(51) International Patent Classification:
C07D 471/04 (2006.01) A61K 31/519 (2006.01)
C07D 405/14 (2006.01) A61P 35/00 (2006.01)
C07D 403/10 (2006.01)

(21) International Application Number:
PCT/US2012/063413

(22) International Filing Date:
2 November 2012 (02.11.2012)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
61/555,902 4 November 2011 (04.11.2011) US

(71) Applicant: AFRAXIS, INC. [US/US]; 11099 North Torrey Pines Road, Suite 290, La Jolla, CA 92037 (US).

(72) Inventors: CAMPBELL, David; 13318 Seagrove Street, San Diego, CA 92130 (US). DURON, Sergio, G.; 1605 Neale Street, San Diego, CA 92103 (US).

(74) Agent: REANEY, Shannon; Morrison & Foerster LLP, 755 Page Mill Road, Palo Alto, California 94304-1018 (US).

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: PAK INHIBITORS FOR THE TREATMENT OF CELL PROLIFERATIVE DISORDERS

(57) Abstract: Provided herein are PAK inhibitors and methods of utilizing PAK inhibitors for the treatment of cell proliferative disorders and/or CNS disorders.
PAK INHIBITORS FOR THE TREATMENT OF CELL PROLIFERATIVE DISORDERS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of priority of U.S. Provisional Application No. 61/555,902, filed on November 4, 2011, the content of which is incorporated herein in its entirety.

BACKGROUND OF THE INVENTION

[0002] Cancer, also called malignancy, is characterized by an abnormal growth of cells. There are more than 100 types of cancer, including breast cancer, skin cancer, lung cancer, colon cancer, brain cancer, prostate cancer, kidney cancer, ovarian cancer, cancers of the central nervous system, leukemia, and lymphoma. Cancer symptoms vary widely based on the type of cancer. Cancer treatment includes chemotherapy, radiation, and surgery.

[0003] A number of cancers have been associated with alterations in the expression and/or activation of p21-activated kinases, which are central players in growth factor signaling networks and oncogenic processes that control cell proliferation, cell polarity, invasion and actin cytoskeleton organization. Moreover, some cancers, such as those that affect cognitive function, have been associated with alterations in the morphology and/or density of dendritic spines, membranous protrusions from dendritic shafts of neurons that serve as highly specialized structures for the formation, maintenance, and function of synapses.

[0004] Central Nervous System (CNS) disorders are characterized by a variety of debilitating affective and cognitive impairments. For example, a clinical sign of individuals with Alzheimer's disease is progressive cognition deterioration. Worldwide, approximately 24 million people have dementia, 60% of these cases are due to Alzheimer's.

[0005] The effects of cancer and CNS disorders are devastating to the quality of life of those afflicted as well as that of their families. Moreover, cancer and CNS disorders impose an enormous health care burden on society.

SUMMARY OF THE INVENTION

[0006] Described herein are compounds, compositions and methods for treating an individual suffering from a cell proliferative disorder by administering to an individual a therapeutically effective amount of an inhibitor of a p21-activated kinase (PAK), e.g., an inhibitor of PAK1, PAK2, PAK3, PAK4, PAK5, or PAK6, as described herein. The p21-activated kinase (PAK) family of serine/threonine kinases plays a pivotal role in physiological processes including motility, survival, mitosis, transcription and translation. PAKs are evolutionally conserved and widely expressed in a variety of tissues and are aberrantly expressed and/or activated in multiple cancer types. In some embodiments, inhibitors of one or more of Group I PAKs (PAK1, PAK2 and/or PAK3) and/or Group II PAKs (PAK4, PAK5 and/or PAK6) are administered to inhibit aberrant cellular proliferation.

[0007] In one aspect is a compound having the structure of Formula I, Formula II, or Formula III, or a pharmaceutically acceptable salt or N-oxide thereof:
wherein:

ring T is an aryl or heteroaryl ring;

R^1 is H, or substituted or unsubstituted alkyl;

R^2 is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkloxo, amide, ester, alkylo, cyano, aryl, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro-cycloalkyl-heterocycloalkyl; -alkylene-S(=O)1; -alkylene-S(=O)2R5; or -S(=O)2R5;

R^3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;

R^4 is substituted or unsubstituted heteroaryl attached to ring T or the phenyl ring via a carbon atom of R^4, or substituted or unsubstituted heterocycloalkyl attached to ring T or the phenyl ring via a carbon atom of R^4;

each R^5 is independently halogen, -CN, -NO$_2$, -OH, -OCF$_3$, -OCH$_2$F, -OCF$_3$H, -CF$_3$, -SR$_8$, -NR$_1^6$S(=O)$_2$R9, -S(=O)$_2$N(R$_1^5$)$_2$, -S(=O)R9, -S(=O)$_2$R9, -C(=0)R9, -OC(=0)R9, -C(=0)R9, -CO$_2$R8, -N(R$_1^6$)$_2$, -C(=0)NR$_1^5$R$_1^5$, -NR$_1^6$C(=0)R10, -N R$_1^6$C(=0)OR10, -NR$_1^6$C(=0)NR$_1^5$R$_1^5$; substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R^6 is independently H or R^9;

each R^7 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R^8 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or
substituted or unsubstituted heteroaryl; or two R^1, together with the atoms to which they are attached form a heterocycle; and s is 0-4.

[0008] In some embodiments is a compound having the structure of Formula I.

[0009] In one refinement, the compound having the structure of Formula I has the structure of Formula la:

![Formula la](image)

[0010] In another refinement, the compound of Formula I has the structure of Formula lb:

![Formula lb](image)

wherein s is 0-3.

[0011] In some embodiment, ring T in the compound of Formula I is selected from pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolypyridinyl, and imidazopyridinyl.

[0012] In some embodiments is a compound having the structure of Formula II. In some embodiments is a compound having the structure of Formula III.

[0013] In one refinement, the compound having the structure of Formula III has the structure of Formula IIIa:
[0014] In another refinement, the compound having the structure of Formula III has the structure of Formula IIIb:

wherein s is 0-2.

[0015] In another aspect is a compound having the structure of Formula IV, or a pharmaceutically acceptable salt or N-oxide thereof

wherein:

- R^1 is H, or substituted or unsubstituted alkyl;
- R^2 is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoloxo, amide, ester, alkoyl, cyano, cycloalkyl, aryl, heteroaryl, or heteroalicyclic; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; substituted or unsubstituted spiro-cycloalkyl-heterocycloalkyl; -alkylene-S(=0)R$_9$; -alkylene-S(=0)$_2$R$_9$; or -S(=0)$_2$R$_9$.
R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted ary1, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;

R⁴ is substituted or unsubstituted 6-membered monocyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R⁴, substituted or unsubstituted bicyclic heteroaryl ring attached to the phenyl via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R⁴;

each R⁵ is independently halogen, -CN, -N0₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR₈, -NR⁶S(=O)R⁹, -S(=O)₂N(R⁶)₂, -S(=O)R⁹, -S(=O)₂R⁹, -C(=O)R⁹, -OC(=O)R⁹, -CO₂R₈, -N(R⁶)₂, -C(=O)N(R⁶)₂, -NR⁶C(=O)R¹₀, -N(R⁶)C(=O)OR₈, -NR⁶C(=O)N(R⁶)₂, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R⁸ is independently H or R⁹;

each R⁹ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R¹₀ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R¹₀, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

[0016] In some embodiments, R⁴ in Formula IV is a substituted or unsubstituted C-linked 6-membered monocyclic heteroaryl ring or a substituted or unsubstituted C-linked bicyclic heteroaryl ring. In a refinement, R⁴ is selected from pyridine, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, or imidazopyridinyl

[0017] In some embodiments, R⁴ in Formula I-IV is a substituted or unsubstituted C-linked heteroaryl. In a refinement, R⁴ is selected from pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl.
In some embodiments, R^4 in Formula I-IV is a C-linked heterocycloalkyl. In a refinement, the heterocycloalkyl is selected from pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl.

In some embodiment, each R^5 in Formula I-IV is independently selected from halogen, -CN, -OH, -OCF_3, -OCF_3H, -CF_3, -SR^8, -N(R^10)_2, a substituted or unsubstituted alkyl, or a substituted or unsubstituted alkoxy.

In some embodiment, each R^5 in Formula I-IV is independently selected from halogen, -N(R^4)^2, or a substituted or unsubstituted alkyl.

In some embodiments, s in Formula I-IV is 0. In some embodiments, s in Formula I-IV is 1. In some embodiments, s in Formula I-IV is 2.

In some embodiments, R^3 in Formula I-IV is H. In some embodiment, R^3 in Formula I-IV is a substituted or unsubstituted alkoxy, or a substituted or unsubstituted amino. In some embodiment, R^3 in Formula I-IV is a substituted or unsubstituted alkyl, or a substituted or unsubstituted heteroalkyl.

In some embodiments, R^3 in Formula I-IV is a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In a refinement, the cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. In another refinement, the heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, morpholinyl, or piperazinyl.

In some embodiments, R^3 in Formula I-IV is a substituted or unsubstituted cycloalkylalkyl, or a substituted or unsubstituted heterocycloalkylalkyl.

In some embodiments, R^3 in Formula I-IV is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl. In a refinement, the aryl is phenyl. In another refinement, the heteroaryl is pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, or imidazopyridinyl.

In some embodiments, R^3 in Formula I-IV is a substituted or unsubstituted arylalkyl, or a substituted or unsubstituted heteroarylalkyl.

In some embodiments, R^2 in Formula I-IV is a substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, or a substituted or unsubstituted aralkoxy. In some embodiments, R^2 in Formula I-IV is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, amide, ester, alkoyl, cyano, aryl, or heteroaryl.

In some embodiments, R^2 in Formula I-IV is a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In a refinement, the cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. In another refinement, the heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl.
In some embodiments, R\textsubscript{2} in Formula I-IV is a substituted or unsubstituted cycloalkylalkyl, or a substituted or unsubstituted heterocycloalkylalkyl. In some embodiments, R\textsubscript{2} in Formula I-IV is spiro-cycloalkyl-heterocycloalkyl.

In some embodiments, R\textsubscript{2} in Formula I-IV is -alkylene-S(=0)\textsubscript{R}\textsubscript{9}, or -alkylene-S(=0)\textsubscript{2}R\textsubscript{9}. In a refinement, the -alkylene- is -CH\textsubscript{2}, -CH\textsubscript{2}CH\textsubscript{2}, or -CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}.

In some embodiments, R\textsubscript{2} in Formula I-IV is -S(=0)\textsubscript{2}R\textsubscript{9}.

In some embodiment, R\textsubscript{1} in Formula I-IV is H. In some embodiment, R\textsubscript{1} in Formula I-IV is substituted or unsubstituted alkyl.

In another aspect is a compound selected from:
Provided herein are pharmaceutical compositions comprising a therapeutically effective amount of a compound of Formula I-IV, or a pharmaceutically acceptable salt or N-oxide thereof, and a pharmaceutically acceptable carrier, wherein the compound of Formula I-IV is as described herein.

Provided herein, in some embodiments, are methods for treating a cell proliferative disorder, wherein the method comprises administering to an individual in need thereof a therapeutically effective amount of a compound of Formula I-IV as described herein, or a composition comprising such a compound and a pharmaceutically acceptable carrier as described herein.

In some embodiments, the cell proliferative disorder is a cancer. In some embodiment, the cancer is selected from a breast cancer, colorectal cancer, brain cancer, lung cancer, pancreatic cancer,
kidney cancer, skin cancer, cancer of the central nervous system, liver cancer, stomach cancer, gastrointestinal cancer, ovarian cancer, leukemia, or lymphoma. In a refinement, the brain cancer is glioblastoma. In another refinement, the lung cancer is a mesothelioma. In another refinement, the kidney cancer is a renal cell carcinoma. In another refinement, the cancer of the central nervous system is a tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2. In a further refinement, the tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2 is a neurofibroma, optic glioma, malignant peripheral nerve sheath tumor, schwannoma, ependymoma, or meningioma.

[0037] In some embodiments, the cancer is a recurrent cancer. In some embodiments, the cancer is a refractory cancer. In some embodiments, the cancer is a malignant cancer.

[0038] In some embodiments of any of the above methods, the method further comprises administration of a second therapeutic agent that alleviates one or more symptoms associated with a cell proliferative disorder.

[0039] In some embodiments, the second therapeutic agent is an anti-cancer therapeutic agent. In some embodiments, the anti-cancer therapeutic agent is selected from a pro-apoptotic agent, a kinase inhibitor, or a receptor tyrosine kinase inhibitor. In a refinement, the pro-apoptotic agent is an antagonist of inhibitor of apoptosis (IAP) proteins. In a further refinement, the antagonist of IAP proteins is BV6 or G-416. In another refinement, the kinase inhibitor is gefitinib, U0126, dasatinib, nilotinib, Akt VIII, or imatinib. In another refinement, the receptor inhibitor is afatinib, erlotinib, lapatinib, pegaptanib, pazopanib, sunitinib, ranibizumab, vandetanib, or ZD6474.

[0040] While compounds and compositions of the present disclosure are described herein under Formula I-IV, other compounds, such as compounds of Formula I-IV in which R2 is an alkyl substituted with hydroxyl, methoxy, thiol, thiomethoxy, and halogen described in the concurrently filed PCT application (Docket No. 36367-724.602), are also suitable for the method of treating a proliferative disorder described herein. Although those compounds (disclosed in the concurrently filed PCT application) are not a part of the present disclosure directed to chemical compounds or compositions, they are a part of the present disclosure directed to method of treating proliferative disorders.

[0041] Provided herein, in some embodiments, are methods for treating a cell proliferative disorder, wherein the method comprises administering to an individual in need thereof a therapeutically effective amount of a compound having the structure of Formula A, Formula B, or Formula C, or a pharmaceutically acceptable salt or N-oxide thereof:

![Formula A](image)

![Formula B](image)

![Formula C](image)

wherein:
ring T is an aryl or heteroaryl ring;
R₁ is H, or substituted or unsubstituted alkyl;
R² is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro -cycloalkyl-heterocycloalkyl, -alkylene-S(=O)R, -alkylene-S(=O)₂R, -S(=O)₂R;
R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;
R⁴ is substituted or unsubstituted heteroaryl attached to ring T or the phenyl ring via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to ring T or the phenyl ring via a carbon atom of R⁴;
each R⁵ is independently halogen, -CN, -N0₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR, -NR(=O)R, -S(=O)₂R, -N(=O)₂R, -C(=O)R, -OC(=O)R, -CO₂R, -N(R)₂, -C(=O)N(R)₂, -NR(=O)C(=O)R, -N R(=O)C(=O)OR, -NR(=O)C(=O)N(R)₂, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R⁶ is independently H or R⁵;
each R⁷ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R⁸ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R⁸, together with the atoms to which they are attached form a heterocycle; and s is 0-4.

[0042] In some embodiments, the cell proliferative disorder is a cancer. In some embodiment, the cancer is selected from a breast cancer, colorectal cancer, brain cancer, lung cancer, pancreatic cancer, kidney cancer, skin cancer, cancer of the central nervous system, liver cancer, stomach cancer, gastrointestinal cancer, ovarian cancer, leukemia, or lymphoma. In a refinement, the brain cancer is glioblastoma. In another refinement, the lung cancer is a mesothelioma. In another refinement, the kidney cancer is a renal cell carcinoma. In another refinement, the cancer of the central nervous system is a tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2. In a further refinement, the tumor
associated with neurofibromatosis type 1 or neurofibromatosis type 2 is a neurofibroma, optic glioma, malignant peripheral nerve sheath tumor, schwannoma, ependymoma, or meningioma.

[0043] In some embodiments, the cancer is a recurrent cancer. In some embodiments, the cancer is a refractory cancer. In some embodiments, the cancer is a malignant cancer.

[0044] In some embodiments of any of the above methods, the method further comprises administration of a second therapeutic agent that alleviates one or more symptoms associated with a cell proliferative disorder.

[0045] In some embodiments, the second therapeutic agent is an anti-cancer therapeutic agent. In some embodiments, the anti-cancer therapeutic agent is selected from a pro-apoptotic agent, a kinase inhibitor, or a receptor tyrosine kinase inhibitor. In a refinement, the pro-apoptotic agent is an antagonist of inhibitor of apoptosis (IAP) proteins. In a further refinement, the antagonist of IAP proteins is BV6 or G-416. In another refinement, the kinase inhibitor is gefitinib, U0126, dasatinib, nilotinib, Akt VIII, or imatinib. In another refinement, the receptor inhibitor is afatinib, erlotinib, lapatinib, pe guarantanib, pazopanib, sunitinib, ranibizumab, vandetanib, or ZD6474.

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] The features of the present disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[0047] Figure 1 describes illustrative shapes of dendritic spines.

[0048] Figure 2 describes modulation of dendritic spine head diameter by a small molecule PAK inhibitor.

[0049] Figure 3 describes modulation of dendritic spine length by a small molecule PAK inhibitor.

DETAILED DESCRIPTION OF THE INVENTION

[0050] Provided herein, in certain embodiments, are compounds having the structure of Formula I or pharmaceutically acceptable salt or N-oxide thereof:

\[
\text{Formula I;}
\]

wherein:

- ring T is an aryl or heteroaryl ring;
- R^1 is H, or substituted or unsubstituted alkyl;
R² is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro,
arlythio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoxo, amide, ester,
alloyl, cyano, aryl, or heteroaryl; substituted or unsubstituted aralkoxy; substituted or unsubstituted
heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted
heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; substituted or unsubstituted
heterocycloalkylalkyl; spiro -cycloalkyl- heterocycloalkyl; -alkylene-S(=O)R⁹; -alkylene-S(=O)₂R⁹; or -S(=O)₂R⁹;

R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted aralkoxy, substituted or
unsubstituted amino, substituted or unsubstituted heteroaryl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
heterocycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted
aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted
or unsubstituted heteroaryalkyl;

R⁴ is substituted or unsubstituted heteroaryl attached to ring T via a carbon atom of R⁴, or
substituted or unsubstituted heterocycloalkyl attached to ring T via a carbon atom of R⁴;

each R⁵ is independently halogen, -CN, -NO₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR, -
NR¹S(=O)R⁹, -S(=O)₂N(R¹)₉, -S(=O)R⁹, -S(=O)₂R⁹, -C(=O)R⁹, -OC(=O)R⁹, -C(O)₂R⁹,
-NR¹S(=O)R⁹, -C(=O)N(R¹)₂, -NR¹C(=O)R¹₀, -N₂R¹₀C(=O)OR₁₀, -NR¹₀C(=O)N(R¹₀)₂, substituted
or unsubstituted alkyl, substituted or unsubstituted aralkoxy, substituted or unsubstituted
heteroaryl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted
cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R⁶ is independently H or R⁹;

each R⁷ is independently substituted or unsubstituted alkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
heteroaryl;

each R⁸ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or

substituted or unsubstituted heteroaryl; or two R⁰, together with the atoms to which they are
attached form a heterocycle; and

s is 0-4.

[0051] In one embodiment is a compound of Formula I wherein ring T is aryl. In a refinement, aryl is
phenyl. In another refinement, aryl is naphthalene.

[0052] In one embodiment is a compound of Formula I wherein ring T is selected from pyrrolyl,
furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl,
1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl,
pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and
imidazopyridinyl. In some embodiments, ring T is pyrrolyl. In some embodiments, ring T is furanyl. In some embodiments, ring T is thiophenyl. In some embodiments, ring T is pyrazolyl. In some embodiments, ring T is imidazolyl. In some embodiments, ring T is isoxazolyl. In some embodiments, ring T is oxazolyl. In some embodiments, ring T is isothiazolyl. In some embodiments, ring T is thiazolyl. In some embodiments, ring T is 1,2,3-triazolyl. In some embodiments, ring T is 1,3,4-triazolyl. In some embodiments, ring T is l-oxa-2,3-diazolyl. In some embodiments, ring T is l-thia-2,3-diazolyl. In some embodiments, ring T is l-thia-2,5-diazolyl. In some embodiments, ring T is pyridazinyl. In some embodiments, ring T is pyrimidinyl. In some embodiments, ring T is pyrazinyl. In some embodiments, ring T is triazinyl. In some embodiments, ring T is indolyl. In some embodiments, ring T is benzofuranyl. In some embodiments, ring T is benzimidazolyl. In some embodiments, ring T is indazolyl. In some embodiments, ring T is pyrrolopyridinyl. In some embodiments, ring T is imidazopyridinyl.

In a further embodiment is a compound of Formula 1, wherein R4 is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the CpCealkyl is methyl, ethyl, or n-propyl.

In one embodiment is a compound of Formula 1, wherein R4 is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, R4 is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R4 is a C-linked pyrrolyl. In some embodiments, R4 is a C-linked furanyl. In some embodiments, R4 is a C-linked thiophenyl. In some embodiments, R4 is a C-linked pyrazolyl. In some embodiments, R4 is a C-linked imidazolyl. In some embodiments, R4 is a C-linked isoxazolyl. In some embodiments, R4 is a C-linked oxazolyl. In some embodiments, R4 is a C-linked isothiazolyl. In some embodiments, R4 is a C-linked thiazolyl. In some embodiments, R4 is a C-linked 1,2,3-triazolyl. In some embodiments, R4 is a C-linked 1,3,4-triazolyl.
In some embodiments, R^4 is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,3-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-3,4-diazolyl. In some embodiments, R^4 is a C-linked tetrazolyl. In some embodiments, R^4 is a C-linked pyridinyl. In some embodiments, R^4 is a C-linked pyridazinyl. In some embodiments, R^4 is a C-linked pyrimidinyl. In some embodiments, R^4 is a C-linked pyrazinyl. In some embodiments, R^4 is a C-linked triazinyl. In some embodiments, R^4 is a C-linked indolyl. In some embodiments, R^4 is a C-linked benzofuranyl. In some embodiments, R^4 is a C-linked benzimidazolyl. In some embodiments, R^4 is a C-linked indazolyl. In some embodiments, R^4 is a C-linked pyrrolopyridinyl. In some embodiments, R^4 is a C-linked imidazopyridinyl.

In yet another embodiment is a compound of Formula I, wherein R^4 is a C-linked heteroaryl substituted with at least one group selected from halogen, -CN, -NO_2, -OH, -SR^6, -S(=O)R^9, -S(=O)R^9, -NR^9S(=O)R^9, -S(=O)NR^9, -C(=O)NR^9, -C(=O)NR^9, -C(=O)O(NR^9)R^9, -NR^9C(=O)NR^9, -NR^9C(=O)OR^9, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with C_1-C_8alkyl. In another embodiment, C_1-C_8alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

In another embodiment is a compound of Formula I having the structure of Formula Ia:

![Formula Ia](image)

wherein ring T, R^1, R^2, R^3, R^4, R^5, and s are described previously.

In another embodiment is a compound of Formula I having the structure of Formula Ib:
In another embodiment are compounds having the structure of Formula Ic or pharmaceutically acceptable salt or N-oxide thereof:

![Diagram of Formula Ic]

wherein:

- ring T is an aryl or heteroaryl ring;
- R1 is H, or substituted or unsubstituted alkyl;
- R2 is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, arylxoy, alkoloxo, amidon, ester, alkoyl, cyano, aryl, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro-cycloalkyl-heterocycloalkyl; -alkylene-S(=0)R⁹; -alkylene-S(=0)₂R⁹; or -S(=0)₂R⁹;
- R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;
- R4 is substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl attached to ring T via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to ring T via a carbon atom of R⁴;
each R is independently halogen, -CN, -N02, -OH, -OCF3, -OCH2F, -OCF3H, -CF3, -SR, -N(R)S(=O)2R9, -S(=O)2R9, -SR, -N(R)S(=O)2R9, -S(=O)2R9, -C(=O)R9, -OC(=O)R9, -C02R9, -N(R)S(=O)2R9, -S(=O)2R9, -N(R)S(=O)2R9, -S(=O)2R9, -C(=O)N(R9)R9, -N(R)C(=O)OR9, -NR(C(=O)N(R9)R9, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R is independently H or R9;

each R9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

In one embodiment is a compound of Formula Ic wherein ring T is aryl. In a refinement, aryl is phenyl. In another refinement, aryl is naphthalene.

In one embodiment is a compound of Formula Ic wherein ring T is selected from pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, ring T is pyrrolyl. In some embodiments, ring T is furanyl. In some embodiments, ring T is thiophenyl. In some embodiments, ring T is pyrazolyl. In some embodiments, ring T is imidazolyl. In some embodiments, ring T is isoxazolyl. In some embodiments, ring T is oxazolyl. In some embodiments, ring T is isothiazolyl. In some embodiments, ring T is thiazolyl. In some embodiments, ring T is 1,2,3-triazolyl. In some embodiments, ring T is 1,3,4-triazolyl. In some embodiments, ring T is 1-oxa-2,3-diazolyl. In some embodiments, ring T is 1-oxa-2,4-diazolyl. In some embodiments, ring T is 1-oxa-2,5-diazolyl. In some embodiments, ring T is 1-thia-2,3-diazolyl. In some embodiments, ring T is 1-thia-2,4-diazolyl. In some embodiments, ring T is 1-thia-2,5-diazolyl. In some embodiments, ring T is 1-thia-3,4-diazolyl. In some embodiments, ring T is tetrazolyl. In some embodiments, ring T is pyridinyl. In some embodiments, ring T is pyridazinyl. In some embodiments, ring T is pyrimidinyl. In some embodiments, ring T is pyrazinyl. In some embodiments, ring T is triazinyl. In some embodiments, ring T is indolyl. In some embodiments, ring T is benzofuranyl. In some embodiments, ring T is benzimidazolyl. In some embodiments, ring T is indazolyl. In some embodiments, ring T is pyrrolopyridinyl. In some embodiments, ring T is imidazopyridinyl.
In a further embodiment is a compound of Formula Ic, wherein R^4 is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the CpCealkyl is methyl, ethyl, or n-propyl.

In one embodiment is a compound of Formula Ic, wherein R^4 is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, R^4 is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R^4 is a C-linked pyrrolyl. In some embodiments, R^4 is a C-linked furanyl. In some embodiments, R^4 is a C-linked thiophenyl. In some embodiments, R^4 is a C-linked pyrazolyl. In some embodiments, R^4 is a C-linked imidazolyl. In some embodiments, R^4 is a C-linked isoxazolyl. In some embodiments, R^4 is a C-linked oxazolyl. In some embodiments, R^4 is a C-linked isothiazolyl. In some embodiments, R^4 is a C-linked thiazolyl. In some embodiments, R^4 is a C-linked 1,2,3-triazolyl. In some embodiments, R^4 is a C-linked 1,3,4-triazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,3-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-3,4-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,3-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-3,4-diazolyl. In some embodiments, R^4 is a C-linked tetrazolyl. In some embodiments, R^4 is a C-linked pyridinyl. In some embodiments, R^4 is a C-linked pyridazinyl. In some embodiments, R^4 is a C-linked pyrimidinyl. In some embodiments, R^4 is a C-linked pyrazinyl. In some embodiments, R^4 is a C-linked triazinyl. In some embodiments, R^4 is a C-linked indolyl. In some embodiments, R^4 is a C-linked benzofuranyl. In some embodiments, R^4 is a C-linked benzimidazolyl. In some embodiments, R^4 is a C-linked indazolyl. In some embodiments, R^4 is a C-linked pyrrolopyridinyl. In some embodiments, R^4 is a C-linked imidazopyridinyl.

In yet another embodiment is a compound of Formula Ic, wherein R^4 is a C-linked heteroaryl substituted with at least one group selected from halogen, -CN, -NO_2, -OH, -SR, -S(=O)R, -S(=O)_2R, NR(=O)S(=O)R, S(=O)NR(=O)R, -OC(=O)R, -OC(=O)NR(=O)R, -OC(=O)NR(=O)R, -H, -CN, -CO_2R, -C(O)NR(=O)R, -C(O)NR(=O)R, -NR(=O)C(=O)OR, -NR(=O)C(=O)NR(=O)R, -OR, a substituted or unsubstituted alkyl, a substituted or...
unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with \(C_1-C_6 \)alkyl. In another embodiment, \(C_1-C_6 \)alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

[0064] In another embodiment is a compound of \(\text{Ic} \) wherein \(R^4 \) is a substituted or unsubstituted cycloalkyl. In a further embodiment, cycloalkyl is selected from cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In a further embodiment, \(R^4 \) is cyclopentyl. In another embodiment, \(R^4 \) is cyclohexyl.

[0065] In another embodiment is a compound of \(\text{Ic} \) wherein \(R^4 \) is a substituted or unsubstituted aryl. In another embodiment is a compound of \(\text{Ic} \) wherein \(R^4 \) is a substituted or unsubstituted phenyl.

[0066] In another embodiment, are compounds having the structure of Formula II or pharmaceutically acceptable salt or N-oxide thereof:

![Formula II](image)

wherein:

- \(R^1 \) is H, or substituted or unsubstituted alkyl;
- \(R^2 \) is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, arlyoxy, alkoloxo, amide, ester, alkoxy, cyano, aryloxy, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro -cycloalkyl-heterocycloalkyl; -alkylene-S(=0)R^9; -alkylene-S(=0)R^9; or -S(=0)R^9;
- \(R^3 \) is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;
- \(R^4 \) is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of \(R^4 \), or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of \(R^4 \).
each R^5 is independently halogen, -CN, -N0$_2$, -OH, -OCF$_3$, -OCH$_2$F, -OCF$_2$H, -CF$_3$, -SR, -NR$_1$S(=O)$_2$R$_9$, ...

In some embodiments, R^4 is a C-linked 1,3,4-triazolyl. In some embodiments, R^4 is a C-linked l-oxa-2,3-diazolyl, pyrazolyl, piperidinyl.

In embodiments, R^4 is a C-linked benzimidazolyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R^4 is a C-linked pyrrolyl. In some embodiments, R^4 is a C-linked furanyl, thienophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R^4 is a C-linked pyrrolyl. In some embodiments, R^4 is a C-linked furanyl. In some embodiments, R^4 is a C-linked thiophenyl. In some embodiments, R^4 is a C-linked pyrazolyl. In some embodiments, R^4 is a C-linked imidazolyl. In some embodiments, R^4 is a C-linked isoxazolyl. In some embodiments, R^4 is a C-linked oxazolyl. In some embodiments, R^4 is a C-linked isothiazolyl. In some embodiments, R^4 is a C-linked thiazolyl. In some embodiments, R^4 is a C-linked 1,2,3-triazolyl. In some embodiments, R^4 is a C-linked 1,3,4-triazolyl.
In some embodiments, \(\text{R}^1 \) is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-oxa-3,4-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-thia-2,3-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-thia-2,4-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-thia-2,5-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked 1-thia-3,4-diazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked tetrazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked pyridinyl. In some embodiments, \(\text{R}^4 \) is a C-linked pyridazinyl. In some embodiments, \(\text{R}^4 \) is a C-linked pyrimidinyl. In some embodiments, \(\text{R}^4 \) is a C-linked pyrazinyl. In some embodiments, \(\text{R}^4 \) is a C-linked triazinyl. In some embodiments, \(\text{R}^4 \) is a C-linked indolyl. In some embodiments, \(\text{R}^4 \) is a C-linked benzofuranyl. In some embodiments, \(\text{R}^4 \) is a C-linked benzimidazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked indazolyl. In some embodiments, \(\text{R}^4 \) is a C-linked pyrrolopyridinyl. In some embodiments, \(\text{R}^4 \) is a C-linked imidazopyridinyl.

In yet another embodiment is a compound of Formula II, wherein \(\text{R}^4 \) is a C-linked heteroaryl substituted with at least one group selected from halogen, -CN, -N\(_2\)O, -OH, -SR\(^2\), -S(=O)R\(^9\), -S(=O)2R\(^9\), NR\(^9\)S(=O)\(_2\)R\(^9\), -S(=O)\(_2\)N(R\(^{10}\))\(_2\), -OC(=O)R\(^9\), -C\(_0\)\(_2\)R\(^9\), -N(R\(^{10}\))\(_2\), -C(=O)N(R\(^{10}\))\(_2\), NR\(^9\)C(=O)R\(^{10}\), -NR\(^9\)C(=O)OR\(^{10}\), -NR\(^9\)C(=O)N(R\(^{10}\))\(_2\), -OR\(^{10}\), a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with C\(_1\)-C\(_6\)alkyl. In another embodiment, C\(_1\)-C\(_6\)alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

In another embodiment, are compounds having the structure of Formula III or pharmaceutically acceptable salt or N-oxide thereof:

![Formula III](image)

wherein:

\(\text{R}^1 \) is H, or substituted or unsubstituted alkyl;
\(\text{R}^2 \) is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arythio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoloxo, amide, ester, alkoyl, cyano, aryl, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted...
heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro-cycloalkyl-
heterocycloalkyl; -alkylene-S(=O)R; -alkylene-S(=O)2R; or -S(=O)2R;

R^3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;

R^4 is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of R^4, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R^4;

each R^5 is independently halogen, -CN, -N0, -OH, -OCF, -OCHF, -OCF, -CF, -SR, -NR(=O)R, -S(=O)2R, -S(=O)2N(R), -S(=O)2R, -S(=O)2R, -C(=O)R, -OC(=O)R, -CO2R, -N(R), -C(=O)N(R), -NR(=O)C(=O)R, -N(R)C(=O)OR, -NR(=O)C(=O)N(R), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R^9 is independently H or R^9;
each R^9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R^9 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R^9, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

In a further embodiment is a compound of Formula III, wherein R^4 is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranoyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranoyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the CpCealkyl is methyl, ethyl, or n-propyl.
In one embodiment is a compound of Formula III, wherein \(R^4 \) is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, \(R^4 \) is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzfuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, \(R^4 \) is a C-linked pyrrolyl. In some embodiments, \(R^4 \) is a C-linked furanyl. In some embodiments, \(R^4 \) is a C-linked thiophenyl. In some embodiments, \(R^4 \) is a C-linked pyrazolyl. In some embodiments, \(R^4 \) is a C-linked imidazolyl. In some embodiments, \(R^4 \) is a C-linked isoxazolyl. In some embodiments, \(R^4 \) is a C-linked oxazolyl. In some embodiments, \(R^4 \) is a C-linked isothiazolyl. In some embodiments, \(R^4 \) is a C-linked pyridinyl. In some embodiments, \(R^4 \) is a C-linked pyridazinyl. In some embodiments, \(R^4 \) is a C-linked pyrimidinyl. In some embodiments, \(R^4 \) is a C-linked pyrazinyl. In some embodiments, \(R^4 \) is a C-linked triazinyl. In some embodiments, \(R^4 \) is a C-linked indolyl. In some embodiments, \(R^4 \) is a C-linked benzofuranyl. In some embodiments, \(R^4 \) is a C-linked benzimidazolyl. In some embodiments, \(R^4 \) is a C-linked indazolyl. In some embodiments, \(R^4 \) is a C-linked pyrrolopyridinyl. In some embodiments, \(R^4 \) is a C-linked imidazopyridinyl.

In yet another embodiment is a compound of Formula III, wherein \(R^4 \) is a C-linked heteroaryl substituted with at least one group selected from halogen, \(-\text{CN}, -\text{NO}_2, -\text{OH}, -\text{SR}, -\text{S(=O)}\text{R}^9, -\text{S(=O)}\text{R}^9, -\text{NR}^\text{a}\text{S(=O)}\text{R}^9, -\text{S(=O)}\text{R}^9, -\text{C(=O)}\text{R}^8, -\text{C(=O)}\text{R}^8, -\text{OC(=O)}\text{R}^9, -\text{C(=O)}\text{NR}^\text{a}\text{R}^9, -\text{N(=C(=O))R}^9, -\text{NR}^\text{a}\text{C(=O)}\text{R}^9, -\text{NR}^\text{a}\text{C(=O)}\text{OR}^\text{a}, -\text{NR}^\text{a}\text{C(=O)N(R)}^\text{a}, -\text{OR}^\text{a}, -\text{OR}^\text{a},\) a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with \(\text{C}-\text{C}_\text{alkyl} \). In another embodiment, \(\text{C}-\text{C}_\text{alkyl} \) is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

In another embodiment is a compound of Formula III having the structure of Formula Illa:
wherein R_1, R_2, R_3, R_4, R_5 are described previously and s is 0-3.

[0075] In another embodiment is a compound of Formula III having the structure of Formula IIib:

wherein R_1, R_2, R_3, R_4 are described previously and R_5 is a halogen. In a refinement of this embodiment, the halogen is -Cl.

[0076] In another embodiment is a compound of Formula III having the structure of Formula IIIc:

wherein R_1, R_2, R_3, R_5 are described previously, R_4 is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of R_4. In a refinement of this embodiment, R_4 is substituted or unsubstituted diazinyld, pyridinyld, or oxadiazolyl.

[0077] In another embodiment is a compound of Formula III having the structure of Formula Hid:
wherein R^1, R^2, R^3 are described previously, R^4 is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of R^4, and R^5 is a halogen. In a refinement of this embodiment, the halogen is -CI. In another refinement of this embodiment, R^4 is substituted or unsubstituted diazinyl, pyridinyl, or oxadiazolyl. In another refinement of this embodiment, the halogen is -CI and R^4 is substituted or unsubstituted diazinyl, pyridinyl, or oxadiazolyl.

In another embodiment is a compound of Formula III having the structure of Formula Hie:

![Formula Hie](image)

wherein R^1, R^2, R^4, R^5 are described previously.

In another embodiment is a compound of Formula III having the structure of Formula IIIf:

![Formula IIIf](image)

wherein R^1, R^2, R^3, R^4, R^5 are described previously and s is 0-2.

In another embodiment, are compounds having the structure of Formula IV or pharmaceutically acceptable salt or N-oxide thereof:

![Formula IV](image)

wherein:

- R^3 is H, or substituted or unsubstituted alkyl;
R² is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arythio, alkylsulfoxide, alkylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoxy, amide, ester, alkoxy, cyano, aryl, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro -cycloalkyl-heterocycloalkyl; -alkylene-S(=0) R⁹; -alkylene-S(=0)₂ R⁹; or -S(=0)₃ R⁹;

R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;

R³ is substituted or unsubstituted 6-membered monocyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R⁴, substituted or unsubstituted bicyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R⁴;

each R⁵ is independently halogen, -CN, -N(O)₂, -OH, -OCF₃, -OCF₂H, -CF₃, -SR₈, -NRᵢ(S(=O))R₉, -S(=O)₂ N(Rᵢ)₉, -S(=O) R₉, -S(=O)₂ R₉, -C(=O)R₉, -OC(=O)R₉, -C(O)₂ R₉, -N(Rᵢ)₂, -C(=O)N(Rᵢ)₂, -NRᵢ C(=O) R₁₀, -N Rᵢ C(=O) OR₁₀, -NRᵢ C(=O) N(Rᵢ)₂, substituted or unsubstituted alkoxy, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted heteroaryl; or substituted or unsubstituted heteroaryalkyl; or substituted or unsubstituted heteroaryl; or substituted or unsubstituted heterocycloalkyl;

each R⁶ is independently H or R⁹;

each R⁹ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl;

each R₁₀ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl; or substituted or unsubstituted heteroaryl; or two R₁₀, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

In a further embodiment is a compound of Formula IV, wherein R⁴ is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholino, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is...
In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some
embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In
another embodiment, the CpCealkyl is methyl, ethyl, or n-propyl.

In another embodiment is a compound of Formula IV, wherein R^4 is a substituted or
unsubstituted C-linked 6-membered monocyclic heteroaryl ring. In some embodiments, R^4 is selected from a C-linked pyridine, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl. In some embodiments, R^4 is a C-linked
pyridinyl. In some embodiments, R^4 is a C-linked pyridazinyl. In some embodiments, R^4 is a C-linked pyrimidinyl. In some embodiments, R^4 is a C-linked triazinyl.

In another embodiment is a compound of Formula IV, wherein R^4 is a substituted or
unsubstituted C-linked bicyclic heteroaryl ring. In some embodiments, R^4 is selected from a C-linked indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some
embodiments, R^4 is a C-linked indolyl. In some embodiments, R^4 is a C-linked benzofuranyl. In some embodiments, R^4 is a C-linked benzimidazolyl. In some embodiments, R^4 is a C-linked indazolyl. In some
embodiments, R^4 is a C-linked pyrrolopyridinyl. In some embodiments, R^4 is a C-linked imidazopyridinyl.

In another embodiment is a compound of Formula IV, wherein R^4 is a C-linked 6-membered
monocyclic heteroaryl ring substituted with at least one group selected from halogen, -CN, -NO_2, -OH, -SR^8, -S(=O)R^9, -S(=O)NR(S(O)=O)R^9, -S(=O)N(R^10)_2, -C(=O)R^8, -OC(=O)R^9, -C_0_2R^10, -N(R^10)_2, -C(=O)N(R^10)_2, -NR^6C(=O)R^10, -NR^6C(=O)OR^10, -NR^6C(=O)N(R^10)_2, -OR^10, a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with Ci-Cealkyl. In another embodiment, Ci-Cealkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

In yet another embodiment is a compound of Formula IV, wherein R^4 is a C-linked bicyclic
heteroaryl ring substituted with at least one group selected from halogen, -CN, -NO_2, -OH, -SR^8, -S(=O)R^9, -S(=O)NR(S(O)=O)R^9, -S(=O)N(R^10)_2, -C(=O)R^8, -OC(=O)R^9, -C_0_2R^10, -N(R^10)_2, -C(=O)N(R^10)_2, -NR^6C(=O)R^10, -NR^6C(=O)OR^10, -NR^6C(=O)N(R^10)_2, -OR^10, a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with Ci-Cealkyl. In another embodiment, Ci-Cealkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.
In further embodiments of any of the aforementioned embodiments, each R^5 is independently halogen, -CN, -NO$_2$, -OH, -OCF$_3$, -OCH$_2$F, -OCF$_2$H, -CF$_3$, -SR$_5$, -NR$_5^0$S(=O)$_2$R$_9$, -S(=O)N(R$_9^0$)$_2$, -S(=O)$_2$R$_9$, -C(=O)N(R$_9^0$)$_2$, -S(=O)9C(=O)R$_9$, -NR$_9^0$C(=O)N(R$_9^0$)$_2$, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heterocycloalkyl, or substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl. In a further embodiment, each R^5 is independently halogen, -CN, -NO$_2$, -OH, -OCF$_3$, -OCH$_2$F, -OCF$_2$H, -CF$_3$, -SR$_5$, -NR$_5^0$S(=O)$_2$R$_9$, -S(=O)N(R$_9^0$)$_2$, -C(=O)N(R$_9^0$)$_2$, -S(=O)9C(=O)R$_9$, -NR$_9^0$C(=O)N(R$_9^0$)$_2$, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heterocycloalkyl, or substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl. In some embodiments, R^3 is halogen. In some embodiments, R^5 is fluoro. In some embodiments, R^5 is chloro. In some embodiments, R^5 is -N(R$_9^0$)$_2$. In some embodiments, R^5 is dimethylamino. In some embodiments, R^5 is substituted or unsubstituted alkyl. In some embodiments, R^5 is methyl. In some embodiments, R^5 is ethyl. In some embodiments, R^5 is propyl. In some embodiments, R^5 is isopropyl.

In further embodiments of any of the aforementioned embodiments, s is 0. In a further embodiment of any of the aforementioned embodiments, s is 1. In a further embodiment of any of the aforementioned embodiments, s is 2.

In further embodiments of any of the aforementioned embodiments, R^3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl. In a further embodiment, R^3 is H. In a further embodiment, R^3 is substituted or unsubstituted alkoxy or a substituted or unsubstituted amino. In a further embodiment, R^3 is substituted or unsubstituted alkyl or a substituted or unsubstituted heteroalkyl. In a further embodiment, R^3 is substituted or unsubstituted cycloalkyl or a substituted or unsubstituted heterocycloalkyl.

In a further embodiment, R^3 is substituted or unsubstituted cycloalkylalkyl or a substituted or unsubstituted heterocycloalkylalkyl. In a further embodiment, R^3 is substituted or unsubstituted aralkyl or a substituted or unsubstituted heteroaryl. In a further embodiment, R^3 is substituted or unsubstituted aralkyl or a substituted or unsubstituted heteroarylalkyl. In a further embodiment, R^3 is substituted or unsubstituted alkoxy or a substituted or unsubstituted amino. In a further embodiment, R^3 is methyl. In a further embodiment, R^3 is ethyl. In a further embodiment, R^3 is propyl. In a further embodiment, R^3 is isopropyl. In a further embodiment, R^3 is substituted or unsubstituted alkoxy. In a further embodiment, R^3 is substituted or unsubstituted methoxy. In a further embodiment, R^3 is substituted or unsubstituted ethoxy. In a further embodiment, R^3 is substituted or unsubstituted amino. In a further embodiment, R^3 is substituted or unsubstituted heteroalkyl. In a further embodiment, R^3 is substituted or unsubstituted heterocycloalkyl. In a further embodiment, R^3 is...
pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In a further embodiment, R³ is substituted or unsubstituted cycloalkyl. In a further embodiment, R³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. In a further embodiment, R³ is substituted or unsubstituted cycloalkylalkyl. In a further embodiment, R³ is substituted or unsubstituted heterocycloalkylalkyl. In a further embodiment, R³ is substituted or unsubstituted aryl. In a further embodiment, R³ is substituted or unsubstituted phenyl. In a further embodiment, R³ is substituted or unsubstituted aralkyl. In a further embodiment, R³ is substituted or unsubstituted heteroaryl. In a further embodiment, R³ is pyrrol, furan, thiophen, pyrazol, imidazol, isoxazol, oxazol, isothiazol, thiazol, 1,2,3-triazol, 1,3,4-triazol, 1-oxa-2,3-diazol, 1-oxa-2,4-diazol, 1-oxa-2,5-diazol, 1-oxa-3,4-diazol, 1-thia-2,3-diazol, 1-thia-2,4-diazol, 1-thia-2,5-diazol, 1-thia-3,4-diazol, tetrazol, pyridin, pyridazin, pyrimidin, pyrazin, triazin, indol, benzofuranyl, benzimidazol, indazol, pyrrolopyridin, or imidazopyridin. In a further embodiment, R³ is substituted or unsubstituted heteroarylalkyl.

[0089] In a further embodiment of any of the aforementioned embodiments, R² is unsubstituted alkyl. In a further embodiment, R² is alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylthio, alky-sulfoxide, arylsulfide, alkylsulfide, aryloxy, alkylxoxo, amide, ester, alkoy, cyano, aryl, or heteroaryl. In a further embodiment, R² is substituted or unsubstituted alkoxy, or substituted or unsubstituted aralkoxy. In a further embodiment, R² is substituted or unsubstituted alkyl, or substituted or unsubstituted heteroalkyl. In a further embodiment, R² is substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocycloalkyl. In a further embodiment, R² is substituted or unsubstituted cycloalkylalkyl, or substituted or unsubstituted heterocycloalkylalkyl. In a further embodiment, R² is substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroarylalkyl. In a further embodiment, R² is spiro-cycloalkyl-heterocycloalkyl. In a further embodiment, R² is -alkylene-S(=0)R⁹, or -alkylene-S(=0)₂R⁹. In a further embodiment, R² is -alkylene-S(=0)₃R⁹ wherein alkylene is -CH₂-, -CH₂CH₂-, or -CH₂CH₂CH₂-. In a further embodiment, R² is -alkylene-S(=0)₄R⁹ wherein alkylene is -CH₂-, -CH₂CH₂-, or -CH₂CH₂CH₂-. In a further embodiment, R² is methyl. In a further embodiment, R² is ethyl. In a further embodiment, R² is propyl. In a further embodiment, R² is isopropyl. In a further embodiment, R² is substituted or unsubstituted cycloalkyl. In a further embodiment, R² is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. In a further embodiment, R² is substituted or unsubstituted heterocycloalkyl. In a further embodiment, R² is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In a further embodiment, R² is -S(=0)₂R⁹.

[0090] In a further embodiment of any of the aforementioned embodiments, R¹ is H. In a further embodiment of any of the aforementioned embodiments, R¹ is substituted or unsubstituted alkyl. In a further embodiment, R¹ is methyl. In a further embodiment, R¹ is ethyl. In a further embodiment, R¹ is propyl. In a further embodiment, R¹ is isopropyl.

[0091] In a further aspect is a compound having the structure:
In another embodiment, are compounds having the structure of Formula V or pharmaceutically acceptable salt or N-oxide thereof:

wherein:

- ring T is an aryl or a heteroaryl ring;
- \(R^1 \) is H, or substituted or unsubstituted alkyl;
- \(R^2 \) is alkoxy, aralkoxy, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted alkylheteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl,
substituted or unsubstituted heterocycloalkylalkyl, spiro -cycloalkyl-heterocycloalkyl, -alkylene-
S(=0)R, -alkylene-S(=0)2R, -S(=0)2R;

R is H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, a substituted or
unsubstituted cycloalkylalkyl, substituted or unsubstituted cycloalkyl, a substituted or
unsubstituted heterocycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or
unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl,
or substituted or unsubstituted heteroarylalkyl;

R is -S(=0)R, (R) -S(=0)R, (S) -S(=0)R, or -S(=0)2R.

each R is independently halogen, -CN, -N02, -OH, -OCF3, -OCH2F, -OCH2H, -CF3, -SR, -
-NR(=O)2, -S(=O)2N(R’), -S(=O)2R, -S(=0)2R, -C(=O)R, -OC(=O)R, -C02R, -
-N(R’2), -C(=O)N(R’), -NR(=O)2, -NR(=O)2 R, -NR(=O)2 R, -NR(=O)2 R, -NR(=O)2 R, substituted
or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted
heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted
cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R is independently H or R;

each R is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl,
substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or
unsubstituted heteroaryl;

each R is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or a
substituted or unsubstituted heteroaryl; or two R, together with the atoms to which they are
attached form a heterocycle; and

s is 0 to 4.

[0093] In other embodiments are compounds having the structure of Formula VI or pharmaceutically
acceptable salt or N-oxide thereof:

![Formula VI](image)

wherein:

ring T is an aryl or heteroaryl ring;

R is H, or substituted or unsubstituted alkyl;

R is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or
unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl-
heterocycloalkyl, -alkylene-S(=O)R₉, -alkylene-S(=O)₂R₉, -S(=O)R₉;
R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or
unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted
aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted
or unsubstituted heteroarylalkyl;
R⁴ is -S(=O)R₉, (r) -S(=O)R₉, (s) -S(=O)₂R₉, substituted or unsubstituted cycloalkyl,
substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl attached to ring T via a
carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to ring T via a
carbon atom of R⁴;
each R⁵ is independently halogen, -CN, -NOR₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR₉, -
NR(⁰)S(=O)R₉, -S(=O)₂N(R(⁰)₂), -S(=O)R₉, -S(=O)₂R₉, -C(=O)R₉, -OC(=O)R₉, -CO₂R₉,
-N(R(⁰)₂), -C(=O)N(R(⁰)₂), -NR(⁰)C(=O)R₉, -R(⁰)OR, -NR(⁰)C(=O)N(R(⁰)₂), substituted or
unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted
teroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted
cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R⁸ is independently H or R⁹;
each R⁹ is independently substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or
unsubstituted heteroaryl;
each R(⁰) is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or
unsubstituted heteroaryl; or two R(⁰), together with the atoms to which they are
attached form a heterocycle; and
s is 0-4.

In other embodiments are compounds having the structure of Formula VII or pharmaceutically
acceptable salt or N-oxide thereof:
wherein:

ring \(T \) is an aryl or heteroaryl ring;

- \(R^1 \) is \(H \), or substituted or unsubstituted alkyl;
- \(R^2 \) is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro -cycloalkyl-heterocycloalkyl, -alkylene-S(=0)R, -alkylene-S(=0)2R9, -S(=0)2R9;
- \(R^3 \) is \(H \), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;
- \(R^4 \) is \(-S(=0)R^9\), \((r) -S(=0)R^9\), \((5) -S(=0)R^9\), \(-S(=0)2R^9\), substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl attached to ring \(T \) via a carbon atom of \(R^4 \), or substituted or unsubstituted heterocycloalkyl attached to ring \(T \) via a carbon atom of \(R^4 \);
- each \(R^5 \) is independently halogen, \(-CN\), \(-NO_2\), \(-OH\), \(-OCF_3\), \(-OCH_2F\), \(-OCF_2H\), \(-CF_3\), \(-SR^8\), \(-NR^0S(=O)2R^9\), \(-S(=O)2N(R^0)2\), \(-S(=O)R^9\), \(-S(=O)2R^9\), \(-C(=0)R^9\), \(-OC(=0)R^9\), \(-C0_2R^8\), \(-N(R^0)2\), \(-C(=0)N(R^0)2\), \(-NR^0C(=0)R^10\), \(-NRC(=0)OR^10\), \(-NR^0C(=0)N(R^0)2\), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
- each \(R^8 \) is independently \(H \) or \(R^9 \);
- each \(R^9 \) is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
- each \(R^{10} \) is independently \(H \), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two \(R^{10} \), together with the atoms to which they are attached form a heterocycle; and

\(s \) is 0-4.

In other embodiments are compounds having the structure of Formula VIII or pharmaceutically acceptable salt or N-oxide thereof:
Formula VIII;

wherein:

ring T is an aryl or heteroaryl ring;

R₁ is H, or substituted or unsubstituted alkyl;

R₂ is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro -cycloalkyl-heterocycloalkyl, -alkylene-S(=0)R, -alkylene-S(=0)₂R, -S(=0)₂R⁹;

R₃ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylamylalkyl;

R₄ is -S(=0)R, (R) -S(=0)R, (5) -S(=0)₂R, -S(=0)₂R⁹, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl attached to ring T via a carbon atom of R₄, or substituted or unsubstituted heterocycloalkyl attached to ring T via a carbon atom of R₄;

each R⁵ is independently halogen, -CN, -NO₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR, -NR(S(=0)O)₂R, -N(S(=0)O)₂N(R(=O))₂, -S(=O)R, -S(=O)₂R, -C(=O)R, -OC(=O)R, -CO₂R, -N(R(=O))₂, -N(C(=O)N(R(=O))₂, -NR(=O)C(=O)R, -NR(=O)C(=O)OR, -NR(=O)C(=O)N(R(=O))₂, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R⁶ is independently H or R⁹;

each R⁹ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R¹⁰ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or
substituted or unsubstituted heteroaryl; or two \(R^1 \), together with the atoms to which they are attached form a heterocycle; and

\(s \) is 0-4.

[0096] While compounds and compositions of the present disclosure are described herein under Formula I-IV, other compounds, such as compounds of Formula I-IV in which \(R_2 \) is an alkyl substituted with hydroxyl, methoxy, thiol, thiomethoxy, and halogen described in the concurrently filed PCT application (Docket No. 36367-724.602), are also suitable for the method of treating a proliferative disorder described herein. Although those compounds (disclosed in the concurrently filed PCT application) are not intended to be part of the present disclosure directed to chemical compounds or compositions, they are part of the present disclosure directed to method of treating proliferative disorders.

[0097] Provided herein, in some embodiments, are methods for treating a cell proliferative disorder, wherein the method comprises administering to an individual in need thereof a therapeutically effective amount of a compound having the structure of Formula A, Formula B, or Formula C, or a pharmaceutically acceptable salt or N-oxide thereof:

\[
\text{Formula A} \\
\text{Formula B} \\
\text{Formula C}
\]

wherein:

- ring \(T \) is an aryl or heteroaryl ring;
- \(R^1 \) is \(H \), or substituted or unsubstituted alkyl;
- \(R^2 \) is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl-heterocycloalkyl, -alkylene-S(=0)R^9, -alkylene-S(=0) _2R^9, -S(=0) _2R^9;
- \(R^3 \) is \(H \), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryalkyl;
- \(R^4 \) is substituted or unsubstituted heteroaryl attached to ring \(T \) or the phenyl ring via a carbon atom of \(R^4 \), or substituted or unsubstituted heterocycloalkyl attached to ring \(T \) or the phenyl ring via a carbon atom of \(R^4 \).
each R^5 is independently halogen, -CN, -NO_2, -OH, -OCF_3, -OCH_2F, -OCF_3H, -CF_3, -SR^8, -
NR^6S(=O)R^9, -S(=O)_2NR^6, -S(=O)R^9, -S(=O)C(=O)R^9, -OC(=O)R^9, -C0_2R^9, -
-N(R^6)_2, -C(=O)N(R^6)_2, -NR^6C(=O)R^9, -N(C(=O)O)R^9, -NR^6C(=O)N(R^6)_2, substituted
or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted
heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted
cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R^8 is independently H or R^9;
each R^9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R^10 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R^10, together with the atoms to which they are
attached form a heterocycle; and s is 0-4.

[0098] In some embodiments of the method of treating a cell proliferative disorder, the compound has
the structure of Formula A or pharmaceutically acceptable salt or N-oxide thereof:

![Formula A](image)

wherein:
ring T is an aryl or heteroaryl ring;
R^1 is H, or substituted or unsubstituted alkyl;
R^2 is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or
unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl-
heterocycloalkyl, alkylene-S(=O)R^9, alkylene-S(=O)R^9, alkylene-S(=O)R^9;
R^3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or
unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted
cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted
aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted
or unsubstituted heteroarylalkyl;
R^4 is substituted or unsubstituted heteroaryl attached to ring T via a carbon atom of R^4, or
substituted or unsubstituted heterocycloalkyl attached to ring T via a carbon atom of R^4;
each R^5 is independently halogen, -CN, -N=O, -OH, -OCF_3, -OCH_2F, -OCF_2H, -CF_3, -SR^8, -
NR^6S(=O)R^9, -S(=O)=N(R^9), -S(=O)=NR^9, -S(=O)_2, -C(=O)R^9, -C(=O)=CR^9, -OC(=0)R^9, -C0_2R^9,
-N(R^9), -C(=O)N(R^9), -NR^6C(=O)R^10, -N R^6C(=O)OR^9, -NR^6C(=O)N(R^9), substituted or
unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted
heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted
cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R^9 is independently H or R^9;
each R^9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl,
substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or
unsubstituted heteroaryl;
each R^9 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or
substituted or unsubstituted heteroaryl; or two R^9, together with the atoms to which they are
attached form a heterocycle; and
s is 0-4.

[0099] In one embodiment is a compound of Formula A wherein ring T is aryl. In a refinement, aryl is
phenyl. In another refinement, aryl is naphthalene.

[0100] In one embodiment, ring T of Formula A is selected from pyrrolyl, furanyl, thiophenyl,
pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-
diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl,
1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl,
indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some
embodiments, ring T is pyrrolyl. In some embodiments, ring T is furanyl. In some embodiments, ring T is
thiophenyl. In some embodiments, ring T is pyrazolyl. In some embodiments, ring T is imidazolyl. In
some embodiments, ring T is isoxazolyl. In some embodiments, ring T is oxazolyl. In some embodiments,
ring T is isothiazolyl. In some embodiments, ring T is thiazolyl. In some embodiments, ring T is 1,2,3-
triazolyl. In some embodiments, ring T is 1,3,4-triazolyl. In some embodiments, ring T is 1-oxa-2,3-
diazolyl. In some embodiments, ring T is 1-oxa-2,4-diazolyl. In some embodiments, ring T is 1-oxa-2,5-
diazolyl. In some embodiments, ring T is 1-oxa-3,4-diazolyl. In some embodiments, ring T is 1-thia-2,3-
diazolyl. In some embodiments, ring T is 1-thia-2,4-diazolyl. In some embodiments, ring T is 1-thia-2,5-
diazolyl. In some embodiments, ring T is 1-thia-3,4-diazolyl. In some embodiments, ring T is tetrazolyl. In
some embodiments, ring T is pyridinyl. In some embodiments, ring T is pyridazinyl. In some
embodiments, ring T is pyrimidinyl. In some embodiments, ring T is pyrazinyl. In some embodiments, ring
T is triazinyl. In some embodiments, ring T is indolyl. In some embodiments, ring T is benzofuranyl. In
some embodiments, ring T is benzimidazolyl. In some embodiments, ring T is indazolyl. In some
embodiments, ring T is pyrrolopyridinyl. In some embodiments, ring T is imidazopyridinyl.

[00101] In another embodiment, R⁴ in Formula A is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the Ci-C₆alkyl is methyl, ethyl, or n-propyl.

[00102] In one embodiment, R⁴ in Formula A is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, R⁴ is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzo(i)uranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R⁴ is a C-linked pyrrolyl. In some embodiments, R⁴ is a C-linked furanyl. In some embodiments, R⁴ is a C-linked thiophenyl. In some embodiments, R⁴ is a C-linked pyrazolyl. In some embodiments, R⁴ is a C-linked imidazolyl. In some embodiments, R⁴ is a C-linked oxazolyl. In some embodiments, R⁴ is a C-linked isothiazolyl. In some embodiments, R⁴ is a C-linked thiazolyl. In some embodiments, R⁴ is a C-linked 1,2,3-triazolyl. In some embodiments, R⁴ is a C-linked 1,3,4-triazolyl. In some embodiments, R⁴ is a C-linked 1-oxa-2,3-diazolyl. In some embodiments, R⁴ is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, R⁴ is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, R⁴ is a C-linked 1-oxa-3,4-diazolyl. In some embodiments, R⁴ is a C-linked 1-thia-2,3-diazolyl. In some embodiments, R⁴ is a C-linked 1-thia-2,4-diazolyl. In some embodiments, R⁴ is a C-linked 1-thia-2,5-diazolyl. In some embodiments, R⁴ is a C-linked 1-thia-3,4-diazolyl. In some embodiments, R⁴ is a C-linked tetrazolyl. In some embodiments, R⁴ is a C-linked pyridinyl. In some embodiments, R⁴ is a C-linked pyridazinyl. In some embodiments, R⁴ is a C-linked pyrimidinyl. In some embodiments, R⁴ is a C-linked pyrazinyl. In some embodiments, R⁴ is a C-linked triazinyl. In some embodiments, R⁴ is a C-linked indolyl. In some embodiments, R⁴ is a C-linked benzofuranyl. In some embodiments, R⁴ is a C-linked benzimidazolyl. In some embodiments, R⁴ is a C-linked indazolyl. In some embodiments, R⁴ is a C-linked pyrrolopyridinyl. In some embodiments, R⁴ is a C-linked imidazopyridinyl.

-NR\(^{10}\)C(=0)N(R\(^{10}\))\(_2\), -OR\(^{10}\), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with C\(_1\)-Calkyl. In another embodiment, C\(_1\)-Calkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

[00104] In another embodiment, the compound of Formula A has the structure of Formula A1:

![Formula A1](image)

wherein ring T, R\(^1\), R\(^2\), R\(^3\), R\(^4\), R\(^5\), and s are described previously.

[00105] In another embodiment, the compound of Formula A has the structure of Formula A2:

![Formula A2](image)

wherein ring T, R\(^1\), R\(^2\), R\(^3\), R\(^4\), R\(^5\) are described previously and s is 0-3.

[00106] In another embodiment, the compound of Formula A has the structure of Formula A3:

![Formula A3](image)

wherein:

ring T is an aryl or heteroaryl ring;
R is H, or substituted or unsubstituted alkyl;
R is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;
R is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;
R is substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl attached to ring T via a carbon atom of R, or substituted or unsubstituted heterocycloalkyl attached to ring T via a carbon atom of R;
each R is independently halogen, -CN, -N02, -OH, -OCF3, -OCH2F, -OCF3H, -CF3, -SR, -NR(S(=O))2R, -S(=O)2R, -S(=O)R, -S(=O)2R, -S(=O)R, -OC(=O)R, -C(=O)R, -CO2R, -N(R)=C(=O)N(R), -NR=C(=O)R, -N(R)=C(=O)OR, -NR=C(=O)N(R), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, or substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, or substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R is independently H or R0;
each R is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryl;
each R is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryl;
each R is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryl; or two R, together with the atoms to which they are attached form a heterocycle; and
s is 0-4.

[00107] In one embodiment a compound of Formula A3 wherein ring T is aryl. In a refinement, aryl is phenyl. In another refinement, aryl is naphthalene.

[00108] In one embodiment, ring T in Formula A3 is selected from pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoaxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl,
indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, ring T is pyrrolyl. In some embodiments, ring T is furanyl. In some embodiments, ring T is thiophenyl. In some embodiments, ring T is pyrazolyl. In some embodiments, ring T is imidazolyl. In some embodiments, ring T is isoxazolyl. In some embodiments, ring T is oxazolyl. In some embodiments, ring T is isothiazolyl. In some embodiments, ring T is thiazolyl. In some embodiments, ring T is 1,2,3-triazolyl. In some embodiments, ring T is 1,3,4-triazolyl. In some embodiments, ring T is 1-oxa-2,3-diazolyl. In some embodiments, ring T is 1-oxa-2,4-diazolyl. In some embodiments, ring T is 1-oxa-2,5-diazolyl. In some embodiments, ring T is 1-thia-2,3-diazolyl. In some embodiments, ring T is 1-thia-2,4-diazolyl. In some embodiments, ring T is 1-thia-2,5-diazolyl. In some embodiments, ring T is 1-thia-3,4-diazolyl. In some embodiments, ring T is tetrazolyl. In some embodiments, ring T is pyridinyl. In some embodiments, ring T is pyridazinyl. In some embodiments, ring T is pyrimidinyl. In some embodiments, ring T is pyrazinyl. In some embodiments, ring T is triazinyl. In some embodiments, ring T is indolyl. In some embodiments, ring T is benzofuranyl. In some embodiments, ring T is benzimidazolyl. In some embodiments, ring T is indazolyl. In some embodiments, ring T is pyrrolopyridinyl. In some embodiments, ring T is imidazopyridinyl.

[00109] In another embodiment, R^4 in Formula A3 is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuran, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the CpCealkyl is methyl, ethyl, or n-propyl.

[00110] In another embodiment, R^4 in Formula A3 is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, R^4 is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R^4 is a C-linked pyrrolyl. In some embodiments, R^4 is a C-linked furanlyl. In some embodiments, R^4 is a C-linked thiophenyl. In some embodiments, R^4 is a C-linked pyrazolyl. In some embodiments, R^4 is a C-linked imidazolyl. In some embodiments, R^4 is a C-linked isoxazolyl. In some embodiments, R^4 is a C-linked oxazolyl. In some embodiments, R^4 is a C-linked isothiazolyl. In some embodiments, R^4 is a C-linked thiazolyl. In some embodiments, R^4 is a C-linked 1,2,3-triazolyl. In some embodiments, R^4 is a C-linked 1,3,4-triazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,3-diazolyl. In some embodiments, R^4
is a C-linked l-oxa-2,4-diazolyl. In some embodiments, R₄ is a C-linked l-oxa-2,5-diazolyl. In some embodiments, R₄ is a C-linked l-thia-2,3-
diazolyl. In some embodiments, R₄ is a C-linked l-thia-2,4-diazolyl. In some embodiments, R₄ is a C-
linked l-thia-2,5-diazolyl. In some embodiments, R₄ is a C-
linked l-thia-3,4-diazolyl. In some embodiments, R₄ is a C-linked tetazolyl. In some embodiments, R₄ is a C-linked pyridazinyl. In some embodiments, R₄ is a C-linked pyrimidinyl. In some
embodiments, R₄ is a C-linked pyrazinyl. In some embodiments, R₄ is a C-linked triazinyl. In some
embodiments, R₄ is a C-linked imidazolyl. In some embodiments, R₄ is a C-linked benzimidazolyl. In some
embodiments, R₄ is a C-linked pyrrolopyridinyl. In some embodiments, R₄ is a C-linked indazolyl. In some
embodiments, R₄ is a C-linked l-thia-3,4-diazolyl.

[00111] In another embodiment, wherein R₄ in Formula A3 is a C-linked heteroaryl substituted with at
least one group selected from halogen, -CN, -NO₂, -OH, -SR₈, -S(=0)R₉, -S(=0)₂R₉, NR₈S(=O)₂R₉,
-S(O)₂N(R₈)₂, -C(=0)R₈, -OC(=0)R₈, -CO₂R₁₀, -N(R₈)₂, -C(=O)N(R₈)₂, -NR₈C(=O)R₁₀,
-NR₈C(=O)OR₁₀, -NR₈C(=O)N(R₈)₂, -OR₁₀, a substituted or unsubstituted alkyl, a substituted or
unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or
a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted
with Ci-C₆alkyl. In another embodiment, Ci-C₆alkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-
butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another
embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked
heteroaryl is substituted with n-propyl or iso-propyl.

[00112] In another embodiment, R₄ in Formula A3 is a substituted or unsubstituted cycloalkyl. In a
further embodiment, cycloalkyl is selected from cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In a
further embodiment, R₄ is cyclopentyl. In another embodiment, R₄ is cyclohexyl.

[00113] In another embodiment, R₄ in Formula A3 is a substituted or unsubstituted aryl. In another
embodiment, R₄ in Formula A3 is a substituted or unsubstituted phenyl.

[00114] In some embodiments of the method of treating a cell proliferative disorder, the compound has
the structure of Formula B or pharmaceutically acceptable salt or N-oxide thereof:

![Formula B](image)

wherein:

R¹ is H, or substituted or unsubstituted alkyl;

R² is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or
unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl-heterocycloalkyl, -alkylene-S(=O)R⁹, -alkylene-S(=O)₂R⁹, -S(=O)R⁹;

R⁴ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;

R⁴ is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R⁴;

each R⁵ is independently halogen, -CN, -NO₂, -OH, -OCF₃, -OCH₂F, -OCF₃H, -CF₃, -SR⁸, -NR₁⁰S(=O)R⁹, -S(=O)N(R₁⁰)₂, -S(=O)₂R⁹, -S(=O)₃R⁹, -C(=O)R⁹, -OC(=O)R⁹, -C(O)₂R₆⁶, -N(R₁⁰)₂, -C(=O)N(R₁⁰)₂, -NR₁⁰C(=O)R₆⁶, -N R₁⁰C(=O)OR₆⁶, -NR₁⁰C(=O)N(R₁⁰)₂; substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R⁶ is independently H or R⁹;

each R⁹ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R₁⁰ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R₁⁰, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

[00115] In one embodiment, R⁴ in Formula B is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholiny, or piperaziny. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholiny. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the C₁-Cealkyl is methyl, ethyl, or n-propyl.
In another embodiment, R^4 in Formula B is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, R^4 is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R^4 is a C-linked pyrrolyl. In some embodiments, R^4 is a C-linked furanyl. In some embodiments, R^4 is a C-linked thiophenyl. In some embodiments, R^4 is a C-linked pyrazolyl. In some embodiments, R^4 is a C-linked imidazolyl. In some embodiments, R^4 is a C-linked oxazolyl. In some embodiments, R^4 is a C-linked isothiazolyl. In some embodiments, R^4 is a C-linked thiazolyl. In some embodiments, R^4 is a C-linked 1,2,3-triazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,3-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,3-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,4-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-2,5-diazolyl. In some embodiments, R^4 is a C-linked 1-thia-3,4-diazolyl. In some embodiments, R^4 is a C-linked tetrazolyl. In some embodiments, R^4 is a C-linked pyridinyl. In some embodiments, R^4 is a C-linked pyridazinyl. In some embodiments, R^4 is a C-linked pyrimidinyl. In some embodiments, R^4 is a C-linked pyrazinyl. In some embodiments, R^4 is a C-linked triazinyl. In some embodiments, R^4 is a C-linked indolyl. In some embodiments, R^4 is a C-linked benzo furanyl. In some embodiments, R^4 is a C-linked benzimidazolyl. In some embodiments, R^4 is a C-linked indazolyl. In some embodiments, R^4 is a C-linked pyrrolopyridinyl. In some embodiments, R^4 is a C-linked imidazopyridinyl. In another embodiment, R^4 in Formula B is a C-linked heteroaryl substituted with at least one group selected from halogen, -CN, -N(O)R, -OH, -SR, -S(=0)OR, -S(=0)R, -S(=0)NR, -SR, -S(=0)NR, -C(=0)R, -COOR, -N(=0)C(=0)R, -N(=0)R, -N(=0)OR, -N(=0)NR, a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with C_1-Calkyl. In another embodiment, C_1-Calkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

In some embodiments of the method of treating a cell proliferative disorder, the compound has the structure of Formula C or pharmaceutically acceptable salt or N-oxide thereof:
wherein:

R\(^1\) is H, or substituted or unsubstituted alkyl;

R\(^2\) is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl-\(\text{heterocycloalkyl}\), -alkylene-S(=O)R\(^9\), -alkylene-S(=O)\(_2\)R\(^9\), -S(=O)\(_2\)R\(^9\);

R\(^3\) is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylcycloalkyl;

R\(^4\) is substituted or unsubstituted heteroaryl attached to the phenyl ring via a carbon atom of R\(^4\), or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R\(^4\);

each R\(^5\) is independently halogen, -CN, -NO\(_2\), -OH, -OCF\(_3\), -OCH\(_2\)F, -OCF\(_2\)H, -CF\(_3\), -SR\(^8\), -NR\(^0\)S(=O)\(_2\)R\(^9\), -S(=O)\(_2\)N\(_2\)R\(^9\), -S(=O)R\(^9\), -S(=O)\(_2\)R\(^9\), -C(=O)R\(^9\), -OC(=O)R\(^9\), -CO\(_2\)R\(^9\), -N\(_2\)R\(^9\), -C(=O)N\(_2\)R\(^9\), -NR\(^0\)C(=O)R\(^10\), -NR\(^0\)C(=O)OR\(^9\), -NR\(^0\)C(=O)N\(_2\)R\(^9\), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R\(^8\) is independently H or R\(^9\);

each R\(^9\) is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R\(^0\) is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R\(^0\), together with the atoms to which they are attached form a heterocycle; and

s is 0-4.
In one embodiment, **R</sup>4 in Formula C is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyll. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrothiopyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the C₁-Cealkyl is methyl, ethyl, or n-propyl.

In another embodiment, **R</sup>4 in Formula C is a substituted or unsubstituted C-linked heteroaryl. In one embodiment, **R</sup>4 is selected from a C-linked pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolypyridinyl, and imidazopyridinyl. In some embodiments, **R</sup>4 is a C-linked pyrrolyl. In some embodiments, **R</sup>4 is a C-linked furanyl. In some embodiments, **R</sup>4 is a C-linked thiophenyl. In some embodiments, **R</sup>4 is a C-linked pyrazolyl. In some embodiments, **R</sup>4 is a C-linked imidazolyl. In some embodiments, **R</sup>4 is a C-linked isoxazolyl. In some embodiments, **R</sup>4 is a C-linked oxazolyl. In some embodiments, **R</sup>4 is a C-linked isothiazolyl. In some embodiments, **R</sup>4 is a C-linked thiazolyl. In some embodiments, **R</sup>4 is a C-linked 1,2,3-triazolyl. In some embodiments, **R</sup>4 is a C-linked 1,3,4-triazolyl. In some embodiments, **R</sup>4 is a C-linked 1-oxa-2,3-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-oxa-2,4-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-oxa-2,5-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-oxa-3,4-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-thia-2,3-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-thia-2,4-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-thia-2,5-diazolyl. In some embodiments, **R</sup>4 is a C-linked 1-thia-3,4-diazolyl. In some embodiments, **R</sup>4 is a C-linked tetrazolyl. In some embodiments, **R</sup>4 is a C-linked pyridinyl. In some embodiments, **R</sup>4 is a C-linked pyridazinyl. In some embodiments, **R</sup>4 is a C-linked pyrimidinyl. In some embodiments, **R</sup>4 is a C-linked pyrazinyl. In some embodiments, **R</sup>4 is a C-linked triazinyl. In some embodiments, **R</sup>4 is a C-linked indolyl. In some embodiments, **R</sup>4 is a C-linked benzofuranyl. In some embodiments, **R</sup>4 is a C-linked benzimidazolyl. In some embodiments, **R</sup>4 is a C-linked indazolyl. In some embodiments, **R</sup>4 is a C-linked pyrrolypyridinyl. In some embodiments, **R</sup>4 is a C-linked imidazopyridinyl.

In another embodiment, **R</sup>4 in Formula C is a C-linked heteroaryl substituted with at least one group selected from halogen, -CN, -NO₂, -OH, -SRⁱ, -S(=0)(=0)R^j, -S(=0)Rⁱ, NR^k≡S(=O)(=0)R^j, -S(=0)N(Rⁱ)₂, -C≡CR^j, -OC(=0)Rⁱ, -C≡O, -N(Rⁱ)₂, -C≡(O)N(Rⁱ)₂, -NRⁱ≡C≡(O)R^j, -NRⁱ≡C≡(O)R^j, -ORⁱ, -NRⁱ≡C≡(O)N(Rⁱ)₂, -ORⁱ, a substituted or unsubstituted alkyl, a substituted or unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl.
unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted with C1-Calkyl. In another embodiment, C1-Calkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked heteroaryl is substituted with n-propyl or iso-propyl.

[00122] In another embodiment, the compound of Formula C has the structure of Formula CI:

![Formula CI](image)

wherein R1, R2, R3, R4, R5 are described previously and s is 0-3.

[00123] In another embodiment, the compound of Formula C has the structure of Formula C2:

![Formula C2](image)

wherein R1, R2, R3, R4, R5 are described previously and s is 0-2.

[00124] In some embodiments of the method of treating a cell proliferative disorder, the compound has the structure of Formula D or pharmaceutically acceptable salt or N-oxide thereof:

![Formula D](image)

wherein:

R1 is H, or substituted or unsubstituted alkyl;
R2 is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted
cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro -cycloalkylheterocycloalkyl, -alkylene-S(=0)R, -alkylene-S(=0)2R, -S(=0)2R;

R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaryllalkyl;

R4 is substituted or unsubstituted 6-membered monocyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R4, substituted or unsubstituted bicyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R4, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R4;

each R6 is independently halogen, -CN, -NO2, -OH, -OCF3, -OCH2F, -OCH2H, -CF3, -SR8, -NR6S(=0)R9, -S(=O)2N(R6)2, -S(=O)2R9, -S(=0)R9, -C(=0)R9, -OC(=0)R9, -CO2R9, -NR6C(=0)R9, -NR6C(=0)N(R6)2, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R8 is independently H or R9;

each R9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R0 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R0, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

[00125] In one embodiment, R4 in Formula D is a substituted or unsubstituted C-linked heterocycloalkyl. In a further embodiment, the C-linked heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl. In some embodiments, the C-linked heterocycloalkyl is pyrrolidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydrofuranyl. In some embodiments, the C-linked heterocycloalkyl is piperidinyl. In some embodiments, the C-linked heterocycloalkyl is tetrahydropyranyl. In some embodiments, the C-linked heterocycloalkyl is morpholinyl. In some embodiments, the C-linked heterocycloalkyl is piperazinyl. In a further embodiment, the C-linked
heterocycloalkyl is substituted with at least one CpCealkyl or halogen. In another embodiment, the C₇-
Cealkyl is methyl, ethyl, or n-propyl.

[00126] In another embodiment, R⁴ in Formula D is a substituted or unsubstituted C-linked 6-membered
monocyclic heteroaryl ring. In some embodiments, R⁴ is selected from a C-linked pyridine, pyridazinyl,
pyrimidinyl, pyrazinyl, and triazinyl. In some embodiments, R⁴ is a C-linked pyridinyl. In some
embodiments, R⁴ is a C-linked pyridazinyl. In some embodiments, R⁴ is a C-linked pyrimidinyl. In some
embodiments, R⁴ is a C-linked pyrazinyl. In some embodiments, R⁴ is a C-linked triazinyl.

[00127] In another embodiment, R⁴ in Formula D is a substituted or unsubstituted C-linked bicyclic
heteroaryl ring. In some embodiments, R⁴ is selected from a C-linked indolyl, benzofuranyl,
benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl. In some embodiments, R⁴ is a C-linked
indolyl. In some embodiments, R⁴ is a C-linked benzofuranyl. In some embodiments, R⁴ is a C-linked
benzimidazolyl. In some embodiments, R⁴ is a C-linked indazolyl. In some embodiments, R⁴ is a C-linked
pyrrolopyridinyl. In some embodiments, R⁴ is a C-linked imidazopyridinyl.

[00128] In another embodiment, R¹ in Formula D is a C-linked 6-membered monocyclic heteroaryl ring
substituted with at least one group selected from halogen, -CN, -N⁰, -OH, -SR, -S(=0)R, -S(=0)₂R,
-NR(⁰)C(=O)OR, -NR(⁰)C(=O)N(⁰)R, -OR, a substituted or unsubstituted alkyl, a substituted or
unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or
a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted
with Ci-C₇alkyl. In another embodiment, Ci-Cealkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-
butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another
embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked
heteroaryl is substituted with n-propyl or iso-propyl.

[00129] In another embodiment, R⁴ in Formula D is a C-linked bicyclic heteroaryl ring substituted with
at least one group selected from halogen, -CN, -N⁰, -OH, -SR, -S(=0)R, -S(=0)₂R, NR(⁰)S(=O)R,
-S(=O)₂N(⁰)R, -C(=O)R, -OC(=O)R, -C(=O)N(⁰)R, -NR(⁰)C(=O)R, -NR(⁰)C(=O)OR,
-NR(⁰)C(=O)OR, -NR(⁰)C(=O)N(⁰)R, -OR, a substituted or unsubstituted alkyl, a substituted or
unsubstituted alkoxy, a substituted or unsubstituted heteroalkyl, a substituted or unsubstituted cycloalkyl, or
a substituted or unsubstituted heterocycloalkyl. In one embodiment, the C-linked heteroaryl is substituted
with Ci-C₇alkyl. In another embodiment, Ci-Cealkyl is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-
butyl, or tert-butyl. In a further embodiment, the C-linked heteroaryl is substituted with methyl. In another
embodiment, the C-linked heteroaryl is substituted with ethyl. In a further embodiment, the C-linked
heteroaryl is substituted with n-propyl or iso-propyl.

[00130] In some embodiments of the method for treating a cell proliferative disorder, the compound
having the structure of Formula A is selected from:
Various chemical structures are shown, each representing different compounds with varying functional groups and substituents. The structures include cyclic and linear backbones with attached amino groups (NH₂) and other functional groups such as chlorine (Cl) and oxygen (O). The structures vary in complexity, with some featuring multiple rings and others having simpler, linear configurations.
In certain embodiments, compounds described herein have one or more chiral centers. As such, all stereoisomers are envisioned herein. In various embodiments, compounds described herein are present in optically active or racemic forms. It is to be understood that the compounds described herein encompass racemic, optically-active, regioisomeric and stereoisomeric forms, or combinations thereof that possess the therapeutically useful properties described herein. Preparation of optically active forms is achieved in any suitable manner, including by way of non-limiting example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase. In some embodiments, mixtures of one or more isomers is utilized as the therapeutic compound described herein. In certain embodiments, compounds described herein contains one or more chiral centers. These compounds are prepared by any means, including enantioselective synthesis and/or separation of a mixture of enantiomers and/or diastereomers. Resolution of compounds and isomers thereof is achieved by any means including, by way of non-limiting example, chemical processes, enzymatic processes, fractional crystallization, distillation, chromatography, and the like.

In various embodiments, pharmaceutically acceptable salts described herein include, by way of non-limiting example, a nitrate, chloride, bromide, phosphate, sulfate, acetate, hexafluorophosphate, citrate, gluconate, benzoate, propionate, butyrate, subsalicylate, maleate, laurate, malate, fumarate, succinate, tartrate, amsonate, pamoate, p-toluenesulfonate, mesylate and the like. Furthermore, pharmaceutically acceptable salts include, by way of non-limiting example, alkaline earth metal salts (e.g., calcium or magnesium), alkali metal salts (e.g., sodium-dependent or potassium), ammonium salts and the like.

Compounds described herein also include isotopically-labeled compounds wherein one or more atoms is replaced by an atom having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes suitable for inclusion in the compounds described herein include and are not limited to 2H, 3H, 11C, 13C, 14C, 35Cl, 18F, 15N, 125I, 129I, 13N,
In some embodiments, isotopically-labeled compounds are useful in drug and/or substrate tissue distribution studies. In some embodiments, substitution with heavier isotopes such as deuterium affords certain therapeutic advantages resulting from greater metabolic stability (for example, increased in vivo half-life or reduced dosage requirements). In some embodiments, substitution with positron-emitting isotopes, such as 11C, 18F, 170 and 15N, is useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds are prepared by any suitable method or by processes using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed.

The compounds described herein, and other related compounds having different substituents are synthesized using techniques and materials described herein and as described, for example, in Fieser and Fieser’s Reagents for Organic Synthesis, Volumes 1-17 (John Wiley and Sons, 1991); Rodd’s Chemistry of Carbon Compounds, Volumes 1-5 and Supplemental (Elsevier Science Publishers, 1989); Organic Reactions, Volumes 1-40 (John Wiley and Sons, 1991), Larock’s Comprehensive Organic Transformations (VCH Publishers Inc., 1989), March, ADVANCED ORGANIC CHEMISTRY 4th Ed., (Wiley 1992); Carey and Sundberg, ADVANCED ORGANIC CHEMISTRY 4th Ed., Vols. A and B (Plenum 2000, 2001), and Green and Wuts, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS 3rd Ed., (Wiley 1999) (all of which are incorporated by reference for such disclosure). General methods for the preparation of compound as described herein are modified by the use of appropriate reagents and conditions, for the introduction of the various moieties found in the formula as provided herein. As a guide the following synthetic methods are utilized.

Compounds described herein are synthesized using any suitable procedures starting from compounds that are available from commercial sources, or are prepared using procedures described herein.

Formation of Covalent Linkages by Reaction of an Electrophile with a Nucleophile

The compounds described herein are modified using various electrophiles and/or nucleophiles to form new functional groups or substituents. Table A entitled “Examples of Covalent Linkages and Precursors Thereof” lists selected non-limiting examples of covalent linkages and precursor functional groups which yield the covalent linkages. Table A is used as guidance toward the variety of electrophiles and nucleophiles combinations available that provide covalent linkages. Precursor functional groups are shown as electrophilic groups and nucleophilic groups.
<table>
<thead>
<tr>
<th>Covalent Linkage Product</th>
<th>Electrophile</th>
<th>Nucleophile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxamides</td>
<td>Activated esters</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Carboxamides</td>
<td>acyl azides</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Carboxamides</td>
<td>acyl halides</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Esters</td>
<td>acyl halides</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Esters</td>
<td>acyl nitriles</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Carboxamides</td>
<td>acyl nitriles</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Imines</td>
<td>Aldehydes</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Hydrazones</td>
<td>aldehydes or ketones</td>
<td>Hydrazines</td>
</tr>
<tr>
<td>Oximes</td>
<td>aldehydes or ketones</td>
<td>Hydroxylamines</td>
</tr>
<tr>
<td>Alkyl amines</td>
<td>alkyl halides</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Esters</td>
<td>alkyl halides</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Thioethers</td>
<td>alkyl halides</td>
<td>Thiols</td>
</tr>
<tr>
<td>Ethers</td>
<td>alkyl halides</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Thioethers</td>
<td>alkyl sulfonates</td>
<td>Thiols</td>
</tr>
<tr>
<td>Esters</td>
<td>alkyl sulfonates</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Ethers</td>
<td>alkyl sulfonates</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Esters</td>
<td>Anhydrides</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Carboxamides</td>
<td>Anhydrides</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Thiophenols</td>
<td>aryl halides</td>
<td>Thiols</td>
</tr>
<tr>
<td>Aryl amines</td>
<td>aryl halides</td>
<td>Amines</td>
</tr>
<tr>
<td>Thioethers</td>
<td>Azindines</td>
<td>Thiols</td>
</tr>
<tr>
<td>Boronate esters</td>
<td>Boronates</td>
<td>Glycols</td>
</tr>
<tr>
<td>Carboxamides</td>
<td>carboxylic acids</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Esters</td>
<td>carboxylic acids</td>
<td>Alcohols</td>
</tr>
<tr>
<td>hydrazines</td>
<td>Hydrazides</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>N-acylureas or Anhydrides</td>
<td>carbodiimides</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Esters</td>
<td>diazaoalkanes</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Thioethers</td>
<td>Epoxides</td>
<td>Thiols</td>
</tr>
<tr>
<td>Thioethers</td>
<td>haloacetamides</td>
<td>Thiols</td>
</tr>
<tr>
<td>Ammotriazines</td>
<td>halotriazines</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Triazinyl ethers</td>
<td>halotriazines</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Amidines</td>
<td>imido esters</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Ureas</td>
<td>Isocyanates</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Urethanes</td>
<td>Isocyanates</td>
<td>alcohols/phenols</td>
</tr>
<tr>
<td>Covalent Linkage Product</td>
<td>Electrophile</td>
<td>Nucleophile</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Thioureas</td>
<td>isothiocyanates</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Thioethers</td>
<td>Maleimides</td>
<td>Thiol</td>
</tr>
<tr>
<td>Phosphite esters</td>
<td>phosphoramidites</td>
<td>Alcohols</td>
</tr>
<tr>
<td>Silyl ethers</td>
<td>silyl halides</td>
<td>Alcohols</td>
</tr>
<tr>
<td>Alkyl amines</td>
<td>sulfonate esters</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Thioethers</td>
<td>sulfonate esters</td>
<td>Thiols</td>
</tr>
<tr>
<td>Esters</td>
<td>sulfonate esters</td>
<td>carboxylic acids</td>
</tr>
<tr>
<td>Ethers</td>
<td>sulfonate esters</td>
<td>Alcohols</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>sulfonate esters</td>
<td>amines/anilines</td>
</tr>
<tr>
<td>Sulfonate esters</td>
<td>sulfonate esters</td>
<td>phenols/alkohols</td>
</tr>
</tbody>
</table>

Use of Protecting Groups

In the reactions described, it is necessary to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, in order to avoid their unwanted participation in reactions. Protecting groups are used to block some or all of the reactive moieties and prevent such groups from participating in chemical reactions until the protective group is removed. In some embodiments it is contemplated that each protective group be removable by a different means. Protective groups that are cleaved under totally disparate reaction conditions fulfill the requirement of differential removal.

In some embodiments, protective groups are removed by acid, base, reducing conditions (such as, for example, hydrogenolysis), and/or oxidative conditions. Groups such as trityl, dimethoxytrityl, acetal and t-butyldimethylsilyl are acid labile and are used to protect carboxy and hydroxy reactive moieties in the presence of amino groups protected with Cbz groups, which are removable by hydrogenolysis, and Fmoc groups, which are base labile. Carboxylic acid and hydroxy reactive moieties are blocked with base labile groups such as, but not limited to, methyl, ethyl, and acetyl in the presence of amines blocked with acid labile groups such as t-butyl carbamate or with carbamates that are both acid and base stable but hydrolytically removable.

In some embodiments carboxylic acid and hydroxy reactive moieties are blocked with hydrolytically removable protective groups such as the benzyl group, while amine groups capable of hydrogen bonding with acids are blocked with base labile groups such as Fmoc. Carboxylic acid reactive moieties are protected by conversion to simple ester compounds as exemplified herein, which include conversion to alkyl esters, or are blocked with oxidatively-removable protective groups such as 2,4-dimethoxybenzyl, while co-existing amino groups are blocked with fluoride labile silyl carbamates.

Allyl blocking groups are useful in the presence of acid- and base- protecting groups since the former are stable and are subsequently removed by metal or pi-acid catalysts. For example, an allyl-blocked carboxylic acid is deprotected with a Pd°-catalyzed reaction in the presence of acid labile t-butyl carbamate.
or base-labile acetate amine protecting groups. Yet another form of protecting group is a resin to which a compound or intermediate is attached. As long as the residue is attached to the resin, that functional group is blocked and does not react. Once released from the resin, the functional group is available to react.

[00141] Typically blocking/protecting groups are selected from:

![Diagram of various protecting groups]

Et t-butyl TBDMS Teoc Boc PMB trityl acetyl Fmoc

Certain Definitions

[00143] As used herein the term "Treatment", "treat", or "treating" includes achieving a therapeutic benefit and/or a prophylactic benefit. Therapeutic benefit is meant to include eradication or amelioration of the underlying disorder or condition being treated. For example, in an individual with Huntington's disease, therapeutic benefit includes alleviation or partial and/or complete halting of the progression of the disease, or partial or complete reversal of the disease. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological or psychological symptoms associated with the underlying condition such that an improvement is observed in the patient, notwithstanding the fact that the patient is still affected by the condition. For example, in an individual suffering from epilepsy, therapeutic benefit includes alleviation or partial and/or complete halting of seizures, or reduction in frequency of seizures. A prophylactic benefit of treatment includes prevention of a condition, retarding the progress of a condition, or decreasing the likelihood of occurrence of a condition. As used herein, "treat", "treating" or "treatment" includes prophylaxis.

[00144] As used herein, the phrase "abnormal spine size" refers to dendritic spine volumes or dendritic spine surface areas (e.g., volumes or surface areas of the spine heads and/or spine necks) associated with CNS disorders that deviate significantly relative to spine volumes or surface areas in the same brain region
(e.g., the CA1 region, the prefrontal cortex) in a normal individual (e.g., a mouse, rat, or human) of the same age; such abnormalities are determined as appropriate, by methods including, e.g., tissue samples, relevant animal models, post-mortem analyses, or other model systems.

[00145] The phrase "defective spine morphology" or "abnormal spine morphology" or "aberrant spine morphology" refers to abnormal dendritic spine shapes, volumes, surface areas, length, width (e.g., diameter of the neck), spine head diameter, spine head volume, spine head surface area, spine density, ratio of mature to immature spines, ratio of spine volume to spine length, or the like that is associated with a CNS disorder relative to the dendritic spine shapes, volumes, surface areas, length, width (e.g., diameter of the neck), spine density, ratio of mature to immature spines, ratio of spine volume to spine length, or the like observed in the same brain region in a normal individual (e.g., a mouse, rat, or human) of the same age; such abnormalities or defects are determined as appropriate, by methods including, e.g., tissue samples, relevant animal models, post-mortem analyses, or other model systems.

[00146] The phrase "abnormal spine function" or "defective spine function" or "aberrant spine function" refers to a defect of dendritic spines to undergo stimulus-dependent morphological or functional changes (e.g., following activation of AMPA and/or NMDA receptors, LTP, LTD, etc) associated with CNS disorders as compared to dendritic spines in the same brain region in a normal individual of the same age. The "defect" in spine function includes, e.g., a reduction in dendritic spine plasticity, (e.g., an abnormally small change in dendritic spine morphology or actin re-arrangement in the dendritic spine), or an excess level of dendritic plasticity, (e.g., an abnormally large change in dendritic spine morphology or actin re-arrangement in the dendritic spine). Such abnormalities or defects are determined as appropriate, by methods including, e.g., tissue samples, relevant animal models, post-mortem analyses, or other model systems.

[00147] The phrase "abnormal spine motility" refers to a significant low or high movement of dendritic spines associated with a CNS disorder as compared to dendritic spines in the same brain region in a normal individual of the same age. Any defect in spine morphology (e.g., spine length, density or the like) or synaptic plasticity or synaptic function (e.g., LTP, LTD or the like) or spine motility occurs in any region of the brain, including, for example, the frontal cortex, the hippocampus, the amygdala, the CA1 region, the prefrontal cortex or the like. Such abnormalities or defects are determined as appropriate, by methods including, e.g., tissue samples, relevant animal models, post-mortem analyses, or other model systems.

[00148] As used herein, the phrase "biologically active" refers to a characteristic of any substance that has activity in a biological system and/or organism. For instance, a substance that, when administered to an organism, has a biological effect on that organism is considered to be biologically active. In particular embodiments, where a protein or polypeptide is biologically active, a portion of that protein or polypeptide that shares at least one biological activity of the protein or polypeptide is typically referred to as a "biologically active" portion.

[00149] As described herein, a CNS disorder is a disorder that can affect either the spinal cord or brain. By way of example only, CNS disorders include Schizophrenia, Psychotic disorder, schizoaffective disorder, schizophreniform, Alzheimer's disease, Age-related cognitive decline, Mild cognitive impairment, cognitive

As used herein, Mental retardation is a disorder characterized by significantly impaired cognitive function and deficits in adaptive behaviors. By way of example only, mental retardation is Down's syndrome, Fetal alcohol syndrome, Klinefelter's syndrome, congenital hypothyroidism, Williams syndrome, Smith-Lemli-Opitz syndrome, Prader-Willi syndrome Phelan-McDermid syndrome, Mowat-Wilson syndrome, ciliopathy or Lowe syndrome.

As used herein, the term "subcortical dementia" refers to symptoms related to Huntington's disease (e.g., deficits in executive functions such as planning, cognitive flexibility, abstract thinking, rule acquisition, initiating appropriate actions, inhibiting inappropriate actions; memory deficits such as short-term memory deficits, long-term memory difficulties, deficits in episodic (memory of one's life), procedural (memory of the body of how to perform an activity) and working memory, and the like). In some instances, "progression toward dementia" is identified, monitored or diagnosed by neuropsychological or behavioral testing. In other instances, "progression toward dementia" is identified, monitored or diagnosed by neuroimaging or brain scans.

As used herein, the term "effective amount" is an amount, which when administered systemically, is sufficient to effect beneficial or desired results, such as beneficial or desired clinical results, or enhanced cognition, memory, mood, or other desired effects. An effective amount is also an amount that produces a prophylactic effect, e.g., an amount that delays, reduces, or eliminates the appearance of a pathological or undesired condition associated with a CNS disorder. An effective amount is optionally administered in one or more administrations. In terms of treatment, an "effective amount" of a composition described herein is an amount that is sufficient to palliate, alleviate, ameliorate, stabilize, reverse or slow the progression of a CNS disorder e.g., cognitive decline toward dementia, mental retardation or the like. An "effective amount" includes any PAK inhibitor used alone or in conjunction with one or more agents used to treat a disease or disorder. An "effective amount" of a therapeutic agent as described herein will be determined by a patient's attending physician or other medical care provider. Factors which influence what a therapeutically effective amount will be include, the absorption profile (e.g., its rate of uptake into the brain) of the PAK inhibitor, time elapsed since the initiation of disease, and the age, physical condition, existence of other disease states, and nutritional status of an individual being treated. Additionally, other medication the patient is receiving, e.g., antidepressant drugs used in combination with a PAK inhibitor, will typically affect the determination of the therapeutically effective amount of the therapeutic agent to be administered.
[00153] As used herein, the term "inhibitor" refers to a molecule which is capable of inhibiting (including partially inhibiting or allosteric inhibition) one or more of the biological activities of a target molecule, e.g., a p21-activated kinase. Inhibitors, for example, act by reducing or suppressing the activity of a target molecule and/or reducing or suppressing signal transduction. In some embodiments, a PAK inhibitor described herein causes substantially complete inhibition of one or more PAKs. In some embodiments, the phrase "partial inhibitor" refers to a molecule which can induce a partial response for example, by partially reducing or suppressing the activity of a target molecule and/or partially reducing or suppressing signal transduction. In some instances, a partial inhibitor mimics the spatial arrangement, electronic properties, or some other physicochemical and/or biological property of the inhibitor. In some instances, in the presence of elevated levels of an inhibitor, a partial inhibitor competes with the inhibitor for occupancy of the target molecule and provides a reduction in efficacy, relative to the inhibitor alone. In some embodiments, a PAK inhibitor described herein is a partial inhibitor of one or more PAKs. In some embodiments, a PAK inhibitor described herein is an allosteric modulator of PAK. In some embodiments, a PAK inhibitor described herein blocks the p21 binding domain of PAK. In some embodiments, a PAK inhibitor described herein blocks the ATP binding site of PAK. In some embodiments, a PAK inhibitor is a "Type II" kinase inhibitor. In some embodiment a PAK inhibitor stabilizes PAK in its inactive conformation. In some embodiments, a PAK inhibitor stabilizes the "DFG-out" conformation of PAK.

[00154] In some embodiments, PAK inhibitors reduce, abolish, and/or remove the binding between PAK and at least one of its natural binding partners (e.g., Cdc42 or Rac). In some instances, binding between PAK and at least one of its natural binding partners is stronger in the absence of a PAK inhibitor (by e.g., 90%, 80%, 70%, 60%, 50%, 40%, 30% or 20%) than in the presence of a PAK inhibitor. Alternatively or additionally, PAK inhibitors inhibit the phosphotransferase activity of PAK, e.g., by binding directly to the catalytic site or by altering the conformation of PAK such that the catalytic site becomes inaccessible to substrates. In some embodiments, PAK inhibitors inhibit the ability of PAK to phosphorylate at least one of its target substrates, e.g., LIM kinase 1 (LIMK1), myosin light chain kinase (MLCK), cortactin; or itself. PAK inhibitors include inorganic and/or organic compounds.

[00155] In some embodiments, PAK inhibitors described herein increase dendritic spine length. In some embodiments, PAK inhibitors described herein decrease dendritic spine length. In some embodiments, PAK inhibitors described herein increase dendritic neck diameter. In some embodiments, PAK inhibitors described herein decrease dendritic neck diameter. In some embodiments, PAK inhibitors described herein increase dendritic spine head diameter. In some embodiments, PAK inhibitors described herein decrease dendritic spine head diameter. In some embodiments, PAK inhibitors described herein increase dendritic spine head volume. In some embodiments, PAK inhibitors described herein decrease dendritic spine head volume. In some embodiments, PAK inhibitors described herein increase dendritic spine surface area. In some embodiments, PAK inhibitors described herein decrease dendritic spine surface area. In some embodiments, PAK inhibitors described herein increase dendritic spine density. In some embodiments, PAK inhibitors described herein decrease dendritic spine density. In some embodiments, PAK inhibitors
described herein increase the number of mushroom shaped spines. In some embodiments, PAK inhibitors described herein decrease the number of mushroom shaped spines.

[00156] In some embodiments, a PAK inhibitor suitable for the methods described herein is a direct PAK inhibitor. In some embodiments, a PAK inhibitor suitable for the methods described herein is an indirect PAK inhibitor. In some embodiments, a PAK inhibitor suitable for the methods described herein decreases PAK activity relative to a basal level of PAK activity by about 1.1 fold to about 100 fold, e.g., to about 1.2 fold, 1.5 fold, 1.6 fold, 1.7 fold, 2.0 fold, 3.0 fold, 5.0 fold, 6.0 fold, 7.0 fold, 8.5 fold, 9.7 fold, 10 fold, 12 fold, 14 fold, 15 fold, 20 fold, 30 fold, 40 fold, 50 fold, 60 fold, 70 fold, 90 fold, 95 fold, or by any other amount from about 1.1 fold to about 100 fold relative to basal PAK activity. In some embodiments, the PAK inhibitor is a reversible PAK inhibitor. In other embodiments, the PAK inhibitor is an irreversible PAK inhibitor. Direct PAK inhibitors are optionally used for the manufacture of a medicament for treating a CNS disorder.

[00157] In some embodiments, a PAK inhibitor used for the methods described herein has in vitro ED₅₀ for PAK activation of less than 100 µM (e.g., less than 10 µM, less than 5 µM, less than 4 µM, less than 3 µM, less than 1 µM, less than 0.8 µM, less than 0.6 µM, less than 0.5 µM, less than 0.4 µM, less than 0.3 µM, less than 0.2 µM, less than 0.1 µM, less than 0.08 µM, less than 0.06 µM, less than 0.05 µM, less than 0.04 µM, less than 0.03 µM, less than 0.02 µM, less than 0.01 µM, less than 0.0099 µM, less than 0.0098 µM, less than 0.0097 µM, less than 0.0096 µM, less than 0.0095 µM, less than 0.0094 µM, less than 0.0093 µM, less than 0.0092 µM, or less than 0.0090 µM).

[00158] In some embodiments, a PAK inhibitor used for the methods described herein has in vitro ED₅₀ for PAK activation of less than 100 µM (e.g., less than 10 µM, less than 5 µM, less than 4 µM, less than 3 µM, less than 1 µM, less than 0.8 µM, less than 0.6 µM, less than 0.5 µM, less than 0.4 µM, less than 0.3 µM, less than 0.2 µM, less than 0.1 µM, less than 0.08 µM, less than 0.06 µM, less than 0.05 µM, less than 0.04 µM, less than 0.03 µM, less than 0.02 µM, less than 0.01 µM, less than 0.0099 µM, less than 0.0098 µM, less than 0.0097 µM, less than 0.0096 µM, less than 0.0095 µM, less than 0.0094 µM, less than 0.0093 µM, less than 0.0092 µM, or less than 0.0090 µM).

[00159] As used herein, synaptic function refers to synaptic transmission and/or synaptic plasticity, including stabilization of synaptic plasticity. As used herein, "defect in synaptic plasticity" or "aberrant synaptic plasticity" refers to abnormal synaptic plasticity following stimulation of that synapse. In some embodiments, a defect in synaptic plasticity is a decrease in LTP. In some embodiments, a defect in synaptic plasticity is an increase in LTD. In some embodiments, a defect in synaptic plasticity is erratic (e.g., fluctuating, randomly increasing or decreasing) synaptic plasticity. In some instances, measures of synaptic plasticity are LTP and/or LTD (induced, for example, by theta-burst stimulation, high-frequency stimulation for LTP, low-frequency (e.g., 1 Hz) stimulation for LTD) and LTP and/or LTD after stabilization. In some embodiments, stabilization of LTP and/or LTD occurs in any region of the brain including the frontal cortex, the hippocampus, the prefrontal cortex, the amygdala or any combination thereof.
As used herein "stabilization of synaptic plasticity" refers to stable LTP or LTD following induction (e.g., by theta-burst stimulation, high-frequency stimulation for LTP, low-frequency (e.g., 1 Hz) stimulation for LTD).

"Aberrant stabilization of synaptic transmission" (for example, aberrant stabilization of LTP or LTD), refers to failure to establish a stable baseline of synaptic transmission following an induction paradigm (e.g., by theta-burst stimulation, high-frequency stimulation for LTP, low-frequency (e.g., 1 Hz) stimulation for LTD) or an extended period of vulnerability to disruption by pharmacological or electrophysiological means.

As used herein "synaptic transmission" or "baseline synaptic transmission" refers to the EPSP and/or IPSP amplitude and frequency, neuronal excitability or population spike thresholds of a normal individual (e.g., an individual not suffering from a CNS disorder) or that predicted for an animal model for a normal individual. As used herein "aberrant synaptic transmission" or "defective synaptic transmission" refers to any deviation in synaptic transmission compared to synaptic transmission of a normal individual or that predicted for an animal model for a normal individual. In some embodiments, an individual suffering from a CNS disorder has a defect in baseline synaptic transmission that is a decrease in baseline synaptic transmission compared to the baseline synaptic transmission in a normal individual or that predicted for an animal model for a normal individual. In some embodiments, an individual suffering from a CNS disorder has a defect in baseline synaptic transmission that is an increase in baseline synaptic transmission compared to the baseline synaptic transmission in a normal individual or that predicted for an animal model for a normal individual.

"Sensorimotor gating" is assessed, for example, by measuring prepulse inhibition (PPI) and/or habituation of the human startle response. In some embodiments, a defect in sensorimotor gating is a deficit in sensorimotor gating. In some embodiments, a defect in sensorimotor gating is an enhancement of sensorimotor gating.

"Normalization of aberrant synaptic plasticity" refers to a change in aberrant synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of synaptic plasticity that is substantially the same as the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110% of the measured synaptic plasticity in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120%, of the measured synaptic plasticity in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130%, of the synaptic plasticity in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant synaptic plasticity" refers to any change in aberrant synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual.
As used herein "partially normalized synaptic plasticity" or "partially normal synaptic plasticity" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant synaptic plasticity where the aberrant synaptic plasticity is higher than the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant synaptic plasticity where the aberrant synaptic plasticity is lower than the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) synaptic plasticity to a normal (e.g., stable) or partially normal (e.g., less fluctuating) synaptic plasticity compared to the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of synaptic plasticity in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing synaptic plasticity to a normal (e.g., stable) or partially normal (e.g., partially stable) synaptic plasticity compared to the synaptic plasticity of a normal individual or to that predicted from an animal model for a normal individual.

As used herein, "normalization of aberrant baseline synaptic transmission" refers to a change in aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of baseline synaptic transmission that is substantially the same as the baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110% of the measured baseline synaptic transmission in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120% of the measured baseline synaptic transmission in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130% of the measured baseline synaptic transmission in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant baseline synaptic transmission" refers to any change in aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. As used herein "partially normalized baseline synaptic transmission" or "partially normal baseline synaptic transmission" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the measured baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial
normalization of aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant baseline synaptic transmission where the aberrant baseline synaptic transmission is higher than the baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant baseline synaptic transmission where the aberrant baseline synaptic transmission is lower than the baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) baseline synaptic transmission to a normal (e.g. stable) or partially normal (e.g., less fluctuating) baseline synaptic transmission compared to the baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant baseline synaptic transmission in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing baseline synaptic transmission to a normal (e.g., stable) or partially normal (e.g., partially stable) baseline synaptic transmission compared to the baseline synaptic transmission of a normal individual or to that predicted from an animal model for a normal individual.

[00166] As used herein, "normalization of aberrant synaptic function" refers to a change in aberrant synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of synaptic function that is substantially the same as the synaptic function of a normal individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110% of the synaptic function in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120% of the synaptic function in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130% of the synaptic function in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant synaptic function" refers to any change in aberrant synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards synaptic function of a normal individual or to that predicted from an animal model for a normal individual. As used herein "partially normalized synaptic function" or "partially normal synaptic function" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the measured synaptic function of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant synaptic function where the aberrant synaptic function is higher than the synaptic function of a normal individual or to that predicted from an animal model for a
normal individual. In some embodiments, normalization or partial normalization of aberrant synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant synaptic function where the aberrant synaptic function is lower than the synaptic function of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) synaptic function to a normal (e.g., stable) or partially normal (e.g., less fluctuating) LTP compared to the synaptic function of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant synaptic function in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing synaptic function to a normal (e.g., stable) or partially normal (e.g., partially stable) synaptic function compared to the synaptic function of a normal individual or to that predicted from an animal model for a normal individual.

As used herein, "normalization of aberrant long term potentiation (LTP)" refers to a change in aberrant LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of LTP that is substantially the same as the LTP of a normal individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110% of the LTP in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120% of the LTP in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130% of the LTP in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant LTP" refers to any change in aberrant LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards LTP of a normal individual or to that predicted from an animal model for a normal individual. As used herein "partially normalized LTP" or "partially normal LTP" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the measured LTP of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant LTP where the aberrant LTP is higher than the LTP of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant LTP where the aberrant LTP is lower than the LTP of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) LTP to a normal (e.g., stable) or partially normal (e.g., less fluctuating) LTP compared to the LTP of a normal individual or to
that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTP in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing LTP to a normal (e.g., stable) or partially normal (e.g., partially stable) LTP compared to the LTP of a normal individual or to that predicted from an animal model for a normal individual.

[00168] As used herein, "normalization of aberrant long term depression (LTD)" refers to a change in aberrant LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of LTD that is substantially the same as the LTD of a normal individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110% of the LTD in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120%, of the LTD in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130% of the LTD in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant LTD" refers to any change in aberrant LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards LTD of a normal individual or to that predicted from an animal model for a normal individual. As used herein "partially normalized LTD" or "partially normal LTD" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the measured LTD of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant LTD where the aberrant LTD is higher than the LTD of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant LTD where the aberrant LTD is lower than the LTD of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) LTD to a normal (e.g. stable) or partially normal (e.g., less fluctuating) LTD compared to the LTD of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant LTD in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing LTD to a normal (e.g., stable) or partially normal (e.g., partially stable) LTD compared to the LTD of a normal individual or to that predicted from an animal model for a normal individual.

[00169] As used herein, "normalization of aberrant sensorimotor gating" refers to a change in aberrant sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder to a level of sensorimotor gating that is substantially the same as the sensorimotor gating of a normal
individual or to that predicted from an animal model for a normal individual. As used herein, substantially the same means, for example, about 90% to about 110%, of the sensorimotor gating in a normal individual or to that predicted from an animal model for a normal individual. In other embodiments, substantially the same means, for example, about 80% to about 120%, of the sensorimotor gating in a normal individual or to that predicted from an animal model for a normal individual. In yet other embodiments, substantially the same means, for example, about 70% to about 130%, of the sensorimotor gating in a normal individual or to that predicted from an animal model for a normal individual. As used herein, "partial normalization of aberrant sensorimotor gating" refers to any change in aberrant sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder that trends towards sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual. As used herein "partially normalized sensorimotor gating" or "partially normal sensorimotor gating" is, for example, ± about 25%, ± about 35%, ± about 45%, ± about 55%, ± about 65%, or ± about 75% of the measured sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is lowering of aberrant sensorimotor gating where the aberrant sensorimotor gating is higher than the sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is an increase in aberrant sensorimotor gating where the aberrant sensorimotor gating is lower than the sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from an erratic (e.g., fluctuating, randomly increasing or decreasing) sensorimotor gating to a normal (e.g. stable) or partially normal (e.g., less fluctuating) sensorimotor gating compared to the sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual. In some embodiments, normalization or partial normalization of aberrant sensorimotor gating in an individual suffering from, suspected of having, or pre-disposed to a CNS disorder is a change from a non-stabilizing sensorimotor gating to a normal (e.g., stable) or partially normal (e.g., partially stable) sensorimotor gating compared to the sensorimotor gating of a normal individual or to that predicted from an animal model for a normal individual.

[00170] As used herein, "expression" of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5' cap formation, and/or 3' end formation); (3) translation of an RNA into a polypeptide or protein; (4) post-translational modification of a polypeptide or protein.

[00171] As used herein the term "PAK polypeptide" or "PAK protein" or "PAK" refers to a protein that belongs in the family of p21-activated serine/threonine protein kinases. These include mammalian isoforms of PAK, e.g., the Group I PAK proteins (sometimes referred to as Group A PAK proteins), including PAKI,
PAK2, PAK3, as well as the Group II PAK proteins (sometimes referred to as Group B PAK proteins), including PAK4, PAK5, and/or PAK6. Also included as PAK polypeptides or PAK proteins are lower eukaryotic isoforms, such as the yeast Ste20 (Leberter et al., 1992, EMBO J., 11:4805; incorporated herein by reference) and/or the Dictyostelium single-headed myosin I heavy chain kinases (Wu et al., 1996, J. Biol. Chem., 271:31787; incorporated herein by reference). Representative examples of PAK amino acid sequences include, but are not limited to, human PAKI (GenBank Accession Number AAA65441), human PAK2 (GenBank Accession Number AAA65442), human PAK3 (GenBank Accession Number AAC36097), human PAK4 (GenBank Accession Numbers NP_005875 and CAA09820), human PAK5 (GenBank Accession Numbers CAC18720 and BAA94194), human PAK6 (GenBank Accession Numbers NP_064553 and AAF82800), human PAK7 (GenBank Accession Number Q9P286), C. elegans PAK (GenBank Accession Number BAA11844), D. melanogaster PAK (GenBank Accession Number AAC47094), and rat PAK1 (GenBank Accession Number AAB95646). In some embodiments, a PAK polypeptide comprises an amino acid sequence that is at least 70% to 100% identical, e.g., at least 75%: 80%, 85%, 86%, 87%, 88%, 90%, 91%, 92%, 94%, 95%, 96%, 97%, 98%, or any other percent from about 70% to about 100%, identical to sequences of GenBank Accession Numbers AAA65441, AAA65442, AAC36097, NP_005875, CAA09820, CAC18720, BAA94194, NP_064553, AAF82800, Q9P286, BAA11844, AAC47094, and/or AAB95646. In some embodiments, a Group I PAK polypeptide comprises an amino acid sequence that is at least 70% to 100% identical, e.g., at least 75%, 80%, 85%, 86%, 87%, 88%, 90%, 91%, 92%, 94%, 95%, 96%, 97%, 98%, or any other percent from about 70% to about 100% identical to sequences of GenBank Accession Numbers AAA65441, AAA65442, and/or AAC36097.

Representative examples of PAK genes encoding PAK proteins include, but are not limited to, human PAKI (GenBank Accession Number U24152), human PAK2 (GenBank Accession Number U24153), human PAK3 (GenBank Accession Number AF068864), human PAK4 (GenBank Accession Number AJO11855), human PAK5 (GenBank Accession Number AB040812), and human PAK6 (GenBank Accession Number AF276893). In some embodiments, a PAK gene comprises a nucleotide sequence that is at least 70% to 100% identical, e.g., at least 75%, 80%, 85%, 86%, 87%, 88%, 90%, 91%, 92%, 94%, 95%, 96%, 97%, 98%, or any other percent from about 70% to about 100% identical to sequences of GenBank Accession Numbers U24152, U24153, AF068864, AJO11855, AB040812, and/or AF276893. In some embodiments, a Group I PAK gene comprises a nucleotide sequence that is at least 70% to 100% identical, e.g., at least 75%, 80%, 85%, 86%, 87%, 88%, 90%, 91%, 92%, 94%, 95%, 96%, 97%, 98%, or any other percent from about 70% to about 100% identical to sequences of GenBank Accession Numbers U24152, U24153, and/or AF068864.

To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid
residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) x 100). In one embodiment the two sequences are the same length.

To determine percent homology between two sequences, the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877 is used. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST nucleotide searches are performed with the NBLAST program, score=1.00, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules described or disclose herein. BLAST protein searches are performed with the XBLAST program, score=50, wordlength=3. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used. See the website of the National Center for Biotechnology Information for further details (on the world wide web at ncbi.nlm.nih.gov). Proteins suitable for use in the methods described herein also includes proteins having between 1 to 15 amino acid changes, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions, deletions, or additions, compared to the amino acid sequence of any protein PAK inhibitor described herein. In other embodiments, the altered amino acid sequence is at least 75% identical, e.g., 77%, 80%, 82%, 85%, 88%, 90%, 92%, 95%, 97%, 98%, 99%, or 100%, identical to the amino acid sequence of any protein PAK inhibitor described herein. Such sequence-variant proteins are suitable for the methods described herein as long as the altered amino acid sequence retains sufficient biological activity to be functional in the compositions and methods described herein.

Where amino acid substitutions are made, the substitutions should be conservative amino acid substitutions. Among the common amino acids, for example, a "conservative amino acid substitution" is illustrated by a substitution among amino acids within each of the following groups: (1) glycine, alanine, valine, leucine, and isoleucine, (2) phenylalanine, tyrosine, and tryptophan, (3) serine and threonine, (4) aspartate and glutamate, (5) glutamine and asparagine, and (6) lysine, arginine and histidine. The BLOSUM62 table is an amino acid substitution matrix derived from about 2,000 local multiple alignments of protein sequence segments, representing highly conserved regions of more than 500 groups of related proteins (Henikoff et al (1992), Proc. Natl. Acad. Sci. USA, 89:10915-10919). Accordingly, the BLOSUM62 substitution frequencies are used to define conservative amino acid substitutions that may be introduced into the amino acid sequences described or described herein. Although it is possible to design amino acid substitutions based solely upon chemical properties (as discussed above), the language "conservative amino acid substitution" preferably refers to a substitution represented by a BLOSUM62 value of greater than -1. For example, an amino acid substitution is conservative if the substitution is characterized by a BLOSUM62 value of 0, 1, 2, or 3. According to this system, preferred conservative amino acid substitutions are characterized by a
BLOSUM62 value of at least 1 (e.g., 1, 2 or 3), while more preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 2 (e.g., 2 or 3).

[00175] As used herein, the term "PAK activity," unless otherwise specified, includes, but is not limited to, at least one of PAK protein-protein interactions, PAK phosphotransferase activity (intermolecular or intermolecular), translocation, etc of one or more PAK isoforms.

[00176] As used herein, a "PAK inhibitor" refers to any molecule, compound, or composition that directly or indirectly decreases the PAK activity. In some embodiments, PAK inhibitors inhibit, decrease, and/or abolish the level of a PAK mRNA and/or protein or the half-life of PAK mRNA and/or protein, such inhibitors are referred to as "clearance agents". In some embodiments, a PAK inhibitor is a PAK antagonist that inhibits, decreases, and/or abolishes an activity of PAK. In some embodiments, a PAK inhibitor also disrupts, inhibits, or abolishes the interaction between PAK and its natural binding partners (e.g., a substrate for a PAK kinase, a Rac protein, a cdc42 protein, LIM kinase) or a protein that is a binding partner of PAK in a pathological condition, as measured using standard methods. In some embodiments, the PAK inhibitor is a Group I PAK inhibitor that inhibits, for example, one or more Group I PAK polypeptides, for example, PAK1, PAK2, and/or PAK3. In some embodiments, the PAK inhibitor is a PAK1 inhibitor. In some embodiments, the PAK inhibitor is a PAK2 inhibitor. In some embodiments, the PAK inhibitor is a PAK3 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK3 inhibitor. In some embodiments, the PAK inhibitor inhibits all three Group I PAK isoforms (PAK1, PAK2 and PAK3) with equal or similar potency. In some embodiments, the PAK inhibitor is a Group II PAK inhibitor that inhibits one or more Group II PAK polypeptides, for example PAK4, PAK5, and/or PAK6. In some embodiments, the PAK inhibitor is a PAK4 inhibitor. In some embodiments, the PAK inhibitor is a PAK5 inhibitor. In some embodiments, the PAK inhibitor is a PAK6 inhibitor. In some embodiments, the PAK inhibitor is a PAK7 inhibitor. As used herein, a PAK5 polypeptide is substantially homologous to a PAK7 polypeptide.

[00177] In some embodiments, PAK inhibitors reduce, abolish, and/or remove the binding between PAK and at least one of its natural binding partners (e.g., Cdc42 or Rac). In some instances, binding between PAK and at least one of its natural binding partners is stronger in the absence of a PAK inhibitor (by e.g., 90%, 80%, 70%, 60%, 50%, 40%, 30% or 20%) than in the presence of a PAK inhibitor. In some embodiments, PAK inhibitors prevent, reduce, or abolish binding between PAK and a protein that abnormally accumulates or aggregates in cells or tissue in a disease state. In some instances, binding between PAK and at least one of the proteins that aggregates or accumulates in a cell or tissue is stronger in the absence of a PAK inhibitor (by e.g., 90%, 80%, 70%, 60%, 50%, 40%, 30% or 20%) than in the presence of an inhibitor.

[00178] An "individual" or an "individual," as used herein, is a mammal. In some embodiments, an individual is an animal, for example, a rat, a mouse, a dog or a monkey. In some embodiments, an individual is a human patient. In some embodiments an "individual" or an "individual" is a human. In some embodiments, an individual suffers from a CNS disorder or is suspected to be suffering from a CNS disorder or is pre-disposed to a CNS disorder.
In some embodiments, a pharmacological composition comprising a PAK inhibitor is "administered peripherally" or "peripherally administered." As used herein, these terms refer to any form of administration of an agent, e.g., a therapeutic agent, to an individual that is not direct administration to the CNS, i.e., that brings the agent in contact with the non-brain side of the blood-brain barrier. "Peripheral administration," as used herein, includes intravenous, intra-arterial, subcutaneous, intramuscular, intraperitoneal, transdermal, by inhalation, transbuccal, intranasal, rectal, oral, parenteral, sublingual, or trans-nasal. In some embodiments, a PAK inhibitor is administered by an intracerebral route.

The terms "recurring cancer", "recurrent cancer" or a "recurrence" are used interchangeably herein to refer to a cancer that comes back after a length of time during which it could no longer be detected following treatment. The cancer may come back in the same place as the original tumor, or it may spread to another part of the body.

The term "refractory cancer" as used herein refers to a cancer for which surgery is ineffective, which is either initially unresponsive to chemotherapy, immunotherapy, antibody therapy or radiation therapy, or which becomes unresponsive over time.

The terms "polypeptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. That is, a description directed to a polypeptide applies equally to a description of a protein, and vice versa. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally occurring amino acid, e.g., an amino acid analog. As used herein, the terms encompass amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds.

The term "amino acid" refers to naturally occurring and non-naturally occurring amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally encoded amino acids are the 20 common amino acids (alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine) and pyrolysine and selenocysteine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, such as, homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (such as, norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

The term "nucleic acid" refers to deoxyribonucleotides, deoxyribonucleosides, ribonucleosides, or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally
occurring nucleotides. Unless specifically limited otherwise, the term also refers to oligonucleotide analogs including PNA (peptidomimetic acid), analogs of DNA used in antisense technology (phosphorothioates, phosphoroamidates, and the like). Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (including but not limited to, degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxynucleosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Cassol et al. (1992); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).

[00186] The terms "isolated" and "purified" refer to a material that is substantially or essentially removed from or concentrated in its natural environment. For example, an isolated nucleic acid is one that is separated from the nucleic acids that normally flank it or other nucleic acids or components (proteins, lipids, etc.) in a sample. In another example, a polypeptide is purified if it is substantially removed from or concentrated in its natural environment. Methods for purification and isolation of nucleic acids and proteins are documented methodologies.

[00187] The term "antibody" describes an immunoglobulin whether natural or partly or wholly synthetically produced. The term also covers any polypeptide or protein having a binding domain which is, or is homologous to, an antigen-binding domain. CDR grafted antibodies are also contemplated by this term.

[00188] The term antibody as used herein will also be understood to mean one or more fragments of an antibody that retain the ability to specifically bind to an antigen, (see generally, Holliger et al., Nature Biotech. 23 (9) 1126-1129 (2005)). Non-limiting examples of such antibodies include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544 546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they are optionally joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423 426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879 5883; and Osbourn et al. (1998) Nat. Biotechnol. 16:778). Such single chain antibodies are also intended to be encompassed within the term antibody. Any VH and VL sequences of specific scFv is optionally linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG molecules or other isotypes. VH and VL are also optionally used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed.
"F(ab')2" and "Fab'" moieties are optionally produced by treating immunoglobulin (monoclonal antibody) with a protease such as pepsin and papain, and includes an antibody fragment generated by digesting immunoglobulin near the disulfide bonds existing between the hinge regions in each of the two H chains. For example, papain cleaves IgG upstream of the disulfide bonds existing between the hinge regions in each of the two H chains to generate two homologous antibody fragments in which an L chain composed of VL (L chain variable region) and CL (L chain constant region), and an H chain fragment composed of VH (H chain variable region) and CHy (γ1 region in the constant region of H chain) are connected at their C terminal regions through a disulfide bond. Each of these two homologous antibody fragments is called Fab'. Pepsin also cleaves IgG downstream of the disulfide bonds existing between the hinge regions in each of the two H chains to generate an antibody fragment slightly larger than the fragment in which the two above-mentioned Fab' are connected at the hinge region. This antibody fragment is called F(ab')2.

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CHI) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CHI domain including one or more cysteine(s) from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are documented.

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

"Single-chain Fv" or "sFv" antibody fragments comprise a VH, a VL, or both a VH and VL domain of an antibody, wherein both domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv see, e.g., Pluckthun in The Pharmacology of Monoclonal Antibodies, Vol. 113, Rosenberg and Moore eds. Springer-Verlag, New York, pp. 269 315 (1994).

A "chimeric" antibody includes an antibody derived from a combination of different mammals. The mammal is, for example, a rabbit, a mouse, a rat, a goat, or a human. The combination of different mammals includes combinations of fragments from human and mouse sources.

In some embodiments, an antibody described or described herein is a monoclonal antibody (MAb), typically a chimeric human-mouse antibody derived by humanization of a mouse monoclonal antibody. Such antibodies are obtained from, e.g., transgenic mice that have been "engineered" to produce
specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain locus are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy chain and light chain loci. In some embodiments, the transgenic mice synthesize human antibodies specific for human antigens, and the mice are used to produce human antibody-secreting hybridomas.

[00195] The term "optionally substituted" or "substituted" means that the referenced group substituted with one or more additional group(s). In certain embodiments, the one or more additional group(s) are individually and independently selected from amide, ester, alkyl, cycloalkyl, heteroalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, ester, alkylsulfone, arylsulfone, cyano, halogen, alkoxy, alkoxyloxo, isocyanato, thiocyanato, isothiocyanato, nitro, haloalkyl, haloalkoxy, fluoroalkyl, amino, alkyl-amino, dialkyl-amino, amid.

[00196] An "alkyl" group refers to an aliphatic hydrocarbon group. Reference to an alkyl group includes "saturated alkyl" and/or "unsaturated alkyl". The alkyl group, whether saturated or unsaturated, includes branched, straight chain, or cyclic groups. By way of example only, alkyl includes methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, pentyl, iso-pentyl, neo-pentyl, and hexyl. In some embodiments, alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl, hexyl, ethenyl, ethenyl, propenyl, butenyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. A "lower alkyl" is a C1-Ce alkyl. A "heteroalkyl" group substitutes any one of the carbons of the alkyl group with a heteroatom having the appropriate number of hydrogen atoms attached (e.g., a CH₂ group to an NH group or an O group).

[00197] An "alkoxy" group refers to a (alkyl)O- group, where alkyl is as defined herein.

[00198] The term "alkylamine" refers to the -N(alkyl)ₓHᵧ group, wherein alkyl is as defined herein and x and y are selected from the group x=1, y=1 and x=2, y=0. When x=2, the alkyl groups, taken together with the nitrogen to which they are attached, optionally form a cyclic ring system.

[00199] An "amide" is a chemical group with formula -C(=0)NR', where R and R' is independently selected from hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon); or where R and R' together with the nitrogen they attached form a heteroalicyclic.

[00200] "Amido" refers to a RC(=0)NR'-, where R and R' is independently selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl and heteroalicyclic.

[00201] The term "ester" refers to a chemical group with formula -C(=0)OR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl and heteroalicyclic.

[00202] "Alkoxyloxo" refers to a RC(=0)O- group, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl and heteroalicyclic.

[00203] "Alkoxy" refers to a RC(=0)- group, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl and heteroalicyclic.

[00204] A "cyano" group refers to a -CN group.
An "isocyanato" group refers to a -NCO group.

A "thiocyanato" group refers to a -CNS group.

An "isothiocyanato" group refers to a -NCS group.

As used herein, the term "aryl" refers to an aromatic ring wherein each of the atoms forming the ring is a carbon atom. Aryl rings described herein include rings having five, six, seven, eight, nine, or more than nine carbon atoms. Aryl groups are optionally substituted. Examples of aryl groups include, but are not limited to phenyl, and naphthalenyl.

The term "cycloalkyl" refers to a monocyclic or polycyclic non-aromatic radical, wherein each of the atoms forming the ring (i.e. skeletal atoms) is a carbon atom. In various embodiments, cycloalkyls are saturated, or partially unsaturated. In some embodiments, cycloalkyls are fused with an aromatic ring. Cycloalkyl groups include groups having from 3 to 10 ring atoms. Illustrative examples of cycloalkyl groups include, but are not limited to, the following moieties:

[Diagram of various cycloalkyl structures]

Monocyclic cycloalkyls include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Dicyclic cycloalkyls include, but are not limited to tetrahydronaphthyl, indanyl, tetrahydropentalene or the like. Polycyclic cycloalkyls include adamantane, norbornane or the like. The term cycloalkyl includes "unsaturated nonaromatic carbocyclic" or "nonaromatic unsaturated carbocyclic" groups both of which refer to a nonaromatic carbocycle, as defined herein, that contains at least one carbon carbon double bond or one carbon carbon triple bond.

The term "heterocyclo" refers to heteroaromatic and heteroalicyclic groups containing one to four ring heteroatoms each selected from O, S and N. In certain instances, each heterocyclic group has from 4 to 10 atoms in its ring system, and with the proviso that the ring of said group does not contain two adjacent O or S atoms. Non-aromatic heterocyclic groups include groups having 3 atoms in their ring system, but aromatic heterocyclic groups must have at least 5 atoms in their ring system. The heterocyclic groups include benzo-fused ring systems. An example of a 3-membered heterocyclic group is aziridinyl (derived from aziridine). An example of a 4-membered heterocyclic group is azetidinyl (derived from azetidine). An example of a 5-membered heterocyclic group is thiazolyl. An example of a 6-membered heterocyclic group is pyridyl, and an example of a 10-membered heterocyclic group is quinolinyl. Examples of non-aromatic heterocyclic groups are pyrrolidinyl, tetrahydrofurfuryl, dihydrofuranyl, tetrahydrothienyl, tetrahydrofuranyl, dihydrofuran, tetrahydrothiopyran, piperidino, morpholino, thiomorpholino, thioxanly, piperazinyl, aziridinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, oxepanyl, thiepanyl,
oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6-tetrahydropyridinyl, 2-pyrrolinyl, 3-pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinyl, dithianyl, dithiolanyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinyl, dithianyl, dithiolanyl, dihydropyranyl, dihydrofuranyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, 3-azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4.1.0]heptanyl, 3H-indolyl and quinolizinyl.

Examples of aromatic heterocyclic groups are pyridinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzo[1,2,3]thiadiazolyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and furopyridinyl.

The terms "heteroaryl" or, alternatively, "heteroaromatic" refers to an aryl group that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur. An N-containing "heteroaromatic" or "heteroaryl" moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom. In certain embodiments, heteroaryl groups are optionally substituted. In certain embodiments, heteroaryl groups are monocyclic or polycyclic. Examples of monocyclic heteroaryl groups include and are not limited to:

Examples of bicyclic heteroaryl groups include and are not limited to:
A "heteroalicyclic" group or "heterocycloalkyl" group refers to a cycloalkyl group, wherein at least one skeletal ring atom is a heteroatom selected from nitrogen, oxygen and sulfur. In some embodiments, the radicals are fused with an aryl or heteroaryl. Example of saturated heterocycloalkyl groups include
Examples of partially unsaturated heterocycloalkyl groups include:

3,4-dihydro-2H-pyran (3,4-dihydro-2H-pyranyl)
5,6-dihydro-2H-pyran (5,6-dihydro-2H-pyranyl)
2H-pyran (2H-pyranyl)
1,2,5,6-tetrahydropyridine (1,2,5,6-tetrahydro-2H-pyrindinyl)

Other illustrative examples of heterocycloalkyl groups, also referred to as non-aromatic heterocycles, include:
The term heteroalicyclic also includes all ring forms of the carbohydrates, including but not limited to the monosaccharides, the disaccharides and the oligosaccharides.

The term "halo" or, alternatively, "halogen" means fluoro, chloro, bromo and iodo.

The terms "haloalkyl," and "haloalkoxy" include alkyl and alkoxy structures that are substituted with one or more halogens. In embodiments, where more than one halogen is included in the group, the halogens are the same or they are different. The terms "fluoroalkyl" and "fluoroalkoxy" include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine.

The term "heteroalkyl" include optionally substituted alkyl radicals which have one or more skeletal chain atoms selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorus, silicon, or combinations thereof. When the heteroatom(s) is oxygen or sulfur, the heteroatom(s) is placed at any interior position other than immediately next to the carbon atom at the end of the skeletal chain. Otherwise, the heteroatom(s) is placed at any interior position of the skeletal chain. Examples of heteroalkyl include, but are not limited to, -CH$_2$-0-CH$_2$-CH$_3$, -CH$_2$-CH$_2$-O-CH$_2$-CH$_3$, -CH$_2$-CH$_2$-S-CH$_2$-CH$_3$, -CH$_2$-CH$_2$-N(CH$_3$)$_2$, -CH$_2$-CH$_2$-N(H$_2$)$_2$, -CH$_2$-CH$_2$-S(CH$_3$)$_2$, and -Si(CH$_3$)$_3$. In some embodiments, up to two heteroatoms are consecutive, such as, by way of example, -CH$_2$-NH-O-CH$_2$-CH$_3$ and -CH$_2$-0-Si-CH$_2$-CH$_3$. When the heteroatom(s) is oxygen or sulfur and is placed immediately next to the carbon atom at the end of the skeletal chain, such as in -CH$_2$-0-CH$_3$, -CH$_2$-CH$_2$-0-CH$_3$, -CH$_2$-CH$_2$-S-CH$_3$, and -CH$_2$-S-CH$_3$, the group is not characterized as a heteroalkyl. Instead, such groups are characterized as alkyls substituted with methoxy or thiomethoxy in the present disclosure.

Synthesis of Compounds

In some embodiments, compounds of Formula I-IV and A-D are synthesized according to procedures described in Scheme 1.

Scheme 1
Generally, compounds of Formula X described herein are synthesized by conversion of I to its ethyl ester derivative II, followed by dichloropyrimidine formation to III. Substitution of the chlorine with an amine containing \(R^3 \) forms the substituted compound IV. Reduction to alcohol V, followed by oxidation to the aldehyde, provides the substrate VI that undergoes condensation and intramolecular cyclization with the functionalized T ring VII to form VIII. Finally, chlorine displacement with the appropriate \(NR'R^2 \) yields the target molecules X.

Cell Proliferation Diseases or Disorders

[00222] Provided herein are methods for treatment of one or more diseases, or disorders characterized by aberrant cell proliferation by administration of inhibitors of certain p21 activated kinases to individuals in need thereof. Such kinase inhibitors are inhibitors of one or more of PAK1, PAK2, PAK3, PAK4, PAK5 or PAK6 kinases. In some embodiments, the disease or disorder characterized by aberrant cell proliferation is a cancer. In some embodiments, the cancer is a malignant cancer. In some embodiments, the cancer is a solid tumor. In some embodiments, the solid tumor is a sarcoma or carcinoma. In some embodiments, the cancer is a leukemia or lymphoma. In some embodiments, the cancer is a recurrent cancer. In some embodiments, the cancer is a refractory cancer.

[00223] A cancer is an abnormal growth of cells (usually derived from a single cell). The cells have lost normal control mechanisms and thus are able to expand continuously, invade adjacent tissues, migrate to distant parts of the body, and promote the growth of new blood vessels from which the cells derive nutrients. As used herein, a cancer can be malignant or benign. Cancer can develop from any tissue within the body. As cells grow and multiply, they form a mass of tissue, called a tumor. The term tumor refers to an abnormal growth or mass. Tumors can be cancerous (malignant) or noncancerous (benign). Cancerous tumors can invade neighboring tissues and spread throughout the body (metastasize). Benign tumors, however, do not
invade neighboring tissues and do not spread throughout the body. Cancer can be divided into those of the blood and blood-forming tissues (leukemias and lymphomas) and "solid" tumors. "Solid" tumors can be carcinomas or sarcomas.

In some embodiments, the cancer is a leukemia or a lymphoma. In some embodiments, the cancer is a leukemia. Leukemias are cancers of white blood cells or of cells that develop into white blood cells. White blood cells develop from stem cells in the bone marrow. Sometimes the development goes awry, and pieces of chromosomes get rearranged. The resulting abnormal chromosomes interfere with normal control of cell division, so that affected cells multiply uncontrollably and become cancerous (malignant), resulting in leukemia. Leukemia cells ultimately occupy the bone marrow, replacing or suppressing the function of cells that develop into normal blood cells. This interference with normal bone marrow cell function can lead to inadequate numbers of red blood cells (causing anemia), white blood cells (increasing the risk of infection), and platelets (increasing the risk of bleeding). Leukemia cells may also invade other organs, including the liver, spleen, lymph nodes, testes, and brain. Leukemias are grouped into four main types: acute lymphocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia, chronic myelocytic leukemia. The types are defined according to how quickly they progress and the type and characteristics of the white blood cells that become cancerous. Acute leukemias progress rapidly and consist of immature cells. Chronic leukemias progress slowly and consist of more mature cells. Lymphocytic leukemias develop from cancerous changes in lymphocytes or in cells that normally produce lymphocytes. Myelocytic (myeloid) leukemias develop from cancerous changes in cells that normally produce neutrophils, basophils, eosinophils, and monocytes. Additional types of leukemias include hairy cell leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic leukemia.

In some embodiments, the cancer is a lymphoma. Lymphomas are cancers of the lymphocytes, which reside in the lymphatic system and in blood-forming organs. Lymphomas are cancers of a specific type of white blood cell known as lymphocytes. These cells help fight infections. Lymphomas can develop from either B or T lymphocytes. T lymphocytes are important in regulating the immune system and in fighting viral infections. B lymphocytes produce antibodies. Lymphocytes move about to all parts of the body through the bloodstream and through a network of tubular channels called lymphatic vessels. Scattered throughout the network of lymphatic vessels are lymph nodes, which house collections of lymphocytes. Lymphocytes that become cancerous (lymphoma cells) may remain confined to a single lymph node or may spread to the bone marrow, the spleen, or virtually any other organ. The two major types of lymphoma are Hodgkin lymphoma, previously known as Hodgkin's disease, and non-Hodgkin lymphoma. Non-Hodgkin lymphomas are more common than Hodgkin lymphoma. Burkitt's lymphoma and mycosis fungoides are subtypes of non-Hodgkin lymphomas. Hodgkin lymphoma is marked by the presence of the Reed-Sternberg cell. Non-Hodgkin lymphomas are all lymphomas which are not Hodgkin's lymphoma. Non-Hodgkin lymphomas can be further divided into indolent lymphomas and aggressive lymphomas. Non-Hodgkin's lymphomas include, but are not limited to, diffuse large B cell lymphoma, follicular lymphoma, mucosa-associated lymphatic tissue lymphoma (MALT), small cell lymphocytic lymphoma, mantle cell lymphoma,
Burkitt’s lymphoma, mediastinal large B cell lymphoma, Waldenstrom macroglobulinemia, nodal marginal zone B cell lymphoma (NMZL), splenic marginal zone lymphoma (SMZL), extranodal marginal zone B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, and lymphomatoid granulomatosis.

In some embodiments, the cancer is a solid tumor. In some embodiments, the solid tumor is a sarcoma or carcinoma. In some embodiments, the solid tumor is a sarcoma. Sarcomas are cancers of the bone, cartilage, fat, muscle, blood vessels, or other connective or supportive tissue. Sarcomas include, but are not limited to, bone cancer, fibrosarcoma, chondrosarcoma, Ewing’s sarcoma, malignant hemangioendothelioma, malignant schwannoma, osteosarcoma, soft tissue sarcomas (e.g. alveolar soft part sarcoma, angiosarcoma, cystosarcoma phylloides, dermatofibrosarcoma, desmoid tumor, epithelioid sarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi’s sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, and synovial sarcoma).

In some embodiments, the solid tumor is a carcinoma. Carcinomas are cancers that begin in the epithelial cells, which are cells that cover the surface of the body, produce hormones, and make up glands. By way of non-limiting example, carcinomas include breast cancer, pancreatic cancer, lung cancer, colon cancer, colorectal cancer, rectal cancer, kidney cancer, bladder cancer, stomach cancer, prostate cancer, liver cancer, ovarian cancer, brain cancer, vaginal cancer, vulvar cancer, uterine cancer, oral cancer, penic cancer, testicular cancer, esophageal cancer, skin cancer, cancer of the fallopian tubes, head and neck cancer, gastrointestinal stromal cancer, adenocarcinoma, cutaneous or intraocular melanoma, cancer of the anal region, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, cancer of the urethra, cancer of the renal pelvis, cancer of the ureter, cancer of the endometrium, cancer of the cervix, cancer of the pituitary gland, neoplasms of the central nervous system (CNS), primary CNS lymphoma, brain stem glioma, and spinal axis tumors.

In some embodiments, the cancer is a skin cancer.

In some embodiments, the cancer is a lung cancer. Lung cancer can start in the airways that branch off the trachea to supply the lungs (bronchi) or the small air sacs of the lung (the alveoli). Lung cancers include non-small cell lung carcinoma (NSCLC), small cell lung carcinoma, and mesotheliomia. NSCLC account for about 85 to 87% of lung cancers. NSCLC grows more slowly than small cell lung carcinoma. Nevertheless, by the time about 40% of people are diagnosed, the cancer has spread to other parts of the body outside of the chest. Examples of NSCLC include squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Small cell lung carcinoma, also called oat cell carcinoma, accounts for about 13 to 15% of all lung cancers. It is very aggressive and spreads quickly. By the time that most people are diagnosed, the cancer has metastasized to other parts of the body. Malignant mesothelioma is an uncommon cancerous tumor of the lining of the lung and chest cavity (pleura) or lining of the abdomen (peritoneum) that is typically due to long-term asbestos exposure.
In some embodiments, the cancer is a CNS tumor. CNS tumors may be classified as gliomas or nongliomas. In some embodiments, the cancer is a nonglioma. Nongliomas include meningiomas, pituitary adenomas, primary CNS lymphomas, and medulloblastomas.

In some embodiments, the cancer is a brain cancer. In some embodiments, the brain cancer is a glioblastoma.

In some instances, the cancer is a glioma. Examples of gliomas include astrocytomas, oligodendrogliomas (or mixtures of oligodendroglioma and astrocystoma elements), and ependymomas. In some embodiments, the cancer is an astrocytoma. Astrocytomas include, but are not limited to, low-grade astrocytomas, anaplastic astrocytomas, glioblastoma multiforme, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and subependymal giant cell astrocytoma. Glioblastoma multiforme is the most common and most malignant of the primary brain tumors. Although this tumor can occur in all age groups, including children, the average age at which it is diagnosed is 55 years. The onset of symptoms is often abrupt and is most commonly related to mass effect and focal neurologic symptoms. Seizures are also relatively common. Intracranial bleeding may be the presenting symptom in less than 3% of patients. The duration of symptoms before diagnosis is usually short, ranging from a few days to a few weeks.

In some embodiments, the cancer is an oligodendroglioma. Oligodendrogliomas include low-grade oligodendrogliomas (or oligoastrocytomas) and anaplastic oligodendrogliomas.

In some embodiments, the cancer of the CNS is a tumor associated with neurofibromatosis (NF). In some embodiments, the neurofibromatosis is a type 1 NF or a type 2 NF. In some embodiments, the neurofibromatosis is a type 1NF. Neurofibromatosis type 1 is a condition characterized by changes in skin coloring (pigmentation) and the growth of tumors along nerves in the skin, brain, and other parts of the body. The signs and symptoms of this condition vary widely among affected people.

Beginning in early childhood, almost all people with neurofibromatosis type 1 have multiple cafe-au-lait spots, which are flat patches on the skin that are darker than the surrounding area. These spots increase in size and number as the individual grows older. Freckles in the underarms and groin typically develop later in childhood.

Most adults with neurofibromatosis type 1 develop neurofibromas, which are noncancerous (benign) tumors that are usually located on or just under the skin. These tumors may also occur in nerves near the spinal cord or along nerves elsewhere in the body. Some people with neurofibromatosis type 1 develop cancerous tumors that grow along nerves. These tumors, which usually develop in adolescence or adulthood, are called malignant peripheral nerve sheath tumors. People with neurofibromatosis type 1 also have an increased risk of developing other cancers, including brain tumors and cancer of blood-forming tissue (leukemia). In some embodiments, the cancer is a neurofibroma.

During childhood, benign growths called Lisch nodules often appear in the colored part of the eye (the iris). Lisch nodules do not interfere with vision. Some affected individuals also develop tumors that grow along the nerve leading from the eye to the brain (the optic nerve). These tumors, which are called
optic gliomas, may lead to reduced vision or total vision loss. In some cases, optic gliomas have no effect on vision. In some embodiments, the cancer is an optic glioma.

[00238] In some embodiments, the cancer of the CNS is a tumor associated with neurofibromatosis. In some embodiments, the neurofibromatosis is a type 2 NF. Neurofibromatosis type 2 is a disorder characterized by the growth of noncancerous tumors in the nervous system. The tumors associated with neurofibromatosis type 2 are called bilateral vestibular schwannomas, acoustic neuromas, ependymomas, or meningiomas. These growths develop in the brain or along the nerve that carries information from the inner ear to the brain (the auditory nerve). In some embodiments, the cancer is bilateral vestibular schwannoma, acoustic neuroma, ependymoma, or meningioma.

[00239] The signs and symptoms of this condition usually appear during adolescence or in a person's early twenties, although onset can occur at any age. The most frequent early symptoms of vestibular schwannomas are hearing loss, ringing in the ears (tinnitus), and problems with balance. In most cases, these tumors occur in both ears by age 30. If tumors develop in other parts of the brain or spinal cord, signs and symptoms vary according to their location. Complications of tumor growth can include changes in vision or sensation, numbness or weakness in the arms or legs, fluid buildup in the brain, and nerve compression leading to significant morbidities and death. Some people with neurofibromatosis type 2 also develop clouding of the lens (cataracts) in one or both eyes, often beginning in childhood.

[00240] As used herein, NF includes Type 1 NF and Type 2 NF. In some instances, Type 1 NF is inherited or results from spontaneous mutation of neurofibromin. In some instances, NF Type 1 is associated with learning disabilities in individuals affected by the disease. In some instances the disease is associated with a partial absence seizure disorder. In some instances NF Type 1 is associated with poor language, visual-spatial skills, learning disability (e.g., attention deficit hyperactivity disorder), headache, epilepsy or the like.

[00241] Type 2 NF is inherited or results from spontaneous mutation of merlin. In some instances, NF Type 2 causes symptoms of hearing loss, tinnitus, headaches, epilepsy, cataracts and/or retinal abnormalities, paralysis and/or learning disabilities. Patients with NF1 and NF2 are at increased risk of forming nervous system tumors. In type 1 patients this includes dermal and plexiform neurofibromas, malignant peripheral nerve sheath tumors (MPNST) and other malignant tumors, while type 2 patients may develop multiple cranial and spinal tumors.

[00242] In some instances, developmental disability and/or behavioral problems associated with NF are associated with an abnormality in dendritic spine morphology and/or an abnormality in dendritic spine density and/or an abnormality in synaptic function. In some instances, an abnormality in dendritic spine morphology and/or dendritic spine density and/or synaptic function is associated with activation of p21-activated kinase (PAK). In some instances, modulation of PAK activity (e.g., inhibition or partial inhibition of PAK) alleviates, reverses or reduces abnormalities in dendritic spine morphology and/or dendritic spine density and/or synaptic function thereby reversing or partially reversing developmental disability and/or behavioral problems associated with NF. In some instances, modulation of PAK activity (e.g., inhibition or
partial inhibition of PAK) alleviates, reverses or reduces abnormalities in dendritic spine morphology and/or dendritic spine density and/or synaptic function thereby reducing occurrence of seizures in individuals diagnosed with NF. In some instances, modulation of PAK activity (e.g., inhibition or partial inhibition of PAK) alleviates, reverses or reduces abnormalities in dendritic spine morphology and/or dendritic spine density and/or synaptic function thereby reducing or reversing learning disabilities associated with NF. In some instances, modulation of PAK activity (e.g., inhibition or partial inhibition of PAK) alleviates, reverses or reduces cognitive deficits associated with NF. In some instances, modulation of PAK activity (e.g., inhibition or partial inhibition of PAK) alleviates, reverses or reduces learning disability and/or epilepsy and/or any other symptoms associated with NF. In some instances, modulation of PAK activity (e.g., inhibition or partial inhibition of PAK) alleviates, reverses or reduces the incidence of tumor development associated with NF.

Dendritic Spines

[00243] A dendritic spine is a small membranous protrusion from a neuron's dendrite that serves as a specialized structure for the formation, maintenance, and/or function of synapses. Dendritic spines vary in size and shape. In some instances, spines have a bulbous head (the spine head) of varying shape, and a thin neck that connects the head of the spine to the shaft of the dendrite. In some instances, spine numbers and shape are regulated by physiological and pathological events. In some instances, a dendritic spine head is a site of synaptic contact. In some instances, a dendritic spine shaft is a site of synaptic contact. Figure 1 shows examples of different shapes of dendritic spines. Dendritic spines are "plastic." In other words, spines are dynamic and continually change in shape, volume, and number in a highly regulated process. In some instances, spines change in shape, volume, length, thickness or number in a few hours. In some instances, spines change in shape, volume, length, thickness or number occurs within a few minutes. In some instances, spines change in shape, volume, length, thickness or number occurs in response to synaptic transmission and/or induction of synaptic plasticity. By way of example, dendritic spines are headless (filopodia as shown, for example, in Figure 1a), thin (for example, as shown in Figure 1b), stubby (for example as shown in Figure 1c), mushroom-shaped (have door-knob heads with thick necks, for example as shown in Figure 1d), ellipsoid (have prolate spheroid heads with thin necks, for example as shown in Figure 1e), flattened (flattened heads with thin neck, for example as shown in Figure 1f) or branched (for example as shown in Figure 1g).

[00244] In some instances, mature spines have variably-shaped bulbous tips or heads, -0.5-2 \(\mu \text{m} \) in diameter, connected to a parent dendrite by thin stalks 0.1-1 \(\mu \text{m} \) long. In some instances, an immature dendritic spine is filopodia-like, with a length of 1.5 - 4 \(\mu \text{m} \) and no detectable spine head. In some instances, spine density ranges from 1 to 10 spines per micrometer length of dendrite, and varies with maturational stage of the spine and/or the neuronal cell. In some instances, dendritic spine density ranges from 1 to 40 spines per 10 micrometer in medium spiny neurons.

[00245] In some instances, the shape of the dendritic spine head determines synaptic function. Defects in dendritic spine morphology and/or function have been described in neurological diseases. As an example
only, the density of dendritic spines has been shown to be reduced in pyramidal neurons from patients with schizophrenia (Glanz and Lewis, Arch Gen Psychiatry, 2000:57:65-73). In many cases, the dendritic spine defects found in samples from human brains have been recapitulated in rodent models of the disease and correlated to defective synapse function and/or plasticity. In some instances, dendritic spines with larger spine head diameter form more stable synapses compared with dendritic spines with smaller head diameter. In some instances, a mushroom-shaped spine head is associated with normal or partially normal synaptic function. In some instances, a mushroom-shaped spine is a healthier spine (e.g., having normal or partially normal synapses) compared to a spine with a reduced spine head size, spine head volume and/or spine head diameter. In some instances, inhibition or partial inhibition of PAK activity results in an increase in spine head diameter and/or spine head volume and/or reduction of spine length, thereby normalizing or partially normalizing synaptic function in individuals suffering or suspected of suffering from a cancer of the CNS, such as NF.

p21-activated kinases (PAKs)

[00246] The PAKs constitute a family of serine-threonine kinases that is composed of "conventional", or Group I PAKs, that includes PAK1, PAK2, and PAK3, and "non-conventional", or Group II PAKs, that includes PAK4, PAK5, and PAK6. See, e.g., Zhao et al. (2005), Biochem J 386:201-214. These kinases function downstream of the small GTPases Rac and/or Cdc42 to regulate multiple cellular functions, including dendritic morphogenesis and maintenance (see, e.g., Ethell et al (2005), Prog in Neurobiol, 75:161-205; Penzes et al (2003), Neuron, 37:263-274), motility, morphogenesis, angiogenesis, and apoptosis, (see, e.g., Bokoch et al., 2003, Annu. Rev. Biochem., 72:743; and Hofmann et al., 2004, J. Cell Sci., 117:4343). GTP-bound Rac and/or Cdc42 bind to inactive PAK, releasing steric constraints imposed by a PAK autoinhibitory domain and/or permitting PAK phosphorylation and/or activation. Numerous phosphorylation sites have been identified that serve as markers for activated PAK.

[00247] In some instances, upstream effectors of PAK include, but are not limited to, TrkB receptors; NMDA receptors; adenosine receptors; estrogen receptors; integrins, EphB receptors; CDK5, FMRP; Rho-family GTPases, including Cdc42, Rac (including but not limited to Rac1 and Rac2), Chp, TC10, and Wnch-1; guanine nucleotide exchange factors ("GEFs"), such as but not limited to GEFT, a-p-21-activated kinase interacting exchange factor (aPIX), Kalirin-7, and Tia1; G protein-coupled receptor kinase-interacting protein 1 (GIT1), and sphingosine.

[00248] In some instances, downstream effectors of PAK include, but are not limited to, substrates of PAK kinase, such as Myosin light chain kinase (MLCK), regulatory Myosin light chain (R-MLC), Myosins I heavy chain, myosin II heavy chain, Myosin VI, Caldesmon, Desmin, Op18/stathmin, Merlin, Filamin A, LIM kinase (LIMK), Ras, Raf, Mek, p47phox, BAD, caspase 3, estrogen and/or progesterone receptors, RhoGEF, GEF-H1, NET1, Gaz, phosphoglycerate mutase-B, RhoGDI, prolactin, p41Arc, cortactin and/or Aurora-A (See, e.g., Bokoch et al., 2003, Annu. Rev. Biochem., 72:743; and Hofmann et al., 2004, J. Cell Sci., 117:4343). Other substances that bind to PAK in cells include CIB; sphingolipids; lysophosphatidic acid, G-protein β and/or γ subunits; PIX/COL; GIT/PKL; Nef; Paxillin; NESH; SH3-containing proteins...
(e.g. Nek and/or Grb2); kinases (e.g. Akt, PDK1, PI 3-kinase/p85, Cdk5, Cdc2, Src kinases, Abl, and/or protein kinase A (PKA)); and/or phosphatases (e.g. phosphatase PP2A, POPX1, and/or POPX2).

PAK inhibitors.

[00249] Described herein are PAK inhibitors that treat one or more symptoms associated with cell proliferation diseases or disorders, such as cancers. Also described herein are pharmaceutical compositions comprising a PAK inhibitor (e.g., a PAK inhibitor compound described herein) for reversing or reducing one or more symptoms associated with cell proliferation diseases and disorders, such as cancers. Also described herein are pharmaceutical compositions comprising a PAK inhibitor (e.g., a PAK inhibitor compound described herein) for halting or delaying the progression of symptoms and/or positive symptoms associated with cell proliferation diseases or disorders, such as cancers. Described herein is the use of PAK inhibitors for manufacture of medicaments for treatment of one or more symptoms of cell proliferation diseases or disorders, such as cancers.

[00250] In some embodiments, the PAK inhibitor is a Group I PAK inhibitor that inhibits, for example, one or more Group I PAK polypeptides, for example, PAK1, PAK2, and/or PAK3. In some embodiments, the PAK inhibitor is a PAK1 inhibitor. In some embodiments, the PAK inhibitor is a PAK2 inhibitor. In some embodiments, the PAK inhibitor is a PAK3 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK3 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK2 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK4 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK2/PAK4 inhibitor. In some embodiments, the PAK inhibitor is a mixed PAK1/PAK2/PAK3/PAK4 inhibitor. In some embodiments, the PAK inhibitor inhibits all three Group I PAK isoforms (PAK1, 2 and PAK3) with equal or similar potency. In some embodiments, the PAK inhibitor is a Group II PAK inhibitor that inhibits one or more Group II PAK polypeptides, for example PAK4, PAK5, and/or PAK6. In some embodiments, the PAK inhibitor is a PAK4 inhibitor. In some embodiments, the PAK inhibitor is a PAK5 inhibitor. In some embodiments, the PAK inhibitor is a PAK6 inhibitor.

[00251] In certain embodiments, a PAK inhibitor described herein reduces or inhibits the activity of one or more of PAK1, PAK2, PAK3, and/or PAK4 while not affecting the activity of PAK5 and PAK6. In some embodiments, a PAK inhibitor described herein reduces or inhibits the activity of one or more of PAK1, PAK2 and/or PAK3 while not affecting the activity of PAK4, PAK5 and/or PAK6. In some embodiments, a PAK inhibitor described herein reduces or inhibits the activity of one or more of PAK1, PAK2, PAK3, and/or one or more of PAK4, PAK5 and/or PAK6. In some embodiments, a PAK inhibitor described herein is a substantially complete inhibitor of one or more PAKs. As used herein, "substantially complete inhibition" means, for example, > 95% inhibition of one or more targeted PAKs. In other embodiments, "substantially complete inhibition" means, for example, > 90% inhibition of one or more targeted PAKs. In some other embodiments, "substantially complete inhibition" means, for example, > 80 % inhibition of one or more targeted PAKs. In some embodiments, a PAK inhibitor described herein is a partial inhibitor of one or more PAKs. As used herein, "partial inhibition" means, for example, between about 40% to about 60% inhibition of one or more targeted PAKs. In other embodiments, "partial inhibition" means, for example,
between about 50% to about 70% inhibition of one or more targeted PAKs. As used herein, where a PAK inhibitor substantially inhibits or partially inhibits the activity of a certain PAK isoform while not affecting the activity of another isoform, it means, for example, less than about 10% inhibition of the non-affected isoform when the isoform is contacted with the same concentration of the PAK inhibitor as the other substantially inhibited or partially inhibited isoforms. In other instances, where a PAK inhibitor substantially inhibits or partially inhibits the activity of a certain PAK isoform while not affecting the activity of another isoform, it means, for example, less than about 5% inhibition of the non-affected isoform when the isoform is contacted with the same concentration of the PAK inhibitor as the other substantially inhibited or partially inhibited isoforms. In yet other instances, where a PAK inhibitor substantially inhibits or partially inhibits the activity of a certain PAK isoform while not affecting the activity of another isoform, it means, for example, less than about 1% inhibition of the non-affected isoform when the isoform is contacted with the same concentration of the PAK inhibitor as the other substantially inhibited or partially inhibited isoforms.

Methods of Treating Cancer

[00252] Described herein are methods for treating cancer in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a compound of Formula I-IV and A-D. As used herein, "cancer" includes any malignant growth or tumor caused by abnormal and uncontrolled cell division. "Cancer" also includes solid tumors and non-solid tumors. Examples of cancers include pancreatic cancer, gastrointestinal stromal tumors, lung cancer, stomach cancer, brain cancer, kidney cancer, breast cancer, head and neck cancer, myeloma, leukemia, lymphoma, adenocarcinoma, melanoma, cancer of the CNS, or the like.

[00253] In one embodiment is a method for treating cancer in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a compound of Formula I wherein the cancer is selected from ovarian, breast, colon, brain, neurofibromatosis, CML, renal cell carcinoma, gastric, leukemia, NSCLC, CNS, melanoma, prostate, T-cell lymphoma, heptocellular, bladder and glioblastoma. In one embodiment, the breast cancer is tamoxifen-resistant or intolerant breast cancer. In another embodiment, the CML is imatinib resistant or intolerant CML.

[00254] In one embodiment, is a method for modulating a p21 activated kinase comprising contacting a compound of Formula I-IV and A-D with a p21 activated kinase such that PAK expression or activation has been altered. PAK kinases have been identified as key regulators of cancer-cell signaling networks where they regulate essential biological processes. These processes include cytoskeletal dynamics, energy homeostasis, cell survival, differentiation, anchorage-independent growth, mitosis, and hormone dependence. Dysregulation of these processes by alterations in PAK expression or activation have been reported in numerous human cancers. See, e.g., Kumar R, Gururaj AE, Barnes CJ, p21-activated kinases in cancer, Nat Rev Cancer, 2006; 6: 459-471, which is incorporated by reference herein to the extent it is relevant.

[00255] In another embodiment is a method for treating cancer in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a compound of Formula I-IV and A-D
wherein the cancer is selected from pancreatic cancer, gastrointestinal stromal tumors, lung cancer, stomach cancer, brain cancer, kidney cancer, breast cancer, head and neck cancer, myeloma, leukemia, lymphoma, adenocarcinoma, bone cancer, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, lymphocytic lymphomas, cancer of the bladder, renal cell carcinoma, carcinoma of the renal pelvis, neoplasms of the central nervous system (CNS), primary CNS lymphoma, spinal axis tumors, brain stem glioma, pituitary adenoma, spontaneous schwannomas, meningiomas, or a combination of one or more of the foregoing cancers.

In some embodiments, the cancer is selected from ovarian cancer, breast cancer (including ones that are tamoxifen-resistant), colon, brain, neurofibromatosis, renal cell carcinoma, gastric, CNS, melanoma, glioblastoma, pancreatic cancer, gastrointestinal stromal tumors, lung cancer, stomach cancer, brain cancer, kidney cancer, breast cancer, head and neck cancer, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, stomach cancer, colon cancer, carcinoma of the fallopian tubes, cancer of the esophagus, cancer of the small intestine, or renal cell carcinoma.

In certain embodiments, a compound or a composition comprising a compound described herein is administered for prophylactic and/or therapeutic treatments. In therapeutic applications, the compositions are administered to an individual already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition. In various instances, amounts effective for this use depend on the severity and course of the disease or condition, previous therapy, an individual's health status, weight, and response to the drugs, and the judgment of the treating physician.

In some embodiments, a composition containing a therapeutically effective amount of a PAK inhibitor is administered prophylactically to an individual that while not overtly manifesting symptoms of a cell proliferation disease or disorder has been identified as having a high risk of developing the cell proliferation disease or disorder. In prophylactic applications, compounds or compositions containing compounds described herein are administered to an individual susceptible to or otherwise at risk of a particular disease, disorder or condition. In certain embodiments of this use, the precise amounts of compound administered depend on an individual's state of health, weight, and the like. Furthermore, in some instances, when a compound or composition described herein is administered to an individual, effective amounts for this use depend on the severity and course of the disease, disorder or condition, previous therapy, an individual's health status and response to the drugs, and the judgment of the treating physician.

In certain instances, wherein following administration of a selected dose of a compound or composition described herein, an individual's condition does not improve, upon the doctor's discretion the administration of a compound or composition described herein is optionally administered chronically, that
is, for an extended period of time, including throughout the duration of an individual's life in order to ameliorate or otherwise control or limit the symptoms of an individual's disorder, disease or condition.

[00260] In certain embodiments, an effective amount of a given agent varies depending upon one or more of a number of factors such as the particular compound, disease or condition and its severity, the identity (e.g., weight) of an individual or host in need of treatment, and is determined according to the particular circumstances surrounding the case, including, e.g., the specific agent being administered, the route of administration, the condition being treated, and an individual or host being treated. In some embodiments, doses administered include those up to the maximum tolerable dose. In certain embodiments, about 0.02 to about 5000 mg per day, from about 1 to about 1500 mg per day, about 1 to about 100 mg/day, about 1 to about 50 mg/day, or about 1 to about 30 mg/day, or about 5 to about 25 mg/day of a compound described herein is administered. In various embodiments, the desired dose is conveniently be presented in a single dose or in divided doses administered simultaneously (or over a short period of time) or at appropriate intervals, for example as two, three, four or more sub-doses per day.

[00261] In certain instances, there are a large number of variables in regard to an individual treatment regime, and considerable excursions from these recommended values are considered within the scope described herein. Dosages described herein are optionally altered depending on a number of variables such as, by way of non-limiting example, the activity of the compound used, the disease or condition to be treated, the mode of administration, the requirements of an individual, the severity of the disease or condition being treated, and the judgment of the practitioner.

[00262] Toxicity and therapeutic efficacy of such therapeutic regimens are optionally determined by pharmaceutical procedures in cell cultures or experimental animals, including, but not limited to, the determination of the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between the toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD_{50} and ED_{50}. Compounds exhibiting high therapeutic indices are preferred. In certain embodiments, data obtained from cell culture assays and animal studies are used in formulating a range of dosage for use in human. In specific embodiments, the dosage of compounds described herein lies within a range of circulating concentrations that include the ED_{50} with minimal toxicity. The dosage optionally varies within this range depending upon the dosage form employed and the route of administration utilized.

Combination Therapy for Treatment of Cancer

[00263] In some embodiments, one or more PAK inhibitors are used in combination with one or more other therapeutic agents to treat an individual suffering from a cancer. The combination of PAK inhibitors with a second therapeutic agent (e.g., an anti-cancer agent) allows a reduced dose of both agents to be used thereby reducing the likelihood of side effects associated with higher dose monotherapies. In one embodiment, the dose of a second active agent is reduced in the combination therapy by at least 50% relative to the corresponding monotherapy dose, whereas the PAK inhibitor dose is not reduced relative to the monotherapy dose; in further embodiments, the reduction in dose of a second active agent is at least 75%; in
yet a further embodiment, the reduction in dose of a second active agent is at least 90%. In some embodiments, the second therapeutic agent is administered at the same dose as a monotherapy dose, and the addition of a PAK inhibitor to the treatment regimen alleviates symptoms of a cancer that are not treated by monotherapy with the second therapeutic agent.

[00264] In some embodiments, the combination of a PAK inhibitor and a second therapeutic agent is synergistic (e.g., the effect of the combination is better than the effect of each agent alone). In some embodiments, the combination of a PAK inhibitor and a second therapeutic agent is additive (e.g., the effect of the combination of active agents is about the same as the effect of each agent alone). In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent modulating the same regulatory pathway. In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent modulating different regulatory pathways. In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent treating different symptom groups of the CNS disorder (e.g., a PAK inhibitor treats negative symptoms and the second therapeutic agent treats positive symptoms of schizophrenia). In some embodiments, administration of a second therapeutic agent treats the remainder of the same or different symptoms or groups of symptoms that are not treated by administration of a PAK inhibitor alone.

[00265] In some embodiments, administration of a combination of a PAK inhibitor and a second therapeutic agent alleviates side effects that are caused by the second therapeutic agent (e.g., side effects caused by an antipsychotic agent or a nootropic agent). In some embodiments, administration of the second therapeutic agent inhibits metabolism of an administered PAK inhibitor (e.g., the second therapeutic agent blocks a liver enzyme that degrades the PAK inhibitor) thereby increasing efficacy of a PAK inhibitor. In some embodiments, administration of a combination of a PAK inhibitor and a second therapeutic agent (e.g., a second agent that modulates dendritic spine morphology (e.g., minocycline)) improves the therapeutic index of a PAK inhibitor.

Anti-cancer Agents

[00266] Where the subject is suffering from or at risk of suffering from a cell proliferative disorder (e.g., cancer), the subject in some embodiments is treated with a compound of Formula I-IV and A-D in any combination with one or more other anti-cancer agents. In some embodiments, one or more of the anti-cancer agents are proapoptotic agents. The proapoptotic agents include, but are not limited to, antagonists of inhibitor of apoptosis proteins (IAP) (e.g., BV6, G-416). In some embodiments, one or more of the anti-cancer agents are kinase inhibitors or receptor inhibitors (e.g., EGFR inhibitors, VEGF inhibitors, or HER2 inhibitors). Examples of kinase inhibitors include, but are not limited to, EGFR kinase inhibitors (e.g., gefitinib), BCR/ABL and/or Src kinase inhibitors (e.g., dasatinib, nilotinib), Akt inhibitors (e.g., Akt VIII), MEK inhibitors (e.g., U0126), tyrosine kinase inhibitors (e.g., imatinib). Examples of EGFR, VEGF and/or HER2 inhibitors include, but are not limited to, afatinib, erlotinib, lapatinib, pegaptanib, pazopanib, sunitinib, ranibizumab, vandetanib, and ZD6474. Additional examples of anti-cancer agents that are kinase inhibitors and receptor inhibitors include, but are not limited to, trastuzumab, sorafenib, mubritinib,
fostamatinib, crizotinib, and cetuximab. In some embodiments, one or more anti-cancer agents are
chemotherapeutics. Examples of chemotherapeutics include, but are not limited to, alkylating agents (e.g.,
altretamine, cisplatin, carboplatin, oxaliplatin), anti-metabolites, plant alkaloids and terpenoids (e.g., vinca
alkaloids, vinblastine, vindesine, taxanes, podophyllotoxin), topoisomerase inhibitors (e.g., irinotecan,
topotecan, amsacrine, etoposide), and cytotoxic antibiotics (e.g., doxorubicin, valrubicin, epirubicin,
bleomycin). Additional examples of anti-cancer agents include, but are not limited to, any of the following:
gossypol, genasense, polyphenol E, Chlorofusin, all trans-retinoic acid (ATRA), bryostatin, tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), 5-aza-2'-deoxycytidine, all trans retinoic acid,
doxorubicin, vincristine, etoposide, gemcitabine, imatinib (Gleevec®), geldanamycin, 17-N-Allylamino-17-
Demethoxygeldanamycin (17-AAG), flavopiridol, LY294002, bortezomib, trastuzumab, BAY 11-7082,
PKC412, or PD184352, Taxol™, also referred to as "paclitaxel", which is an anti-cancer drug which acts by
enhancing and stabilizing microtubule formation, and analogs of Taxol™, such as Taxotere™. Compounds
that have the basic taxane skeleton as a common structure feature, have also been shown to have the ability
to arrest cells in the G2-M phases due to stabilized microtubules and in some embodiments are useful for
treating cancer in combination with the compounds described herein.

Further examples of anti-cancer agents for use in combination with a compound of Formula
I-IV and A-D include inhibitors of mitogen-activated protein kinase signaling, e.g., U0126, PD98059,
PD184352, PD0325901, ARRY-142886, SB239063, SP600125, and BAY 43-9006.

In some embodiments, other anti-cancer agents that are employed in combination with a PAK
 inhibitor compound include Adriamycin, Dactinomycin, Bleomycin, Vinblastine, Cisplatin, acicivin;
aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin;
ametantrone acetate; aminoglutethimide; amsacrine; anastrozole; anthramycin; asparaginase; asperlin;
azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide
dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin;
calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin;
cedefmgol; chlorambucil; cirolemycin; cladribine; crisnaton mesylate; cyclophosphamide; cytarabine;
dacarbazine; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguaine mesylate;
diaziquone; doxorubicin; doxorubicin hydrochloride; droloxfene; droloxfene citrate; dromostanolone
propionate; duazomycin; edatrexate; eflornithine hydrochloride; elsamitricin; enloplatin; enpromate;
epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine
phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride;
fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine; fosquidone; fostriecein
sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide;
ilmofosine; interleukin II (including recombinant interleukin II, or rIL2), interferon alfa-2a; interferon alfa-
2b; interferon alfa-n1; interferon alfa-n3; interferon beta-1a; interferon gamma-1 b; iproplatin; irinotecan
hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium;
lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol
acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitindomide; mitocarcin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocardazole; nogalamycin; ormaplatin; oxisuran; pegasparagase; pelliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; rogletimide; safingol; safingol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spironustine; spiroplatin; streptonigrin; sulofenur; talisomycin; tecogalan sodium; tegafur; teloxantrone hydrochloride; temoporfin; teniposide; teroxirone; testolactone; thiamiprine; thioguanine; thiotope; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; vaperotide; verteporfin; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinolesulne sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; zorubicin hydrochloride.

[00269] Other anti-cancer agents that in some embodiments are employed in combination with a compound of Formula I-IV and A-D include: 20-epi-l , 25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclacinobin; acylfulvene; adecyphenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambumustine; amidox; amifostine; aminolevulinic acid; amrubicin; amscrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1 antiandrogen; prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; aracrine; asulacrine; atamestane; atrinmustine; azatymosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionate sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlns; chloroquinaxaline sulfonamide; cicaprost; cis-porphyrin; cladrribine; clomifene analogues; clotrimazole; colllsmycin A; colllssmycin B; combretastatin A4; combretastatin analogue; conagenin; crambescidin 816; crisnator; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacleximab; decitabine; dehydrodideimin B; deslorelin; dexamethasone; dexifosfamide; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; 9-dioxamycin; diphenyl spiromustine; docosanol; dolasetron; doxifluridine; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edecromolab; eflomithine; elemene; emitefur; epirubicin; epiristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate;
exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; flunasterone; fludarabine; fluoroaurorunicin hydrochloride; forfenimex; formestane; fotsrenc; fotemustine; gadolinium texaphyrin; gallium nitrate; galociabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; hypercin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; imidazoacridones; imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; ioenguane; iodoiodoxorubicin; ipomeanol, 4-; iproplact; irsogludine; isobengazole; isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenogrestim; lentian sulfate; leptolstatin; leurozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamidine 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannosostatin A; marimastat; masprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metcloparamide; MIF inhibitor; mifepristone; miltefosine; mimristost; mismatched double stranded RNA; mitoguazone; milolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal antibody, human chiorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol; multiple drug resistance gene inhibitor; multiple tumor suppressor 1-based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetyldalinaline; N-substituted benzamides; nafarelin; nagrestip; nalorex+pentazocine; napavin; naphterin; nartograstim; nemorubicin; neridronic acid; neutral endopeptidase; nilutamide; nismacryn; nitric oxide modulators; nitrooxide antioxidant; nitrullyn; 06-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin; oxaunomycin; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine; pegasparagase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perfubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; pofimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteinase inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylerie conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; R.sub.lL retinamide; rogletimide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxyl; safingol; saintopin; SarCNU; sarcophyto A; sargramostim; Sdi 1 mimetics; semustine; senescence derived 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen-binding protein; sizofuran; sobuzoxane;
sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors; stipiamide; stromelysin inhibitors; sulfnosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallmustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; teniposide; tetrachlorodecaoxide; tetrazomine; thalblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoeitin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; totipotent stem cell factor; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitamin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.

[00270] Yet other anticancer agents that in further embodiments are employed in combination with a compound of Formula I-IV and A-D include alkylating agents, antimetabolites, natural products, or hormones, e.g., nitrogen mustards (e.g., mechloroethamine, cyclophosphamide, chlorambucil, etc.), alkyl sulfonates (e.g., busulfan), nitrosoureas (e.g., carmustine, lomusitine, etc.), or triazenes (decarbazine, etc.). Examples of antimetabolites include but are not limited to folic acid analog (e.g., methotrexate), or pyrimidine analogs (e.g., Cytarabine), purine analogs (e.g., mercaptopurine, thioguanine, pentostatin).

[00271] Examples of natural products useful in combination with a compound of Formula I-IV and A-D include but are not limited to vinca alkaloids (e.g., vinblastin, vincristine), epipodophyllotoxins (e.g., etoposide), antibiotics (e.g., daunorubicin, doxorubicin, bleomycin), enzymes (e.g., L-asparaginase), or biological response modifiers (e.g., interferon a).

[00272] Examples of alkylating agents that in further embodiments are employed in combination with a compound of Formula I-IV and A-D include, but are not limited to, nitrogen mustards (e.g., mechloroethamine, cyclophosphamide, chlorambucil, melphalan, etc.), ethylenimine and methylmelamines (e.g., hexamethylmelamine, thiopeta), alkyl sulfonates (e.g., busulfan), nitrosoureas (e.g., carmustine, lomusitine, semustine, streptozocin, etc.), or triazenes (decarbazine, etc.). Examples of antimetabolites include, but are not limited to folic acid analog (e.g., methotrexate), or pyrimidine analogs (e.g., fluorouracil, flouxuridine, Cytarabine), purine analogs (e.g., mercaptopurine, thioguanine, pentostatin).

[00273] Examples of hormones and antagonists useful in combination with a compound of Formula I-IV and A-D include, but are not limited to, adrenocorticosteroids (e.g., prednisone), progestins (e.g., hydroxyprogesterone caproate, megestrol acetate, medroxyprogesterone acetate), estrogens (e.g., diethylstilbestrol, ethinyl estradiol), antiestrogen (e.g., tamoxifen), androgens (e.g., testosterone propionate, fluoxymesterone), antiandrogen (e.g., flutamide), gonadotropin releasing hormone analog (e.g., leuprolide). Other agents that can be used in the methods and compositions described herein for the treatment or prevention of cancer include platinum coordination complexes (e.g., cisplatin, carboblatin), anthracenedione
(e.g., mitoxantrone), substituted urea (e.g., hydroxyurea), methyl hydrazine derivative (e.g., procarbazine), adrenocortical suppressant (e.g., mitotane, aminoglutethimide).

Examples of anti-cancer agents which act by arresting cells in the G2-M phases due to stabilized microtubules and which in other embodiments are used in combination with a compound of Formula I-IV and A-D include without limitation the following marketed drugs and drugs in development: Erbulozole (also known as R-55 104), Dolastatin 10 (also known as DLS-1 10 and NSC-376128), Mivobulin isethionate (also known as CI-980), Vincristine, NSC-639829, Discodermolide (also known as NVP-XX-A-296), ABT-751 (Abbott, also known as E-7010), Altorhynins (such as Altorhynrin A and Altorhynrit C), Spongistatins (such as Spongistatin 1, Spongistatin 2, Spongistatin 3, Spongistatin 4, Spongistatin 5, Spongistatin 6, Spongistatin 7, Spongistatin 8, and Spongistatin 9), Cemadotin hydrochloride (also known as LU-1 03793 and NSC-D-669356), Epothilones (such as Epothilone A, Epothilone B, Epothilone C (also known as desoxyepothilone A or dEpoA), Epothilone D (also referred to as KOS-862, dEpoB, and desoxyepothilone B), Epothilone E, Epothilone F, Epothilone B N-oxide, Epothilone A N-oxide, 16-aza-epothilone B, 21-aminopeothilone B (also known as BMS-3 10705), 21-hydroxy epothilone D (also known as Desoxyepothilone F and dEpoF), 26-fluoropothilone), Auristatin PE (also known as NSC-654663), Soblidotin (also known as TZT-1027), LS-4559-P (Pharmacia, also known as LS-4577), LS-4578 (Pharmacia, also known as LS-477-P), LS-4477 (Pharmacia), LS-4559 (Pharmacia), RPR-1 12378 (Aventis), Vincristine sulfate, DZ-3358 (Daichii), FR-1 82877 (Fujisawa, also known as WS-9885B), GS-164 (Takeda), GS-198 (Takeda), KAR-2 (Hungarian Academy of Sciences), BSF-22365 1 (BASF, also known as ILX-65 1 and LU-22365 1), SAH-49960 (Lilly/Novartis), SDZ-268970 (Lilly/Novartis), AM-97 (Armad/Kyowa Hakko), AM-132 (Armad), AM-138 (Armad/Kyowa Hakko), IDN-5005 (Indena), Cryptophycin 52 (also known as LY-355703), AC-7739 (Ajinomoto, also known as AVE-8063A and CS-39.HCl), AC-7700 (Ajinomoto, also known as AVE-8062, AVE-8062A, CS-39-L-Ser.HCl, and RPR-258062A), Vitilevuamide, Tubulysin A, Canadensol, Centaureidin (also known as NSC-106969), T-138067 (Tularik, also known as T-67, TL-138067 and TI-138067), COBRA-1 (Parker Hughes Institute, also known as DDE-261 and WHI-261), H10 (Kansas State University), H16 (Kansas State University), Oncocедин A1 (also known as BTO-956 and DIME), DDE-3 13 (Parker Hughes Institute), Fijianolide B, Laulimalide, SPA-2 (Parker Hughes Institute), SPA-1 (Parker Hughes Institute, also known as SPIKET-P), 3-IAABU (Cytoskeleton/Mt. Sinai School of Medicine, also known as MF-569), Narcosine (also known as NSC-5366), Nascapine, D-2485 1 (Asta Medica), A-105972 (Abbott), Hemisasterlin, 3-BAABU (Cytoskeleton/Mt. Sinai School of Medicine, also known as MF-191), TMPN (Arizona State University), Vanadocene acetylacetonate, T-138026 (Tularik), Monsatrol, Inanocine (also known as NSC-698666), 3-IAABE (Cytoskeleton/Mt. Sinai School of Medicine), A-204197 (Abbott), T-607 (Tularik, also known as T-900607), RPR-1 15781 (Aventis), Eleutherobins (such as Desmethyleleutherobin, Desaetyleleutherobin, Isoeleutherobin A, and Z-Eleutherobin), Caribaesoid, Caribaecolin, Halichondrin B, D-641 31 (Asta Medica), D-68144 (Asta Medica), Diazonamide A, A-293620 (Abbott), NPI-2350 (Nereus), Taccalonolide A, TUB-245 (Aventis), A-259754 (Abbott), Diozostatin, (-)-Phenylahistin (also known as NSCL-96F037), D-68838 (Asta Medica), D-68836
(Asta Medica), Myoseverin B, D-43411 (Zentaris, also known as D-81862), A-289099 (Abbott), A-318315 (Abbott), HTI-286 (also known as SPA-110, trifluoroacetate salt) (Wyeth), D-82317 (Zentaris), D-82318 (Zentaris), SC-12983 (NCI), Resverastatin phosphate sodium, BPR-OY-007 (National Health Research Institutes), and SSR-250411 (Sanofi).

Upstream regulators of p21 activated kinases

[00275] In certain embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with an indirect PAK modulator (e.g., an indirect PAK inhibitor) that affects the activity of a molecule that acts in a signaling pathway upstream of PAK (upstream regulators of PAK). Upstream effectors of PAK include, but are not limited to: TrkB receptors; NMDA receptors; EphB receptors; adenosine receptors; estrogen receptors; integrins; FMRP; Rho-family GTPases, including Cdc42, Rac (including but not limited to Racl and Rac2), CDK5, PI3 kinases, NCK, PDK1, EKT, GRB2, Chp, TC10, Tel, and Wrch-1; guanine nucleotide exchange factors ("GEFs"), such as but not limited to GEFT, members of the Dbl family of GEFs, p21-activated kinase interacting exchange factor (PIX), DEF6, Zizimin 1, Vavl, Vav2, Dbs, members of the DOCK180 family, Kalirin-7, and Tiam1; G protein-coupled receptor kinase-interacting protein 1 (GIT1), CIB1, filamin A, Etk/Bmx, and sphingosine.

[00276] Modulators of NMDA receptor include, but are not limited to, 1-aminoadamantane, dextromethorphan, dextrophan, ibogaine, ketamine, nitrous oxide, phencyclidine, riluzole, etokamine, memantine, neramexane, dizocilpine, aptiganel, remacimide, 7-chlorokynurenate, DCKA (5,7-
dichlorokynurenic acid), kynurenic acid, 1-aminocyclopropane-carboxylic acid (ACPC), AP7 (2-aminoo-7-phosphonoheptanoic acid), APV (R-2-amino-5-phosphonopentanoate), CPPene (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-l-phosphonic acid); (+)-(lS, 2S)-1-(4-hydroxy-phenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol; (IS, 2S)-1-(4-hydroxy-3-methoxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-l-propanol; (3R, 4S)-3-(4-(4-fluorophenyl)-4-hydroxypiperidin-l-yl)-chroman-4,7-diol; (1R*, 2R*)-l-(4-hydroxy-3-methylphenyl)-2-(4-(4-fluoro-phenyl)-4-hydroxypiperidin-l-yl)-propan-l-ol-mesylate; and/or combinations thereof.

[00277] Modulators of estrogen receptors include, and are not limited to, PPT (4,4′,4″-(4-Propyl-[[lH]-pyrazole-1,3,5-triy])triphenol); SKF-82958 (6-chloro-7,8-dihydroxy-3-allyl-l-phenyl-2,3,4,5-tetrahydro-lH-3-benzazepine); estrogen; estradiol; estradiol derivatives, including but not limited to 17-β estradiol, estrone, estriol, ERP-131, phytoestrogen, MK 101 (bioNovo); VG-1010 (bioNovo); DPN (diarylpropiolitrile); ERB-041; WAY-202196; WAY-214156; genistein; estrogen; estradiol; estradiol derivatives, including but not limited to 17-β estradiol, estrone, estriol, benzopyrans and triazolotetrahydrofluorenone, disclosed in U.S. Patent No. 7,279,499, and Parker et al., Bioorg. & Med. Chem. Ltrs. 16: 4652-4656 (2006), each of which is incorporated herein by reference for such disclosure.

[00278] Modulators of TrkB include by way of example, neutorophic factors including BDNF and GDNF. Modulators of EphB include XL647 (Exelixis), EphB modulator compounds described in WO/2006081418 and US Appl. Pub. No. 20080300245, incorporated herein by reference for such disclosure, or the like.
Modulators of integrins include by way of example, ATN-161, PF-04605412, MEDI—522, Volociximab, natalizumab, Volociximab, Ro 27-2771, Ro 27-2441, etaracizumab, CNTO-95, JSM6427, cilengitide, R411 (Roche), EMD 121974, integrin antagonist compounds described in J. Med. Chem., 2002, 45 (16), pp 3451-3457, incorporated herein by reference for such disclosure, or the like.

Adenosine receptor modulators include, by way of example, theophylline, 8-Cyclopentyl-1,3-dimethylxanthine (CPX), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), 8-Phenyl-1,3-dipropylxanthine, PSB 36, istradefylline, SCH-58261, SCH-442,416, ZM-241,385, CVT-6883, MRS-1706, MRS-1754, PSB-603, PSB-0788, PSB-1115, MRS-1191, MRS-1220, MRS-1334, MRS-1523, MRS-3777, MRE3008F20, PSB-10, PSB-11, VUF-5574, N6-Cyclopentyladenosine, CCPA, 2’-MeCCPA, GR 79236, SDZ WAG 99, ATL-146e, CGS-21680, Regadenoson, 5’-N-ethylcarboxamidoadenosine, BAY 60-6583, LUF-5835, LUF-5845, 2-(l-Hexynyl)-N-methyladenosine, CF-101 (IB-MECA), 2-Cl-IB-MECA, CP-532,903, MRS-3558, Rosuvastatin, KW-3902, SLV320, mefloquine, regadenoson, or the like.

In some embodiments, compounds reducing PAK levels decrease PAK transcription or translation or reduce RNA or protein levels. In some embodiments, a compound that decreases PAK levels is an upstream effector of PAK. In some embodiments, exogenous expression of the activated forms of the Rho family GTPases Chp and cdc42 in cells leads to increased activation of PAK while at the same time increasing turnover of the PAK protein, significantly lowering its level in the cell (Hubsman et al. (2007) Biochem. J. 404: 487-497). PAK clearance agents include agents that increase expression of one or more Rho family GTPases and/or one or more guanine nucleotide exchange factors (GEFs) that regulate the activity of Rho family GTPases, in which overexpression of a Rho family GTPase and/or a GEF results in lower levels of PAK protein in cells. PAK clearance agents also include agonists of Rho family GTPases, as well as agonists of GTP exchange factors that activate Rho family GTPases, such as but not limited to agonists of GEFs of the Dbl family that activate Rho family GTPases.

Overexpression of a Rho family GTPase is optionally by means of introducing a nucleic acid expression construct into the cells or by administering a compound that induces transcription of the endogenous gene encoding the GTPase. In some embodiments, the Rho family GTPase is Rac (e.g., Rac1, Rac2, or Rac3), cdc42, Chp, TC10, Tel, or Wnch-1. For example, a Rho family GTPase includes Rac1, Rac2, Rac3, or cdc42. A gene introduced into cells that encodes a Rho family GTPase optionally encodes a mutant form of the gene, for example, a more active form (for example, a constitutively active form, Hubsman et al. (2007) Biochem. J. 404: 487-497). In some embodiments, a PAK clearance agent is, for example, a nucleic acid encoding a Rho family GTPase, in which the Rho family GTPase is expressed from a constitutive or inducible promoter. PAK levels in some embodiments are reduced by a compound that directly or indirectly enhances expression of an endogenous gene encoding a Rho family GTPase.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a PAK clearance agent.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a compound that directly or indirectly decreases the activation or activity of the upstream
effectors of PAK. For example, in some embodiments a compound that inhibits the GTPase activity of the small Rho-family GTPases such as Rac and cdc42 thereby reduce the activation of PAK kinase. In some embodiments, the compound that decreases PAK activation is by secramine that inhibits cdc42 activation, binding to membranes and GTP in the cell (Pelish et al. (2005) *Nat. Chem. Biol.* 2: 39-46). In some embodiments, PAK activation is decreased by EHT 1864, a small molecule that inhibits Racl, Raclb, Rac2 and Rac3 function by preventing binding to guanine nucleotide association and engagement with downstream effectors (Shutes et al. (2007) *J. Biol. Chem.* 49: 35666-35678). In some embodiments, PAK activation is also decreased by the NSC23766 small molecule that binds directly to Racl and prevents its activation by Rac-specific RhoGEFs (Gao et al. (2004) *Proc. Natl. Acad. Sci. U.S.A.* 101: 7618-7623). In some embodiments, PAK activation is also decreased by the 16 kDa fragment of prolactin (16k PRL), generated from the cleavage of the 23 kDa prolactin hormone by matrix metalloproteases and cathepsin D in various tissues and cell types. 16k PRL down-regulates the Ras-Tiam1-Racl-Pak signaling pathway by reducing Racl activation in response to cell stimuli such as wounding (Lee et al. (2007) *Cancer Res* 67:1 1045-1 1053). In some embodiments, PAK activation is decreased by inhibition of NMDA and/or AMPA receptors. Examples of modulators of AMPA receptors include and are not limited to ketamine, MK801, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione); NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione); DNQX (6,7-dinitroquinoxaline-2,3-dione); kynurenic acid; 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo-[f]quinoxaline; PCP or the like. In some embodiments, PAK activation is decreased by inhibition of TrkB activation. In some embodiments, PAK activation is decreased by inhibition of BDNF activation of TrkB. In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with an antibody to BDNF. In some embodiments, PAK activation is decreased by inhibition of TrkB receptors; NMDA receptors; EphB receptors; adenosine receptors; estrogen receptors; integrins; Rho-family GTPases, including Cdc42, Rac (including but not limited to Racl and Rac2), CDK5, PI3 kinases, NCK, PDK1, EKT, GRB2, Chp, TC10, Tel, and Wrch-1; guanine nucleotide exchange factors ("GEFs"), such as but not limited to GEFT, members of the Dbl family of GEFs, p21-activated kinase interacting exchange factor (PIX), DEF6, Zizimin 1, Vavl, Vav2, Dbs, members of the DOCK180 family, Kalirin-7, and Tiaml; G protein-coupled receptor kinase-interacting protein 1 (GIT1), OBI, filaminA, Etk/Bmx, and/or binding to FMRP and/or sphingosine.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a compound that decreases PAK levels in the cell, e.g., a compound that directly or indirectly increases the activity of a guanine exchange factor (GEF) that promotes the active state of a Rho family GTPase, such as an agonist of a GEF that activates a Rho family GTPase, such as but not limited to, Rac or cdc42. Activation of GEFs is also effected by compounds that activate TrkB, NMDA, or EphB receptors.

In some embodiments, a PAK clearance agent is a nucleic acid encoding a GEF that activates a Rho family GTPase, in which the GEF is expressed from a constitutive or inducible promoter. In some embodiments, a guanine nucleotide exchange factor (GEF), such as but not limited to a GEF that activates a
Rho family GTPase is overexpressed in cells to increase the activation level of one or more Rho family GTPases and thereby lower the level of PAK in cells. GEFs include, for example, members of the Dbl family of GTPases, such as but not limited to, GEFT, PIX (e.g., alphaPIX, betaPIX), DEF6, Zizimint 1, Vav1, Vav2, Dbs, members of the DOCK180 family, hPEM-2, FLJ00018, kalirin, Tiam-1, STEF, DOCK2, DOCK6, DOCK7, DOCK9, Asf, EhGEF3, or GEF-1. In some embodiments, PAK levels are also reduced by a compound that directly or indirectly enhances expression of an endogenous gene encoding a GEF. A GEF expressed from a nucleic acid construct introduced into cells is in some embodiments a mutant GEF, for example a mutant having enhanced activity with respect to wild type.

[00287] The clearance agent is optionally a bacterial toxin such as Salmonella typhimurium toxin SpoE that acts as a GEF to promote cdc42 nucleotide exchange (Buchwald et al. (2002) EMBOJ. 21: 3286-3295; Schlumberger et al. (2003) J. Biological Chem. 278: 27149-27159). Toxins such as SpoE, fragments thereof, or peptides or polypeptides having an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to a sequence of at least five, at least ten, at least twenty, at least thirty, at least forty, at least fifty, at least sixty, at least seventy, at least eighty, at least ninety, or at least 100 contiguous amino acids of the toxin are also optionally used as downregulators of PAK activity. The toxin is optionally produced in cells from nucleic acid constructs introduced into cells.

Modulators of upstream regulators of PAKs

[00288] In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a modulator of an upstream regulator of PAKs. In some embodiments, a modulator of an upstream regulator of PAKs is an indirect inhibitor of PAK. In certain instances, a modulator of an upstream regulator of PAKs is a modulator of PDK1. In some instances, a modulator of PDK1 reduces the activity of PDK1. In some instances a PDK1 inhibitor is an antisense compound (e.g., any PDK1 inhibitor described in U.S. Patent No. 6,124,272, which PDK1 inhibitor is incorporated herein by reference). In some instances, a PDK1 inhibitor is a compound described in e.g., U.S. Patent Nos. 7,344,870, and 7,041,687, which PDK1 inhibitors are incorporated herein by reference. In some embodiments, an indirect inhibitor of PAK is a modulator of a PI3 kinase. In some instances a modulator of a PI3 kinase is a PI3 kinase inhibitor. In some instances, a PI3 kinase inhibitor is an antisense compound (e.g., any PI3 kinase inhibitor described in WO 2001/018023, which PI3 kinase inhibitors are incorporated herein by reference). In some instances, an inhibitor of a PI3 kinase is 3-morpholino-5-phenylnaphthalen-1(4H)-one (LY294002), or a peptide based covalent conjugate of LY294002, (e.g., SF1 126, Semaphore Pharmaceuticals). In certain embodiments, an indirect inhibitor of PAK is a modulator of Cdc42. In certain embodiments, a modulator of Cdc42 is an inhibitor of Cdc42. In certain embodiments, a Cdc42 inhibitor is an antisense compound (e.g., any Cdc42 inhibitor described in U.S. Patent No. 6,410,323, which Cdc42 inhibitors are incorporated herein by reference). In some instances, an indirect inhibitor of PAK is a modulator of GRB2. In some instances, a modulator of GRB2 is an inhibitor of GRB2. In some instances a GRB2 inhibitor is a GRb2 inhibitor described in e.g., U.S. Patent No. 7,229,960, which GRB2 inhibitor is incorporated by reference herein. In
certain embodiments, an indirect inhibitor of PAK is a modulator of NCK. In certain embodiments, an indirect inhibitor of PAK is a modulator of ETK. In some instances, a modulator of ETK is an inhibitor of ETK. In some instances an ETK inhibitor is a compound e.g., a-Cyano-(3,5-di-t-butyl-4-hydroxy)thiocinnamide (AG 879).

[00289] In some embodiments, indirect PAK inhibitors act by decreasing transcription and/or translation of PAK. An indirect PAK inhibitor in some embodiments decreases transcription and/or translation of a PAK. For example, in some embodiments, modulation of PAK transcription or translation occurs through the administration of specific or non-specific inhibitors of PAK transcription or translation. In some embodiments, proteins or non-protein factors that bind the upstream region of the PAK gene or the 5' UTR of a PAK mRNA are assayed for their affect on transcription or translation using transcription and translation assays (see, for example, Baker, et al. (2003) J. Biol. Chem. 278: 17876-17884; Jiang et al. (2006) J. Chromatography A 1133: 83-94; Novoa et al. (1997) Biochemistry 36: 7802-7809; Brandi et al. (2007) Methods Enzymol. 431: 229-267). PAK inhibitors include DNA or RNA binding proteins or factors that reduce the level of transcription or translation or modified versions thereof. In other embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with an agent that is a modified form (e.g., mutant form or chemically modified form) of a protein or other compound that positively regulates transcription or translation of PAK, in which the modified form reduces transcription or translation of PAK. In yet other embodiments, a transcription or translation inhibitor is an antagonist of a protein or compound that positively regulates transcription or translation of PAK, or is an agonist of a protein that represses transcription or translation.

[00290] Regions of a gene other than those upstream of the transcriptional start site and regions of an mRNA other than the 5' UTR (such as but not limited to regions 3' of the gene or in the 3' UTR of an mRNA, or regions within intron sequences of either a gene or mRNA) also include sequences to which effectors of transcription, translation, mRNA processing, mRNA transport, and mRNA stability bind. In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a clearance agent comprising a polypeptide having homology to an endogenous protein that affects mRNA processing, transport, or stability, or is an antagonist or agonist of one or more proteins that affect mRNA processing, transport, or turnover, such that the inhibitor reduces the expression of PAK protein by interfering with PAK mRNA transport or processing, or by reducing the half-life of PAK mRNA. A PAK clearance agents in some embodiments interferes with transport or processing of a PAK mRNA, or by reducing the half-life of a PAK mRNA.

[00291] For example, PAK clearance agents decrease RNA and/or protein half-life of a PAK isoform, for example, by directly affecting mRNA and/or protein stability. In certain embodiments, PAK clearance agents cause PAK mRNA and/or protein to be more accessible and/or susceptible to nuclease, proteases, and/or the proteasome. In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with agents that decrease the processing of PAK mRNA thereby reducing PAK activity. For example, PAK clearance agents function at the level of pre-mRNA splicing, 5' end formation
(e.g. capping), 3’ end processing (e.g. cleavage and/or polyadenylation), nuclear export, and/or association with the translational machinery and/or ribosomes in the cytoplasm. In some embodiments, PAK clearance agents cause a decrease in the level of PAK mRNA and/or protein, the half-life of PAK mRNA and/or protein by at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 80%, at least about 90%, at least about 95%, or substantially 100%.

[00292] In some embodiments, the clearance agent comprises one or more RNAi or antisense oligonucleotides directed against one or more PAK isoform RNAs. In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with agent that comprise one or more ribozymes directed against one or more PAK isoform RNAs. The design, synthesis, and use of RNAi constructs, antisense oligonucleotides, and ribozymes are found, for example, in Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4: 457-467; Hannon et al. (2004) Nature 431: 371-378; Sarver et al. (1990) Science 247:1222-1225; Been et al. (1986) Cell 47:207-216). In some embodiments, nucleic acid constructs that induce triple helical structures are also introduced into cells to inhibit transcription of the PAK gene (Helene (1991) Anticancer Drug Des. 6:569-584).

[00293] For example, a clearance agent is in some embodiments an RNAi molecule or a nucleic acid construct that produces an RNAi molecule. An RNAi molecule comprises a double-stranded RNA of at least about seventeen bases having a 2-3 nucleotide single-stranded overhangs on each end of the double-stranded structure, in which one strand of the double-stranded RNA is substantially complementary to the target PAK RNA molecule whose downregulation is desired. ”Substantially complementary” means that one or more nucleotides within the double-stranded region are not complementary to the opposite strand nucleotide(s).

Tolerance of mismatches is optionally assessed for individual RNAi structures based on their ability to downregulate the target RNA or protein. In some embodiments, RNAi is introduced into the cells as one or more short hairpin RNAs (“shRNAs”) or as one or more DNA constructs that are transcribed to produce one or more shRNAs, in which the shRNAs are processed within the cell to produce one or more RNAi molecules.

[00294] Nucleic acid constructs for the expression of siRNA, shRNA, antisense RNA, ribozymes, or nucleic acids for generating triple helical structures are optionally introduced as RNA molecules or as recombinant DNA constructs. DNA constructs for reducing gene expression are optionally designed so that the desired RNA molecules are expressed in the cell from a promoter that is transcriptionally active in mammalian cells, such as, for example, the SV40 promoter, the human cytomegalovirus immediate-early promoter (CMV promoter), or the pol III and/or pol II promoter using known methods. For some purposes, it is desirable to use viral or plasmid-based nucleic acid constructs. Viral constructs include but are not limited to retroviral constructs, lentiviral constructs, or based on a pox virus, a herpes simplex virus, an adenovirus, or an adeno-associated virus (AAV).

[00295] In other embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide that decreases the activity of PAK. Protein and peptide inhibitors of PAK
are optionally based on natural substrates of PAK, e.g., Myosin light chain kinase (MLCK), regulatory Myosin light chain (R-MLC), Myosins I heavy chain, myosin II heavy chain, Myosin VI, Caldesmon, Desmin, Opl8/stathmin, Merlin, Filamin A, LIM kinase (LIMK), cortactin, coflin, Ras, Raf, Mek, p47(phox), BAD, caspase 3, estrogen and/or progesterone receptors, NETI, Gaz, phosphoglycerate mutase-B, RhoGDl, prolactin, p41Arc, cortactin and/or Aurora-A. Downregulators of PAK levels include downstream targets of PAK and/or regulators of PAK activity such as MAPKs (e.g., Raf, Mek), PI3K signaling, MAPK signaling, and/or transcription factors. Some of these downstream targets include: Rac, Cdc42, Pak, MAP2K1/2, NTRK2, PI3K, Akt, JNK, ERK1/2, p70S6K, and mTOR. Downstream targets of PAK include but are not limited to: Myosin light chain kinase (MLCK), regulatory Myosin light chain (R-MLC), Myosins I heavy chain, myosin II heavy chain, Myosin VI, Caldesmon, Desmin, Opl8/stathmin, Merlin, Filamin A, LIM kinase (LIMK), Ras, Raf, Mek, p47(phox), BAD, caspase 3, estrogen and/or progesterone receptors, NETI, Gaz, phosphoglycerate mutase-B, RhoGDl, prolactin, p41Arc, cortactin and/or Aurora-A. Downregulators of PAK levels include downstream targets of PAK such as: Rac, Cdc42, Pak, MAP2K1/2, NTRK2, PI3K, Akt, JNK, ERK1/2, p70S6K, and mTOR.
PAK or fragments thereof in a phosphorylated state and downstream targets of PAK or fragments thereof in a hyperphosphorylated state.

A fragment of a downstream target of PAK includes any fragment with an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to a sequence of at least five, at least ten, at least twenty, at least thirty, at least forty, at least fifty, at least sixty, at least seventy, at least eighty, at least ninety, or at least 100 contiguous amino acids of the downstream regulator, in which the fragment of the downstream target of PAK is able to downregulate PAK mRNA or protein expression or increase turnover of PAK mRNA or protein. In some embodiments, the fragment of a downstream regulator of PAK comprises a sequence that includes a phosphorylation site recognized by PAK, in which the site is phosphorylated.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a compound that decreases the level of PAK including a peptide, polypeptide, or small molecule that inhibits dephosphorylation of a downstream target of PAK, such that phosphorylation of the downstream target remains at a level that leads to downregulation of PAK levels.

In some embodiments, PAK activity is reduced or inhibited via activation and/or inhibition of an upstream regulator and/or downstream target of PAK. In some embodiments, the protein expression of a PAK is downregulated. In some embodiments, the amount of PAK in a cell is decreased. In some embodiments a compound that decreases PAK protein levels in cells also decreases the activity of PAK in the cells. In some embodiments a compound that decreases PAK protein levels does not decrease PAK activity in cells. In some embodiments a compound that increases PAK activity in cells decreases PAK protein levels in the cells.

Trophic factors

In some embodiments, a PAK inhibitor or a composition thereof described herein is administered in combination with a trophic agent including, by way of example, glial derived nerve factor (GDNF), brain derived nerve factor (BDNF) or the like.

Antioxidants

Where a subject is suffering from or at risk of suffering from a cancer, a PAK inhibitor composition described herein is optionally used together with one or more antioxidants or methods for treating the CNS disorder in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who is taking or has been prescribed an antioxidant. Examples of antioxidants useful in the methods and compositions described herein include and are not limited to ubiquinone, aged garlic extract, curcumin, lipoic acid, beta-carotene, melatonin, resveratrol, Ginkgo biloba extract, vitamin C, vitamin E or the like.

Metal Protein attenuating compounds

Where a subject is suffering from or at risk of suffering from a cancer, a PAK inhibitor composition described herein is optionally used together with one or more Metal Protein Attenuating agents or methods for treating the cancer in any combination. In some embodiments, a PAK inhibitor composition
described herein is administered to a patient who has been prescribed a Metal Protein Attenuating agent. Examples of Metal Protein Attenuating agents useful in the methods and compositions described herein include and are not limited to 8-Hydroxyquinoline, iodochlorhydroxyquin or the like and derivatives thereof.

Beta-secretase inhibitors

[00304] Where a subject is suffering from or at risk of suffering from a cancer, a PAK inhibitor composition described herein is optionally used together with one or more beta secretase inhibitors or methods for treating the cancer in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who has been prescribed a beta secretase inhibitor. Examples of beta secretase inhibitors useful in the methods and compositions described herein include and are not limited to LY450139, 2-Aminoquinazolines compounds described in J. Med. Chem. 50 (18): 4261-4264, beta secretase inhibitors described therein are incorporated herein by reference, or the like.

Gamma secretase inhibitors

[00305] Where a subject is suffering from or at risk of suffering from a cancer, a PAK inhibitor composition described herein is optionally used together with one or more gamma secretase inhibitors or methods for treating the cancer in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who has been prescribed a gamma secretase inhibitor. Examples of gamma secretase inhibitors useful in the methods and compositions described herein include and are not limited to LY-411575, (2S)-2-hydroxy-3-methyl-N-[(1S)-1-methyl-2-[[1(1S)-3-methyl-2-oxo-2,3,4,5-tetrahydro-1H-3-benzazepin-1-yl]amino]-2-oxoethyl]butanamide (semagacestat), (R)-2-(3-Fluoro-4-phenylphenyl)propanoic acid (Tarenflurbil), or the like.

Antibodies

[00306] Where a subject is suffering from or at risk of suffering from a cancer, a PAK inhibitor composition described herein is optionally used together with one or more antibodies or methods for treating the cancer in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an Abeta antibody. Examples of antibodies useful in the methods and compositions described herein include and are not limited an Abeta antibody (e.g., bapineuzumab), PAK antibodies (e.g., ABN237914) or the like.

Other Agents

[00307] In some embodiments, one or more PAK inhibitors are used in combination with one or more agents that modulate dendritic spine morphology or synaptic function. Examples of agents that modulate dendritic spine morphology include minocycline, trophic factors (e.g., brain derived neutrophic factor, glial cell-derived neutrophic factor), or anesthetics that modulate spine motility, or the like. In some embodiments, one or more PAK inhibitors are used in combination with one or more agents that modulate cognition. In some embodiments, a second therapeutic agent is a nootropic agent that enhances cognition. Examples of nootropic agents include and are not limited to piracetam, pramiracetam, oxiracetam, and aniracetam.

Blood Brain Barrier facilitators
In some instances, a PAK inhibitor is optionally administered in combination with a blood brain barrier facilitator. In certain embodiments, an agent that facilitates the transport of a PAK inhibitor is covalently attached to the PAK inhibitor. In some instances, PAK inhibitors described herein are modified by covalent attachment to a lipophilic carrier or co-formulation with a lipophilic carrier. In some embodiments, a PAK inhibitor is covalently attached to a lipophilic carrier, such as e.g., DHA, or a fatty acid. In some embodiments, a PAK inhibitor is covalently attached to artificial low density lipoprotein particles. In some instances, carrier systems facilitate the passage of PAK inhibitors described herein across the blood-brain barrier and include but are not limited to, the use of a dihydropyridine pyridinium salt carrier redox system for delivery of drug species across the blood brain barrier. In some instances a PAK inhibitor described herein is coupled to a lipophilic phosphonate derivative. In certain instances, PAK inhibitors described herein are conjugated to PEG-oligomers/polymers or aprotinin derivatives and analogs. In some instances, an increase in influx of a PAK inhibitor described herein across the blood brain barrier is achieved by modifying a PAK inhibitor described herein (e.g., by reducing or increasing the number of charged groups on the compound) and enhancing affinity for a blood brain barrier transporter. In certain instances, a PAK inhibitor is co-administered with an an agent that reduces or inhibits efflux across the blood brain barrier, e.g. an inhibitor of P-glycoprotein pump (PGP) mediated efflux (e.g., cyclosporin, SCH66336 (Ionafromib, Schering)).

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with, e.g., compounds described in U.S. Patents 5,863,532, 6,191,169, 6,248,549, and 6,498,163; U.S. Patent Applications 200200045564, 20020086390, 20020106690, 20020142325, 20030124107, 20030166623, 20040091992, 20040102623, 20040208880, 200500203114, 20050037965, 20050080002, and 20050233965, 20060088897; EP Patent Publication 1492871; PCT patent publicationWO 9902701; PCT patent publication WO 2008/047307; Kumar et al., (2006), Nat. Rev. Cancer, 6:459; and Eswaran et al., (2007), Structure, 15:201-213, all of which are incorporated herein by reference for disclosure of kinase inhibitors and/or PAK inhibitors described therein.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with compounds including and not limited to BMS-387032; SNS-032; CHI4-258; TKI-258; EKB-569; JNJ-7706621; PKC-412; staurosorine; SU-14813; sunitinib; N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)quinazolin-4-amine (gefitinib), VX-680; MK-0457; combinations thereof; or salts, prodrugs thereof.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising an amino acid sequence about 80% to about 100% identical, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100%, identical the following amino acid sequence:

HTIHVGFDAGWGEFTGMEPQWARLLQTSNITKSEQKKNPQAVLDVLEFYNSKKTNSQ
KYMSFTDKS
The above sequence corresponds to the PAK autoinhibitory domain (PAD) polypeptide amino acids 83-149 of PAK1 polypeptide as described in, e.g., Zhao et al (1998). In some embodiments, the PAK inhibitor is a fusion protein comprising the above-described PAD amino acid sequence. In some embodiments, in order to facilitate cell penetration the fusion polypeptide (e.g., N-terminal or C-terminal) further comprises a polybasic protein transduction domain (PTD) amino acid sequence, e.g.: RKKRRQRR; YARAAARQARA; THRLPRRRRRR; or GGRRARRRRRRR.

In some embodiments, in order to enhance uptake into the brain, the fusion polypeptide further comprises a human insulin receptor antibody as described in U.S. Patent Application Serial No. 11/245,546.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a peptide inhibitor comprising a sequence at least 60% to 100%, e.g., 65%, 70%, 75%, 80%, 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 60% to about 100% identical the following amino acid sequence: PPVIAPREHTSVYTRS as described in, e.g., Zhao et al (2006), Nat Neurosci, 9(2):234-242. In some embodiments, the peptide sequence further comprises a PTD amino acid sequence as described above.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to the FMRP1 protein (GenBank Accession No. Q06787), where the polypeptide is able to bind with a PAK (for example, PAK1, PAK2, PAK3, PAK4, PAK5 and/or PAK6). In some embodiments compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to the FMRP1 protein (GenBank Accession No. Q06787), where the polypeptide is able to bind with a group I PAK, such as, for example PAK1 (see, e.g., Hayashi et al (2007), Proc Natl Acad Sci USA, 104(27):1489-1494. In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising a fragment of human FMRP1 protein with an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to the sequence of amino acids 207-425 of the human FMRP1 protein (i.e., comprising the KH1 and KH2 domains), where the polypeptide is able to bind to PAK1.

In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to at least five, at least ten at least twenty, at least thirty, at least forty, at least fifty, at least sixty, at least seventy, at least eighty, at least ninety contiguous amino acids of the huntingtin (Htt) protein (GenBank Accession No. NP 002102, gi 90903231), where the polypeptide is able to bind to a group I PAK (for example, PAK1, PAK2, and/or PAK3). In some embodiments, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide comprising an amino acid sequence at least 80% to 100%,
e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100%, identical to at least a portion of the huntingtin (htt) protein (GenBank Accession No. NP 002102, gi 9090323 i), where the polypeptide is able to bind to PAK1. In some embodiments, compounds of Formula I-

IV and A-D are optionally administered in combination with a polypeptide comprising a fragment of human huntingtin protein with an amino acid sequence at least 80% to 100%, e.g., 85%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, 99%, or any other percent from about 80% to about 100% identical to a sequence of at least five, at least ten, at least twenty, at least thirty, at least forty, at least fifty, at least sixty, at least seventy, at least eighty, at least ninety, or at least 100 contiguous amino acids of the human huntingtin protein that is outside of the sequence encoded by exon 1 of the htt gene (i.e., a fragment that does not contain poly glutamate domains), where the polypeptide binds a PAK. In some embodiments, compounds of Formula I-

IV and A-D are optionally administered in combination with a polypeptide comprising a fragment of human huntingtin protein with an amino acid sequence at least 80% identical to a sequence of the human huntingtin protein that is outside of the sequence encoded by exon 1 of the htt gene (i.e., a fragment that does not contain poly glutamate domains), where the polypeptide binds PAK1.

[00317] In some instances, compounds of Formula I-IV and A-D are optionally administered in combination with a polypeptide that is delivered to one or more brain regions of an individual by administration of a viral expression vector, e.g., an AAV vector, a lentiviral vector, an adenoviral vector, or a HSV vector. A number of viral vectors for delivery of therapeutic proteins are described in, e.g., U.S.

Patent Nos., 7,244,423, 6,780,409, 5,661,033. In some embodiments, the PAK inhibitor polypeptide to be expressed is under the control of an inducible promoter (e.g., a promoter containing a tet-operator). Inducible viral expression vectors include, for example, those described in U.S. Patent No. 6,953,575. Inducible expression of a PAK inhibitor polypeptide allows for tightly controlled and reversible increases of PAK inhibitor polypeptide expression by varying the dose of an inducing agent (e.g., tetracycline) administered to an individual.

[00318] Any combination of one or more PAK inhibitors and a second therapeutic agent is compatible with any method described herein. The PAK inhibitor compositions described herein are also optionally used in combination with other therapeutic reagents that are selected for their therapeutic value for the condition to be treated. In general, the compositions described herein and, in embodiments where combinational therapy is employed, other agents do not have to be administered in the same pharmaceutical composition, and, because of different physical and chemical characteristics, are optionally administered by different routes. The initial administration is generally made according to established protocols, and then, based upon the observed effects, the dosage, modes of administration and times of administration subsequently modified.

[00319] In certain instances, it is appropriate to administer at least one PAK inhibitor composition described herein in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving one of the PAK inhibitor compositions described herein is nausea, then it is appropriate to administer an anti-nausea agent in combination with the initial therapeutic
agent. Or, by way of example only, the therapeutic effectiveness of a PAK inhibitor is enhanced by administration of an adjuvant (i.e., by itself the adjuvant has minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). Or, by way of example only, the benefit experienced by a patient is increased by administering a PAK inhibitor with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. In any case, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient is either simply additive of the two therapeutic agents or the patient experiences a synergistic benefit.

Therapeutically-effective dosages vary when the drugs are used in treatment combinations. Suitable methods for experimentally determining therapeutically-effective dosages of drugs and other agents include, e.g., the use of metronomic dosing, i.e., providing more frequent, lower doses in order to minimize toxic side effects. Combination treatment further includes periodic treatments that start and stop at various times to assist with the clinical management of the patient.

In any case, the multiple therapeutic agents (one of which is a PAK inhibitor described herein) are administered in any order, or even simultaneously. If simultaneously, the multiple therapeutic agents are optionally provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). In some embodiments, one of the therapeutic agents is given in multiple doses, or both are given as multiple doses. If not simultaneous, the timing between the multiple doses optionally varies from more than zero weeks to less than four weeks. In addition, the combination methods, compositions and formulations are not to be limited to the use of only two agents; the use of multiple therapeutic combinations are also envisioned.

The pharmaceutical agents which make up the combination therapy disclosed herein are optionally a combined dosage form or in separate dosage forms intended for substantially simultaneous administration. The pharmaceutical agents that make up the combination therapy are optionally also be administered sequentially, with either therapeutic compound being administered by a regimen calling for two-step administration. The two-step administration regimen optionally calls for sequential administration of the active agents or spaced-apart administration of the separate active agents. The time period between the multiple administration steps ranges from, a few minutes to several hours, depending upon the properties of each pharmaceutical agent, such as potency, solubility, bioavailability, plasma half-life and kinetic profile of the pharmaceutical agent. Circadian variation of the target molecule concentration are optionally used to determine the optimal dose interval.

In addition, a PAK inhibitor is optionally used in combination with procedures that provide additional or synergistic benefit to the patient. By way of example only, patients are expected to find therapeutic and/or prophylactic benefit in the methods described herein, wherein pharmaceutical composition of a PAK inhibitor and/or combinations with other therapeutics are combined with genetic testing to determine whether that individual is a carrier of a mutant gene that is correlated with certain diseases or conditions.
A PAK inhibitor and the additional therapy(ies) are optionally administered before, during or after the occurrence of a disease or condition, and the timing of administering the composition containing a PAK inhibitor varies in some embodiments. Thus, for example, the PAK inhibitor is used as a prophylactic and administered continuously to individuals with a propensity to develop conditions or diseases in order to prevent the occurrence of the disease or condition. The PAK inhibitors and compositions are optionally administered to an individual during or as soon as possible after the onset of the symptoms. The administration of the compounds are optionally initiated within the first 48 hours of the onset of the symptoms, preferably within the first 48 hours of the onset of the symptoms, more preferably within the first 6 hours of the onset of the symptoms, and most preferably within 3 hours of the onset of the symptoms. The initial administration is optionally via any route practical, such as, for example, an intravenous injection, a bolus injection, infusion over 5 minutes to about 5 hours, a pill, a capsule, transdermal patch, buccal delivery, and the like, or combination thereof. A PAK inhibitor is optionally administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment optionally varies for each individual, and the length is then determined using the known criteria. For example, the PAK inhibitor or a formulation containing the PAK inhibitor is administered for at least 2 weeks, preferably about 1 month to about 5 years, and more preferably from about 1 month to about 3 years.

In some embodiments, the particular choice of compounds depends upon the diagnosis of the attending physicians and their judgment of the condition of an individual and the appropriate treatment protocol. The compounds are optionally administered concurrently (e.g., simultaneously, essentially simultaneously or within the same treatment protocol) or sequentially, depending upon the nature of the disease, disorder, or condition, the condition of an individual, and the actual choice of compounds used. In certain instances, the determination of the order of administration, and the number of repetitions of administration of each therapeutic agent during a treatment protocol, is based on an evaluation of the disease being treated and the condition of an individual.

In some embodiments, therapeutically-effective dosages vary when the drugs are used in treatment combinations. Methods for experimentally determining therapeutically-effective dosages of drugs and other agents for use in combination treatment regimens are described in the literature.

In some embodiments of the combination therapies described herein, dosages of the co-administered compounds vary depending on the type of co-drug employed, on the specific drug employed, on the disease or condition being treated and so forth. In addition, when co-administered with one or more biologically active agents, the compound provided herein is optionally administered either simultaneously with the biologically active agent(s), or sequentially. In certain instances, if administered sequentially, the attending physician will decide on the appropriate sequence of therapeutic compound described herein in combination with the additional therapeutic agent.
The multiple therapeutic agents (at least one of which is a therapeutic compound described herein) are optionally administered in any order or even simultaneously. If simultaneously, the multiple therapeutic agents are optionally provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). In certain instances, one of the therapeutic agents is optionally given in multiple doses. In other instances, both are optionally given as multiple doses. If not simultaneous, the timing between the multiple doses is any suitable timing, e.g. from more than zero weeks to less than four weeks. In some embodiments, the additional therapeutic agent is utilized to achieve reversal or amelioration of symptoms of a cancer, whereupon the therapeutic agent described herein (e.g., a compound of any one of Formula I-IV and A-D) is subsequently administered. In addition, the combination methods, compositions and formulations are not to be limited to the use of only two agents; the use of multiple therapeutic combinations is also envisioned (including two or more compounds described herein).

In certain embodiments, a dosage regimen to treat, prevent, or ameliorate the condition(s) for which relief is sought, is modified in accordance with a variety of factors. These factors include the disorder from which an individual suffers, as well as the age, weight, sex, diet, and medical condition of an individual. Thus, in various embodiments, the dosage regimen actually employed varies and deviates from the dosage regimens set forth herein.

CNS Disorders

Provided herein are methods for treating CNS disorders comprising administration of a therapeutically effective amount of a p21-activated kinase inhibitor (e.g., a compound of Formula I-IV and A-D) to an individual in need thereof. In some embodiments of the methods provided herein, administration of a p21-activated kinase inhibitor alleviates or reverses one or more behavioral symptoms (e.g., social withdrawal, depersonalization, loss of appetite, loss of hygiene, delusions, hallucinations, depression, blunted affect, avolition, anhedonia, alogia, the sense of being controlled by outside forces or the like) of the CNS disorder (e.g. negative symptoms of schizophrenia). In some embodiments of the methods provided herein, administration of a p21-activated kinase inhibitor (e.g., a compound of Formula I-IV and A-D) alleviates or reverses one or more negative symptoms and/or cognition impairment associated with a CNS disorder (e.g., impairment in executive function, comprehension, inference, decision-making, planning, learning or memory associated with schizophrenia, Alzheimer's disease, FXS, autism or the like).

Also provided herein are methods for modulation of dendritic spine morphology and/or synaptic function comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having schizophrenia, Parkinson's disease, Alzheimer's disease, epilepsy or the like) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). In some embodiments, modulation of dendritic spine morphology and/or synaptic function alleviates or reverses negative symptoms and/or cognitive impairment associated with a CNS disorder. In some embodiments, modulation of dendritic spine morphology and/or synaptic function halts or delays further deterioration of symptoms associated with a CNS disorder (e.g., progression of cognitive impairments and/or loss of bodily
functions). In some embodiments, modulation of dendritic spine morphology and/or synaptic function stabilizes or reverses symptoms of disease (e.g., reduces frequency of epileptic seizures, stabilizes mild cognitive impairment and prevents progression to early dementia). In some embodiments of the methods provided herein, administration of a p21-activated kinase inhibitor halts or delays progressive loss of memory and/or cognition associated with a CNS disorder (e.g., Alzheimer's disease).

[00332] Provided herein are methods for modulation of synaptic function or synaptic plasticity comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having any CNS disorder described herein) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). Modulation of synaptic function or plasticity includes, for example, alleviation or reversal of defects in LTP, LTD or the like.

[00333] Defects in LTP include, for example, an increase in LTP or a decrease in LTP in any region of the brain in an individual suffering from or suspected of having a CNS disorder. Defects in LTD include for example a decrease in LTD or an increase in LTD in any region of the brain (e.g., the temporal lobe, parietal lobe, the frontal cortex, the cingulate gyrus, the prefrontal cortex, the cortex, or the hippocampus or any other region in the brain or a combination thereof) in an individual suffering from or suspected of having a CNS disorder.

[00334] In some embodiments of the methods, administration of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D) modulates synaptic function (e.g., synaptic transmission and/or plasticity) by increasing long term potentiation (LTP) in an individual suffering from or suspected of having a CNS disorder. In some embodiments of the methods described herein, administration of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D) to an individual in need thereof modulates synaptic function (e.g., synaptic transmission and/or plasticity) by increasing long term potentiation (LTP) in the prefrontal cortex, or the cortex, or the hippocampus or any other region in the brain or a combination thereof. In some embodiments of the methods described herein, administration of a PAK inhibitor modulates synaptic function (e.g., synaptic transmission and/or plasticity) by decreasing long term depression (LTD) in an individual suffering from or suspected of having a CNS disorder. In some embodiments of the methods described herein, administration of a PAK inhibitor to an individual in need thereof modulates synaptic function (e.g., synaptic transmission and/or plasticity) by decreasing long term depression (LTD) in the temporal lobe, parietal lobe, the frontal cortex, the cingulate gyrus, the prefrontal cortex, the cortex, or the hippocampus or any other region in the brain or a combination thereof.

[00335] In some embodiments of the methods described herein, administration of a PAK inhibitor reverses defects in synaptic function (i.e. synaptic transmission and/or synaptic plasticity, induced by soluble Abeta dimers or oligomers. In some embodiments of the methods described herein, administration of a PAK inhibitor reverses defects in synaptic function (i.e. synaptic transmission and/or synaptic plasticity, induced by insoluble Abeta oligomers and/or Abeta-containing plaques.

[00336] Provided herein are methods for stabilization of synaptic plasticity comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a
therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). In some embodiments of the methods described herein, administration of a PAK inhibitor stabilizes LTP or LTD following induction (e.g., by theta-burst stimulation, high-frequency stimulation for LTP, low-frequency (e.g., 1 Hz) stimulation for LTD).

[00337] Provided herein are methods for stabilization of synaptic transmission comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). In some embodiments of the methods described herein, administration of a PAK inhibitor stabilizes LTP or LTD following induction (e.g., by theta-burst stimulation, high-frequency stimulation for LTP, low-frequency (e.g., 1 Hz) stimulation for LTD).

[00338] Also provided herein are methods for alleviation or reversal of cortical hypofrontality during performance of a cognitive task comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). In some embodiments of the methods described herein, administration of a PAK inhibitor to an individual suffering from or suspected of having a CNS disorder alleviates deficits in the frontal cortex, for example deficits in frontal cortical activation, during the performance of a cognitive task (e.g., a Wisconsin Card Sort test, Mini-Mental State Examination (MMSE), MATRICS cognitive battery, BACS score, Alzheimer's disease Assessment Scale - Cognitive Subscale (ADAS-Cog), Alzheimer's disease Assessment Scale - Behavioral Subscale (ADAS-Behav), Hopkins Verbal Learning Test-Revised or the like) and improves cognition scores of the individual.

[00339] Provided herein are methods for reversing abnormalities in dendritic spine morphology or synaptic function that are caused by mutations in high-risk genes (e.g. mutations in Amyloid Precursor Protein (APP), mutations in presenilin 1 and 2, the epsilon4 allele, the 91bp allele in the telomeric region of 12q, Apolipoprotein E-4 (APOE4) gene, SORL1 gene, reelin gene, DISCI gene, or any other high-risk allele) comprising administering to an individual in need thereof a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). In some embodiments of the methods described herein, prophylactic administration of a PAK inhibitor to an individual at a high risk for developing a CNS disorder (e.g., a mutation in a DISCI gene pre-disposes the individual to schizophrenia, a mutation in an APOE4 gene pre-disposes the individual to Alzheimer's disease) reverses abnormalities in dendritic spine morphology and/or synaptic function and prevents development of the CNS disorder.

[00340] Provided herein are methods for stabilizing, reducing or reversing abnormalities in dendritic spine morphology or synaptic function that are caused by increased activation of PAK at the synapse, comprising administration of a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D) to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder). In some embodiments of the methods described herein, increased activation of PAK at the synapse is caused by Abeta. In some instances, increased activation of PAK at the synapse is caused by redistribution of PAK from the cytosol to the synapse. In some embodiments of the methods described
herein, administration of a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D) to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) reduces or prevents redistribution of PAK from the cytosol to the synapse in neurons, thereby stabilizing, reducing or reversing abnormalities in dendritic spine morphology or synaptic function that are caused by increased activation of PAK at the synapse.

[00341] Provided herein are methods for delaying the onset of a CNS disorder comprising administering to an individual in need thereof (e.g., an individual with a high-risk allele for a NC) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). Provided herein are methods for delaying the loss of dendritic spine density comprising administering to an individual in need thereof (e.g., an individual with a high-risk allele for a CNS disorder) a therapeutically effective amount of a PAK inhibitor. Provided herein are methods for modulating of spine density, shape, spine length, spine head volume, or spine neck diameter or the like comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D). Provided herein are methods of modulating the ratio of mature dendritic spines to immature dendritic spines comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a therapeutically effective amount of a PAK inhibitor. Provided herein are methods of modulating the ratio of dendritic spines head volume to dendritic spines length comprising administering to an individual in need thereof (e.g., an individual suffering from or suspected of having a CNS disorder) a therapeutically effective amount of a PAK inhibitor (e.g., a compound of Formula I-IV and A-D).

[00342] In some embodiments of the methods described herein, administration of a PAK inhibitor (e.g., a maintenance dose of a PAK inhibitor) reduces the incidence of recurrence of one or more symptoms or pathologies in an individual (e.g., recurrence of psychotic episodes, epileptic seizures or the like). In some embodiments of the methods described herein, administration of a PAK inhibitor causes substantially complete inhibition of PAK and restores dendritic spine morphology and/or synaptic function to normal levels. In some embodiments of the methods described herein, administration of a PAK inhibitor causes partial inhibition of PAK and restores dendritic spine morphology and/or synaptic function to normal levels.

[00343] Provided herein are methods for stabilizing, reducing or reversing neuronal withering and/or atrophy or nervous tissue and/or degeneration of nervous tissue that is associated with a CNS disorder. In some embodiments of the methods described herein, administration of a PAK inhibitor to an individual suffering from or suspected of having a CNS disorder (e.g., Alzheimer's disease, Parkinson's disease or the like) stabilizes, alleviates or reverses neuronal withering and/or atrophy and/or degeneration in the temporal lobe, parietal lobe, the frontal cortex, the cingulate gyrus or the like. In some embodiments of the methods described herein, administration of a PAK inhibitor to an individual suffering from or suspected of having a CNS disorder stabilizes, reduces or reverses deficits in memory and/or cognition and/or control of bodily functions.
In some instances, a CNS disorder is associated with a decrease in dendritic spine density. In some embodiments of the methods described herein, administration of a PAK inhibitor increases dendritic spine density. In some instances, a CNS disorder is associated with an increase in dendritic spine length. In some embodiments of the methods described herein, administration of a PAK inhibitor decreases dendritic spine length. In some instances, a CNS disorder is associated with a decrease in dendritic spine neck diameter. In some embodiments of the methods described herein, administration of a PAK inhibitor increases dendritic spine neck diameter. In some instances, a CNS disorder is associated with a decrease in dendritic spine head diameter and/or dendritic spine head surface area and/or dendritic spine head volume. In some embodiments of the methods described herein, administration of a PAK inhibitor increases dendritic spine head diameter and/or dendritic spine head volume and/or dendritic spine head surface area.

In some instances, a CNS disorder is associated with an increase in immature spines and a decrease in mature spines. In some embodiments of the methods described herein, administration of a PAK inhibitor modulates the ratio of immature spines to mature spines. In some instances, a CNS disorder is associated with an increase in stubby spines and a decrease in mushroom-shaped spines. In some embodiments of the methods described herein, administration of a PAK inhibitor modulates the ratio of stubby spines to mushroom-shaped spines.

In some embodiments of the methods described herein, administration of a PAK inhibitor modulates a spine:head ratio, e.g., ratio of the volume of the spine to the volume of the head, ratio of the length of a spine to the head diameter of the spine, ratio of the surface area of a spine to the surface area of the head of a spine, or the like, compared to a spine:head ratio in the absence of a PAK inhibitor. In certain embodiments, a PAK inhibitor suitable for the methods described herein modulates the volume of the spine head, the width of the spine head, the surface area of the spine head, the length of the spine shaft, the diameter of the spine shaft, or a combination thereof. In some embodiments, provided herein is a method of modulating the volume of a spine head, the width of a spine head, the surface area of a spine head, the length of a spine shaft, the diameter of a spine shaft, or a combination thereof, by contacting a neuron comprising the dendritic spine with an effective amount of a PAK inhibitor described herein. In specific embodiments, the neuron is contacted with the PAK inhibitor in vivo.

Combination Therapy for Treatment of CNS Disorders

In some embodiments, one or more PAK inhibitors are used in combination with one or more other therapeutic agents to treat an individual suffering from a CNS disorder. The combination of PAK inhibitors with a second therapeutic agent (e.g., a typical or atypical antipsychotic agent, an mGluR1 antagonist, an mGluR5 antagonist, an mGluR5 potentiator, a mGluR2 agonist, an alpha7 nicotinic receptor agonist or potentiator, an antioxidant, a neuroprotectant, a trophic factor, an anticholinergic, a beta-secretase inhibitor, an anti-cancer agent, or the like) allows a reduced dose of both agents to be used thereby reducing the likelihood of side effects associated with higher dose monotherapies. In one embodiment, the dose of a second active agent is reduced in the combination therapy by at least 50% relative to the corresponding monotherapy dose, whereas the PAK inhibitor dose is not reduced relative to the monotherapy dose; in
further embodiments, the reduction in dose of a second active agent is at least 75%; in yet a further embodiment, the reduction in dose of a second active agent is at least 90%. In some embodiments, the second therapeutic agent is administered at the same dose as a monotherapy dose, and the addition of a PAK inhibitor to the treatment regimen alleviates symptoms of a CNS disorder that are not treated by monotherapy with the second therapeutic agent. Symptoms and diagnostic criteria for all of the conditions mentioned above are described in detail in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, American Psychiatric Association (2005) (DSM-IV).

[00348] In some embodiments, the combination of a PAK inhibitor and a second therapeutic agent is synergistic (e.g., the effect of the combination is better than the effect of each agent alone). In some embodiments, the combination of a PAK inhibitor and a second therapeutic agent is additive (e.g., the effect of the combination of active agents is about the same as the effect of each agent alone). In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent modulating the same regulatory pathway. In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent modulating different regulatory pathways. In some embodiments, an additive effect is due to the PAK inhibitor and the second therapeutic agent treating different symptom groups of the CNS disorder (e.g., a PAK inhibitor treats negative symptoms and the second therapeutic agent treats positive symptoms of schizophrenia). In some embodiments, administration of a second therapeutic agent treats the remainder of the same or different symptoms or groups of symptoms that are not treated by administration of a PAK inhibitor alone.

[00349] In some embodiments, administration of a combination of a PAK inhibitor and a second therapeutic agent alleviates side effects that are caused by the second therapeutic agent (e.g., side effects caused by an antipsychotic agent or a nootropic agent). In some embodiments, administration of the second therapeutic agent inhibits metabolism of an administered PAK inhibitor (e.g., the second therapeutic agent blocks a liver enzyme that degrades the PAK inhibitor) thereby increasing efficacy of a PAK inhibitor. In some embodiments, administration of a combination of a PAK inhibitor and a second therapeutic agent (e.g. a second agent that modulates dendritic spine morphology (e.g., minocycline)) improves the therapeutic index of a PAK inhibitor.

Agents for Treating Psychotic Disorders

[00350] Where a subject is suffering from or at risk of suffering from a psychotic disorder (e.g., schizophrenia), a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating a psychotic disorder in any combination. Alternatively, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an agent for treating a psychotic disorder. In some embodiments, administration of a PAK inhibitor in combination with an antipsychotic agent has a synergistic effect and provides an improved therapeutic outcome compared to monotherapy with antipsychotic agent or monotherapy with PAK inhibitor. Alternatively, a PAK inhibitor composition described herein is administered to a patient who is non-responsive to, or being unsatisfactorily treated with an antipsychotic agent.
In some embodiments, a PAK inhibitor composition described herein is administered in combination with an antipsychotic having 5-HT2A antagonist activity. In some embodiments, a PAK inhibitor composition described herein is administered in combination with a selective 5-HT2A antagonist. Examples of therapeutic agents/treatments for treating a psychotic disorder include, but are not limited to, any of the following: typical antipsychotics, e.g., Chlorpromazine (Largactil, Thorazine), Fluphenazine (Prolixin), Haloperidol (Haldol, Serenace), Moline, Thiothixene (Navane), Thioridazine (Mellaril), Trifluoperazine (Stelazine), Loxapine, Perphenazine, Prochlorperazine (Compazine, Bucastem, Stemetil), Pimoide (Orap), Zuclopenthixol; and atypical antipsychotics, e.g., LY2140023, Clozapine, Risperidone, Olanzapine, Quetiapine, Ziprasidone, Aripiprazole, Paliperidone, Asenapine, Ilpopridone, Sertindole, Zotepine, Amisulpride, Bifeprunox, and Melperone.

Agents for Treating Mood Disorders

Where a subject is suffering from or at risk of suffering from a mood disorder (e.g., clinical depression), a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating a mood disorder in any combination. Alternatively, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an agent for treating a mood disorder. Alternatively, a PAK inhibitor composition described herein is administered to a patient who is non-responsive to or being unsatisfactorily treated with an agent for treating a mood disorder.

Examples of therapeutic agents/treatments for treating a mood disorder include, but are not limited to, any of the following: selective serotonin reuptake inhibitors (SSRIs) such as citalopram (Celexa), escitalopram (Lexapro, Esipram), fluoxetine (Prozac), paroxetine (Paxil, Seroxat), sertraline (Zoloft), fluvoxamine (Luvox); serotonin-norepinephrine reuptake inhibitors (SNRIs) such as venlafaxine (Effexor), desvenlafaxine, nefazodone, milnacipran, duloxetine (Cymbalta), blicifadine; tricyclic antidepressants such as amitriptyline, amoxapine, butripyline, clomipramine, desipramine, dosulepin, doxepin, imipramine, lophemarine, nortripyline; monoamine oxidase inhibitors (MAOIs) such as isocarboxazid, linezolid, moclobemide, nialamide, phenelzine, selegiline, tranylcypromine, trimipramine; and other agents such as mirtazapine, reboxetine, viloxazine, malprotline, and bupropriion.

Agents for Treating Epilepsy

Where a subject is suffering from or at risk of suffering from epilepsy, a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating epilepsy in any combination. Alternatively, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an agent for treating epilepsy. Alternatively, a PAK inhibitor composition described herein is administered to a patient who is refractory to or being unsatisfactorily treated with an agent for treating epilepsy.

Examples of therapeutic agents/treatments for treating epilepsy include, but are not limited to, any of the following: carbamazepine, clobazam, clonazepam, ethosuximide, felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, pregabalin, primidone, sodium valproate, tiagabine, topiramate, valproate semisodium, valproic acid, vigabatrin, and zonisamide.
Agents for Treating Huntington's Disease

Where a subject is suffering from or at risk of suffering from Huntington's disease, a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating Huntington's disease in any combination. Alternatively, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an agent for treating Huntington's disease. Alternatively, a PAK inhibitor composition described herein is administered to a patient who is refractory to or being unsatisfactorily treated with an agent for treating Huntington's disease.

Examples of therapeutic agents/treatments for treating Huntington's disease include, but are not limited to, any of the following: omega-3 fatty acids, miraxion, Haloperidol, dopamine receptor blockers, creatine, cystamine, cysteamine, clonazepam, clozapine, Coenzyme Q10, minocycline, antioxidants, antidepressants (notably, but not exclusively, selective serotonin reuptake inhibitors SSRIs, such as sertraline, fluoxetine, and paroxetine), select dopamine antagonists, such as tetrabenazine; and RNAi knockdown of mutant huntingtin (mHtt).

Agents for Treating Parkinson's Disease

Where a subject is suffering from or at risk of suffering from Parkinson's Disease, a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating Parkinson's disease in any combination. Alternatively, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an agent for treating Parkinson's disease. Alternatively, a PAK inhibitor composition described herein is administered to a patient who is refractory to or being unsatisfactorily treated with an agent for treating Parkinson's disease.

Examples of therapeutic agents/treatments for treating Parkinson's Disease include, but are not limited to, any of the following: L-dopa, carbidopa, benzerazide, tolcapone, entacapone, bromocriptine, pergolide, pramipexole, ropinirole, cabergoline, apomorphine, lisuride, selegiline, or rasagiline.

Group I mGluR antagonists

In some embodiments, one or more PAK inhibitors are used in combination with one or more Group I metabotropic glutamate receptor (mGluR) antagonists (e.g., mGluR5 antagonists) to treat an individual suffering from a CNS disorder. The combination of PAK inhibitors with Group I mGluR antagonists allows a reduced dose of both agents to be used thereby reducing the likelihood of side effects associated with higher dose monotherapies.

Examples of Group I mGluR antagonists include, but are not limited to, any of the following (E)-6-methyl-2-styryl-pyridine (SIB 1893), 6-methyl-2-(phenylazo)-3-pyridinol, alpha-methyl-4-carboxyphenylglycine (MCPG), or 2-methyl-6-(phenylethynyl)-pyridine (MPEP). Examples of Group I mGluR antagonists also include those described in, e.g., U.S. Patent Application Serial Nos: 10/076,618; 10/21,523; and 10/766,948. Examples of mGluR5-selective antagonists include, but are not limited to those described in, e.g., U.S. Patent No: 7,205,411 and U.S. Patent Application Serial No 11/523,873. Examples of mGluR1 -selective antagonists include, but are not limited to, those described in, e.g., U.S. Patent No. 6,482,824.
In some embodiments, the combination treatment comprises administering a combined dosage form that is a pharmacological composition comprising a therapeutically effective amount of a PAK inhibitor and a Group I mGluR antagonist (e.g., an mGluR5-selective antagonist) as described herein. In some embodiments, the pharmacological composition comprises a PAK inhibitor compound and an mGluR5-selective antagonist selected from U.S. Patent No: 7,205,411.

mGluR agonists

In some embodiments, a second therapeutic agent used in combination with a PAK inhibitor is a Group I mGluR1 agonist. Examples of mGluR1 agonists and/or mGluR1 potentiators include and are not limited to ACPT-I ((S),3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid); L-AP4 (L-(-)-2-Amino-4-phosphonobutyric acid); (S)-3,4-DCPG ((S)-3,4-dicarboxyphenylglycine); (RS)-3,4-DCPG ((RS)-3,4-dicarboxyphenylglycine); (RS)-4-phosphonophenylglycine ((RS)PPG); AMN082 (N'-bis(diphenylmethyl)-1,2-ethanediame dihydrochloride); DCG-IV ((2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine) or the like. In some embodiments, an mGluR1 agonist is AMN082. In some embodiments, a second therapeutic agent is a mGluR2/3 agonist or mGluR2/3 potentiator. Examples of mGluR2/3 agonists include and are not limited to LY389795 ((-)-2-thia-4-aminobicyclo-hexane-4,6-dicarboxylate); LY379268 ((-)2-oxa-4-aminobicyclo-hexane-4,6-dicarboxylate); LY354740 ((+)-2-aminobicyclo-hexane-2,6dicarboxylate); DCG-IV ((2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine); 2R,4R-APDC (2R,4R-aminopyrroloidine-2,4-dicarboxylate), (S)-3C4HPG ((S)-3-carboxy-4-hydroxyphenylglycine); (S)-4C3HPG ((S)-4-carboxy-3-hydroxyphenylglycine); L-CCG-I ((2S,1'S,2'S)-2-(carboxycyclopropyl)glycine); and/or combinations thereof. Examples of mGluR2 agonists or mGluR2 potentiators include and are not limited to positive allosteric modulators of mGluR2, including ADX71 149 (Addex Partner). Examples of mGluR5 agonists or mGluR5 potentiators include and are not limited to MPEP, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), (S)-3R-l-amino-l,3-cyclopanedicarboxylate (ACP) or the like.

Alpha7 nicotinic receptor modulators

In some embodiments, one or more PAK inhibitors are used in combination with one or more alpha7 nicotinic receptor modulators to treat an individual suffering from a CNS disorder. Alpha7 nicotinic receptor modulators include alpha7 nicotinic receptor agonists, alpha7 nicotinic receptor antagonists, and/or alpha7 nicotinic receptor modulators positive allosteric potentiators. The combination of PAK inhibitors with alpha7 nicotinic receptor modulators allows a reduced dose of both agents to be used thereby reducing the likelihood of side effects associated with higher dose monotherapies.

Cholinesterase inhibitors
Where a subject is suffering from or at risk of suffering from Alzheimer's disease, a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating Alzheimer's disease in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an acetylcholinesterase inhibitor. In some embodiments, administration of a PAK inhibitor in combination with an acetylcholinesterase inhibitor has a synergistic effect and provides an improved therapeutic outcome compared to monotherapy with acetylcholinesterase inhibitors or monotherapy with PAK inhibitor. Alternatively, a PAK inhibitor composition described herein is administered to an individual who is non-responsive to, or being unsatisfactorily treated with an acetylcholinesterase inhibitor. Example of acetylcholinesterase inhibitors include donepezil (Aricept), galantamine (Razadyne), rivastigmine (Exelon and Exelon Patch).

Muscarinic modulators

In some embodiments, a PAK inhibitor composition described herein is administered to a patient in combination with a muscarinic receptor modulator. In some embodiments, the muscarinic receptor modulator is a M1 muscarinic receptor agonist. In some embodiments, the muscarinic receptor modulator is AF102B, AF150(S), AF267B, N-[1-[3-oxo-2,3-dihydrobenzo[1,4]oxazin-4-yl]propyl]piperidin-4-yl]-2-phenylacetamide, BRL-55473, NXS-292, NXS-267, MCD-386, AZD-6088, N-Desmethyloclozapine or a similar compound. In some embodiments, the muscarinic receptor modulator is a positive allosteric modulator of M1 muscarinic receptors. Examples of positive allosteric M1 muscarinic receptor modulators include, but are not limited to, VU01 19498, VU0027414, VU0090157, VU0029767, BQCA, TBPB or 77-LH-28-1. In some embodiments, the muscarinic receptor modulator is a M4 muscarinic receptor agonist. In some embodiments, the muscarinic receptor modulator is a positive allosteric modulator of M4 muscarinic receptors. Examples for positive allosteric M4 muscarinic receptor modulators include, but are not limited to, VU0010010, VU0152099, VU0152100, or LY2033298.

NMDA receptor antagonists

Where a subject is suffering from or at risk of suffering from Alzheimer's disease, a PAK inhibitor composition described herein is optionally used together with one or more agents or methods for treating Alzheimer's disease in any combination. In some embodiments, a PAK inhibitor composition described herein is administered to a patient who has been prescribed an NMDA receptor antagonist. Examples of NMDA receptor antagonists useful in the methods and compositions described herein include and are not limited to memantine.

Neuroprotectants

In some embodiments, a PAK inhibitor or a composition thereof described herein is administered in combination with a neuroprotectant such as, for example, minocycline, resveratrol or the like.

In addition, the one or more other therapeutic agents used in the combination therapy of treatment of cancers disclosed herein may also be use in the combination therapy of treatment of CNS disorders.
Examples of Pharmaceutical Compositions and Methods of Administration

[00371] Provided herein, in certain embodiments, are compositions comprising a therapeutically effective amount of any compound described herein (e.g., a compound of Formula I-IV and A-D).

[00372] Pharmaceutical compositions are formulated using one or more physiologically acceptable carriers including excipients and auxiliaries which facilitate processing of the active compounds into preparations which are used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. A summary of pharmaceutical compositions is found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Liberman, H.A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Dekker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins, 1999).

[00373] Provided herein are pharmaceutical compositions that include one or more PAK inhibitors and a pharmaceutically acceptable diluent(s), excipient(s), or carrier(s). In addition, the PAK inhibitor is optionally administered as pharmaceutical compositions in which it is mixed with other active ingredients, as in combination therapy. In some embodiments, the pharmaceutical compositions includes other medicinal or pharmaceutical agents, carriers, adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure, and/or buffers. In addition, the pharmaceutical compositions also contain other therapeutically valuable substances.

[00374] A pharmaceutical composition, as used herein, refers to a mixture of a PAK inhibitor with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of the PAK inhibitor to an organism. In practicing the methods of treatment or use provided herein, therapeutically effective amounts of a PAK inhibitor are administered in a pharmaceutical composition to a mammal having a condition, disease, or disorder to be treated. Preferably, the mammal is a human. A therapeutically effective amount varies depending on the severity and stage of the condition, the age and relative health of an individual, the potency of the PAK inhibitor used and other factors. The PAK inhibitor is optionally used singly or in combination with one or more therapeutic agents as components of mixtures.

[00375] The pharmaceutical formulations described herein are optionally administered to an individual by multiple administration routes, including but not limited to, oral, parenteral (e.g., intravenous, subcutaneous, intramuscular), intranasal, buccal, topical, rectal, or transdermal administration routes. By way of example only, Example 26a is describes a parenteral formulation, Example 26f describes a rectal formulation. The pharmaceutical formulations described herein include, but are not limited to, aqueous liquid dispersions, self-emulsifying dispersions, solid solutions, liposomal dispersions, aerosols, solid dosage forms, powders, immediate release formulations, controlled release formulations, fast melt formulations, tablets, capsules, pills, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate and controlled release formulations.
[00376] The pharmaceutical compositions will include at least one PAK inhibitor, as an active ingredient in free-acid or free-base form, or in a pharmaceutically acceptable salt form. In addition, the methods and pharmaceutical compositions described herein include the use of N-oxides, crystalline forms (also known as polymorphs), as well as active metabolites of these PAK inhibitors having the same type of activity. In some situations, PAK inhibitors exist as tautomers. All tautomers are included within the scope of the compounds presented herein. Additionally, the PAK inhibitor exists in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The solvated forms of the PAK inhibitors presented herein are also considered to be disclosed herein.

[00377] "Carrier materials" include any commonly used excipients in pharmaceutics and should be selected on the basis of compatibility with compounds disclosed herein, such as, a PAK inhibitor, and the release profile properties of the desired dosage form. Exemplary carrier materials include, e.g., binders, suspending agents, disintegration agents, filling agents, surfactants, solubilizers, stabilizers, lubricants, wetting agents, diluents, and the like.

[00378] Moreover, the pharmaceutical compositions described herein, which include a PAK inhibitor, are formulated into any suitable dosage form, including but not limited to, aqueous oral dispersions, liquids, gels, syrups, elixirs, slurries, suspensions and the like, for oral ingestion by a patient to be treated, solid oral dosage forms, aerosols, controlled release formulations, fast melt formulations, effervescent formulations, lyophilized formulations, tablets, powders, pills, dragees, capsules, delayed release formulations, extended release formulations, pulsatile release formulations, multiparticulate formulations, and mixed immediate release and controlled release formulations. In some embodiments, a formulation comprising a PAK inhibitor is a solid drug dispersion. A solid dispersion is a dispersion of one or more active ingredients in an inert carrier or matrix at solid state prepared by the melting (or fusion), solvent, or melting-solvent methods (Chiou and Riegelman, Journal of Pharmaceutical Sciences, 60, 1281 (1971)). The dispersion of one or more active agents in a solid diluent is achieved without mechanical mixing. Solid dispersions are also called solid-state dispersions. In some embodiments, any compound described herein (e.g., a compound of Formula I-IV and A-D) is formulated as a spray dried dispersion (SDD). An SDD is a single phase amorphous molecular dispersion of a drug in a polymer matrix. It is a solid solution prepared by dissolving the drug and a polymer in a solvent (e.g., acetone, methanol or the like) and spray drying the solution. The solvent rapidly evaporates from droplets which rapidly solidifies the polymer and drug mixture trapping the drug in amorphous form as an amorphous molecular dispersion. In some embodiments, such amorphous dispersions are filled in capsules and/or constituted into oral powders for reconstitution. Solubility of an SDD comprising a drug is higher than the solubility of a crystalline form of a drug or a non-SDD amorphous form of a drug. In some embodiments of the methods described herein, PAK inhibitors are administered as SDDs constituted into appropriate dosage forms described herein.

[00379] Pharmaceutical preparations for oral use are optionally obtained by mixing one or more solid excipient with a PAK inhibitor, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients
include, for example, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methylcellulose, microcrystalline cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose; or others such as: polyvinylpyrrolidone (PVP or povidone) or calcium phosphate. If desired, disintegrating agents are added, such as the cross linked croscarmellose sodium, polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

[00380] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions are generally used, which optionally contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments are optionally added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

[00381] In some embodiments, the solid dosage forms disclosed herein are in the form of a tablet, (including a suspension tablet, a fast-melt tablet, a bite-disintegration tablet, a rapid-disintegration tablet, an effervescent tablet, or a caplet), a pill, a powder (including a sterile packaged powder, a dispensable powder, or an effervescent powder) a capsule (including both soft or hard capsules, e.g., capsules made from animal-derived gelatin or plant-derived HPMC, or "sprinkle capsules"), solid dispersion, solid solution, bioerodible dosage form, controlled release formulations, pulsatile release dosage forms, multiparticulate dosage forms, pellets, granules, or an aerosol. By way of example, Example 26b describes a solid dosage formulation that is a capsule. In other embodiments, the pharmaceutical formulation is in the form of a powder. In still other embodiments, the pharmaceutical formulation is in the form of a tablet, including but not limited to, a fast-melt tablet. Additionally, pharmaceutical formulations of a PAK inhibitor are optionally administered as a single capsule or in multiple capsule dosage form. In some embodiments, the pharmaceutical formulation is administered in two, or three, or four, capsules or tablets.

[00382] In another aspect, dosage forms include microencapsulated formulations. In some embodiments, one or more other compatible materials are present in the microencapsulation material. Exemplary materials include, but are not limited to, pH modifiers, erosion facilitators, anti-foaming agents, antioxidants, flavoring agents, and carrier materials such as binders, suspending agents, disintegration agents, filling agents, surfactants, solubilizers, stabilizers, lubricants, wetting agents, and diluents.

[00383] Exemplary microencapsulation materials useful for delaying the release of the formulations including a PAK inhibitor, include, but are not limited to, hydroxypropyl cellulose ethers (HPC) such as Klucel® or Nisso HPC, low-substituted hydroxypropyl cellulose ethers (L-HPC), hydroxypropyl methyl cellulose ethers (HPMC) such as Seppifilm-LC, Pharmacoat®, Metolose SR, Methocel®-E, Opadry YS, PrimaFlo, Benecel MP824, and Benecel MP843, methylcellulose polymers such as Methocel®-A, hydroxypropylmethylcellulose acetate stearate Aqoat (HF–LS, HF-LG, HF-MS) and Metolose®, Ethylcelluloses (EC) and mixtures thereof such as E461, Ethocel®, Aqualon®-EC, Surelease®, Polyvinyl alcohol (PVA) such as Opadry AMB, hydroxyethylcelluloses such as Natrosol®, carboxymethylcelluloses and salts of carboxymethylcelluloses (CMC) such as Aqualon®-CMC, polyvinyl alcohol and polyethylene
glycol co-polymers such as Kollicoat IR®, monoglycerides (Myverol), triglycerides (KLX), polyethylene glycols, modified food starch, acrylic polymers and mixtures of acrylic polymers with cellulose ethers such as Eudragit® EPO, Eudragit® L30D-55, Eudragit® FS 30D Eudragit® L100-55, Eudragit® L100, Eudragit® S100, Eudragit® RD100, Eudragit® E100, Eudragit® L12.5, Eudragit® S12.5, Eudragit® NE30D, and Eudragit® NE 40D, cellulose acetate phthalate, sepifilms such as mixtures of HPMC and stearic acid, cyclodextrins, and mixtures of these materials.

[00384] The pharmaceutical solid oral dosage forms including formulations described herein, which include a PAK inhibitor, are optionally further formulated to provide a controlled release of the PAK inhibitor. Controlled release refers to the release of the PAK inhibitor from a dosage form in which it is incorporated according to a desired profile over an extended period of time. Controlled release profiles include, for example, sustained release, prolonged release, pulsatile release, and delayed release profiles. In contrast to immediate release compositions, controlled release compositions allow delivery of an agent to an individual over an extended period of time according to a predetermined profile. Such release rates provide therapeutically effective levels of agent for an extended period of time and thereby provide a longer period of pharmacologic response while minimizing side effects as compared to conventional rapid release dosage forms. Such longer periods of response provide for many inherent benefits that are not achieved with the corresponding short acting, immediate release preparations.

[00385] In other embodiments, the formulations described herein, which include a PAK inhibitor, are delivered using a pulsatile dosage form. A pulsatile dosage form is capable of providing one or more immediate release pulses at predetermined time points after a controlled lag time or at specific sites. Pulsatile dosage forms including the formulations described herein, which include a PAK inhibitor, are optionally administered using a variety of pulsatile formulations that include, but are not limited to, those described in U.S. Pat. Nos. 5,011,692, 5,017,381, 5,229,135, and 5,840,329. Other pulsatile release dosage forms suitable for use with the present formulations include, but are not limited to, for example, U.S. Pat. Nos. 4,871,549, 5,260,068, 5,260,069, 5,508,040, 5,567,441 and 5,837,284.

[00386] Liquid formulation dosage forms for oral administration are optionally aqueous suspensions selected from the group including, but not limited to, pharmaceutically acceptable aqueous oral dispersions, emulsions, solutions, elixirs, gels, and syrups. See, e.g., Singh et al., Encyclopedia of Pharmaceutical Technology, 2nd Ed., pp. 754-757 (2002). In addition to the PAK inhibitor, the liquid dosage forms optionally include additives, such as: (a) disintegrating agents; (b) dispersing agents; (c) wetting agents; (d) at least one preservative, (e) viscosity enhancing agents, (f) at least one sweetening agent, and (g) at least one flavoring agent. In some embodiments, the aqueous dispersions further includes a crystal-forming inhibitor.

[00387] In some embodiments, the pharmaceutical formulations described herein are self-emulsifying drug delivery systems (SEDDS). Emulsions are dispersions of one immiscible phase in another, usually in the form of droplets. Generally, emulsions are created by vigorous mechanical dispersion. SEDDS, as opposed to emulsions or microemulsions, spontaneously form emulsions when added to an excess of water
without any external mechanical dispersion or agitation. An advantage of SEDDS is that only gentle mixing is required to distribute the droplets throughout the solution. Additionally, water or the aqueous phase is optionally added just prior to administration, which ensures stability of an unstable or hydrophobic active ingredient. Thus, the SEDDS provides an effective delivery system for oral and parenteral delivery of hydrophobic active ingredients. In some embodiments, SEDDS provides improvements in the bioavailability of hydrophobic active ingredients. Methods of producing self-emulsifying dosage forms include, but are not limited to, for example, U.S. Pat. Nos. 5,858,401, 6,667,048, and 6,960,563.

[00388] Suitable intranasal formulations include those described in, for example, U.S. Pat. Nos. 4,476,116, 5,116,817 and 6,391,452. Nasal dosage forms generally contain large amounts of water in addition to the active ingredient. Minor amounts of other ingredients such as pH adjusters, emulsifiers or dispersing agents, preservatives, surfactants, gelling agents, or buffering and other stabilizing and solubilizing agents are optionally present.

[00389] For administration by inhalation, the PAK inhibitor is optionally in a form as an aerosol, a mist or a powder. Pharmaceutical compositions described herein are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit is determined by providing a valve to deliver a metered amount. Capsules and cartridges of, such as, by way of example only, gelatin for use in an inhaler or insufflator are formulated containing a powder mix of the PAK inhibitor and a suitable powder base such as lactose or starch. By way of example, Example 26e describes an inhalation formulation.

[00390] Buccal formulations that include a PAK inhibitor include, but are not limited to, U.S. Pat. Nos. 4,229,447, 4,596,795, 4,755,386, and 5,739,136. In addition, the buccal dosage forms described herein optionally further include a bioerodible (hydrolysable) polymeric carrier that also serves to adhere the dosage form to the buccal mucosa. The buccal dosage form is fabricated so as to erode gradually over a predetermined time period, wherein the delivery of the PAK inhibitor, is provided essentially throughout. Buccal drug delivery avoids the disadvantages encountered with oral drug administration, e.g., slow absorption, degradation of the active agent by fluids present in the gastrointestinal tract and/or first-pass inactivation in the liver. The bioerodible (hydrolysable) polymeric carrier generally comprises hydrophilic (water-soluble and water-swellable) polymers that adhere to the wet surface of the buccal mucosa. Examples of polymeric carriers useful herein include acrylic acid polymers and co, e.g., those known as "carbomers" (Carbopol®, which may be obtained from B.F. Goodrich, is one such polymer). Other components also be incorporated into the buccal dosage forms described herein include, but are not limited to, disintegrants, diluents, binders, lubricants, flavoring, colorants, preservatives, and the like. For buccal or sublingual administration, the compositions optionally take the form of tablets, lozenges, or gels formulated in a conventional manner. By way of example, Examples 26c and 26d describe sublingual formulations.

[00391] Transdermal formulations of a PAK inhibitor are administered for example by those described in U.S. Pat. Nos. 3,598,122, 3,598,123, 3,710,795, 3,731,683, 3,742,951, 3,814,097, 3,921,636, 3,972,995,
The transdermal formulations described herein include at least three components: (1) a formulation of a PAK inhibitor; (2) a penetration enhancer; and (3) an aqueous adjuvant. In addition, transdermal formulations include components such as, but not limited to, gelling agents, creams and ointment bases, and the like. In some embodiments, the transdermal formulation further includes a woven or non-woven backing material to enhance absorption and prevent the removal of the transdermal formulation from the skin. In other embodiments, the transdermal formulations described herein maintain a saturated or supersaturated state to promote diffusion into the skin.

In some embodiments, formulations suitable for transdermal administration of a PAK inhibitor employ transdermal delivery devices and transdermal delivery patches and are lipophilic emulsions or buffered, aqueous solutions, dissolved and/or dispersed in a polymer or an adhesive. Such patches are optionally constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents. Still further, transdermal delivery of the PAK inhibitor is optionally accomplished by means of iontophoretic patches and the like. Additionally, transdermal patches provide controlled delivery of the PAK inhibitor. The rate of absorption is optionally slowed by using rate-controlling membranes or by trapping the PAK inhibitor within a polymer matrix or gel. Conversely, absorption enhancers are used to increase absorption. An absorption enhancer or carrier includes absorbable pharmaceutically acceptable solvents to assist passage through the skin. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the PAK inhibitor optionally with carriers, optionally a rate controlling barrier to deliver the PAK inhibitor to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.

Formulations that include a PAK inhibitor suitable for intramuscular, subcutaneous, or intravenous injection include physiologically acceptable sterile aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and non-aqueous carriers, diluents, solvents, or vehicles including water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, cremophor and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity is maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. Formulations suitable for subcutaneous injection also contain optional additives such as preserving, wetting, emulsifying, and dispensing agents.

For intravenous injections, a PAK inhibitor is optionally formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used.
in the formulation. For other parenteral injections, appropriate formulations include aqueous or nonaqueous solutions, preferably with physiologically compatible buffers or excipients.

[00396] Parenteral injections optionally involve bolus injection or continuous infusion. Formulations for injection are optionally presented in unit dosage form, e.g., in ampoules or in multi dose containers, with an added preservative. In some embodiments, the pharmaceutical composition described herein are in a form suitable for parenteral injection as a sterile suspensions, solutions or emulsions in oily or aqueous vehicles, and contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of the PAK inhibitor in water soluble form. Additionally, suspensions of the PAK inhibitor are optionally prepared as appropriate oily injection suspensions.

[00397] In some embodiments, the PAK inhibitor is administered topically and formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams or ointments. Such pharmaceutical compositions optionally contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.

[00398] The PAK inhibitor is also optionally formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas, containing conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, PEG, and the like. In suppository forms of the compositions, a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter is first melted.

Examples of Methods of Dosing and Treatment Regimens

[00399] The PAK inhibitor is optionally used in the preparation of medicaments for the prophylactic and/or therapeutic treatment of a CNS disorder that would benefit, at least in part, from amelioration of symptoms. In addition, a method for treating any of the diseases or conditions described herein in an individual in need of such treatment, involves administration of pharmaceutical compositions containing at least one PAK inhibitor described herein, or a pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof, in therapeutically effective amounts to said individual.

[00400] In the case wherein the patient's condition does not improve, upon the doctor's discretion the administration of the PAK inhibitor is optionally administered chronically, that is, for an extended period of time, including throughout the duration of the patient's life in order to ameliorate or otherwise control or limit the symptoms of the patient's disease or condition.

[00401] In the case wherein the patient's status does improve, upon the doctor's discretion the administration of the PAK inhibitor is optionally given continuously; alternatively, the dose of drug being administered is temporarily reduced or temporarily suspended for a certain length of time (i.e., a "drug holiday"). The length of the drug holiday optionally varies between 2 days and 1 year, including by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35
days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 300 days, 320 days, 350 days, or 365 days. The dose reduction during a drug holiday includes from 10%-100%, including, byway of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.

[00402] Once improvement of the patient’s conditions has occurred, a maintenance dose is administered if necessary. Subsequently, the dosage or the frequency of administration, or both, is reduced, as a function of the symptoms, to a level at which the improved disease, disorder or condition is retained. In some embodiments, patients require intermittent treatment on a long-term basis upon any recurrence of symptoms.

[00403] In some embodiments, the pharmaceutical compositions described herein are in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more PAK inhibitor. In some embodiments, the unit dosage is in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. In some embodiments, aqueous suspension compositions are packaged in single-dose non-reclosable containers. Alternatively, multiple-dose reclosable containers are used, in which case it is typical to include a preservative in the composition. By way of example only, formulations for parenteral injection are presented in unit dosage form, which include, but are not limited to ampoules, or in multi dose containers, with an added preservative.

[00404] The daily dosages appropriate for the PAK inhibitor are from about 0.01 to about 2.5 mg/kg per body weight. An indicated daily dosage in the larger mammal, including, but not limited to, humans, is in the range from about 0.5 mg to about 1000 mg, conveniently administered in divided doses, including, but not limited to, up to four times a day or in extended release form. Suitable unit dosage forms for oral administration include from about 1 to about 500 mg active ingredient, from about 1 to about 250 mg of active ingredient, or from about 1 to about 100 mg active ingredient. The foregoing ranges are merely suggestive, as the number of variables in regard to an individual treatment regime is large, and considerable excursions from these recommended values are not uncommon. Such dosages are optionally altered depending on a number of variables, not limited to the activity of the PAK inhibitor used, the disease or condition to be treated, the mode of administration, the requirements of an individual, the severity of the disease or condition being treated, and the judgment of the practitioner.

[00405] Toxicity and therapeutic efficacy of such therapeutic regimens are optionally determined in cell cultures or experimental animals, including, but not limited to, the determination of the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between the toxic and therapeutic effects is the therapeutic index, which is expressed as the ratio between LD50 and ED50. PAK inhibitors exhibiting high therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is optionally used in formulating a range of dosage for use in human. The dosage of such PAK inhibitors lies preferably within a range of circulating concentrations
that include the ED50 with minimal toxicity. The dosage optionally varies within this range depending upon the dosage form employed and the route of administration utilized.

Assays for identification and characterization of PAK inhibitors

Small molecule PAK inhibitors are optionally identified in high-throughput in vitro or cellular assays as described in, e.g., Yu *et al* (2001), *J Biochem (Tokyo)*; 129(2):243-251; Rininsland *et al* (2005), *BMC Biotechnol*, 5:16; and Allen *et al* (2006), *ACS Chem Biol*; 1(6):371-376. PAK inhibitors suitable for the methods described herein are available from a variety of sources including both natural (e.g., plant extracts) and synthetic. For example, candidate PAK inhibitors are isolated from a combinatorial library, i.e., a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks." For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks, as desired. Theoretically, the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds. See Gallop *et al*. (1994), *J. Med. Chem.* 37(9), 1233. Each member of a library may be singular and/or may be part of a mixture (e.g. a "compressed library"). The library may comprise purified compounds and/or may be "dirty" (i.e., containing a quantity of impurities). Preparation and screening of combinatorial chemical libraries are documented methodologies. See Cabilly, *ed.*, *Methods in Molecular Biology*, Humana Press, Totowa, NJ, (1998). Combinatorial chemical libraries include, but are not limited to: diversomers such as hydantoins, benzodiazepines, and dipeptides, as described in, e.g., Hobbs *et al*. (1993), *Proc. Natl. Acad. Sci. U.S.A.* 90, 6909; analogous organic syntheses of small compound libraries, as described in Chen *et al*. (1994), *J. Amer. Chem. Soc.*, 116: 2661; Oligocarbamates, as described in Cho, *et al*. (1993), *Science* 261, 1303; peptidyl phosphonates, as described in Campbell *et al*. (1994), *J. Org. Chem.*, 59: 658; and small organic molecule libraries containing, e.g., thiazolidinones and metathiazanones (U.S. Pat. No. 5,549,974), pyrrolidines (U.S. Pat. Nos. 5,525,735 and 5,519,134), benzodiazepines (U.S. Pat. No. 5,288,514). In addition, numerous combinatorial libraries are commercially available from, e.g., ComGenex (Princeton, NJ); Asinex (Moscow, Russia); Tripos, Inc. (St. Louis, MO); ChemStar, Ltd. (Moscow, Russia); 3D Pharmaceuticals (Exton, PA); and Martek Biosciences (Columbia, MD).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS from Advanced Chem Tech, Louisville, KY; Symphony from Rainin, Woburn, MA; 433A from Applied Biosystems, Foster City, CA; and 9050 Plus from Millipore, Bedford, MA). A number of robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD (Osaka, Japan), and many robotic systems utilizing robotic arms (Zymate II). Any of the above devices are optionally used to generate combinatorial libraries for identification and characterization of PAK inhibitors.
which mimic the manual synthetic operations performed by small molecule PAK inhibitors suitable for the methods described herein. Any of the above devices are optionally used to identify and characterize small molecule PAK inhibitors suitable for the methods disclosed herein. In many of the embodiments disclosed herein, PAK inhibitors, PAK binding molecules, and PAK clearance agents are disclosed as polypeptides or proteins (where polypeptides comprise two or more amino acids). In these embodiments, the inventors also contemplate that PAK inhibitors, binding molecules, and clearance agents also include peptide mimetics based on the polypeptides, in which the peptide mimetics interact with PAK or its upstream or downstream regulators by replicating the binding or substrate interaction properties of PAK or its regulators. Nucleic acid aptamers are also contemplated as PAK inhibitors, binding molecules, and clearance agents, as are small molecules other than peptides or nucleic acids. For example, in some embodiments small molecule PAK binding partners, inhibitors, or clearance agents, or small molecule agonists or antagonists of PAK modulators or targets, are designed or selected based on analysis of the structure of PAK or its modulators or targets and binding interactions with interacting molecules, using "rational drug design" (see, for example Jacobsen et al. (2004) Molecular Interventions 4:337-347; Shi et al. (2007) Bioorg. Med. Chem. Lett. 17:6744-6749).

[00408] The identification of potential PAK inhibitors is determined by, for example, assaying the in vitro kinase activity of PAK in the presence of candidate inhibitors. In such assays, PAK and/or a characteristic PAK fragment produced by recombinant means is contacted with a substrate in the presence of a phosphate donor (e.g., ATP) containing radiolabeled phosphate, and PAK-dependent incorporation is measured. "Substrate" includes any substance containing a suitable hydroxyl moiety that can accept the \(\gamma \)-phosphate group from a donor molecule such as ATP in a reaction catalyzed by PAK. The substrate may be an endogenous substrate of PAK, i.e., a naturally occurring substance that is phosphorylated in unmodified cells by naturally-occurring PAK or any other substance that is not normally phosphorylated by PAK in physiological conditions, but may be phosphorylated in the employed conditions. The substrate may be a protein or a peptide, and the phosphorylation reaction may occur on a serine and/or threonine residue of the substrate. For example, specific substrates, which are commonly employed in such assays include, but are not limited to, histone proteins and myelin basic protein. In some embodiments, PAK inhibitors are identified using IMAP® technology.

[00409] Detection of PAK dependent phosphorylation of a substrate can be quantified by a number of means other than measurement of radiolabeled phosphate incorporation. For example, incorporation of phosphate groups may affect physiochemical properties of the substrate such as electrophoretic mobility, chromatographic properties, light absorbance, fluorescence, and phosphorescence. Alternatively, monoclonal or polyclonal antibodies can be generated which selectively recognize phosphorylated forms of the substrate from non-phosphorylated forms whereby allowing antibodies to function as an indicator of PAK kinase activity.

[00410] High-throughput PAK kinase assays can be performed in, for example, microtiter plates with each well containing PAK kinase or an active fragment thereof, substrate covalently linked to each well, P\(^{32}\)
radiolabeled ATP and a potential PAK inhibitor candidate. Microtiter plates can contain 96 wells or 1536 wells for large scale screening of combinatorial library compounds. After the phosphorylation reaction has completed, the plates are washed leaving the bound substrate. The plates are then detected for phosphate group incorporation via autoradiography or antibody detection. Candidate PAK inhibitors are identified by their ability to decrease the amount of PAK phosphotransferase activity upon a substrate in comparison with PAK phosphotransferase ability alone.

The identification of potential PAK inhibitors may also be determined, for example, via in vitro competitive binding assays on the catalytic sites of PAK such as the ATP binding site and/or the substrate binding site. For binding assays on the ATP binding site, a known protein kinase inhibitor with high affinity to the ATP binding site is used such as staurosporine. Staurosporine is immobilized and may be fluorescently labeled, radiolabeled or in any manner that allows detection. The labeled staurosporine is introduced to recombinantly expressed PAK protein or a fragment thereof along with potential PAK inhibitor candidates. The candidate is tested for its ability to compete, in a concentration-dependant manner, with the immobilized staurosporine for binding to the PAK protein. The amount of staurosporine bound PAK is inversely proportional to the affinity of the candidate inhibitor for PAK. Potential inhibitors would decrease the quantifiable binding of staurosporine to PAK. See e.g., Fabian et al (2005) Nat. Biotech., 23:329. Candidates identified from this competitive binding assay for the ATP binding site for PAK would then be further screened for selectivity against other kinases for PAK specificity.

The identification of potential PAK inhibitors may also be determined, for example, by in cyto assays of PAK activity in the presence of the inhibitor candidate. Various cell lines and tissues may be used, including cells specifically engineered for this purpose. In cyto screening of inhibitor candidates may assay PAK activity by monitoring the downstream effects of PAK activity. Such effects include, but are not limited to, the formation of peripheral actin microspikes and or associated loss of stress fibers as well as other cellular responses such as growth, growth arrest, differentiation, or apoptosis. See e.g., Zhao et al. (1998) Mol. Cell. Biol. 18:2153. For example in a PAK yeast assay, yeast cells grow normally in glucose medium. Upon exposure to galactose however, intracellular PAK expression is induced, and in turn, the yeast cells die. Candidate compounds that inhibit PAK activity are identified by their ability to prevent the yeast cells from dying from PAK activation.

Alternatively, PAK-mediated phosphorylation of a downstream target of PAK can be observed in cell based assays by first treating various cell lines or tissues with PAK inhibitor candidates followed by lysis of the cells and detection of PAK mediated events. Cell lines used in this experiment may include cells specifically engineered for this purpose. PAK mediated events include, but are not limited to, PAK mediated phosphorylation of downstream PAK mediators. For example, phosphorylation of downstream PAK mediators can be detected using antibodies that specifically recognize the phosphorylated PAK mediator but not the unphosphorylated form. These antibodies have been described in the literature and have been extensively used in kinase screening campaigns. In some instances a phospho LIMK antibody is used after treatment of HeLa cells stimulated with EGF or sphingosine to detect downstream PAK signaling events.
The identification of potential PAK inhibitors may also be determined, for example, by in vivo assays involving the use of animal models, including transgenic animals that have been engineered to have specific defects or carry markers that can be used to measure the ability of a candidate substance to reach and/or affect different cells within the organism. For example, DISCI knockout mice have defects in synaptic plasticity and behavior from increased numbers of dendritic spines and an abundance of long and immature spines. Thus, identification of PAK inhibitors can comprise administering a candidate to DISCI knockout mice and observing for reversals in synaptic plasticity and behavior defects as a readout for PAK inhibition.

For example, suitable animal models for Alzheimer's disease are knock-ins or transgenes of the human mutated genes including transgenes of the "Swedish" mutation of APP (APPswe), transgenes expressing the mutant form of presenilin 1 and presenilin 2 found in familial/early onset AD. Thus, identification of PAK inhibitors can comprise administering a candidate to a knock-in animal and observing for reversals in synaptic plasticity and behavior defects as a readout for PAK inhibition.

Administration of the candidate to the animal is via any clinical or non-clinical route, including but not limited to oral, nasal, buccal and/or topical administrations. Additionally or alternatively, administration may be intratracheal instillation, bronchial instillation, intradermal, subcutaneous, intramuscular, intraperitoneal, inhalation, and/or intravenous injection.

Changes in spine morphology are detected using any suitable method, e.g., by use of 3D and/or 4D real time interactive imaging and visualization. In some instances, the Imaris suite of products (available from Bitplane Scientific Solutions) provides functionality for visualization, segmentation and interpretation of 3D and 4D microscopy datasets obtained from confocal and wide field microscopy data.

EXAMPLES

The following specific examples are to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

All synthetic chemistry was performed in standard laboratory glassware unless indicated otherwise in the examples. Commercial reagents were used as received.

Analytical LC/MS A was performed on an Agilent 1200 system with a variable wavelength detector and Agilent 6110 Single quadrupole mass spectrometer, alternating positive and negative ion scans. (AN/B)

Analytical LC/MS B was performed on an Agilent 1200 system with a variable wavelength detector and Agilent G1956A Single quadrupole mass spectrometer, positive or negative ion scans. (N)

Analytical LC/MS C was performed on an Agilent 1100 system with a variable wavelength detector and Agilent G1946D Single quadrupole mass spectrometer, positive or negative ion scans (AY)
Analytical LC/MS D was performed on an Agilent 1200 system with a variable wavelength detector and Agilent 6110 Single quadrupole mass spectrometer, positive or negative ion scans (AS/F).

Analytical LC/MS E was performed on an Agilent 1100 system with a variable wavelength detector and Agilent G1946A Single quadrupole mass spectrometer, positive or negative ion scans. (AX)

Analytical LC/MS F was performed on an Agilent 1100 system with a variable wavelength detector and Agilent G1946A Single quadrupole mass spectrometer, positive or negative ion scans. (I/E/W)

Analytical LC/MS G was performed on a SHIMADZU LC-20AB system with a variable wavelength detector and SHIMADZU 2010EV Single quadrupole mass spectrometer, positive ion scans. (R)

Retention times were determined from the extracted 220 nm chromatogram. H NMR was performed on a Bruker DRX-400 at 400 MHz. Microwave reactions were performed in a Biotage Initiator using the instrument software to control heating time and pressure. Silica gel chromatography was performed manually.

Preparative HPLC method A: Preparative HPLC was performed on a Waters 1525/2487 with UV detection at 220 nm and manual collection.

HPLC column: ASB-C18 21.2 x 150 mm.

HPLC Gradient: 25 mL/min, (0.01% HCL)water:acetonitrile; the gradient shape was optimized for individual separations.

Preparative HPLC method B:

HPLC column: Phenomenex 21.2 x 150 mm.

HPLC Gradient: 25 mL/min, (0.1% FA)water:acetonitrile; the gradient shape was optimized for individual separations.

Example 1: Synthesis of 8-ethyl-6-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)-2-(tetra
Step 1: Synthesis of methyl 2-(2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (2)

A mixture of compound methyl 2-(4-bromo-2-methylphenyl)acetate 1 (6 g, 1 eq), 4,4',4',5,5,5,5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (8.16 g, 1.3 eq), KOAc (4.83 g, 2 eq) and Pd(dpff)Cl2 (1.2 g) were refluxed in 100 mL of dry dioxane under N2 for 18 h. This mixture was filtered, diluted with water (200 mL) and extracted with EtOAc (3X100 mL). The organic layer was dried over anhydrous Na2SO4, filtered and concentrated to give 7 g of crude product 2. LCMS m/z 291 (M+H)+.

Step 2: Synthesis of methyl 2-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)acetate (3)

Methyl 2-(2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate 2 (6.8 g, 1 eq), KOAc (4.58 g, 2 eq), Pd(dpff)Cl2 (1 g) and 2-chloro-3-methylpyrazine (3 g, 1 eq) were mixed in toluene/THF/H2O (2:2:1, 50 ml). The resulting mixture was stirred at 100°C for 15 hr. The resulting mixture was diluted with H2O (30 ml), extracted with EtOAc (2x30 mL). The organic layers were combined, washed with brine (2x20 mL), dried over anhydrous Na2SO4, filtered and concentrated. The crude material was then purified by SiO2 column chromatography (PE:ethyl acetate=1 0:1-5:1) to afford the desired product 3 (2.2 g, 37% yield). H NMR (400 MHz, CDCl3) δ ppm 8.47 (d, J=2.4 Hz, 1H), 8.42 (d, J= 2.4, 1H), 7.41 (s, 1H), 7.37 (d, J= 8.4 Hz, 1H), 7.31 (d, J= 4.8 Hz, 1H), 3.73-3.70 (m, 5H), 2.64 (s, 3H), 2.38 (s, 3H).

Step 3: Synthesis of ethyl 2-chloro-4-(ethylamino)pyrimidine-5-carboxylate (5)

Ethylamine (10.2 g, 0.226 mol) was added dropwise to a solution of ethyl 2,4-dichloropyrimidine-5-carboxylate (50 g, 0.226 mol) and Et3N (22.9 g, 0.226 mol) in dichloromethane (500 mL) at -78 °C. The reaction was stirred at -78°C for 3h, and then warmed up
to -30°C until ethyl 2,4-dichloropyrimidine-5-carboxylate was consumed. The organic layer was washed with water, dried over anhydrous Na$_2$SO$_4$, and concentrated to afford 5 as a white solid (50 g). The compound was used in the next step without further purification. LCMS m/z 230 (M+H) $^+$.

Step 4: Synthesis of (2-chloro-4-(ethylamino)pyrimidin-5-yl)methanol (6)

A suspension of LiAlH$_4$ (12.39 g, 0.326 mol) in anhydrous THF (400 mL) was cooled to 0 °C. To the above suspension was added dropwise a solution of ethyl 2-chloro-4-(ethylamino)pyrimidine-5-carboxylate (50 g) in anhydrous THF (100 mL) while keeping the temperature below 10°C. The reaction was stirred at 5-10°C for 2h and then quenched with water. The mixture was filtered, and the filtrate was concentrated to afford 6 as a white solid (35 g). The compound was used in the next step without further purification. LCMS m/z 188 (M+H) $^+$.

Step 5: Synthesis of 2-chloro-4-(ethylamino)pyrimidin-5-carbaldehyde (7)

The Mn0$_2$ (175 g) was added to a solution of (2-chloro-4-(ethylamino)pyrimidin-5-yl)methanol (35 g) in THF (400 mL). The mixture was stirred at 40 °C for 3h. The mixture was filtered, and the filtrate was concentrated to and then purified by column chromatography on silica gel (PE:ethyl acetate=10:1) to afford 7 (22 g). LCMS m/z 186 (M+H) $^+$.

Step 6: Synthesis of 2-chloro-8-ethyl-6-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)pyrido[2,3-d]pyrimidin-7(8H)-one (8)

A mixture of 2-chloro-4-(ethylamino)pyrimidine-5-carbaldehyde 7 (300 mg, 1 eq), methyl 2-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)acetate 3 (414 mg, 1 eq) and DBU (123 mg, 0.5 eq) were stirred in 5 mL of DMSO overnight. The reaction was monitored by TLC until the reaction was complete. This resulting mixture was cooled to 0 °C, diluted with water, filtered and dried to give 130 mg of 8 as a pale yellow solid. H NMR (400 MHz, CDC$_3$) δ ppm 8.76 (s, 1H), 8.58-8.48 (m, 2H), 7.66 (s, 1H), 75.3 (s, 1H), 7.48 (d, J= 8 Hz, 1H), 7.36 (d, J= 8 Hz, 1H), 4.56 (q, J=6.8 Hz, 2H), 2.70 (s, 3H), 2.31 (s, 3H), 1.42 (t, J=6.8 Hz, 3H).

Step 7: Synthesis of 8-ethyl-6-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)-2-(tetrahydro-2H-pyran-4-ylamino)pyrido [2,3-d]pyrimidin-7(8H)-one (9)

A mixture of compound 2-chloro-8-ethyl-6-(2-methyl-4-(3-methylpyrazin-2-yl)phenyl)pyrido[2,3-d]pyrimidin-7(8H)-one 8 (140 mg, 1 eq) and tetrahydro-2H-pyran-4-amine (5 eq) in isopropanol was stirred at reflux for 18 h. The reaction was monitored by TLC until the reaction was complete. This mixture was evaporated to afford the crude product. This crude material was purified by prep.HPLC to give 20 mg of 9. LCMS m/z 457.3 (M+H) $^+$. H NMR (400 MHz, DMSO-de) δ ppm 8.70-8.64 (m, 1H), 8.56 (d, J= 2.8 Hz, 1H), 8.51 (d, J= 2.8 Hz, 1H), 7.95-7.91 (m, 1H), 7.75 (s, 1H), 7.49 (s, 1H), 7.47 (d, J= 2 Hz, 1H), 7.31 (d, J=8 Hz, 1H), 4.339-4.323
Synthesis of phenyl acetate intermediates: Phenyl acetates were synthesized using the conditions described in Example 1 or in the procedures outlined below.

Intermediate A: Synthesis of methyl 2-(2-chloro-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)acetate (4A)

Step 1: Synthesis of methyl 2-(2-chloro-4-cyanophenyl)acetate (2A)

To a solution of methyl 2-(4-bromo-2-chlorophenyl)acetate 1A (20 g, 75.90 mmol) in dioxane (250 mL) were added Zn(CN)_2 (6.68 g, 56.89 mmol) and Pd(PPh_3)_4 (4.39 g, 3.80 mmol) under nitrogen, the reaction mixture was stirred at 80°C for 15 h. The reaction was filtered, the filtrate was washed with water. The filtrate was extracted with EtOAc (2 x 100 mL). The combined layers were washed with brine (1 x 100 mL), dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by column chromatography on silica gel eluted with 0-5% EtOAc in petroleum ether to give the desired product 2A (13 g, 82%). LCMS m/z 210 (M+H) +

Step 2: Synthesis of methyl 2-(2-chloro-4-(N-hydroxycarbamimidoyl)phenyl)acetate (3A)

To a solution of methyl 2-(2-chloro-4-cyanophenyl)acetate 2A (10 g, 47.70 mmol) in MeOH (150 mL) were added NH_2OH.HCl (6.63 g, 95.41 mmol) and NaHCO_3 (12 g, 142.86 mmol) under nitrogen, the reaction mixture was stirred at 80°C for 2 h. The solvent was removed, the residue was washed with water once, and the water was extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (1 x 50 mL), dried over anhydrous Na_2SO_4 and concentrated to give the desired product 3A (7 g, 60%) which was used in the next step without further purification. LCMS m/z 243 (M+H) +. 1H NMR (400 MHz, CDC13) δ ppm 9.81 (s, 1H), 8.662 (m, 1H), 8.388 (s, 1H), 3.13-3.05 (d, 3H).
Step 3: Synthesis of methyl 2-(2-chloro-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)acetate (4A)

[00440] A solution of methyl 2-(2-chloro-4-(N-hydroxycarbamimidoyl)phenyl)acetate 3A (7 g, 28.85 mmol) in Ac$_2$O (50 mL) was stirred at 100°C for 15 h. The solvent was removed, the residue was washed with water once. And the water was extracted with EtOAc (2 x 50 mL). The combined layers were washed with brine (1 x 50 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel eluted with 0-10% EtOAc in petroleum ether to give the desired product 4A (5.7 g, 74%). LCMS m/z 267 (M+H)$^+$.

Intermediate B: Synthesis of methyl 2-(2-chloro-4-(2-methylthiazol-5-yl)phenyl)acetate (5A)

[00441] To a solution of methyl 2-(4-bromo-2-chlorophenyl) acetate 1A (5 g, 18.98 mmol) in DMA (50 mL) was added 2-methylthiazole (2.82 g, 28.44 mmol), AcOK (2.79 g, 28.43 mmol) and Pd(PPh$_3$)$_4$ (1.10 g, 0.95 mmol) under nitrogen. The reaction mixture stirred at 100°C for 15 h and then filtered. The filtrate was washed with water and extracted with EtOAc (2 x 50 mL). The combined layers were washed with brine (5 x 30 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel to afford 5A (4.3 g, 80%). LCMS m/z 282 (M+1)$^+$.

Intermediate C: Synthesis of methyl 2-(2-chloro-4-(2-fluoropyridin-3-yl)phenyl)acetate (6A)

[00442] To a solution of methyl 2-(4-bromo-2-chlorophenyl) acetate 1A (4 g, 15.18 mmol) in toluene/THF/H$_2$O (50 mL, v/v/v=2/2/1) was added 2-fluoropyridin-3-ylboronic acid (2.14 g, 15.18 mmol), AcOK (2.23 g, 22.72 mmol) and Pd(dppf)Cl$_2$ (833 mg, 1.14 mmol) under nitrogen, the reaction mixture was stirred at 90°C for 15 h. The mixture was filtered. The filtrate was washed
with water and extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with brine, dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by column chromatography on silica gel to afford the desired product 6A (3.3 g, 77%). LCMS m/z 280 (M+1)$^+$.

Intermediate D: Synthesis of methyl 2-(2-chloro-5-methyl-4-(6-methylpyrazin-2-yl)phenyl)acetate (15A)

Step 1: Synthesis of l-bromo-2-chloro-5-methyl-4-nitrobenzene (8A)

[00443] A solution of compound 2-bromo-l-chloro-4-methylbenzene (50 g, 0.24 mol, leq) in conc.H$_2$SO$_4$ (400ml), was cooled to 0-5°C using an ice-water-methanol bath. Fuming nitric acid (10.38 ml, 1.48 g/ml, 0.24 mol) in con.H$_2$SO$_4$ (26 ml) was slowly added dropwise to the mixture and then stirred at 0°C for 3h. The solution was poured into 500g ice/water and extracted with dichloromethane (2x300mL). The combined organic layers were washed with water, dried over Na$_2$SO$_4$ and concentrated to give 58 g of 8A which was used the next step directly without further purification. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.09 (s, 1H), 7.64 (s, 1H), 2.57 (s, 3H).

Step 2: Synthesis of l-allyl-2-chloro-5-methyl-4-nitrobenzene (9A)

[00444] A solution of l-bromo-2-chloro-5-methyl-4-nitrobenzene (58 g, 0.232 mol, 1 eq), AllylSnBu$_3$ (99.83 g, 0.301 mol, 1.3 eq), Pd(PPh$_3$)$_4$ (34.47 g, 0.023mol, 0.1 eq) and dry dioxane (931ml) were stirred at 90°C for 16h. The reaction was concentrated and purified by silica gel (PE). The material was then concentrated, dissolved in dichloromethane, washed with saturated aq
CsF, dried over anhydrous Na$_2$SO$_4$ and concentrated to afford the target 9A (36 g, 73.54%). H NMR (400 MHz, DMSO-d6) δ ppm 8.07-8.06 (d, 1H), 7.22 (s, 1H), 6.01-5.90 (m, 1H), 5.22-5.11 (m, 2H), 3.55-3.53 (d, 2H), 2.60-2.59 (d, 3H).

Step 3: Synthesis of 2-(2-chloro-5-methyl-4-nitrophenyl)acetic acid (10A)

A mixture of 1-allyl-2-chloro-5-methyl-4-nitrobenzene (36 g, 0.17 mol, 1.0 eq), RuCl$_3$.H$_2$O (1.8 g, 8.02 mmol, 0.047 eq), Bu$_4$NI (6.3 g, 17.06 mmol, 0.1 eq) in ethyl acetate (936 ml) were stirred at 0°C using an ice-water bath. To this mixture was added a solution of NaI04 (182.56 g, 0.85 mol, 5.0 eq) in H$_2$O (1.44 L) dropwise. The resulting solution was stirred at room temperature for 2 h. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with IN HCl, dried over anhydrous Na$_2$SO$_4$, filtered and concentrated to give 33 g of 10A which was used the next step directly without further purification. H NMR (400 MHz, DMSO-de) δ 8.06 (s, 1H), 7.29 (s, 1H), 3.84 (s, 2H), 2.58 (s, 3H).

Step 4: Synthesis of methyl 2-(2-chloro-5-methyl-4-nitrophenyl)acetate (11A)

A solution of compound 2-(2-chloro-5-methyl-4-nitrophenyl)acetic acid (33 g, 0.144 mol, 1.0 eq) in SOCl$_2$ (638 ml) was heated to 100 °C for 4h. The reaction mixture was concentrated and then dissolved in cooled methanol (473 ml) and stirred for 15min and then concentrated. The crude mixture was purified by silical gel to afford 22 g of 11A (PE:ethyl acetate=30: 1). H NMR (400 MHz, DMSO-d6) δ ppm 8.05 (s, 1H), 7.29 (s, 1H), 3.80 (s, 2H), 3.73 (s, 3H), 2.58 (s, 3H).

Step 5: Synthesis of methyl 2-(4-amino-2-chloro-5-methylphenyl)acetate (12A)

A solution of methyl 2-(4-amino-2-chloro-5-nitrophenyl)acetate (21 g, 86.42 mmol, 1.0eq) and NiCl$_2$.6H$_2$O (41.13 g, 0.17 mol, 2.0 eq.) in MeOH (588 ml) was cooled to 0 °C using an ice-water bath. NaBH$_4$ (9.85 g, 0.26 mol, 3.0 eq) was added in portions to this solution over 10 min and then stirred at rt for 30min. The reaction mixture was quenched with saturated aqueous NH$_4$Cl followed by H$_2$O (3L). The reaction mixture was extracted with dichloromethane (500mlx4), the organic layers were dried over anhydrous Na$_2$SO$_4$, filtered and concentrated to afford the crude product which was purified by silica gel (PE:ethyl acetate = 10:1) to afford the desired product 12A (18g). H NMR (400 MHz, DMSO-d6) δ ppm 6.93 (s, 1H), 6.69 (s, 1H), 3.70 (s, 3H), 3.64 (s, 2H), 2.11 (s, 3H).

Step 6: Synthesis of methyl 2-(4-bromo-2-chloro-5-methylphenyl)acetate (13A)

CuBr$_2$ (10 mg) was added to a solution of methyl 2-(4-amino-2-chloro-5-methylphenyl)acetate (1.0 g, 4.68 mmol, 1.0eq), t-BuONO (580 mg, 1.2 eq), p-TsOH (972mg, 1.2eq), TBAB (3.0g, 2.0eq) in CH$_3$CN (50 ml) and stirred at room temperature for 4h. The reaction mixture was concentrated, and then dissolved in dichloromethane (30ml), washed with saturated aq
NaHCC≡3 (20mlx8), H₂O (10mlx2), dried over anhydrous Na₂SO₄, filtered and concentrated to afford 1g of 13A which was used directly in the next step without further purification.

Step 7: Synthesis of methyl 2-(2-chloro-5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (14A)

A mixture of methyl 2-(4-bromo-2-chloro-5-methylphenyl)acetate (2.7 g, 9.78 mmol, leq), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (3.23 g, 12.72 mmol, 1.3 eq), KOAc (1.92 g, 19.56 mmol, 2 eq) and Pd(dppf)Cl₂ (500 mg) was refluxed in 30 mL of toluene/THF/H₂O (0.5 ml/0.5 ml/0.25 ml) under N₂ for 18 h. This mixture was filtered and the filtrate was diluted with water (50 mL) and extracted with EtOAc (50 mLx3). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated to give 1.2 g of of 14A. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 7.74 (s, 1H), 7.06 (s, 1H), 3.73 (s, 2H), 3.69 (s, 3H), 2.47 (s, 3H), 1.33-1.32 (dd, 12H).

Step 8: Synthesis of methyl 2-(2-chloro-5-methyl-4-(6-methylpyrazin-2-yl)phenyl)acetate (15A)

A mixture of methyl 2-(2-chloro-5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (0.8 g, 2.46 mmol, 1 eq), 2-chloro-6-methylpyrazine (0.38 g, 2.95 mmol, 1.2 eq), KOAc (484 mg, 4.94 mmol, 2 eq) and Pd(dppf)Cl₂ (300 mg) were refluxed in toluene/THF/H₂O (3.2ml/3.2 ml/1.6 ml) under under N₂ for 18 h. This mixture was filtered and the filtrate was diluted with water (20 mL), extracted with EtOAc (40 mLx3), the organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated to give 0.13 g (18 %) of 15A. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 8.497(s, 1H), 8.44 (s, 1H), 7.46 (s, 1H), 7.26-7.25 (s,lH),3.79 (s, 2H),3.73-3.72 (s, 3H), 2.63(s, 3H), 2.35(s, 3H).

Intermediate F: Synthesis of methyl 2-(2-chloro-5-methyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)acetate (19A)

Step 1: Synthesis of methyl 2-(2-chloro-4-cyano-5-methylphenyl)acetate (17A)

A mixture of methyl 2-(4-bromo-2-chloro-5-methylphenyl)acetate 16A (4 g, 14.49 mmol, 1 eq), Zn(CN)₂ (1.7 g, 14.49 mmol, 1 eq) and Zn (94.2 mg, 1.45 mmol, 0.1 eq) in anhydrous DMF (40 mL) was added Pd(dppf)Cl₂ (500 mg) and Pd₂(dbq)₃ (500 mg) under N₂. The mixture was stirred at 120 °C for 1.5h, then cooled to room temperature, diluted with water (50 mL) and extracted with EtOAc (3x50 mL). The organic layers were combined and washed with water (3x50
mL), brine (2x50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated to give a crude product, which was purified by column chromatography with silica gel (PE/ethyl acetate=10:1 to 3:1) to afford 17A (0.4 g, 12%).

Step 2: Synthesis of methyl 2-(2-chloro-4-(N-hydroxycarbamimidoyl)-5-methylphenyl)acetate (ISA)

To a solution of methyl 2-(2-chloro-4-cyano-5-methylphenyl)acetate 17A (0.2 g, 0.896 mmol, 1 eq) and NH₂OH.HCl (0.125 mg, 1.79 mmol, 2 eq) in MeOH (5 mL) was added NaHCO₃ (0.15 g, 1.79 mmol, 2 eq). The mixture was stirred at 70 °C for 4 hr, then cooled to room temperature and concentrated to remove MeOH, diluted with water (20 mL) and extracted with EtOAc (2x20 mL). The organic layers were combined, dried over anhydrous Na₂SO₄, filtered and concentrated to give 70 mg of 18A which was used directly in the next step without further purification.

Step 3: Synthesis of methyl 2-(2-chloro-5-methyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)acetate (19A)

To a solution of methyl 2-(2-chloro-4-(N-hydroxycarbamimidoyl)-5-methylphenyl)acetate 18A (70 mg, 0.27 mmol, 1 eq) in Ac₂O (5 mL) was heated to reflux for 16 hr. The mixture was concentrated to remove Ac₂O, diluted with EtOAc (10 mL), washed with NaHCO₃ (10 mLx3), brine (10 mLx2), dried over anhydrous Na₂SO₄, filtered and concentrated to afford 30 mg of 19A which was directly used without further purification.

The compounds in Table 1 were made using the method described in Example 1 using the appropriate phenylacetate, aldehyde and amine. Compounds were usually obtained after purification by prep. HPLC.

Table 1:

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>477</td>
<td>A</td>
<td>477.2</td>
<td>3.26</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>475.0</td>
<td>A</td>
<td>475.2</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td>Molecular Structure</td>
<td>MW</td>
<td>R</td>
<td>Charge</td>
<td>PE</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>466.9</td>
<td>A</td>
<td>467.0</td>
<td>3.53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>490.0</td>
<td>A</td>
<td>490.2</td>
<td>2.11</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>420.9</td>
<td>A</td>
<td>421.3</td>
<td>3.25</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>477.0</td>
<td>A</td>
<td>477.1</td>
<td>3.55</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>477.0</td>
<td>A</td>
<td>477.2</td>
<td>3.23</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>462.9</td>
<td>A</td>
<td>463.2</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Molecular Weight</td>
<td>Charge</td>
<td>pIC50</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------------------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>448.9</td>
<td>A</td>
<td>449.2</td>
<td>2.50</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>438.9</td>
<td>A</td>
<td>439.0</td>
<td>2.81</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>479.9</td>
<td>A</td>
<td>480.1</td>
<td>3.54</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>464.0</td>
<td>A</td>
<td>464.2</td>
<td>2.03</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>454.0</td>
<td>A</td>
<td>454.2</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>MW</td>
<td>Charge</td>
<td>m/z</td>
<td>R</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>462.9</td>
<td>A</td>
<td>463.3</td>
<td>2.92</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>539.0</td>
<td>A</td>
<td>539.2</td>
<td>3.63</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>477.0</td>
<td>A</td>
<td>477.2</td>
<td>1.07</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>493.0</td>
<td>C</td>
<td>493.1</td>
<td>3.69</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>504.0</td>
<td>A</td>
<td>504.3</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Mass</td>
<td>Charge</td>
<td>Retention Time</td>
<td>Mass Error</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>607.0</td>
<td>A</td>
<td>607.2</td>
<td>4.42</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>607.0</td>
<td>A</td>
<td>607.3</td>
<td>4.13</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>592.0</td>
<td>E</td>
<td>592.3</td>
<td>3.18</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>593.0</td>
<td>A</td>
<td>593.2</td>
<td>4.03</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>597.0</td>
<td>A</td>
<td>597.2</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>MW</td>
<td>Unit</td>
<td>MW</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>542.0</td>
<td>A</td>
<td>542.3</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>612.1</td>
<td>A</td>
<td>612.2</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>462.9</td>
<td>A</td>
<td>463.3</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>462.9</td>
<td>A</td>
<td>463.0</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>462.9</td>
<td>A</td>
<td>463.2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Mol. Wt.</td>
<td>pK<sub>a</sub></td>
<td>Log P</td>
<td>pIC<sub>50</sub></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>505.0</td>
<td>A</td>
<td>505.3</td>
<td>3.37</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>505.0</td>
<td>A</td>
<td>505.2</td>
<td>3.48</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>491.0</td>
<td>A</td>
<td>491.2</td>
<td>3.34</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>490.0</td>
<td>A</td>
<td>490.2</td>
<td>2.59</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>539.0</td>
<td>A</td>
<td>539.2</td>
<td>3.91</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Molar Mass</td>
<td>Solubility</td>
<td>pIC50</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>504.0</td>
<td>A</td>
<td>504.2</td>
<td>2.82</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>557.0</td>
<td>A</td>
<td>557.3</td>
<td>4.03</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>505.0</td>
<td>A</td>
<td>505.3</td>
<td>3.91</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>505.0</td>
<td>A</td>
<td>505.4</td>
<td>3.614</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>465.9</td>
<td>A</td>
<td>466.1</td>
<td>3.42</td>
</tr>
<tr>
<td>(\text{No.})</td>
<td>(\text{Structure})</td>
<td>(\text{MW})</td>
<td>(\text{Charge})</td>
<td>(\text{pK}_a)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>465.9</td>
<td>A</td>
<td>466.1</td>
<td>3.41</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>465.9</td>
<td>A</td>
<td>466.2</td>
<td>3.41</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>573.5</td>
<td>A</td>
<td>575.0</td>
<td>1.26</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>462.0</td>
<td>C</td>
<td>462.1</td>
<td>2.20</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>462.0</td>
<td>A</td>
<td>462.3</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>476.0</td>
<td>476.0</td>
<td>476.0</td>
<td>478.0</td>
<td>462.0</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>476.3</td>
<td>476.2</td>
<td>476.3</td>
<td>478.2</td>
<td>462.3</td>
</tr>
<tr>
<td></td>
<td>2.18</td>
<td>2.75</td>
<td>2.37</td>
<td>2.98</td>
<td>2.59</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Molecular Weight</td>
<td>Formula</td>
<td>Mass Difference</td>
<td>Accuracy</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>462.9</td>
<td>C</td>
<td>463.2</td>
<td>3.94</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>447.9</td>
<td>C</td>
<td>448.3</td>
<td>2.67</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>492.0</td>
<td>C</td>
<td>492.3</td>
<td>4.62</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>478.9</td>
<td>C</td>
<td>479.2</td>
<td>3.49</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>452.9</td>
<td>C</td>
<td>453.2</td>
<td>4.00</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
<td>Molecular Weight</td>
<td>Charge</td>
<td>Experimental</td>
<td>Predicted</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>468.0</td>
<td>C</td>
<td>468.1</td>
<td>3.92</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>462.0</td>
<td>C</td>
<td>462.3</td>
<td>2.65</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>448.9</td>
<td>C</td>
<td>449.2</td>
<td>2.49</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>462.9</td>
<td>C</td>
<td>463.3</td>
<td>3.60</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>462.0</td>
<td>C</td>
<td>462.2</td>
<td>2.62</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>448.9</td>
<td>C</td>
<td>449.2</td>
<td>3.69</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>462.0</td>
<td>C</td>
<td>462.3</td>
<td>2.80</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>448.9</td>
<td>C</td>
<td>449.2</td>
<td>3.14</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>450.9</td>
<td>C</td>
<td>451.1</td>
<td>3.70</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>507.0</td>
<td>C</td>
<td>507.3</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>Molecule</td>
<td>Mass</td>
<td>C</td>
<td>Calc</td>
<td>Exp</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>507.0</td>
<td>C</td>
<td>507.2</td>
<td>3.82</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>475.9</td>
<td>C</td>
<td>476.3</td>
<td>3.37</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>518.1</td>
<td>C</td>
<td>518.3</td>
<td>3.01</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>532.1</td>
<td>C</td>
<td>532.4</td>
<td>3.17</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>490.0</td>
<td>C</td>
<td>490.3</td>
<td>3.43</td>
</tr>
</tbody>
</table>
The compounds in Table 2 were synthesized by oxidation of the tetrahydropyran of Example 18 using m-CPBA.

Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound ID</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>546.1</td>
<td>C</td>
<td>546.4</td>
<td>3.42</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>477.0</td>
<td>D</td>
<td>477.3</td>
<td>3.99</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>477.0</td>
<td>F</td>
<td>477.3</td>
<td>3.99</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>466.9</td>
<td>F</td>
<td>467.0</td>
<td>4.32</td>
</tr>
<tr>
<td>74</td>
<td>FRAX000964</td>
<td></td>
<td>509.0</td>
<td>A</td>
<td>509.2</td>
<td>2.57</td>
</tr>
</tbody>
</table>
The compounds in Table 3 were isolated using chiral HPLC purification of the racemic mixture shown in Example 30 (Conditions: Instrument: Thar preparative SFC 80. Column: ChiralPak AD-H, 250x30 mm I.D. Mobile phase: A for CO₂ and B for EtOH. Gradient: A:B =60:40. Flow rate: 65 mL/min. Compound was dissolved in MeOH to 2mg/ml. Injection: 3 mL per injection).

Table 3

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td></td>
<td>505.0</td>
<td>C</td>
<td>505.2</td>
<td>4.04</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>505.0</td>
<td>C</td>
<td>505.1</td>
<td>4.04</td>
</tr>
</tbody>
</table>
Example 78: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethyl-2-((1-methylpyrrolidin-3-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one (13)

Step 1: Synthesis of tert-butyl 3-(((6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyrrolidine-1-carboxylate (11)

[00457] A mixture of 2-chloro-6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one 10 (0.5 g, 1.21 mmol) and tert-butyl 3-aminopyrrolidine-1-carboxylate (0.45 g, 2.42 mmol) and Et3N (122 mg, 1.21 mol) in isopropanol (5 mL) was stirred at reflux for 18 h. The reaction was monitored by LCMS until the reaction was complete. This mixture was evaporated to give afford the compound 11 (0.4 g) as a yellow solid.

Step 2: Synthesis of tert-butyl 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethyl-2-((1-methylpyrrolidin-3-yl)amino)pyrido [2,3-d]pyrimidin-7(8H)-one (12)

[00458] To a solution of 11 (0.4 g, 0.71 mmol) in MeOH (10 mL) was added dropwise HCl-MeOH solution (10 mL, 4N) at a rate to keep the temperature at 0°C. The reaction mixture was stirred for 3h at room temperature. This mixture was evaporated and purified by prep.HPLC to afford 12 (250 mg). LCMS m/z 462.17 (M+H) +.

Step 3: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethyl-2-((1-methylpyrrolidin-3-yl)amino)pyrido [2,3-d]pyrimidin-7(8H)-one (13)

[00459] To a solution of 12 (200 mg, 0.94 mmol) in THF (4 mL) and dichloromethane (5 mL) was added dropwise a solution Formaldehyde (114.37 mg, 1.41 mmol, 37% in H2O) in THF (1 mL) in portions at 0°C. The reaction mixture was stirred at room temperature for 20 min. Then added the Na(AcO)3BH (2.98 g, 14.1 mmol) at 0°C. The reaction mixture was stirred at rt for overnight. The reaction was monitored by LCMS until the reaction was complete. This mixture was evaporated and then purified by prep.HPLC to afford 13 (60 mg). LCMS m/z 467.2 (M+H) +.
NMR (400 MHz, DMSO-d$_6$) δ 8.67 (s, IH), 8.58 (s, IH), 8.55 (s, IH), 8.27-8.25 (m, IH), 7.86 (s, IH), 7.78 (s, IH), 7.67-7.65 (dd, IH), 7.52-7.50 (dd, 1H), 4.48-4.47 (br, 2H), 4.34-4.32 (m, 2H), 3.32 (m, IH), 3.02-2.99 (m, IH), 2.98-2.94 (m, 2H), 2.53 (s, 3H), 2.51 (s, 3H), 2.47-2.42 (m, IH), 1.97-1.87 (m, IH), 1.24 (t, 3H).

The compounds in Table 4 were made using the method described in example 78 using the appropriate aldehyde, amine and phenyl acetate. Compounds were usually obtained after purification by prep. HPLC. The acetylated compounds were made by reaction with acetic anhydride of the secondary or primary amines.

Table 4

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>![Structure Image]</td>
<td>476.0</td>
<td>A</td>
<td>476.1</td>
<td>2.15</td>
</tr>
<tr>
<td>80</td>
<td>![Structure Image]</td>
<td>518.0</td>
<td>E</td>
<td>518.3</td>
<td>2.99</td>
</tr>
<tr>
<td>81</td>
<td>![Structure Image]</td>
<td>490.0</td>
<td>A</td>
<td>490.3</td>
<td>2.11</td>
</tr>
<tr>
<td>82</td>
<td>![Structure Image]</td>
<td>476.0</td>
<td>A</td>
<td>476.3</td>
<td>2.18</td>
</tr>
<tr>
<td>83</td>
<td>![Structure Image]</td>
<td>462.0</td>
<td>A</td>
<td>462.3</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Example 84: Synthesis of 6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-((trans-1,4)-4-((dimethylamino)methyl)cyclohexylamino)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (19)

Step 1: Synthesis of intermediate 15

A solution of (Boc)$_2$O (2.07 g, 9.5 mmol) in dichloromethane (25 mL) was added dropwise into a solution of benzyl ((trans-1,4)-4-(aminomethyl)cyclohexyl)carbamate 14 (2.5 g, 9.5 mmol) and Et$_3$N (4 mL, 28.5 mmol) in dichloromethane (75 mL) at 0°C. The reaction mixture was stirred at room temperature for 3 h and then extracted with dichloromethane (3x<500 mL). The combined organic layers were washed with brine (2x100 mL), dried with Na$_2$SO$_4$, filtered and concentrated to afford compound 15 (2.9 g, 85%) as a white solid. 1H NMR (400 MHz, CDC$_3$) δ ppm 7.35-7.32 (m, 5H), 5.04 (s, 2H), 2.87-2.86 (dd, 2H), 1.94-1.92 (m, 2H), 1.78-1.75 (m, 2H), 1.42 (s, 9H), 1.21-1.17 (m, 2H), 1.01-0.97 (m, 2H).

Step 2: Synthesis of tert-butyl ((trans-1,4)-4-aminocyclohexyl)methyl)carbamate (16)

A solution of compound 15 (2.9 g, 8 mmol) in methanol (100 mL) was added 10% Pd/C (1.5 g) under Ar. The mixture was stirred under H$_2$ (50 psi) at room temperature for 4h. After the reaction was complete, it was filtered through a pad of celite and concentrated under reduced pressure to afford 16 (1.5 g). 1H NMR (400 MHz, CDC$_3$) δ ppm 2.88-2.87 (dd, 2H), 2.69 (m, 1H), 1.94-1.91 (m, 2H), 1.80-1.77 (m, 2H), 1.42 (s, 9H), 1.19-1.16 (m, 2H), 1.01-0.97 (m, 2H).
Step 3: Synthesis of tert-butyl ((trans-1,4)-4-(6-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-ylamino)cyclohexyl)methylcarbamate (17)

A mixture of 2-chloro-6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (0.5 g, 1.21 mmol) and 16 (0.55 g, 2.42 mmol) and Et$_3$N (122 mg, 1.21 mol) in isopropanol (5 mL) was stirred at reflux for 18 h. The reaction was monitored by LCMS until the reaction was complete. This mixture was evaporated to give crude compound 17 (0.4 g) as a yellow solid.

Step 4: Synthesis of 2-(((trans-1,4)-4-(aminomethyl)cyclohexyl)amino)-6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (18)

To a solution of 17 (0.3 g, 0.50 mmol) in MeOH (10 mL) was added dropwise HC1-MeOH solution (10 mL, 4N) at a rate to keep the temperature at 0°C, then the reaction mixture was stirred for 3 h at rt. The reaction was monitored by LCMS until the reaction was complete. This mixture was evaporated and purified by prep.HPLC to afford 18 (30 mg). LCMS m/z 504.22 (M+H)$^+$.

H NMR (400 MHz, DMSO-d$_6$) δ 9.14 (s, 1H), 8.64 (s, 1H), 8.55 (s, 1H), 8.26-8.25 (s, 1H), 8.15-8.12 (dd, 1H), 7.91 (s, 1H), 7.81 (s, 1H), 7.55-7.53 (dd, 1H), 4.32-4.31 (m, 2H), 2.68-2.64 (m, 2H), 2.58 (s, 3H), 2.48-2.47 (m, 2H), 2.05 (m, 1H), 1.89-1.82 (m, 2H), 1.56-1.53 (m, 1H), 1.32-1.29 (m, 2H), 1.24-1.21 (m, 3H), 1.10-1.04 (m, 2H).

Step 5: Synthesis of 6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(((trans-1,4)-4-((dimethylamino)methyl)cyclohexyl)amino)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (19)

To a solution of 18 (200 mg, 0.40 mmol) in THF (4 mL) and dichloromethane (5 mL) was added dropwise a solution of formaldehyde (77.84 mg, 0.96 mmol, 37% in H$_2$O) in THF (1 mL) at 0°C. The reaction mixture was stirred at room temperature for 20 min. Na(AcO)$_3$BH (1.27 g, 6 mmol) at 0°C was added to the reaction mixture and stirred at room temperature overnight. The solution was evaporated and purified by prep.HPLC to afford 19 (108 mg). LCMS m/z 532.22 (M+H)$^+$.

H NMR (400 MHz, DMSO-d$_6$) δ 9.14 (s, 1H), 8.64 (s, 1H), 8.55 (s, 1H), 8.25 (s, 1H), 8.14-8.12 (dd, 1H), 7.81 (s, 1H), 7.54-7.52 (dd, 1H), 4.32-4.30 (m, 2H), 2.86 (br, 2H), 2.61 (s, 6H), 2.57 (s, 3H), 2.03-2.01 (m, 1H), 2.05 (m, 1H), 1.92-1.90 (m, 3H), 1.88 (br, 1H), 1.6-1.30 (m, 2H), 1.24-1.21 (m, 4H), 1.18-1.06 (m, 2H).

The compounds in Table 5 were made using the method described in example 84 using the appropriate aldehyde, amine and phenyl acetate. Compounds were usually obtained after purification by prep. HPLC.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
<td>490.0</td>
<td>B</td>
<td>490.1</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>490.0</td>
<td>B</td>
<td>490.2</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>504.0</td>
<td>C</td>
<td>504.3</td>
</tr>
</tbody>
</table>
Example 88: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-cyclopentyl-2-((tetrahydro-2H-pyran-4-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one (34)

Step 1: Synthesis of ethyl -(cyclopentylamino)-2-(methylthio)pyrimidine-5-carboxylate (21)

[00462] To a solution of compound 20 (25.59 g, 110 mmol) in THF (500 mL) was added cyclopentanamine (18.72 g, 220 mmol) at room temperature. The reaction mixture was stirred at r.t. for 1 h. The mixture was concentrated under vacuum, water (100 mL) was added and then extracted with EtOAc (200 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel (ethyl acetate:PE=1:10) to afford 21 (25.3 g) of pure product.
Step 2: Synthesis of (4-(cyclopentylamino)-2-(methylthio)pyrimidin-5-yl)methanol (22)

[00463] To a solution of Compound 21 (25.23 g, 90 mmol) in THF (500 mL) was added portionwise LiAlH₄ (5.12 g, 135 mmol) at -20 °C - -5 °C. The mixture was stirred at -20 °C - -5 °C for 1 hour. Water (5 mL), 10% aq. NaOH (5 mL), and water (5 mL) were sequentially added at - 20 °C - -5 °C. The mixture was extracted with ethyl acetate (3*200 mL). The combined organic phase was washed with brine (3*100 mL), dried over anhydrous MgSO₄, filtered and evaporated to give 21.54 g of crude product 22. The crude product was used for next step without further purification.

Step 3: Synthesis of 4-(cyclopentylamino)-2-(methylthio)pyrimidine-5-carbaldehyde (23)

[00464] A mixture of compound 22 (21.54 g, 90 mmol), MnO₂ (39.11 g, 450 mmol) in dichloromethane (500 ml) was refluxed for 18 h. The mixture was filtered, evaporated and then purified by column chromatography on silica gel (ethyl acetate:PE=1:10) to afford 23 (11.9 g, 56% yield).

Step 4: Synthesis of (E)-methyl 3-(4-(cyclopentylamino)-2-(methylthio)pyrimidin-5-yl)acrylate (24)

[00465] To a mixture of NaH (60%) (2.10 g, 55 mmol) in THF (100 ml) was added ethyl ethoxy(ethylperoxymethyl)phosphinecarboxylate (12.33 g, 55 mmol) in THF (50 mL) at 0°C - 5 °C. The mixture was stirred at 0°C - 5 °C for 0.5h. To this suspension was added compound 23 (11.87 g, 50 mmol) in THF (50 mL) at 0°C - 5 °C. The mixture was stirred at r.t. for 6 h. Water (100 ml) was added dropwise at 0°C - 5 °C. ethyl acetate (200 mL) and sat. aq. NaCl (100 mL) was added. The two phases were separated and the organic layer was washed with sat. aq. K₂C₂O₄ (100 mL) and water (100 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel (ethyl acetate:PE=1 :10) to afford 24 (13.8 g) of pure product.

Step 5: Synthesis of 8-cyclopentyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (25)

[00466] A mixture of Compound 24 (13.83 g, 45 mmol), DBU (20.55 g, 135 mmol) in NMP (100 mL) was stirred at 120°C for 4 h. After cooling to room temperature, water (1000 mL) was added. The mixture was filtered. The solid was washed with H₂O and dried to give crude product. The crude was purified by column chromatography on silica gel (ethyl acetate:PE=1 :10) to afford 25 (7.84 g).

Step 6: Synthesis of 6-bromo-8-cyclopentyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one (26)
A mixture of compound 25 (7.84 g, 30 mmol), NBS (5.80 g, 33 mmol) in DMF (60 mL) was stirred at r.t. overnight. Water (600 mL) was added. The mixture was filtered. The solid was washed with H₂O and dried to give crude product. The crude was purified by column chromatography on silica gel (ethyl acetate:PE=1:1:10) to afford 26 (6.80 g).

Step 7: Synthesis of 2-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (28)

A mixture of compound 4-bromo-2-chloroaniline 27 (28 g, 0.135 mol), 4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (44.76 g, 0.176 mol), KOAc (16.66 g, 0.17 mol) and Pd(dppf)Cl₂ (5.4 g) was refluxed in 300 mL of dry dioxane under N₂ for 18 h. This mixture was filtered and the filtrate was diluted with water (500 mL) and extracted with EtOAc (3x200 mL). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated to afford 50 g of crude 28, which was used directly in the next step. LCMS m/z 254 (M+H)⁺

Step 8: Synthesis of 2-chloro-4-(3-methylpyrazin-2-yl)aniline (29)

A mixture of 2-chloro-3-methylpyrazine (5 g, 38.89 mmol), KOAc (7.62 g, 77.78 mmol), 2-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (11.1 1 g, 50.56 mmol) and Pd(dppf)Cl₂ (1 g, 0.1 eq) in toluene/THF/H₂O (2:2:1, 70 mL) was stirred at 100 °C for 15 hr. The reaction mixture was diluted with H₂O (30 mL), extracted with dichloromethane (2x30 mL). All of the organic layers were combined, washed with brine (2x20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated. The crude mixture was purified by silica gel column chromatography (ethyl acetate:PE=1:1) to afford the desired product 11 (3 g). LCMS m/z 220 (M+H)⁺

Step 9: Synthesis of 2-(4-bromo-3-chlorophenyl)-3-methylpyrazine (30)

To a solution of 2-chloro-4-(3-methylpyrazin-2-yl)aniline (3 g, 13.65 mmol) in acetonitrile (30 mL) at 0 °C was added tert-butyl nitrite (3.77 mL, 15.03 mmol) dropwise under nitrogen. After the addition, Copper (II) bromide (3.36 g, 15.03 mmol) was added to the above mixture in portions under nitrogen at 0 °C. The reaction mixture was stirred overnight while warming to RT. The reaction mixture was concentrated and water was added to the residue and then extracted ethyl acetate twice. The organic layer was combined and dried over anhydrous Na₂SO₄, filtered and evaporated to afford crude. This crude was purified by silica gel column chromatography (PE:ethyl acetate= 1:1) to afford 2-(4-bromo-3-chlorophenyl)-3-methylpyrazine 30 (1.2 g). LCMS m/z 284 (M+H)⁺

Step 10: Synthesis of 2-(3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-methylpyrazine (31)

A mixture of compound 2-(4-bromo-3-chlorophenyl)-3-methylpyrazine (1 g, 3.52 mmol), 4,4,4*,4*,5,5,5*,5*-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (1.16 g, 4.57 mol), KOAc (690 mg, 7.04 mmol) and Pd(dppf)Cl₂ (200 mg) was refluxed in 15 mL of dry dioxane under N₂ for 18
h. This mixture was filtered and the filtrate was diluted with water (50 mL) and extracted with
EtOAc (3x20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and
concentrated to afford 1.2 g of crude 31, which was used directly in the next step. LCMS m/z 331
(M+H) +

**Step 11: Synthesis of 6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-cyclopen
tyl-2-(methylthio)pyrido[2,3-d]pyrimidin-7(8H)-one** (32)

A mixture of 26 (1.48 g, 4.35 mmol), KOAc (71 l mg, 7.26 mmol), 31 (1.2 g, 3.63 mmol) and Pd(dppf)Cl₂(300 mg, 0.1 eq) in toluene/THF/H₂O(2:2:1, 20 mL) was stirred at 100 °C for 15 hr. The reaction mixture was diluted with H₂O (30 mL), extracted with dichloromethane (30 mLx2). All of the organic layers were combined, washed with brine (2x20 mL), dried over anhydrous Na₂SO₄, filtered. This crude material was purified by silica gel column chromatography (PE:ethyl acetate=1 :1) to afford the desired product 32 (840 mg). LCMS m/z 464 (M+H) +

Step 12: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-cyclopentyl-2-(methylsulfinyl)pyrido[2,3-d]pyrimidin-7(8H)-one (33)

To a solution of compound 32 (300 mg, 0.64 mmol) in dichloromethane (10 mL) was
added dropwise a solution of 3-chloroperbenzoic acid (153 mg, 0.71 mmol, 80 %) in
dichloromethane (2 mL) at 0-5 °C. The mixture was stirred at r.t overnight. The reaction mixture
was washed with saturated sodium bicarbonate solution (2 x 10 mL) and water (10 mL), and the
organic layer was dried over anhydrous sodium sulfate, filtered and evaporated. Compound 33 was
obtained as yellow solid and used without purification (310 mg, crude).

**Step 13: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-cyclopen
tyl-2-((tetrahydro-2H-pyran-4-yl)amino)pyrido [2,3-d]pyrimidin-7(8H)-one** (34)

A mixture of 33 (310 mg, 0.65 mmol) and tetrahydro-2H-pyran-4-amine (197.1 mg,1.95 mmol) and DIPEA (335.79 mg, 2.60 mmol) in THF (8 mL) was stirred at rt for 18 h. This mixture was evaporated to afford the crude compound which was purification by prep-HPLC to afford the product 34 (153 mg). H NMR (400 MHz, DMSO-d₆) δ ppm: 8.71 (s, 1H), 8.58 (s, 1H), 8.54 (s, 1H), 8.28 (s, 1H), 8.11 (br, 0.3H), 7.84 (s, 1H), 7.77 (m, 1H), 6.75-7.66 (dd, 1H), 7.51-7.49 (dd, 1H), 5.93-5.90 (br, 1H), 4.11-4.09 (m, 1H), 3.97-3.88 (m, 2H), 3.41-3.35 (t, 2H), 2.60 (s, 3H), 2.31-2.30 (m, 2H), 1.93-1.71 (m, 6H) , 1.62-1.55 (m, 4H).

[00475] The compound in Table 6 were made using the method described in example 88 using the appropriate pyrazine in step 8.

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
</table>

Table 6
Example 90: Synthesis of 2-(((trans-l,4)-4-aminocyclohexyl)amino)-6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethylpyrido [2,3-d]pyrimidin-7(8H)-one (37)

Step 1: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethyl-2-(methylsulfinyl)pyrido [2,3-d]pyrimidin-7(8H)-one (36)

To a solution of 35 (9.29 g, 0.022 mol) in dichloromethane (80 mL) was added dropwise a solution of 3-chloroperbenzoic acid (80 %, 4.74 g, 0.022 mol) in dichloromethane (20 mL) at 0-5 °C and the mixture was stirred at r.t overnight. The reaction mixture was washed with saturated sodium bicarbonate solution (2 x 20 mL) and water (20 mL), and the organic layer was dried over anhydrous sodium sulfate, filtered and evaporated. Compound 36 was obtained as yellow solid and used in the next step without further purification (10.0 g, crude).

Step 2: Synthesis of 2-(((trans-l,4)-4-aminocyclohexyl)amino)-6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-ethylpyrido [2,3-d]pyrimidin-7(8H)-one (37)

A mixture of compound 36 (1.0 g, 0.0023 mol), compound 3 (0.77 g, 0.0069 mol) and DIPEA (1.187 g, 0.0092 mol) in THF (10 mL) was stirred at rt for 18 h. The mixture was evaporated and the crude product was purification by prep-HPLC to afford compound 37 (24 mg, 2%) as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.68 (m, 1H), 8.56-8.55 (dd, 2H), 8.08 (s, 3H), 7.86 (s, 1H), 7.86-7.65 (dd, 1H), 7.67 (s, 1H), 7.67-7.65 (dd, 1H), 7.52-7.50 (dd, 1H), 4.32-4.31 (m, 2H), 2.61 (s, 3H), 2.06-2.02 (m, 5H), 1.45-1.41 (m, 4H), 1.24-1.22 (m, 3H).

The compounds in Table 7 were made using the general method described in example 90 using the appropriate amine in step 2. Compounds were usually obtained after purification by prep. HPLC.

Table 7

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
</table>

| 89 | ![Structure](image.png) | 517.0 | A | 517.3 | 4.19 |
Example 95: Synthesis of 6-(2-chloro-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-2-(4-(1-methylpiperidin-4-yl)phenylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (46)
Step 1: Synthesis of ethyl 4-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-(methylthio) pyrimidine-5-carboxylate (39)

[00479] To a solution of ethyl 4-chloro-2-(methylthio)pyrimidine-5-carboxylate 38 (3.00 g, 13.04 mmol) in dry THF (60 mL) was added tert-butyl (2-aminoethyl) carbamate (2.50 g, 15.65 mmol) and triethyl amine (1.32 g, 13.04 mmol) at room temperature under N₂. The solution was stirred at room temperature overnight. Water (40 mL) was added and the solution was extracted with dichloromethane (50 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated to afford ethyl 4-((2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-(methylthio)pyrimidine-5-carboxylate 39 (4.60 g) as a white solid. H NMR (400 MHz, CDC1₃) ppm: 8.63 (s, 1H), 8.39 (br, 1H), 4.93 (br, 1H), 4.34-4.29 (q, 2H), 3.67-3.60 (m, 2H), 3.40-3.37 (m, 2H), 2.53 (s, 3H), 1.43 (s, 9H), 1.38-1.34 (t, 3H).

Step 2: Synthesis of tert-butyl (2-((5-(hydroxymethyl)-2-(methylthio)pyrimidin-4-yl)amino)ethyl)carbamate (40)

[00480] To a solution of 39 (4.6 g, 12.92 mmol) in THF (72 mL) was added portionwise LiAlH₄ (512 mg, 13.5 mmol) at -20 to -10°C under N₂. The mixture was stirred at -20 to -10°C for 2 h. The mixture was cooled to 0°C, followed by addition of H₂O (0.5 ml) and 10% aq. NaOH (0.5 mL). The mixture was extracted with dichloromethane (50 mL x 3) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel (ethyl acetate:PE=1:1 →2:1) to afford tert-butyl (2-((5-(hydroxymethyl)-2-(methylthio)pyrimidin-4-yl)amino)ethyl)carbamate 40 (2.26 g) as a white solid.
1H NMR (400 MHz, CDCl₃) ppm: 7.69 (s, 1H), 6.33 (br, 1H), 5.18 (br, 1H), 4.49 (s, 2H), 3.62-3.59 (m, 2H), 3.38-3.34 (m, 2H), 2.60-2.59 (d, 6H), 1.30 (s, 9H).

Step 3: Synthesis of tert-butyl (2-((5-formyl-2-(methylthio)pyrimidin-4-yl)amino)ethyl) carbamate (41)

[00481] A mixture of 40 (2.26 g, 7.20 mmol), MnO₂ (6.30 g, 72.0 mmol) in dichloromethane (80 mL) was heated to reflux under N₂ overnight. The mixture was cooled to room temperature, filtered and evaporated to afford tert-butyl (2-((5-formyl-2-(methylthio)pyrimidin-4-yl)amino)ethyl) carbamate 41 (2.0 g) as a white solid. The compound was used directly in the next step without further purification. 1H NMR (400 MHz, CDCl₃) ppm: 9.73 (s, 1H), 8.76 (br, 1H), 8.34 (s, 1H), 4.89 (br 1H), 3.76-3.72 (m, 2H), 3.44-3.40 (m, 2H), 2.58 (s, 3H), 1.45 (s, 9H).

Step 4: Synthesis of tert-butyl (2-((6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(methylthio)-7-oxopyrido [2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (42)

[00482] A mixture of 41 (490 g, 1.57 mmol), methyl 2-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)acetate (436 mg, 1.57 mmol), K₂CO₃ (650 mg, 4.71 mmol) in DMF (10 mL) was heated at 70°C overnight under an atmosphere of N₂. After cooling to room temperature, ice was added. The mixture was filtered and the filter cake was dissolved in dichloromethane. The mixture was dried over anhydrous Na₂S0₄, filtered and concentrated to afford 42 (0.75 g) as a yellow solid. The compound was used in the next step without further purification. 1H NMR (400 MHz, CDCl₃) ppm: 8.78 (s, 1H), 8.62 (s, 1H), 8.38 (s, 1H), 8.12 (s, 1H), 7.95-7.67 (m, 1H), 7.65 (s, 1H), 7.46-7.44 (m, 1H), 7.20-7.19 (s, 1H), 5.01 (s, 1H), 4.66-4.63 (m, 1H), 3.58-3.44 (m, 2H), 2.60-2.59 (d, 6H), 1.30 (s, 9H).

Step 5: Synthesis of tert-butyl (2-((6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(methylsulfinyl)-7-oxopyrido [2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (43)

[00483] To a mixture of 42 (300 mg, 0.56 mmol) in dichloromethane (7.5 mL) was added dropwise to a solution of 3-chlorobenzoperoxoic acid (80%) (131 mg, 0.61 mmol) in dichloromethane (3.5 mL) at -10-0°C over 20 minutes under N₂. The mixture was stirred at room temperature overnight. After the reaction was complete, the mixture was quenched with Sat. NaHCO₃ solution. The mixture was extracted with dichloromethane (50 mL) <3). The combine organic layers were dried over anhydrous Na₂S0₄, filtered and evaporated to afford 350 mg of crude product. The crude product was used for next step without further purification. 1H NMR (400 MHz, CDCl₃) ppm: 8.78 (s, 1H), 8.62 (s, 1H), 8.38 (s, 1H), 8.12 (s, 1H), 7.95-7.67 (m, 1H), 7.65 (s, 1H), 7.46-7.44 (m, 1H), 7.20-7.19 (s, 1H), 5.01 (s, 1H), 4.66-4.63 (m, 1H), 3.58-3.44 (m, 2H), 2.60-2.59 (d, 6H), 1.30 (s, 9H).

Step 6: Synthesis of tert-butyl (2-((6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(methylsulfonyl)-7-oxopyrido [2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (44)
phenyl)-2-(methylsulfinyl)-7-oxopyrido[2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (44)

A mixture of 43 (350 mg, 0.63 mmol), DIPEA (163 mg, 1.26 mmol) and (R)-tetrahydrofuran-3-amine hydrochloride (117 mg, 0.95 mmol) in THF (20 mL) was stirred at room temperature under N₂ overnight. The mixture was quenched with H₂O and extracted with dichloromethane (50 mL×3). The combine organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated to afford 44 (0.35 g) as an yellow solid, which was used for next step without further purification.

Step 7: Synthesis of tert-butyl (2-(6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(methylsulfinyl)-7-oxopyrido[2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (45)

To a solution of 44 (0.35 g, 0.61 mmol) in MeOH (7 mL) was added dropwise HCl-MeOH (20 mL, 4N) at a rate to keep the temperature below 0°C. The reaction mixture was then stirred for 2h at rt. The mixture was concentrated and purified by prep-HPLC to afford 45 (80 mg).

LCMS m/z 478.1 (M+H)⁺ H NMR (400 MHz, DMSO-d₆) δ ppm: 9.15 (s,1H), 8.67 (s, 1H), 8.56 (s, 1H), 8.26 (s, 1H), 8.22-8.21 (m, 1H), 8.16-8.13 (m, 1H), 7.56-7.54 (m, 1H), 4.49-4.47 (m, 1H), 4.31-4.30 (m, 2H), 4.00-3.96 (m, 1H), 3.88-3.82 (m, 1H), 3.77-3.71 (m, 1H), 3.65-3.60 (m, 1H), 2.85-2.81 (m, 2H), 2.59 (s, 3H), 2.21-2.20 (m, 1H), 1.98-1.94 (m, 1H).

Step 8: Synthesis of tert-butyl (2-(6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-(methylsulfinyl)-7-oxopyrido[2,3-d]pyrimidin-8(7H)-yl)ethyl)carbamate (46)

A solution of 45 (100 mg, 0.21 mmol) in THF/dichloromethane(2 mL/2 mL) was cooled to 0°C using an ice-water bath. HCHO (37% in water, 40.8 mg, 0.503 mmol) in THF (1 mL) was added dropwise to the mixture and the solution was stirred at 0°C for 20 min. NaBH(OAc)₃ (666.7 mg, 3.14 mmol) was added dropwise to the mixture at 0°C, and then mixture was warmed to room temperature and stirred for 2h. The reaction was concentrated and then dissolved in dichloromethane (5 mL) and washed with saturated aq NaHCO₃ (10 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, concentrated and purified by prep-TLC to afford 46 (17.65mg, 16.81%), ¹H NMR (400 MHz, DMSO-d₆) δ 9.14-9.12 (dd,1H), 8.68-8.66 (dd, 1H), 8.56-8.54 (dd, 1H), 8.26-8.21 (m, 2H), 8.15-8.12 (m, 1H), 7.84-8.3 (dd, 1H), 7.56-7.52 (m, 1H), 4.47-4.39 (dd, 3H), 3.95-3.48 (m, 2H), 3.75-3.74 (m,1H), 3.72 (br, 1H), 2.59-2.58 (dd,3H), 2.49-2.48 (br, 2H), 2.23-2.21 (dd, 7H), 1.97-1.96 (br, 1H).

The compounds in Table 8 were synthesized using the method in Example 95 using the appropriate aniline, aldehyde and phenylacetate. Compounds were usually obtained after purification by prep. HPLC or prep TLC. When salt formation was preferred, final analogs were dissolved in MeOH, and HCl/EtOAc (4N) was added dropwise at room temperature. Concentration of the solution afforded the HCl salt.

Table 8
<table>
<thead>
<tr>
<th></th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td></td>
<td>533.2</td>
<td>C</td>
<td>534.3</td>
<td>2.94</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>491.2</td>
<td>C</td>
<td>492.3</td>
<td>2.77</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>491.2</td>
<td>C</td>
<td>492.1</td>
<td>2.71</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>477.2</td>
<td>C</td>
<td>478.1</td>
<td>2.63</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>477.2</td>
<td>C</td>
<td>478.3</td>
<td>2.69</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>519.2</td>
<td>C</td>
<td>520.3</td>
<td>2.85</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>519.2</td>
<td>C</td>
<td>520.3</td>
<td>2.84</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Molecular Weight</td>
<td>Experimental Value</td>
<td>Theoretical Value</td>
<td>Lipophilicity</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>505.2</td>
<td>C</td>
<td>506.3</td>
<td>2.78</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>532.1</td>
<td>C</td>
<td>532.2</td>
<td>2.89</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>517.20</td>
<td>D</td>
<td>518.20</td>
<td>2.88</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>517.20</td>
<td>D</td>
<td>518.30</td>
<td>2.87</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>531.21</td>
<td>F</td>
<td>532.20</td>
<td>2.69</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>531.21</td>
<td>F</td>
<td>532.2</td>
<td>2.71</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>531.21</td>
<td>D</td>
<td>532.1</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>531.21</td>
<td>F</td>
<td>532.3</td>
<td>2.75</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>447.16</td>
<td>F</td>
<td>448.0</td>
<td>2.61</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>501.2</td>
<td>F</td>
<td>502.3</td>
<td>3.03</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>515.22</td>
<td>F</td>
<td>516.3</td>
<td>3.32</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>543.25</td>
<td>F</td>
<td>544.3</td>
<td>3.67</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>517.24</td>
<td>F</td>
<td>518.3</td>
<td>3.46</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>503.22</td>
<td>C</td>
<td>504.3</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>MW</td>
<td>Charge</td>
<td>Expt. MW</td>
<td>Deviation</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>489.20</td>
<td>C</td>
<td>490.10</td>
<td>3.03</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>529.24</td>
<td>C</td>
<td>530.20</td>
<td>3.51</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>501.20</td>
<td>C</td>
<td>502.30</td>
<td>2.78</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>543.25</td>
<td>C</td>
<td>544.3</td>
<td>3.78</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>531.21</td>
<td>C</td>
<td>532.3</td>
<td>3.02</td>
</tr>
</tbody>
</table>
Example 122: Synthesis of (R)-6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-(pyridin-3-ylmethyl)-2-((tetrahydrofuran-3-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one (53)

Step 1: Synthesis of ethyl 2-(methylthio)-4-((pyridin-3-ylmethyl)amino)pyrimidine-5-carboxylate (48)

[00488] To a solution of 47 (2.3 g, 0.01 mol) in dry THF (30 mL) was added a solution of pyridin-3-ylmethanamine (2.16 g, 0.02 mol) at room temperature under N₂. The solution was stirred at room temperature overnight. H₂O (40 mL) was added and the solution was extracted with dichloromethane (50 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated to afford 48 (3.04 g) which was used next step without further purification.

Step 2: Synthesis of (2-(methylthio)-4-((pyridin-3-ylmethyl)amino)pyrimidin-5-yl)methanol (49)

[00489] To a solution of 48 (2.0 g, 6.58 mmol) in THF (36 ml) was added in portions LiAlH₄ (370 mg, 9.87 mmol) at -20 ~ -10°C under N₂. The mixture was stirred at -20 ~ -10°C for 2 h. The mixture was cooled to 0°C and added H₂O (0.5 mL) and 10% aq. NaOH (0.5 mL). The mixture was extracted with dichloromethane (50 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel (ethyl acetate:PE=1:1 → 2:1) to afford compound 49 (1.63 g) as a
white solid. 1H NMR (400 MHz, CDCl$_3$) ppm: 8.43-8.38 (m, 2H), 7.64-7.59 (m, 2H), 7.18-7.16 (m, 1H), 6.46-6.45 (m, 1H), 4.66-4.65 (d, 2H), 4.48 (s, 2H), 2.36 (s, 3H).

Step 3: Synthesis of 2-(methylthio)-4-((pyridin-3-ylmethyl)amino)pyrimidine-5-carbaldehyde (50)

[00490] A mixture of 49 (0.8 g, 3.05 mmol), MnO$_2$ (2.66 g, 30.5 mmol) in dichloromethane (20 mL) was heated to reflux under N$_2$ overnight. The mixture was cooled to room temperature, filtered and evaporated to afford compound 50 (0.42 g) as a white solid, which was used next step without further purification.

Step 4: Synthesis of 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-2-(methylthio)-8-(pyridin-3-ylmethyl)pyrido[2,3-d]pyrimidin-7(8H)-one (51)

[00491] A mixture of 50 (0.82 g, 3.15 mmol), methyl 2-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)acetate (870 mg, 3.15 mmol), K$_2$CO$_3$ (1.31 g, 9.46 mmol) in DMF (17 mL) was heated at 70 °C overnight under an atmosphere of N$_2$. After cooling to room temperature, ice was added and the mixture was filtered. The filtered cake was dissolved in dichloromethane, dried over anhydrous Na$_2$SO$_4$, filtered and concentrated to afford 51 (1.33 g) as a yellow solid, which was used next step without further purification.

Step 5: Synthesis of tert-butyl 6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-2-(methylsulfinyl)-8-(pyridin-3-ylmethyl)pyrido[2,3-d]pyrimidin-7(8H)-one (52)

[00492] To a mixture of 51 (200 mg, 0.41 mmol) in dichloromethane (5.0 mL) was added dropwise a solution of 3-chlorobenzo peroxoic acid (80%) (87 mg, 0.41 mmol) in dichloromethane (2.5 mL) at -10-0°C over 20 minutes under N$_2$. The mixture was stirred at room temperature overnight. After the reaction was complete, the mixture was quenched with Sat. NaHCO$_3$ solution. The mixture was extracted with dichloromethane (50 mL×3). The combined organic layers were dried over anhydrous Na$_2$SO$_4$, filtered and evaporated to afford 52 (200 mg) which was used in the next step without further purification.

Step 6: Synthesis of (R)-6-(2-chloro-4-(3-methylpyrazin-2-yl)phenyl)-8-(pyridin-3-ylmethyl)-2-((tetrahydrofuran-3-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one (53)

[00493] To a mixture of 52 (200 mg, 0.40 mmol) and (R)-tetrahydrofuran-3-amine hydrochloride (158 mg, 1.19 mmol) in THF (4 mL) was added DIPEA (206 mg, 1.69 mmol) at room temperature under N$_2$. The solution was stirred at room temperature overnight. The mixture was concentrated, and the residue was purified by prep-HPLC to afford compound 53 (45 mg) as a yellow solid. 1H NMR (400 MHz, DMSO-d$_6$) δ ppm: 8.73-8.70 (m, 1H), 8.60-8.56 (m, 2H), 8.45-8.43 (m, 1H), 8.28-8.29 (m, 1H), 8.17-8.14 (m, 1H), 7.94-7.92 (m, 1H), 7.80 (m, 1H), 7.71-7.67 (m, 1H), 7.57-
7.55 (m, 1H), 7.35-7.32 (m, 1H), 5.53-5.48 (m, 2H), 4.53-4.41 (m, 1H), 3.89-3.78 (m, 2H), 3.73-3.67 (m, 1H), 3.62-3.48 (m, 1H), 2.62 (s, 3H), 2.14-2.10 (m, 1H), 1.88-1.86 (m, 1H).

[00494] The compounds in Table 9 were synthesized using the method in Example 122 using the appropriate aniline, aldehyde and phenylacetate. Compounds were usually obtained after purification by prep. HPLC.

Table 9

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td></td>
<td>526.0</td>
<td>C</td>
<td>526.3</td>
<td>2.74</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>526.0</td>
<td>C</td>
<td>526.3</td>
<td>2.56</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>526.0</td>
<td>C</td>
<td>526.0</td>
<td>2.77</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>526.0</td>
<td>C</td>
<td>263.7</td>
<td>2.59</td>
</tr>
</tbody>
</table>
Example 127: Synthesis of 6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-((2-(2-(dimethylamino)ethoxy)ethyl)amino)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (62)

Step 1: Synthesis of tert-butyl (2-(2-hydroxyethoxy)ethyl)carbamate (55)

[00495] A solution of (Boc)$_2$O (31.17 g, 0.143 mol) in dichloromethane (150 mL) was added dropwise into the compound 2-(2-aminoethoxy)ethanol 54 (15 g, 0.143 mol) and Et$_3$N (60 mL, 0.429 mol) in dichloromethane (300 mL) at 0°C. The reaction mixture was stirred at rt for 3 hrs. The combined reaction mixture was washed with brine (2x100 mL), dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated to afford tert-butyl (2-(2-hydroxyethoxy)ethyl)carbamate 55 (30 g). The product was used in the next step without further purification. 1H NMR (400 MHz, CDCl$_3$) δ 3.66-3.64 (m, 2H), 3.53-3.48 (m, 4H), 3.23-3.21 (t, 2H), 1.43 (s, 9H).

Step 2: Synthesis of 2-(2-((tert-butoxycarbonyl)amino)ethoxy)ethy methanesulfonate (56)

[00496] A solution of methanesulfonyl chloride (18.32 g, 0.16 mol) in dichloromethane (100 mL) was added dropwise into the compound tert-butyl (2-(2-hydroxyethoxy)ethyl)carbamate 55 (30.0 g, 0.146 mol) and Et$_3$N (30 mL, 0.219 mol) in dichloromethane (500 mL) at 0°C. The reaction mixture was stirred at rt overnight. The mixture was quenched with water and extracted with dichloromethane (3x500 mL). The combined organic layer was washed with brine (2x100 mL), dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated to afford 2-(2-((tert-butoxycarbonyl)amino)ethoxy)ethyl methanesulfonate 56 (37 g). The product was used in the next step without further purification. 1H NMR (400 MHz, MeOD) δ 4.36-4.34 (m, 2H), 3.73-3.71 (m, 4H), 3.23-3.21 (t, 2H), 1.43 (s, 9H).

Step 3: Synthesis of tert-butyl (2-(2-azidoethoxy)ethyl)carbamate (57)
Sodium azide (1.76 g, 0.0272 mol) was added to a solution of compound 2-((tert-butoxycarbonyl)amino)ethoxy)ethyl methanesulfonate 56 (7.0 g, 0.0247 mol) in DMF (150 mL). The reaction mixture was stirred at 90°C for 3 h. The reaction mixture was allowed to cool to ambient temperature, diluted with cold water. The mixture was extracted with EtOAc (3×500 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na$_2$SO$_4$, filtered and concentrated to afford tert-butyl (2-(2-azidoethoxy)ethyl) carbamate 57 (5.0 g) as a oil. The product was used in the next step without further purification.

Step 4: Synthesis of tert-butyl (2-(2-azidoethoxy)ethyl)carbamate (58)

A solution of tert-butyl (2-(2-azidoethoxy)ethyl)carbamate 57 (5.0 g, 0.0217 mol) in methanol (100 mL) was added 10 % Pd/C (2.5 g) under Ar. The mixture was stirred under H$_2$ (50 psi) at room temperature overnight. After filtration through a pad of celite, the organic layer was concentrated under reduced pressure to provide tert-butyl (2-(2-azidoethoxy)ethyl)carbamate 58 (3.0 g). The product was used in the next step without further purification.

Step 5: Synthesis of tert-butyl (2-(2-((6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethylpyrido[2,3-d]pyrimidin-2-yl)amino)ethoxy)ethyl)carbamate (60)

A mixture of 58 (1.0 g, 0.0023 mol) and tert-butyl (2-(2-aminoethoxy)ethyl)carbamate 59 (1.4 g, 0.0069 mol) and DIPEA (1.18 g, 0.0092 mol) in THF (15 mL) was stirred at rt for 18 h. The mixture was evaporated to afford 60 (2.0 g), which was used for next step without further purification. LCMS m/z 580.08 (M+H$^+$).

Step 6: Synthesis of 2-((2-(2-aminoethoxy)ethyl)amino)-6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (61)

A solution of 60 (2.0 g, 3.4 mol) in MeOH (20 mL) was added dropwise HCl-MeOH (20 mL, 4N) at a rate to keep the temperature below 0°C. The reaction mixture was stirred for 2 h at rt. This mixture was concentrated and purified by prep-HPLC to afford 61 (178 mg). LCMS m/z 480.18 (M+H$^+$),

Step 7: Synthesis of 6-(2-chloro-4-(6-methylpyrazin-2-yl)phenyl)-2-((2-(dimethylamino)ethoxy)ethyl)amino)-8-ethylpyrido[2,3-d]pyrimidin-7(8H)-one (62)

To a solution of 61 (200 mg, 0.40 mmol) in THF (5 mL) and dichloromethane (5 mL) was added dropwise a solution of formaldehyde (77.84 mg, 0.96 mmol, 37% in H$_2$O) in THF (1 mL) in portions at 0°C. The reaction mixture was stirred at rt for 20 min and then Na(CH$_3$COO)$_3$BH (1.27
g, 6 mmol) was added in portions at 0 °C. The reaction mixture was stirred at rt for overnight. The solution was evaporated and purified by prep-HPLC to afford 62 (108 mg). LCMS m/z 508.21 (M+H)⁺. H NMR (400 MHz, DMSO-d₆) δ ppm 9.14 (s, 1H), 8.67 (s, 1H), 8.55 (s, 1H), 8.26 (s, 1H), 8.15-8.13 (d, 1H), 7.84 (s, 1H), 7.55 (dd, 1H), 4.34-4.32 (br, 3H), 3.75 (m, 2H), 3.67 (m, 1H), 3.60 (m, 2H), 2.77-2.76 (m, 6H), 2.58 (s, 3H), 1.213-1.22 (m, 3H).

The compounds in Table 10 were synthesized using the method in Example 127 using the appropriate aniline, aldehyde and phenylacetate. Compounds were usually obtained after purification by prep. HPLC. When salt formation was preferred, final analogs were dissolved in MeOH, and HCl/EtOAc (4N) was added dropwise at room temperature. Concentration of the solution afforded the HCl salt.

Table 10

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
<th>MW</th>
<th>Method</th>
<th>m/z</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td></td>
<td>480.0</td>
<td>D</td>
<td>480.3</td>
<td>2.91</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>508.0</td>
<td>D</td>
<td>508.3</td>
<td>3.04</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>536.1</td>
<td>F</td>
<td>536.3</td>
<td>3.20</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>503.2</td>
<td>F</td>
<td>504.4</td>
<td>3.13</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>531.3</td>
<td>F</td>
<td>532.2</td>
<td>3.01</td>
</tr>
</tbody>
</table>
Biological Examples

Example 10: In vitro PAK Inhibition Assay

Assay Conditions

Assay Conditions

Compounds are screened in 1% DMSO (final) in the well. For 10 point titrations, 3-fold serial dilutions are conducted. All Peptide/Kinase Mixtures are diluted to a 2X working concentration in the appropriate Kinase Buffer.

Kinase Specific Assay Conditions

PAK1

The 2X PAK1 / Ser/Thr 19 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA. The final 10 µL Kinase Reaction consists of 2.71 - 30.8 ng PAK1 and 2 µM Ser/Thr 19 in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA. After the 1 hour Kinase Reaction incubation, 5 µL of a 1:128 dilution of Development Reagent A is added.

PAK2 (PAK65)

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM)</th>
<th>Type</th>
<th>IC50 (nM)</th>
<th>pIC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>466.9</td>
<td>D</td>
<td>494.3</td>
<td>2.69</td>
</tr>
<tr>
<td>134</td>
<td>518.1</td>
<td>D</td>
<td>518.2</td>
<td>3.17</td>
</tr>
<tr>
<td>135</td>
<td>503.22</td>
<td>F</td>
<td>252.6</td>
<td>2.93</td>
</tr>
<tr>
<td>136</td>
<td>503.22</td>
<td>D</td>
<td>504.1</td>
<td>2.60</td>
</tr>
<tr>
<td>137</td>
<td>493.2</td>
<td>F</td>
<td>494.2</td>
<td>3.08</td>
</tr>
</tbody>
</table>
The 2X PAK2 (PAK65) / Ser/Thr 20 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA. The final 10 µL Kinase Reaction consists of 0.29 - 6 ng PAK2 (PAK65) and 2 µM Ser/Thr 20 in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2, 1 mM EGTA. After the 1 hour Kinase Reaction incubation, 5 µL of a 1:256 dilution of Development Reagent A is added.

The following controls are prepared for each concentration of Test Compound assayed:

ASSAY CONTROLS

The following controls are made for each individual kinase and are located on the same plate as the kinase:

0% Phosphorylation Control (100% Inhibition Control)

The maximum Emission Ratio is established by the 0% Phosphorylation Control (100% Inhibition Control), which contains no ATP and therefore exhibits no kinase activity. This control yields 100% cleaved peptide in the Development Reaction.

100% Phosphorylation Control

The 100% Phosphorylation Control, which consists of a synthetically phosphorylated peptide of the same sequence as the peptide substrate, is designed to allow for the calculation of percent phosphorylation.

This control yields a very low percentage of cleaved peptide in the Development Reaction.

The 0% Phosphorylation and 100% Phosphorylation Controls allow one to calculate the percent Phosphorylation achieved in a specific reaction well. Control wells do not include any kinase inhibitors.

0% Inhibition Control

The minimum Emission Ratio in a screen is established by the 0% Inhibition Control, which contains active kinase. This control is designed to produce a 10—50% phosphorylated peptide in the Kinase Reaction.

Known Inhibitor

A known inhibitor control standard curve, 10 point titration, is run for each individual kinase on the same plate as the kinase to ensure the kinase is inhibited within an expected IC50 range previously determined.

The following controls are prepared for each concentration of Test Compound assayed:
Development Reaction Interference

The Development Reaction Interference is established by comparing the Test Compound Control wells that do not contain ATP versus the 0% Phosphorylation Control (which does not contain the Test Compound). The expected value for a non-interfering compound should be 100%. Any value outside of 90% to 110% is flagged.

Test Compound Fluorescence Interference

The Test Compound Fluorescence Interference is determined by comparing the Test Compound Control wells that do not contain the Kinase/Peptide Mixture (zero peptide control) versus the 0% Inhibition Control. The expected value for a non-fluorescence compound should be 0%. Any value > 20% is flagged.

ASSAY PROTOCOL

Bar-coded Corning, low volume NBS black 384-well plate (Corning Cat. #3676)

1. Add the following solutions to a well in a 384-well plate:
 - 2.5 µL of 4X Test Compound OR (100 nL 100X Test Compound plus 2.4 µL kinase buffer)
 - 5 µL of 2X Peptide/Kinase (PAK) Mixture
 - 2.5 µL of 4X ATP Solution

2. Shake the plate for 30-seconds
3. Incubate the PAK Kinase Reaction at room temperature for 60-minutes
4. Add 5 µL of Development Reagent Solution to each well
5. Shake the plate for 30-seconds
6. Incubate the Development Reaction for 60-minutes
7. Determine the fluorescence using a fluorescence plate reader
8. Analyze the fluorescence data

Data Analysis

The following equations are used for each set of data points:
<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction for Background Fluorescence</td>
</tr>
<tr>
<td>Emission Ratio (using values corrected for background fluorescence)</td>
</tr>
<tr>
<td>% Phosphorylation (% Phos)</td>
</tr>
<tr>
<td>% Inhibition</td>
</tr>
<tr>
<td>Z (using Emission Ratio values)</td>
</tr>
<tr>
<td>Difference Between Data Points (single point only)</td>
</tr>
<tr>
<td>Development Reaction Interference (DRI) (no ATP control)</td>
</tr>
<tr>
<td>Test Compound Fluorescence Interference (TCFI) (check both Coumarin and Fluorescein emissions)</td>
</tr>
</tbody>
</table>

$\text{FI} =$ Fluorescence Intensity

$\text{C}_{100\%} =$ Average Coumarin emission signal of the 100% Phos. Control

$\text{C}_{0\%} =$ Average Coumarin emission signal of the 0% Phos. Control

$\text{F}_{100\%} =$ Average Fluorescein emission signal of the 100% Phos. Control

$\text{F}_{0\%} =$ Average Fluorescein emission signal of the 0% Phos. Control

$\text{DRI} =$ Development Reaction Interference

$\text{TCFI} =$ Test Compound Fluorescence Interference

[00533] Graphing Software

[00534] SelectScreen® Kinase Profiling Service uses Xfit from IDBS. The dose response curve is curve fit to model number 205 (sigmoidal dose-response model). If the bottom of the curve does not fit between -20% & 20% inhibition, it is set to 0% inhibition. If the top of the curve does not fit between 70% and 130%, inhibition, it is set to 100% inhibition.

[00535] Table of Kinase ATP Km Bins and Inhibitor Validation

[00536] The table below provides specifications and data around each kinase. The representative IC50 value with a known inhibitor for each kinase was determined at the ATP bin nearest to the ATP Km app.

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Z'-LYTE Substrate</th>
<th>ATP Km app (µM)</th>
<th>ATP Bin (µM)</th>
<th>Inhibitor</th>
<th>IC50 (nM)</th>
</tr>
</thead>
</table>

Table
<table>
<thead>
<tr>
<th>Example</th>
<th>PAK1 IC50 (nM)</th>
<th>PAK2 IC50 (nM)</th>
<th>PAK3 IC50 (nM)</th>
<th>PAK4 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>34</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>36</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>37</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>38</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>39</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>40</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>41</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>42</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>43</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>44</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>46</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>47</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>48</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>49</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>51</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>52</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>53</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>54</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>55</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>56</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>58</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>59</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>60</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>61</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>62</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>63</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>64</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>67</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>68</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>69</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>70</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>72</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>73</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>75</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>76</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>77</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>78</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>79</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>80</td>
<td>C</td>
<td>B</td>
<td>c</td>
<td>D</td>
</tr>
<tr>
<td>81</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>82</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>83</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>84</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>85</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>86</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>87</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>88</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>89</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>90</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>91</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>92</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>93</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>94</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>95</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>96</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>97</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>98</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>99</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>100</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>101</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>102</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>103</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>104</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>105</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>106</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>107</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>108</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>109</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
A, IC50 < 50 nM; B, 50 nM ≤ IC50 < 500 nM; C, 0.5 µM < IC50 < 5 µM; D, IC50 ≥ 5 µM

Example 11: Additional in vitro PAK Inhibition Assay

Similar *in vitro* PAK1 and PAK4 inhibition assays are conducted in compounds for the treatment of cancer, but under ATP concentrations of 1µM and 1mM. The results are listed in the table below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>PAK1 IC50 (10µM ATP)</th>
<th>PAK1 IC50 (1mM ATP)</th>
<th>PAK4 IC50 (10µM ATP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>![Chemical Structure 1]</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 2]</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 3]</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 4]</td>
<td>D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>![Chemical Structure 5]</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 6]</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 7]</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 8]</td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>![Chemical Structure 9]</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

The table represents various chemical structures, each paired with letters C, D, and sometimes A.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>B</th>
<th>D</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
Example 12: In Vitro p-PAKl(S144) and p-MEKl(S298) Cellular Assay

Some of the compounds for treatment of cancer are subject to in vitro cellular HTRF assay for p-PAKl(S144) and p-MEKl(S298). The cell line is RT4-D6P2T. The HTRF assay kits are obtained from Cisbio Bioassays, 135 South Road, Bedford, MA 01730, USA. The results are listed in the table below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>pMEKl(S298) (µM)</th>
<th>pPAKl(S144) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, IC50 < 50 nM; B, 50 nM ≤ IC50 ≤ 500 nM; C, 0.5 µM < IC50 < 5 µM; D, IC50 ≥ 5 µM
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>IC50 < 50 nM; B, 50 nM ≤ IC50 < 500 nM; C, 0.5 µM < IC50 < 5 µM; D, IC50 ≥ 5 µM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Example 13: Growth Inhibition of a Compound of Formula I-IV and A-D in Various Cancer Cell Lines

and medium. A CellTiter-Glo (CTG) assay is carried out on the 0 hr plate to obtain a 0 hr count. Cells are exposed to the test compound for 72 hours. Following the exposure period, the plates are assayed using CTG. Luminescence is recorded on Synergy.

As a non-limiting example, Compound 30 as described herein was tested for growth inhibition against various cancer cell lines. The GI₅₀ and maximum inhibition of Compound 30 against those cell lines are summarized in the table below.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>GI₅₀ (μM)</th>
<th>Maximum Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBC-1</td>
<td>3.5</td>
<td>-13%</td>
</tr>
<tr>
<td>NCI-H520</td>
<td>6</td>
<td>-17%</td>
</tr>
<tr>
<td>SK-MES-1</td>
<td>3.8</td>
<td>-14%</td>
</tr>
<tr>
<td>IGROV-1</td>
<td>0.33</td>
<td>-50%</td>
</tr>
<tr>
<td>OVCAR-3</td>
<td>3.1</td>
<td>-20%</td>
</tr>
<tr>
<td>SKOV-3</td>
<td>3.8</td>
<td>0</td>
</tr>
<tr>
<td>OVCAR-4</td>
<td>2.6</td>
<td>-50%</td>
</tr>
</tbody>
</table>

Example 14: Clinical Trial of PAK inhibitor in Children, Adolescents, and Young Adults With Neurofibromatosis Type 1 and Progressive Plexiform Neurofibromas

Purpose

Background:

Neurofibromatosis Type 1 (NFl) is an autosomal dominant, progressive genetic disorder characterized by diverse clinical manifestations. Patients with NFl have an increased risk of developing tumors of the central and peripheral nervous system including plexiform neurofibromas, which are benign nerve sheath tumors that may cause severe morbidity and possible mortality. The histopathology of these tumors suggests that events connected with formation of fibroblasts might constitute a point of molecular vulnerability. Gene profile analysis demonstrates overexpression of fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor in plexiform neurofibromas in patients with NFl. Formula I-IV and A-D is a novel agent that inhibits PAKs.

Objectives:

To determine whether a PAK inhibitor increases the time to disease progression based on volumetric measurements in children and young adults with NFl and growing plexiform neurofibromas.

To define the objective response rate to a PAK inhibitor in NFl-related plexiform neurofibromas.

To describe and define the toxicities of a PAK inhibitor.

Eligibility:
Individuals (greater than or equal to 3 years to less than or equal to 21 years of age) with a clinical diagnosis of NFI and inoperable, measurable, and progressive plexiform neurofibromas that have the potential to cause substantial morbidity.

Design: The phase II dose will be used in a single stage, single arm phase II trial.

Condition Intervention Phase
Neurofibromatosis I
Neurofibroma, Plexiform

Drug: PAK inhibitor

Phase II

Study Type: Interventional
Study Design: Masking: Open Label
Primary Purpose: Treatment

Official Title: Phase II Trial of a PAK inhibitor in Children, Adolescents, and Young Adults With Neurofibromatosis Type 1 and Progressive Plexiform Neurofibromas

Further study details as provided by National Institutes of Health Clinical Center (CC):

Primary Outcome Measures:
Time to disease progression [Designated as safety issue: No]
Objective response rate [Designated as safety issue: No]
Toxicity [Designated as safety issue: Yes]

Secondary Outcome Measures:
Quality of life [Designated as safety issue: No]

Enrollment: 16

Intervention Details:
Drug: PAK inhibitor

Objectives:
To determine whether a PAK inhibitor increases the time to disease progression based on volumetric measurements in children and young adults with NFI and growing plexiform neurofibromas.
To define the objective response rate to a PAK inhibitor in NFI-related plexiform neurofibromas.
To describe and define the toxicities of a PAK inhibitor.

Eligibility:
Individuals (greater than or equal to 3 years to less than or equal to 21 years of age) with a clinical diagnosis of NFI and inoperable, measurable, and progressive plexiform neurofibromas that have the potential to cause substantial morbidity.

Design:
The phase II dose will be used in a single stage, single arm phase II trial. The natural history of the growth of plexiform neurofibromas is unknown. For this reason, time to disease progression on the placebo arm of an ongoing NCI POB placebo-controlled, double-blind, cross-over phase II trial of the farnesyltransferase inhibitor R1 15777 for children and young adults with NF1 and progressive plexiform neurofibromas will be used as historical control to determine if a PAK inhibitor increases time to disease progression. Eligibility criteria and method of tumor measurements are identical for both trials.

A PAK inhibitor will be administered orally as capsules at a dose of 500 mg/m\(^2\) three times a day (q8h) for cycles of 28 days with no rest period between cycles based on the results of our pediatric phase I trial.

Eligibility

Ages Eligible for Study: 3 Years to 21 Years

Genders Eligible for Study: Both

Accepts Healthy Volunteers: No

Criteria

INCLUSION CRITERIA:

Age: greater than or equal to 3 years and Less than or equal to 21 years of age. Required body surface area (BSA): greater than or equal to 0.31 m\(^2\).

Diagnosis: Patients with NF1 and progressive plexiform neurofibromas that have the potential to cause significant morbidity, such as (but not limited to) head and neck lesions that could compromise the airway or great vessels, brachial or lumbar plexus lesions that could cause nerve compression and loss of function, lesions that could result in major deformity (e.g., orbital lesions) or significant cosmetic problems, lesions of the extremity that cause limb hypertrophy or loss of function, and painful lesions. Histologic confirmation of tumor is not necessary in the presence of consistent clinical and radiographic findings, but should be considered if malignant degeneration of a plexiform neurofibroma is clinically suspected. In addition to plexiform neurofibroma(s), all study subjects must have at least one other diagnostic criteria for NF1 listed below (NIH Consensus Conference):

Six or more cafe-au-lait spots (greater than or equal to 0.5 cm in prepubertal subjects or greater than or equal to 1.5 cm in postpubertal subjects)

Freckling in the axilla or groin

Optic glioma

Two or more Lisch nodules

A distinctive bony lesion (dysplasia of the sphenoid bone or dysplasia or thinning of long bone cortex)

A first-degree relative with NF1

In this study a plexiform neurofibroma is defined as a neurofibroma that has grown along the length of a nerve and may involve multiple fascicles and branches. A spinal plexiform neurofibroma involves two or more levels with connection between the levels or extending laterally along the nerve.
3. Measurable disease: Patients must have measurable plexiform neurofibroma(s). For the purpose of this study a measurable lesion will be defined as a lesion of at least 3 cm measured in one dimension. There must be evidence of recurrent or progressive disease as documented by an increase in size or the presence of new plexiform neurofibromas on MRI. Progression at the time of study entry is defined as:

A. A measurable increase of the plexiform neurofibroma (greater than or equal to 20% increase in the volume, or a greater than or equal to 13% increase in the product of the two longest perpendicular diameters, or a greater than or equal to 6% increase in the longest diameter) over the last two consecutive scans (MRI or CT), or over the time period of approximately one year prior to evaluation for this study.

B. Patients who underwent surgery for a progressive plexiform neurofibroma will be eligible to enter the study after the surgery, provided the plexiform neurofibroma was incompletely resected and is measurable.

4. Prior therapy: Patients with NFI are eligible at the time of recurrence or progression of an inoperable plexiform neurofibroma. Patients will only be eligible if complete tumor resection is not feasible, or if a patient with a surgical option refuses surgery.

Since there is no standard effective chemotherapy for patients with NFI and progressive plexiform neurofibromas, patients may be treated on this trial without having received prior medical therapy.

Patients who received prior medical treatment for their plexiform neurofibroma(s) must have recovered from the toxic effects of all prior therapy before entering this study. The Cancer Therapy Evaluation Program Common Terminology Criteria (CTCAE-3) Version 3.0 will be used for toxicity assessment. A copy of the CTCAE version 3.0 can be downloaded from the CTEP home page (http://ctep.cancer.gov). Recovery is defined as a toxicity grade less than 2, unless otherwise specified in the Inclusion and Exclusion Criteria.

Patients must have had their last dose of radiation therapy at least six weeks prior to study entry, and their last dose of chemotherapy at least four weeks prior to study entry. Patients who received G-CSF after the prior cycle of chemotherapy must be off G-CSF for at least one week prior to entering this study.

5. Performance Status: Performance Status: Patients should have a life expectancy of at least 12 months. Patients greater than 10 years must have a Karnofsky performance level greater than or equal to 50, and children less than or equal to 10 years must have a Lansky performance level greater than or equal to 50. Patients who are wheelchair bound because of paralysis should be considered ambulatory when they are up in their wheel chair.

6. Hematologic Function: Patients must have an absolute granulocyte count greater than or equal to 1,500/uL, a hemoglobin greater than or equal to 9.0 gm/dl, and a platelet count greater than or equal to 150,000/microliter at study entry (all transfusion independent).

7. Hepatic Function: Patients must have a bilirubin within normal limits and SGPT less then or equal to 2x upper limit of normal. Patients with Gilbert syndrome are excluded from the requirement of a
normal bilirubin. (Gilbert syndrome is found in 3-10% of the general population, and is characterized by mild, chronic unconjugated hyperbilirubinemia in the absence of liver disease or overt hemolysis).

8. Renal Function: Patients must have an age-adjusted normal serum creatinine (see table below) OR a creatinine clearance greater than or equal to 70 mL/min/1.73 m(2).

<table>
<thead>
<tr>
<th>Age Maximum (years)</th>
<th>Serum Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than or equal to 5</td>
<td>0.8</td>
</tr>
<tr>
<td>5 less than age less than or equal to 10</td>
<td>1.0</td>
</tr>
<tr>
<td>10 less than age less than or equal to 15</td>
<td>1.2</td>
</tr>
<tr>
<td>greater than 15</td>
<td>1.5</td>
</tr>
</tbody>
</table>

9. Informed Consent: All patients or their legal guardians (if the patients is less than 18 years old) must sign an IRB approved document of informed consent (screening protocol) prior to performing studies to determine patient eligibility. After confirmation of patient eligibility all patients or their legal guardians must sign the protocol specific informed consent to document their understanding of the investigational nature and the risks of this study before any protocol related studies are performed (other than the studies which were performed to determine patient eligibility). When appropriate, pediatric patients will be included in all discussions. Age appropriate assent forms for children from 7 through 12 years, and for children from 13 through 17 years have been developed and will be signed by the pediatric patients, when appropriate, in order to obtain written assent.

10. Durable Power of Attorney (DPA): All patients greater than or equal to 18 years of age will be offered the opportunity to assign DPA so that another person can make decisions about their medical care if they become incapacitated or cognitively impaired.

11. Patients must be able to take PAK inhibitor by mouth. Capsules can be opened and content mixed with food for easier consumption in small children.

12. Patients (both male and female) must be willing to practice birth control (including abstinence) during and for two months after treatment, if of a child-bearing age. For purposes of the protocol, all patients greater than 9 years of age or those showing pubertal development will be considered of childbearing age.

13. Ability to undergo MRI and no contraindication for MRI examinations following the MRI protocol outlined.

EXCLUSION CRITERIA:

12. Pregnant or breast feeding females are excluded, because the toxic effects and pharmacology of a PAK inhibitor in the fetus and newborn are unknown.

13. Clinically significant unrelated systemic illness (serious infections or significant cardiac, pulmonary, hepatic or other organ dysfunction), which in the judgment of the Principal or Associate Investigator would compromise the patient's ability to tolerate a PAK inhibitor or are likely to interfere with the study procedures or results.

14. An investigational agent within the past 30 days.
Ongoing radiation therapy, chemotherapy, hormonal therapy directed at the tumor, immunotherapy, or biologic therapy (for example interferon).

Inability to return for follow-up visits or obtain follow-up studies required to assess toxicity and response to therapy.

Evidence of an optic glioma, malignant glioma, malignant peripheral nerve sheath tumor, or other cancer requiring treatment with chemotherapy or radiation therapy.

Example 15: PAK inhibitors as Monotherapy in the Treatment of Neurofibromatosis Type 2 - Related Vestibular Schwannoma

Purpose

The purpose of the study is to determine if a PAK inhibitor treatment will shrink or slow the growth of the vestibular schwannoma(s) in Neurofibromatosis 2 (NF2) patients. Secondary objectives include determining if a PAK inhibitor treatment will improve hearing ability in NF2 patients.

Condition Intervention Phase

Neurofibromatosis Type 2

Neuroma, Acoustic

Drug: PAK inhibitor

Phase II

Study Type: Interventional

Study Design: Endpoint Classification: Efficacy Study

Intervention Model: Single Group Assignment

Masking: Open Label

Primary Purpose: Treatment

Official Title: A Single Arm, Monocenter Phase II Trial of a PAK inhibitor as Monotherapy in the Treatment of Neurofibromatosis Type 2 - Related Vestibular Schwannoma

Primary Outcome Measures:

Vestibular schwannoma volume [Time Frame: 1 year (12 months)] [Designated as safety issue: No]

Determine the effect of a PAK inhibitor on change in vestibular schwannoma volume (mm3) by MRI from baseline to 1 year.

Secondary Outcome Measures:

Hearing [Time Frame: 1 year (12 months)] [Designated as safety issue: No]

Determine the effects of a PAK inhibitor treatment on hearing changes (from baseline to 1 year in the ear with the growing vestibular schwannoma.

Number of adverse events [Time Frame: 1 year, 1 month (13 months)] [Designated as safety issue: Yes]

Determine the number of study subjects with adverse events by grade of severity

Estimated Enrollment: 10
Arms Assigned Interventions

PAK inhibitor Treatment: Experimental

All subjects will be given a PAK inhibitor for 1 year (12 months).

Intervention: Drug: PAK inhibitor

Drug: a PAK inhibitor

Adults: 10 mg p.o. daily dose, age 16 - 17: 3.0 mg/m2 p.o. daily

Detailed Description:

This protocol is a Phase II, open-label, efficacy and safety study of single-agent PAK inhibitor in patients with NF2. During the study, subjects will receive continuous daily oral treatment with a PAK inhibitor for up to 1 year or until tumor progression.

Primary Objective: To determine whether a PAK inhibitor has an effect on the VS growth in patients with NF2 at a rate sufficient to submit the drug for further testing.

Secondary Objectives: To determine whether a PAK inhibitor has an effect on the volume of other intracranial tumors, and to assess the effect of a PAK inhibitor on hearing function in patients with NF2 (when applicable).

Eligibility

Ages Eligible for Study: 16 Years to 65 Years

Genders Eligible for Study: Both

Accepts Healthy Volunteers: No

Criteria

Inclusion Criteria:

Diagnosis of NF2 by National Institutes of Health (NIH) criteria

Age ≥ 16 years

Progressive VS growth during the previous 12 months.

WHO performance status ≥ or = 2

Adequate bone marrow, liver and renal function.

For women of childbearing potential, no pregnancy or breast-feeding

Willingness and ability to comply with scheduled visits, drug administration plan, laboratory tests, other study procedures, and study restrictions.

Willingness to provide informed consent

Participants with advanced/refractory solid tumors

Exclusion Criteria:

Inability to tolerate periodic MRI scans or gadolinium contrast.

Inability to tolerate periodic audiologic testing or to understand a language with established scoring for word recognition testing.
Inability to adequately perform volumetric measurement of at least 1 target lesion. Note: Patients with cochlear or auditory brainstem implants may participate if a target lesion can be accurately assessed.

Radiation therapy for the target lesion in the 60 months preceding inclusion in the study.

Patients currently receiving anticancer therapies or who have received anticancer therapies within 4 weeks of the start of study drug.

Immunization with attenuated live vaccines within one week of study entry or during study period.

Presence of a fungal infection requiring systemic antifungal treatment at enrollment.

Other malignancies within the past 3 years except for adequately treated carcinoma of the cervix or basal or squamous cell carcinomas of the skin.

Patients who have any severe and/or uncontrolled medical conditions.

Patients with a known hypersensitivity to everolimus or other types of rapamycin or to its excipients.

Patients unwilling to or unable to comply with the protocol.

Example 16: Study to Assess Safety, Pharmacokinetics, and Pharmacodynamics of a PAK inhibitor in Patients With Advanced, Incurable, Solid Tumors in Which the Target Kinases Are Linked to Disease Pathophysiology

Purpose

PAK inhibitors are selective inhibitors of PAK activity. The primary objective of this study is to evaluate the safety and pharmacokinetics of orally administered PAK inhibitor in patients with advanced, incurable, solid tumors in which these target kinases are linked to disease pathophysiology. These tumors include, but are not limited to, acute myelogenous leukemia, gastrointestinal stromal tumor and neurofibromatosis-1, and glioma, breast cancer, prostate cancer, multiple myeloma, Hodgkin lymphoma, melanoma, and osteosarcoma. The secondary objective is to measure the pharmacodynamic activity of a PAK inhibitor via plasma and urine biomarkers of PAK activity.

Condition Intervention Phase

Solid Tumors

Drug: PAK inhibitor

Phase I

Study Type: Interventional

Study Design: Allocation: Non-Randomized

Intervention Model: Single Group Assignment

Masking: Open Label

Primary Purpose: Treatment
Official Title: A Phase 1 Study to Assess Safety, Pharmacokinetics, and Pharmacodynamics of a PAK inhibitor in Patients With Advanced, Incurable, Solid Tumors in Which the Target Kinases Are Linked to Disease Pathophysiology

Primary Outcome Measures:
- Safety: subject incidence of adverse events, first-cycle DLTs and clinically significant changes in vital signs, ECGs and clinical laboratory tests [Time Frame: 1 year] [Designated as safety issue: Yes]

Secondary Outcome Measures:
- PK profile: PAK Inhibitor PK parameters including, but not limited to, maximum observed concentration (Cmax), area under the plasma concentration-time curve and half-life [Time Frame: 1 year] [Designated as safety issue: No]

Estimated Enrollment: 24

Arms Assigned Interventions
- Intervention: Drug: PAK Inhibitor
- Drug: PAK Inhibitor
- Capsules administered once or twice daily, continuous dosing

Eligibility
- Ages Eligible for Study: 18 Years and older
- Genders Eligible for Study: Both
- Accepts Healthy Volunteers: No

Criteria
- Inclusion Criteria:
 - Age 18 and older
 - Solid tumors refractory to standard therapy
 - ECOG performance status 0 or 1
 - Life expectancy > 3 months
 - Adequate hepatic, renal, and bone marrow function

Exclusion Criteria:
- Specific anti-cancer therapy within 3 weeks of study start
- Uncontrolled intercurrent illness
- Refractory nausea or vomiting, or malabsorption
- Mean QTc > 450 msec

Example 17: Study of a PAK inhibitor of Recurrent Glioblastoma

Purpose

Primary Objectives
- To evaluate the anti-tumor activity of a PAK inhibitor as measured by the 6-month progression free survival (PFS) probability among patients with recurrent Glioblastoma Multiforme (GBM) when administered as monotherapy (cohort A) and in combination with bevacizumab (cohort B).
Secondary Objectives

To evaluate the safety and tolerability of a PAK inhibitor when administered as monotherapy and in combination with bevacizumab among patients with recurrent GBM. To evaluate radiographic response, progression free survival and overall survival of patients with recurrent glioblastoma treated with a PAK inhibitor when administered as monotherapy and in combination with bevacizumab.

This is an open-label phase II study. Two cohorts will accrue and will be assessed sequentially. Each cohort will enroll patients with recurrent GBM. Cohort A will assess recurrent GBM patients who receive a PAK inhibitor monotherapy while Cohort B will assess recurrent GBM patients who receive a PAK inhibitor plus bevacizumab. The primary endpoint of each cohort will be 6-month progression-free survival. For each cohort, a PAK inhibitor will be administered intravenously at 15 mg/kg every week. The dose of bevacizumab will be 10 mg/kg and will be administered intravenously every other week. The estimated rate of accrual is 1-2 patients per month. The estimated date of accrual completion is 5 years from study initiation. The estimated date of study completion will be approximately 12 months from enrollment of the last study patient.

68 subjects will actively participate in this study. In order to accrue 68 actively participating subjects up to 80 subjects may be enrolled.

A PAK inhibitor and bevacizumab will be administered to eligible patients under the supervision of the investigators at Duke. The Duke investigators will review all the laboratory data and order the treatment.

For study purposes, a cycle of therapy will be 4 weeks. Treatment will continue until either evidence of progressive disease, unacceptable toxicity, non-compliance with study follow-up, or withdrawal of consent.

Condition Intervention Phase
Glioblastoma Multiforme
Drug: PAK inhibitor
Drug: Bevacizumab
Phase II
Study Type: Interventional
Study Design: Allocation: Non-Randomized
Endpoint Classification: Safety/Efficacy Study
Intervention Model: Parallel Assignment
Masking: Open Label
Primary Purpose: Treatment
Official Title: Phase II Study of a PAK inhibitor of Recurrent Glioblastoma
Further study details as provided by Duke University:
Primary Outcome Measures:
Radiological response rates [Time Frame: 6 month] [Designated as safety issue: No]
The primary outcome is 6 month progression-free survival. The primary basis for assessing efficacy will be the proportion of patients who survive 6 months without disease progression (PFS-6).

Secondary Outcome Measures:

Radiographic response and Median progression free survival and overall survival. [Time Frame: 6 months] [Designated as safety issue: Yes]

Median progression free survival and overall survival. The primary measure of safety outcome will include a tabulation of all grade 2 or greater, treatment related toxicities.

Estimated Enrollment: 68

Arms Assigned Interventions

PAK inhibitor: Experimental

Cohort A will assess recurrent Glioblastoma Multiforme (GBM) patients who receive a PAK inhibitor monotherapy. For each cohort, a PAK inhibitor will be administered intravenously at 15 mg/kg every week.

Intervention: Drug: a PAK inhibitor

Drug: a PAK inhibitor

For each cohort, a PAK inhibitor will be administered intravenously at 15 mg/kg every week.

PAK inhibitor and Bevacizumab: Experimental

Cohort B will assess recurrent Glioblastoma Multiforme (GBM) patients who receive a PAK inhibitor plus bevacizumab. For each cohort, a PAK inhibitor will be administered intravenously at 15 mg/kg every week. The dose of bevacizumab will be 10 mg/kg and will be administered intravenously every other week.

Interventions:

Drug: a PAK inhibitor

Drug: bevacizumab

For each cohort, a PAK inhibitor will be administered intravenously at 15 mg/kg every week.

Drug: PAK inhibitor

The dose of a PAK inhibitor will be 10 mg/kg and will be administered intravenously every other week.

Eligibility

Ages Eligible for Study: 18 Years and older

Genders Eligible for Study: Both

Accepts Healthy Volunteers: No

Criteria

Inclusion Criteria:

Patients must have histologically confirmed diagnosis of GBM and radiographic evidence of recurrence or disease progression (defined as either a greater than 25% increase in the largest bidimensional
product of enhancement or a new enhancing lesion) following prior therapy (i.e. chemotherapy, XRT, other investigational therapies. In addition, the following must be met:

- **[00764]** Age ≥ 18 years.
- **[00765]** No more than 3 prior episodes of progressive disease;
- **[00766]** An interval of at least 4 weeks between prior surgical resection or one week from stereotactic biopsy;
- **[00767]** An interval of at least 12 weeks from the end of prior radiotherapy unless there is a new area of enhancement consistent with recurrent tumor outside of the radiation field, or there is histological confirmation of unequivocal tumor progression;
- **[00768]** An interval of at least 4 weeks from prior chemotherapy (6 weeks for nitrosoureas) or investigational agent, unless the patient has recovered from all anticipated toxicities associated with that therapy;
- **[00769]** Karnofsky at least 70%;
- **[00770]** Hematocrit > 29%, ANC > 1,000 cells/ul, platelets > 100,000 cells/ul;
- **[00771]** Serum creatinine < 1.5 mg/dl, serum SGOT and bilirubin < 2.5 times upper limit of normal;
- **[00772]** Calculated creatinine clearance > 40 mL/min according to the Cockcroft-Gault formula OR per 24 hour urine collection
- **[00773]** Signed informed consent approved by the Institutional Review Board prior to patient entry;
- **[00774]** No evidence of hemorrhage on the baseline MRI or CT scan other than those that are grade 1 and either post-operative or stable on at least two consecutive scans;
- **[00775]** Subjects of child-bearing potential who have not undergone a bilateral salpingo-oopherectomy and are sexually active must consent to use an accepted and effective non-hormonal method of contraception (i.e. double barrier method (e.g., condom plus diaphragm)) from signing the informed consent through 6 months after last dose of study drug.

Exclusion Criteria:

- **[00776]** Co-medication that may interfere with study results; e.g. immuno-suppressive agents other than corticosteroids
- **[00778]** Active infection requiring intravenous antibiotics
- **[00779]** Requires therapeutic anti-coagulation with warfarin
- **[00780]** History of arterial or deep venous thromboembolism within 12 months prior to enrollment
- **[00781]** History of clinically significant bleeding within 6 months of enrollment
- **[00782]** Current or within 30 days prior to enrollment/randomization treatment with immune modulators such as cyclosporine and tacrolimus
- **[00783]** History of allergic reactions to bacterially produced proteins
- **[00784]** Inability to comply with study and/or follow-up procedures
- **[00785]** Current, recent (within 4 weeks of the first infusion of this study), or planned participation in an experimental drug study other than supportive care or epidemiologic studies
Severe hepatic insufficiency (ongoing grade 3 or greater hepatic adverse events) or known active chronic hepatitis

Inadequately controlled hypertension (defined as systolic blood pressure >150 and/or diastolic blood pressure > 90 mmHg on antihypertensive medications)

Any prior history of hypertensive crisis or hypertensive encephalopathy

Clinically significant cardiovascular disease within 12 months prior to enrollment (or randomization), including myocardial infarction, unstable angina, grade 2 or greater peripheral vascular disease, cerebrovascular accident, transient ischemic attack, congestive heart failure, or arrhythmias not controlled by outpatient medication, percutaneous transluminal coronary angioplasty/stent

New York Heart Association (NYHA) Grade II or greater congestive heart failure (see Appendix E)

History of myocardial infarction or unstable angina within 6 months prior to study enrollment

History of stroke or transient ischemic attack within 6 months prior to study enrollment

Significant vascular disease (e.g., aortic aneurysm, aortic dissection)

Symptomatic peripheral vascular disease

Evidence of bleeding diathesis or coagulopathy

Major surgical procedure, open biopsy, or significant traumatic injury within 28 days prior to study enrollment or anticipation of need for major surgical procedure during the course of the study

Core biopsy or other minor surgical procedure, excluding placement of a vascular access device, within 7 days prior to study enrollment

History of abdominal fistula, gastrointestinal perforation, or intra-abdominal abscess within 6 months prior to study enrollment

Serious, non-healing wound, ulcer, or bone fracture

Urinary protein quantitative value of <30 mg/dL in urinalysis or <1+ on dipstick, unless quantitative protein is <1000 mg in a 24 hour urine sample

Known hypersensitivity to any component of a PAK inhibitor

Pregnant (positive pregnancy test) or lactating. Refusal or inability to use effective means of contraception (men and women) in subjects of child-bearing potential

Example 18: Safety and Efficacy Study of a PAK inhibitor and Gemcitabine in Combination for Patients With Metastatic or Unresectable Sarcomatoid Renal Cell Carcinoma

Purpose

The goal of this clinical research study is to learn if the combination of 2 drugs (PAK inhibitor and gemcitabine) can help to control metastatic or unresectable renal cell carcinoma. The safety of this drug combination will also be tested.

Objectives:

Primary Objective:
Evaluate progression-free survival with a PAK inhibitor and gemcitabine treatment in metastatic or unresectable renal cell carcinoma (RCC) with sarcomatoid features.

Secondary Objectives:

Evaluate the safety and tolerability of the PAK inhibitor and gemcitabine combination.

Evaluate response rate and overall survival with the PAK inhibitor and gemcitabine combination in metastatic or unresectable RCC with sarcomatoid features.

Develop a prospective archive of tissue and DNA samples from sarcomatoid carcinomas of the kidney.

Condition Intervention Phase
Renal Cell Carcinoma Kidney Cancer
Drug: PAK inhibitor
Drug: Gemcitabine
Phase II
Study Type: Interventional
Study Design: Allocation: Non-Randomized
Endpoint Classification: Safety/Efficacy Study
Intervention Model: Single Group Assignment
Masking: Open Label
Primary Purpose: Treatment
Official Title: Phase II Safety and Efficacy Study of a PAK inhibitor and Gemcitabine in Combination for Patients With Metastatic or Unresectable Sarcomatoid Renal Cell Carcinoma

Number of Patients with Event Free Survival [Time Frame: Baseline and with each 4 week cycle or until disease progression] [Designated as safety issue: Yes]
Evaluation of response will follow the Response Evaluation Criteria in Solid Tumors (RECIST).
Estimated Enrollment: 40
Arms Assigned Interventions
PAK Inhibitor + Gemcitabine: Experimental
Interventions:
Drug: PAK inhibitor
Drug: Gemcitabine
900 mg/m^2 By Vein Over 30 Minutes on Days 1 and 15.
Other Names:
Gemzar
Gemcitabine Hydrochloride
Detailed Description:
PAK inhibitors and gemcitabine are designed to disrupt the growth of cancer cells, which may cause cancer cells to start to die. If you are found to be eligible to take part in this study, you will receive a PAK inhibitor and gemcitabine on a 28 day cycle. A PAK inhibitor will be taken by mouth, once daily on days 1-28. Gemcitabine will be given through a needle in your vein in your arm over 30 minutes on Days 1 and 15. On the first day of each cycle, blood (about 2 teaspoons) and a urine will be collected before treatment for routine tests. You will also have blood drawn on Day 15 (about 2 teaspoons) for routine tests.

Every 8 weeks, you will have a CT scan of your chest, abdomen, and pelvis and a chest x-ray. You will be asked about any drugs that you are currently taking and you will have a complete physical exam. You will be asked about any side effects that you might have experienced since the last visit and your ability to perform daily activities will be evaluated. Repeat bone scans and MRI of the brain may be done if your doctor thinks it is necessary.

You will continue receiving treatment for a maximum of 12 months. However, if you are benefitting from treatment, you may be able to continue receiving it off study. You will be taken off study if the disease gets worse, if the side effects are intolerable, or if you develop another illness that prevents you from receiving the treatment.

This is an investigational study. Gemcitabine is FDA approved and commercially available. Up to 40 participants may take part in this study. All will be enrolled at MD Anderson.

Eligibility

Genders Eligible for Study: Both
Accepts Healthy Volunteers: No

Criteria

Inclusion Criteria:

Histologically demonstrated, metastatic or unresectable sarcomatoid carcinoma of the kidney, defined as the following: A tumor biopsy (primary or metastasis) must show at least one focus of RCC (one of the recognized types); and, A tumor biopsy (primary or metastasis) must have at least 10% of the sample showing sarcomatoid histology. Patients with primary tumor in place are eligible if there is any percentage of sarcomatoid dedifferentiation on a needle biopsy (primary or metastasis), and the radiographic appearance of the primary tumor on CT scan is typical of RCC. For these patients, due to the small tumor sample, it is not required to identify an area of typical RCC histology as long as the morphologic and immunostaining characteristics are consistent with RCC.

At least one site of measurable disease (may include primary tumor).

No prior cytotoxic chemotherapy. Any prior immunotherapy is permitted.

Zubrod performance status 2 or better

Adequate organ and bone marrow function: ANC >/= 1,500 · Platelets >/= 100,000 · Total bilirubin </= 1.5 mg/dl · AST and ALT </= 3x upper limit normal · Creatinine clearance > 50 cc/min (measured or calculated by Cockcroft formula: Creatinine Clearance = [(140 - age) x wt (kg)]/[72 x creat
(mg/dl)], for females x 0.85. Patients with creatinine clearance of 30-50 ml/min are eligible with an initial dose-reduction of capecitabine to the (-1) dose level.

[00853] Female patients of childbearing potential (last menses < 2 years) must have a negative blood pregnancy test within 7 days prior to starting treatment.

[00854] All patients must agree to practice adequate contraception if sexually active for the duration of the trial and for 2 months after discontinuation of the study drugs

[00855] Written informed consent.

[00856] Exclusion Criteria:

[00857] Patients with history of myocardial infarction, transient ischemic attack (TIA), stroke, pulmonary embolism, or history of deep vein thrombosis within the preceding 12 months.

[00858] Patients with major risk of bleeding, such as active brain metastases. Patients with controlled or small brain metastases will be eligible based on clinical assessment of the actual bleeding risk.

[00859] Patients with history of any major surgical procedure within the preceding 28 days.

[00860] Patients with baseline blood pressure >/= 140 systolic or >/= 90 diastolic.

[00861] Patients with nephrotic syndrome (proteinuria > 2 grams per 24 hours)

[00862] History of other malignancy, unless it is clinically non-threatening (such as non-melanoma skin cancer) or controlled for 2 years prior to study entry.

[00863] Prior treatment with gemcitabine, capecitabine, or any fluoropyrimidine.

[00864] Prior unanticipated severe reaction to fluoropyrimidine therapy or known hypersensitivity to 5-FU.

[00865] Any concurrent chemotherapy or radiotherapy.

[00866] Lack of physical integrity of the upper gastrointestinal tract, inability to swallow tablets or those who have malabsorption syndrome.

[00867] Clinically significant cardiac disease not well controlled with medication, such as symptomatic coronary artery disease, congestive heart failure, and cardiac arrhythmias.

[00868] Serious concurrent infections or other serious medical conditions, including uncontrolled diabetes.

[00869] Any serious non-healing wound, ulcer, or active bone fracture.

[00870] Any concurrent Coumadin therapy. Patients who were previously on Coumadin maintenance may switch to aspirin or low-molecular-weight heparin.

[00871] Patients who have had an organ allograft.

[00872] Unwillingness to give written informed consent.

Example 19: In Vivo Monitoring of Dendritic Spine Plasticity in Double Transgenic GFP-M/DN-DISC1 Mice Treated with a PAK Inhibitor Compound Disclosed Herein

[00873] In the following experiment, dendritic spine plasticity is directly monitored *in vivo* by two photon laser scanning microscopy (TPLSM) in double transgenic GFP-M/DN-DISC1 mice treated with a compound disclosed herein or a placebo. Mice (C57BL/6) expressing GFP in a subset of cortical layer 5
neurons (transgenic line GFP-M described in Feng et al, 2000, Neuron 28:41-51) are crossed with DN-
DISCl C57BL/6 DN-DISC1 mice (Hikida et al (2007), Proc Natl Acad Sci USA, 104(36):14501-14506) to
obtain heterozygous transgenic mice, which are then crossed to obtain homozygous double transgenic
GFPM/DN-DISC1 mice used in this study.

[00874] GFP-M/DN-DISC1 animals aged 28-61 d are anesthetized using avertin (16 µg/g body weight;
Sigma, St. Louis, MO). The skull is exposed, scrubbed, and cleaned with ethanol. Primary visual,
somatosensory, auditory, and motor cortices are identified based on stereotaxic coordinates, and their
location is confirmed with tracer injections (see below).

[00875] Long-term imaging experiments are started at P40. The skull is thinned over the imaging area as
described in Grutzenzler et al, (2002), Nature, 420:812-816. A small metal bar is affixed to the skull. The
metal bar is then screwed into a plate that connected directly to the microscope stage for stability during
imaging. The metal bar also allows for maintaining head angle and position during different imaging
sessions. At the end of the imaging session, animals are sutured and returned to their cage. Thirty animals
previously imaged at P40 are then divided into a control group receiving a 1% sugar solution (oral gavage
once per day) and a treatment group administered a compound disclosed herein, in 0.1% DMSO (oral
gavage. 1 mg/kg, once per day). During the subsequent imaging sessions (at P45, P50, P55, or P70), animals
are reanesthetized and the skull is rethinned. The same imaging area is identified based on the blood vessel
pattern and gross dendritic pattern, which generally remains stable over this time period.

[00876] At the end of the last imaging session, injections of cholera toxin subunit B coupled to Alexa
Fluor 594 are made adjacent to imaged areas to facilitate identification of imaged cells and cortical areas
after fixation. Mice are transcardially perfused and fixed with paraformaldehyde, and coronal sections are
cut to verify the location of imaged cells. Sections are then mounted in buffer, coverslipped, and sealed.
Images are collected using a Fluoview confocal microscope (Olympus Optical, Melville, NY).

[00877] For in vivo two photon imaging, a two-photon laser scanning microscope is used as described in
Majewska et al, (2000), Pflügers Arch, 441:398-408. The microscope consists of a modified Fluoview
confocal scan head (Olympus Optical) and a titanium/sulphur laser providing 100 fs pulses at 80 MHz at a
wavelength of 920 nm (Tsunami; Spectra-Physics, Menlo Park, CA) pumped by a 10 W solid-state source
(Millenia; Spectra-Physics). Fluorescence is detected using photomultiplier tubes (HC125-02; Hamamatsu,
Shizouka, Japan) in whole-field detection mode. The craniotomy over the visual cortex is initially identified
under whole-field fluorescence illumination, and areas with superficial dendrites are identified using a 20x,
0.95 numerical aperture lens (IR2; Olympus Optical). Spiny dendrites are further identified under digital
zoom (7-1 xO) using two-photon imaging, and spines 50-200 µm below the pial surface are studied. Image
acquisition is accomplished using Fluoview software. For motility measurements, Z stacks taken 0.5-1 µm
apart are acquired every 5 min for 2 h. For synapse turnover experiments, Z stacks of dendrites and axons
are acquired at P40 and then again at P50 or P70. Dendrites and axons located in layers 1-3 are studied.
Although both layer 5 and layer 6 neurons are labeled in the mice used in this study, only layer 5 neurons
send a clear apical dendrite close to the pial surface thus, the data will come from spines on the apical tuft of layer 5 neurons and axons in superficial cortical layers.

[00878] Images are exported to Matlab (MathWorks, Natick, MA) in which they are processed using custom-written algorithms for image enhancement and alignment of the time series. For motility measurements (see Majewska et al, (2003), Proc Natl Acad Sci USA, 100:16024-16029) spines are analyzed on two-dimensional projections containing between 5 and 30 individual images; therefore, movements in the z dimension are not analyzed. Spine motility is defined as the average change in length per unit time (micrometers per minute). Lengths are measured from the base of the protrusion to its tip. The position of spines are compared on different imaging days. Spines that are farther than 0.5 µm laterally from their previous location are considered to be different spines. Values for stable spines are defined as the percentage of the original spine population present on the second day of imaging. Only areas that show high signal-to-noise ratio in all imaging sessions will be considered for analysis. Analysis is performed blind with respect to animal age and sensory cortical area. Spine motility (e.g., spine turnover), morphology, and density are then compared between control and treatment groups. It is expected that treatment with a compound disclosed herein will rescue defective spine morphology relative to that observed in untreated control animals.

Example 20: Treatment of Schizophrenia by Administration of a PAK Inhibitor Compound Disclosed Herein in an Animal Model

[00879] The ability of a PAK inhibitor to ameliorate behavioral and anatomical symptoms of schizophrenia (i.e., their mouse analogs) is tested in a dominant-negative DISC1 mouse model of schizophrenia (Hikida et al (2007), Proc Natl Acad Sci USA, 104(36):14501-14506).

[00880] Forty DISC1 mice (ages 5-8 months) on a C57BL6 strain background are divided into treatment group (1 mg/kg of compound disclosed herein, oral gavage) and a placebo group (0.1% DMSO in physiological saline solution) and analyzed for behavioral differences in open field, prepulse inhibition, and hidden food behavioral tests, with an interval of about one week between each type of test. In the open field test, each mouse is placed in a novel open field box (40 cm X 40 cm; San Diego Instruments, San Diego, CA) for two hours. Horizontal and vertical locomotor activities in the periphery as well as the center area are automatically recorded by an infrared activity monitor (San Diego Instruments). Single breaks are reported as "counts." In this behavioral test, a significant reduction in total activity in the treatment group relative to the placebo group indicates a possible treatment effect.

[00881] In the hidden food test, mice are food-deprived for 24 h. After habituation to a new cage for 5 min, a food pellet is hidden under the cage bedding. The time it takes for the mouse to find the food pellet is measured until a maximum of 60 min is reached. In this behavioral test, a significant reduction in time to find the food pellet in the treatment group relative to the placebo group is indicative of a successful treatment effect.

[00882] In the prepulse inhibition test, acoustic startle and prepulse inhibition responses are measured in a startle chamber (San Diego Instruments). Each mouse is individuated to six sets of seven trail types
distributed pseudorandomly: pulse-alone trials, prepulse-pulse trials, and no-stimulus trials. The pulse used is 120dB and the prepulse is 74 dB. A significant increase in the prepulse inhibition response in the treatment group relative to the placebo group is indicative of a successful treatment effect.

In the forced swim test, each mouse is put in a large plastic cylinder, which is half-filled with room temperature water. The test duration is 6 min, during which the swim/immobility times are recorded. In this behavioral test, a significant reduction in immobility in the treatment group relative to the placebo group is indicative of a successful treatment effect.

In order to evaluate the ability of the compounds disclosed herein to alter brain morphology, an MRI study is conducted on placebo-treated and treated groups of DISC1-DN mice. In vivo MRI experiments are performed on an 11.7T Bruker Biospec small animal imaging system. A three-dimensional, fast-spin echo, diffusion weighted (DW) imaging sequence with twin navigation echoes is used to assess the ratio of lateral ventricle volume to total brain volume. A decrease in this ratio in the treated group relative to the ratio observed in the placebo-group is indicative of a successful treatment effect.

Statistical Analysis. Statistical analysis is performed by ANOVA or repeated ANOVA. Differences between groups are considered significant at p < 0.05.

Example 21: Treatment of Clinical Depression by Administration of a PAK Inhibitor Compound Disclosed Herein in an Animal Model

A rat olfactory bulbectomy (OBX) model of clinical depression (see, e.g., van Riezen et al (1990), PharmacoL Ther, 47(1):21-34; and Jarosik et al (2007), Exp Neurol, 204(1):20-28) is used to evaluate treatment of clinical depression with a compound disclosed herein. Dendritic spine density and morphology are compared in treated and untreated groups of animals as described below. It is expected that treatment of OBX animals with a PAK inhibitor will cause an increase in spine density relative to that observed in untreated OBX animals.

All experiments are performed in strict accordance with NIH standards for laboratory animal use. The study uses 48 adult male Sprague-Dawley rats (230-280 g) housed in groups of four animals (two sham and two OBX), as indicated in van Riezen et al supra, in a controlled environment with food and water available ad libitum. Half of the experimental animals (n = 24) undergo bilateral olfactory bulbectomy (OBX) while the other half undergo sham surgery (n = 24). Upon completion of surgery, animals are allowed to recover for 2 weeks prior to behavioral testing. This is necessary to: 1) allow for the recovery of animal body weight which is reduced following surgery, 2) allow complete healing of superficial surgical sites, and) "bulbectomy syndrome" develops during the first 2 weeks postsurgery.

Two weeks after surgery, OBX and sham-operated animals are subdivided into one of four experimental conditions. One group of OBX animals is administered daily injections of saline solution (n = 6 for each surgical condition) or compound disclosed herein (1 mg/kg; oral gavage) (n = 6 for each surgical condition). These groups are included to examine the effect of chronic administration of compound disclosed herein (PAK inhibitor) on olfactory bulbectomized animals (2 weeks postsurgical recovery + 2 weeks PAK inhibitor treatment). Administration of the drug or control solution are given at the same time
each day and in the home cage of each animal. Groups of OBX and sham-operated animals receive no
treatment during this 2-week period and serve as unhandled controls. These groups are necessary to examine
the persistence of observed effects of OBX on dendritic spine density (4 weeks postsurgery). Animals
receiving postsurgery drug treatment are sacrificed 24 h after the last injection.

Animals are perfused transcardially with 4% formaldehyde (in 0.1 M sodium phosphate buffer, pH = 7.4) under deep anesthesia with sodium pentobarbital (60 mg/kg) at the completion of experimental
procedures. Following fixation, brains are removed and placed in 4% formaldehyde (freshly depolymerized
from para-formaldehyde) overnight. Brains are then sectioned at 100 µm on a vibratome and prepared for
Golgi impregnation using a protocol adapted from previously described methods (Izzo et al., 1987). In brief,
tissue sections are postfixed in 1% Os04 for 30 min and then washed in 0.1 M phosphate buffer (3 X 15
min). Sections are free-floated in 3.5% K2Cr2O7 solution for 90 min, mounted between two microscope
slides in a "sandwich" assembly, and rapidly immersed in a 1% AgN03 solution. The following day,
sections are rinsed in ddH2O, dehydrated in 70% and 100% ethanol, cleared with Histoclear™, and
mounted on microscope slides with DPX.

Dendritic spines are counted on 1250X camera lucida images that include all spines observable
in each focal plane occupied by the dendrite. Cells are analyzed only if they are fully impregnated (CA1:
primary apical dendrites extended into stratum lacunsum moleculare and basilar dendrites extended into
stratum oriens; CA3: primary apical dendrites extended into stratum lacunsum moleculare and basilar
dendrites extended into stratum oriens; dentate gyrus: secondary dendrites extended from primary dendrite
within the molecular layer), intact, and occurring in regions of the section that are free of blood vessels,
precipitate, and/or other imperfections. Dendritic spines are counted along the entire length of secondary
oblique dendritic processes (50-100 µm) extending from the primary apical dendrite within stratum radiatum
of area CA1 and CA3. In CA1 and CA3, secondary dendrites are defined as those branches projecting
directly from the primary apical dendrite exclusive of tertiary daughter branches. In addition, spines are
counted along the length of secondary dendrites of granule cells in the dentate gyrus to determine if effects
are limited to CA1 and CA3. In dentate gyrus, secondary dendrites are analyzed in the glutamatergic
entorhinal input zone in the outer two-thirds of the molecular layer. Approximately 20 dendritic segments
(10 in each cerebral hemisphere; 50-100 µm in length) in each hippocampal subregion (CA1, CA3, and
dentate gyrus) are examined for each experimental animal. Treatment conditions are coded throughout the
entire process of cell identification, spine counting, dendritic length analysis, and subsequent data analysis.
Analysis of variance and Tukey post-hoc pairwise comparisons are used to assess differences between
experimental groups.

When significant changes in dendritic spine density are observed, camera lucida images and the
Zeiss CLSM measurement program are used to quantify the number and length of secondary dendrites. This
analysis is necessary as apparent changes in dendritic spine density can result from an increase or decrease
in the length of dendrites and not the formation or loss of spines per se. Photomicrographs are obtained with
a helium-neon 633 laser and Zeiss 410 confocal laser scanning microscope.
Example 22: Treatment of Epilepsy by Administration of a PAK Inhibitor Compound Disclosed Herein in an Animal Model

A rat tetanus toxin model of epilepsy is used to evaluate treatment of epilepsy with compound disclosed herein.

Wistar rat pups (Harlan Sprague Dawley, Indianapolis, IN), 10 d of age, are anesthetized with an intraperitoneal injection of ketamine and xylazine (33 and 1.5 mg/kg, respectively). When necessary, this is supplemented by inhalation of methoxyflurane (Metofane). Tetanus toxin solution to be injected is generated by dissolving 2.5 or 5 ng of tetanus toxin in 20 or 40 nl of sterile saline solution. Afterwards, the tetanus toxin solution is coinjected into the right hippocampus along with a solution of a compound disclosed herein.

To inject tetanus toxin and a compound disclosed herein, the pups are placed in an infant rat stereotaxic head holder, a midline incision is made, and a small hole is drilled in the skull. The stereotaxic coordinates for injection are: anteroposterior, -2.1 mm; mediolateral, 3.0 mm from the bregma; and dorsoventral, -2.95 mm from the dural surface. The toxin and a compound disclosed herein are slowly injected at 4 nl/min. After injection, the needle is left in place for 15 min to reduce reflux up the needle track. During injections, the body temperature of rat pups is maintained by a warmed (electrically regulated) metal plate. Littermates, stereotaxically injected with sterile saline, or untreated rats serve as controls.

The frequency of behavioral seizures is monitored for 1 hr/day for 10 consecutive days after tetanus toxin/the test compound injections. The types and duration of seizures are scored. Wild running seizures are most easily identified.

After seizure scoring on the 10th day animals are perfused transcardially and dendritic spines in the CA3 region are counted and analyzed as described above.

The t test for comparison of two independent means is used in comparing the number of seizures in treated vs. untreated rats and in comparing dendritic and axon arbors in experimental and control rats. When data are not normally distributed, a Mann-Whitney U test is used. Sigma Stat is used to perform all statistical tests. It is expected that treatment with a compound disclosed herein will reduce the frequency and severity of seizures.

Example 23: Treatment of Mild Cognitive Impairment by Administration of a PAK Inhibitor in an Animal Model

The ability of a compound of Formula I-IV and A-D to delay or halt the progression of symptoms of Mild Cognitive Impairment (i.e., their mouse analogs) is tested in a Tg2576 mouse model of Mild Cognitive Impairment (Young et al. (2009), Neurobiology of Aging, 30:1430-1443).

Thirty-two Tg2576 male mice (ages 3-4 months) and their wild-type littermates (n=8) are divided into a treatment groups (1 mg/kg oral gavage), placebo groups (0.1% DMSO in physiological saline solution) and wild-type and analyzed for behavioral differences in olfactory discrimination and odor recognition memory using a mouse odor span task apparatus (Young et al. (2007), Neuropharmacology 52:3634-645).
In each mouse odor span task test, a mouse is placed on an elevated wooden platform (61 cm x 61 cm) using numbers as location identifiers. Numbers 1-24 are used, with 1, 7, 13, and 19 at each corner and the intervening five numbers evenly spaced between the corners locations. The following odors are used: allspice, Chinese five spice, cinnamon, nutmeg, coriander, fenugreek, ginger, paprika, thyme, parsley, dill, oregano, sage, mint, rosemary, onion powder, caraway seed, celery salt, cocoa, coffee powder (Maxwell House®), and English breakfast tea (Twinings®). All scented mixtures are created by adding 3 g of a specific odor to 100 g of woodchip and 18 crushed food pellets (Noyes Precision Pellets, Lancaster, UK). These mixtures are placed in white porcelain bowls (5.5 cm in diameter, 3.5 cm high; Fisher Loughborough, UK) and are marked with a letter of the alphabet (A-v) identifying the odor.

After the mice are introduced to each odor, the odor span task tests are habituated to the testing protocol. Habituation is conducted as follows: Span 0: a bowl is baited and placed on the platform at the chosen location; with the introduction of the mouse (which always faces the experimenter's left; location 16) a timer is started. Digging in the bowl for the food pellet (reward) stops the timer and the mouse is required to remember the odor in that bowl. Following consumption of the reward, the mouse is removed to a clear Perspex cage located below the platform, a new bowl and location is selected, the bowl is baited and placed appropriately. The first bowl (no longer baited) is moved to a new location. Span 1: the mouse is placed back on the platform and the timer is restarted, with the mouse required to dig only in the novel bowl. After digging in either bowl the timer is stopped, and if a correct choice is made, the mouse is given time to consume the reward before being returned to the clear cage. The accuracy of this span is noted, for once the non-match rule is acquired this gave an indication of the ability of the mouse to perform a simple two-odor discrimination. Span 2: a third (baited) bowl is then placed on the platform in the designated location and the two previously sampled bowls are repositioned as required. If an incorrect response is made (digging in a previously sampled bowl), the three bowls are randomly relocated and the span is repeated until a correct response is made. The span number is then increased with every correct response until span 21 (22 bowls) is completed or the mouse has spent 10 min on the platform. Any incorrect response will lead to a repetition of that span with all bowls being randomly relocated.

The number of odors (bowls) a mouse remembers prior to erring is regarded as the mouse's span length for that session. The total number of spans completed is also recorded as are errors per session and % accuracy [(spans completed/spans completed + errors) x 100]. Each subject's mean span latency (total correct latency/spans completed) is also calculated, with time to first sample (latency to complete span 0) being recorded to ensure that mice takes a comparable amount of time to engage in the task. A bowl is randomly selected every third span (spans 2, 5, 8 and 11) and replaced with an identical yet previously non-sampled odor filled bowl, which will unmask any scent marking strategy. In addition, between every session the table is wiped down with ethanol. The mice are continuously trained until a stable level of performance is reached, with performance then being assessed over 4 consecutive days.

The odor span task test is conducted at 4 months, 8 months and 12 months to evaluate the progression of Mild Cognitive Impairment in the Tg2576 mice. In this test, a significant increase in Span
Length, a significant increase in % Accuracy, or significant decrease in errors per session over the course of the experimental period (e.g., results at 4 month vs. 8 months, results at 4 month vs. 8 months) in the test compound groups relative to the placebo group (and/or as compare to the wild-type group) is indicative of a successful treatment effect.

[00904] Statistical Analysis. Statistical analysis is performed by ANOVA or repeated ANOVA. Differences between groups are considered significant at p < 0.05.

Example 24: Treatment of Autism by Administration of a PAK Inhibitor in an Animal Model

[00905] The ability of a compound of Formula I-IV and A-D described herein (a PAK inhibitor) to alleviate, reduce the severity of, or inhibit the progression of symptoms of autism (i.e., their mouse analogs) is tested in a FMRI KO mouse model.

[00906] Twenty-four FMRI KO male mice (age 2 months) are divided into Group 1 (n=6) and Group 2 (n=6) treatment groups (1 mg/kg oral gavage of a compound of Formula I-IV and A-D described herein), a placebo Group (Group 3) (n=6) (0.1% DMSO in physiological saline solution) and wild-type (Group 4) (n=6) and are analyzed for behavioral differences using the Open Field Test.

[00907] Open Field Test. The mice in Groups 1-4 are subjected to the open field test according to standard procedures. Each of the mice ran for 60 minutes in a VersaMax activity monitor chamber (Accuscan Instruments). Open field activity is detected by photobeam breaks and is analyzed by the VersaMax software. Stereotypy is recorded when the mouse breaks the same beam (or set of beams) repeatedly. Stereotypy count is the number of beam breaks that occur during this period of stereotypic activity.

[00908] FMRI KO mice are known to exhibit three abnormal behaviors compared to wild-type mice (Peier et., 2000, Hum. Mol. Genet., 9:1 145): (i) hyperactivity—they travel a longer distance and move for a longer period of time than wild-type; (ii) stereotypy—they exhibit a higher number of repetitive behaviors than wild-type; and (iii) hypo-anxiety—they stay in the center field for a longer period of time and in the corners of the field for shorter periods of time than wild-type.

[00909] It is expected that the FMRI mice in treatment Group 1 and treatment Group 2 will perform comparable to the wild-type controls (Group 4) for: (i) hyperactivity; (ii) stereotypy; and (iii) hypo-anxiety as measured in the Open Field Test, whereas the FMRI mice in Group 3 will exhibit abnormal behavior. This indicates that treatment of FMRI KO mice with PAK inhibitors of a compound of Formula I-IV and A-D described herein restores activity, repetitive behavior, and anxiety to wild-type levels.

[00910] Statistical Analysis. Statistical analysis is performed by ANOVA or repeated ANOVA. Differences between groups are considered significant at p < 0.05.

Example 25: Pharmaceutical Compositions

Example 25a: Parenteral Composition

[00911] To prepare a parenteral pharmaceutical composition suitable for administration by injection, 100 mg of a water-soluble salt of a compound of Formula I-IV and A-D is dissolved in DMSO and then mixed
with 10 mL of 0.9% sterile saline. The mixture is incorporated into a dosage unit form suitable for
administration by injection.

Example 25b: Oral Composition
[00912] To prepare a pharmaceutical composition for oral delivery, 100 mg of a compound of Formula
I-IV and A-D is mixed with 750 mg of starch. The mixture is incorporated into an oral dosage unit for, e.g.,
a hard gelatin capsule, which is suitable for oral administration.

Example 25c: Sublingual (Hard Lozenge) Composition
[00913] To prepare a pharmaceutical composition for buccal delivery, such as a hard lozenge, mix 100
mg of a compound of Formula I-IV and A-D with 420 mg of powdered sugar mixed, with 1.6 mL of light
corn syrup, 2.4 mL distilled water, and 0.42 mL mint extract. The mixture is gently blended and poured into
a mold to form a lozenge suitable for buccal administration.

Example 25d: Fast-Disintegrating Sublingual Tablet
[00914] A fast-disintegrating sublingual tablet is prepared by mixing 48.5% by weigh of a compound of
Formula I-IV and A-D, 44.5% by weight of microcrystalline cellulose (KG-802), 5% by weight of low-
substituted hydroxypropyl cellulose (50 μm), and 2% by weight of magnesium stearate. Tablets are prepared
by direct compression (AAPS PharmSciTech. 2006;7(2):E41). The total weight of the compressed tablets is
maintained at 150 mg. The formulation is prepared by mixing the amount of compound of Formula I-IV and
A-D with the total quantity of microcrystalline cellulose (MCC) and two-thirds of the quantity of low-
substituted hydroxypropyl cellulose (L-HPC) by using a three dimensional manual mixer (Inversina ®,
Bioengineering AG, Switzerland) for 4.5 minutes. All of the magnesium stearate (MS) and the remaining
one-third of the quantity of L-HPC are added 30 seconds before the end of mixing.

Example 25e: Inhalation Composition
[00915] To prepare a pharmaceutical composition for inhalation delivery, 20 mg of a compound of
Formula I-IV and A-D is mixed with 50 mg of anhydrous citric acid and 100 mL of 0.9% sodium chloride
solution. The mixture is incorporated into an inhalation delivery unit, such as a nebulizer, which is suitable
for inhalation administration.

Example 25f: Rectal Gel Composition
[00916] To prepare a pharmaceutical composition for rectal delivery, 100 mg of a compound of Formula
I-IV and A-D is mixed with 2.5 g of methylcellulose (1500 mPa), 100 mg of methylparapen, 5 g of glycerin
and 100 mL of purified water. The resulting gel mixture is then incorporated into rectal delivery units, such
as syringes, which are suitable for rectal administration.

Example 25g: Topical Gel Composition
[00917] To prepare a pharmaceutical topical gel composition, 100 mg of a compound of Formula I-IV
and A-D is mixed with 1.75 g of hydroxypropyl cellulose, 10 mL of propylene glycol, 10 mL of isopropyl
myristate and 100 mL of purified alcohol USP. The resulting gel mixture is then incorporated into
containers, such as tubes, which are suitable for topical administration.

Example 25h: Ophthalmic Solution Composition
To prepare a pharmaceutical ophthalmic solution composition, 100 mg of a compound of Formula I-IV and A-D is mixed with 0.9 g of NaCl in 100 mL of purified water and filtered using a 0.2 micron filter. The resulting isotonic solution is then incorporated into ophthalmic delivery units, such as eye drop containers, which are suitable for ophthalmic administration.

Example 25i: Nasal spray solution

To prepare a pharmaceutical nasal spray solution, 10 g of a compound of Formula I-IV and A-D is mixed with 30 mL of a 0.05M phosphate buffer solution (pH 4.4). The solution is placed in a nasal administrator designed to deliver 100 µl of spray for each application.

While some embodiments of the present disclosure have been shown and described herein, such embodiments are provided by way of example only. It is intended that the following claims define the scope of the present disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.
WHAT I CLAIMED IS:

1. A compound having the structure of Formula I, Formula II, or Formula III, or a pharmaceutically acceptable salt or N-oxide thereof:

 Formula I
 Formula II
 Formula III:

 wherein:

 ring T is an aryl or heteroaryl ring;
 R¹ is H, or substituted or unsubstituted alkyl;
 R² is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arythio, alkylsulfoxide, arylalkylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoxo, amide, ester, alkoxy, cyano, aryl, or heteroaryl; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro -cycloalkyl- heterocycloalkyl; -alkylene-S(=O)R²; -alkylene-S(=O)₂R³; or -S(=O)₂R⁴;
 R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;
 R⁴ is substituted or unsubstituted heteroaryl attached to ring T or the phenyl ring via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to ring T or the phenyl ring via a carbon atom of R⁴;
 each R⁵ is independently halogen, -CN, -N0₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR⁸, -NR⁶S(=O)R⁹, -S(=O)₂N(R⁶)₂, -S(=O)R⁹, -S(=O)₂R⁹, -C(=O)R⁹, -OC(=O)R⁹, -CO₂R₈, -N(R⁶)₂, -C(=O)N(R⁶)₂, -NR⁶C(=O)R₁₀, -N R⁶C(=O)OR₁₀, -NR⁶C(=O)N(R⁶)₂, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
 each R⁶ is independently H or R⁹;
each R^9 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R^1 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R^9, together with the atoms to which they are attached form a heterocycle; and
s is 0-4.

2. The compound of claim 1 having the structure of Formula I.

3. The compound of claim 2 having the structure of Formula Ia:

\[
\text{Formula Ia.}
\]

4. The compound of claim 2 having the structure of Formula Ib:

\[
\text{Formula Ib;}
\]

wherein s is 0-3.

5. The compound of claim 1, wherein ring T is selected from phenyl, pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl.

6. The compound of claim 1 having the structure of Formula II.

7. The compound of claim 1 having the structure of Formula III.

8. The compound of claim 7 having the structure of Formula IIa:
9. The compound of claim 7 having the structure of Formula IIIf:

[Diagram of Formula IIIf]

wherein \(s \) is 0-2.

10. A compound having the structure of Formula IV, or a pharmaceutically acceptable salt or N-oxide thereof:

[Diagram of Formula IV]

wherein:

\(R^1 \) is H, or substituted or unsubstituted alkyl;

\(R^2 \) is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, aryloxy, alkoxy, amide, ester, alkoyl, cyano, cycloalkyl, aryl, heteroaryl, or heteroalicyclic; substituted or unsubstituted alkoxy; substituted or unsubstituted aralkoxy; substituted or unsubstituted heteroalkyl; substituted or unsubstituted cycloalkyl; substituted or unsubstituted cycloalkylalkyl; substituted or unsubstituted heterocycloalkyl; substituted or unsubstituted heterocycloalkylalkyl; spiro-cycloalkyl-heterocycloalkyl; \(-\text{alkylene-S(=0)R}^9\); \(-\text{alkylene-S(=0)}_2\text{R}^9\); or \(-\text{S(=0)}_2\text{R}^9\);
R³ is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl.

R⁴ is substituted or unsubstituted 6-membered monocyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R⁴, substituted or unsubstituted bicyclic heteroaryl ring attached to the phenyl ring via a carbon atom of R⁴, or substituted or unsubstituted heterocycloalkyl attached to the phenyl ring via a carbon atom of R⁴;

each R⁵ is independently halogen, -CN, -NO₂, -OH, -OCF₃, -OCH₂F, -OCF₂H, -CF₃, -SR₈, -
 NR⁹S(=O)₂R⁹, -S(=O)₂N(R⁹)₂, -S(=O)R⁹, -S(=O)₂R⁹, -C(=O)R⁹, -OC(=O)R⁹, -CO₂R⁹, -N(R⁹)₂, -C(=O)N(R⁹)₂, -NR⁹C(=O)R¹⁰, -N R⁹C(=O)OR¹⁰, -NR⁹C(=O)N(R⁹)₂, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;

each R⁶ is independently H or R⁹;

each R⁷ is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

each R⁸ is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl; or two R⁸, together with the atoms to which they are attached form a heterocycle; and

s is 0-4.

11. The compound of claim 10, wherein R⁴ is a substituted or unsubstituted C-linked 6-membered monocyclic heteroaryl ring or a substituted or unsubstituted C-linked bicyclic heteroaryl ring.

12. The compound of claim 11, wherein R⁴ is pyridine, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, or imidazopyridinyl.

13. The compound of claim 1, wherein R⁴ is a substituted or unsubstituted C-linked heteroaryl.

14. The compound of claim 13 wherein R⁴ is selected from pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, and imidazopyridinyl.

15. The compound of claim 1, wherein R⁴ is a C-linked heterocycloalkyl.
16. The compound of claim 15, wherein heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl.

17. The compound of claim 1, wherein each R^5 is independently halogen, -CN, -OH, -OCF_3, -OCF_3, -OCF_2H, -CF_3, -SR^2, -N(R^6)_2, a substituted or unsubstituted alkyl, or a substituted or unsubstituted alkoxy.

18. The compound of claim 1, wherein each R^5 is independently halogen, -N(R^6)_2, or a substituted or unsubstituted alkyl.

19. The compound of claim 1 wherein s is 0.

20. The compound of claim 1 wherein s is 1.

21. The compound of claim 1 wherein s is 2.

22. The compound of claim 1, wherein R^3 is H.

23. The compound of claim 1, wherein R^3 is a substituted or unsubstituted alkoxy, or a substituted or unsubstituted amino.

24. The compound claim 1, wherein R^3 is a substituted or unsubstituted alkyl, or a substituted or unsubstituted heteroalkyl.

25. The compound of claim 1, wherein R^3 is a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl.

26. The compound of claim 25, wherein cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

27. The compound of claim 25, wherein heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl.

28. The compound of claim 1, wherein R^3 is a substituted or unsubstituted cycloalkylalkyl, or a substituted or unsubstituted heterocycloalkylalkyl.

29. The compound claim 1, wherein R^3 is a substituted or unsubstituted aryl, or a substituted or unsubstituted heteroaryl.

30. The compound of claim 29, wherein aryl is phenyl.

31. The compound of claim 29, wherein heteroaryl is pyrrolyl, furanyl, thiophenyl, pyrazolyl, imidazolyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-thia-3,4-diazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, benzofuranyl, benzimidazolyl, indazolyl, pyrrolopyridinyl, or imidazopyridinyl.

32. The compound of claim 1, wherein R^3 is a substituted or unsubstituted arylalkyl, or a substituted or unsubstituted heteroarylalkyl.

33. The compound of claim 1, wherein R^2 is a substituted or unsubstituted heteroalkyl, substituted or unsubstituted alkoxy, or a substituted or unsubstituted aralkoxy.
34. The compound of claim 1, wherein R² is unsubstituted alkyl or alkyl substituted with substituted or unsubstituted amino, amido, nitro, arylothio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, amide, ester, alkoyl, cyano, aryl, or heteroaryl.

35. The compound of claim 1, wherein R² is a substituted or unsubstituted cycloalkyl, or a substituted or unsubstituted heterocycloalkyl.

36. The compound of claim 35, wherein cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

37. The compound of claim 35, wherein heterocycloalkyl is pyrrolidinyl, tetrahydrofuranyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, morpholinyl, or piperazinyl.

38. The compound of claim 1, wherein R² is a substituted or unsubstituted cycloalkylalkyl, or a substituted or unsubstituted heterocycloalkylalkyl.

39. The compound of claim 1, wherein R² is spiro-cycloalkyl-heterocycloalkyl.

40. The compound of claim 1, wherein R² is -alkylene-S(=O)R⁹ or -alkylene-S(=O)₂R⁹.

41. The compound of claim 40, wherein -alkylene is -CH₂-, -CH₂CH₂-, or -CH₂CH₂CH₂-.

42. The compound of claim 1, wherein R² is -S(=O)₂R⁹.

43. The compound of claim 1, wherein R¹ is H.

44. The compound of claim 1, wherein R¹ is substituted or unsubstituted alkyl.

45. A compound selected from:
46. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable excipient, carrier, or binder thereof.

47. A method for treating a cell proliferative disorder in an individual in need thereof, comprising administering to the subject a therapeutically effective amount of the compound of claim 1.
48. The method of claim 47, wherein the cell proliferative disorder is cancer.
49. The method of claim 48, wherein the cancer is a breast cancer, colorectal cancer, brain cancer, lung cancer, pancreatic cancer, kidney cancer, skin cancer, cancer of the central nervous system, liver cancer, stomach cancer, gastrointestinal cancer, ovarian cancer, leukemia, or lymphoma.
50. The method of claim 49, wherein the brain cancer is a glioblastoma.
51. The method of claim 49, wherein the lung cancer is a mesothelioma.
52. The method of claim 49, wherein the cancer of the central nervous system is a tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2.
53. The method of claim 52, wherein the tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2 is a neurofibroma, optic glioma, malignant peripheral nerve sheath tumor, schwannoma, ependymoma, or meningioma.
54. The method of claim 49, wherein the kidney cancer is a renal cell carcinoma.
55. The method of claim 48, wherein the cancer is a recurrent cancer.
56. The method of claim 48, wherein the cancer is a refractory cancer.
57. The method of claim 48, wherein the cancer is a malignant cancer.
58. The method of claim 47, further comprising administering a second therapeutic agent.
59. The method of claim 58, wherein the second therapeutic agent is an anti-cancer agent.
60. The method of claim 59, wherein the anti-cancer agent is a pro-apoptotic agent, a kinase inhibitor, or a receptor tyrosine kinase inhibitor.
61. The method of claim 60, wherein the pro-apoptotic agent is an antagonist of inhibitor of apoptosis (IAP) proteins.
62. The method of claim 61, wherein the antagonist of IAP proteins is BV6 or G-416.
63. The method of claim 60, wherein the kinase inhibitor is gefitinib, U0126, dasatinib, nilotinib, Akt VIII, or imatinib.
64. The method of claim 60, wherein the receptor inhibitor is afatinib, erlotinib, lapatinib, pegaptanib, pazopanib, sunitinib, ranibizumab, vandetanib, or ZD6474.
65. A method for treating a cell proliferative disorder in an individual in need thereof, comprising administering to the subject a therapeutically effective amount of a compound having the structure of Formula I, Formula II, or Formula III, or a pharmaceutically acceptable salt or N-oxide thereof:

![Formulas](image)

wherein:

- ring T is an aryl or heteroaryl ring;
R1 is H, or substituted or unsubstituted alkyl;
R2 is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkylalkyl, spiro-cycloalkyl heterocycloalkyl, -alkylene-S(=O)\textsubscript{2}R9, -alkylene-S(=O)\textsubscript{2}R10, -S(=O)\textsubscript{2}R9;
R3 is H, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;
R4 is substituted or unsubstituted heteroaryl attached to ring T or the phenyl ring via a carbon atom of R4, or substituted or unsubstituted heterocycloalkyl attached to ring T or the phenyl ring via a carbon atom of R4;
each R5 is independently halogen, -CN, -N\textsubscript{2}O, -OH, -OCF\textsubscript{3}, -OCH\textsubscript{2}F, -OCF\textsubscript{2}H, -CF\textsubscript{3}, -SR8, -NR6S(=O)\textsubscript{2}R9, -S(=O)\textsubscript{2}N(R6)\textsubscript{2}, -S(=O)R9, -S(=O)2R9, -S(=O)R9, -S(=O)2R9, -C(=O)R9, -C(=O)R9, -C\textsubscript{0}2R9, -N(R6)\textsubscript{2}, -C(=O)N(R6)\textsubscript{2}, -NRC(=O)R9, -NRC(=O)R9, -NRC(=O)OR9, -NRC(=O)OR9, -NRC(=O)N(R6)\textsubscript{2}, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted heteroalkyl, or substituted or unsubstituted heterocycloalkyl; or substituted or unsubstituted cycloalkyl; or substituted or unsubstituted aryl; or substituted or unsubstituted heteroaryl;
each R6 is independently H or R6;
each R7 is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
each R8 is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;
R9 is substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted amino, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl; or two R9, together with the atoms to which they are attached form a heterocycle; and s is 0-4.

66. The method of claim 65, wherein the cell proliferative disorder is cancer.
67. The method of claim 66, wherein the cancer is a breast cancer, colorectal cancer, brain cancer, lung cancer, pancreatic cancer, kidney cancer, skin cancer, cancer of the central nervous system, liver cancer, stomach cancer, gastrointestinal cancer, ovarian cancer, leukemia, or lymphoma.
68. The method of claim 67, wherein the brain cancer is a glioblastoma.
69. The method of claim 67, wherein the lung cancer is mesothelioma
70. The method of claim 67, wherein the cancer of the central nervous system is a tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2.
71. The method of claim 70, wherein the tumor associated with neurofibromatosis type 1 or neurofibromatosis type 2 is a neurofibroma, optic glioma, malignant peripheral nerve sheath tumor, schwannoma, ependymoma, or meningioma.

72. The method of claim 67, wherein the kidney cancer is a renal cell carcinoma.

73. The method of claim 67, wherein the cancer is a recurrent cancer.

74. The method of claim 67, wherein the cancer is a refractory cancer.

75. The method of claim 67, wherein the cancer is a malignant cancer.

76. The method of claim 67, further comprising administering a second therapeutic agent.

77. The method of claim 76, wherein the second therapeutic agent is an anti-cancer agent.

78. The method of claim 77, wherein the anti-cancer agent is a pro-apoptotic agent, a kinase inhibitor, or a receptor tyrosine kinase inhibitor.

79. The method of claim 78, wherein the pro-apoptotic agent is an antagonist of inhibitor of apoptosis (IAP) proteins.

80. The method of claim 79, wherein the antagonist of IAP proteins is BV6 or G-416.

81. The method of claim 78, wherein the kinase inhibitor is gefitinib, U0126, dasatinib, nilotinib, Akt VIII, or imatinib.

82. The method of claim 78, wherein the receptor inhibitor is afatinib, erlotinib, lapatinib, pegaptanib, pazopanib, sunitinib, ranibizumab, vandetanib, or ZD6474.
FIG. 2

Kolmogorov-Smirnov test: p < 0.01

Cumulative proportion

Spine head diameter

Veh
PAK inhibitor
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C07D 471/04(2006.01)i, C07D 405/14(2006.01)1, C07D 403/10(2006.01)i, A61K 31/519(2006.01)1, A61P 35/00(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C07D 471/04; C12Q 1/48; A61K 31/505; C07K 16/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: pyrido[2,3-d]pyrimidin-7-one, cell proliferative disorder, CNS disorder

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2009-130015 A1 (GPC BIOTECH AG) 29 October 2009</td>
<td>1-46</td>
</tr>
<tr>
<td></td>
<td>See abstract, page 8 (compound A), claims 1-15, and the entire document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, page 812 (Table 1)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1201765 A2 (AXXIMA PHARMACEUTICALS AKTIENGESELLSCHAFT) 02 May 2002</td>
<td>1-46</td>
</tr>
<tr>
<td></td>
<td>See abstract, page 6 (Table 1), claims 1-28, and the entire document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, and pages 3279-3280 (Table 1-3)</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
21 MARCH 2013 (21.03.2013)

Date of mailing of the international search report
22 MARCH 2013 (22.03.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea

Authorized officer
LEE, Jae Jeong

Telephone No. 82-42-481-3488

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

See abstract, and page 1754 (Table 1)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: **47-82**
 because they relate to subject matter not required to be searched by this Authority, namely:

 Claims 47-82 pertain to methods for treatment of the human body, and thus relate to a subject matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☒ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☒ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☒ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☒ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 102083829 A</td>
<td>01.06.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-518204 A</td>
<td>23.06.2011</td>
</tr>
<tr>
<td>EP 1201765 A2</td>
<td>02.05.2002</td>
<td>EP 1201765 A3</td>
<td>02.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1201765 A3</td>
<td>27.08.2003</td>
</tr>
</tbody>
</table>