Office de la Proprieté Canadian

CA 2396261 C 2009/10/13

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 396 261
Findustrie Canada Industry Canada a2 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2001/01/02 (51) ClLInt./Int.Cl. H04[29/06 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2001/07/12 HO4L 29/14(2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2009/10/13 LEIGHTON. F. THOMSON. US:
(85) Entree phase nationale/National Entry: 2002/07/04 LEWIN, DANIEL M., US:
(86) N° demande PCT/PCT Application No.: US 2001/000079 SHAW, DAVID, Us
o o MAGGS, BRUCE, US
(87) N publication PCT/PCT Publication No.: 2001/050/710 S
e (73) Proprietaire/Owner:
(30) Priorité/Priority: 2000/01/06 (US09/478,571) AKAMAI TECHNOLOGIES, INC.. US
(74) Agent: KIRBY EADES GALE BAKER

(54) Titre : PROCEDE ET SYSTEME D'EMISSION DE SIGNAUX EN CONTINU SUR LE
PRESENTANT UNE TOLERANCE AUX ANOMALIES

RESEAU INTERNET

54) Title: METHOD AND SYSTEM FOR FAULT TOLERANT MEDIA STREAMING OVER THE INTERNET

200

< OPLITIERS

@ @ @ - CONCENTRATORS

- END USER
DISTRIBUTION

(57) Abréegée/Abstract:

A replication process to provide fault tolerance for a streaming signal in a computer network. In one embodiment, the original or
source signal Is sent to several splitters which, In turn, each make copies of the signal and send the copies into a second layer of

devices, which are referred to as "concentrators”. A given concentrator receives as input one
In a preferred embodiment, a given concentrator receives two copies of the source signal fro
concentrators process the incoming streaming signal copies, for example, by merging them ir

or more copies of the source signal.
M at least two different splitters. The
to a single or composite copy of the

original source signal according to a given processing algorithm. The output of a given concer

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

trator may then be fed into a spilitter,

' RN S S S T
R AL RN - w - .- "y
Reven N] 7 7]
SN LS
OPIC - corvmy CIPO
X SEENRY
SRR T I NN
4
3

CA 2396261 C 2009/10/13

anen 2 396 261
13) C

(57) Abrege(suite)/Abstract(continued):
with the process then being repeated If desired to make an arbitrary large number of copies of the signal. At the end of the

replication process, the output of a splitter or a concentrator Is fed directly or indirectly to an end user. The replication process Is
fault-tolerant, and thus the end user's signal is not interrupted regardless of signal or equipment problems within the distribution

mechanism.

WO 01/50710 Al

CA 02396261 2002-07-04

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 July 2001 (12.07.2001)

(10) International Publication Number

PCT WO 01/50710 Al

(51) International Patent Classification’: HO04L 29/06, SHAW, David; 205 Waldon Street, Cambridge, MA

29/14

02140 (US). MAGGS, Bruce; 345 Franklin Street #5035,
Cambridge, MA 02139 (US).

(21) International Application Number: PCT/US01/00079

(74) Agent: JUDSON, David, H.; Akamai Technologies, Inc.,

(22) International Filing Date: 2 January 2001 (02.01.2001) 500 Technology Square, Cambridge, MA 02139 (US).

(25) Filing Language:

English (81) Designated States (national): AU, BR, CA, CN, IL, JP,

KR, MX, NO, NZ, SG, TR.

(26) Publication Language: English
(84) Designated States (regional): EBurasian patent (AM, AZ,
(30) Priority Data: BY, KG, KZ, MD, RU, TJ, TM), European patent (Al, BE,
09/478,571 6 January 2000 (06.01.2000) US CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,

(71) Applicant: AKAMAI TECHNOLOGIES,

NL, PT, SE, TR).

INC.

[US/US]; 500 Technology Square, Cambridge, MA 02139 Published:

(US).

— With international search report.

(72) Inventors: LEIGHTON, F.,, Thomson;, 15 Charlesden For two-letter codes and other abbreviations, refer to the "Guid-
Park, Newtonville, MA 02160 (US). LEWIN, Daniel, ance Notes on Codes and Abbreviations" appearing at the begin-
M.; 37 Monument Square, Charlestown, MA 02129 (US). ning of each regular issue of the PCT Gazelte.

(54) Title: METHOD AND SYSTEM FOR FAULT TOLERANT MEDIA STREAMING OVER THE INTERNET

PRODUCTION FACILITY

| , SIGNAL
706 ENCODER SOURCE

702~ RELY | [reway | -704
SERVER SERVER

712~_ DATA DATA
CENTER CENTER

714

o~

DATA DATA DATA DATA
CENTER CENTER CENTER CENTER
__7_

lE _~726n
7260 J_

(57) Abstract: A replication process to provide fault tolerance for a
streaming signal in a computer network. In one embodiment, the origi-
nal or source signal is sent to several splitters which, in turn, each make
copies of the signal and send the copies into a second layer of devices,
which are referred to as "concentrators”. A given concentrator receives
as input one or more copies of the source signal. In a preferred embodi-
ment, a given concentrator receives two copies of the source signal from
at least two different splitters. The concentrators process the incoming
streaming signal copies, for example, by merging them into a single or
composite copy of the original source signal according to a given pro-
cessing algorithm. The output of a given concentrator may then be fed
into a splitter, with the process then being repeated if desired to make an
arbitrary large number of copies of the signal. At the end of the repli-
cation process, the output of a splitter or a concentrator is fed directly
or indirectly to an end user. The replication process is fault-tolerant,
and thus the end user’s signal is not interrupted regardless of signal or
equipment problems within the distribution mechanism.

10

15

20

29

30

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
1 |
METHOD AND SYSTEM FOR FAULT TOLERANT MEDIA
 STREAMING OVER THE INTERNET
BACKGROUND OF THE INVENTION
Technical Field
The present invention relates generally to digital signal transmission over a

computer network and, in particular, to a method and system for streaming content

over the Internet in a fault tolerant manner.
Description of the Related Art

Most Internet users do not have fast enough access to the Internet to
download large multimedia files quickly. Streaming is a technique for delivering
web-based video, audio and multimedia files so that these files can be processed as

a steady and continuous stream at the requesting client, typically using a browser
plug-in, such as Microsoft NetPlayer , Apple QuickTime ", Real Networks RealSystem

G2", or the like. Streaming video, for example, is an online video distribution

mechanism that provides audio and video to Internet users, without the users
having to wait while content completely downloads to their hard drives. Through
caching, content is played as it is received, and buffering mechanisms ensure that
content is played smoothly. Theofetically, streaming video plays to the end user, or
viewer, as an immediate and ongoing broadcast.

From a network perspective, traditional approaches to streaming Internet
content involve transmitting a streaming signal from a source to a device known as
a splitter (or repeater, reflector or mirror), which, in turn, replicates the source
signal into multiple signals. Each of the multiple signals is the same, and each is
sent on to a different destination. By cascading splitters in a tree-like fashion, a
single source stream can be replicated into thousands or more identical copies. In
this manner, a large number of viewers on the Internet can receive the same
streaming signal simultaneously.

A critical problem with existing streaming methods of this type is that they
are not fault tolerant. Figure 1 illustrates why this is the case. In this example, a
source signal (A) is sent to a sphitter (B), which then sends copies of the signal to ten
splitters (C1, ..., C10). Bach of the second level splitters then sends a copy of the
signal to five end customers (D1, ..., D50). Thus, for example, sphtter C1 sends a

10

15

20

290

30

CA 02396261 2002-07-04
WO 01/50710 | PCT/US01/00079

2

copy to end users D1-D5, splitter C2 sends a copy to end users D6-D10, and so forth.
If communications at a given splitter fail, however, certain users are unable to
receive the original signal. In the network of Figure 1, this would be the case with
respect to users D6-D10 if C2 fails. To overcome this problem, it is also known in
the art to enable end users to detect they are no longer receiving the streaming
signal and to enable such users to attempt to contact an alternative splitter (e.g.,
C3) in an effort to get another copy of the signal. Such approaches, however, can
result in an interruption of the signal and are expensive to implement.

Thus, there remains a need in the art to provide improved streaming

techniques that are fault tolerant. The present invention solves this important

problem.
BRIEF SUMMARY OF THE INVENTION

The present invention provides a replication process to provide fault
tolerance for a streaming signal in a computer network. In one embodiment, the
original or source signal is sent to several splitters which, in turn, each make copies
of the signal and send the copies into a second layer of devices, which are referred to
as "concentrators." A given concentrator receives as input one or more copies of the
source signal. In a preferred embodiment, a given concentrator receives two copies
of the source signal from at least two different splitters. The concentrators process
the incoming streaming signal copies, for example, by merging them into a single or
composite copy of the original source signal according to a given processing
algorithm. Thus, preferably a given concentrator receives streams from multiple
sources, removes duplicate packets, and then outputs a single stream. The output
of a given concentrator may then be fed into a splitter, with the process then being
repeated if desired to make an arbitrary large number of copies of the signal. At the
end of the replication process, the output of a splitter or a concentrator 1s fed
directly or indirectly to an end user. The replication process is fault-tolerant, and
thus the end user's signal is not interrupted regardless of signal or equipment
problems within the distribution mechanism.

One type of processing algorithm that is implemented at a concentrator
simply transmits the first copy of each packet in the signal stream. Copies of

packets that have already been transmitted are simply discarded. This algorithm

10

15

20

29

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

3

may be implemented by maintaining a data array f(1) that has a first value (e.g.,
"1") if packet 1 in the stream has been forwarded and (1) that has a second value
(e.g., "0") otherwise. When a copy of packet 1 is received from one of the incoming
streams, it is forwarded if and only if (1) equals the second value. This technique 1s
advantageous because a complete stream can be reconstructed from two or more
partial streams. Thus, as long as the incoming copies of the stream collectively
contain all the packets of the original stream, the concentrator produces a copy of
the original stream.

Another type of processing algorithm that may be implemented at a
concentrator uses a buffering technique. In this approach, a buffer of a given size is
kept for each input stream to create an n-dimensional array, where n is the number
of input streams. At a given cycle rate, the concentrator transmits a smallest index
packet (namely, a packet that is earliest in the stream sequence) contained in any of
the stream buffers. As each packet is transmitted, the data in the array is updated
so that future copies of the same packet can be discarded. This protocol enables the
concentrator to reorder the packets in a stream so that they are output in a correct
order.

One or more concentrators as described above enable fault tolerant media
streaming over a computer network such as the Internet, an intranet, a virtual
private network, or the like.

The foregoing has outlined some of the more pertinent objects and features of
the present invention.‘ These objects should be construed to be merely illustrative of
some of the more prominent features and applications of the invention. Many other
beneficial results can be obtained by applying the disclosed invention in a different
manner or modifying the invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by referring to the following
Detailed Description of the Preferred Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the

advantages thereof, reference should be made to the following Detailed Description

taken in connection with the accompanying drawings in which:

10

15

20

29

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

4

Figure 1 is a simplified diagram of a known streaming architecture in which
a plurality of splitters are used to transmit the source sigﬁal to a plurality of end
users or viewers;

Figure 2 is a simplified diagram illustrative the inventive use of
concentrators according to the teachings of the present invention;

Figure 3 is a flowchart of a first type of processing routine that may be used
In a concentrator;

Figure 4 is a flowchart of a second type of processing routine that may be
used 1n a concentrator;

Figure 5 is a block diagram of a concentrator used in the present invention;

Figure 6 is a block diagram of a client-server computing environment 1n
which the present invention may be implemented; and

Figure 7 is a block diagram illustrating an implementation of the present
ivention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Streaming media is a type of Internet content that has the important

characteristic of being able to play back while still in the process of being
downloaded. A client can play the first packet of the stream, decompress the
second, while receiving the third. Thus, the user can start enjoying the multimedia
without waiting to the end of transmission. Streaming is very useful for delivering
media because media files tend to be large, particularly as the duration of the
programming increases. To view a media file that is not streamed, users must first
download the file to a local hard disk—which may take minutes or even hours—and
then open the file with player software that is compatible with the file format. To
view streaming media, the user’s browser opens player software, which buffers the
file for a few seconds and then plays the file while simultaneously downloading it.
Unlike software downloads, streaming media files are not stored locally on users’
hard disks. Once the bits representing content are used, the player discards them.
Streaming media quality varies widely according to the type of media being
delivered, the speed of the user’s Internet connection, network conditions, the bit
rate at which the content is encoded, and the format used. These last two concepts

are explained in more detail below. In general, streaming audio can be FM quality,

10

15

20

25

30

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
b
but streaming video is poor by TV standards, with smaller screens, lower resolution,
and fewer frames per second. The source for streaming media can be just about any
form’ of media, including VHS or Beta tapes, audio cassettes, DAT, MPEG video,
MP3 audio, AVI, and the like. Prior to streaming the content, the content must first
be encoded, a process which éccompﬁshes four things: conversion of the content
from analog to digital form, if necessary; création of a file In the format recognized
by the streaming media server and player; compression of the file to maximize the
richness of the content that can be delivered in real-time given limited bandwidth;
and, establishing the bit rate at which the media 1s to be delivered. Streaming
media uses lossy compression, which means that after decompression on the client
end, some portions of the content are not retained. For example, compression may
reduce a VHS video clip with 30 frames per second to just 15 fps. Typically, media
must be encoded at a specific bit rate, such as 28 kbps, 56 kbps, 100 kbps, or the
like. Content owners typically choose to encode media at multiple rates, so that
users with fast connections get as good an experience as possible, but users with
slow connections can also access the content. Obviously, the lower the encoding
rate, the more original content must be discarded when compressing.
Non-streaming content is standards-based in the sense that the server and client

software developed by different vendors—Apache , Microsoft Internet Explorer

Netscape Communicator , and the like—generally work well together.

Streaming media, however, usually relies on proprietary server and client software.
The server, client, production and encoding tools developed by a streaming software
vendor are collectively referred to as a format. Streaming media encoded in a
particular format must be served by that format’s media server and replayed by
that format’s client. Streaming media chents are often called players, and typically
they exist as plug-ins to Web browsers. Streaming media clients are also often
capable of playing standards-based non-streaming media files, such as WAV or AVI.
The three major streaming media formats in use today are: RealNetworks

RealSystem G2, Microsoft Windows Media Technologies™ (“WMT?”), and Apple

QuickTime . RealSystem G2 handles all media types including audio, video,

animation, still images and text, but it does not support HTML. RealSystem G2
supports SMIL, an XML-based language that allows the content provider to time

10

15

20

29

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

6

and position media within the player window. To deliver the media in real time
Real uses RTSP. To stream in WMT’s Advanced Streaming Format, content
providers must have Microsoft NT 4 Server installed. WMT does not support SMIL
or RTSP but has its own protocol that it calls HTML + Time. Apple QuickTime

recently has added the capability to serve streaming media. QuickTime can support

a number of formats including VR, 3D, Flash, and MP3. QuickTime Streaming uses
RTSP to deliver the movies in realtime, and a dedicated media server 1s required.

By way of further background, RTSP, the Real Time Streaming Protocol, is a
client-server multimedia presentation protocol to enable controlled delivery of
streamed multimedia data over IP network. It provides "VCR-style" remote control
functionality for audio and video streams, like pause, fast forward, reverse, and
absolute positioning. Sources of data include both live data feeds and stored clips.
RTSP is an application-level protocol designed to work with lower-level protocols
like RTP (Realtime Transport Protocol) and RSVP (Resource Reservation Protocol)
to provide a complete streaming service over the Internet. It provides means for
choosing delivery channels (such as UDP, multicast UDP and TCP), and delivery
mechanisms based upon RTP. RTSP establishes and controls streams of continuous
audio and video media between the media servers and the clients. In RTSP, each
presentation and media stream is identified by an RTSP URL. The overall
presentation and the properties of the media are defined in a presentation
description file, which may include the encoding, language, RTSP URLs, destination
address, port, and other parameters. The presentation description file can be
obtained by the client using HT'TP, email or other means. RTSP differs from HTTP
for several reasons. First, while HTTP is a stateless protocol, an RTSP server has
to maintain "session states" in order to correlate RTSP requests with a stream.
Second, HTTP is basically an asymmetric protocol where the client 1ssues requests
and the server responds, but in RTSP both the media server and the chient can 1ssue
requests. For example the server can issue a request to set playing back
parameters of a stream.

The transport layer of non-streaming content uses the Transmission Control
Protocol, or TCP. This is a connection-oriented protocol, which means a connection

between server and client is established and maintained until the content has been

10

15

20

20

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

7
completely received. One reason for the connection is that the client can report if
any IP packets are not received, which are then retransmitted by the server. The
result is that a file successfully transmitted over TCP, a logo for example, is always
identical to its source—although the time required for transmission may vary
widely depending on infrastructure.

By contrast, the transport layer for non-streaming media uses User
Datagram Protocol, or UDP. UDP is a connectionless protocol, under which 1P
packets are sent from the server to the client without establishing a connection.
This protocol enables streaming media’s real-time nature: no need to wait to resend
dropped packets. But it also means that the content quality may be degraded
markedly between server and client, or that two different users may have a much
different experience.

The present invention 1s designed to be used with any streaming media
source, encoding scheme, media format, and streaming (or other transport) protocol.

Referring now to Figure 2, a packet-switched network 200 in which the
present invention is implemented comprises a signal source A, a set of splitters B1-
Bn, and a set of end users D1- Dn. According to the invention, the network also
includes a set of so-called "concentrators" C1-Cn that facilitate an inventive signal
replication process. This process ensures that each end user will always receive a
copy of the source signal irrespective of interruptions in the transmission, e.g., due
to equipment, device or communication failures, that occur within other elements ot
the distribution system.

Preferably, concentrators C are positioned within the network in a physical
and/or logical layer located between the splitters B and the end users D. The
physical configuration illustrated in Figure 2, of course, is merely exemplary. An
end user, of course, is typically a client computer that includes a browser or other
graphics viewer having a plug-in or native support for streaming content. In a
preferred embodiment, a concentrator C is a software program, namely, a set of
computer instructions that comprise one or more processes, executable within a
processor. As illustrated in Figure 2, each concentrator C receives as input one or
movre copies of the source signal data stream. In a preferred embodiment of the

invention, each concentrator C receives a copy of the source signal data stream

10

15

20

290

30

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
8

from at least two (2) different splitters B. Thus, for example, in this embodiment,
the original signal is sent to several splitters B1,..., B6. These splitters make copies
of the signal and send them to the concentrators C1, ..., C20. Splitter Bl sends a
copy of the signal it received from source A to each of the concentrators C1, ..., C8. -
SplitterBZ sends a copy of the signal it received from source A to each of the
concentrators C9,...,C16. Sphitter B3 sénds a copy to concentrators C17,..., C20 and
C1,...,C4, whereas B4 sends copies to C5,...,C12, and B5 sends copies to C13,...,C20.
Again, thése examples are not to be taken to limit the present invention in any way.
In each case, however, it can be seen that every concentrator C receives a copy of
the source signal data stream from precisely two splitters. Stated another way,
each concentrator receives two streams, UDP1 and UDP2, representing copies of
the original source stream.

Generally, the function of a concentrator is to process the incoming streams
and to merge them into a single or composite copy of the source signal data stream
that is then output from the concentrator. A concentrator removes duplicate
packets and preferably outputs a single stream feed. This processing is quite
advantageous. In particular, given several copies of a stream, even if they are all
lossy, a single pristine stream can be generated from the remnants of the duphcate
streams. The technique is very robust and can take a large number of failures
before end user experience is' impaired.

The processing of the data streams may be accomplished in a number of
different ways. Figure 3, for example, is a flowchart illustrating a first
embodiment of the processing routine wherein the concentrator transmits only the
first copy of each packet in the stream. Copies of packets that have already been
transmitted are simply discarded. Figure 4 illustrates a second embodiment of the
processing routine wherein multiple copies of the streams are buftered to enable

out-of-order packets to be reordered as the output is generated. Hach of the

embodiments will now be described in detail.

Referring now to Figure 3, a first embodiment of the processing routine
utilizes an-array f(i) for the source signal. An element in the data array has a given
first value, e.g., 1, if packet i in the stream has been forwarded from the

concentrator and a second value, e.g., 0, otherwise. The routine begins at step 300.

10

15

20

29

30

CA 02396261 2002-07-04

WO 01/50710 PCT/US01/00079

9

At step 302, an instance of the processing routine is spawned, typically when the
first packet of the stream arrives at the concentrator. At step 304, the array is
initialized. The processing routine then continues at step 306 to test whether a
packet 1 has been received from one of the incoming streams. If not, the routine
cycles. If, however, the outcome of the test at step 306 is positive, which indicates
that the packet has been received, a test is performed at step 308 to determine
whether f(G) = 0. If so (because this is the first occurrence of the packet 1), the
routine continues at step 310 to forward the packet from the concentrator without
delay. At step 312, the routine updates the array by setting the value of the packet
11in the array equal to 0. Control then returns to step 306. If, however, the outcome
of the test at step 308 indicates that f(1) is not equal to 0, then the routine continues
at step 314 to discard the packet (since it has already been forwarded).

Thus, 1n effect, the processing routine parses packets as they arrive at the
concentrator. If the parser has already seen the stream packet, the p"acket 1S
discarded; otherwise, it 1s forwarded.

The processing routine of Figure 3 1s advantageous in that 1t 1s simple to
implement and does not introduce any delay into the streams (which, for example,
might be caused by waiting for a particular copy of a packet to arrive). This routine
also has the desirable feature that a complete stream can be reconstructed from two
or more partial streams. Thus, as long as the incoming copies of the stream
collectively contain all the packets in the original stream, then the concentrator will
produce a copy of the original stream.

As an example, and with reference to Figure 2 again, if one of the splitters
(e.g., B1) ceases to function, then each of concentrators C1,...C4 will still receive the
stream from splitter B3 and each of concentrators C5,...,C8 will still receive the
stream from splitter B4. There is never an interruption of the signal transmitted by
any of the concentrators in this illustrative example. This property 1s preserved
irrespective of which splitter is not functioning. Indeed, even if two splitters (e.g.,
B1 and B3) suffer packet loss, 1t i1s still possible for each of the concentrators

C1,...C4 to reconstruct the original signal using the process described above

(provided that the packet loss 1s less than 50%).

10

15

20

29

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

10

Referring now to Figure 4, an alternate embodiment is shown wherein each
incoming stream at a concentrator has a buffer associated therewith. By buffering
stream packets, the concentrator may reorder the packets in the stream before
output. The routine begins at step 400. At step 402, the bufters are 1mitialized.
The routine then continues at step 404 to test whether a given cycle has elapsed. If
not, the routine continues at step 406 (for each stream) to test whether a given
incoming packet (for the stream) has already been forwarded. If the outcome of the
test at step 406 is positive, the routine discards the packet at step 408. If the given
incoming packet has not been forwarded, the packet 1s buffered at step 410. Control
then returns to step 404. Using the buffering scheme, for example, packets from
stream UDP1 are buffered in a first buffer, packets from stream UDP2 are buffered
in a second buffer, and so on. When the outcome of the test at step 404 indicates
that the given cycle has elapsed, control branches to step 412 to identify the packet
that is the earliest in the stream sequence. At step 414, a test 1s performed to
determine whether this packet 1s out of sequence. If so, the routine reorders the
packets as necessary at step 416. The resulting stream is then output from the
concentrator at step 418. At step 420, the array is updated to reflect the packets
that have been forwarded. Step 418 is also reached if there is a negative outcome of
the test at step 414.

Thus, in the routine of Figure 4, a buffer of a given size is kept for each
input stream copy. At each cycle, the concentrator transmits the smallest index
packet contained in any of the buffers. As each packet is transmitted, the data in
the array is updated so that future copies of the same packet can be discarded when
they arrive at the concentrator. As can be seen, the protocol of Figure 4 1s similar
to the routine of Figure 3 except that it has the additional desired feature that it
can reorder the packets in the stream so that they are output 1n the correct order.
The larger the buffer size, the more likely 1t is that out-of-order packets can be
output in order. In this way, packets that are slowed down in the network have the
opportunity to catch up at the buffer.

Regardless of which technique (Figure 3 or Figure 4) is used at a given
concentrator C, the output of a given concentrator can then be fed back to a splitter

or to an end user directly. When the concentrator is output to a splitter, the process

10

15

20

25

30

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

11

can be repeated to make an arbitrarily large number of copies of the source signal
data stream. At the end of the replication process, the output of a splitter or
concentrator (or some other device) is fed directly to a viewer. The resulting
replication process is completely fault-tolerant. In particular, no matter what
signal 1s destroyed, the end user's signal 1s not interrupted.

The number of signals input to each concentrator determines the number of
faulty streams that can be tolerated by the distribution system. For example, if
every concentrator receives the signal from at least k different splitters, then the
system can tolerate faults in any subset of k-1 signals without compromising the
signal received by any end user. If the faults in signals (or system components) are
random, then the system can tolerate F faults before any end user's signal 1s
interrupted, where F 1s about N {1-1/k} and N is the number of components in the
system. If the packet loss rate being experienced on each stream is p, then the loss
rate, after concentration, is pk x the number of streams.

In a preferred embodiment, it is desirable to input two (2) input streams to a
given concentrator. The cost of more streams, of course, 1s more network bandwidth
for the distribution mechanism. Where multiple input streams are supplied to a
concentrator (or output from a sblitter), a variant of the present invention 1s to
incorporate given coding schemes within the splitters/concentratprs to recover some
of the bandwidth used to transmit multiple data streams. In this variant, as a
stream is output from a given device (e.g., a splitter), it is encoded using an
encoding routine. As the stream enters the concentrator in the underlying layer, it
is decoded and processed in the manner described above. When coding techniques
are used, then the copies of the data stream output from the splitters need not be
identical; rather, the copies may vary as a result of the encoding algorithm used
within a given device.

In an illustrative embodiment, a useful encoding scheme 1is the Rabin
Information Dispersal Algorithm. Information dispersal involves the breaking-up of
packets into a collection of subpackets that are routed in a greedylike fashion to
their common destination along edge-disjoint paths. The advantage of information
dispersal is that the dispersal of large packets into many small subpackets tends to

results in very balanced communication loads on the edges of a network. As a

10

15

20

29

30

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
12

consequence, the maximum congestion in the network is likely to be very low, and
there is a good chance that packets will never be delayed at all. In addition, if the
contents of a packet are encoded into a collection of subpackets in a redundant

fashion, an information dispersal algorithm becomes more fault tolerant as only a
fraction of the subpackets have to reach the destination for the original packet to be
reconstructed. Further information about the Information Dispersal Algorithm

may be found in the folowing reference, Leighton, Introduction To Parallel

Algorithms and Architectures: Arrays, Trees, Hybercubes, Morgan Kaufmann

(1992), Section 3.4.8. Thus, in an illustrative embodiment, the Rabin Information

Dispersal Algorithm is implemented within a given splitter and a given concentrator.

As noted above, a concentrator for use in the present invention is a software
program executable on a computer. Figure b5 illustrates a representative
concentrator 500 comprising a manager routine 502, an array manager process 504,
and a set of stream concentration processes 506a-n. One or more coding/decoding
routines 508 may be provided as described in the variant above. In operation, the
manager routine 502 is initiahized upon startup of the concentrator. As an input
data stream is received, the manager routine 5602 launches an instance of the
stream concentration process 606, which manages the merging of the individual
data streams into the stream that is then output from the concentrator. The array
manager process is invoked by the manager routine 502 to establish an array (or
other data structure or equivalent work area) for use by a given stream
concentration process 506. By using multiple stream concentration processes, a

given concentrator may be used to concentrate different content streams under the
control of the manager routine. |

The fault-tolerant distribution mechanism of the present invention may be
implemented within a conventional client-server distributed computing
environment. Figure 6 illustrates a conventional client-server environment in
which the streaming framework may be implemented. In this example, a plurality
of Internet client machines 610 are connectable to a computer network service
provider 612 via a network such as a telephone network 614. The service provider

612 interfaces the client machines 610 to the remainder of the network 618, which

10

15

20

29

30

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
13
may include a plurality of web content server machines 620. Network 618 typically
includes other servers (not shown) for control of domain name resolution, routing
and other control functions. A client machine typically includes a suite of known
Internet tools. Various known Internet protocols are used for these services.

A given client machine and the server may communicate over the public
Internet, an intranet, or any other computer network. If desired, given
communications may take place over a secure connection. Thus, for example, a
client may communication with the server using a network security protocol, such

as Netscape’s Secure Socket Layer (SSL) protocol or the like.

A representative client is a personal computer, notebook computer, Internet
appliance or pervasive computing device (e.g., a PDA or palm computer) that 1s x86-,
Pentium-, PowerPC®- or RISC-based. The client includes an operating system such as

Microsoft Windows ‘98", Microsoft NT , Windows CE" or PalmOS"". The client
includes a suite of Internet tools including a Web browser, such as Netscape Navigator

or Microsoft Internet Explorer , that has a Java Virtual Machine (JVM) and support for

application plug-ins or helper applications.

A representative web server comprises a processor 622, an operating system
624 (e.g., Linux, Windows NT, Unix, or the like) and a web server program 626. OS
624 and web server program 626 are supported in system memory 623 (e.g., RAM).
Of course, any convenient server platform (e.g., Apache, WebSphere, or the like)
may be supported. The server may include an application programming interface
628 (API) that provides extensions to enable application developers to extend and/or
customize the core functionality thereof through software programs including plug-
ins, CGI programs, servlets, and the like.

A representative concentrator is a computer or computer platform having an

operating system and support for network connectivity. Thus, for example, a

representative concentrator comprises a computer running Windows NT (Intel and DEC

Alpha), IBM, AIX, HP-UX, Sun Solaris™ (SPARC and Intel Edition), Novell NetWare -

™

or Windows 98 .

Figure 7 illustrates an implementation of the present invention. The system
700 comprises a pair of relay servers 702 and 704 residing, for example, at a

streaming video production facility 706. These servers are equipped, for example,

10

15

20

20

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079
14

with two (2) network cards each, one set of which are wired onto a common network
with encoder machines 708, and the other set of which is connected to the Internet
710. The encoder machines 708 encode the video and audio data and send the
encoded packets to a broadcast address of the network they share with the relay
servers 702 and 704. The relay servers pick up the packets and re-send them out,
for example, over two dedicated T-1 hines to two different data centers 712 and 714.
From these two data centers, content fans out to two more data centers each 716,
718, 720 and 722, thus making four duplicates of each data packet. Each of the
four data centers sends a copy of each packet to each of a set of regions 724a-n, with
each server region 724 comprising a set of content hosting servers 726a-n. Each
region includes a concentrator which removes the duplicates and feeds the
single remaining stream to each server 726 in that region. Although not meant to
be limiting, the server regions may comprise part of a distributed content hosting
system such as Akamai FreeFlow™, which is a high-performance, fault-tolerant web
content delhivery service.

As noted above, the invention may be implemented in software executable in

- a processor, namely, as a set of instructions (program code) in a code module

resident in the random access memory of the computer. Until required by the
computer, the set of instructions may be stored in another computer memory, for
example, in a hard disk drive, or in a removable memory, or downloaded via the
Internet or other computer network.

In addition, although the various methods described are conveniently
implemented in a general purpose computer selectively activated or reconfigured by
software, one of ordinary skill in the art would also recognize that such methods
may be carried out in hardware, 1n firmware, or in more specialized apparatus
constructed to perform the required method steps.

Having thus described our invention, what we claim as new and desire to

secure by Letters Patent 1s set forth in the following claims.

CA 02396261 2008-09-10

15

CLAIMS

1. An online content distribution system, comprising:

a set of splitters, each of which receive a signal source and generate a copy
thereof, wherein a given splitter includes means for encoding a copy of the signal source;

a set of concentrators, each of the concentrators receiving, from two or more
splitters, two or more streams of the signal source, wherein a given concentrator includes
means for decoding a copy of the signal source encoded by the given splitter;

each of the concentrators including means for concentrating the two or more

streams of the signal source into a composite signal.

2. The online content distribution system as described in claim 1 wherein the means
for concentrating comprises a computer readable memory having recorded thereon
statements and instructions for execution by a computer to carry out the steps of:

determining whether a given packet of the signal source has been forwarded from
the concentrator;

if the given packet of the signal source has not been forwarded, outputting, in the
composite signal, the given packet; and

if the given packet of the signal source has been forwarded, discarding the given

packet.

3. The online content distribution system as described in claim 1 wherein the means
for concentrating comprises a computer readable memory having recorded thereon
statements and instructions for execution by a computer to carry out the steps of:
buffering each of the two or more streams;
at a given time, identifying a given packet in the two or more streams; and

forwarding the given packet from the concentrator as part of the composite signal.

4, The online content distribution system as described in claim 3 wherein the given

packet 1s an earliest packet within the signal source stream.

CA 02396261 2008-09-10

16

5. The online content distribution system as described in claim 3 wherein the means
for concentrating comprises:
reorders given packets in a signal source stream prior to outputting the composite

signal from the concentrator.

6. The online content distribution system as described in claim 1 wherein the signal

source comprises a media stream.

7. The online content distribution system as described in claim 6 wherein the media

stream is formatted for rendering in a media player associated with a client browser.

8. The online content distribution system as described in claim 2 wherein the signal

source stream conforms to a given streaming protocol.

9. The online content distribution system as described in claim 8 wherein the given

protocol is RTSP (Real Time Streaming Protocol).

10. The online content distribution system as described in claim 1 wherein the means

for encoding and the means for decoding utilize an information dispersal algorithm.

11. The online content distribution system as described in claim 1 wherein the signal

source streams are delivered via a given protocol.

12. The online content distribution system as described in claim 11 wherein the given

protocol is UDP (User Datagram Protocol).

CA 02396261 2008-09-10

WO 01/50710 ' PCT/US01/00079

1 /4
SOURCE o
SOURCE
SIGNAL
STREAM _
o START)~ 400

INITIALIZE BUFFERs 402

OJORHD

404

HAS
GIVEN TIME PERIOD
ELAPSED?

NO

FIG. 1 YES
(PRIOR ART) 412
PACKET
00

1S
PACKET OUT OF
_SEQUENCE?

SPAWN INSTANCE OF 3072
PROCESSING ROUTINE
416
1.-304
306
PACKET i QUTPUT STREAM
RECEIVED? _ PORTION 418
UPDATE ARRAY 490

NO

5

08 YES
=
YES

4 HAS N0
DISCARD GIVEN PACKET BEEN
3 g _ PACKET FORWARDED?

BUFFER

l FORWARD PACKET] 314 406 YES PACKET [™-410
DISCARD

| UPDATE ARRAY I\ 39 48 PCkET | BT 4

CFIG. 3

00000000000000000000

00000000000000000000000

DISTRIBUTION

END

USERS

CA 02396261 2002-07-04
WO 01/50710 PCT/US01/00079

3/4

ARRAY
MANAGER
PROCESS

MANAGLR
ROUTINE -

202 004

200
STREAM
ENCODING/
5060 coventration ||| | “Jeoppid - soe
FIG. 5
SERVERS
620

CLIENTS

610\M 61&4

= NETWORK
1‘ ; __6_J§

riG. 6

RAM

CA 02396261 2008-09-10

WO 01/50710 PCT/US01/00079

1/4

PRODUCTION FACILHTY .

08
' SIGNAL
702

RELAY RELAY 704
SERVER SERVER

— N 7
'v‘
719 DATA DATA 714
CENTER CENTER
' DATA DATA DATA DATA
CENTER CENTER | | CENTER CENTER
| 716 718 720

122

200

@ @ - CONCENTRATORS

@0\

%
Vs

9,

© | \\.&VOA@

NS
) 2382

DISTRIBUTION

END
USERS

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - abstract drawing

