the surface of the workpiece could hold negative charges due to the termination of oxygen atoms. Positively charged diamond particles in the slurry, because of the adsorption of the cationic surfactant, were attracted to the surface of the workpiece. Electrostatic attraction between the abrasive particles and the sapphire surface helped extend the resident time, thus improved the material removal rate.

[0056] Example 5

[0057] As mentioned earlier, it is also imperative to maintain or improve the surface quality while MRR was improved. FIG. 3 and FIG. 4 demonstrated that formulations C and D resulted in similar Ra and Rz as in Formulation A and B, considering the variation of the measurement. Therefore, the inclusion of the

cationic surfactant helped improve the material removal rate while maintaining the surface quality of the wafers.

[0058] While reference has been made to specific embodiments, it is apparent that other embodiments and variations can be devised by others skilled in the art without departing from their spirit and scope. The appended claims are intended to be construed to include all such embodiments and equivalent variations.

CLAIMS

What is claimed is:

1. A lapping slurry comprising:
abrasive particles dispersed in a carrier, wherein the carrier comprises water, ethylene glycol and between about 0.5 wt% to about 60 wt% surfactant.
2. The lapping slurry of claim 1, wherein the abrasive particles are selected from a group of cubic boron nitride, diamond, surface modified diamond and diamond composite materials.
3. The lapping slurry of claim 1 further comprises defoamer.
4. The lapping slurry of claim 1, wherein the surfactant is at least one of cationic surfactant or cationic polymer.
5. The lapping slurry of claim 4, wherein the cationic surfactant is at least one of alkyl-quaternized ammonium salt, alkyl amine, and amine salt.
6. The lapping slurry of claim 1, wherein cationic polymer comprises at least one of quaternium based polymer or polyelectrolyte.
7. The lapping slurry of claim 5, wherein alkyl-quaternized ammonium salt comprises at least one of chloride, methosulfate, or bromide salt.
8. The lapping slurry of claim 7, wherein chloride salt comprises at least one of stearalkonium chloride, cetrimonium chloride, behentrimonium chloride, benzalkonium chloride, cinnamidopropyltrimonium chloride, cocotrimonium chloride, dicetyldimonium chloride, dicocodimonium chloride, hydrogenated palm trimethylammonium chloride, lauryltrimonium chloride, quaternium-15, quaternium-22, quaternium-82.

9. The lapping slurry of claim 8, wherein alkyl amines or amine salts comprise at least one of stearamidopropyl dimethylamine lactate, stearamidopropyl dimethylamine citrate, stearamidopropyl dimethylamine propionate, isostearamidopropyl dimethylamine, isostearamidopropyl morpholine, wheatgermamidopropyl dimethylamine, and behanamidopropyl dimethylamine.
10. A lapping composition, comprising:
 - superabrasive materials; and
 - a cationic surfactant or cationic polymer, wherein the cationic surfactant or cationic polymer is adsorbed onto the surface of superabrasive materials.
11. The lapping composition of claim 10, further comprising a fluid, wherein the cationic surfactant is present in an amount between about 0.5 weight percent and about 60 weight percent.
12. The lapping composition of claim 11, wherein the fluid comprises ethylene glycol.
13. The superabrasive material of claim 10, wherein the cationic surfactant is at least one of alkyl-quaternized ammonium salt, alkyl amine, and amine salt.
14. The superabrasive material of claim 10, wherein cationic polymer comprises at least one of quarternium based polymer or polyelectrolyte.
15. The superabrasive material of claim 13, wherein alkyl-quaternized ammonium salt comprises at least one of chloride, methosulfate, or bromide salt.
16. The superabrasive material of claim 15, wherein chloride salt comprises at least one of stearalkonium chloride, cetrimonium chloride, behentrimonium chloride, benzalkonium chloride, cinnamidopropyltrimonium chloride, cocotrimonium chloride, dicetyltrimonium chloride, dicocodimonium chloride, hydrogenated palm trimethylammonium chloride, lauryltrimonium chloride, quaternium-15, quaternium-22, quaternium-82.

17. A lapping slurry, comprising:
abrasive particles which are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials; and defoamer dispersed in ethylene glycol.
18. The lapping slurry of claim 17, further comprising about 0.5 wt% to about 60 wt% cationic surfactant or cationic polymer.
19. The lapping slurry of claim 18, wherein the cationic surfactant is at least one of alkyl-quaternized ammonium salt, alkyl amine, and amine salt.
20. The lapping slurry of claim 17, wherein the abrasive particles are selected from a group of cubic boron nitride, diamond, surface modified diamond and diamond composite materials.
21. The lapping slurry of claim 19, wherein alkyl amines or amine salts comprise at least one of stearamidopropyl dimethylamine lactate, stearamidopropyl dimethylamine citrate, stearamidopropyl dimethylamine propionate, isostearamidopropyl dimethylamine, isostearamidopropyl morpholine, wheatgermamidopropyl dimethylamine, and behanamidopropyl dimethylamine.

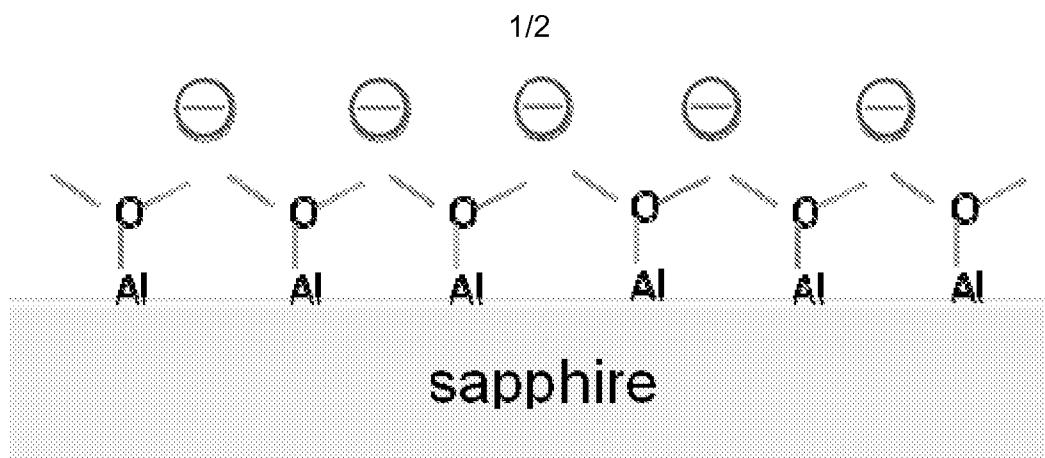


FIG. 1

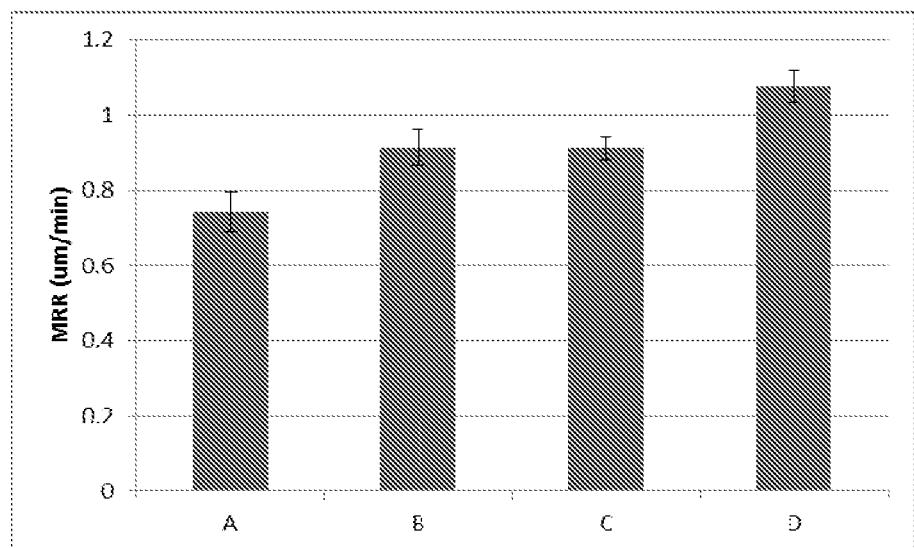


FIG. 2

2/2

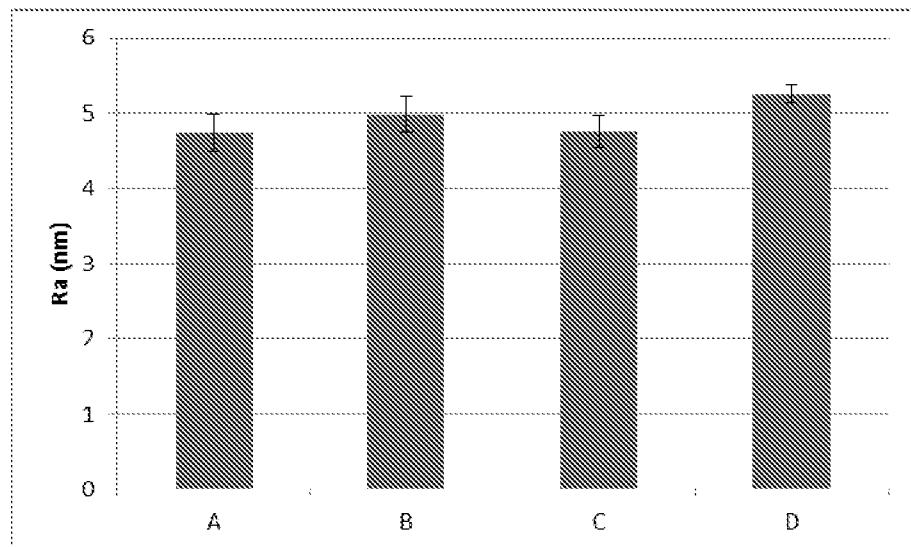


FIG. 3

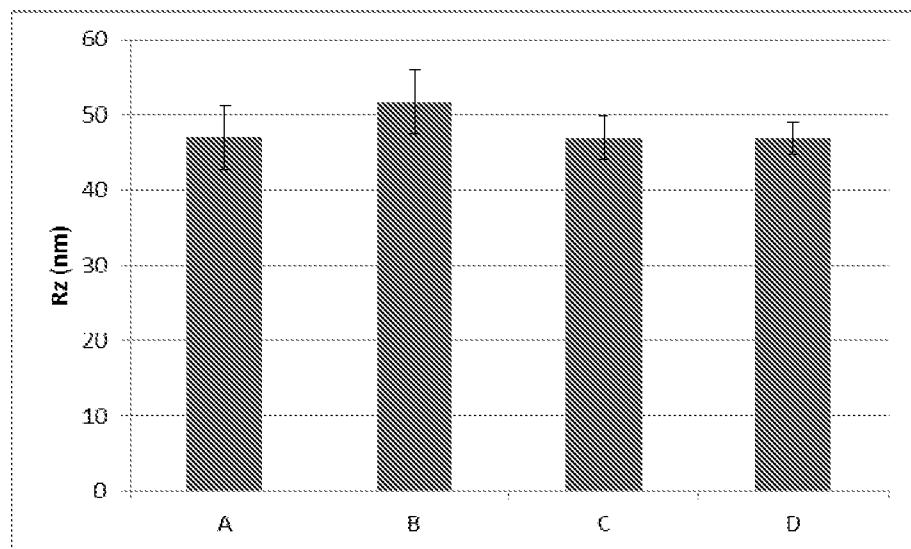


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/047980

A. CLASSIFICATION OF SUBJECT MATTER
 INV. C09K3/14 B24B37/04
 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 C09K B24B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 038 048 A (THROWER JR HERBERT T) 26 July 1977 (1977-07-26)	1-6
A	claims 1, 16 column 3, line 34 - line 45 column 5, line 27 -----	7-9
X	US 2005/236601 A1 (LIU ZHENDONG [US] ET AL) 27 October 2005 (2005-10-27) claims 1-3 paragraph [0013] -----	1-9
A	US 5 456 735 A (ELLISON-HAYASHI CRISTAN [US] ET AL) 10 October 1995 (1995-10-10) column 12, line 9 - line 14 examples 9, 10 -----	1-9
A	JP 2011 098396 A (SHOWA DENKO KK) 19 May 2011 (2011-05-19) example 1 -----	1-9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
21 October 2014	15/01/2015
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Domínguez Gutiérrez

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/047980

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-9

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-9

A lapping slurry comprising abrasive particles dispersed in a carrier, the carrier comprising water, ethylene glycol and 0.5-60 wt% of a surfactant.

2. claims: 10-16

A lapping composition, comprising superabrasive materials; and a cationic surfactant or cationic polymer, the cationic surfactant or cationic polymer is adsorbed onto the surface of superabrasive materials.

3. claims: 17-21

A lapping slurry, comprising abrasive particles which are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials; and defoamer dispersed in ethylene glycol.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/047980

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4038048	A	26-07-1977		AU 503573 B2 AU 1112076 A CA 1097509 A1 DE 2605860 A1 FR 2300657 A1 GB 1536714 A JP S51106292 A NL 7601498 A US 4038048 A		13-09-1979 18-08-1977 17-03-1981 02-09-1976 10-09-1976 20-12-1978 21-09-1976 17-08-1976 26-07-1977
US 2005236601	A1	27-10-2005		CN 1696235 A DE 102005016554 A1 FR 2869456 A1 JP 4761815 B2 JP 2005328043 A KR 20060047259 A TW I363789 B US 2005236601 A1		16-11-2005 10-11-2005 28-10-2005 31-08-2011 24-11-2005 18-05-2006 11-05-2012 27-10-2005
US 5456735	A	10-10-1995		NONE		
JP 2011098396	A	19-05-2011		JP 5452175 B2 JP 2011098396 A		26-03-2014 19-05-2011