wo 2023/175089 A1 |0 0000 K000 0 00 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
21 September 2023 (21.09.2023)

(10) International Publication Number

WO 2023/175089 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 40/00 (2020.01) GO6F 16/33 (2019.01)
GO6N 3/02 (2006.01)

(21) International Application Number:
PCT/EP2023/056778

(22) International Filing Date:
16 March 2023 (16.03.2023)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

63/320,633 16 March 2022 (16.03.2022) UsS

(71) Applicant: DEEPMIND TECHNOLOGIES LIMITED
[GB/GB]; 5 New Street Square, London EC4A 3TW (GB).

(72) Inventors: MENICK, Jacob Lee; 6 Pancras Square,
London N1C 4AG (GB). MIKULIK, Vladmir;, 6 Pan-
cras Square, London N1C 4AG (GB). TREBACZ, Ma-
ja Maria; 6 Pancras Square, London N1C 4AG (GB).
MCALEESE-PARK, Nathaniel John; 6 Pancras Square,

London N1C 4AG (GB). IRVING, Geoffrey, 6 Pancras
Square, London N1C 4AG (GB).

Agent: FISH & RICHARDSON P.C.; Highlight Business
Towers, Mies-van-der-Rohe-Str. 8, 80807 Munich (DE).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN,KP, KR, KW,KZ LA, LC,LK,LR,LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM,KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,
Sz, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,

RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,

(54) Title: GENERATING OUTPUT SEQUENCES WITH INLINE EVIDENCE USING LANGUAGE MODEL NEURAL NET-

WORKS

FIG. 1

SEQUENCE GENERATION SYSTEM 100

OQUTPUT TEXT
SEQUENCE 1186 [«

LANGUAGE MODEL NEURAL NETWORK 114

INPUT SEQUENCE
112

INPUT SEQUENCE GENERATION SYSTEM

110

NATURAL LANGUAGE
IDENTIFIER(S) 108

CONTEXT TEXT
SEQUENCE(S) 108

CONTEXT SEQUENCE GENERATION

SYSTEM 104

A

INPUT TEXT QUERY
102

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating
output sequences using language model neural networks. In particular, the output sequences include a response to an input query and
inline evidence that includes a quote from a context document that supports the response.

[Continued on next page]

WO 2023/175089 A1 |10} 00P 00 00RO 0O

DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
S, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

GENERATING OUTPUT SEQUENCES WITH INLINE EVIDENCE USING LANGUAGE
MODEL NEURAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to U.S. Application Serial No.
63/320,633, filed March 16, 2022, the entirety of which is incorporated herein by reference.

BACKGROUND

This specification relates to processing inputs using neural networks to generate
output sequences.

Neural networks are machine leaming models that employ one or more layers of
nonlinear units to predict an output for a received input. Some neural networks include one
or more hidden layers in addition to an output layer. The output of each hidden layer is used
as input to the next layer in the network, i.e., another hidden layer or the output layer. Each
layer of the network generates an output from a received input in accordance with current

values of a respective set of parameters.

SUMMARY

This specification describes a system implemented as computer programs on one or
more computers in one or more locations that generates responses to received requests using
a language model neural network. In particular, the responses generated by the system
include (i) a response to the request and (ii) “evidence” from one or more context text
documents that supports the response. The evidence includes a direct quote from one of the
context text documents.

For example, the system may provide an interface between a user and an information
retrieval system which accesses a corpus of documents. The interface allows the system to
leverage the information retrieval system to provide more reliable information, and in
particular information which is verifiably correct.

In one aspect, a method includes receiving an input text query; obtaining one or more
first context text sequences and a respective natural language identifier for each of the first
context text sequences; generating a first input sequence that includes the input text query,
the one or more first context text sequences, and the respective natural language identifiers
for each of the one or more first context text sequences; processing the first input text

sequence using an auto-regressive language model neural network to generate a first output

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

text sequence that comprises: (i) a first output text sub-sequence that is a response to the input
text query: (ii) a second output text sub-sequence that is one of the respective natural
language identifiers for the first context text sequences, and (ii1) a third output text sub-
sequence that is text from the first context text sequence identified by the natural language
identifier in the second output text sub-sequence; and providing at least the first output text
sub-sequence and the third output text sub-sequence in response to the input text query.

In some implementations, providing at least the first output text sub-sequence and the
first context text sequence in response to the input text query comprises providing the first
output text sub-sequence, the second output text sub-sequence, and the third output text sub-
sequence in response to the query.

In some implementations, the method further includes determining, from the second
output text sub-sequence, a source of the first context text sequence identified by the natural
language identifier in the second output text sub-sequence; and providing a reference to the
source of the first context text sequence in response to the query.

In some implementations, the method further includes obtaining one or more second
context text sequences and a respective natural language identifier for each of the second
context text sequences; generating a second input sequence that includes the input text query,
the one or more second context text sequences, and the respective natural language identifiers
for each of the one or more second context text sequences; processing the second input text
sequence using the auto-regressive language model neural network to generate a second
output text sequence that comprises: (i) a fourth output text sub-sequence that is a response to
the input text query; (ii) a fifth output text sub-sequence that is one of the respective natural
language identifiers for the second context text sequences, and (iii) a sixth output text sub-
sequence that is text from the second context text sequence identified by the natural language
identifier in the fifth output text sub-sequence; generating a respective score for each output
text sequence in a set that includes the first and second output text sequences; determining
that the first output text sequence has a highest score of any output text sequence in the set;
and providing at least the first output text sub-sequence and the third output text sub-
sequence in response to the input text query in response to determining that the first output
text sequence has the highest score.

In some implementations, generating a respective score for each output text sequence
in a set that includes the first and second output text sequences comprises: scoring each of the

output text sequences using a learned reward model.

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

In some implementations, the first output sequence includes a respective token from a
vocabulary of tokens at each of a plurality of time steps, wherein the auto-regressive neural
network is configured to, for each time step in the first output sequence (e.g. for each time of
the plurality of time steps; the token corresponding to a current time step may conveniently
be called a “current token™), generate a respective score for each token in the vocabulary
conditioned on the first input text sequence and any tokens in the output sequence at any time
steps before the time step in the first output sequence (any tokens in the output sequence
preceding the current token), and wherein generating the first output sequence comprises: at
each time step, selecting the token at the time step (the current token) using the respective
scores for the tokens in the vocabulary generated by the neural network for the time step.

In some implementations, tokens of the second output text sub-sequence also
correspond to corresponding ones of a (second) plurality of time steps. Generating the first
output sequence comprises: at each time step in the second output text sub-sequence (each of
the second plurality of time steps) that is after the first time step in the second output text sub-
sequence: receiving the respective scores generated by the neural network at the time step;
generating a constrained score distribution that assigns a non-zero score only to tokens that
immediately follow the tokens already generated within the second output text sub-sequence
in one of the natural language identifiers; and sampling the token at the time step from the
constrained score distribution.

In some implementations, the second output text sub-sequence is preceded by one or
more first predetermined syntax tokens in the first output text sequence, and generating the
first output sequence comprises: at a particular time step, determining that the one or more
first predetermined syntax tokens have been selected at one or more time steps immediately
preceding the particular time step and, in response, determining that the particular time step is
the first time step in the second output text-subsequence; receiving the respective scores
generated by the neural network at the particular time step; in response to determining that
the particular time step is the first time step in the second output text-subsequence, generating
a constrained score distribution that assigns a non-zero score only to tokens that are the first
token in one of the natural language identifiers; and sampling the token at the time step from
the constrained score distribution.

In some implementations, tokens of the third output text sub-sequence also
correspond to corresponding ones of a (third) plurality of time steps. Generating the first
output sequence comprises: at each time step in the third output text sub-sequence (i.e. each

of the third plurality of time steps) that is after the first time step in the third output text sub-
3

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

sequence: receiving the respective scores generated by the neural network at the time
step; generating a constrained score distribution that assigns a non-zero score only to tokens
that immediately follow the tokens already generated within the third output text sub-
sequence in the first context text sequence identified by the natural language identifier in the
second output text sub-sequence; and sampling the token at the time step from the
constrained score distribution.

In some implementations, the third output text sub-sequence is preceded by one or
more second predetermined syntax tokens in the first output text sequence, and generating the
first output sequence comprises: at a second particular time step, determining that the one or
more second predetermined syntax tokens have been selected at one or more time steps
immediately preceding the second particular time step and, in response, determining that the
particular time step is the first time step in the third output text-subsequence; receiving the
respective scores generated by the neural network at the particular time step; in response to
determining that the particular time step is the first time step in the third output text-
subsequence, generating a constrained score distribution that assigns a non-zero score only to
tokens that appear in the first context text sequence identified by the natural language
identifier in the second output text sub-sequence; and sampling the token at the time step
from the constrained score distribution.

In some implementations, obtaining one or more first context text sequences and a
respective natural language identifier for each of the first context text sequences comprises:
submitting a query derived from the input text query to a search engine; obtaining, from the
search engine, one or more context documents in response to the query; and selecting the one
or more first context sequences from the one or more context documents.

In some implementations, the respective natural language identifier for each of the
first context text sequences is a title of the context document from which the first context text
sequence is selected.

In some implementations, the neural network has been pre-trained through
unsupervised learning on a language modeling objective.

In some implementations, the neural network has been fine-tuned through supervised
learning, reinforcement learning, or both.

The subject matter described in this specification can be implemented in particular
embodiments so as to realize one or more of the following advantages.

The system described in this specification provides a user interface for accessing a

generative language model neural network that generates responses to received requests. In

4

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

particular, generative language models (LMs) are increasingly useful for answering questions
about the world. By default, however, LMs generate ungrounded claims that users must
choose to either blindly accept or to verify themselves.

This specification describes techniques that help the user evaluate responses generated
by the LM by generating claims alongside supporting evidence. In particular, this evidence
takes the form of a verbatim quote extracted from a longer context document retrieved from
one or more textual databases. The documents may be retrieved by an Internet search engine
or any other suitable information retrieval system. Thus, the present system provides a user
interface between the user and the information retrieval system, and which enhances the
reliability and verifiability of information obtained using the information retrieval system.

In order to ensure the quotes are “verbatim™ with a generative approach, this
specification describes a special syntax for the language model to use when quoting from
documents and in some cases, based on this syntax, constraining the outputs of the language
model to be exact quotes from the retrieved documents. This can ensure that the language
model accurately quotes from the context document even though the model was pre-trained
on an objective that did not require quoting from inputs.

Moreover, large-scale language models implemented as neural networks can produce
impressive results on a range of natural language processing tasks, including question
answering. However implementations of some these models, particularly Transformer-based
models, can have more than a billion parameters and can require substantial computing
resources, power, and time to process a network input to generate the network output.
Sometimes such models can have can more than 10 billion or more than 100 billion
parameters. If such models were used at scale to serve a large number of user requests,
significant energy would be consumed.

An additional consideration arises when the neural network is implemented on a
digital assistant device, e.g., a mobile device, implemented in a computing system that
includes a back end component, in particular a data server, in communication with the digital
assistant device over a data communications network such as the Internet. There is then a
need to optimize the computing load between the digital assistant device and the back end
component. This need can be particularly acute with a large-scale language model because of
its substantial memory and computing requirements compared with those typically found on a
mobile device.

The techniques described herein address these problems. In some implementations the

described techniques facilitate a reduced a computational load, and improved load

5

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

distribution, particularly when the large-scale language model is implemented as a neural
network in a multitasking and parallel processing computer system, distributed across
multiple sites and interconnected by a data communication network.

In some implementations the described techniques enable a beneficial distribution of
computing load between a local, mobile computing device and a back-end server in a
network. More particularly, in implementations, by conditioning the language model neural
network on context representing documents obtained from an Internet search based on a
question, the use of a smaller language model neural network is enabled, which facilitates
implementing the neural network on a mobile device with limited memory and computing
resources.

Further, using techniques described in this specification, a system can leverage search
engine results to generate a prediction about an input text using up-to-date information
included in the search engine results. Some existing systems use pre-trained neural networks
without access to such search engine results to generate predictions, and so the predictions
can be less reliable because the neural network can only encode information that was
available to the neural network during training; that is, these predictions can rely on stale
information and thus be incorrect or at least out of date. Thus, using techniques described in
this specification, a system can generate predictions that are more accurate and timely.

Furthermore, some existing systems must repeatedly re-train neural networks to
ensure that the neural networks encode the latest information. Because the systems described
in this specification can repeatedly access new search engine results, the system is not
required to re-train the neural network, thus saving significant computational resources.

Using techniques described in this specification, a system can generate predictions for
an input text using the information encoded in multiple different documents provided by a
search engine in response to processing a search engine query. The multiple different
documents can each include respective different information that is relevant to the prediction.
Thus, the predictions generated by the system can be more accurate than predictions
generated using a single document.

The details of one or more embodiments of the subject matter of this specification are
set forth in the accompanying drawings and the description below.

Other features, aspects, and advantages of the subject matter will become apparent

from the description, the drawings, and the claims.

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of an example sequence generation system.
FIG. 2 is a flow diagram of an example process for generating an output sequence.
FIG. 3 is a flow diagram of an example process for selecting a candidate output
sequence.
FIG. 4 shows an example user interface that presents an output sequence to a user.
FIG. 5 shows an example of training the language model neural network.
FIG. 6 shows an example user interface for rating a generated sample.
Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION
FIG. 1 shows an example sequence generation system 100. The sequence generation
system 100 is an example of a system implemented as computer programs on one or more
computers in one or more locations, in which the systems, components, and techniques
described below can be implemented.

The sequence generation system 100 acts as a user interface to an information
retrieval system which accesses one or more textual databases (not shown), or provides
functionality for a user interface implemented on a user computer which is separate from the
sequence generation system 100 but in communication with it. The textual databases
collectively form a corpus of documents. The corpus of documents may for example be the
webpages and other documents accessible through the intemet. Alternatively, the corpus of
documents may, for example, be part of a proprietary textual database, e.g. of a scientific
publisher or other organization. The sequence generation system 100 processes an input text
query 102 from a user using a context sequence generation system 104, an input sequence
generation system 110, and a language model neural network 114 to generate an output
sequence 116.

The input text query 102 can be a query submitted to the system 100 by a user
through a user computer, a question submitted to the system 100 by through the user
computer, or a different request that requires a response from the system 100. In some cases,
the system receives the query as text from the user computer. In some other cases, the system
receives a natural language speech query from the user and converts the speech into the input
text query 102 by applying a speech recognition engine to the speech. The input text query

102 may be received in the form of a sound (speech) signal, captured by a microphone of the

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

user computer, which is converted by a speech recognition engine, i.e., a speech-to-text
converter to form the input text query 102. Altematively, it may be entered by typing using a
data input device of the user computer.

Once the system 100 receives the input text query 102, the context sequence
generation system 104 obtains one or more first context text sequences 106 and a respective
natural language identifier 108 for each of the first context text sequences 106.

For example, each context text sequence 106 can be extracted from a respective
context document and the identifier 108 can be the title of the context document. As another
example, some or all of the context text sequences 106 can be extracted from the same
context document and the identifier 108 can be a section header or other identifier for the
portion of the document from which the context text sequence is extracted.

Obtaining context sequences is described in more detail below with reference to FIG.

The input sequence generation system 110 then generates a first input sequence 112
that includes the input text query 102, the one or more first context text sequences 106, and
the respective natural language identifiers 108 for each of the one or more first context text
sequences.

For example, the first input sequence 112 can include the query 102, the context text
sequences 106, and the identifiers 108 arranged according to a pre-determined input syntax.
In some cases, the first input sequence 112 can include also include other text, e.g., one or
more natural language ““prompts,” one or more separator tokens separating the various
elements of the input sequence, or both. A natural language prompt is an example of an input
— output pair, where the input is an example of an input that can be provided and the output is
an example of an output that should be generated. Prompts will be described in more detail
below.

The sequence generation system 100 then processes the first input sequence 112 using
an auto-regressive language model neural network 114 to generate a first output text
sequence 116.

The output sequence 116 includes (i) a first output text sub-sequence that is a
response to the input text query 102, (ii) a second output text sub-sequence that is one of the
respective natural language identifiers 108 for the first context text sequences 106, and (iii) a
third output text subsequence that is text from the first context text sequence identified by the

natural language identifier in the second output text sub-sequence.

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

In particular, (i), (i1), and (ii1) are arranged within the output sequence according to a
pre-determined output syntax. One example of a pre-determined syntax is described in more
detail below with reference to FIG. 3.

The sequence generation system 100 then provides at least the first output text sub-
sequence and the third output text sub-sequence in response to the input text query 102. Thus,
the system 100 provides a text response to the input text query 102 and text from one of the
context text sequences 106 as supporting evidence for the text response.

In some implementations, the sequence generation system 100 generates multiple
candidate output sequences 116 in response to the input query 102.

In these implementations, the system 100 also generates a respective score for each
candidate output sequence, and only provides text from the highest-scoring candidate output
sequence in response to the user query.

In some of these implementations, if none of the candidates have a score that exceeds
a threshold, the system 100 instead emits a default text response to the user query, e.g., “I
don’t know” or “I am not sure.”

Scoring candidate output sequences is described below with reference to FIG. 3.

The language model neural network 114 can be any appropriate language model
neural network that receives an input sequence made up of text tokens selected from a
vocabulary and auto-regressively generates an output sequence made up of text tokens from
the vocabulary. For example, the language model neural network 114 can be a Transformer-
based language model neural network or a recurrent neural network-based language model.

The tokens in the vocabulary can be any appropriate text tokens, e.g., words, word
pieces, punctuation marks, and so on, that represent elements of text in one or more natural
languages and, optionally, numbers and other text symbols that are found in a corpus of text.
Generally, the input text query 102, the natural language identifier(s) 108 and/or the context
text sequence(s) 106 are also sequences of tokens selected from the vocabulary.

The language model neural network 114 is referred to as an auto-regressive neural
network because the neural network 114 auto-regressively generates an output sequence of
tokens by generating each particular token in the output sequence conditioned on a current
input sequence that includes any tokens that precede the particular text token in the output
sequence, 1.e., the tokens that have for already been generated for any previous positions in
the output sequence that precede the particular position of the particular token, and a context

input that provides context for the output sequence.

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

For example, the current input sequence when generating a token at any given
position in the output sequence can include the input sequence and the tokens of the output
sequence at any preceding positions that precede the given position in the output sequence.
As a particular example, the current input sequence can include the input sequence followed
by the tokens at any preceding positions that precede the given position in the output
sequence. Optionally, within the current input sequence, the input sequence and the tokens
from the output sequence can be separated by one or more predetermined tokens, i.e., a
designated set of one or more tokens from the vocabulary, within the current input sequence.
That is, there can be one or more predetermined tokens between the input sequence and the
tokens from the output sequence.

More specifically, to generate a particular token at a particular position within an
output sequence, the neural network 114 can process the current input sequence to generate a
score distribution, e.g., a probability distribution, that assigns a respective score, e.g., a
respective probability, to each token in the vocabulary of tokens. The neural network 114
can then select, as the particular token, a token from the vocabulary using the score
distribution. For example, the neural network 114 can greedily select the highest-scoring
token or can sample, e.g., using nucleus sampling or another sampling technique, a token
from the distribution.

As a particular example, the language model neural network 114 can be an auto-
regressive Transformer-based neural network that includes (i) a plurality of attention blocks
that each apply a self-attention operation and (ii) an output subnetwork that processes an
output of the last attention block to generate the score distribution.

The neural network 114 can have any of a variety of Transformer-based neural
network architectures. Examples of such architectures include those described in J.
Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models,
arXiv preprint arXiv:2203.15556, 2022; J.W. Rae, S. Borgeaud, T. Cai, K. Millican, J.
Hoffmann, H. F. Song, J. Aslanides, S. Henderson, R. Ring, S. Young, E. Rutherford, T.
Hennigan, J. Menick, A. Cassirer, R. Powell, G. van den Driessche, L. A. Hendricks, M.
Rauh, P. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang, J. Uesato, J. Mellor, 1. Higgins,
A. Creswell, N. McAleese, A.Wu, E. Elsen, S. M. Jayakumar, E. Buchatskaya, D. Budden, E.
Sutherland, K. Simonyan, M. Paganini, L. Sifre, L. Martens, X. L. Li, A. Kuncoro, A.
Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch, J. Lespiau, M.
Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas, T. Pohlen, Z. Gong, D.

10

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

Toyama, C. de Masson d’Autume, Y. Li, T. Terzi, V. Mikulik, I. Babuschkin, A. Clark, D. de
Las Casas, A. Guy, C. Jones, J. Bradbury, M. Johnson, B. A. Hechtman, L. Weidinger, I.
Gabriel, W. S. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ayoub, J.
Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving. Scaling language models:
Methods, analysis & insights from training gopher. CoRR, abs/2112.11446, 2021; Colin
Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019; Daniel Adiwardana, Minh-
Thang Luong, David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv
Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977, 2020; and Tom B Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Generally, however, the Transformer-based neural network includes a sequence of
attention blocks, and, during the processing of a given input sequence, each attention block in
the sequence receives a respective input hidden state for each input token in the given input
sequence. The attention block then updates each of the hidden states at least in part by
applying self-attention to generate a respective output hidden state for each of the input
tokens. The input hidden states for the first attention block are embeddings of the input
tokens in the input sequence and the input hidden states for each subsequent attention block
are the output hidden states generated by the preceding attention block.

In this example, the output subnetwork processes the output hidden state generated by
the last attention block in the sequence for the last input token in the input sequence to
generate the score distribution.

Generally, because the neural network 114 is auto-regressive, the system 100 can use
the same neural network 114 to generate multiple different candidate output sequences in
response to the same request, e.g., by using beam search decoding from score distributions
generated by the neural network 114, using a Sample-and-Rank decoding strategy, by using
different random seeds for the pseudo-random number generator that is used in sampling for
different runs through the neural network 114 or using another decoding strategy that
leverages the auto-regressive nature of the neural network 114,

In some implementations, the language model 114 is pre-trained, i.e., trained on a

language modeling task that does not require providing evidence in response to user

11

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

questions, and the system 100 causes the neural network 114 to generate output sequences
according to the pre-determined syntax through natural language prompts in the input
sequence.

For example, the system 100 or another training system pre-trains the language model
neural network 114 on a language modeling task, e.g., a task that requires predicting, given a
current sequence of text tokens, the next token that follows the current sequence in the
training data. As a particular example, the language model neural network 114 can be pre-
trained on a maximum-likelihood objective on a large dataset of text, e.g., text that is
publically available from the Intemet or another text corpus.

In some other implementations, after the pre-training, the system 100 fine-tunes the
language model 114, e.g., through supervised learning, reinforcement leaming, or both, on
objectives that do require output sequences to be generated according to the syntax. This is
described in more detail below with reference to FIG. 5.

In some of these implementations, the system 100 still includes one or more natural
language prompts in the inputs to the language model 114 at inference, i.e., after training.

As described above, a natural language prompt is an example of an input — output
pair, where the input is an example of an input that can be provided and the output is an
example of an output that should be generated. Thus, each prompt will include an example
input sequence that an example query, an example set of one or more context sequence, and
respective identifiers for the one or more context sequences arranged according to the pre-
determined input syntax. Each prompt will also include, arranging according to the output
syntax, an example first output text sub-sequence that is a response to the example query, an
example second output text sub-sequence that is one of the respective natural language
identifiers for one of the example context text sequence, and an example third output text
subsequence that is text from the example context text sequence identified by the natural
language identifier in the example second output text sub-sequence. Optionally, the input
sequence can also include one or more tokens from the vocabulary separating each prompt
and one or more tokens separating the final prompt from the user query.

Additionally, in some implementations, the system 100 performs “constrained
sampling” when selecting tokens to be included in the output sequence. This can ensure that
the outputs of the neural network 114 follow the syntax and that the sequences are internally
consistent, i.e., ensures that the evidence is a direct quote from the context text sequence 106

identified by the natural language identifier 108 in the output sequence.

12

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

In cases where the system 100 generates multiple candidate output sequences,
constrained sampling prevents the system from having to score invalid or inconsistent output
sequences and drastically reduces the number of candidates that need to be generated to
ensure a high-quality output, greatly improving the computational efficiency of the system
100, i.e., reducing the amount of computational resources consumed by the system 100.

An example of constrained sampling is described in more detail below with reference
to FIG. 3.

FIG. 2 is a flow diagram of an example process 200 for generating an output sequence
given an input query. For convenience, the process 200 will be described as being performed by
a system of one or more computers located in one or more locations. For example, a sequence
generation system, ¢.g., the sequence generation system 100 depicted in FIG. 1, appropriately
programmed in accordance with this specification, can perform the process 200.

The system receives an input text query (step 202), e.g., from a user using a user
interface.

The system obtains one or more first context text sequences and a respective natural
language identifier for each of the first context text sequences (step 204).

For example, the system can obtain the one or more context sequences and a respective
natural language identifier for each of the first context sequences by submitting a search query
derived from the input text query to a search engine. The search engine has access to the corpus
of documents, and is configured to search the corpus of documents based on the search query. For
example, the search query can be the same text as the input text query or can be modified by the
system, ¢.g., to add synonyms, correct typographical or spelling mistakes, and so on.

Then, the system can obtain, from the search engine, one or more documents in response
to the search query. The one or more documents can be ranked by the search engine, e.g.,
according to quality and relevance to the received search query.

The system can then select one or more first context sequences from the one or more
context documents, e.g., by selecting the one or more highest-ranked search results. The
system also associates a respective natural language identifier with each first context
sequence.

In some implementations, the search engine also provides a snippet from the
corresponding context document as part of the search result identifying the corresponding
context document. In some of these implementations, the system can generate a context
sequence for a given document by extracting the snippet and text surrounding the snippet

from the corresponding context document. For example, the system can extract snippet text

13

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

using snippets in order to account for document lengths being varied and often exceeding the
language model max context window size (as described below).

Thus, especially in the case of few-shot prompting when presenting multiple
documents at once, the system may need to restrict the number of tokens spent on the
document content within a given input sequence. Hence, the system can truncate the
documents by using the snippets as described above. For example, the system can use the
snippets to truncate a given document to a maximum token length fragment such that the
fragment contains the relevant search snippet.

In some implementations, the system can ensure that the truncated fragment starts
from the beginning of a sentence or paragraph.

As a particular example, at train time, the system can choose such the start position at
random to increase the variety of the inputs. At inference time, the system can allow a
maximum number, e.g., 250, 500, or 1000 characters before the start of the snippet fragment,
and identify the first sentence that starts in that range and uses that first sentence as the
beginning of the truncated fragment.

The search engine can be any appropriate search engine that is accessible by the
system and that searches any appropriate corpus of documents, e.g., web pages, books, or
other documents. For example, the search engine can be an Internet search engine that
searches through and retumns results that reference documents available on the Internet. As
another example, the search engine can be a different search engine that searches a private
corpus of documents, e.g., documents available on an internal network or stored in a
collection of one or more databases.

For example, the respective natural language identifier for each of the first context
text sequences can be a title of the context document from which the first context text
sequence is selected.

The system generates a first input sequence that includes the input text query, the one
or more first context text sequences, and the respective natural language identifiers for each
of the one or more first context text sequences (step 206).

The system processes the first input text sequence using an auto-regressive language
model neural network to generate a first output text sequence (step 208).

The first output text sequence includes a first output text sub-sequence that is a
response to the input text query, a second output text sub-sequence that is one of the

respective natural language identifiers for the first context text sequences, and a third output

14

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

text sub-sequence that is text from the first context text sequence identified by the natural
language identifier in the second output text sub-sequence.

The system provides at least the first output text sub-sequence and the third output
text subsequence (e.g. to the user) in response to the input text query (step 210).

The system can provide the first output text sub-sequence, the third output text sub-
sequence, and, optionally, the second output text sub-sequence in response to the query.

Additionally, in some implementations, the system can determine, from the second
output text sub-sequence, a source of the first context text sequence identified by the natural
language identifier in the second output text sub-sequence and provide a reference to the
source of the first context text sequence in response to the query. For example, the system can
provide the reference as a hyperlink that links to the source, e.g., the web page, of the first
context text sequence.

An example presentation of an output sequence generated by the system is described
below with reference to FIG. 4.

As described above, in some implementations, the system generates a set of multiple
candidate output sequences (that include the first output text sequence), and for each
candidate output sequence a respective score, and only provides the first output sequence in
response to determining that the first output text sequence has the highest score of any of the
candidate output sequences.

For example, the system can generate at least some of the candidate output sequences
in the set by sampling different candidate output sequences from outputs generated by the
language model neural network when processing the first input text sequence.

Additionally, in some implementations, the system can generate more context
sequences than can fit in the “context window” of the language model neural network. That
is, the language model neural network may, e.g.. due to memory constraints or due to the
framework in which the neural network was trained, only be able to process input sequences
that do not have more than a maximum number of characters. In some implementations,
including the natural language identifiers and the tokens for all of the context sequences can
exceed this maximum number. In these implementations, the system generates multiple
different input sequences that each include a respective subset of the context sequences.

In other words, in addition to the first context text sequence, the system can also
obtain one or more second context text sequences and a respective natural language identifier
for each of the second context text sequences and generate a second input sequence that

includes the input text query, the one or more second context text sequences, and the

15

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

respective natural language identifiers for each of the one or more second context text
sequences. The system can then process the second input text sequence using the auto-
regressive language model neural network to generate a second output text sequence that
comprises: (i) a fourth output text sub-sequence that is a response to the input text query; (ii)
a fifth output text sub-sequence that is one of the respective natural language identifiers for
the second context text sequences, and (iii) a sixth output text sub-sequence that is text from
the second context text sequence identified by the natural language identifier in the fifth
output text sub-sequence.

Then, the system generates a respective score for each candidate output text sequence
in the set, e.g., the set that includes the first and second output text sequences, and determines
that the first output text sequence has the highest score of any output text sequence in the set.
In some cases, this can be done by scoring each of the output text sequences using a learned
reward model. Using a learned reward model to score candidate output sequences is
described below with reference to FIG. 3.

The system can then provide at least the first output text sub-sequence and the third
output text subsequence in response to the input text query in response to determining that the
first output text sequence has the highest score.

FIG. 3 shows an example of the operation of the sequence generation system when
the system generates multiple candidate output sequence in response to a given text query.

As shown in the example of FIG. 3, the system 100 receives a question 302, e.g., from
a user computer.

The system 100 performs an Internet search 304 to identify the top £ most relevant
documents to the question 302. Generally, & is an integer greater than one, e.g.. 5, 10, 20, or
100. For example, the system 100 can provide the question 302 or a query derived from the
question 302 to an Internet search engine and, obtain, from the Internet search engine, search
results identifying the top £ documents.

The system then uses a generator 306 to generate one or more input sequences to the
language model neural network 114 and samples 308 N candidate output sequences using the
language model neural network 114. In some implementations, the number of candidate
output sequences, &, is be greater than the number of documents, £.

For example, the generator 306 can generate a single input sequence that includes
context from all of the £ documents and then process the single input sequence multiple times

using the language model neural network 114 to sample the N candidate output sequences.

16

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

As another example, the generator 306 can generate multiple input sequences that
each include context from a respective subset of the £ documents and then process each of the
multiple input sequences multiple times using the language model neural network 114 to
sample the NV candidate output sequences.

As another example, the generator 306 can generate multiple input sequences that
each include context from a respective one of the £ documents and then process each of the
multiple input sequences using the language model neural network 114.

In either of the above examples, the multiple input sequences may be sampled in a
round robin order until the N candidate output sequences have been sampled.

In some implementations, N may be a multiple of k. In other implementations, N may
be indivisible by £.

The system 100 then performs reward model scoring 310 of each of the NV candidate
output sequences.

That is, the system 100 assigns a respective score to each of the &V candidate output
sequences using a learned reward model.

The learned reward model 310 is a model, e.g., another language model neural
network, that receives as input an input text query and a response and a quote generated by
the neural network 114 and generates as output a score that represents the quality of the
response and quote. For example, the score can represent a likelihood that a user would
prefer the response (and quote) relative to other responses (and accompanying quotes) to the
same query generated by the neural network 114,

Training the reward model is described below with reference to FIG. 5.

The system 100 then selects, as the final output sequence, the “best” sample 312, i.e.,
the candidate output sequence from N sequences that has the highest score according to the
learned reward model.

In some implementations, if none of the candidates have a score that exceeds a
threshold, the system 100 instead emits a default text response to the user query, e.g., “I don’t
know” or “T am not sure.”

As described above, each candidate output sequence includes (i) a first output text
sub-sequence that is a response to the input text query, (ii) a second output text sub-sequence
that is one of the respective natural language identifiers for the first context text sequences,
and (iii) a third output text sub-sequence that is text from the first context text sequence

identified by the natural language identifier in the second output text sub-sequence.

17

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

In particular, (i), (i1), and (ii1) are arranged within the output sequence according to a
pre-determined output syntax.

As shown in the example of FIG. 3, the output syntax is:

%<Claim>%(Document title)%[Quote from document]%
where “%<" “>%(" “)%]|* and “]|%" are template tokens, i.e., predetermined syntax tokens
that are inserted before and after sub-sequences, “claim” is a placeholder for the first output
text sub-sequence, “Document title” is a placeholder for the second output text sub-sequence,
and “Quote from document” is a placeholder for the third output text sub-sequence.

However, any of a variety of syntaxes that place the “claim” placeholder, the
“document title” placeholder, and the “quote from document™ placeholder in predetermined
places within the output sequences can be used.

In some implementations and as described above, the system samples each of the N
candidates using constrained sampling to ensure that each candidate satisfies the syntax, i.e.,
includes an exact quote from the context sequence identified by the natural language
identifier in the sequence.

That is, as described above, the generator 306 samples a given candidate output
sequence by, for each time step in the output sequence, generating a respective score for each
token in the vocabulary conditioned on the first input text sequence and any tokens in the
output sequence at any time steps before the time step in the first output sequence and, at
each time step, selecting the token at the time step using the respective scores for the tokens
in the vocabulary generated by the neural network for the time step.

When employing constrained sampling, the system constrains the sampling to only
sample tokens that would be valid next tokens according to the output sequence.

For example, when generating the second output text sub-sequence and at each time
step in the second output text sub-sequence that is after the first time step in the second
output text sub-sequence, the generator 306 can receive the respective scores generated by the
neural network at the time step and generate a constrained score distribution that assigns a
non-zero score only to tokens that immediately follow the tokens already generated within
the second output text sub-sequence in one (or more) of the natural language identifiers and
then sample the token at the time step from the constrained score distribution instead of from
the received score distribution. That is, the system constrains the sampling to assign a non-
zero score only to tokens that would yield a valid prefix of one or more of the natural
language identifiers in the corresponding input sequence if appended to the tokens already

selected for the second output text sub-sequence.

18

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

As another example, in some cases the second output text sub-sequence is preceded
by one or more first predetermined syntax tokens in the first output text sequence. For
example, in the example of FIG. 3, the second output text sub-sequence is preceded by the
tokens “>%(* in the output syntax.

In these cases, generating an output sequence using constrained sampling includes at a
particular time step, determining that the one or more first predetermined syntax tokens have
been selected at one or more time steps immediately preceding the particular time step and, in
response, determining that the particular time step is the first time step in the second output
text-subsequence. For example, the system can determine that the tokens “>%(* have already
been sampled and, in response, determine that the next time step is the first time step in the
second sub-sequence.

In this example, the system can receive the respective scores generated by the neural
network at the particular time step and, in response to determining that the particular time
step is the first time step in the second output text-subsequence, generate a constrained score
distribution that assigns a non-zero score only to tokens that are the first token in one of the
natural language identifiers in the corresponding input sequence and sample the token at the
time step from the constrained score distribution. That is, the system constrains the sampling
to assign a non-zero score only to tokens that are the first token of one or more of the natural
language identifiers in the corresponding input sequence.

As another example, when using constrained sampling, at each time step in the third
output text sub-sequence that is after the first time step in the third output text sub-sequence,
the system can receive the respective scores generated by the neural network at the time step
and generate a constrained score distribution that assigns a non-zero score only to tokens that
immediately follow the tokens already generated within the third output text sub-sequence in
the first context text sequence identified by the natural language identifier in the second
output text sub-sequence. The system then samples the token at the time step from the
constrained score distribution. That is, the system constrains the sampling to assign a non-
zero score only to tokens that, if appended to the tokens already selected for the third output
text sub-sequence, would yield a direct match to a sub-sequence in the first context text
sequence identified by the natural language identifier in the second output text sub-sequence.
Thus, the system ensures that the third output text sub-sequence is a direct quote from the
context document identified by the natural language identifier in the second output text sub-

sequence

19

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

As yet another example, in some cases, the third output text sub-sequence is preceded
by one or more second predetermined syntax tokens in the first output text sequence. For
example, in the example of FIG. 3, the second output text sub-sequence is preceded by the
tokens “)%] in the output syntax.

In these cases, when using constrained sampling, at a second particular time step, the
system determines that the one or more second predetermined syntax tokens have been
selected at one or more time steps immediately preceding the second particular time step and,
in response, determines that the particular time step is the first time step in the third output
text-subsequence. Then, upon receiving the respective scores generated by the neural
network at the particular time step, the system generates a constrained score distribution that
assigns a non-zero score only to tokens that appear in the first context text sequence
identified by the natural language identifier in the second output text sub-sequence and
samples the token at the time step from the constrained score distribution.

The system 100 then provides at least some of the text from the best sample 312 for
presentation to the user. For example, the system 100 can render 314 in a user interface a
presentation of the best sample 312.

As shown in FIG. 3, the presentation can include the text of the “claim”, i.e., of the
first sub-sequence, the quote from the context document that supports the “claim,” i.e., the
text of the third-subsequence, and, optionally, the document identifier from the second sub-
sequence.

FIG. 4 shows an example of a user interface 400 that presents an output sequence to a
user.

In the example of FIG. 4, the user has submitted a query 402 “What kind of animal is
Scooby Doo?”

In response, the system 100 has generated an output sequence that includes three sub-
sequences: (i) “A Great Dane dog,” (i1) “Wikipedia Page: Scooby Doo™ and (iii) a quote from
the Wikipedia page that has the title “Scooby Doo.”

Then, in response to the user query 402, the system presents, in the user interface 400,
the first sub-sequence 404, the second sub-sequence 406, and the third sub-sequence 408.

Additionally, the system has displayed the first sub-sequence 404 as a hyperlink that
links to the source of the third sub-sequence 408, i.e., that links to the Wikipedia page of
Scooby Doo, i.e., to the web page titled “Wikipedia Page: Scooby Doo.” Including the

hyperlink in the user interface 400 allows the user to navigate to the source indicated by the

20

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

second sub-sequence to, e.g., verify the accuracy of the quote or to obtain additional context
about the response.

FIG. 5 shows an example of training the language model neural network 114.

As shown in FIG. 5, the system obtains 502 a pre-trained language model.

For example, the language model may have been trained on a language modeling
objective on a large corpus of text documents, as described above.

After obtaining 502 the pre-trained language model, the system generates samples 504
and rates the generated samples via human evaluation.

For example, to obtain each rating, the system can present a question and two
candidate answers, e.g., two samples generated using the pre-trained language model with
few shot prompting, to a rater user. Each candidate answer can be split into a “claim” section
and a “supporting evidence” section, e.g., as shown above with reference to FIG. 4.

The system can then obtain an input from the rater user specifying whether either
claim is a plausible response to the question, whether the claim is supported by the
accompanying quote evidence, and which answer is preferred by the rater user. A plausible
response to the question is one that is a reasonable on-topic response to the question. A
supported response is one for which the provided evidence is sufficient to verify the validity
of the response.

One example of a user interface that can be used to obtain inputs from users is shown
in FIG. 6.

That is, FIG. 6 shows an example user interface 600 for rating a generated sample,
e.g., that can receive inputs for human evaluations of generated samples.

As shown in FIG. 6, the user is presented with a query 602 and two candidate
responses 604 and 606 to the query 602. Each candidate response 604 and 606 includes a
response to the query, supporting evidence from the response, and an identifier for the source
of the supporting evidence.

For each candidate responses 604 and 606, the user interface presents a corresponding
selection element 608 and 610 that allows the user to submit an input indicating whether the
corresponding candidate response is a plausible answer (or to indicate that the user is not
sure) and to submit an input indicating whether the corresponding candidate response is
supported by the corresponding supporting evidence (or to indicate that the user is not sure).

The selection elements 608 and 610 also each allow the user to submit an input
indicating that the corresponding candidate response 604 or 606 is the preferred response (out

of the two candidate responses) to the query 602.
21

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

The user interface 600 can also allow the user to submit an input indicating that the
two responses are “tied” or to submit comments on the sample.

Returning to the description of FIG .5, the system then uses the rated samples to
perform supervised fine-tuning (SFT) 506, in which the system trains the language model on
the rated samples through supervised learning.

That is, for each sample used for SFT, the system trains the language model to
produce the claim and the supporting evidence in the sample, given the question in the
sample and a set of context sequences that includes a context sequence that has the text of the
supporting evidence.

Optionally, when performing SFT, the system can use only the samples that were
rated as both plausible and supported for the supervised fine-tuning.

As a particular example, the system can generate the input sequence for a given
sample during SFT as follows.

For a certain proportion of the samples, e.g., for 1/3 or 1/2 of the data, the system uses
just a single document in the context, the same document from which the supporting evidence
was extracted, enforcing that the supporting evidence is present inside the context sequence.

For the remainder of the samplers, the system uses n documents in the context, e.g.,
where n is drawn at random between 1 and a fixed number, e.g., 5, 10 or 15. Similarly, the
system enforces that the target document and the supporting evidence quote are present in the
context sequence. For the rest of the documents in the context sequence, the system can use,
e.g., the n - 1 top search results for the question as provided by the search engine.

The system can truncate each of the context documents so that the total token length
of the input sequence does not exceed a fixed number that is based on the context window of
the language model. This token length allowance can be split at random between the
documents included in the prompt, so that the language model sees different sized context
sequences from different context documents within the same input sequence. When
truncating a given context document to its maximum allowed length, the system can ensure
that each document contains a snippet, as described above.

Optionally, after performing supervised fine-tuning (SFT) 506, the system can use the
SFT model to generate additional samples that are again rated via human evaluation.

The system then trains a reward model (RM) 508 on the generated samples, e.g., the
originally generated samples or the originally generated samples and the additional samples

generated using the SFT model.

22

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

As described above, the leamed reward model is a model, e.g., another language
model neural network, that receives as input an input text query and a response and a quote
generated by the neural network 114 and generates as output a score that represents the
quality of the response and quote.

For example, the system can train the reward model as a classifier that predicts a
binary variable indicating which example in a given pair was preferred, given a query and a
response string. That is, the system can compute a probability that the first example in the
pair was preferred given the scores generated by the reward model for both examples in the
pair. For example, the system can train the reward model using a cross-entropy objective
using the user preferences as the ground truth and the computed probability as the prediction.

Optionally, during the training, the reward model also predicts the binary Supported
and Plausible judgements of the responses in the pair as an auxiliary loss. Thus, in these
cases, the final loss is a combination of, e.g., the average of or a weighted average of, the
pairwise preference prediction loss and the auxiliary prediction loss.

In some implementations, the system can augment the RM training set with a set of
of fabricated (“synthetic™”) comparisons. For example, the system can generate fabricated
comparisons from the supported and refuted claims of a fact checking dataset. One example
of such a data set is the FEVER data set (Thome et al., 2018). Including these fabricated
comparisons can provide an additional out-of-distribution mode of question answering that is
non-extractive, and can make the reward model better at verifying supportiveness of the
evidence. An example of such a data set, e.g., the FEVER dataset, can contain claims
generated by altering sentences extracted from sour text. These claims are then classified as
Supported, Refuted or Notknough and marked with associated evidence. To transform such
claims into examples of questions with comparison of answers, the system can use any of a
variety of techniques. Some examples of types of techniques will now be described.

Type A: The system can generate questions by a direct templating operations from
claims (e.g. “{claim}?’, 'Is it true that {claim}?", 'Is it correct to say that {claim}?"’, "{claim}.
Do you agree?’). The examples compare affirmative answer like Yes’, 'This is correct’, It is
true’ combined with supporting quote and negative answer combined with the same quote. If
the original claim was supported then the affirmative answer is marked as preferred,
supported and plausible. Otherwise the negative one is marked as preferred supported and
plausible.

Type B: The system can transform claims into questions using a few-shot prompted,

pre-trained language model neural network. For example a claim Roman Atwood is a content

23

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

creator. could be transformed into Who is Roman Atwood?. As a comparison for a claim that
has been transformed into a question, the system can use one answer as the corresponding
claim from the data set (with supporting quote) and a direct negation of the claim produced
via templating (e.g. It is not true that {claim}’) as the other answer. If the original claim was
supported then the answer containing the claim is marked as preferred, supported and
plausible. Otherwise the negated claim is marked as preferred. As another example, if the
original claim was supported, the system can use the original claim as one answer and a
randomly generated claim as the comparison, with the original claim being marked preferred,
supported and plausible.

As described above, the system can then use the reward model at sampling time to
assign scores to candidate output sequences.

After training the RM 508, the system can use the trained reward model to further
fine-tune the SFT model through reinforcement leaming 510. That is, the system uses the
reward model to perform a reinforcement leaming from human preferences (RLfHP)
technique by training the model to maximize expected rewards as predicted by the trained
RM 508.

Optionally, the system can then use the further fine-tuned model to generate
additional samples for human evaluation and to re-fine tune the model through SFT or RL or
both, to re-train the RM, or both. That is, the system can perform more than one iteration of
the described training loop to further fine-tune the language model, to further fine-tune the
reward model, or both.

Additionally, while the example of FIG. 5 describes that the system fine-tunes the
language model using both SFT and RL, in some cases, the system uses only SFT or RL
instead of using both. For example, when using the reward model for re-ranking, it may
increase performance to use a model that is only fine-tuned through SFT or RL (instead of
both) so that the reward model is provided for more diverse samples to re-rank.

A description of self-attention, as may be employed by the language model neural
network, now follows.

A self-attention block, as referred to above, is a neural network layer that includes an
attention mechanism that operates over the self-attention block input (or an input derived
from the layer input) to generate the self-attention block output. A self-attention mechanism
may be causally masked so that any given position in an input sequence does not attend over
(e.g. use data from) any positions after the given position in the input sequence. There are

many different possible attention mechanisms. Some examples of self-attention layers

24

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

including attention mechanisms, are described in Vaswani et al. “Attention is all you need”,
31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA,
USA; Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019; Daniel Adiwardana,
Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. Towards a human-like
open-domain chatbot. CoRR, abs/2001.09977, 2020; and Tom B Brown, Benjamin Mann,
Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Generally, an attention mechanism maps a query and a set of key-value pairs to an
output, where the query, keys, and values are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function, e.g. a dot product or scaled dot product, of the query with the
corresponding key.

Generally, a self-attention mechanism is configured to relate different positions in the
same sequence to determine a transformed version of the sequence as an output. For example
the attention layer input may comprise a vector for each element of the input sequence.
These vectors provide an input to the self-attention mechanism and are used by the self-
attention mechanism to determine a new representation of the same sequence for the attention
layer output, which similarly comprises a vector for each element of the input sequence. An
output of the self-attention mechanism may be used as the attention layer output, or it may be
processed by one or more of feed-forward layers, skip connections, or normalization
operations to provide the attention layer output.

In some implementations the attention mechanism is configured to apply each of a
query transformation e.g. defined by a matrix W<, a key transformation e.g. defined by a
matrix WX and a value transformation e.g. defined by a matrix WV, to the attention layer
input which is the input data X to the attention layer, to derive a query matrix Q = XW¢ that
includes a respective query for each vector in the input sequence, key matrix K = XW¥ that
includes a respective key for each vector in the input sequence, and value matrix V = XW"
that includes a respective value for each vector in the input sequence, which are used

determine an attended sequence for the output. For example the attention mechanism may be

25

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

a dot product attention mechanism applied by applying each query vector to each key vector
to determine respective weights for each value vector, then combining the value vectors using
the respective weights to determine the self-attention layer output for each element of the
input sequence. The self-attention layer output may be scaled by a scaling factor e.g. by the
square root of the dimensions of the queries and keys, to implement scaled dot product

attention. Thus, for example, an output of the attention mechanism may be determined as

T
softmax (%)V where d is a dimension of the key (and value) vector. In another

implementation the attention mechanism be comprise an “additive attention” mechanism that
computes the compatibility function using a feed-forward network with a hidden layer. The
output of the attention mechanism may be further processed by one or more fully-connected,
feed forward neural network layers.

The attention mechanism may implement multi-head attention, that is, it may apply
multiple different attention mechanisms in parallel. The outputs of these may then be
combined, e.g. concatenated, with a learned linear transformation applied to reduce to the
original dimensionality if necessary.

This specification uses the term “configured” in connection with systems and
computer program components. For a system of one or more computers to be configured to
perform particular operations or actions means that the system has installed on it software,
firmware, hardware, or a combination of them that in operation cause the system to perform
the operations or actions. For one or more computer programs to be configured to perform
particular operations or actions means that the one or more programs include instructions
that, when executed by data processing apparatus, cause the apparatus to perform the
operations or actions.

Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed in
this specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, e.g., one or more modules of computer program instructions
encoded on a tangible non transitory storage medium for execution by, or to control the
operation of, data processing apparatus. The computer storage medium can be a machine-
readable storage device, a machine-readable storage substrate, a random or serial access

memory device, or a combination of one or more of them. Alternatively or in addition, the

26

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

program instructions can be encoded on an artificially generated propagated signal, e.g., a
machine-generated electrical, optical, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus for execution by a data processing
apparatus.

The term “data processing apparatus’™ refers to data processing hardware and
encompasses all kinds of apparatus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or multiple processors or computers.
The apparatus can also be, or further include, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application specific integrated circuit). The
apparatus can optionally include, in addition to hardware, code that creates an execution
environment for computer programs, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating system, or a combination of one
or more of them.

A computer program, which may also be referred to or described as a program,
software, a software application, an app, a module, a software module, a script, or code, can
be written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages; and it can be deployed in any form,
including as a stand alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of a file that holds other programs
or data, e.g., one or more scripts stored in a markup language document, in a single file
dedicated to the program in question, or in multiple coordinated files, e.g., files that store one
or more modules, sub programs, or portions of code. A computer program can be deployed
to be executed on one computer or on multiple computers that are located at one site or
distributed across multiple sites and interconnected by a data communication network.

In this specification, the term “database™ is used broadly to refer to any collection of
data: the data does not need to be structured in any particular way, or structured at all, and it
can be stored on storage devices in one or more locations. Thus, for example, the index
database can include multiple collections of data, each of which may be organized and
accessed differently.

Similarly, in this specification the term “engine” is used broadly to refer to a
software-based system, subsystem, or process that is programmed to perform one or more
specific functions. Generally, an engine will be implemented as one or more software

modules or components, installed on one or more computers in one or more locations. In

27

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

some cases, one or more computers will be dedicated to a particular engine; in other cases,
multiple engines can be installed and running on the same computer or computers.

The processes and logic flows described in this specification can be performed by one
or more programmable computers executing one or more computer programs to perform
functions by operating on input data and generating output. The processes and logic flows
can also be performed by special purpose logic circuitry, e.g., an FPGA or an ASIC, or by a
combination of special purpose logic circuitry and one or more programmed computers.

Computers suitable for the execution of a computer program can be based on general
or special purpose microprocessors or both, or any other kind of central processing unit.
Generally, a central processing unit will receive instructions and data from a read only
memory or a random access memory or both. The essential elements of a computer are a
central processing unit for performing or executing instructions and one or more memory
devices for storing instructions and data. The central processing unit and the memory can be
supplemented by, or incorporated in, special purpose logic circuitry. Generally, a computer
will also include, or be operatively coupled to receive data from or transfer data to, or both,
one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such devices. Moreover, a computer can
be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Positioning System (GPS) receiver,
or a portable storage device, e.g., a universal serial bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer program instructions and data
include all forms of non volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the subject matter described in
this specification can be implemented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can
provide input to the computer. Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech, or tactile input. In addition, a

computer can interact with a user by sending documents to and receiving documents from a

28

10

15

20

25

30

WO 2023/175089 PCT/EP2023/056778

device that is used by the user; for example, by sending web pages to a web browser on a
user’s device in response to requests received from the web browser. Also, a computer can
interact with a user by sending text messages or other forms of message to a personal device,
e.g., a smartphone that is running a messaging application, and receiving responsive
messages from the user in return.

Data processing apparatus for implementing machine learning models can also
include, for example, special-purpose hardware accelerator units for processing common and
compute-intensive parts of machine leaming training or production, e.g., inference,
workloads.

Machine learning models can be implemented and deployed using a machine learning
framework, .e.g., a TensorFlow framework or a Jax framework.

Embodiments of the subject matter described in this specification can be implemented
in a computing system that includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server, or that includes a front end
component, e.g., a client computer having a graphical user interface, a web browser, or an
app through which a user can interact with an implementation of the subject matter described
in this specification, or any combination of one or more such back end, middleware, or front
end components. The components of the system can be interconnected by any form or
medium of digital data communication, e.g., a communication network. Examples of
communication networks include a local area network (LAN) and a wide area network
(WAN), e.g., the Intemet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network.
The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page, to a user device, e.g., for
purposes of displaying data to and receiving user input from a user interacting with the
device, which acts as a client. Data generated at the user device, e.g., a result of the user
interaction, can be received at the server from the device.

While this specification contains many specific implementation details, these should
not be construed as limitations on the scope of any invention or on the scope of what may be
claimed, but rather as descriptions of features that may be specific to particular embodiments
of particular inventions. Certain features that are described in this specification in the context

of separate embodiments can also be implemented in combination in a single embodiment.

29

10

15

20

WO 2023/175089 PCT/EP2023/056778

Conversely, various features that are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially be claimed as such, one or more features from a claimed combination can in
some cases be excised from the combination, and the claimed combination may be directed to
a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings and recited in the claims in a
particular order, this should not be understood as requiring that such operations be performed
in the particular order shown or in sequential order, or that all illustrated operations be
performed, to achieve desirable results. In certain circumstances, multitasking and parallel
processing may be advantageous. Moreover, the separation of various system modules and
components in the embodiments described above should not be understood as requiring such
separation in all embodiments, and it should be understood that the described program
components and systems can generally be integrated together in a single software product or
packaged into multiple software products.

Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited
in the claims can be performed in a different order and still achieve desirable results. As one
example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In some cases,

multitasking and parallel processing may be advantageous.

30

WO 2023/175089 PCT/EP2023/056778

CLAIMS

1. A method performed by one or more computers, the method comprising:

receiving an input text query;

obtaining one or more first context text sequences and a respective natural language
identifier for each of the first context text sequences;

generating a first input sequence that includes the input text query, the one or more
first context text sequences, and the respective natural language identifiers for each of the one
or more first context text sequences;

processing the first input text sequence using an auto-regressive language model
neural network to generate a first output text sequence that comprises:

(1) a first output text sub-sequence that is a response to the input text query;

(i1) a second output text sub-sequence that is one of the respective natural language
identifiers for the first context text sequences, and

(iii) a third output text sub-sequence that is text from the first context text sequence
identified by the natural language identifier in the second output text sub-sequence; and

providing at least the first output text sub-sequence and the third output text sub-

sequence in response to the input text query.

2. The method of claim 1, wherein providing at least the first output text sub-sequence
and the first context text sequence in response to the input text query comprises
providing the first output text sub-sequence, the second output text sub-sequence, and

the third output text sub-sequence in response to the query.

3. The method of claim 1 or claim 2, further comprising:

determining, from the second output text sub-sequence, a source of the first context
text sequence identified by the natural language identifier in the second output text sub-
sequence; and

providing a reference to the source of the first context text sequence in response to the

query.

31

WO 2023/175089 PCT/EP2023/056778

4, The method of any preceding claim, further comprising:

obtaining one or more second context text sequences and a respective natural
language identifier for each of the second context text sequences;

generating a second input sequence that includes the input text query, the one or more
second context text sequences, and the respective natural language identifiers for each of the
one or more second context text sequences;

processing the second input text sequence using the auto-regressive language model
neural network to generate a second output text sequence that comprises:

(1) a fourth output text sub-sequence that is a response to the input text query;

(i1) a fifth output text sub-sequence that is one of the respective natural language
identifiers for the second context text sequences, and

(iii) a sixth output text sub-sequence that is text from the second context text sequence
identified by the natural language identifier in the fifth output text sub-sequence;

generating a respective score for each output text sequence in a set that includes the
first and second output text sequences;

determining that the first output text sequence has a highest score of any output text
sequence in the set; and

providing at least the first output text sub-sequence and the third output text sub-
sequence in response to the input text query in response to determining that the first output

text sequence has the highest score.

5. The method of claim 4, wherein generating a respective score for each output text
sequence in a set that includes the first and second output text sequences comprises:

scoring each of the output text sequences using a learned reward model.

6. The method of any preceding claim, wherein the first output sequence includes a
respective token from a vocabulary of tokens at each of a plurality of time steps, wherein the
auto-regressive neural network is configured to, for each time step in the first output
sequence, generate a respective score for each token in the vocabulary conditioned on the
first input text sequence and any tokens in the output sequence at any time steps before the
time step in the first output sequence, and wherein generating the first output sequence
comprises:

at each time step, selecting the token at the time step using the respective scores for

the tokens in the vocabulary generated by the neural network for the time step.

32

WO 2023/175089 PCT/EP2023/056778

7. The method of claim 6, wherein generating the first output sequence comprises:
at each time step in the second output text sub-sequence that is after the first time step

in the second output text sub-sequence:

receiving the respective scores generated by the neural network at the time
step;

generating a constrained score distribution that assigns a non-zero score only
to tokens that immediately follow the tokens already generated within the second output text
sub-sequence in one of the natural language identifiers; and

sampling the token at the time step from the constrained score distribution.

8. The method of claim 7, wherein the second output text sub-sequence is preceded by
one or more first predetermined syntax tokens in the first output text sequence, and wherein
generating the first output sequence comprises:
at a particular time step, determining that the one or more first predetermined syntax

tokens have been selected at one or more time steps immediately preceding the particular
time step and, in response, determining that the particular time step is the first time step in the
second output text-subsequence;

receiving the respective scores generated by the neural network at the
particular time step;

in response to determining that the particular time step is the first time step in
the second output text-subsequence, generating a constrained score distribution that assigns a
non-zero score only to tokens that are the first token in one of the natural language identifiers;
and

sampling the token at the time step from the constrained score distribution.

33

WO 2023/175089 PCT/EP2023/056778

9. The method of any preceding claim, wherein generating the first output sequence
comprises:
at each time step in the third output text sub-sequence that is after the first time step in

the third output text sub-sequence:

receiving the respective scores generated by the neural network at the time
step;

generating a constrained score distribution that assigns a non-zero score only
to tokens that immediately follow the tokens already generated within the third output text
sub-sequence in the first context text sequence identified by the natural language identifier in
the second output text sub-sequence; and

sampling the token at the time step from the constrained score distribution.

10. The method of claim 9, wherein the third output text sub-sequence is preceded by one
or more second predetermined syntax tokens in the first output text sequence, and wherein
generating the first output sequence comprises:
at a second particular time step, determining that the one or more second

predetermined syntax tokens have been selected at one or more time steps immediately
preceding the second particular time step and, in response, determining that the particular
time step is the first time step in the third output text-subsequence;

receiving the respective scores generated by the neural network at the
particular time step;

in response to determining that the particular time step is the first time step in
the third output text-subsequence, generating a constrained score distribution that assigns a
non-zero score only to tokens that appear in the first context text sequence identified by the
natural language identifier in the second output text sub-sequence; and

sampling the token at the time step from the constrained score distribution.

34

WO 2023/175089 PCT/EP2023/056778

11. The method of any preceding claim, wherein obtaining one or more first context text
sequences and a respective natural language identifier for each of the first context text
sequences comprises:

submitting a query derived from the input text query to a search engine;

obtaining, from the search engine, one or more context documents in response to the
query; and

selecting the one or more first context sequences from the one or more context

documents.

12. The method of claim 11, wherein the respective natural language identifier for each of
the first context text sequences is a title of the context document from which the first context

text sequence is selected.

13. The method of any preceding claim, wherein the neural network has been pre-trained

through unsupervised learning on a language modeling objective.

14. The method of any preceding claim, wherein the neural network has been fine-tuned

through supervised learning, reinforcement learning, or both.

15. A system comprising:

one or more computers; and

one or more storage devices storing instructions that, when executed by the one or
more computers, cause the one or more computers to perform the respective operations of

any one of claims 1-14.

16. One or more computer-readable storage media storing instructions that when executed
by one or more computers cause the one or more computers to perform the respective

operations of the method of any one of claims 1-14.

35

PCT/EP2023/056778

WO 2023/175089

1/6

201
Ad3IN0O IX3L LNdNI

v

¥0l WILSAS
NOILVHINIO IONINDIS IXIINOD

901 (S)30N3IND3S 80T (S)&3141LN3al
IX3dL LIXFLINOD FOVNONYT IVENLYN

oLt
INFLSAS NOILVHINIO IONINDIS LNdNI

4T
JON3INOIS LNdNI

LT MHOMLAN TVHENIN TIAOW IDVNONYT

001 INFLSAS NOILYYINID IONIND3S

l Ol

»

911 IONIND3S
1X3l 1Nd1no

WO 2023/175089 PCT/EP2023/056778
2/6

FIG. 2

2001

Receive input text query G202

|

Obtain context text sequence(s) and determine natural

204
language identifier for each sequence S
Generate a first input sequence 206

A 4

Process the first input sequence using an auto-regressive
language model neural network to generate a first output S~ 208
sequence

|

Provide an output sequence in response to the input text 210
query

PCT/EP2023/056778

WO 2023/175089

3/6

Juswnoop woyy sond |4
3y -obed |!
|

NX
%[e10nD)] s|dweg
%(elMy 20Q)
Yo<WIBID>Y%, aidwe
g|dwes | S
}seg

Kmrm

80¢

OIEETS

s 1401

Sjuswnoop
%-doy

\ 10} yoJeas
ETE

AN 1
uonsanp

N c0¢€

00¢€

SUBSTITUTE SHEET (RULE 26)

WO 2023/175089 PCT/EP2023/056778
4/6

400

K{ / 402

User What kind of animal is Scooby
from Scooby Doo?

404

GopherCite

Y A Great Dane dog

VAN .

Wikipedia Page: Scooby-Doo

This Saturday-morning cartoon series
featured teenagers Fred Jones, Daphne
Blake, Velma Dinkley, and Shaggy
Rogers, and their talking Great Dane
F|G 4 named Scooby-Doo.

SUBSTITUTE SHEET (RULE 26)

PCT/EP2023/056778

WO 2023/175089

5/6

Ty wou sjdwes

[

so|dwes 19819S O} INY 9S
j 14S woyy s|dwes

G Old

Bundwoid Joys-me4 —

Buiuies) |ISPOIN Bulunjaui4 uonenjeas uewny
luswaolojuioy le— piemoy e pesinladng |e— EIA WSUISjEIpUE] | _w%ﬁo%mwmmmm _
p doys ¢ dojg Z daig so|dwes 8jeisusn
| dois paulel}-aid
// 0lLs N 806G — 909 N 144°, - c0g

"

009

SUBSTITUTE SHEET (RULE 26)

PCT/EP2023/056778

WO 2023/175089

6/6

9 Old

‘Bujel siy) Uo SUBWILIOD SLOS BAIS) jeuondg

sejud nof yoiym xyoid juea nok gy []

peq ale siamsue yjoq asnessq all []

voom ol SIsMSUE y)oq asnedaq ol | _H_

pausjeld []

oS $,80UBpIAG
ONO ONO S9A fq

O MO ™0 ramang
ains i Slomsue

INO ONO %A0 ‘FEmeg

‘uneyosida] Apawod Jouoy £661
OU} Ul BLLIED)04 Ll JofeLu 1841 JOY ‘O PUB SB[Wi 8961
alj) Ul ajoJ payipaioun Ue Lyim abe Ajea Ue Je ssaijoe ue
se Bunyom uebaq says ‘uojisiuy AJUBN PuB uojsiuy uyop
§J0joe J0 JayBnep ay | “1eonpoid pue ssale UeaLsWY
Ue sI (§961 ‘1| Mueniga4 ulog) uojsiuy BUUBOP JajluUsp

"uojsiuy Jajuuap :eipadijim v

"UOJSILY JojuUa[3

-

;,90UBPIAD
oL9 | ans T
IONO ONO S8A q
0 "NO M0 popoddng

pausjald []
ains iSlomsue

N0 NO A0 “gmneg

[] kg pajead

Sem JajoeIeyo ay) ‘uojsiuy Jajuusp Aq pakespod ‘spusiiq
WOA)IS UBILBWY 8y} Ul paJeadde oyum Sia)oeJeyd ulew
XIS 9U} JO 3UO ‘I8}9BIRYD [BUONIY B S| USAIE) UIRY [9YIEY

“uojsiuy Jayuuap -eipadijip

W ~ "UOISIUY JOJIUUBP Y

809

;SpuaLl ul [ayoeJ skeyd oym)

N

09

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2023/056778

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F40/00 GO6N3/02

ADD.

G06Fr16/33

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

26 April 2018 (2018-04-26)
paragraph [0031]; figure 3
paragraph [0041]
paragraphs [0047] - [0049]
paragraph [0064]

X US 2018/114108 Al (LAO NI [US] ET AL)

1-16

I:‘ Further documents are listed in the continuation of Box C.

‘zl See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified}

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 April 2023

Date of mailing of the international search report

09/05/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Rameseder, Jonathan

Form PCTASA/210 {second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2023/056778
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2018114108 Al 26-04-2018 DE 202017106363 Ul 21-02-2018
GB 2557014 A 13-06-2018
uUs 2018114108 Al 26-04-2018
WO 2018097907 Al 31-05-2018

Form PCTASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report

