EP 1473616 A2

(19) .0)

Européisches Patentamt
European Patent Office
Office européen des brevets
(12)

{43) Date of publication:
03.11.2004 Bulletin 2004/45

{21) Application number: 04010226.1

{22) Date of filing: 29.04.2004

EUROPEAN PATENT APPLICATION

®
LR T

EP 1473 616 A2

e e
EFLEpEST
EVERES

(11)

(51) intc1.7: GO6F 1/00

{84) Designated Contracting States:
ATBE BG CHCY CZDE DK EE ESFIFR GB GR
HUIEIT LI LUMC NL PLPTRO SESISKTR
Designated Extension States:
AL HR LT LV MK

(30) Priority: 02.05.2003 US 467343 P
30.06.2003 US 610666

(71) Applicant: MICROSOFT CORPORATION
Redmond, WA 98052 (US)

(72) Inventors:
+ Peinado, Marcus
Beilevue Washington 98008 {(US)
+ England, Paui
Bellevue Washington 98008 (US)

(74} Representative: Griinecker, Kinkeldey,
Stockmair & Schwanhausser Anwaltssozietit
Maximilianstrasse 58
80538 Miinchen {DE)

(54)

{57) Mechanisms are disclosed that may allow cer-
tain memory access contrel algorithms to be implement-
ed efficiently, When memory access control is based on
controlling changes to an address translation map {or
set of maps), it may be necessary to determine whether

implementation of memory access control using optimizations

a particular map change would allow memory to be ac-
cessed in an impermissible way. Certain data about the
map may be cached in order to allow the determination
to be made more efficiently than performing an evalua-
tion of the entire map.

| teg.CRY) | : ' RAM 132
Levell) Level2 H
201~ : :
Page 202 ' Page Table L 204{1) i
et}] o ; = 208¢1)
MMU 220 | | ; I E
FageTame]/ 204(2) | 206(2)
PD PT Page E . 3
Ofiset | Offset | Offset H . H
21 | @2 | 2w : : :
N J ; :
e : L— 206(3)
Viryal Address 210 : Fage Tabie 204(3)
: : | 206{4)
FIG. 2 : :

Printed by Jouve, 75001 PARIS (FR)

10

15

20

25

30

35

40

45

50

55

EP 1 473 616 A2
Description
CROSS-REFERENCE TO RELATED CASES

[0001] This application claims the benefit of U.S. Provisional Application No. 80/467,343, entitled "Techniques for
Efficient Implementation of Memory Access Control” filed on May 2, 2003,

FIELD OF THE INVENTION

[0002] The presentinvention refates generally to the field of computer security. More particularly, the invention relates
to efficient techniques for implementing an isolated or "curtained” memory using address translation control.

BACKGROUND OF THE INVENTION

f0003] In some circumstances, it is desirable to have an isolated or "curtained" portion of memory, to which access
is restricted. For example, a computer may run two operating systems side-by-side, in which one operating system is
secure and the other is not. tn this case, it is desirable for the secure operating system to have a curtained memory in
which it can store secret information that cannot be accessed by the non-secure operating system.

[0004] One way to implement curtained memory is through address transiation control. Many modern computers
use avirtual memory system, in which software running on the cornputer addresses the memory using virtual addresses,
and a memory management unit uses a set of address translation maps 1o translate the virtual addresses into physical
addresses. Typically, each process has its own address translation map, so that the mapping between virtual and
physical addresses changes from process to process. It is possible to configure a given process's address transiation
map such that a the process’s map does not expose to the process any virtual address for a given block (e.g., page)
of physical memory. Thus, by ensuring that only secure processes have virtual addresses for a given block of physical
memory, it is possible to implement curtained memory by controlling the contents of the address transiation maps.
[0005} One problem that arises when such a mechanism is used o implement curtained memory is that, since the
address transiation maps are stored in memory, every operation that writes the memory could potentially affect the
maps, and thus might cause a virtual address for curtained memeory to be exposed to a process that should not have
access to curiained memory. One way to prevent such a virtual address from being exposed is to check every element
of every map each time a write eperation on the memory is performed in order 1o ensure that no page of curtained
memory has a virtual address in the map of any process that should not have access to the curtained memory, However,
given the frequency of write operations, this technique is inefficient.

[0006] In view of the foregoing, there is a need for a mechanism that overcomes the drawbacks of the prior art.

SUMMARY OF THE INVENTION

{00071 The present invention provides mechanisms for efficiently controlling changes to address translation maps.
Curtained memory can be implemented by preventing address translation maps from entering a state in which a virtual
address for a block of curtained memory would be exposed to a process {or other entity) that is not altowed to access
the curtained memory. A "policy” defines what mernory access operations are permitted, and a memeory access control
sysiem can operate by prohibiting the address translation map from entering any state that violates the policy.
[0008] States in which such vifua! addresses would be exposed can often be defined based on the intersection (or
non-intersection} of two or more sets that satisfy a certain property, or the number of pages that satisfy a certain
property. The identity of pages that are members of a defined set ¢can be stored or cached, so that the membership of
the set does not have fo be computed each lime a write operation is performed that could change the state of the
address transiation maps. The identity of pages in a set can be stored, for example, as a bit vector, and set operations
such as union, intersection, etc. can be performed efficiently on such bit vectors. In some cases, the exact set that
satisfies a particular property may be difficult to compute, but it may be mathematically provable that compliance with
the policy can be assured by using some well-defined subset or superset as a proxy for the actual set. If the subset or
superset is relatively easier to compute than the actual set, then the subset or superset may be used in place of the
actual set.

[0009] Additionally, the permissibility of some write operations can be dafined in terms of a count of some statistic -
e.g., the number of pages that satisfy a certain property, the number of references to a given page, efc. Such a statistic
can be effectively stored or cached as a reference counter, which can be updated through increment and decrement
operations. The bit vectors or counters can be updated each time a map changes state, and then used efficientiy to
evaluate 8 memory access operation under the palicy.

[0010] Other features of the invention are described below.

"

10

15

20

25

30

35

40

45

50

55

| ® ®
EP 1473 616 A2

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing summary, as well as the following detailed description of preferred embodiments, is better
understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there
is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific
methods and instrumentalities disclosed. In the drawings:

[0012] FIG. 1is a block diagram of a compuiing environment in which aspects of the invention may be implemented;
[0013] FIG. 2 is a block diagram of a memory system that implements virtual addressing through an address trans-
lation map;

[0014] FIG. 3 is a block diagram of an example page table having attributes;

[0015] FIG. 4 is a block diagram of two example non-intersecting sets representing a condition that may be used to
implement memory access control;

[0018] FIG. 5 is a block diagram of a directed labeled graph, which is representative of an address translation map;
and

[0017] FIG. 6 is a flow diagram of an exemplary memory access control process.

DETAILED DESCRIPTION OF THE INVENTION

Exemplary Computing Arrangement

{0018] FIG. 1 shows an exemplary computing environment in which aspects of the invention may be implemented.
The computing system environment 100 is only one example of a suitable computing environment and is not intended
to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environ-
ment 100 be interpreted as having any dependency or requirement relating to any one or combination of components
ilustrated in the exemplary operating environment 100,

[0018] The invention is operational with numerous other general purpose or special purpose computing system en-
vironments or configurations. Examples of well known computing systems, environments, and/or configurations that
may be suitable for use with the invention include, but are not limited to, persenai computers, server computers, hand-
held or laptop devices, muitiprocessor systems, microprocessor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe computers, embedded systems, distributed computing
environments that include any of the above systemns or devices, and the like.

[0020] The invention may be described in the general context of computer-executable instructions, such as program
modules, being executed by a computer. Generaily, program modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or implement particular abstract data types. The invention may also
be practiced in distributed computing environments where tasks are performed by remote processing devices that are
finked through a communications nefwork or other daia transmission medium. In a distributed computing environment,
program modules and other data may be located in both locat and remote computer storage media including memory
storage devices.

[0021] With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose
computing device in the form of a computer 110. Components of computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121 that couples various system components inciuding
the system merory to the processing unit 120. The system bus 121 may be any of several types of bus struciures
including a memory bus or mermory controller, a peripheral bus, and a local bus using any of a variety of bus architec-
tures. By way of example, and not fimitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local
bus, and Peripheral Compeonent Interconnect {PCI) bus (also known as Mezzanine bus).

[0022] Computer 110 typically includes a variety of computer readable media. Cormputer readable media can be any
available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable
and non-removable media. By way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for storage of information such as computer
readable instructions, data structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memary technolegy, CDROM, digital versatile disks (DVD)
or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can accessed by computer
110. Gommunication media typically embodies computer readable instructions, data structures, program madules or
other data in a modulated data signai such as a carrier wave or other transport mechanisrm and includes any information
delivery media. The term “moduiated data signal* means a signal that has one or more of its characteristics set or

10

15

20

25

30

35

40

45

50

55

® [|
EP 1473 616 A2

changed in such a manner as to encode information in the signal. By way of example, and not limitation, communicaticn
media includes wired media such as a wired network or direct-wired connection, and wireless media such as acouslic,
RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of
computer readable media.

[0023] The system memory 130 includes computer storage media in the form of volatile and/or nonvolatite memory
such as read only memory {ROM) 131 and random access memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as
durfng start-up, is typically stored in ROM 131, RAM 132 typically contains data and/or program modules that are
immaediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not
limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136, and program
data 137.

[0024] The computer 110 may also include other removable/non-removable, volatile/nonvolatile computar storage
media. By way of example only, FIG. 1 ilustrates a hard disk drive 140 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156, such as
a CC ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating envirenment include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk
drive 141 is typically connected to the system bus 121 through an non-removable memory interface such as interface
149, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a remov-
able memory interface, such as interface 150.

[0025] The drives and their associated computer storage media discussed above and illustrated in FIG. 1, provide
storage of computer readable instructions, data structures, program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is ilfustrated as storing operating system 144, application programs 145, other
program modules 146, and program data 147, Note that these components can either be the same as or different from
operaling systern 134, application programs 135, other program modules 136, and program data 137. Operating system
144, application programs 145, other program modules 146, and program data 147 are given different numbers here
10 Hlustrate that, at a minimum, they are different copies. A user may enter commands and infermation into the computer
20 through input devices such as a keyboard 162 and pointing device 161, commonly referred 1o as a mouse, trackball
or fouch pad. Other input devices {not shown} may include a micrephone, joystick, game pad, satellite dish. scanner,
or the like. These and other input devices are often connacted to the processing unit 120 through a user input interface
160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel
port, game port or a universal serial bus (USB). A monitor 191 or other type of display device is also connected 1o the
system bus 121 via an interface, such as a video interface 190. In addition to the monitor, computers may also include
other peripheral output devices such as speakers 197 and printer 198, which may be connected through an output
peripheral interface 190,

[0026] The computer 110 may operate in a networked environment using logical connections to one or more remote
computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node, and typically includes many or ali of the elements described
above relative to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1, The
logical connections depicted in FiG. 1 include a local area network {LAN) 171 and a wide area network (WAN) 173,
but may also include other networks. Such retworking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the intemet.

[0027] When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes
a modem 172 or other means for establishing communications over the WAN 173, such as the internet. The modem
172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110,
or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG.
1 illustrates remaote application programs 185 as residing on memory device 181. it will be appreciated that the network
connections shown are exemplary and other means of establishing a communications link between the computers
tmay be used.

Memory Access Using Address Transiation

[0028] A memory in a computer system (e.g., RAM 132, shown in FIG. 1) has a physical address for each byte.
Thus, the bytes that make up the memory can be viewed as being numbered, where each byte can be unambiguously
identified by its number. In this case, the number constilutes a physical address. For exampie, in a 256-byte memory,

10

i5

20

25

30

3s

40

45

50

55

EP 1473616 A2

the bytes may have physical addresses ranging from zero through 228-1. However, in moedem computer systems,
memory is generally not accessed by its physical address, but rather by a virtual address. An address transiation map
is used to convert physical addresses to virtual addresses.

[0029] FIG. 2 shows an example of an address translation map, and its use in an actual computer system. The
exemplary address translation map shown in FIG. 2 is a "paging” scheme, in which memory is allotted in blocks called
"nages.” FIG. 2 is representative of the paging scheme used on the INTEL x86 processor.

[0030] InFIG. 2, page directory 202 contains an array of pointers to (i.e., physical base addresses of) page tables,
such as page tables 204{1), 204(2), and 204(3)}. Each page table, in turn, contains an array of pointers to the base
addresses of pages (e.g., pages 208(1), 206(2), 206(3), and 206(4)}, and may also contain information such as the
read-only/read-write attribute, the present/not-present bit, etc., as described above. Pages are fixed-length portions
of RAM 132, Additionally, the page directory and page tables are also typically stored in RAM 132. The paging scheme
depicted in FIG. 2 is a two-level paging scheme, since it is necessary 1o go through both a page directory (level 1) and
a page table {level 2} in order to locate a particular page. It will be appreciated by those of skill in the art that it is
possible 1o design a paging scheme with an arbitrary nurnber of levels, and the invention applies to all such paging
schemes. it is also known in the art that the INTEL x86 processor typically uses the two-level paging scheme shown
in FIG. 2, but can also be configured tc use a one-level or three-level paging scheme.

[0031] Inthe paging scheme of FIG. 2, any byte on a page can be identified by a virtual address 210, comprising a
page directory offset 211, a page table offset 212, and a page offset 213. Thus, in order o locate a physical address,
a memory management unit (MMLU} 220 uses page directory offset 211 to locate a particular entry in page directory
202. This entry is a physical base address of a page table, so MMU 220 dereferences this address in order to locate
one of the page tables {e.g., page table 204(1)). MMU 220 then uses page table offset 212 as an index into the identified
page table, and retrieves the entry found at that offset. The entry is the physical base address of a page (e.g., page
208{1)), s MMU adds page offset 213 to the base address of the identified page in order to locate a particular byte
of physical memory. MMU 202 may also be configured to take into account information such as whether a page has
been marked read-only or read-write, whether the page is marked present or not-present, etc., as described below in
connection with FIG. 3.

[00632] The pagingscheme of FIG. 2 also includes a storage location 201 that contains a pointer to the page directory.
MM 220 uses this pointer to locate the page directory 202 when it begins to transiale virtual address 210. in the
example of an INTEL x86 processor, storage location 201 corresponds to the register named CR3 - that is, on an
INTEL xB6 processor, the register CR3 stores the physical address of the page directory for the current context. Thus,
it is possible 1o build alternative sets of translation tables (i.e., two or more sets of page directories and page lables),
and to change which set of translation tables applies simply by writing the base address of a new page directory into
storage location 201. One common use of this technique is for each process running on a computer to have its own
page directory and page tables, where a "context switch” (i.e., an operation that, among other things, causes the virtual
memory system to point to the address space of a new process) is performed by writing the base address of the new
process's page directory into siorage location 201, In the case where gach process has it's own page directory, the
identity of the process that is currently running determines what value is loaded into storage location 201.

[0033] in addition to containing peinters to pages, page tables and page directories may also contain "attributes” for
the pages. FiG. 3 shows the detail of an exemplary page table 204(1), which contains both pointers and attributes.
Each entry in page table 204{1) includes an address 302 of a particular page, a bit 304 indicating whether the page
pointed to by the entry is "read-only,” and a bit 306 indicaling whether the page pointed to by the entry is "present.”
Thus, if the first entry 301 in page table 204(1) points to page 206(1) {shown in FIG. 2), then bit 304 indicates, depending
on whether it is sef to zero or one, whether MMU 220 (shown in FIG. 2) should permil page 206(1) to be both read and
written, or only read. Similarly, bit 306 indicates whether page 206(1) is present in memory or not. (Bit 306 may be set
to zero, indicating not present, if, for example, the contents of page 206(1) has been moved to disk to make room for
other pages in memeory.) Other attributes may also be stored in page table 204(1).

Using Address Translation Maps for Memory Access Control

[0034] In a system where memory is accessed by virtual address, it is possible to impfement a system thai limits
access 1o memory based on the following observation: if the address translation map is configured such that no virtual
address translates to a given physical address, then the memory represented by that physical address is inaccessible.
For example, in the paging scheme described above in connection with FIG. 2, a given page of memory (e.g., page
206{1)) can be made inaccessible by ensuring there is no path leading through the map to that page. In the absence
of such a path, there would be no virtual address 210 that would transiate to that page. In a system where ali memory
access is made by virtual address, exerling controt over the address transiation map to deny virtual addressses to a
given page (or other portion) of memory effectively makes that portion of memory inaccessible. Even in systems that
permit some physical addressing of memory, memory can be made inaccessibie by supplementing control over the

10

i5

20

25

30

35

40

45

50

55

® ® |
EP 1473616 A2

address translation map with control over those access requests that are based on physical address.

[0035] The technique of controlling the contents of an address translation map in order to control access to memory
can be stated formally as follows: Assume that S is a set of sources who can potentially access a memory. Assume
further that P is a policy that defines which portions of memeory can be accessed by which sources. Thus, ifs &€ Sisa
source, then MP(s) denotes the portion of memory that is accessible to source s via the address translation map {e.
g., the set of memory locations that have virtual addresses), and NA({P,s) denotes the portions of memory that source
s is not allowed to access under policy P. {in the case where each process has its own address translation map, each
process can be viewed as a different "source,” although it will be understood that the concept of a source generalizes
beyond the example of a process.) Thus, enforcement of the policy can be assured as long as the condition:

NA(P.$) n MP(s) = ¢,

is satisfied. This condition is depicted in FIG. 4, which shows memory 132 as a set of memory locations, MP(s) 402
as the set of memory locations that are visible to source s through an address translation mapping, and NA(P.s) 404
as the set of memory locations that source s is not allowed to access under policy P. Since none of the locations (MP
(8)) that source s can address through an address translation mapping are inciuded in the set of memory locations that
source s is not allowed to access under policy P, the condition depicted in FIG. 4 effectively enforces policy P with
respect to source s. '

[0038] Thus, the problem of controlling the access of source s to portions of memory 132 can, in some example
situations, be reduced to ensuring that the condition depicted in FIG. 4 is always true. One solution to this problem is
to evaluate any operation (e.g., a memory write, a load of the CR3 register, efc.) that has the potential fo change the
address translation mapping, the policy, or the current source. The present invention provides techniques that allow
such an evatuation to be made efficiently.

[0037] It will be understood that the condition shown in FIG. 4 is merely exemplary of a condition that can be used
to implement memory access control. Other variations on the theme of FIG. 4 are possible, such as those involving
the set of memory locations included in the address translation map, the set of memory locations that source s is
aliowed 1o access but not to write {or read), etc. It will be noled, however, that the conditions for memory access control
typically include verifying the non-intersection of two or more sets of memory locations,

[0038] Additionally, while MP(s) can be viewed as being the "mapped pages" visible to source s, it should be noted
that the concept of memory access control is not limited to systems that employ a paging scheme. In a typical imple-
mentation, the decision as to which memory locations a source is allowed to write under a policy, or which memary
locations are mapped o a source, is made on a per page basis. However, the invention is not limited to the case where
memory is allocated on a per-page basis, or where access {o memory is allowed or restricted on a per-page basis,

Generalized Model for Address Translation

[0039] The address translation map shown in FIG. 2 and described above can be generalized using the model of a
directed iabeled graph. The following describes a generalized model for centain types of address translation maps.
[0040] In this model, B is a base set, and L is an alphabetl. Given Band L, G = (V.E} is a direcled graph with edge
labels, suchthat Vo Band Eg{{vwl):vE V,w & V, | & L }. Any member of E can be interpreted as a direcied edge
from vertex v to veriex w with label 1. The vertices may also be labeled.

[0041] FIG. 5 shows a graph according to the model described above. Graph 500 includes verlices 502, 504, 506,
508, 510, and 512. These vertices are connected by edges 522, 524, 526, 528, 530, 532, and 534 in the manner
shown. Each edge is labeled with a symbol from an alphabet. In this example, the aiphabet comprises the symbols A,
B, and C. Thus, edges 522 and 524 are labeled with the symbol A, edges 526, 528, and 532 are labeled with the
symhol B, and edges 530 and 534 are labeled with the symbol C. There may also be elements of the base set (e.g.,
elements 550 and 552) that are not vertices in graph 500,

[0042] U should be appreciated that the components of graph 500 correspond to certain components of the address
translation map shown in FIG. 2. For example, in FIG. 2 page directory 202, page tables 204(1)-204(3}, and pages
206{1)-206{4) can be viewed as vertices in a graph. The peinters that connect these vertices (e.g., the pointers from
entries in page table 204(1) to pages 206(1) and 206(2)) can be viewed as edges of the graph. And, with regard to
FIG. 3, the atiributes 304 and 306 of an entry (e.q., the read-only and present bits) can be viewed as a label for an
edge. Thus, the "alphabet" is the set of possible permutations of the attributes. (In the example of FIG. 3 where there
are two binary attributes, there are four possible combination, so there are four symbols in the alphabet). In the case
where attributes are not used, the alphabet can consist of a "nil* symbol. Moreover, unallocated pages of memary
correspond to members of the base set that have no incoming edges.

[0043] Within the model of a graph as described above, it is possible to define a *state.” Given B and L. a "state" is

HY

15

20

25

30

35

40

45

50

55

EP 1473616 A2

a pair {R,G), where G is a directed tabeled graph as defined above, and R c V is a set of vertices of G. R represents
a set of "root vertices " Root vertices represent that set of vertices in the base set that can legitimately serve as roots
for the graph. In the example of FIG. 2, the set of legal page directories (i.e., those values that are allowed to be loaded
into a storage location 201, such as the CR3 register on an INTEL xBB processor) is the set of "root vertices." Given
B and L, Sis the set of all states.

[0044] According to the model defined above, an address transfation mechanism (ATM) can be modeled as:

- abase set B of verlices

- an alphabet L (possibly empty)

- an initial state sy, € S (S being a slate)

- asel of state transition rules {possibly empty)
- an address translation function

- global flags

[0045] The state transition rules change the ATM from one state to another. itis thus possible to define a set of state
transition rules r; S -» 8 (where i is some index), which change the current state of the ATM. ATMs may have any of
the foliowing types of transition rules.

- Changing {adding, removing, re-labeling) edges of G
- Adding or removing vertices of G
- Changing the root set K.

For example, in the example of FIGS. 2 and 3, removing a pointer to a page, or changing the attributes of a page,
corresponds 10 the changing of an edge of the graph. Adding new page directories, new page tables, or new data
pages corresponds to the adding or removing of vertices. Defining a new page directory whose base address can be
lcaded inte storage focation 201 (e.g., into register CR3) corresponds to a change of the root set. in essence, the
current state defines what mermnory locations are potentiaily accessible by means of address translation.

[0046] As described above, access to memory may be controlled by imposing limiting conditions on an address
translation map, such the address transiation map does noi expose lo a source any viriuai address for a poriion of
memory that the source is not permitted to access under the poiicy. Moreover, as previousty noted, the continued
existence of those conditions can be evaluated at the time that an operation is performed that could potentially affect
the truth of the condition. One way o view this technigue for memory access conirol is that the legal states of an ATM
are restricted to some subset T of S, or that some property (or predicate) P about the current state must always be true.
[0047] Given some property P {which is distinct from policy P, described above), a request to perform an action that
could change the state (execution of r, for some i) from s to r,(s} can be evaluated to determine whether P{r{s))} is true
- i.e. if the new (proposed) state that will result from executing r; will have properly P. If the truth of P implies that limits
on the access of memory will not be violated, then the truth of P{r,(s)) means that the state change brought about by
executing r; should be allowed to proceed. Otherwise, the operation should not be aflowed to proceed.

[0048] !t should be observed that every memory write could potentially change the state of an ATM. Thus, two ob-
servations should be made:

- The algorithm has to compute P(s) - possibly frequently.
- Typically, the new state s'is derived from an old state s. If the old state had property F, then it may be possibie to

reduce the complexity of deciding P{s") by assuming P(s} and analyzing only whether the {limited number of)
changes 1o s that produced s' could lead to a violation of P.

[0049] The invention provides techniques that allow the truth of P to be computed efficiently. As described below, in
many cases this efficiency can be achieved by storing (or caching) certain representative information about the current
state of the ATM, which can later be used to decide what tests needed to be performed to confirm the truth of P under
a state transition, and which tests can be avoided.

Exempiary Property Ciasses

[0050] One type of property P is a property that can be expressed in terms of sets of vertices. For example, the
condition shown in FIG. 4 and discussed above is essentially a praperty in which the sets MP(s) and NA{P.s} do not
intersect each other. Many properties that can be expressed in terms of sets of vertices, and the relationship between
these sets, can be implemented efficiently by storing (or caching) the idenlity of vertices in a set.

[0051] Examples of sets that may be useful in evaluating whether an ATM is in a state that satisfies a memory access

10

15

20

25

30

as

40

45

50

55

EP 1473 616 A2

control condition are:

[0052] 1. The set of vertices at distance k from the root vertices. More formally, if S is a set of vertices and w is &
vertex, let d,(S,w) denote the statement that there exists a (directed) path of length k from some vertex in S to vertex
w. Sy={vEV:diSv)} Then, if S is the root vertex, 5, refers to the set of pages at distance dfrom the root. For
example, if vertex 502 is the root of graph 500, then the set of vertices that have distance 1 from the root vertex consists
of vertices 502 and 510, since either of these vertices can be reached from the root by fraversing cne edge. With
reference to the page map shown in FIG. 2, page directory 202 is distance 1 from the root, and page tables 204(1)
through 204(3) are distance 2 from the root. Thus, in the example of FIG. 2, the addresses of the page directory and
the page tables could be cached by storing the identity of those pages that are distance 1 and 2, respectively, from
the root.

[0053] 2. Sets that are determined by edge labels. For example, with reference to FIG. 5, the set of vertices that
have an in-edge labeled "A" consists of vertices 504 and 510, and the set of vertices with an in-edge labeled "B'consists
of vertices 504, 506, and 512. In the page map of FIG. 2, wherein atiributes correspond 1o edge labels, a set could be
defined as those pages having a given atfribute. For example, it may be useful to define (and cache) the set of pages
that are marked read-only, in which case the set of pages whose read only bit is "on” (reference numeral 304, shown
in FIG. 3) can be defined. {It is possible for a page to be referenced more than once in a page map, in which case
different references to a page could have their read-only attribules set differently; in this case, the definition of the set
could resolve the conflict - e .q., the page is in the set if at least one reference to the page has the read-only attribute,
or if every reference to the page has the read-only attribute, etc.)

[0054] A distinction can be drawn between local and non-local properties. Local properties can be computed from
the edges that are incident on a given vertex. That is, if it is possible to decide if a vertex v has property P only from
the edges that are incident on v, we say P is local. Otherwise, P is non-local. An example of a local property is "The
vertex has an in-edge which is labeled read-write.” An example of a non-local property is "The page {on an x86 machine)
has read-write mappings.”

[0055] 3. The set of vertices that are the target of k edges with some property. More formally, if P, Q are predicates
and w is a vertex let

In-degp o(w) =1 {vie V: P{v}and {vw.}} € E and Q(}) }|
A set may be defined as the set of verlices with a given in-degree:
{veViindegp ov) =k}

Analogously, sets can also be defined based on inequality - e.g., the set of vertices that are the targets of more than
{or fewer than) k edges with some property.

[0056] For example, with reference 1o FIG. 8, the set of vertices that have at least one "C"-labeled in-edge consists
of vertices 508 and 512. With reference to the page map of FIG, 2, this type of set definition can be used fo cache
categories of pages - e.g., the set of pages with two or more mappings, the set of pages with exaclly one read-only
mapping, efc.

[0057] 4. A similar set may be defined based on out-degree i.e., the set of vertices that have K out edges {or more
than k out edges, or fewer than K out edges) with some property. For example, with reference to FIG. 5, the set of
vertices that have exactly two "A"-labeled out edges consists of vertex 502. FIG. 2 contains analogous examples - e,
g., the set of pages that have at least 3 out-edges (iL.e., references to other pages) includes page directory 202.
[0058] These sets may be combined through ordinary set operations {(e.g. union, intersection, complement, set dif-
ference). For example, if 8, is the set of pages at distance 2 fromthe root, and the set of pages with read-write mappings
in certain configurations of the x86 CPU can be expressed as follows:

{{x : x has large page in-edge} intersect {x : x has r/w in-edge} intersect 5,) union
{ {x: x has small page in-edge} intersect {x : x has r'w mapping} intersect S}

A naive algorithm might recompute these sefs upon each state change by going through every vertex v and testing if
it belongs to the sel. This may be expensive. If an algorithm computes state properties that can be expressed in terms
of sets of the type just described, it can take advantage of caching schemes, as described below:

10

15

20

25

30

35

40

45

50

55

EP 1473616 A2

Caching Schemes

[005%] A variety of schemes may be used toc cache data for use in the efficient evaluation of state changes. Example
caching schemes are described below.

Scheme 1: Simple set caching

[0080] This scheme explicitly cornputes the set and stores (caches) . Upon each subsequent state change, the
aigorithm updates the cache. In one example, a cache may be maintained that exposes the following access operations:

- Init) - initializes the cache 1o some well-defined value, such as the empty set.
- Add(8)- adds S (a single element or a set of elements} to the cache

- Remove(S) - adds S {a single element or a set of elements) to the cache

- ShowCache(8) - returns all elements that are currently cached.

The cache may expose additional access operations {e.g. to improve efficiency).

[0061] One way to represent such a cache is through a bit vector. For exampie, if a sysiem has 216 physical pages
of memory, a vector that is 216 bits long {i.e., 8Kbytes) can represent a Boolean value for each of the pages. The nth
hit is either on or off, depending on whether the nth page is in a defined set. Thus, given a defined set of pages,
membership in the set can be cached at a cost of one bit per page. it will be appreciated that set operations such as
unicn and intersection are very simple to perform with this type of representation, by using the bitwise "or” and "and”
operators.

Scheme 2: Supersetling, Subsetting

fo062] Depending on the details of the underlying algorithm that enforces memeory access contral, the cache may
not be required to contain the exact target set. For example, it may be sufficient to cache some superset or some
subset of the target set, This may reduce the cost of maintaining the cache. In the example of FIG. 3, the memory
access control condition calis for MP(s) not to intersect NA(P,s). However, if it is inconvenient or impractical to compute
the exact members of NA{Ps}, it may be possible to compute and cache some superset of NA(P.s), and to then ensure
that MP{s) does not intersect the computed supersei of NA(P,s}. This fechnique may cause the rejection of some state
changes that could otherwise be allowed, but will not allow any state changes that should be disallowed - thereby
preserving the conditions for memory access control.

Scheme 3: Reversed Edge Representation

[0063] Typically, the edges are stored in or with the source vertex. For example, in FiG. 2, the page directery and
page tables store pointers io other pages, as well as their attributes. Given a verlex, it is typically easy to find the
targets of all outgoing edges. At the same time, it is typically expensive to find the sources of all in-edges. As the vertex
carries no information about its in-edges, an exhaustive search of all edges may be required to find alt in-edges.
{0064] If the algorithm requires fast access to in-edges of vertices - or to information that can be derived from them
- it may be advantageous to explicitly store information about the in-edges of each vertex in a data structure that is
somehow associated with the vertex. The termn "somehow asscciated” means that, given the vertex, it is easy to find
the data structure {e.g. array lookup).

[0065] In the most extreme case, the data structure stores all in-edges. in this case, the data structure could be a
cache such as the one defined above, whose elemeants are edges. (Aiso, the caches may store sets or muttisets.) The
storage taken up by this structure is propottional io the number of in-edges of the vertex and, if structures of this type
are maintained for all vertices, the total storage is proportional to the number of edges in the graph.

[0066] it is often sufficient o store derived information, which may require less storage. For example, the algorithm
might only stors the number of in-edges of each veriex. In this case, the cache may be implemented as a reference
counter. Reference counters typically expose the following access operations

Init{) -- initializes the cache to some well-defined value, such as 0,
Increment{)

Lecrement(}

GetValue()

[0067] One common use of reference counters (or simifar data structures) is to construct sets. For example, an

10

15

20

25

30

as

40

45

50

55

EP 1473 616 A2

exemplary memory access control algorithm may have to compute the set of vertices without in-edges, L.e. the set of
vertices, whose reference count is 0. The collection of reference counters can control a cache {Scheme 1) of this set
as follows: Whenever the value of a reference counter is changed, the algorithm tests f it has become zere. i so, it
adds the vertex to the cache. Similarly, the algorthm watches for the event that a reference counter that was zero
obtains a different value. in this event, the algorithm removes the vertex from the cache.

[0068] The foliowing are some examples of using caching:

- Caching supersets Sy of S ford=123

- For d=2,3: The cache can be (a) stored explicilly, or (b} driven by a reference counter

- Computing local label properties: "has read-write in-edges” and "has large/small page in-edges”

~ Computing non-local properties: "has read-write mappings”

- Using reference counters for the number of read-write in-edges of vertices in S,. This information can be used to
speed up computation of the non-jocal property "has read-write mappings”.

Exemplary Process for Memory Access Control Using Stared Information

[0069] FIG. 6 shows an exemplary process for performing memory access control, using techniques described here-
in.

[0070] initially, a requesito access memeory is received (602). When the access request is received, a memaory access
control systern evaluates the request to determine whether execution of the request would comply with a policy gov-
erning memory access {604). Examples of memory access policies are discussed above. As one example, the policy
may define certain pages as off-limits to a set of sources, and the policy may prohibit any access request that would
result in creating, for one of the off-limits pages, a mapping that would be visible to one of the sources that is not allowed
to access that page. Evaluation of the request may be aided by stored or cached information (8086). This stored or
cached Information may contain information about the page map(s)- e.g., the set of pages that are known to contain
iegitimate page directories.

[0071] it is determined that carrying out the request will maintain compliance with the palicy {608}, then the request
is allowed to proceed (612). Otherwise, the request is bincked, or modified into a form that would not violate the policy
(610). One example of modifying a request to a form that does not violate the policy is as follows: If a request seeks
0 write an entry to a page table that would result in mapping to an off-limits page, the request can be modified so that
the entry is written but the page’s "present” bit is turned off. Thus, any future attempt to access the newly-mapped
page will generate an exception, so the exception handier can ultimately thwart access o the off-limits page. If the
request is modified in this manner {(or in some other manner), then the modified request is then allowed o proceed
(614). After either the modified or unmodified request has been carried out, if the carrying out of the request causes a
change to the cached information, then the cache may be updaled (616).

[0072] Itis noted that the foregoing examples have been provided merely for the purpose of explanation and are in
no way to be construed as limiting of the present invention. While the invention has been described with reference to
varicus embodiments, it is understood that the words which have been used herein are words of description and
illustration, rather than words of limitations, Further, although the invention has been described herein with reference
to particular means, materials and embodiments, the invention is not intended 1o be limited to the particulars disclosed
herein; rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the
scope of the appended claims, Those skilled in the art, having the benefit of the teachings of this specification, may
effect numerous modifications thereto and changes may be made without departing from the scope and spirit of the
invention in ifs aspects.

Claims

1. Acomputer-readable medium encoded with computer-executable instructions to perform a method of processing
a memory access request, the method comprising:

receiving a request to access a portion of a memaory, said request identifying the portion of memory o be
accessed through an identifier that is translatable through an address translation map;

determining, based on cached information about said address translation map, whether execution of said
request will violate a policy that limits access to said memory,

if execution of said request will not viclate said policy, then allowing access to said memory in accordance
with said request; and

if execution of said request will violate said policy, then either:

10

10

is

20

25

30

35

40

45

50

55

10,

11.

12,

13.

14.

15.

EP 1 473 616 A2

blocking said request; or
modifying said request such that said request does not viclate the policy, and carrying out the modified
request.

The computer-readable medium of claim 1, wherein said request comprises a request to write said portion of said
memaory.

The computer-readable medium of claim 1, wherein said address translalion map is stored in said memory, and
wherein said request comprises a request to write a portion of memory in which said address translation map is
stored.

The computer-readable medium of claim 1, wherein said cached information includes data identifying a set of
pages in said address translation map that are iocated at a predetermined distance from a root of said address
translation map.

The computer-readable medium of claim 1, wherein said cached information includes data identifying a set of
pages of said address translation map that have a predetermined property.

The computer-readable medium of claim 1, wherein said cached information includes daia indicative of a number
of references 1o a specified page.

The computer-readable medium of claim 1, wherein said cached information includes data indicative of a number
of references to a specified page, wherein said references have a specified attribute.

The computer-readable medium of claim 1, wherein said cached information includes data indicative of a number
of pages to which a specified page in said address translation map refers.

The computer-readable medium of claim 1, wherein said cached information inciudes data indicative of a number
of pages o which a specified page in said address translation map refers, and to which the specified page assigns
a specified attribute.

The computer-readable medium of claim 1, wherein compliance with said policy is determined based on a page's
‘membership in a set, wherein said cached informaticn includes a proper superset of said set, and wherein said
act of determining whether execution of said request will viclate said policy comprises evaluating whether said
page is a member of said superset.

The computer-readable medium of clair 1, wherein compliance with said policy is determined based on a page's
membership in a set, wherein said cached information includes a proper subset of said set, and wherein said act
of determining whether execution of said request wilf violate said policy comprises evaluating whether said page
is a member of said subset.

A method of managing a computer memary to which access is provided through an address translation map, the
method comprising:

storing information about at least one aspect of the state of the address translation map;

receiving a request to access the computer memory;

determining, based al least in part on the stored information, that carrying out of the request will not violate a
policy that limils access to the computer memory;

allowing the request {o be carried out; and

updating the stored information to reflect the state of the address transiation map resulting from carrying out
the request.

The methed of claim 12, wherein said request comprises a request to write a portien of the computer memory.

The method of ctaim 12, wherein the address transiation map is stored in said computer memory, and wherein
said request comprises a request to write a portion of memory in which said address translation map is stored.

The method of claim 12, wherein the stored information includes data identifying a set of pages in the address

11

10

15

20

25

30

35

40

45

50

55

16.

17.

18

19.

20.

21,

22.

23.

24

25,

26.

27.

28,

29.

30.

EP 1473 616 A2
transtation map that are located at a predetermined distance from a root of the address translation map.

The method of claim 12, wherein the stored information includes data identifying a set of pages of the address
transiation map that have a predetermined property.

The method of claim 12, wherein the stored information includes data indicative of a number of references to a
specified page.

The method of claim 12, wherein the stored information includes data indicative of a number of references to a
specified page, wherein said references have a specified altribute.

The method of claim 12, wherein the stored information includes data indicative of a number of pages 1o which a
specified page in the address translation map refers.

The method of claim 12, wherein the stored information includes data indicative of a number of pages to which a
specified page in the address translation map refers, and to which the specified page assigns a specified attribute.

The method of claim 12, wherein compliance with said policy is determined based on a page's membership in a
set, wherein the stored information includes a proper superset of said sel, and wherein said act of determining
that carrying out the request will not violate said policy comprises evaluating whether said page is a member of
said superset.

The method of claim 12, wherein compliance with said policy is determined based on a page's membership in a
set, wherein the stored information includes a proper subset of said set, and wherein said act of determining that
carrying out the request wilt not violate said policy comprises evaluating whether said page is a member of said
subset.

A systern for controlling access to a memory that is addressed by way of an address translation map, the system
comprising:

one or more storage locations that store a policy that limits access 1o the memory;

a cache that stores information about the address translation map; and

logic that receives a request to access the memory, and that determines, based at least in part on the infor-
mation stored in the cache, whether the request is allowable under said policy, said logic allowing the request
to proceed if said request is determined o be allowable under the policy, said logic either (1) blocking said
request, or (2) modifying said request into a form that is allowable under the policy and allowing the medified
request to proceed, if said request is determined not o be allowable under the policy.

The system of claim 23, wherein said request comprises a request to write a portion of said memory.

The system of claim 23, wherein said address translation map is stored in said memory, and wherein said request
comprises a request to write a portion of memory in which said address translation map is stored.

The system of claim 23, wherein the information stored in said cache comprises data identifying a set of pages in
said address transiation map that are located at a predetermined distance from a root of said address transtation

map.

The system of claim 23, wherein the information stored in said cache comprises data identifying a set of pages of
said address translation map that have a predetermined property.

The system of claim 23, wherein the information stored in said cache includes data indicative of a number of
references to a specified page.

The system of claim 23, wherein the information stored in said cache includes data indicative of a number of
references 1o a specified page, wherein said references have a specified attribute.

The system of claim 23, wherein the information stored in said cache includes data indicative of a number of pages
to which a specified page in said address transiation map refers.

12

10

15

20

25

30

35

40

45

50

55

3.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

EP 1473616 A2

The system of claim 23, wherein the information stored in sald cache includes data indicative of a number of pages
to which a specified page in said address translation map refers, and to which the specified page assigns aspecified
attribute.

The system of ciaim 23, wherein compliance with said policy is determined based on a page’s membership in a
setl, wherein the information stored in said cache includes a proper superset of said set, and wherein said logic

determines whether allowing said request will viciate said poticy by evaluating whether said page is a member of
said superset.

The system of claim 23, wherein compliance with said policy is determined based on a page’s membership in a
set, wherein the information stored in said cache includes a proper subset of said set, and wherein said logic
determines whether allowing said request will vivlate said policy by evaluating whether said page is a member of
said subset.

The system of ciaim 23, wherein said logic is implemented in at least one of hardware or software,

A computer-readabie medium encoded with computer-executable instructions to perform a method. the method
comprising:

storing information regarding a directed labeled graph that comprises a pluralily of vertices and a piurality of
labeled edges connecting the vertices, each edge being defined by an ordered pair of the vertices and a label;
perorming a first operation that changes said graph by removing or adding a vertex, removing or adding an
edge, or changing the label of an edge;

updating said information to reflect the change to said graph,; and

determining whether a second operation may be performed based at least in part on said information.

The computer-readable medium of claim 35, wherein said graph is representative of an address transiation map
that comprises a plurality of pages, each page in said address translation map corresponding to a vertex of said
graph, each reference within one page of said address translation map to another page of said address transiation

map corresponding to an edge of said graph. and an attribute associated with a reference corresponding to a label
of the reference's corresponding edge.

The computer-readable medium of claim 35, wherein said graph is stored in a computer memory, and wherein
said operation comprises a write to a portion of said computer memaory that stores said graph.

The computer-readable medium of claim 35, wherein said information comprises data identifying a set of vertices
of said graph map that are located at a predetermined distance from a root vertex of said graph.

The computer-readable medium of claim 35, wherein said information comprises data identifying a set of vertices
of said graph that have a predetermined property.

The computer-readable medium of claim 35, wherein said information comprises data indicative of a number of
edges leading into a specified vertex.

The computer-readable medium of claim 35, wherein said information comprises data indicative of a number of
adges that satisfy a specified predicate and that lead into a specified vertex,

The compuier-readable medium of ciaim 35, wherein said information comrpises data indicative of a number of
edges leading away from a specified vertex in said graph.

The computer-readable medium of claim 35, wherein said information comprises data indicative of a number of
edges that satisfy a specified predicale and that lead away from a specified vertex.

The computer-readable medium of claim 35, wherein whether said second operation may be performed depends
upon a given vertex's membership in a set, wherein said information contains data indicative of a proper superset
of said set, and said act of determining whether said second operation may be performed comprises determining
whether said given vertex is 2 member of said superset.

13

10

15

20

25

30

35

40

45

50

55

EP 1473616 A2

45. The computer-readable medium of claim 35, wherein whether said second operation may be performed depends
ypon a given veriex's membership in a set, wherein said information contains data indicative of a proper subset
of said set, and said act of determining whether said second operation may be perfermed comprises determining
whether said given vertex is a member of said subset.

14

EP 1473616 A2

(v)9oz

(e)soz]

(2)90z —/

{1)90Z —/

ctl AvY

T2 sseippy jenyip

A

h

L]
| :
3]
H H
H H
[]]
1)
i :
m :
' '
-— '
))
L] 1
m _.I. ajqe] abe * "
P (glpoz AALLIBA]
m m
; ;
—t H
)]
: . ;
1 "
) 3
m -«
! a|ge) abeyg !
V2o !
] t
i H
N H
“ . " .
) . ' .
: . '
1 3
' '
." < m M fLoyoann
: siqe sbeq | ! ofie
: (Llpoz 1 29eLBBed “ Nonl\ d
; FACL 3 ' TRAET
] 3

€T | (&Y | a7e)

19SHO | 1Bsyo | 18840

afiey id Qd
022 NN
L0z

-

(eyD "69)

16

EP 1473616 A2

BN

)

|

B
+/

I'd
Page 1
Address RO
Page 2
Address RO
FIG. 3

° "

EP 1473616 A2

® e ®

EP 1473 616 A2

5

FIG

19

-

EP 1473616 A2

Receive access request

/" 602

l

Evaluate access request
under a policy

/ 604 /- 606
Cached

information

about page map

Execution
of request will
maintain compli-
ance with
policy
?

Yes

3 /‘ 612 /— 614

608 /‘ 610

Block request, or
No—»| modify request to make
it allowable under polciy

Allow request to

Allow modified request

proceed to proceed
I I
v %0
Update cache
FIG. 6

. °

15 |If available, please enter the Chinese abstract text in space below.

by D el |=‘E§T;“V?1ﬁ’UFT2*EJ§§ﬁ’IJ i ﬁ:l‘—’ﬁ"é'ﬁ“v#ﬂ’ﬂﬁilﬁ” Jjﬂ*ﬁﬁ*iﬂﬁ%ﬁ*ﬁ
PHHL B | T e E%#'f’%‘fy T S Sl
oot mafﬁ#\%ﬂ'ﬁ"rﬂﬁl hica: Uit i

