Title: EPHA2 MONOCLONAL ANTIBODIES AND METHODS OF USE THEREOF

Abstract: The present invention relates to methods and compositions designed for the treatment, management, or prevention of cancer, particularly, metastatic cancer. In one embodiment, the methods of the invention comprise the administration of an effective amount of an antibody that binds to EphA2 and agonizes EphA2, thereby increasing EphA2 phosphorylation and decreasing EphA2 levels. In other embodiments, the methods of the invention comprise the administration of an effective amount of an antibody that binds to EphA2 and inhibits cancer cell colony formation in soft agar, inhibits tubular network formation in three-dimensional basement membrane or extracellular matrix preparation, preferentially binds to an EphA2 epitope that is exposed on cancer cells but not non-cancer cells, and/or has a low Kd, thereby, inhibiting tumor cell growth and/or metastasis. The invention also provides pharmaceutical compositions comprising one or more EphA2 antibodies of the invention either alone or in combination with one or more other agents useful for cancer therapy.

Published:
- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
EphA2 MONOCLONAL ANTIBODIES AND
METHODS OF USE THEREOF

This application claims priority to U.S. Provisional Application Serial No. 60/379,322, filed May 10, 2002, U.S. Provisional Application Serial No. 60/418,213, filed October 14, 2002, and U.S. Provisional Application Serial No. 60/460,507, filed April 3, 2003, each of which is incorporated herein by reference in its entirety.

1. FIELD OF THE INVENTION

[0001] The present invention relates to methods and compositions designed for the treatment, management, or prevention of hyperproliferative cell disease, particularly, cancer. The methods of the invention comprise the administration of an effective amount of one or more antibodies specific for EphA2, preferably monoclonal antibodies, that are EphA2 agonists, inhibit a cancer cell phenotype (such as colony formation in soft agar or tubular network formation in a three dimensional basement membrane or extracellular membrane preparation, such as MATRIGEL™), preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells relative to non-cancer cells and/or bind EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$. The invention also provides pharmaceutical compositions comprising one or more monoclonal antibodies of the invention either alone or in combination with one or more other agents useful for cancer therapy. Diagnostic methods and methods for screening for therapeutically useful EphA2 specific antibodies are also provided.

2. BACKGROUND OF THE INVENTION

Cancer

[0002] A neoplasm, or tumor, is a neoplastic mass resulting from abnormal uncontrolled cell growth which can be benign or malignant. Benign tumors generally remain localized. Malignant tumors are collectively termed cancers. The term “malignant” generally means that the tumor can invade and destroy neighboring body structures and spread to distant sites to cause death (for review, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W.B. Saunders Co., Philadelphia, pp. 68-122). Cancer can arise in many sites of the body and behave differently depending upon its origin. Cancerous cells destroy
the part of the body in which they originate and then spread to other part(s) of the body where they start new growth and cause more destruction.

[0003] More than 1.2 million Americans develop cancer each year. Cancer is the second leading cause of death in the United States and, if current trends continue, cancer is expected to be the leading cause of death by the year 2010. Lung and prostate cancer are the top cancer killers for men in the United States. Lung and breast cancer are the top cancer killers for women in the United States. One in two men in the United States will be diagnosed with cancer at some time during his lifetime. One in three women in the United States will be diagnosed with cancer at some time during her lifetime.

[0004] A cure for cancer has yet to be found. Current treatment options, such as surgery, chemotherapy and radiation treatment, are often either ineffective or present serious side effects.

Metastasis

[0005] The most life-threatening forms of cancer often arise when a population of tumor cells gains the ability to colonize distant and foreign sites in the body. These metastatic cells survive by overriding restrictions that normally constrain cell colonization into dissimilar tissues. For example, typical mammary epithelial cells will generally not grow or survive if transplanted to the lung, yet lung metastases are a major cause of breast cancer morbidity and mortality. Recent evidence suggests that dissemination of metastatic cells through the body can occur long before clinical presentation of the primary tumor. These micrometastatic cells may remain dormant for many months or years following the detection and removal of the primary tumor. Thus, a better understanding of the mechanisms that allow for the growth and survival of metastatic cells in a foreign microenvironment is critical for the improvement of therapeutics designed to fight metastatic cancer and diagnostics for the early detection and localization of metastases.

Cancer Cell Signaling

[0006] Cancer is a disease of aberrant signal transduction. Aberrant cell signaling overrides anchorage-dependent constraints on cell growth and survival (Rhim, et al., Critical Reviews in Oncogenesis 8:305, 1997; Patarca, Critical Reviews in Oncogenesis 7:343, 1996; Malik, et al., Biochimica et Biophysics Acta 1287:73, 1996; Cance, et al., Breast Cancer Res Treat 35:105, 1995). Tyrosine kinase activity is induced by ECM anchorage and indeed, the expression or function of tyrosine kinases is usually increased in malignant cells (Rhim, et al., Critical Reviews in Oncogenesis 8:305,1997; Cance, et al.,

EphA2

[0007] EphA2 is a 130 kDa receptor tyrosine kinase that is expressed in adult epithelia, where it is found at low levels and is enriched within sites of cell-cell adhesion (Zantek, et al, Cell Growth & Differentiation 10:629, 1999; Lindberg, et al., Molecular & Cellular Biology 10: 6316, 1990). This subcellular localization is important because EphA2 binds ligands (known as EphrinsA1 to A5) that are anchored to the cell membrane (Eph Nomenclature Committee, 1997, Cell 90:403; Gale, et al., 1997, Cell & Tissue Research 290: 227). The primary consequence of ligand binding is EphA2 autophosphorylation (Lindberg, et al., 1990, supra). However, unlike other receptor tyrosine kinases, EphA2 retains enzymatic activity in the absence of ligand binding or phosphotyrosine content (Zantek, et al., 1999, supra). EphA2 is upregulated on a large number of aggressive carcinoma cells.

Cancer Therapy

[0008] One barrier to the development of anti-metastasis agents has been the assay systems that are used to design and evaluate these drugs. Most conventional cancer therapies target rapidly growing cells. However, cancer cells do not necessarily grow more rapidly but instead survive and grow under conditions that are non-permissive to normal cells (Lawrence and Steeg, 1996, World J. Urol. 14:124-130). These fundamental differences between the behaviors of normal and malignant cells provide opportunities for therapeutic targeting. The paradigm that micrometastatic tumors have already disseminated throughout the body emphasizes the need to evaluate potential chemotherapeutic drugs in the context of a foreign and three-dimensional microenvironment. Many standard cancer drug assays measure tumor cell growth or survival under typical cell culture conditions (i.e.,
monolayer growth). However, cell behavior in two-dimensional assays often does not reliably predict tumor cell behavior in vivo.

Currently, cancer therapy may involve surgery, chemotherapy, hormonal therapy and/or radiation treatment to eradicate neoplastic cells in a patient (see, for example, Stockdale, 1998, "Principles of Cancer Patient Management," in Scientific American: Medicine, vol. 3, Rubenstein and Federman, eds., Chapter 12, Section IV). Recently, cancer therapy may also involve biological therapy or immunotherapy. All of these approaches can pose significant drawbacks for the patient. Surgery, for example, may be contraindicated due to the health of the patient or may be unacceptable to the patient. Additionally, surgery may not completely remove the neoplastic tissue. Radiation therapy is only effective when the neoplastic tissue exhibits a higher sensitivity to radiation than normal tissue, and radiation therapy can also often elicit serious side effects. Hormonal therapy is rarely given as a single agent and, although it can be effective, is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of the cancer cells. Biological therapies/immunotherapies are limited in number and each therapy is generally effective for a very specific type of cancer.

With respect to chemotherapy, there are a variety of chemotherapeutic agents available for treatment of cancer. A significant majority of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly, or indirectly by inhibiting the biosynthesis of the deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant cell division (see, for example, Gilman et al., Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, Eighth Ed. (Pergamom Press, New York, 1990)). These agents, which include alkylating agents, such as nitrosourea, anti-metabolites, such as methotrexate and hydroxyurea, and other agents, such as etoposides, camptothecins, bleomycin, doxorubicin, daunorubicin, etc., although not necessarily cell cycle specific, kill cells during S phase because of their effect on DNA replication. Other agents, specifically colchicine and the vinca alkaloids, such as vinblastine and vincristine, interfere with microtubule assembly resulting in mitotic arrest. Chemotherapy protocols generally involve administration of a combination of chemotherapeutic agents to increase the efficacy of treatment.

Despite the availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks (see, for example, Stockdale, 1998, "Principles Of Cancer Patient Management" in Scientific American Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. 10). Almost all chemotherapeutic agents are toxic, and
chemotherapy causes significant, and often dangerous, side effects, including severe nausea, bone marrow depression, immunosuppression, etc. Additionally, even with administration of combinations of chemotherapeutic agents, many tumor cells are resistant or develop resistance to the chemotherapeutic agents. In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even those agents that act by mechanisms different from the mechanisms of action of the drugs used in the specific treatment; this phenomenon is termed pleiotropic drug or multidrug resistance. Thus, because of drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.

There is a significant need for alternative cancer treatments, particularly for treatment of cancer that has proved refractory to standard cancer treatments, such as surgery, radiation therapy, chemotherapy, and hormonal therapy. Further, it is uncommon for cancer to be treated by only one method. Thus, there is a need for development of new therapeutic agents for the treatment of cancer and new, more effective, therapy combinations for the treatment of cancer.

3. **SUMMARY OF THE INVENTION**

EphA2 is overexpressed and functionally altered in a large number of malignant carcinomas. EphA2 is an oncoprotein and is sufficient to confer metastatic potential to cancer cells. EphA2 is also associated with other hyperproliferating cells and is implicated in diseases caused by cell hyperproliferation. EphA2 that is overexpressed on malignant cells exhibits kinase activity independent from ligand binding. The present inventors have found that a decrease in EphA2 levels can decrease proliferation and/or metastatic behavior of a cell. In particular, the present inventors have discovered that, surprisingly, antibodies that agonize EphA2, i.e., elicit EphA2 signaling, actually decrease EphA2 expression and inhibit tumor cell growth and/or metastasis. Although not intending to be bound by any mechanism of action, agonistic antibodies may repress hyperproliferation or malignant cell behavior by inducing EphA2 autophosphorylation, thereby causing subsequent EphA2 degradation to down-regulate expression. Thus, in one embodiment, the EphA2 antibodies of the invention agonize EphA2 signaling and increase phosphorylation of EphA2 ("EphA2 agonistic antibodies").

In addition, cancer cells exhibit phenotypic traits that differ from those of non-cancer cells, for example, formation of colonies in a three-dimensional substrate such as soft agar or the formation of tubular networks or weblike matrices in a three-dimensional
basement membrane or extracellular matrix preparation, such as MATRIGEL™. Non-cancer cells do not form colonies in soft agar and form distinct sphere-like structures in three-dimensional basement membrane or extracellular matrix preparations. Accordingly, the invention also provides antibodies that specifically bind EphA2 and inhibit one or more cancer cell phenotypes, such as colony formation in soft agar or tubular network formation in three-dimensional basement membrane or extracellular matrix preparations ("cancer cell phenotype inhibitory EphA2 antibodies"). Exposing cancer cells to such cancer cell phenotype inhibitory EphA2 antibodies prevents or decreases the cells’ ability to colonize or form tubular networks in these substrates. Furthermore, in certain embodiments, the addition of such cancer cell phenotype inhibitory EphA2 antibodies to already established colonies of cancer cells cause a reduction or elimination of an existing cancer cell colony, i.e., leads to killing of hyperproliferative and/or metastatic cells, for example through necrosis or apoptosis.

[0015] Differences in the subcellular localization, ligand binding properties or protein organization (e.g., structure, orientation in the cell membrane) can further distinguish the EphA2 that is present on cancer cells from EphA2 on non-cancer cells. In non-cancer cells, EphA2 is expressed at low levels and is localized to sites of cell-cell contact, where it can engage its membrane-anchored ligands. However, cancer cells generally display decreased cell-cell contacts and this can decrease EphA2-ligand binding. Furthermore, the overexpression of EphA2 can cause an excess of EphA2 relative to ligand that increases the amount of non-ligand bound EphA2. Consequently, changes in the subcellular distribution or membrane orientation of EphA2 can cause EphA2 to localize to sites in a cancer cell where it is inaccessible to ligand. Additionally, EphA2 may have altered ligand binding properties (e.g., due to an altered conformation) in cancer cells such that it is incapable of stable interactions with its ligand whether or not it is localized to the cell-cell junction. In each case, these changes can expose certain epitopes on the EphA2 in cancer cells that are not exposed in non-cancer cells. Accordingly, the invention also provides antibodies that specifically bind EphA2 but preferably bind an EphA2 epitope exposed on cancer cells but not on non-cancer cells ("exposed EphA2 epitope antibodies"). Exposing cancer cells to such EphA2 antibodies that preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells targets the therapeutic/prophylactic antibody to cancer cells and prevents or decreases the cells’ ability to proliferate while sparing non-cancer cells.
[0016] The present inventors have also found that antibodies that bind EphA2 with a very low K_{off} rate are particularly effective to reduce EphA2 expression and/or induce EphA2 degradation and, thereby, inhibit tumor cell growth and/or metastasis and/or proliferation of hyperproliferative cells. Accordingly, the invention further provides antibodies that bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ and, preferably, are EphA2 agonists.

[0017] The present invention provides for the screening and identification of antibodies that bind to EphA2 and agonize EphA2, inhibit a cancer cell phenotype, preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells and/or have a K_{off} less than 3×10^{-3} s$^{-1}$, preferably monoclonal antibodies. In particular, the antibodies of the invention bind to the extracellular domain of EphA2 and, preferably, elicit EphA2 signaling and EphA2 autophosphorylation, inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed on cancer cells but not non-cancer cells, and/or have a K_{off} of less than 3×10^{-3} s$^{-1}$.

[0018] In one embodiment, the antibodies of the invention are those listed in Table 6. In a preferred embodiment, the antibodies of the invention are Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, and Eph099B-233.152. In a more preferred embodiment, the antibodies of the invention are human or humanized. In a most preferred embodiment, the antibodies of the invention are humanized Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, and Eph099B-233.152.

[0019] Accordingly, the present invention relates to pharmaceutical compositions and prophylactic and therapeutic regimens designed to prevent, treat, or manage a disease associated with overexpression of EphA2, particularly cancer, particularly metastatic cancer, in a subject comprising administering one or more antibodies that specifically bind to and agonize EphA2, inhibit a cancer cell phenotype (such as colony formation in soft agar or tubular network formation in a three dimensional basement membrane or extracellular membrane preparation, such as MATRIGEL™), preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells and/or have a K_{off} less than 3×10^{-3} s$^{-1}$. In preferred embodiments, the EphA2 antibody decreases the size of colonies already formed in soft agar and/or reduces the extent of tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation. In one embodiment, the cancer is of an epithelial cell origin. In another embodiment, the cancer is a cancer of the skin, lung, colon, prostate, breast, bladder, or pancreas or is a renal cell carcinoma or a melanoma. In a preferred embodiment, the cancer
cells in the cancer to be prevented, treated, or managed overexpress EphA2. In a preferred embodiment, some EphA2 is not bound to ligand, either as a result of decreased cell-cell contacts, altered subcellular localization, or increases in amount of EphA2 relative to ligand. In a preferred embodiment, the methods of the invention are used to prevent, treat, or manage metastasis of tumors. The antibodies of the invention can be administered in combination with one or more other cancer therapies. In particular, the present invention provides methods of preventing, treating, or managing cancer in a subject comprising administering to said subject a therapeutically or prophylactically effective amount of one or more EphA2 antibodies of the invention in combination with the administration of a therapeutically or prophylactically effective amount of one or more chemotherapies, hormonal therapies, biological therapies/immunotherapies and/or radiation therapies other than the administration of an EphA2 antibody of the invention or in combination with surgery.

[0020] In other embodiments, the EphA2 antibodies of the invention are used to treat, prevent and/or manage a non-cancer disease or disorder associated with cell hyperproliferation, such as but not limited to asthma, chronic obstructive pulmonary disease, restenosis (smooth muscle and/or endothelial), psoriasis, etc. In preferred embodiments, the hyperproliferative cells are epithelial. In preferred embodiments, the hyperproliferative cells overexpress EphA2. In a preferred embodiment, some EphA2 is not bound to ligand, either as a result of decreased cell-cell contacts, altered subcellular localization, or increases in amount of EphA2 relative to EphA2-ligand.

[0021] The methods and compositions of the invention are useful not only in untreated patients but are also useful in the treatment of patients partially or completely refractory to current standard and experimental cancer therapies, including but not limited to chemotherapies, hormonal therapies, biological therapies, radiation therapies, and/or surgery as well as to improve the efficacy of such treatments. In particular, EphA2 expression has been implicated in increasing levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy. In addition, EphA2 overexpression can override the need for estrogen receptor activity thus contributing to tamoxifen resistance in breast cancer cells. Accordingly, in a preferred embodiment, the invention provides therapeutic and prophylactic methods for the treatment or prevention of cancer that has been shown to be or may be refractory or non-responsive to therapies other than those comprising administration of EphA2 antibodies of the invention. In a specific embodiment,
one or more EphA2 antibodies of the invention are administered to a patient refractory or non-responsive to a non-EphA2-based treatment, particularly tamoxifen treatment or a treatment in which resistance is associated with increased IL-6 levels, to render the patient non-refractory or responsive. The treatment to which the patient had previously been refractory or non-responsive can then be administered with therapeutic effect.

[0022] In addition, the present invention provides methods of screening for EphA2 antibodies of the invention. In particular, antibodies may be screened for binding to EphA2, particularly the extracellular domain of EphA2, using routine immunological techniques. In one embodiment, to identify agonistic EphA2 antibodies, EphA2 antibodies may be screened for the ability to elicit EphA2 signaling, e.g., increase EphA2 phosphorylation and/or to degrade EphA2.

[0023] In another embodiment, to identify cancer cell phenotype inhibiting antibodies, anti-EphA2 antibodies may be screened for the ability to prevent or reduce cancer cell colony formation in soft agar or reduce or inhibit tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation, or any other method that detects a decrease in a cancer phenotype, for example, any assay that detects an increase in contact inhibition of cell proliferation (e.g., reduction of colony formation in a monolayer cell culture). In preferred embodiments, the antibodies are screened for ability to decrease the size of existing colonies in soft agar or reduce the extent or tubular matrix formation in the three-dimensional basement membrane or extracellular matrix preparation, particular induces cell (particularly cancer cell, more particularly metastatic cancer cell, but also including other hyperproliferative cell) necrosis or apoptosis. Additionally, antibodies may be screened for their ability to inhibit or reduce colony formation in soft agar and/or tubular network formation in three-dimensional basement membrane or extracellular matrix preparations in the presence of other anti-cancer agents, e.g., hormonal, chemotherapeutic, biologic or other anti-cancer agents.

[0024] In another embodiment, to identify antibodies that preferentially bind an EphA2 epitope exposed on cancer cells but not non-cancer cells, antibodies may be screened for the ability to preferentially bind EphA2 that is not bound to ligand, e.g., Ephrin A1, and that is not localized to cell-cell contacts. Any method known in the art to determine antibody binding/localization on a cell can be used to screen candidate antibodies for desirable binding properties. In a specific embodiment, immunofluorescence microscopy or flow cytometry is used to determine the binding characteristics of an antibody. In this embodiment, antibodies that bind poorly to EphA2 when it is bound to its
ligand and localized to cell-cell contacts but bind well to free EphA2 on a cell are
encompassed by the invention. In another specific embodiment, EphA2 antibodies are
selected for their ability to compete with ligands (e.g., cell-anchored or purified ligands) for
binding to EphA2 using cell-based or ELISA assays.

In another embodiment, antibodies are screened using antibody binding
kinetic assays well known in the art (e.g., surface plasmon resonance based assays, such as
a BIACORE™ assay) to identify antibodies having a K_{off} rate less than 3×10^3 s$^{-1}$.

In other embodiments, the invention provides methods of treating,
preventing, or managing cancer, by administering therapeutic agents, other than EphA2
antibodies of the invention, that reduce EphA2 protein levels, for example but not by way of
limitation, anti-sense nucleic acids specific for EphA2, double stranded EphA2 RNA that
mediates RNA interference of EphA2 expression, anti-EphA2 ribozymes, etc., as well as
other inhibitors of EphA2, for example, small molecule inhibitors of EphA2.

The present inventors have also found that increased EphA2 expression
correlates with increased fibronectin expression. Moreover, high levels of exogenous
fibronectin increase cells' ability to form colonies in soft agar while specific inhibitors of
cell-fibronectin attachment decrease colony formation of tumor-derived cancer cells in soft
agar. Thus, fibronectin appears to accommodate tumor cell colonization in foreign
environments, e.g., formation and growth of distal metastases. Accordingly, in a particular
embodiment, the invention provides, either alone or in combination with the EphA2
antibodies of the invention, methods of treating, preventing, or managing cancer,
particularly metastatic disease, by administering an agent that prevents cell-fibronectin
binding and/or fibronectin expression.

The invention further provides diagnostic methods using the EphA2
antibodies of the invention to evaluate the efficacy of cancer treatment, either EphA2-based
or not EphA2-based. In general, increased EphA2 expression is associated with
increasingly invasive and metastatic cancers. Accordingly, a reduction in EphA2
expression with a particular treatment indicates that the treatment is reducing the
invasiveness and/or metastatic potential of cancer. The diagnostic methods of the invention
may also be used to prognose or predict the course of cancer or outcomes of cancer therapy.
In particular embodiments, the diagnostic methods of the invention provide methods of
imaging and localizing metastases and methods of diagnosis and prognosis using tissues
and fluids distal to the primary tumor site (as well as methods using tissues and fluids of the
primary tumor), for example, whole blood, sputum, urine, serum, fine needle aspirates (i.e.,
biopsies). In other embodiments, the diagnostic methods of the invention provide methods of imaging and localizing metastases and methods of diagnosis and prognosis in vivo. In such embodiments, primary metastatic tumors are detected using an antibody of the invention, preferably an exposed EphA2 epitope antibody. The antibodies of the invention may also be used for immunohistochemical analyses of frozen or fixed cells or tissue assays. In addition, the antibodies and diagnostic methods of the invention may be used to diagnose, prognose or monitor therapy of (whether EphA2 or non-EphA2-based therapy) non-cancer hyperproliferative diseases (particularly associated with EphA2 overexpression), for example, but not limited to, asthma, psoriasis, restenosis, chronic obstructive pulmonary disease, etc.

In another embodiment, kits comprising the pharmaceutical compositions or diagnostic reagents of the invention are provided.

3.1 DEFINITIONS

As used herein, the term “agonist” refers to any compound including a protein, polypeptide, peptide, antibody, antibody fragment, large molecule, or small molecule (less than 10 kD), that increases the activity, activation or function of another molecule. EphA2 agonists cause increased phosphorylation and degradation of EphA2 protein. EphA2 antibodies that agonize EphA2 may or may not also inhibit cancer cell phenotype (e.g., colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation) and may or may not preferentially bind an EphA2 epitope that is exposed in a cancer cell relative to a non-cancer cell and may or may not have a low K_{off} rate.

The term “antibodies or fragments thereof that immunospecifically bind to EphA2” as used herein refers to antibodies or fragments thereof that specifically bind to an EphA2 polypeptide or a fragment of an EphA2 polypeptide and do not specifically bind to other non-EphA2 polypeptides. Preferably, antibodies or fragments that immunospecifically bind to an EphA2 polypeptide or fragment thereof do not non-specifically cross-react with other antigens (e.g., binding cannot be competed away with a non-EphA2 protein, e.g., BSA in an appropriate immunoassay). Antibodies or fragments that immunospecifically bind to an EphA2 polypeptide can be identified, for example, by immunoassays or other techniques known to those of skill in the art. Antibodies of the invention include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, intrabodies, multispecific antibodies (including bi-
specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, synthetic antibodies, single-chain Fvs (scFv) (including bi-specific scFvs), single chain antibodies Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), and anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. In particular, antibodies of the present invention include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to an EphA2 antigen (e.g., one or more complementarity determining regions (CDRs) of an anti-EphA2 antibody). Preferably agonistic antibodies or fragments thereof that immunospecifically bind to an EphA2 polypeptide or fragment thereof preferentially agonize EphA2 and do not significantly agonize other activities.

[0032] As used herein, the term “cancer” refers to a disease involving cells that have the potential to metastasize to distal sites and exhibit phenotypic traits that differ from those of non-cancer cells, for example, formation of colonies in a three-dimensional substrate such as soft agar or the formation of tubular networks or weblike matrices in a three-dimensional basement membrane or extracellular matrix preparation, such as MATRIGEL™. Non-cancer cells do not form colonies in soft agar and form distinct sphere-like structures in three-dimensional basement membrane or extracellular matrix preparations. Cancer cells acquire a characteristic set of functional capabilities during their development, albeit through various mechanisms. Such capabilities include evading apoptosis, self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion/metastasis, limitless replicative potential, and sustained angiogenesis. The term “cancer cell” is meant to encompass both pre-malignant and malignant cancer cells.

[0033] As used herein, the phrase “cancer cell phenotype inhibiting” refers to the ability of a compound to prevent or reduce cancer cell colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation or any other method that detects a reduction in a cancer cell phenotype, for example, assays that detect an increase in contact inhibition of cell proliferation (e.g., reduction of colony formation in a monolayer cell culture). Cancer cell phenotype inhibiting compounds may also cause a reduction or elimination of colonies when added to established colonies of cancer cells in soft agar or the extent of tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation. EphA2 antibodies that inhibit cancer cell phenotype may or may not also agonize EphA2 and may or may not have a low K_{off} rate.
The term "derivative" as used herein refers to a polypeptide that comprises an amino acid sequence of an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody that immunospecifically binds to an EphA2 polypeptide, or an antibody fragment that immunospecifically binds to an EphA2 polypeptide, that has been altered by the introduction of amino acid residue substitutions, deletions or additions (i.e., mutations). In some embodiments, an antibody derivative or fragment thereof comprises amino acid residue substitutions, deletions or additions in one or more CDRs. The antibody derivative may have substantially the same binding, better binding, or worse binding when compared to a non-derivative antibody. In specific embodiments, one, two, three, four, or five amino acid residues of the CDR have been substituted, deleted or added (i.e., mutated). The term "derivative" as used herein also refers to an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody that immunospecifically binds to an EphA2 polypeptide, or an antibody fragment that immunospecifically binds to an EphA2 polypeptide which has been modified, i.e., by the covalent attachment of any type of molecule to the polypeptide. For example, but not by way of limitation, an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody, or antibody fragment may be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. A derivative of an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody, or antibody fragment may be modified by chemical modifications using techniques known to those of skill in the art, including, but not limited to, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Further, a derivative of an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody, or antibody fragment may contain one or more non-classical amino acids. In one embodiment, a polypeptide derivative possesses a similar or identical function as an EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody, or antibody fragment described herein. In another embodiment, a derivative of EphA2 polypeptide, a fragment of an EphA2 polypeptide, an antibody, or antibody fragment has an altered activity when compared to an unaltered polypeptide. For example, a derivative antibody or fragment thereof can bind to its epitope more tightly or be more resistant to proteolysis.

The term "epitope" as used herein refers to a portion of an EphA2 polypeptide having antigenic or immunogenic activity in an animal, preferably in a mammal, and most preferably in a mouse or a human. An epitope having immunogenic activity is a portion of an EphA2 polypeptide that elicits an antibody response in an animal.
An epitope having antigenic activity is a portion of an EphA2 polypeptide to which an antibody immunospecifically binds as determined by any method well known in the art, for example, by immunoassays. Antigenic epitopes need not necessarily be immunogenic.

The "fragments" described herein include a peptide or polypeptide comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least contiguous 80 amino acid residues, at least contiguous 90 amino acid residues, at least contiguous 100 amino acid residues, at least contiguous 125 amino acid residues, at least contiguous 150 amino acid residues, at least contiguous 175 amino acid residues, at least contiguous 200 amino acid residues, or at least contiguous 250 amino acid residues of the amino acid sequence of an EphA2 polypeptide or an antibody that immunospecifically binds to an EphA2 polypeptide. Preferably, antibody fragments are epitope-binding fragments.

As used herein, the term "humanized antibody" refers to forms of non-human (e.g., murine) antibodies that are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired specificity, affinity, and capacity. In some instances, Framework Region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin, that immunospecifically binds to an EphA2 polypeptide, that has been altered by the introduction of amino acid residue substitutions, deletions or additions (i.e., mutations). In some embodiments, a humanized antibody is a derivative. Such a humanized antibody comprises amino acid
residue substitutions, deletions or additions in one or more non-human CDRs. The
humanized antibody derivative may have substantially the same binding, better binding, or
worse binding when compared to a non-derivative humanized antibody. In specific
embodiments, one, two, three, four, or five amino acid residues of the CDR have been
substituted, deleted or added (i.e., mutated). For further details in humanizing antibodies,
Publication Nos. WO 91/09967 and WO 93/17105; U.S. Patent Nos. 5,225,539, 5,530,101,
5,565,332, 5,585,089, 5,766,886, and 6,407,213; and Padlan, 1991, Molecular Immunology
28(4/5):489-498; Studnicka et al., 1994, Protein Engineering 7(6):805-814; Roguska et al.,
Chem. 272:10678-84; Roguska et al., 1996, Protein Eng. 9:895-904; Couto et al., 1995,
Cancer Res. 55 (23 Supp):5973s-5977s; Couto et al., 1995, Cancer Res. 55:1717-22;
al., 1986, Nature 321:522-525; Reichmann et al., 1988, Nature 332:323-329; and Presta,

[0038] As used herein, the term “hypervariable region” refers to the amino acid
residues of an antibody which are responsible for antigen binding. The hypervariable
region comprises amino acid residues from a “Complementarity Determining Region” or
“CDR” (i.e., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable
domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain;
Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health
Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a
“hypervariable loop” (i.e., residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain
variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable
domain; Chothia and Lesk, 1987, J. Mol. Biol. 196:901-917). CDR residues for Eph099B-
208.261 and Eph099B-233.152 are listed in Table 1. “Framework Region” or “FR”
residues are those variable domain residues other than the hypervariable region residues as
herein defined.

[0039] As used herein, the term “in combination” refers to the use of more than one
prophylactic and/or therapeutic agents. The use of the term “in combination” does not
restrict the order in which prophylactic and/or therapeutic agents are administered to a
subject with a hyperproliferative cell disorder, especially cancer. A first prophylactic or
therapeutic agent can be administered prior to (e.g., 1 minute, 5 minutes, 15 minutes, 30
minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 1 minute, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second prophylactic or therapeutic agent to a subject which had, has, or is susceptible to a hyperproliferative cell disorder, especially cancer. The prophylactic or therapeutic agents are administered to a subject in a sequence and within a time interval such that the agent of the invention can act together with the other agent to provide an increased benefit than if they were administered otherwise. Any additional prophylactic or therapeutic agent can be administered in any order with the other additional prophylactic or therapeutic agents.

[0040] As used herein, the phrase “low tolerance” refers to a state in which the patient suffers from side effects from treatment so that the patient does not benefit from and/or will not continue therapy because of the adverse effects and/or the harm from the side effects outweighs the benefit of the treatment.

[0041] As used herein, the terms “manage,” “managing” and “management” refer to the beneficial effects that a subject derives from administration of a prophylactic or therapeutic agent, which does not result in a cure of the disease. In certain embodiments, a subject is administered one or more prophylactic or therapeutic agents to “manage” a disease so as to prevent the progression or worsening of the disease.

[0042] As used herein, the phrase “non-responsive/refractory” is used to describe patients treated with one or more currently available therapies (e.g., cancer therapies) such as chemotherapy, radiation therapy, surgery, hormonal therapy and/or biological therapy/immunotherapy, particularly a standard therapeutic regimen for the particular cancer, wherein the therapy is not clinically adequate to treat the patients such that these patients need additional effective therapy, e.g., remain unsusceptible to therapy. The phrase can also describe patients who respond to therapy yet suffer from side effects, relapse, develop resistance, etc. In various embodiments, “non-responsive/refractory” means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are “non-responsive/refractory” can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of “refractory” in such a context.
In various embodiments, a cancer is "non-responsive/refractory" where the number of cancer cells has not been significantly reduced, or has increased during the treatment.

[0043] As used herein, the term "potentiate" refers to an improvement in the efficacy of a therapeutic agent at its common or approved dose.

[0044] As used herein, the terms "prevent," "preventing" and "prevention" refer to the prevention of the onset, recurrence, or spread of a disease in a subject resulting from the administration of a prophylactic or therapeutic agent.

[0045] As used herein, the term "prophylactic agent" refers to any agent that can be used in the prevention of the onset, recurrence or spread of a disease or disorder associated with EphA2 overexpression and/or cell hyperproliferative disease, particularly cancer. In certain embodiments, the term "prophylactic agent" refers to an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ (e.g., Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6). In certain other embodiments, the term "prophylactic agent" refers to cancer chemotherapeutics, radiation therapy, hormonal therapy, biological therapy (e.g., immunotherapy), and/or EphA2 antibodies of the invention. In other embodiments, more than one prophylactic agent may be administered in combination.

[0046] As used herein, a "prophylactically effective amount" refers to that amount of the prophylactic agent sufficient to result in the prevention of the onset, recurrence or spread of cell hyperproliferative disease, preferably, cancer. A prophylactically effective amount may refer to the amount of prophylactic agent sufficient to prevent the onset, recurrence or spread of hyperproliferative disease, particularly cancer, including but not limited to those predisposed to hyperproliferative disease, for example, those genetically predisposed to cancer or previously exposed to carcinogens. A prophylactically effective amount may also refer to the amount of the prophylactic agent that provides a prophylactic benefit in the prevention of hyperproliferative disease. Further, a prophylactically effective amount with respect to a prophylactic agent of the invention means that amount of prophylactic agent alone, or in combination with other agents, that provides a prophylactic benefit in the prevention of hyperproliferative disease. Used in connection with an amount of an EphA2 antibody of the invention, the term can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of or synergies with another prophylactic agent.

[0047] A used herein, a "protocol" includes dosing schedules and dosing regimens.
As used herein, the phrase “side effects” encompasses unwanted and adverse effects of a prophylactic or therapeutic agent. Adverse effects are always unwanted, but unwanted effects are not necessarily adverse. An adverse effect from a prophylactic or therapeutic agent might be harmful or uncomfortable or risky. Side effects from chemotherapy include, but are not limited to, gastrointestinal toxicity such as, but not limited to, early and late-forming diarrhea and flatulence, nausea, vomiting, anorexia, leukopenia, anemia, neutropenia, asthenia, abdominal cramping, fever, pain, loss of body weight, dehydration, alopecia, dyspnea, insomnia, dizziness, mucositis, xerostomia, and kidney failure, as well as constipation, nerve and muscle effects, temporary or permanent damage to kidneys and bladder, flu-like symptoms, fluid retention, and temporary or permanent infertility. Side effects from radiation therapy include but are not limited to fatigue, dry mouth, and loss of appetite. Side effects from biological therapies/immunotherapies include but are not limited to rashes or swellings at the site of administration, flu-like symptoms such as fever, chills and fatigue, digestive tract problems and allergic reactions. Side effects from hormonal therapies include but are not limited to nausea, fertility problems, depression, loss of appetite, eye problems, headache, and weight fluctuation. Additional undesired effects typically experienced by patients are numerous and known in the art. Many are described in the Physicians’ Desk Reference (56th ed., 2002).

As used herein, the terms “single-chain Fv” or “scFv” refer to antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of sFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenberg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994). In specific embodiments, scFvs include bi-specific scFvs and humanized scFvs.

As used herein, the terms “subject” and “patient” are used interchangeably. As used herein, a subject is preferably a mammal such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats etc.) and a primate (e.g., monkey and human), most preferably a human.

As used herein, the terms “treat,” “treating” and “treatment” refer to the eradication, reduction or amelioration of symptoms of a disease or disorder, particularly, the eradication, removal, modification, or control of primary, regional, or metastatic cancer.
tissue that results from the administration of one or more therapeutic agents. In certain embodiments, such terms refer to the minimizing or delaying the spread of cancer resulting from the administration of one or more therapeutic agents to a subject with such a disease.

As used herein, the term “therapeutic agent” refers to any agent that can be used in the prevention, treatment, or management of a disease or disorder associated with overexpression of EphA2 and/or cell hyperproliferative diseases or disorders, particularly, cancer. In certain embodiments, the term “therapeutic agent” refers to an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$ (e.g., Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6). In certain other embodiments, the term “therapeutic agent” refers to cancer chemotherapeutics, radiation therapy, hormonal therapy, biological therapy/immunotherapy, and/or EphA2 antibody of the invention. In other embodiments, more than one therapeutic agent may be administered in combination.

As used herein, a “therapeutically effective amount” refers to that amount of the therapeutic agent sufficient to treat or manage a disease or disorder associated with EphA2 overexpression and/or cell hyperproliferative disease and, preferably, the amount sufficient to destroy, modify, control or remove primary, regional or metastatic cancer tissue. A therapeutically effective amount may refer to the amount of therapeutic agent sufficient to delay or minimize the onset of the hyperproliferative disease, e.g., delay or minimize the spread of cancer. A therapeutically effective amount may also refer to the amount of the therapeutic agent that provides a therapeutic benefit in the treatment or management of cancer. Further, a therapeutically effective amount with respect to a therapeutic agent of the invention means that amount of therapeutic agent alone, or in combination with other therapies, that provides a therapeutic benefit in the treatment or management of hyperproliferative disease or cancer. Used in connection with an amount of an EphA2 antibody of the invention, the term can encompass an amount that improves overall therapy, reduces or avoids unwanted effects, or enhances the therapeutic efficacy of or synergies with another therapeutic agent.

4. DESCRIPTION OF THE FIGURES

FIG. 1: Eph099B-208.261 can compete with EA2 for binding to EphA2 in a competitive ELISA assay. The ability of labeled EA2 monoclonal antibody to bind EphA2-Fc was assayed by competitive ELISA in presence of either unlabeled monoclonal
antibodies EA2 or Eph099B-208.261. Ratios of unlabeled to labeled antibody used in the assay are indicated on the x-axis. EA2 is indicated by diamonds and Eph099B-208.261 is indicated by squares.

FIGS. 2A-2D: EphA2 antibodies promote EphA2 tyrosine phosphorylation in MDA-MB-231 cells. Monolayers of MDA-MB-231 cells were incubated in the presence of a single dose of 5 μg/ml (A, C) Eph099B-208.261 or (B, D) EA2 for the indicated time at 37°C. Cell lysates were then immunoprecipitated with an EphA2-specific antibody, resolved by SDS-PAGE and subjected to western blot analysis with a phosphotyrosine-specific antibody (A, B). The membranes were stripped and re-probed with the EphA2-specific antibody used in the immunoprecipitation as a loading control (C, D).

FIGS. 3A-3D: EphA2 antibodies promote EphA2 degradation in MDA-MB-231 cells. Monolayers of MDA-MB-231 cells were incubated in the presence of a single dose of 5 μg/ml (A, C) Eph099B-208.261 or (B, D) EA2 for the indicated time at 37°C. Cell lysates were then resolved by SDS-PAGE and subjected to western blot analysis with an EphA2-specific antibody (A, B). The membranes were stripped and re-probed with a β-catenin-specific antibody as a loading control (C, D).

FIGS. 4A-4B: EphA2 Eph099B-233.152 antibody promotes EphA2 tyrosine phosphorylation and EphA2 degradation in MDA-MB-231 cells. Monolayers of MDA-MB-231 cells were incubated in the presence of a single dose of 5 μg/ml Eph099B-233.152 at 37°C. Cell lysates were then immunoprecipitated with D7 (an EphA2-specific antibody), resolved by SDS-PAGE and subjected to western blot analysis with (A) a phosphotyrosine-specific antibody or (B) an EphA2-specific antibody.

FIG. 5: EphA2 antibodies inhibit malignant tumor cell growth in soft agar. A single dose of 5 μg/ml of Eph099B-208.261 (black bar), EA2 (white bar) purified EphA2 antibodies or a negative control antibody, 1A7 (gray bar) were incubated with malignant MDA-MB-231 tumor cells for the indicated time at 37°C in soft agar. Results are reported as colonies per high-powered field (HPF).

FIGS. 6A-6B: EphA2 Eph099B-233.152 antibody inhibits tumor cell growth in vivo. MDA-MB-231 cells were implanted subcutaneously into athymic mice. After the tumors had grown to an average volume of 100 mm³, mice were administered 6 mg/ml Eph099B-233.152 or PBS control intraperitoneally twice a week for 3 weeks. (A) Tumor Growth. Tumor growth was assessed and expressed as a ratio of the tumor volume divided by initial tumor volume (100 mm³). Control mice are indicated by circles and Eph099B-233.152-treated mice are indicated by squares. Arrows indicate time of
Eph099B-233.152 or PBS administration. (B) Survival. Tumor growth was allowed to proceed until tumor volume reached 1000mm3. Survival of the mice was assessed by scoring the percent of mice living each day post treatment. Control mice are indicated by grey and Eph099B-233.152-treated mice are indicated by black.

[0060] FIGS. 7A-7D: The EphA2 antibodies, EA2, Eph099B-208.261, and Eph099B-233.152, inhibit tumor cell growth in vivo. MDA-MB-231 breast cancer cells were implanted (A) orthotopically or (B) subcutaneously into athymic mice. (C) A549 lung cancer cells were implanted subcutaneously into athymic mice. After the tumors had grown to an average volume of 100mm3, mice were administered 6 mg/kg of the indicated antibody or negative control (PBS or 1A7 antibody) intraperitoneally twice a week for 3 weeks. Tumor growth was assessed and expressed as a ratio of the tumor volume divided by initial tumor volume (100 mm3). (D) MDA-MB-231 breast cancer cells were implanted subcutaneously into athymic mice. After the tumors had grown to an average volume of 100mm3, mice were administered 6 mg/kg of the indicated antibody or negative control intraperitoneally twice a week for 3 weeks. Total tumor volume was determined after sacrifice. Negative control is black, EA2 is white, Eph099B-208.261 is dark grey, and Eph099B-233.152 is light grey.

[0061] FIGS. 8A-8B: EphA2 overexpression selectively increases malignant cell growth. (A) 1×10^5 control (white bar) or MCF-7$^{\text{EphA2}}$ cells (black bar) were suspended in soft agar in the presence of 1 mg/ml 17β-estradiol for 14 days prior to microscopic evaluation. EphA2-transfected cells formed more colonies (47 colonies/high powered field (HPF)) than matched controls (1 colony/HPF; P<0.01). (B) Monolayer growth assays did not distinguish between the growth of control (white circles) and MCF-7$^{\text{EphA2}}$ cells (black squares).

[0062] FIGS. 9A-9B: EphA2 overexpression increases tumorigenic potential. (A) 1×10^6 control (white circle) or MCF-7$^{\text{EphA2}}$ cells (black square) were implanted into the mammary fatpad of athymic mice (n=20 mice per group) in the presence of supplemental estrogen (1 μM 17β-estradiol). The tumors formed by MCF-7$^{\text{EphA2}}$ cells were significantly larger than tumors formed by matched controls (P = 0.027). (B) Equal amounts of protein lysate, isolated from input cells or resected tumors (T) were evaluated by western blot analyses with an EphA2 antibody (D7). The membranes were stripped and re-probed with a β-catenin-specific antibody as a loading control.
FIGS. 10A-10C: EphA2 overexpression decreases estrogen dependence.
(A) 1×10^5 control (white bar) or MCF-7^{EphA2} cells (black bar) were suspended in soft agar in the absence of exogenous estrogen and colony formation was evaluated microscopically after 14 days. The monolayer growth (B) and tumorigenic potential (C) of MCF-7^{EphA2} (black square) cells were increased relative to matched controls (white circle) in the absence of supplemental estrogen (P<0.01 and P<0.004, respectively).

FIGS. 11A-11B: EphA2 overexpression decreases tamoxifen sensitivity.
(A) 1×10^5 MCF-7 or MCF-7^{EphA2} cells were suspended in soft agar in the presence of 1μM tamoxifen (TAM) and or 1μM 17β-estradiol and colony formation was evaluated microscopically after 14 days. (B) MCF-7 (circles) or MCF-7^{EphA2} cells (squares) were implanted into the mammary fatpad (n=15 mice per group) in the presence of supplemental estrogen. Tamoxifen treatment was initiated 17 days post-implantation. Tumor volume of tamoxifen treated (black circles and squares) and saline treated (white circles and squares) animals was measured at the indicated time. Note the lower inhibitory effects of tamoxifen on MCF-7^{EphA2} relative to control cells (P=0.01).

FIGS. 12A-12F: Estrogen receptor is expressed but functionally altered in MCF-7^{EphA2} cells. (A) ERα and (B) ERβ levels were evaluated in MCF-7^{neo} control cells and MCF-7^{EphA2} cells by western blot analyses with an EphA2-specific antibody (D7). (C, D) The membranes were stripped and re-probed with a β-catenin-specific antibody as a loading control. (E, F) Estrogen receptor activity was measured using a CAT reporter system, revealing comparable estrogen receptor activity in control and MCF-7^{EphA2} cells. The average results from three experiments are graphed in (F). E2 indicates estrogen treatment; TAM indicates tamoxifen treatment; % conversion indicates the amount of substrate converted from non-acetylated substrate (non-AC) to acetylated substrate (AC) by CAT enzyme.

FIGS. 13A-13C: EphA2 agonistic antibody EA2 decreases malignant growth. MCF-7^{EphA2} cells were incubated in the presence of 3 μg/ml of EA2 for the time indicated prior to sample extraction and western blot analyses with an EphA2-specific antibody (D7). (B) The membrane was stripped and re-probed with a β-catenin-specific antibody as a loading control. (C) 1×10^5 control or MCF-7^{EphA2} cells were suspended in soft agar in the presence or absence of tamoxifen (TAM, 1μM) and EphA2 agonistic antibody (EA2, 10μg/ml). Note that EA2 increased the sensitivity of MCF-7^{EphA2} cells to tamoxifen.
FIGS. 14A-14B: Decreased EphA2 protein levels are sufficient to reduce tumor cell colonization of soft agar. Monolayers of MDA-MB-231 cells were transfected with 2 μg/ml of EphA2 antisense or inverse antisense (IAS) oligonucleotides at 37°C for 24 hours. (A, B) Western blot analysis of whole cell lysates with EphA2-specific D7 antibody confirms that transfection with antisense oligonucleotides decreases EphA2 protein levels (A). The membranes were stripped and reprobed with paxillin antibodies as a loading control (B). The relative mobility of molecular mass standards is shown on the left of panels A and B. (C) MDA-MB-231 cell monolayers, treated with antisense oligonucleotides as detailed above, were suspended in soft agar for 7 days before microscopic analysis of colony formation. Note that colony formation by MDA-MB-231 cells was significantly impaired by EphA2 antisense oligonucleotides as compared to the inverted antisense control (P < 0.002). Results are reported as colonies per high-powered field (HPF).

FIG. 15: Kinetic analysis of EphA2 monoclonal antibodies. BIACORETM (surface plasmon resonance-based) assays were used to assay the kinetics of EphA2 monoclonal antibody binding to immobilized EphA2-Fc. Eph099B-208.261 is indicated by a solid line, Eph099B-233.152 is indicated by a dotted line, EA2 is indicated by a dashed line, and the negative control is indicated by squares.

FIGS. 16A-16D.: EphA2 EA2 antibody preferentially binds cancer cells. Non-transformed MCF-10A (A, C) or transformed MDA-MB-231 (B, D) cells were incubated with 10 μg/ml (A, B) Eph099B-233.152 or (C, D) EA2 at 4°C prior to fixation and immunolabeling with fluorophore-conjugated anti-mouse IgG.

FIGS. 17A-17D: EphA2 EA2 antibody preferentially binds EphA2 epitopes exposed by decreasing cell-cell contacts. (A, B) Non-transformed MCF-10A cells were labeled with EA2 at 4°C either before (A) or after (B) treatment with EGTA and prior to fixation and immunolabeling with fluorophore-conjugated anti-mouse IgG. (C, D) Non-transformed MCF-10A (C) or transformed MDA-MB-231 (D) cells were labeled with EA2 either before (middle) or after (top) treatment with EGTA. Control cells were incubated with secondary antibody alone (bottom). The amount of EA2-EphA2 binding was measured using flow cytometry.

FIGS. 18A-18B: EphA2 EA2 epitope is distinct from Eph099B-233.152 epitope and ligand binding site. (A) EphA2- Fc was incubated with and bound to immobilized Ephrin A1-Fc. Labeled Ephrin A1-Fc (black), EA2 (white) or Eph099B-233.152 (grey) was incubated with the EphA2-Ephrin A1-Fc complex and amount of
binding was measured. (B) EphA2-Fc was incubated with and bound to immobilized Ephrin A1-Fc. Labeled EA2 was then incubated with the EphA2-Ephrin A1 complex. Unlabeled competitor was incubated with EphA2-Ephrin A1-EA2 complex in the indicated amount. Competitors were Ephrin A1-Fc (black), EA2 (white) or Eph099B-233.152 (grey).

FIG. 19: Sequences of VL and VH of EphA2 antibodies. Amino acid and nucleic acid sequences of Eph099B-208.261 (A) VL (SEQ ID NOs:1 and 9, respectively) and (B) VH (SEQ ID NOs:5 and 13, respectively); Eph099B-233.152 (C) VL (SEQ ID NOs.:17 and 25, respectively) and (D) VH (SEQ ID NOs:21 and 29, respectively); and EA2 (E) VL (SEQ ID NOs:33 and 41, respectively) and (F) VH (SEQ ID NOs:37 and 45, respectively). Sequences of the CDRs are indicated.

5

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention is based, in part, on the inventors' discovery that EphA2 monoclonal antibodies can inhibit cancer cell proliferation and invasiveness by reducing the levels of EphA2 expression in these cancer cells. Decreased EphA2 activity selectively inhibits malignant cancer cell growth. In particular, such decreased levels of EphA2 can be achieved with EphA2 agonistic monoclonal antibodies. Although not intending to be bound by any mechanism of action, this inhibition of cell growth and/or metastasis is achieved by stimulating (i.e., agonizing) EphA2 signaling thereby causing EphA2 phosphorylation which leads to the degradation of EphA2. Cancer cell growth is decreased due to the decreased EphA2 levels and, therefore, the decreased ligand-independent EphA2 signaling. Decreased EphA2 activity may also be achieved with EphA2 cancer cell phenotype inhibiting antibodies or antibodies that preferentially bind an EphA2 epitope exposed on cancer cells but not non-cancer cells. Additionally, antibodies that bind EphA2 with a low K_{off} (e.g., less than less than 3 X 10^{-3} s^{-1}) can also decrease EphA2 levels.

Accordingly, the present invention relates to methods and compositions that provide for the treatment, inhibition, and management of diseases and disorders associated with overexpression of EphA2 and/or cell hyperproliferative diseases and disorders. A particular aspect of the invention relates to methods and compositions containing compounds that inhibit cancer cell proliferation and invasion, particularly those cancer cells that overexpress EphA2. The present invention further relates to methods and compositions for the treatment, inhibition, or management of metastases of cancers of epithelial cell origin, especially human cancers of the breast, lung, skin, prostate, bladder, and pancreas,
and renal cell carcinomas and melanomas. Further compositions and methods of the invention include other types of active ingredients in combination with the EphA2 antibodies of the invention. In other embodiments, the methods of the invention are used to treat, prevent or manage other diseases or disorders associated with cell hyperproliferation, for example but not limited to asthma, psoriasis, restenosis, COPD, etc.

[0075] The present invention also relates to methods for the treatment, inhibition, and management of cancer or other hyperproliferative cell disorder or disease that has become partially or completely refractory to current or standard cancer treatment, such as chemotherapy, radiation therapy, hormonal therapy, and biological therapy.

[0076] The invention further provides diagnostic methods using the EphA2 antibodies of the invention, particularly the exposed EphA2 epitope antibodies, to evaluate the efficacy of cancer treatment, either EphA2-based or not EphA2-based. The diagnostic methods of the invention can also be used to prognose or predict cancer progression. In particular embodiments, the diagnostic methods of the invention provide methods of imaging and localizing metastases and methods of diagnosis and prognosis using tissues and fluids distal to the primary tumor site (as well as methods using tissues and fluids of the primary tumor). In other embodiments, the diagnostic methods of the invention provide methods of imaging and localizing metastases and methods of diagnosis and prognosis in vivo.

[0077] In an additional embodiment, the invention provides methods of screening for anti-cancer agents, particularly anti-metastatic cancer agents, by screening agents for the ability to decrease cell colonization in soft agar and/or tubular network formation in three-dimensional basement membrane and extracellular matrix preparations, such as MATRIGEL™. In preferred embodiments, the invention provides methods of screening for agents for the treatment and prevention of hyperproliferative diseases and disorders by assaying for the ability to reduce the extent of existing cell colonization in soft agar and/or tubular network formation in three-dimensional basement membrane. The present inventors found that inhibition of cell colonization in soft agar and/or tubular network formation in MATRIGEL™ is a far better indication of antimetastatic activity and may identify potential anti-metastatic agents that would not have been identified by standard cell culture assays.

5.1 Antibodies

[0078] As discussed above, the invention encompasses administration of antibodies (preferably monoclonal antibodies) or fragments thereof that immunospecifically bind to
and agonize EphA2 signaling ("EphA2 agonistic antibodies"); inhibit a cancer cell phenotype, e.g., inhibit colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation, such as MATRIGEL™ ("cancer cell phenotype inhibiting antibodies"); preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells ("exposed EphA2 epitope antibodies"); and/or bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$. In one embodiment, the antibody binds to the extracellular domain of EphA2 and, preferably, also agonizes EphA2, e.g., increases EphA2 phosphorylation and, preferably, causes EphA2 degradation. In another embodiment, the antibody binds to the extracellular domain of EphA2 and, preferably, also inhibits and, even more preferably, reduces the extent of (e.g., by cell killing mechanisms such as necrosis and apoptosis) colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation. In other embodiments, the antibodies inhibit or reduce a cancer cell phenotype in the presence of another anti-cancer agent, such as a hormonal, biologic, chemotherapeutic or other agent. In another embodiment, the antibody binds to the extracellular domain of EphA2 at an epitope that is exposed in a cancer cell but occluded in a non-cancer cell. In a specific embodiment, the antibody is not EA2. In another embodiment, the antibody binds to the extracellular domain of EphA2, preferably with a K_{off} of less than 3×10^{-3} s$^{-1}$, more preferably less than 1×10^{-3} s$^{-1}$. In other embodiments, the antibody binds to EphA2 with a K_{off} of less than 5×10^{-3} s$^{-1}$, less than 10^{-3} s$^{-1}$, less than 8×10^{-4} s$^{-1}$, less than 5×10^{-4} s$^{-1}$, less than 10^{-4} s$^{-1}$, less than 9×10^{-5} s$^{-1}$, less than 5×10^{-5} s$^{-1}$, less than 10^{-5} s$^{-1}$, less than 5×10^{-6} s$^{-1}$, less than 10^{-6} s$^{-1}$, less than 5×10^{-7} s$^{-1}$, less than 10^{-7} s$^{-1}$, less than 5×10^{-8} s$^{-1}$, less than 10^{-8} s$^{-1}$, less than 5×10^{-9} s$^{-1}$, less than 10^{-9} s$^{-1}$, or less than 10^{-10} s$^{-1}$.

[0079] In a more preferred embodiment, the antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In another embodiment, the antibody binds to an epitope bound by Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 and/or competes for EphA2 binding with Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6, e.g. as assayed by ELISA or any other appropriate immunoassay. In other embodiments, the antibody of the invention immunospecifically binds to and agonizes EphA2 signaling, inhibits a cancer cell phenotype, preferentially binds an epitope on EphA2 that is selectively
exposed or increased on cancer cells but not non-cancer cells, and/or has a \(K_{\text{off}} \) of less than \(3 \times 10^3 \) s\(^{-1}\) and may or may not compete for binding with an EphA2 ligand, e.g., Ephrin A1.

[0080] Hybridomas producing Eph099B-102.147, Eph099B-208.261, and Eph099B-210.248 have been deposited with the American Type Culture Collection (ATCC, P.O. Box 1549, Manassas, VA 20108) on August 7, 2002 under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedures, and assigned accession numbers PTA-4572, PTA-4573, and PTA-4574, respectively, and incorporated by reference. A hybridoma producing Eph099B-233.152 has been deposited with the American Type Culture Collection (ATCC, P.O. Box 1549, Manassas, VA 20108) on May 12, 2003 under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedures, and assigned accession number _, and incorporated by reference. The amino acid and nucleic acid sequences of VL and VH of Eph099B-208.261 and Eph099B-233.152 are shown in FIGS. 19A-19D. The sequences of the Eph099B-208.261 and Eph099B-233.152 CDRs are indicated in Table 1. In a most preferred embodiment, the antibody is human or has been humanized.

[0081] Antibodies of the invention include, but are not limited to, monoclonal antibodies, synthetic antibodies, recombinantly produced antibodies, intrabodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, single-chain Fvs (scFv) (including bi-specific scFvs), single chain antibodies, Fab fragments, F(ab\(^{\prime}\)) fragments, disulfide-linked Fvs (sdFv), and epitope-binding fragments of any of the above. In particular, antibodies used in the methods of the present invention include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to EphA2 and is an agonist of EphA2, inhibits or reduces a cancer cell phenotype, preferentially binds an EphA2 epitope exposed on cancer cells but not non-cancer cells, and/or binds EphA2 with a \(K_{\text{off}} \) of less than \(3 \times 10^3 \) s\(^{-1}\). The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.

[0082] The antibodies used in the methods of the invention may be from any animal origin including birds and mammals (e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken). Preferably, the antibodies are human or humanized monoclonal antibodies. As used herein, “human” antibodies include antibodies having the
amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice or other animals that express antibodies from human genes.

[0083] The antibodies used in the methods of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may immuno specifically bind to different epitopes of an EphA2 polypeptide or may immunospecifically bind to both an EphA2 polypeptide as well a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., International Publication Nos. WO 93/17715, WO 92/08802, WO 91/00360, and WO 92/05793; Tutt, et al., 1991, J. Immunol. 147:60-69; U.S. Patent Nos. 4,474,893, 4,714,681, 4,925,648, 5,573,920, and 5,601,819; and Kostelny et al., 1992, J. Immunol. 148:1547-1553.

[0084] In a specific embodiment, an antibody used in the methods of the present invention is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6, or an antigen-binding fragment thereof (e.g., one or more complementarity determining regions (CDRs) of the afore-mentioned antibodies of the invention; e.g., see Table 1)). In another embodiment, an agonistic antibody used in the methods of the present invention binds to the same epitope as Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 or competes with Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 for binding to EphA2, e.g., in an ELISA assay.

[0085] The present invention also encompasses antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2, inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$, said antibodies comprising a VH CDR having an amino acid sequence of any one of the VH CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. The present invention also encompasses the use of antibodies that immunospecifically bind to EphA2 and agonize EphA2, inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$, said antibodies comprising a VL CDR having an amino acid sequence of any one of the VL CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. The present invention also encompasses the use of antibodies that immunospecifically bind to EphA2 and agonize EphA2, inhibit a cancer cell
phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$, said antibodies comprising one or more VH CDRs and one or more VL CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In particular, the invention encompasses the use of antibodies that immunospecifically bind to EphA2 and agonize EphA2, inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$, said antibodies comprising a VH CDR1 and a VL CDR1; a VH CDR1 and a VL CDR2; a VH CDR1 and a VL CDR3; a VH CDR2 and a VL CDR1; VH CDR2 and VL CDR2; a VH CDR2 and a VL CDR3; a VH CDR3 and a VL CDR1; a VH CDR3 and a VL CDR2; a VH CDR3 and a VL CDR3; a VH1 CDR1, a VH CDR2 and a VL CDR1; a VH CDR1, a VH CDR2 and a VL CDR2; a VH CDR2 and a VL CDR3; a VH CDR1, a VH CDR2 and a VL CDR3; a VH CDR2, a VH CDR2 and a VL CDR3; a VH CDR3 and a VL CDR1, a VH CDR2, a VH CDR3 and a VL CDR2; a VH CDR2, a VH CDR3 and a VL CDR3; a VH1 CDR1, a VH CDR3 and a VL CDR1; a VH CDR1, a VH CDR1, a VH CDR3 and a VL CDR3; a VH CDR1, a VL CDR1 and a VL CDR2; a VH CDR1, a VL CDR1 and a VL CDR3; a VH CDR1, a VL CDR2 and a VL CDR3; a VH CDR2, a VL CDR1 and a VL CDR2; a VH CDR2, a VL CDR1 and a VL CDR3; a VH CDR3, a VL CDR1 and a VL CDR2; a VH CDR3, a VL CDR1 and a VL CDR3; a VH CDR3, a VL CDR2 and a VL CDR3; a VH CDR3, a VL CDR3 and a VL CDR3; a VH CDR1, a VH CDR2, a VH CDR3 and a VL CDR1; a VH CDR1, a VH CDR2, a VH CDR3 and a VL CDR2; a VH CDR1, a VH CDR3, a VL CDR1 and a VL CDR2; a VH CDR1, a VH CDR3, a VL CDR1 and a VL CDR3; a VH CDR2, a VH CDR3, a VL CDR1 and a VL CDR2; a VH CDR2, a VH CDR3, a VL CDR1 and a VL CDR3; a VH CDR1, a VH CDR2, a VH CDR3, a VL CDR2 and a VL CDR3; a VH CDR1, a VH CDR3, a VL CDR2, a VL CDR1, a VL CDR2, a VL CDR3; a VH CDR1, a VH CDR3, a VL CDR2, a VL CDR1, a VL CDR2, and a VL CDR3; a VH CDR1, a VH CDR3, a VL CDR3, and a VL CDR2, and a VL CDR1; a VH CDR1, a VH CDR2, a VH CDR3, a VL CDR1, a VL CDR2, and a VL CDR3; a VH CDR1, a VH CDR2, a VH CDR3,
a VL CDR1, a VL CDR2, and a VL CDR3 or any combination thereof of the VH CDRs and
VL CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152,
or any of the antibodies listed in Table 6. In specific embodiments, the VH CDR1 is SEQ
ID NO:6 or 22; the VH CDR2 is SEQ ID NO:7 or 23; the VH CDR3 is SEQ ID NO:8 or
24; the VL CDR1 is SEQ ID NO:2 or 18; the VL CDR2 is SEQ ID NO:3 or 19; and the VL
CDR3 is SEQ ID NO:4 or 20 (see, e.g., Table 1). In a more specific embodiment, the VH
CDR1 is SEQ ID NO:6; the VH CDR2 is SEQ ID NO:7; the VH CDR3 is SEQ ID NO:8;
the VL CDR1 is SEQ ID NO:2; the VL CDR2 is SEQ ID NO:3; and the VL CDR3 is SEQ
ID NO:4. In another more specific embodiment, the VH CDR1 is SEQ ID NO:22; the VH
CDR2 is SEQ ID NO:23; the VH CDR3 is SEQ ID NO:24; the VL CDR1 is SEQ ID
NO:18; the VL CDR2 is SEQ ID NO:19; and the VL CDR3 is SEQ ID NO:20. The
invention also encompasses any of the foregoing with one, two, three, four, or five amino
acid substitutions, additions, or deletions that bind EphA2.

[0086] In one embodiment, an antibody that immunospecifically binds to EphA2
and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2
epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$
comprises a VH CDR1 having the amino acid sequence of SEQ ID NO:6 and a VL CDR1
having the amino acid sequence of SEQ ID NO:2. In another embodiment, an antibody that
immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype,
preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a
K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR1 having the amino acid sequence of
SEQ ID NO:6 and a VL CDR2 having the amino acid sequence of SEQ ID NO:3. In
another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes
EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in
cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR1
having the amino acid sequence of SEQ ID NO:6 and a VL CDR3 having the amino acid
sequence of SEQ ID NO:4.

[0087] In another embodiment, an antibody that immunospecifically binds to
EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an
EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$
comprises a VH CDR1 having the amino acid sequence of SEQ ID NO:22 and a VL
CDR1 having the amino acid sequence of SEQ ID NO:18. In another embodiment, an
antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer
cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds
EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR1 having the amino acid sequence of SEQ ID NO:22 and a VL CDR2 having the amino acid sequence of SEQ ID NO:19. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR1 having the amino acid sequence of SEQ ID NO:22 and a VL CDR3 having the amino acid sequence of SEQ ID NO:20.

[0088] In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR2 having the amino acid sequence of SEQ ID NO:7 and a VL CDR1 having the amino acid sequence of SEQ ID NO:2. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR2 having the amino acid sequence of SEQ ID NO:7 and a VL CDR2 having the amino acid sequence of SEQ ID NO:3. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR2 having the amino acid sequence of SEQ ID NO:7 and a VL CDR3 having the amino acid sequence of SEQ ID NO:4.

[0089] In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR2 having the amino acid sequence of SEQ ID NO:23 and a VL CDR1 having the amino acid sequence of SEQ ID NO:18. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises a VH CDR2 having the amino acid sequence of SEQ ID NO:23 and a VL CDR2 having the amino acid sequence of SEQ ID NO:19. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ comprises
a VH CDR2 having the amino acid sequence of SEQ ID NO:23 and a VL CDR3 having the amino acid sequence of SEQ ID NO:20.

[0090] In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3 X 10^{-3} s^{-1} comprises a VH CDR3 having the amino acid sequence of SEQ ID NO:8 and a VL CDR1 having the amino acid sequence of SEQ ID NO:2. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3 X 10^{-3} s^{-1} comprises a VH CDR3 having the amino acid sequence of SEQ ID NO:8 and a VL CDR3 having the amino acid sequence of SEQ ID NO:4.

[0091] In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3 X 10^{-3} s^{-1} comprises a VH CDR3 having the amino acid sequence of SEQ ID NO:24 and a VL CDR1 having the amino acid sequence of SEQ ID NO:18. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3 X 10^{-3} s^{-1} comprises a VH CDR3 having the amino acid sequence of SEQ ID NO:24 and a VL CDR2 having the amino acid sequence of SEQ ID NO:19. In another embodiment, an antibody that immunospecifically binds to EphA2 and agonizes EphA2, inhibits a cancer cell phenotype, preferentially binds an EphA2 epitope exposed in cancer cells, and/or binds EphA2 with a K_{off} of less than 3 X 10^{-3} s^{-1} comprises a VH CDR3 having the amino acid sequence of SEQ ID NO:24 and a VL CDR3 having the amino acid sequence of SEQ ID NO:20.

[0092] The antibodies used in the methods of the invention include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation,
derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.

The present invention also provides antibodies of the invention or fragments thereof that comprise a framework region known to those of skill in the art. Preferably, the antibody of the invention or fragment thereof is human or humanized. In a specific embodiment, the antibody of the invention or fragment thereof comprises one or more CDRs from Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 (or any other EphA2 agonistic antibody or EphA2 cancer cell phenotype inhibiting antibody or an EphA2 antibody that binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$), binds EphA2, and, preferably, agonizes EphA2 and/or inhibits a cancer cell phenotype and/or binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$.

The present invention encompasses single domain antibodies, including camelized single domain antibodies (see e.g., Muyldermans et al., 2001, *Trends Biochem. Sci.* 26:230; Nuttall et al., 2000, *Curr. Pharm. Biotech.* 1:253; Reichmann and Muyldermans, 1999, *J. Immunol. Meth.* 231:25; International Publication Nos. WO 94/04678 and WO 94/25591; U.S. Patent No. 6,005,079; which are incorporated herein by reference in their entireties). In one embodiment, the present invention provides single domain antibodies comprising two VH domains having the amino acid sequence of any of the VH domains of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 (or any other EphA2 agonistic antibody, EphA2 cancer cell phenotype inhibiting antibody, exposed EphA2 epitope antibody, or an EphA2 antibody that binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$) with modifications such that single domain antibodies are formed. In another embodiment, the present invention also provides single domain antibodies comprising two VH domains comprising one or more of the VH CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 (or any other EphA2 agonistic antibody, EphA2 cancer cell phenotype inhibiting antibody, exposed EphA2 epitope antibody, or an EphA2 antibody that binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$).

The methods of the present invention also encompass the use of antibodies or fragments thereof that have half-lives (e.g., serum half-lives) in a mammal, preferably a human, of greater than 15 days, preferably greater than 20 days, greater than 25 days,
greater than 30 days, greater than 35 days, greater than 40 days, greater than 45 days, greater than 2 months, greater than 3 months, greater than 4 months, or greater than 5 months. The increased half-lives of the antibodies of the present invention or fragments thereof in a mammal, preferably a human, result in a higher serum titer of said antibodies or antibody fragments in the mammal, and thus, reduce the frequency of the administration of said antibodies or antibody fragments and/or reduces the concentration of said antibodies or antibody fragments to be administered. Antibodies or fragments thereof having increased in vivo half-lives can be generated by techniques known to those of skill in the art. For example, antibodies or fragments thereof with increased in vivo half-lives can be generated by modifying (e.g., substituting, deleting or adding) amino acid residues identified as involved in the interaction between the Fc domain and the FcRn receptor (see, e.g., International Publication Nos. WO 97/34631 and WO 02/060919, which are incorporated herein by reference in their entireties). Antibodies or fragments thereof with increased in vivo half-lives can be generated by attaching to said antibodies or antibody fragments polymer molecules such as high molecular weight polyethylene glycol (PEG). PEG can be attached to said antibodies or antibody fragments with or without a multifunctional linker either through site-specific conjugation of the PEG to the N- or C- terminus of said antibodies or antibody fragments or via epsilon-amino groups present on lysine residues. Linear or branched polymer derivatization that results in minimal loss of biological activity will be used. The degree of conjugation will be closely monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of PEG molecules to the antibodies. Unreacted PEG can be separated from antibody-PEG conjugates by, e.g., size exclusion or ion-exchange chromatography.

[0096] The present invention also encompasses the use of antibodies or antibody fragments comprising the amino acid sequence of one or both variable domains of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 with mutations (e.g., one or more amino acid substitutions) in the variable regions. Preferably, mutations in these antibodies maintain or enhance the avidity and/or affinity of the antibodies for the particular antigen(s) to which they immunospecifically bind. Standard techniques known to those skilled in the art (e.g., immunoassays) can be used to assay the affinity of an antibody for a particular antigen.

[0097] Standard techniques known to those skilled in the art can be used to introduce mutations in the nucleotide sequence encoding an antibody, or fragment thereof, including, e.g., site-directed mutagenesis and PCR-mediated mutagenesis, which results in
amino acid substitutions. Preferably, the derivatives include less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original antibody or fragment thereof. In a preferred embodiment, the derivatives have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues.

[0098] The present invention also encompasses antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than $3 \times 10^{-3}\ s^{-1}$, said antibodies or antibody fragments comprising an amino acid sequence of a variable light chain and/or variable heavy chain that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the variable light chain and/or heavy chain of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In some embodiments, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a variable light chain that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:1 or 17. In other embodiments, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a variable heavy chain that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:5 or 21. In other embodiments, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a variable light chain that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:5 or 21.

[0099] The present invention further encompasses antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind
EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$, said antibodies or antibody fragments comprising an amino acid sequence of one or more CDRs that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of one or more CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In one embodiment, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a CDR that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:2, 3, or 4. In another embodiment, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a CDR that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:18, 19, or 20. In another embodiment, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a CDR that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:6, 7, or 8. In another embodiment, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise an amino acid sequence of a CDR that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO:22, 23, or 24.

The determination of percent identity of two amino acid sequences can be determined by any method known to one skilled in the art, including BLAST protein searches.

The present invention further encompasses antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$, said antibodies or antibody fragments comprising an amino acid sequence of one or more CDRs comprising amino acid residue substitutions, deletions or additions as compared to SEQ ID NO: 2, 3, 4, 6, 7, 8, 18, 19, 20, 22, 23, or 24. The antibody comprising the one or more CDRs comprising amino acid residue substitutions, deletions or additions may have substantially the same binding, better binding, or worse binding when compared to an antibody comprising one or more CDRs
without amino acid residue substitutions, deletions or additions. In specific embodiments, one, two, three, four, or five amino acid residues of the CDR have been substituted, deleted or added (i.e., mutated).

The present invention also encompasses the use of antibodies or antibody fragments that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells and/or bind EphA2 with a K_{off} less than 3×10^{-3} s$^{-1}$, where said antibodies or antibody fragments are encoded by a nucleotide sequence that hybridizes to the nucleotide sequence of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 under stringent conditions. In one embodiment, the invention provides antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an epitope on EphA2 that is selectively exposed or increased on cancer cells but not non-cancer cells and/or bind EphA2 with a K_{off} less than 3×10^{-3} s$^{-1}$, said antibodies or antibody fragments comprising a variable light chain encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of the variable light chain of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In a preferred embodiment, the invention provides antibodies or fragments that immunospecifically bind to EphA2 and comprise a variable light chain encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:9 or 25. In another embodiment, the invention provides antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an epitope on EphA2 that is selectively exposed or increased on cancer cells but not non-cancer cells and/or bind EphA2 with a K_{off} less than 3×10^{-3} s$^{-1}$, said antibodies or antibody fragments comprising a variable heavy chain encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of the variable heavy chain of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In a preferred embodiment, the invention provides antibodies or fragments thereof that immunospecifically bind to EphA2 and comprise a variable heavy chain encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:13 or 29. In other embodiments, antibodies or antibody fragments of the invention immunospecifically bind to EphA2 and comprise a variable light chain encoded
by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:9 or 25 and a variable heavy chain encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:13 or 29.

In another embodiment, the invention provides antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed on cancer cells but not non-cancer cells and/or bind EphA2 with a K_{off} less than 3×10^{-3} s$^{-1}$, said antibodies or antibody fragments comprising one or more CDRs encoded by a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of one or more CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In a preferred embodiment, the antibodies or fragments of the invention immunospecifically bind to EphA2 and comprise a CDR encoded by a nucleotide sequence that hybridizes under stringent conditions the nucleotide sequence of SEQ ID NO:10, 11, or 12. In another preferred embodiment, the antibodies or fragments of the invention immunospecifically bind to EphA2 and comprise a CDR encoded by a nucleotide sequence that hybridizes under stringent conditions the nucleotide sequence of SEQ ID NO:26, 27, or 28. In another preferred embodiment, the antibodies or fragments of the invention immunospecifically bind to EphA2 and comprise a CDR encoded by a nucleotide sequence that hybridizes under stringent conditions the nucleotide sequence of SEQ ID NO:14, 15, or 16. In another preferred embodiment, the antibodies or fragments of the invention immunospecifically bind to EphA2 and comprise a CDR encoded by a nucleotide sequence that hybridizes under stringent conditions the nucleotide sequence of SEQ ID NO:30, 31, or 32.

Stringent hybridization conditions include, but are not limited to, hybridization to filter-bound DNA in 6X sodium chloride/sodium citrate (SSC) at about 45°C followed by one or more washes in 0.2X SSC/0.1% SDS at about 50-65°C, highly stringent conditions such as hybridization to filter-bound DNA in 6X SSC at about 45°C followed by one or more washes in 0.1X SSC/0.2% SDS at about 60°C, or any other stringent hybridization conditions known to those skilled in the art (see, for example, Ausubel, F.M. et al., eds. 1989 Current Protocols in Molecular Biology, vol. 1, Green Publishing Associates, Inc. and John Wiley and Sons, Inc., NY at pages 6.3.1 to 6.3.6 and 2.10.3).
The present invention further encompasses antibodies or fragments thereof that immunospecifically bind to EphA2 and agonize EphA2 and/or inhibit a cancer cell phenotype, preferentially bind an EphA2 epitope exposed in cancer cells, and/or bind EphA2 with a K_{off} of less than 3×10^3 s$^{-1}$, said antibodies or antibody fragments said antibodies or antibody fragments comprising one or more CDRs encoded by a nucleotide sequence of one or more CDRs comprising nucleic acid residue substitutions, deletions or additions as compared to SEQ ID NO:10, 11, 12, 14, 15, 16, 26, 27, 28, 30, 31, or 32. The antibody comprising the one or more CDRs comprising nucleic acid residue substitutions, deletions or additions may have substantially the same binding, better binding, or worse binding when compared to an antibody comprising one or more CDRs without nucleic acid residue substitutions, deletions or additions. In specific embodiments, one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen nucleic acid residues of the CDR have been substituted, deleted or added (i.e., mutated). The nucleic acid substitutions may or may not change the amino acid sequence of the mutated CDR.

TABLE 1

<table>
<thead>
<tr>
<th>Antibody</th>
<th>V chain</th>
<th>CDR</th>
<th>SEQ ID NO. (amino acid)</th>
<th>SEQ ID NO. (nucleic acid)</th>
<th>ATCC Deposit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eph099B-208.261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PTA-4573</td>
</tr>
<tr>
<td>VL</td>
<td></td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL1</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL2</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL3</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VH</td>
<td></td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH1</td>
<td>6</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH2</td>
<td>7</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH3</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eph099B-233.152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL</td>
<td></td>
<td>17</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL1</td>
<td>18</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL2</td>
<td>19</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL3</td>
<td>20</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VH</td>
<td></td>
<td>21</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH1</td>
<td>22</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH2</td>
<td>23</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VH3</td>
<td>24</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PTA-4380</td>
</tr>
<tr>
<td>VL</td>
<td></td>
<td>33</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL1</td>
<td>34</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL2</td>
<td>35</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL3</td>
<td>36</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibody</td>
<td>V chain</td>
<td>CDR</td>
<td>SEQ ID NO. (amino acid)</td>
<td>SEQ ID NO. (nucleic acid)</td>
<td>ATCC Deposit No.</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>VH</td>
<td></td>
<td></td>
<td>37</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>VH1</td>
<td></td>
<td></td>
<td>38</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>VH2</td>
<td></td>
<td></td>
<td>39</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>VH3</td>
<td></td>
<td></td>
<td>40</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

5.1.1 Antibody conjugates

[00106] The present invention encompasses the use of antibodies or fragments thereof recombinantly fused or chemically conjugated (including both covalent and non-covalent conjugations) to a heterologous agent to generate a fusion protein. The heterologous agent may be a polypeptide (or portion thereof, preferably to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino acids), nucleic acid, small molecule (less than 1000 daltons), or inorganic or organic compound. The fusion does not necessarily need to be direct, but may occur through linker sequences. Antibodies fused or conjugated to heterologous agents may be used in vivo to detect, treat, manage, or monitor the progression of a disorder using methods known in the art. See e.g., International Publication WO 93/21232; EP 439,095; Naramura et al., 1994, *Immunol. Lett.* 39:91-99; U.S. Patent 5,474,981; Gillies et al., 1992, *PNAS* 89:1428-1432; and Fell et al., 1991, *J. Immunol.* 146:2446-2452, which are incorporated by reference in their entirety. In some embodiments, the disorder to be detected, treated, managed, or monitored is malignant cancer that overexpresses EphA2. In other embodiments, the disorder to be detected, treated, managed, or monitored is a pre-cancerous condition associated with cells that overexpress EphA2. In a specific embodiments, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00107] The present invention further includes compositions comprising heterologous agents fused or conjugated to antibody fragments. For example, the heterologous polypeptides may be fused or conjugated to a Fab fragment, Fd fragment, Fv fragment, F(ab)₂ fragment, or portion thereof. Methods for fusing or conjugating polypeptides to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603, 5,622,929, 5,359,046, 5,349,053, 5,447,851, and 5,112,946; EP 307,434; EP 367,166; International Publication Nos. WO 96/04388 and WO 91/06570; Ashkenazi et al., 1991, *PNAS* 88: 10535-10539; Zheng et al., 1995, *J. Immunol.* 154:5590-5600; and Vil et

Additional fusion proteins, e.g., of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 (or any other EphA2 agonistic antibody or EphA2 cancer cell phenotype inhibiting antibody or exposed EphA2 epitope antibody or EphA2 antibody that binds EphA2 with a K_{d} of less than 3×10^{-3} s$^{-1}$), may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as “DNA shuffling”). DNA shuffling may be employed to alter the activities of antibodies of the invention or fragments thereof (e.g., antibodies or fragments thereof with higher affinities and lower dissociation rates). See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., 1997, *Curr. Opinion Biotechnol.* 8:724-33; Harayama, 1998, *Trends Biotechnol.* 16:76; Hansson, et al., 1999, *J. Mol. Biol.* 287:265; and Lorenzo and Blasco, 1998, *BioTechniques* 24:308 (each of these patents and publications are hereby incorporated by reference in its entirety). Antibodies or fragments thereof, or the encoded antibodies or fragments thereof, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. One or more portions of a polynucleotide encoding an antibody or antibody fragment, which portions immunospecifically bind to EphA2 may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous agents.

In one embodiment, antibodies of the present invention or fragments or variants thereof are conjugated to a marker sequence, such as a peptide, to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QLIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., 1989, *PNAS* 86:821, for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the hemagglutinin “HA” tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., 1984, *Cell* 37:767) and the “flag” tag.

In other embodiments, antibodies of the present invention or fragments or variants thereof are conjugated to a diagnostic or detectable agent. Such antibodies can be useful for monitoring or prognosing the development or progression of a cancer as part of a
clinical testing procedure, such as determining the efficacy of a particular therapy. Additionally, such antibodies can be useful for monitoring or prognosing the development or progression of a pre-cancerous condition associated with cells that overexpress EphA2 (e.g., high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi). In one embodiment, an exposed EphA2 epitope antibody is conjugated to a diagnostic or detectable agent. In another embodiment, the antibody is not EA2.

Such diagnosis and detection can be accomplished by coupling the antibody to detectable substances including, but not limited to various enzymes, such as but not limited to horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such as but not limited to streptavidin/biotin and avidin/biotin; fluorescent materials, such as but not limited to, umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as but not limited to, bismuth (213Bi), carbon (14C), chromium (51Cr), cobalt (57Co), fluorine (18F), gadolinium (155Gd, 159Gd), gallium (68Ga, 67Ga), germanium (68Ge), holmium (166Ho), indium (115In, 113In, 112In, 111In), iodine (131I, 125I, 123I, 121I), lanthanum (140La), lutetium (177Lu), manganese (54Mn), molybdenum (99Mo), palladium (103Pd), phosphorous (32P), praseodymium (142Pr), promethium (149Pm), rhenium (186Re, 188Re), rhodium (105Rh), ruthenium (97Ru), samarium (152Sm), scandium (47Sc), selenium (75Se), strontium (85Sr), sulfur (35S), technetium (99Tc), thallium (201TI), tin (113Sn, 117Sn), tritium (3H), xenon (133Xe), ytterbium (169Yb, 175Yb), yttrium (90Y), zinc (65Zn); positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.

In other embodiments, antibodies of the present invention or fragments or variants thereof are conjugated to a therapeutic agent such as a cytotoxin, e.g., a cytostatic or cytotoxic agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxy anthracycin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, epirubicin, and cyclophosphamide and analogs or homologs thereof.
Therapeutic agents include, but are not limited to, antimitabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiammine platinum (II) (DDP cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

In other embodiments, antibodies of the present invention or fragments or variants thereof are conjugated to a therapeutic agent or drug moiety that modifies a given biological response. Therapeutic agents or drug moieties are not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin; a protein such as tumor necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-α, TNF-β, AIM I (see, International Publication No. WO 97/33899), AIM II (see, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., 1994, J. Immunol., 6:1567), and VEGI (see, International Publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin; or, a biological response modifier such as, for example, a lymphokine (e.g., interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), and granulocyte colony stimulating factor ("G-CSF")), or a growth factor (e.g., growth hormone ("GH")).

In other embodiments, antibodies of the present invention or fragments or variants thereof are conjugated to a therapeutic agent such as a radioactive materials or macrocyclic chelators useful for conjugating radiometal ions (see above for examples of radioactive materials). In certain embodiments, the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-Ν,Ν',Ν'',Ν'''-tetraacetic acid (DOTA) which can be attached to the antibody via a linker molecule. Such linker molecules are commonly known in the art and described in Denardo et al., 1998, Clin Cancer Res. 4:2483-90; Peterson et al., 1999, Bioconjug. Chem. 10:553; and Zimmerman et al., 1999, Nucl. Med. Biol. 26:943-50 each incorporated by reference in their entireties.
In a specific embodiment, the conjugated antibody is an EphA2 antibody that preferably binds an EphA2 epitope exposed on cancer cells but not on non-cancer cells (i.e., exposed EphA2 epitope antibody). In another specific embodiment, the conjugated antibody is not EA2.

Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.
Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

5.1.2 **Methods Of Producing Antibodies**

The antibodies or fragments thereof can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., *Antibodies: A Laboratory Manual*, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: *Monoclonal Antibodies and T-Cell Hybridomas* 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties). The term “monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology. The term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.

Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art. Briefly, mice can be immunized with EphA2 (either the full length protein or a domain thereof, e.g., the extracellular domain or the ligand binding domain) and once an immune response is detected, e.g., antibodies specific for EphA2 are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution. Hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention. Ascites fluid, which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones. Accordingly, monoclonal antibodies can be generated by culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with EphA2 or fragment.
thereof with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind EphA2.

[00123] Antibody fragments which recognize specific EphA2 epitopes may be generated by any technique known to those of skill in the art. For example, Fab and F(\text{ab}')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(\text{ab}')2 fragments). F(\text{ab}')2 fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain. Further, the antibodies of the present invention can also be generated using various phage display methods known in the art.

[00124] In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In particular, DNA sequences encoding VH and VL domains are amplified from animal cDNA libraries (e.g., human or murine cDNA libraries of lymphoid tissues). The DNA encoding the VH and VL domains are recombined together with an scFv linker by PCR and cloned into a phagemid vector (e.g., p CANTAB 6 or pComb 3 HSS). The vector is electroporated in \textit{E. coli} and the \textit{E. coli} is infected with helper phage. Phage used in these methods are typically filamentous phage including fd and M13 and the VH and VL domains are usually recombinantly fused to either the phage gene III or gene VIII. Phage expressing an antigen binding domain that binds to the EphA2 epitope of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., 1995, \textit{J. Immunol. Methods} 182:41-50; Ames et al., 1995, \textit{J. Immunol. Methods} 184:177; Kettleborough et al., 1994, \textit{Eur. J. Immunol.} 24:952-958; Persic et al., 1997, \textit{Gene} 187:9; Burton et al., 1994, \textit{Advances in Immunology} 57:191-280; International Application No. PCT/GB91/01134; International Publication Nos. WO 90/02809, WO 91/10737, WO 92/01047, WO 92/18619, WO 93/11236, WO 95/15982, WO 95/20401, and WO97/13844; and U.S. Patent Nos. 5,698,426, 5,223,409, 5,403,484, 5,580,717, 5,427,908, 5,750,753, 5,821,047, 5,571,698, 5,427,908, 5,516,637, 5,780,225, 5,658,727, 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.

[00125] Phage may be screened for EphA2 binding, particularly to the extracellular domain of EphA2. Agonizing EphA2 activity (e.g., increasing EphA2 phosphorylation, reducing EphA2 levels) or cancer cell phenotype inhibiting activity (e.g., reducing colony formation in soft agar or tubular network formation in a three-dimensional basement.
membrane or extracellular matrix preparation, such as MATRIGEL™) or preferentially binding to an EphA2 epitope exposed on cancer cells but not non-cancer cells (e.g., binding poorly to EphA2 that is bound to ligand in cell-cell contacts while binding well to EphA2 that is not bound to ligand or in cell-cell contacts) may also be screened.

[00126] As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described below. Techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in International Publication No. WO 92/22324; Mullinax et al., 1992, *BioTechniques* 12:864; Sawai et al., 1995, *AJRI* 34:26; and Better et al., 1988, *Science* 240:1041 (said references incorporated by reference in their entireties).

[00127] To generate whole antibodies, PCR primers including VH or VL nucleotide sequences, a restriction site, and a flanking sequence to protect the restriction site can be used to amplify the VH or VL sequences in scFv clones. Utilizing cloning techniques known to those of skill in the art, the PCR amplified VH domains can be cloned into vectors expressing a VH constant region, e.g., the human gamma 4 constant region, and the PCR amplified VL domains can be cloned into vectors expressing a VL constant region, e.g., human kappa or lambda constant regions. Preferably, the vectors for expressing the VH or VL domains comprise an EF-1α promoter, a secretion signal, a cloning site for the variable domain, constant domains, and a selection marker such as neomycin. The VH and VL domains may also be cloned into one vector expressing the necessary constant regions. The heavy chain conversion vectors and light chain conversion vectors are then co-transfected into cell lines to generate stable or transient cell lines that express full-length antibodies, e.g., IgG, using techniques known to those of skill in the art.

[00128] For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use human or chimeric antibodies. Completely human antibodies are particularly desirable for therapeutic treatment of human subjects.

Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also U.S. Patent Nos. 4,444,887 and 4,716,111; and International Publication Nos. WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654,
WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.

[00129] Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the J regions prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then be bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., International Publication Nos. WO 98/24893, WO 96/34096, and WO 96/33735; and U.S. Patent Nos. 5,413,923, 5,625,126, 5,633,425, 5,569,825, 5,661,016, 5,545,806, 5,814,318, and 5,939,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Medarex (Princeton, NJ) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

[00130] A chimeric antibody is a molecule in which different portions of the antibody are derived from different immunoglobulin molecules such as antibodies having a variable region derived from a non-human antibody and a human immunoglobulin constant

Chimeric antibodies comprising one or more CDRs from a non-human species and framework regions from a human immunoglobulin molecule can be produced using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; International Publication No. WO 91/09967; and U.S. Patent Nos. 5,225,539, 5,530,101, and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, 1991, *Molecular Immunology* 28(4/5):489-498; Studnicka et al., 1994, *Protein Engineering* 7:805; and Roguska et al., 1994, *PNAS* 91:969), and chain shuffling (U.S. Patent No. 5,565,332).

In one embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises one, two, or three VL CDRs having an amino acid sequence of any of the VL CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152 within human framework regions. In a specific embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises a VL CDR having an amino acid sequence of SEQ ID NO: 2, 3, 4, 18, 19, or 20. In another embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises one, two, or three VH CDRs having an amino acid sequence of any of the VH CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152 within human framework regions. In a specific embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises a VH CDR having an amino acid sequence of SEQ ID NO: 6, 7, 8, 22, 23, or 24. In a preferred embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises one, two, or three VL CDRs having an amino acid sequence of any of the VL CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152 and further comprises one, two, or three VH CDRs having an amino acid sequence of any of the VH CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152 within human framework regions. In a specific preferred embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises a VL CDR having an amino acid sequence of SEQ ID NO: 2, 3, 4, 18, 19, or 20 and further comprises a VH CDR having an amino acid sequence of SEQ ID NO: 6, 7, 8, 22, 23, or 24. In a more preferred embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises three VL CDRs having an amino acid sequence of any of the VL CDRs of Eph099B-102.147,
Eph099B-208.261, Eph099B-210.248, Eph099B-233.152 and three VH CDRs having an amino acid sequence of any of the VH CDRs of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152 within human framework regions. In an even more preferred embodiment, a chimeric antibody of the invention immunospecifically binds EphA2 and comprises VL CDRs having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 18, 19, or 20 and further comprises VH CDRs having an amino acid sequence selected from the group consisting of SEQ ID NO: 6, 7, 8, 22, 23, or 24.

Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., U.S. Patent No. 5,585,089; and Riechmann et al., 1988, *Nature* 332:323, which are incorporated herein by reference in their entireties.)

A humanized antibody is an antibody or its variant or fragment thereof which is capable of binding to a predetermined antigen and which comprises a framework region having substantially the amino acid sequence of a human immunoglobulin and a CDR having substantially the amino acid sequence of a non-human immunoglobulin. A humanized antibody comprises substantially all of at least one, and typically two, variable domains in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin (*i.e.*, donor antibody) and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. Preferably, a humanized antibody also comprises at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Ordinarily, the antibody will contain both the light chain as well as at least the variable domain of a heavy chain. The antibody also may include the CH1, hinge, CH2, CH3, and CH4 regions of the heavy chain. The humanized antibody can be selected from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. Usually the constant domain is a complement fixing constant domain where it is desired that the humanized antibody exhibit cytotoxic activity, and the class is typically IgG1. Where such cytotoxic activity is not desirable, the constant domain may be of the IgG2 class. The humanized antibody may comprise sequences from more than one class or isotype, and

[00133] Further, the antibodies of the invention can, in turn, be utilized to generate anti-idiotypic antibodies using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1989, *FASEB J.* 7:437-444; and Nissinoff, 1991, *J. Immunol.* 147:2429-2438). The invention provides methods employing the use of polynucleotides
comprising a nucleotide sequence encoding an antibody of the invention or a fragment thereof.

5.1.3 Polynucleotides Encoding An Antibody

[00134] The methods of the invention also encompass polynucleotides that hybridize under high stringency, intermediate or lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody of the invention.

[00135] The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. Since the amino acid sequences of the antibodies are known, nucleotide sequences encoding these antibodies can be determined using methods well known in the art, i.e., nucleotide codons known to encode particular amino acids are assembled in such a way to generate a nucleic acid that encodes the antibody or fragment thereof of the invention. Such a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., 1994, BioTechniques 17:242), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

[00136] Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known (e.g., see FIG. 19), a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention, e.g., clones deposited in the ATCC as PTA-4572, PTA-4573, and PTA-4574) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

[00137] Once the nucleotide sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed
mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entitres), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

[00138] In a specific embodiment, one or more of the CDRs is inserted within framework regions using routine recombinant DNA techniques. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., 1998, J. Mol. Biol. 278: 457-479 for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds to EphA2. Preferably, as discussed supra, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.

5.1.4 Recombinant Expression Of An Antibody

[00139] Recombinant expression of an antibody of the invention, derivative, analog or fragment thereof, (e.g., a heavy or light chain of an antibody of the invention or a portion thereof or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably, but not necessarily, containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques,
and in vivo genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, a heavy or light chain of an antibody, a heavy or light chain variable domain of an antibody or a portion thereof, or a heavy or light chain CDR, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., International Publication Nos. WO 86/05807 and WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy, the entire light chain, or both the entire heavy and light chains.

The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polymucleotide encoding an antibody of the invention or fragments thereof, or a heavy or light chain thereof, or portion thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter. In preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.

A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention (see, e.g., U.S. Patent No. 5,807,715). Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli and B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, NS0, and 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late
promoter; the vaccinia virus 7.5K promoter). Preferably, bacterial cells such as *Escherichia coli*, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., 1986, *Gene* 45:101; and Cockett et al., 1990, *BioTechnology* 8:2). In a specific embodiment, the expression of nucleotide sequences encoding antibodies or fragments thereof which immunospecifically bind to EphA2 and agonize EphA2, inhibit a cancer cell phenotype, preferentially bind epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells and/or have a K_{off} less than $3 \times 10^{-3} \text{s}^{-1}$ is regulated by a constitutive promoter, inducible promoter or tissue specific promoter.

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited to, the *E. coli* expression vector pUR278 (Ruther et al., 1983, *EMBO* 12:1791), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Hecke & Schuster, 1989, J. Biol. Chem. 24:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione 5-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts (e.g., see Logan & Shenk, 1984, PNAS 81:355-359). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see, e.g., Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, W138, BT483, Hs578T, HTB2, BT2O, NS1 and T47D, NS0 (a murine myeloma cell line that does not endogenously produce any immunoglobulin chains), CRL7030 and Hs878Bst cells.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators,
polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compositions that interact directly or indirectly with the antibody molecule.

[00147] A number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler et al., 1977, Cell 11:223), glutamine synthetase, hypoxanthine guanine phosphoribosyltransferase (Szybalska & Szybalski, 1992, Proc. Natl. Acad. Sci. USA 48:202), and adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:8-17) genes can be employed in tk-, gs-, hgp.rt- or aprt- cells, respectively.

Also, antimetabolite resistance can be used as the basis of selection for the following genes: dfr, which confers resistance to methotrexate (Wigler et al., 1980, PNAS 77:357; O’Hare et al., 1981, PNAS 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, PNAS 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Wu and Wu, 1991, Biotherapy 3:87; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxicol.

[00148] The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of
host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

[00149] The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, 1986, Nature 322:52; and Kohler, 1980, PNAS 77:2197). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

[00150] Once an antibody molecule of the invention has been produced by recombinant expression, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. Further, the antibodies of the present invention or fragments thereof may be fused to heterologous polypeptide sequences described herein or otherwise known in the art to facilitate purification.

5.2 **Prophylactic/Therapeutic Methods**

[00151] The present invention encompasses methods for treating, preventing, or managing a disease or disorder associated with overexpression of EphA2 and/or cell hyperproliferative disorders, preferably cancer, in a subject comprising administering one or more EphA2 agonistic antibodies or EphA2 cancer cell phenotype inhibiting antibodies or exposed EphA2 epitope antibodies or EphA2 antibodies that bind EphA2 with a \(K_{\text{off}} \) less than \(3 \times 10^{-1} \text{s}^{-1} \), preferably one or more monoclonal (or antibodies from some other source of a single antibody species) EphA2 agonistic antibodies or EphA2 cancer cell phenotype inhibiting antibodies or exposed EphA2 epitope antibodies or EphA2 antibodies that bind EphA2 with a \(K_{\text{off}} \) less than \(3 \times 10^{-1} \text{s}^{-1} \). In a specific embodiment, the disorder to be treated, prevented, or managed is malignant cancer. In another specific embodiment, the disorder to be treated, prevented, or managed is a pre-cancerous condition associated with cells that overexpress EphA2. In more specific embodiments, the pre-cancerous condition
is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00152] In one embodiment, the antibodies of the invention can be administered in combination with one or more other therapeutic agents useful in the treatment, prevention or management of diseases or disorders associated with EphA2 overexpression, hyperproliferative disorders, and/or cancer. In certain embodiments, one or more EphA2 antibodies of the invention are administered to a mammal, preferably a human, concurrently with one or more other therapeutic agents useful for the treatment of cancer. The term “concurrently” is not limited to the administration of prophylactic or therapeutic agents at exactly the same time, but rather it is meant that the EphA2 antibodies of the invention and the other agent are administered to a subject in a sequence and within a time interval such that the antibodies of the invention can act together with the other agent to provide an increased benefit than if they were administered otherwise. For example, each prophylactic or therapeutic agent may be administered at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect. Each therapeutic agent can be administered separately, in any appropriate form and by any suitable route. In other embodiments, the EphA2 antibodies of the invention are administered before, concurrently or after surgery. Preferably the surgery completely removes localized tumors or reduces the size of large tumors. Surgery can also be done as a preventive measure or to relieve pain.

[00153] In preferred embodiments, the one or more EphA2 antibodies of the invention consist of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In a more preferred embodiment, the antibodies consist of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 that have been humanized. In other embodiments, variants of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6 e.g., with one or more amino acid substitutions, particularly in the variable domain, are provided that have increased activity, binding ability, etc., as compared to Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6.

[00154] In another specific embodiment, the therapeutic and prophylactic methods of the invention comprise administration of an inhibitor of EphA2 expression, such as but not limited to, antisense nucleic acids specific for EphA2, double stranded EphA2 RNA that
mediates RNAi, anti-EphA2 ribozymes, etc. (see Section 5.4 infra) or an agonist of EphA2 activity other than an EphA2 antibody, such as small molecule inhibitors or agonists of EphA2 activity.

[00155] In various embodiments, the prophylactic or therapeutic agents are administered less than 1 hour apart, at about 1 hour apart, at about 1 hour to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, no more than 24 hours apart or no more than 48 hours apart. In preferred embodiments, two or more components are administered within the same patient visit.

[00156] The dosage amounts and frequencies of administration provided herein are encompassed by the terms therapeutically effective and prophylactically effective. The dosage and frequency further will typically vary according to factors specific for each patient depending on the specific therapeutic or prophylactic agents administered, the severity and type of cancer, the route of administration, as well as age, body weight, response, and the past medical history of the patient. Suitable regimens can be selected by one skilled in the art by considering such factors and by following, for example, dosages reported in the literature and recommended in the Physician’s Desk Reference (56th ed., 2002).

5.2.1 Patient Population

[00157] The invention provides methods for treating, preventing, and managing a disease or disorder associated with EphA2 overexpression and/or hyperproliferative cell disease, particularly cancer, by administering to a subject in need thereof a therapeutically or prophylactically effective amount of one or more EphA2 antibodies of the invention. In another embodiment, the EphA2 antibodies of the invention can be administered in combination with one or more other therapeutic agents. The subject is preferably a mammal such as non-primate (e.g., cows, pigs, horses, cats, dogs, rats, etc.) and a primate (e.g., monkey, such as a cynomolgous monkey and a human). In a preferred embodiment, the subject is a human.

[00158] Specific examples of cancers that can be treated by the methods encompassed by the invention include, but are not limited to, cancers that overexpress
EphA2. In a further embodiment, the cancer is of an epithelial origin. Examples of such cancers are cancer of the lung, colon, prostate, breast, and skin. Other cancers include cancer of the bladder and pancreas and renal cell carcinoma and melanoma. Additional cancers are listed by example and not by limitation in the following section 5.2.1.1. In particular embodiments, methods of the invention can be used to treat and/or prevent metastasis from primary tumors.

[00159] The methods and compositions of the invention comprise the administration of one or more EphA2 antibodies of the invention to subjects/patients suffering from or expected to suffer from cancer, e.g., have a genetic predisposition for a particular type of cancer, have been exposed to a carcinogen, or are in remission from a particular cancer. As used herein, “cancer” refers to primary or metastatic cancers. Such patients may or may not have been previously treated for cancer. The methods and compositions of the invention may be used as a first line or second line cancer treatment. Included in the invention is also the treatment of patients undergoing other cancer therapies and the methods and compositions of the invention can be used before any adverse effects or intolerance of these other cancer therapies occurs. The invention also encompasses methods for administering one or more EphA2 antibodies of the invention to treat or ameliorate symptoms in refractory patients. In a certain embodiment, that a cancer is refractory to a therapy means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of “refractory” in such a context. In various embodiments, a cancer is refractory where the number of cancer cells has not been significantly reduced, or has increased. The invention also encompasses methods for administering one or more EphA2 agonistic antibodies to prevent the onset or recurrence of cancer in patients predisposed to having cancer. Preferably, the monoclonal antibody is one or more of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6.

[00160] In particular embodiments, the EphA2 antibodies of the invention, or other therapeutics that reduce EphA2 expression, are administered to reverse resistance or reduced sensitivity of cancer cells to certain hormonal, radiation and chemotherapeutic agents thereby resensitizing the cancer cells to one or more of these agents, which can then be administered (or continue to be administered) to treat or manage cancer, including to prevent metastasis. In a specific embodiment, EphA2 antibodies of the invention are
administered to patients with increased levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy. In another specific embodiment, EphA2 antibodies of the invention are administered to patients suffering from breast cancer that have a decreased responsiveness or are refractory to tamoxifen treatment. In another specific embodiment, EphA2 antibodies of the invention are administered to patients with increased levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy.

In alternate embodiments, the invention provides methods for treating patients’ cancer by administering one or more EphA2 antibodies of the invention in combination with any other treatment or to patients who have proven refractory to other treatments but are no longer on these treatments. Preferably, the EphA2 antibody is one or more of Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In certain embodiments, the patients being treated by the methods of the invention are patients already being treated with chemotherapy, radiation therapy, hormonal therapy, or biological therapy/immunotherapy. Among these patients are refractory patients and those with cancer despite treatment with existing cancer therapies. In other embodiments, the patients have been treated and have no disease activity and one or more agonistic antibodies of the invention are administered to prevent the recurrence of cancer.

In preferred embodiments, the existing treatment is chemotherapy. In particular embodiments, the existing treatment includes administration of chemotherapies including, but not limited to, methotrexate, taxol, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cyclophosphamide, ifosfamide, nitrosoureas, cisplatin, carboplatin, mitomycin, dacarbazine, procarbazine, etoposides, camptothecins, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, mitoxantrone, asparaginase, vinblastine, vincristine, vinorelbine, paclitaxel, docetaxel, etc. Among these patients are patients treated with radiation therapy, hormonal therapy and/or biological therapy/immunotherapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

Alternatively, the invention also encompasses methods for treating patients undergoing or having undergone radiation therapy. Among these are patients being treated or previously treated with chemotherapy, hormonal therapy and/or biological
therapy/immunotherapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

[00164] In other embodiments, the invention encompasses methods for treating patients undergoing or having undergone hormonal therapy and/or biological therapy/immunotherapy. Among these are patients being treated or having been treated with chemotherapy and/or radiation therapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

[00165] Additionally, the invention also provides methods of treatment of cancer as an alternative to chemotherapy, radiation therapy, hormonal therapy, and/or biological therapy/immunotherapy where the therapy has proven or may prove too toxic, i.e., results in unacceptable or unbearable side effects, for the subject being treated. The subject being treated with the methods of the invention may, optionally, be treated with other cancer treatments such as surgery, chemotherapy, radiation therapy, hormonal therapy or biological therapy, depending on which treatment was found to be unacceptable or unbearable.

[00166] In other embodiments, the invention provides administration of one or more agonistic monoclonal antibodies of the invention without any other cancer therapies for the treatment of cancer, but who have proved refractory to such treatments. In specific embodiments, patients refractory to other cancer therapies are administered one or more agonistic monoclonal antibodies in the absence of cancer therapies.

[00167] In other embodiments, patients with a pre-cancerous condition associated with cells that overexpress EphA2 can be administered antibodies of the invention to treat the disorder and decrease the likelihood that it will progress to malignant cancer. In a specific embodiment, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00168] In yet other embodiments, the invention provides methods of treating, preventing and managing non-cancer hyperproliferative cell disorders, particularly those associated with overexpression of EphA2, including but not limited to, asthma, chromic obstructive pulmonary disorder (COPD), restenosis (smooth muscle and/or endothelial), psoriasis, etc. These methods include methods analogous to those described above for treating, preventing and managing cancer, for example, by administering the EphA2 antibodies of the invention, as well as agents that inhibit EphA2 expression, combination therapy, administration to patients refractory to particular treatments, etc.
5.2.1.1. **Cancers**

Cancers and related disorders that can be treated, prevented, or managed by methods and compositions of the present invention include but are not limited to cancers of an epithelial cell origin. Examples of such cancers include the following: leukemias, such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias, such as, myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias and myelodysplastic syndrome; chronic leukemias, such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin’s disease, non-Hodgkin’s disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Waldenström’s macroglobulinemia; monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone and connective tissue sarcomas such as but not limited to bone sarcoma, osteosarcoma, chondrosarcoma, Ewing’s sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi’s sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, synovial sarcoma; brain tumors such as but not limited to, glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, primary brain lymphoma; breast cancer including but not limited to ductal carcinoma, adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget’s disease, and inflammatory breast cancer; adrenal cancer such as but not limited to pheochromocytom and adrenocortical carcinoma; thyroid cancer such as but not limited to papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancer such as but not limited to, insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers such as but limited to Cushing’s disease, prolactin-secreting tumor, acromegaly, and diabetes insipidus; eye cancers such as but not limited to ocular melanoma such as iris melanoma, choroidal melanoma, and ciliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancer such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma,
sarcoma, and Paget’s disease; cervical cancers such as but not limited to, squamous cell carcinoma, and adenocarcinoma; uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma; ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor; esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmyctoma, verrucous carcinoma, and oat cell (small cell) carcinoma; stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; rectal cancers; liver cancers such as but not limited to hepatocellular carcinoma and hepatoblastoma; gallbladder cancers such as adenocarcinoma; cholangiocarcinomas such as but not limited to pappillary, nodular, and diffuse; lung cancers such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), spermatocytic, noneinoma, embryonal carcinoma, teratoma carcinoma, chorionicarcinoma (yolk-sac tumor), prostate cancers such as but not limited to, prostatic intraepithelial neoplasia, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; renal cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland cancers such as but not limited to adenocarcinoma, mucoepidermoid carcinoma, and adenoidcystic carcinoma; pharynx cancers such as but not limited to squamous cell cancer, and verrucous; skin cancers such as but not limited to, basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignan melanoma, acral lentiginous melanoma; kidney cancers such as but not limited to renal cell carcinoma, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell cancer (renal pelvis and/ or uter); Wilms’ tumor; bladder cancers such as but not limited to transitional cell carcinoma, squamous cell cancer, adenocarcinoma, carcinosarcoma. In addition, cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer
Accordingly, the methods and compositions of the invention are also useful in the treatment or prevention of a variety of cancers or other abnormal proliferative diseases, including (but not limited to) the following: carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Burkitt’s lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; other tumors, including melanoma, seminoma, tetratocarcinoma, neuroblastoma and glioma; tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin, including fibrosarcoma, rhabdomyosarcoma, and osteosarcoma; and other tumors, including melanoma, xeroderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer and teratocarcinoma. It is also contemplated that cancers caused by aberrations in apoptosis would also be treated by the methods and compositions of the invention. Such cancers may include but not be limited to follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes. In specific embodiments, malignancy or dysproliferative changes (such as metaplasias and dysplasias), or hyperproliferative disorders, are treated or prevented in the skin, lung, colon, breast, prostate, bladder, kidney, pancreas, ovary, or uterus. In other specific embodiments, sarcoma, melanoma, or leukemia is treated or prevented.

In some embodiments, the cancer is malignant and overexpresses EphA2. In other embodiments, the disorder to be treated is a pre-cancerous condition associated with cells that overexpress EphA2. In a specific embodiments, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

In preferred embodiments, the methods and compositions of the invention are used for the treatment and/or prevention of breast, colon, ovarian, lung, and prostate cancers and melanoma and are provided below by example rather than by limitation.
5.2.1.2. **Treatment of Breast Cancer**

[00173] In specific embodiments, patients with breast cancer are administered an effective amount of one or more monoclonal antibodies of the invention. In another embodiment, the antibodies of the invention can be administered in combination with an effective amount of one or more other agents useful for breast cancer therapy including but not limited to: doxorubicin, epirubicin, the combination of doxorubicin and cyclophosphamide (AC), the combination of cyclophosphamide, doxorubicin and 5-fluorouracil (CAF), the combination of cyclophosphamide, epirubicin and 5-fluorouracil (CEF), herceptin, tamoxifen, the combination of tamoxifen and cytotoxic chemotherapy, taxanes (such as docetaxel and paclitaxel). In a further embodiment, antibodies of the invention can be administered with taxanes plus standard doxorubicin and cyclophosphamide for adjuvant treatment of node-positive, localized breast cancer.

[00174] In a specific embodiment, patients with pre-cancerous fibroadenoma of the breast or fibrocystic disease are administered an EphA2 antibody of the invention to treat the disorder and decrease the likelihood that it will progress to malignant breast cancer. In another specific embodiment, patients refractory to treatment, particularly hormonal therapy, more particularly tamoxifen therapy, are administered an EphA2 antibody of the invention to treat the cancer and/or render the patient non-refractory or responsive.

5.2.1.3. **Treatment of Colon Cancer**

[00175] In specific embodiments, patients with colon cancer are administered an effective amount of one or more monoclonal antibodies of the invention. In another embodiment, the antibodies of the invention can be administered in combination with an effective amount of one or more other agents useful for colon cancer therapy including but not limited to: the combination of 5-FU and leucovorin, the combination of 5-FU and levamisole, irinotecan (CPT-11) or the combination of irinotecan, 5-FU and leucovorin (IFL).

5.2.1.4. **Treatment of Prostate Cancer**

[00176] In specific embodiments, patients with prostate cancer are administered an effective amount of one or more monoclonal antibodies of the invention. In another embodiment, the antibodies of the invention can be administered in combination with an effective amount of one or more other agents useful for prostate cancer therapy including but not limited to: external-beam radiation therapy, interstitial implantation of radioisotopes (i.e., 125I, palladium, iridium), leuprolide or other LHRH agonists, non-steroidal...
antiandrogens (flutamide, nilutamide, bicalutamide), steroidal antiandrogens (cyproterone acetate), the combination of leuprolide and flutamide, estrogens such as DES, chlorotrianisene, ethinyl estradiol, conjugated estrogens U.S.P., DES-diphosphate, radioisotopes, such as strontium-89, the combination of external-beam radiation therapy and strontium-89, second-line hormonal therapies such as aminogluthethimide, hydrocortisone, flutamide withdrawal, progesterone, and ketoconazole, low-dose prednisone, or other chemotherapy regimens reported to produce subjective improvement in symptoms and reduction in PSA level including docetaxel, paclitaxel, estramustine/docetaxel, estramustine/etoposide, estramustine/vinblastine, and estramustine/paclitaxel.

[00177] In a specific embodiment, patients with pre-cancerous high-grade prostatic intraepithelial neoplasia (PIN) are administered an EphA2 antibody of the invention to treat the disorder and decrease the likelihood that it will progress to malignant prostate cancer.

5.2.1.5. **Treatment of Melanoma**

[00178] In specific embodiments, patients with melanoma are administered an effective amount of one or more monoclonal antibodies of the invention. In another embodiment, the antibodies of the invention can be administered in combination with an effective amount of one or more other agents useful for melanoma cancer therapy including but not limited to: dacarbazine (DTIC), nitrosoureas such as carmustine (BCNU) and lomustine (CCNU), agents with modest single agent activity including vinca alkaloids, platinum compounds, and taxanes, the Dartmouth regimen (cisplatin, BCNU, and DTIC), interferon alpha (IFN-A), and interleukin-2 (IL-2). In a specific embodiment, an effective amount of one or more agonistic monoclonal antibodies of the invention can be administered in combination with isolated hyperthermic limb perfusion (ILP) with melphalan (L-PAM), with or without tumor necrosis factor-alpha (TNF-alpha) to patients with multiple brain metastases, bone metastases, and spinal cord compression to achieve symptom relief and some shrinkage of the tumor with radiation therapy.

[00179] In a specific embodiment, patients with pre-cancerous compound nevi are administered an EphA2 antibody of the invention to treat the disorder and decrease the likelihood that it will progress to malignant melanoma.

5.2.1.6. **Treatment of Ovarian Cancer**

[00180] In specific embodiments, patients with ovarian cancer are administered an effective amount of one or more monoclonal antibodies of the invention. In another
embodiment, the antibodies of the invention can be administered in combination with an
effective amount of one or more other agents useful for ovarian cancer therapy including
but not limited to: intraperitoneal radiation therapy, such as 32P therapy, total abdominal
and pelvic radiation therapy, cisplatin, the combination of paclitaxel (Taxol) or docetaxel
(Taxotere) and cisplatin or carboplatin, the combination of cyclophosphamide and cisplatin,
the combination of cyclophosphamide and carboplatin, the combination of 5-FU and
leucovorin, etoposide, liposomal doxorubicin, gemcitabine or topotecan. It is contemplated
that an effective amount of one or more agonistic monoclonal antibodies of the invention is
administered in combination with the administration Taxol for patients with platinum-
refractory disease. Included is the treatment of patients with refractory ovarian cancer
including administration of: ifosfamide in patients with disease that is platinum-refractory,
hexamethylmelamine (HMM) as salvage chemotherapy after failure of cisplatin-based
combination regimens, and tamoxifen in patients with detectable levels of cytoplasmic
estrogen receptor on their tumors.

5.2.1.7. **Treatment of Lung Cancers**

[00181] In specific embodiments, patients with small lung cell cancer are
administered an effective amount of one or more monoclonal antibodies of the invention.
In another embodiment, the antibodies of the invention can be administered in combination
with an effective amount of one or more other agents useful for lung cancer therapy
including but not limited to: thoracic radiation therapy, cisplatin, vincristine, doxorubicin,
and etoposide, alone or in combination, the combination of cyclophosphamide, doxorubicin,
vincristine/etoposide, and cisplatin (CAV/EP), local palliation with endobronchial laser
therapy, endobronchial stents, and/or brachytherapy.

[00182] In other specific embodiments, patients with non-small lung cell cancer are
administered an effective amount of one or more monoclonal antibodies of the invention in
combination with an effective amount of one or more other agents useful for lung cancer
therapy including but not limited to: palliative radiation therapy, the combination of
cisplatin, vinblastine and mitomycin, the combination of cisplatin and vinorelbine,
paclitaxel, docetaxel or gemcitabine, the combination of carboplatin and paclitaxel,
interstitial radiation therapy for endobronchial lesions or stereotactic radiosurgery.
5.2.2 Other Prophylactic/Therapeutic Agents

[00183] In some embodiments, therapy by administration of one or more monoclonal antibodies is combined with the administration of one or more therapies such as, but not limited to, chemotherapies, radiation therapies, hormonal therapies, and/or biological therapies/immunotherapies. Prophylactic/therapeutic agents include, but are not limited to, proteinaceous molecules, including, but not limited to, peptides, polypeptides, proteins, including post-translationally modified proteins, antibodies etc.; or small molecules (less than 1000 daltons), inorganic or organic compounds; or nucleic acid molecules including, but not limited to, double-stranded or single-stranded DNA, or double-stranded or single-stranded RNA, as well as triple helix nucleic acid molecules. Prophylactic/therapeutic agents can be derived from any known organism (including, but not limited to, animals, plants, bacteria, fungi, and protista, or viruses) or from a library of synthetic molecules.

[00184] In a specific embodiment, the methods of the invention encompass administration of an antibody of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of kinases such as, but not limited to, ABL, ACK, AFK, AKT (e.g., AKT-1, AKT-2, and AKT-3), ALK, AMP-PK, ATM, Auroral, Aurora2, bARK1, bArk2, BLK, BMX, BTK, CAK, CaM kinase, CDC2, CDK, CK, COT, CTD, DNA-PK, EGF-R, ErbB-1, ErbB-2, ErbB-3, ErbB-4, ERK (e.g., ERK1, ERK2, ERK3, ERK4, ERK5, ERK6, ERK7), ERT-PK, FAK, FGR (e.g., FGF1R, FGF2R), FLT (e.g., FLT-1, FLT-2, FLT-3, FLT-4), FRK, FYN, GSK (e.g., GSK1, GSK2, GSK3-alpha, GSK3-beta, GSK4, GSK5), G-protein coupled receptor kinases (GRKs), HCK, HER2, HKII, JAK (e.g., JAK1, JAK2, JAK3, JAK4), JNK (e.g., JNK1, JNK2, JNK3), KDR, KIT, IGF-1 receptor, IKK-1, IKK-2, INSR (insulin receptor), IRAK1, IRAK2, IRK, ITK, LCK, LOK, LYN, MAPK, MAPKAPK-1, MAPKAPK-2, MEK, MET, MFPK, MHCK, MLCK, MLK3, NEU, NIK, PDGF receptor alpha, PDGF receptor beta, PHK, PI-3 kinase, PKA, PKB, PKC, PKG, PRK1, PYK2, p38 kinases, p135tyk2, p34cdc2, p42cdc2, p42mapk, p44mpk, RAF, RET, RIP, RIP-2, RK, RON, RS kinase, SRC, SYK, S6K, TAK1, TEC, TIE1, TIE2, TRKA, TXK, TYK2, UL13, VEGFR1, VEGFR2, YES, YRK, ZAP-70, and all subtypes of these kinases (see e.g., Hardie and Hanks (1995) The Protein Kinase Facts Book, I and II, Academic Press, San Diego, Calif.). In preferred embodiments, an antibody of the invention is administered in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of Eph receptor kinases (e.g., EphA2, EphA4). In a most preferred embodiment, an antibody of the
invention is administered in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of EphA2.

[00185] In another specific embodiment, the methods of the invention encompass administration of an antibody of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are angiogenesis inhibitors such as, but not limited to: Angiostatin (plasminogen fragment); antiangiogenic antithrombin III; Angiozyme; ABT-627; Bay 12-9566; Benefin; Bevacizumab; BMS-275291; cartilage-derived inhibitor (CDI); CAI; CD59 complement fragment; CEP-7055; Col 3; Combretastatin A-4; Endostatin (collagen XVIII fragment); fibronectin fragment; Gro-beta; Halofuginone; Heparinases; Heparin hexasaccharide fragment; HMV833; Human chorionic gonadotropin (hCG); IM-862; Interferon alpha/beta/gamma; Interferon inducible protein (IP-10); Interleukin-12; Kringle 5 (plasminogen fragment); Marimastat; Metalloproteinase inhibitors (TIMPs); 2-Methoxyestradiol; MMI 270 (CGS 27023A); MoAb IMC-1C11; Neovastat; NM-3; Panzem; PI-88; Placental ribonuclease inhibitor; Plasminogen activator inhibitor; Platelet factor-4 (PF4); Prinomastat; Prolactin 16kD fragment; Proliferin-related protein (PRP); PTK 787/ZK 222594; Retinoids; Solimastat; Squalamine; SS 3304; SU 5416; SU6668; SU11248; Tetrahydrocortisol-S; tetrathiomolybdate; thalidomide; Thrombospondin-1 (TSP-1); TNP-470; Transforming growth factor-beta (TGF-β); Vasculostatin; Vasostatin (calreticulin fragment); ZD6126; ZD6474; farnesyl transferase inhibitors (FTI); and bisphosphonates.

[00186] In another specific embodiment, the methods of the invention encompass administration of an antibody of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are anti-cancer agents such as, but not limited to: acivicin, aclarubicin, acodazole hydrochloride, acronine, adozelesin, aldesleukin, altretamine, ambomycin, ametantrone acetate, aminoglutethimide, amsacrine, anastrozole, anthramycin, asparaginase,asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene hydrochloride, bisnafide dimesylate, bizelesin, bleomycin sulfate, brequinar sodium, bropirimine, busulfan, caacinomycin, calusterone, caracemide, carbetimer, carboplatin, carmustine, carubicin hydrochloride, carzelesin, cedefingol, chlorambucil, cirolomycin, cisplatin, cladribine, crisnatol mesylate, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin hydrochloride, decarbazine, decitabine, dexormaplatin, dezaguamine, dezaguaine mesylate, diaziquone, docetaxel, doxorubicin, doxorubicin hydrochloride, droloxifene, droloxifene citrate, dromostanolone propionate, duazomycin, edatrexate, efornithine hydrochloride,
elsamitricin, enloplatin, enpromate, epirubicin hydrochloride, erubulozole, esorubicin hydrochloride, estramustine, estramustine phosphate sodium, etanidazole, etoposide, etoposide phosphate, etoprine, fadrozole hydrochloride, fazarabine, fenretinide, floxuridine, fluadarabine phosphate, fluorouracil, flurocitabine, fosquidone, fosfamide, gemcitabine, gemcitabine hydrochloride, hydroxyurea, idarubicin hydrochloride, ifosfamide, ilmofoxine, interleukin 2 (including recombinant interleukin 2, or rIL2), interferon alpha-2a, interferon alpha-2b, interferon alpha-n1, interferon alpha-n3, interferon beta-I a, interferon gamma-I b, iproplatin, irinotecan hydrochloride, lanreotide acetate, letrozole, leuprolide acetate, liarozole hydrochloride, lometrexol sodium, lomustine, losoxantrone hydrochloride, masoposcol, maytansine, mechlorethamine hydrochloride, megestrol acetate, melengestrol acetate, melphalan, menogaril, mercaptopurine, methotrexate, methotrexate sodium, metoprine, meturedepa, mitindomide, mitocarcin, mitocromin, mitogillin, mitomalcin, mitomycin, mitosper, mitotane, mitoxantrone hydrochloride, mycophenolic acid, nitrosoureas, nocodazole, nogalamycin, ormaplatin, oxisuran, paclitaxel, pegasparagase, pelliomycin, pentamustine, peplomycin sulfate, perfosfamide, pipobroman, piposulfan, piroxantrone hydrochloride, plicamycin, plomestane, porfimer sodium, porfyrmycin, prednimustine, procarbazine hydrochloride, puromycin, puromycin hydrochloride, pyrazofurin, riboprine, rogetimide, safingol, safingol hydrochloride, semustine, simtrazene, sparfosate sodium, sparsomycin, spirogermanium hydrochloride, spiromustine, spiroplatin, streptonigrin, streptozocin, sulofenur, talisomycin, tecogalan sodium, tegafur, teloxantrone hydrochloride, temoporfin, teniposide, teroxirone, testolactone, thiamiprine, thioguanine, thiopeta, tiazofurin, tirapazamine, toremifene citrate, trestolone acetate, triciribine phosphate, trimetrexate, trimetrexate glucuronate, triptorelin, tubulozole hydrochloride, uracil mustard, uredepa, vapreotide, verteporfin, vinblastine sulfate, vincristine sulfate, vindesine, vindesine sulfate, vinepidine sulfate, vinglycinate sulfate, vinleurosine sulfate, vinorelbine tartrate, vinrosidine sulfate, vinzolidine sulfate, vorozole, zeniplatin, zinostatin, zorubicin hydrochloride. Other anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3, 5-ethynyluracil, abiraterone, aclarubicin, acylfulvene, adecyphenol, adozelesin, aldesleukin, ALL-TK antagonists, altretamine, ambamustine, amidox, amifostine, aminolevulinic acid, amrubicin, amanscline, anagrelide, anastrozole, andrographolide, angiogenesis inhibitors, antagonist D, antagonist G, antarelix, anti-dorsalizing morphogenetic protein-1, antiandrogens, antiestrogens, antineoplaston, aphidicolin glycinate, apoptosis gene modulators, apoptosis regulators, apurinic acid, ara-CDP-DL-PTBA, arginine deaminase, asulacrine, atamestane, atrimustine,
axinastatin 1, axinastatin 2, axinastatin 3, azasetron, azatoxin, azatyrosine, baccatin III derivatives, balanol, batimastat, BCR/ABL antagonists, benzochlorins, benzoylstauruporine, beta lactam derivatives, beta-alethine, betaclamycin B, betulinic acid, bFGF inhibitor, bicalutamide, bisantrene, bisaziridinylspermine, bisafide, bistratene A, bizelesin, breflate, bropirimine, budotitane, buthionine sulfoximine, calciopotriol, calphostin C, camptothecin derivatives, canarypox IL-2, capecitabine, carboxamide-amino-triazole, carboxamidotriazole, CaRest M3, CARN 700, cartilage derived inhibitor, carzelesin, casein kinase inhibitors (ICOS), castanospermine, cecropin B, cetorelix, chloroquinoxaline sulfonamide, cicaprost, cis-porphyrin, cladrabine, clomifene analogues, clotrimazole, collismycin A, collismycin B, combretastatin A4, combretastatin analogue, conagenin, crambescidin 816, crisanatol, cryptophycin 8, cryptophycin A derivatives, curacin A, cyclopentanthraquinones, cycloplatan, cypermethrin, cytarabine ocfosfate, cytolytic factor, cytostatin, dacliximab, decitabine, dehydrodideemin B, deslorelin, dexamethasone, dexifosfamide, dexrazoxane, dexverapamil, diaziquone, didemnin B, didox, diethylnorperosmine, dihydro-5-azacytidine, dihydroraxol, dioxamycin, diphenyl spiromustine, docetaxel, docosanol, dolasetron, doxifluridine, droloxifene, dronabinol, duocarmycin SA, ebelen, ecomustine, edelfosine, edrecolomab, efolornithine, elemene, emitefur, epirubicin, epiristeride, estramustine analogue, estrogen agonists, estrogen antagonists, etanidazole, etoposide phosphate, exemestane, fadrozole, fazarabine, fenretinide, filgrastim, finasteride, flavopiridol, flezlastine, fluasterone, fluadarabine, fluorodaunorunicin hydrochloride, forfenimex, formestane, fostriecin, fotemustine, gadolinium texaphyrin, gallium nitrate, galocitabine, ganirelix, gelatinase inhibitors, gemcitabine, glutathione inhibitors, hepsulfam, heregulin, hexamethylene bisacetamide, hypericin, ibandronic acid, idarubicin, idoxifene, idramantone, ilmofosine, ilomastat, imidazoacridones, imiquimod, immunostimulant peptides, insulin-like growth factor-1 receptor inhibitor, interferon agonists, interferons, interleukins, iobenguane, iododoxorubicin, ipomeanol, iroplact, irsogladine, isobengazole, isohomohalicondrin B, itasetron, jasplakinolide, kahalalide F, lamellarin-N triacetate, lanreotide, leinamycin, lenograstim, lentinan sulfate, leptomatin, letrozole, leukemia inhibiting factor, leukocyte alpha interferon, leuprolide+estrogen+progesterone, leupreolin, levamisole, liazozole, linear polyamine analogue, lipophilic disaccharide peptide, lipophilic platinum compounds, lissoclaminamide 7, lobaplatin, lombricine, lometrexol, londamine, losoxantrone, lovastatin, loxoribine, lurtotecan, lutetium texaphyrin, lysofylline, lytic peptides, maitansine, mannostatin A, marimastat, masoprocol, maspin, matrilysin inhibitors, matrix
metalloproteinase inhibitors, menogaril, merbarone, meterelin, methioninase,
metoclopramide, MIF inhibitor, mifepristone, miltefosine, mirimostim, mismatched double
stranded RNA, mitoguazone, mitolactol, mitomycin analogues, mitonafide, mitotoxin
fibroblast growth factor-saporin, mitoxantrone, mofarotene, molgramostim, monoclonal
antibody, human chorionic gonadotrophin, monophosphoryl lipid A+mycobacterium cell
wall sk, mopidamol, multiple drug resistance gene inhibitor, multiple tumor suppressor 1-
based therapy, mustard anticancer agent, mycaperoxide B, mycobacterial cell wall extract,
myriaporone, N-acetyldinaline, N-substituted benzamides, nafarelin, nagrestip,
naloxone+pentazocine, napavin, naphterpin, nartograstim, nedaplatin, nemorubicin,
neridronic acid, neutral endopeptidase, nilutamide, nisamycin, nitric oxide modulators,
nitroxide antioxidant, nitrulyn, O6-benzylguanine, octreotide, okicenone, oligonucleotides,
onapristone, ondansetron, ondansetron, oracin, oral cytokine inducer, ormaplatin, osaterone,
oxaliplatin, oxanomycin, paclitaxel, paclitaxel analogues, paclitaxel derivatives,
palauamine, palmitoylrhizoxin, panidronic acid, panaxytriol, panomifene, parabactin,
pazelliptine, pegaspargase, peldesine, pentosan polysulfate sodium, pentostatin, pentrozole,
perflubron, perfosfamide, perillyl alcohol, phenazinomycin, phenylacetate, phosphatase
inhibitors, picibanil, pilocarpine hydrochloride, pirarubicin, piritrexim, placetin A, placetin
B, plasminogen activator inhibitor, platinum complex, platinum compounds, platinum-
triamine complex, porfimer sodium, porfiromycin, prednisone, propyl bis-acridone,
prostaglandin J2, proteasome inhibitors, protein A-based immune modulator, protein kinase
C inhibitor, protein kinase C inhibitors, microalgal, protein tyrosine phosphatase inhibitors,
purine nucleoside phosphorylase inhibitors, purpurins, pyrazoloacridine, pyridoxylated
hemoglobin polyoxyethylene conjugate, raf antagonists, raltitrexed, ramosetron, ras farnesyl
protein transferase inhibitors, ras inhibitors, ras-GAP inhibitor, retelliptine demethylated,
rhenium Re 186 etidronate, rhizoxin, ribozymes, RII retinamide, rogelitimide, rohitukine,
romurtide, roquinimex, rubiginone B1, ruboxyl, safingol, saintopin, SarCNU, sarcophytol
A, sargramostim, Sdi 1 mimetics, semustine, senescence derived inhibitor 1, sense
oligonucleotides, signal transduction inhibitors, signal transduction modulators, single chain
antigen binding protein, sizofran, sobuzoxane, sodium borocaptate, sodium phenylacetate,
solverol, somatomedin binding protein, sonermin, sparfosic acid, spicamycin D,
spiromustine, splenopentin, spongistatin 1, squalamine, stem cell inhibitor, stem-cell
division inhibitors, stipiamide, stromelysin inhibitors, sulfinosine, superactive vasoactive
intestinal peptide antagonist, suradista, suramin, swainsonine, synthetic
glycosaminoglycans, tallimustine, tamoxifen methiodide, tauromustine, taxol, tazarotene,
tecogalan sodium, tegafur, tellurapyrlyium, telomerase inhibitors, temoporfin, temozolomide, teniposide, tetrachlorodecaoxide, tetrazomine, thaliblastine, thalidomide, thiocoraline, thioguanine, thrombopoietin, thrombopoietin mimetic, thymalfasin, thymopoietin receptor agonist, thymotrinan, thyroid stimulating hormone, tin ethyl etiopurpurin, tirapazamine, titanocene bichloride, topsentin, toremifene, totipotent stem cell factor, translation inhibitors, tretinoin, triacetyluridine, triciribine, trimetrexate, triptorelin, tropisetron, turosteride, tyrosine kinase inhibitors, tyrphostins, UBC inhibitors, ubenimex, urogenital sinus-derived growth inhibitory factor, urokinase receptor antagonists, vapreotide, variolin B, vector system, erythrocyte gene therapy, velaresol, veramine, verdins, verteporfin, vinorelbine, vinxaltine, vitaxin, vorozole, zanotere, zeniplatin, zilascorb, and zinostatin stimalamer. Preferred additional anti-cancer drugs are 5-fluorouracil and leucovorin.

[00187] In more particular embodiments, the present invention also comprises the administration of one or more monoclonal antibodies of the invention in combination with the administration of one or more therapies such as, but not limited to anti-cancer agents such as those disclosed in Table 2, preferably for the treatment of breast, ovary, melanoma, prostate, colon and lung cancers as described above.

TABLE 2

<table>
<thead>
<tr>
<th>Therapeutic Agent</th>
<th>Administration</th>
<th>Dose</th>
<th>Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>doxorubicin hydrochloride (Adriamycin RDF® and Adriamycin PFS®)</td>
<td>Intravenous</td>
<td>60-75 mg/m² on Day 1</td>
<td>21 day intervals</td>
</tr>
<tr>
<td>epirubicin hydrochloride (Ellence™)</td>
<td>Intravenous</td>
<td>100-120 mg/m² on Day 1 of each cycle or divided equally and given on Days 1-8 of the cycle</td>
<td>3-4 week cycles</td>
</tr>
<tr>
<td>fluorouracil</td>
<td>Intravenous</td>
<td>How supplied: 5 ml and 10 ml vials (containing 250 and 500 mg fluorouracil respectively)</td>
<td></td>
</tr>
<tr>
<td>docetaxel (Taxotere®)</td>
<td>Intravenous</td>
<td>60-100 mg/m² over 1 hour</td>
<td>Once every 3 weeks</td>
</tr>
<tr>
<td>paclitaxel (Taxol®)</td>
<td>Intravenous</td>
<td>175 mg/m² over 3 hours</td>
<td>Every 3 weeks for 4 courses (administered sequentially to doxorubicin-containing combination chemotherapy)</td>
</tr>
<tr>
<td>tamoxifen citrate (Nolvadex®)</td>
<td>Oral (tablet)</td>
<td>20-40 mg Dosages greater than 20 mg should be given in divided</td>
<td>Daily</td>
</tr>
<tr>
<td>Therapeutic Agent</td>
<td>Administration</td>
<td>Dose</td>
<td>Intervals</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>leucovorin calcium for injection</td>
<td>Intravenous or intramuscular</td>
<td>How supplied: 350 mg</td>
<td>Dosage is unclear from text. PDR 3610</td>
</tr>
<tr>
<td></td>
<td>injection</td>
<td>vial</td>
<td></td>
</tr>
<tr>
<td>luprolide acetate (Lupron®)</td>
<td>Single subcutaneous injection</td>
<td>1 mg (0.2 ml or 20 unit mark)</td>
<td>Once a day</td>
</tr>
<tr>
<td>flutamide (Eulexin®)</td>
<td>Oral (capsule)</td>
<td>250 mg (capsules contain 125 mg flutamide each)</td>
<td>3 times a day at 8 hour intervals (total daily dosage 750 mg)</td>
</tr>
<tr>
<td>nilutamide (Nilandron®)</td>
<td>Oral (tablet)</td>
<td>300 mg or 150 mg (tablets contain 50 or 150 mg nilutamide each)</td>
<td>300 mg once a day for 30 days followed by 150 mg once a day</td>
</tr>
<tr>
<td>bicalutamide (Casodex®)</td>
<td>Oral (tablet)</td>
<td>50 mg (tablets contain 50 mg bicalutamide each)</td>
<td>Once a day</td>
</tr>
<tr>
<td>progesterone</td>
<td>Injection</td>
<td>USP in sesame oil 50 mg/ml</td>
<td></td>
</tr>
<tr>
<td>ketoconazole (Nizoral®)</td>
<td>Cream</td>
<td>2% cream applied once or twice daily depending on symptoms</td>
<td></td>
</tr>
<tr>
<td>prednisone</td>
<td>Oral (tablet)</td>
<td>Initial dosage may vary from 5 mg to 60 mg per day depending on the specific disease entity being treated.</td>
<td></td>
</tr>
<tr>
<td>estramustine phosphate sodium</td>
<td>Oral (capsule)</td>
<td>14 mg/kg of body weight (i.e. one 140 mg capsule for each 10 kg or 22 lb of body weight)</td>
<td>Daily given in 3 or 4 divided doses</td>
</tr>
<tr>
<td>(Emcyt®)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etoposide or VP-16</td>
<td>Intravenous</td>
<td>5 ml of 20 mg/ml solution (100 mg)</td>
<td>Once a day for 10 days. May be repeated at 4 week intervals</td>
</tr>
<tr>
<td>dacarbazine (DTIC-Dome®)</td>
<td>Intravenous</td>
<td>2.4.5 mg/kg</td>
<td></td>
</tr>
<tr>
<td>poliferprosan 20 with carmustine</td>
<td>Wafer placed in resection cavity</td>
<td>8 wafers, each containing 7.7 mg of carmustine, for a total of 61.6 mg, if size and shape of resection cavity allows</td>
<td></td>
</tr>
<tr>
<td>implant (BCNU) (nitrosourea)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gliadel®)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cisplatin</td>
<td>Injection</td>
<td>How supplied: solution of 1 mg/ml in multidose vials of 50mL and 100mL</td>
<td></td>
</tr>
<tr>
<td>mitomycin</td>
<td>Injection</td>
<td>supplied in 5 mg and 20 mg vials (containing 5 mg and 20 mg mitomycin)</td>
<td></td>
</tr>
<tr>
<td>gemcitabine HCl (Gemzar®)</td>
<td>Intravenous</td>
<td>For NSCLC: 2 schedules have been investigated and the optimum schedule has not been determined 4 week schedule-4 week schedule- Days 1,8 and 15 of each 28-day cycle. Cisplatin intravenously at 100 mg/m² on day 1 after the infusion of</td>
<td></td>
</tr>
<tr>
<td>Therapeutic Agent</td>
<td>Administration</td>
<td>Dose</td>
<td>Intervals</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administration intravenously at 1000 mg/m² over 30 minutes on 3 week</td>
<td>Gemzar. 3 week schedule- Days 1 and 8 of each 21 day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schedule- Gemzar administered intravenously at 1250 mg/m² over 30</td>
<td>cycle. Cisplatin at dosage of 100 mg/m² administered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>minutes</td>
<td>intravenously after administration of Gemzar on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>day 1.</td>
</tr>
<tr>
<td>carboplatin</td>
<td>Intravenous</td>
<td>Single agent therapy: 360 mg/m² I.V. on day 1 (infusion lasting</td>
<td>Every 4 weeks</td>
</tr>
<tr>
<td>(Paraplatin®)</td>
<td></td>
<td>15 minutes or longer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other dosage calculations: Combination therapy with cyclophosphamide,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dose adjustment recommendations, Formula dosing, etc.</td>
<td></td>
</tr>
<tr>
<td>ifosamidide</td>
<td>Intravenous</td>
<td>1.2 g/m² daily</td>
<td>5 consecutive days Repeat every 3 weeks or after</td>
</tr>
<tr>
<td>(Ilex®)</td>
<td></td>
<td></td>
<td>recovery from hematologic toxicity</td>
</tr>
<tr>
<td>topotecan hydrochloride</td>
<td>Intravenous</td>
<td>1.5 mg/m² by intravenous infusion over 30 minutes daily</td>
<td>5 consecutive days, starting on day 1 of 21 day</td>
</tr>
<tr>
<td>(Hycamtin®)</td>
<td></td>
<td></td>
<td>course</td>
</tr>
</tbody>
</table>

[00188] The invention also encompasses administration of the EphA2 antibodies of the invention in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy the cancer cells. In preferred embodiments, the radiation treatment is administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. In other preferred embodiments, the radiation treatment is administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass.

[00189] Cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the *Physician’s Desk Reference* (56th ed., 2002).

5.3 Identification of Antibodies of the Invention

5.3.1 Agonistic Antibodies

[00190] Antibodies of the invention may preferably agonize (i.e., elicit EphA2 phosphorylation) as well as immunospecifically bind to the EphA2 receptor. When agonized, EphA2 becomes phosphorylated and then subsequently degraded. Any method known in the art to assay either the level of EphA2 phosphorylation, activity, or expression...
can be used to assay candidate EphA2 antibodies to determine their agonistic activity (see, e.g., Section 6.2 infra).

5.3.2 Antibodies That Preferentially Bind EphA2 Epitopes Exposed on Cancer Cells

[00191] Antibodies of the invention may preferably bind to EphA2 epitopes exposed on cancer cells (e.g., cells overexpressing EphA2 and/or cells with substantial EphA2 that is not bound to ligand) but not non-cancer cells or cell where EphA2 is bound to ligand. In this embodiment, antibodies of the invention are antibodies directed to an EphA2 epitope not exposed on non-cancer cells but exposed on cancer cells (see, e.g., Section 6.8 infra).

[00192] Differences in EphA2 membrane distribution between non-cancer cells and cancer cells expose certain epitopes on cancer cells that are not exposed on non-cancer cells. For example, normally EphA2 is bound to its ligand, EphrinA1, and localizes at areas of cell-cell contacts. However, cancer cells generally display decreased cell-cell contacts as well as overexpress EphA2 in excess of its ligand. Thus, in cancer cells, there is an increased amount of unbound EphA2 that is not localized to cell-cell contacts. As such, in one embodiment, an antibody that preferentially binds unbound, unlocalized EphA2 is an antibody of the invention.

[00193] Any method known in the art to determine candidate EphA2 antibody binding/localization on a cell can be used to screen candidate antibodies for desirable binding properties. In a one embodiment, immunofluorescence microscopy is used to determine the binding characteristics of an antibody. Standard techniques can be used to compare the binding of an antibody binding to cells grown in vitro. In a specific embodiment, antibody binding to cancer cells is compared to antibody binding to non-cancer cells. An exposed EphA2 epitope antibody binds poorly to non-cancer cells but binds well to cancer cells. In another specific embodiment, antibody binding to non-cancer dissociated cells (e.g., treated with a calcium chelator such as EGTA) is compared to antibody binding to non-cancer cells that have not been dissociated. An exposed EphA2 epitope antibody binds poorly non-cancer cells that have not been dissociated but binds well to dissociated non-cancer cells.

[00193] In another embodiment, flow cytometry is used to determine the binding characteristics of an antibody. In this embodiment, EphA2 may or may not be crosslinked to its ligand, Ephrin A1. An exposed EphA2 epitope antibody binds poorly crosslinked EphA2 but binds well to uncrosslinked EphA2.
[00194] In another embodiment, cell-based or immunoassays are used to determine the binding characteristics of an antibody. In this embodiment, antibodies that can compete with an EphA2 ligand (e.g., Ephrin A1) for binding to EphA2 displace Ephrin A1 from EphA2. The EphA2 ligand used in this assay can be soluble protein (e.g., recombinantly expressed) or expressed on a cell so that it is anchored to the cell.

5.3.3 **Cancer Cell Phenotype Inhibiting Antibodies**

[00195] Antibodies of the invention may preferably inhibit (and preferably reduce) cancer cell colony formation in, for example, soft agar, or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation as well as immunospecifically bind to the EphA2 receptor. One of skill in the art can assay candidate EphA2 antibodies for their ability to inhibit such behavior (see, e.g., Section 6.2 *infra*). Metastatic tumor cells suspended in soft agar form colonies while benign tumors cells do not. Colony formation in soft agar can be assayed as described in Zelinski et al. (2001, *Cancer Res.* 61:2301-6, incorporated herein by reference in its entirety). Antibodies to be assayed for agonistic activity can be included in bottom and top agar solutions. Metastatic tumor cells can be suspended in soft agar and allowed to grow. EphA2 cancer cell phenotype inhibiting antibodies will inhibit colony formation.

[00196] Another behavior specific to metastatic cells that can be used to identify cancer cell phenotype inhibiting antibodies is tubular network formation within a three-dimensional microenvironment, such as MATRIGEL™. Normally, cancer cells quickly assemble into tubular networks that progressively invade all throughout the MATRIGEL™. In the presence of an EphA2 cancer cell phenotype inhibiting antibody, cancer cells assemble into spherical structures that resemble the behavior of differentiated, non-cancerous cells. Accordingly, EphA2 cancer cell phenotype inhibiting antibodies can be identified by their ability to inhibit tubular network formation of cancer cells.

[00197] Any other method that detects an increase in contact inhibition of cell proliferation (e.g., reduction of colony formation in a monolayer cell culture) may also be used to identify cancer cell phenotype inhibiting antibodies.

[00198] In addition to inhibiting cancer cell colony formation, cancer cell phenotype inhibiting antibodies may also cause a reduction or elimination of colonies when added to already established colonies of cancer cells by cell killing, e.g., by necrosis or apoptosis. Methods for assaying for necrosis and apoptosis are well known in the art.
5.3.4 **Antibodies with Low K_{off} Rates**

[00199] The binding affinity of a monoclonal antibody of the invention to EphA2 or a fragment thereof and the off-rate of a monoclonal antibody-EphA2 interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled EphA2 (e.g., 3H or 125I) with the monoclonal antibody of interest in the presence of increasing amounts of unlabeled EphA2, and the detection of the monoclonal antibody bound to the labeled EphA2. The affinity of a monoclonal antibody for an EphA2 and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second monoclonal antibody can also be determined using radioimmunoassays. In this case, EphA2 is incubated with a monoclonal antibody conjugated to a labeled compound (e.g., 3H or 125I) in the presence of increasing amounts of a second unlabeled monoclonal antibody.

[00200] In a preferred embodiment, a candidate EphA2 antibody may be assayed using any surface plasmon resonance based assays known in the art for characterizing the kinetic parameters of the EphA2-EphA2 antibody interaction. Any SPR instrument commercially available including, but not limited to, BIACORE Instruments, available from Biacore AB (Uppsala, Sweden); IAsys instruments available from Affinity Sensors (Franklin, MA.); IBIS system available from Windsor Scientific Limited (Berks, UK), SPR-CELLIA systems available from Nippon Laser and Electronics Lab (Hokkaido, Japan), and SPR Detector Spreeta available from Texas Instruments (Dallas, TX) can be used in the instant invention. For a review of SPR-based technology see Mullet et al., 2000, *Methods* 22: 77-91; Dong et al., 2002, *Review in Mol. Biotech.*, 82: 303-23; Fivash et al., 1998, *Current Opinion in Biotechnology* 9: 97-101; Rich et al., 2000, *Current Opinion in Biotechnology* 11: 54-61; all of which are incorporated herein by reference in their entirety.

Additionally, any of the SPR instruments and SPR based methods for measuring protein-protein interactions described in U.S. Patent Nos. 6,373,577; 6,289,286; 5,322,798; 5,341,215; 6,268,125 are contemplated in the methods of the invention, all of which are incorporated herein by reference in their entirety.

[00201] Briefly, SPR based assays involve immobilizing a member of a binding pair on a surface, and monitoring its interaction with the other member of the binding pair in solution. SPR is based on measuring the change in refractive index of the solvent near the surface that occurs upon complex formation or dissociation. The surface onto which the immobilization occur is the sensor chip, which is at the heart of the SPR technology; it consists of a glass surface coated with a thin layer of gold and forms the basis for a range of
specialized surfaces designed to optimize the binding of a molecule to the surface. A variety of sensor chips are commercially available especially from the companies listed supra, all of which may be used in the methods of the invention. Examples of sensor chips include those available from BIAcore AB, Inc., e.g., Sensor Chip CM5, SA, NTA, and HPA. A molecule of the invention may be immobilized onto the surface of a sensor chip using any of the immobilization methods and chemistries known in the art, including but not limited to direct covalent coupling via amine groups, direct covalent coupling via sulfhydryl groups, biotin attachment to avidin coated surface, aldehyde coupling to carbohydrate groups and attachment through the histidine tag with NTA chips.

In a more preferred embodiment, BIACORE™ kinetic analysis is used to determine the binding on and off rates of monoclonal antibodies to EphA2 (see, e.g., Section 6.7 infra). BIACORE™ kinetic analysis comprises analyzing the binding and dissociation of a monoclonal antibody from chips with immobilized EphA2 or fragment thereof on their surface.

Once an entire data set is collected, the resulting binding curves are globally fitted using computer algorithms supplied by the manufacturer, BIAcore, Inc. (Piscataway, NJ). These algorithms calculate both the K_{on} and K_{off}, from which the apparent equilibrium binding constant, K_D, is deduced as the ratio of the two rate constants (i.e., K_{off}/K_{on}). More detailed treatments of how the individual rate constants are derived can be found in the BIAevaluation Software Handbook (BIAcore, Inc., Piscataway, NJ). The analysis of the generated data may be done using any method known in the art. For a review of the various methods of interpretation of the kinetic data generated see Myszka, 1997, Current Opinion in Biotechnology 8: 50-7; Fisher et al., 1994, Current Opinion in Biotechnology 5: 389-95; O’Shannessy, 1994, Current Opinion in Biotechnology, 5:65-71; Chaiken et al., 1992, Analytical Biochemistry, 201: 197-210; Morton et al., 1995, Analytical Biochemistry 227: 176-85; O’Shannessy et al., 1996, Analytical Biochemistry 236: 275-83; all of which are incorporated herein by reference in their entirety.

The invention encompasses antibodies that immunospecifically bind to EphA2 and preferably have a K_{off} rate (antibody (Ab) + antigen (Ag) \rightarrow Ab-Ag) of less than 3×10^{-3} s$^{-1}$, more preferably less than 1×10^{-3} s$^{-1}$. In other embodiments, the antibodies of the invention immunospecifically bind to EphA2 and have a K_{off} of less than 5×10^{-3} s$^{-1}$, less than 10^{-3} s$^{-1}$, less than 8×10^{-4} s$^{-1}$, less than 5×10^{-4} s$^{-1}$, less than 10^{-4} s$^{-1}$, less than 9×10^{-5} s$^{-1}$, less than 5×10^{-5} s$^{-1}$, less than 10^{-5} s$^{-1}$, less than 5×10^{-6} s$^{-1}$, less than 10^{-6} s$^{-1}$.
Thus, the invention provides methods of assaying and screening for EphA2 antibodies of the invention by incubating antibodies that specifically bind EphA2, particularly that bind the extracellular domain of EphA2, with cells that express EphA2, particularly cancer cells, preferably metastatic cancer cells, that overexpress EphA2 (relative to non-cancer cells of the same cell type) and then assaying for an increase in EphA2 phosphorylation and/or EphA2 degradation (for agonistic antibodies), or reduction in colony formation in soft agar or tubular network formation in three-dimensional basement membrane or extracellular matrix preparation (for cancer cell phenotype inhibiting antibodies), or increased antibody binding to cancer cells as compared to non-cancer cells by e.g., immunofluorescence (for exposed EphA2 epitope antibodies) thereby identifying an EphA2 antibody of the invention.

5.4 Nucleic Acid Molecules

In addition to EphA2 antibodies of the invention, nucleic acid molecules specific for EphA2 can also be used to decrease EphA2 expression and, therefore, be used in methods of the invention.

5.4.1 Antisense

The present invention encompasses antisense nucleic acid molecules, i.e., molecules which are complementary to all or part of a sense nucleic acid encoding EphA2, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The non-coding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids. In one embodiment, the antisense nucleic acid molecule is

5'-CCAGCAGTACCGCTTCTTGTGCCCTGCGGCGGCGC-3' (SEQ ID NO:49) (see, e.g., Section 6.6 infra).
An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcystosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, β-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, β-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutosine, pseudouracil, queosine, 2-thiocyosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylster, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, i.e., EphA2).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for
systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

[00211] An antisense nucleic acid molecule of the invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al., 1987, Nucleic Acids Res. 15:6625). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al., 1987, Nucleic Acids Res. 15:6131) or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327).

5.4.2 Ribozymes

[00212] The invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes; described in Haseloff and Gerlach, 1988, Nature 334:585-591) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding EphA2 can be designed based upon the nucleotide sequence of EphA2. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in U.S. Patent Nos. 4,987,071 and 5,116,742. Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak, 1993, Science 261:1411.

5.4.3 RNA Interference

[00213] In certain embodiments, an RNA interference (RNAi) molecule is used to decrease EphA2 expression. RNA interference (RNAi) is defined as the ability of double-stranded RNA (dsRNA) to suppress the expression of a gene corresponding to its own sequence. RNAi is also called post-transcriptional gene silencing or PTGS. Since the only
RNA molecules normally found in the cytoplasm of a cell are molecules of single-stranded mRNA, the cell has enzymes that recognize and cut dsRNA into fragments containing 21-25 base pairs (approximately two turns of a double helix). The antisense strand of the fragment separates enough from the sense strand so that it hybridizes with the complementary sense sequence on a molecule of endogenous cellular mRNA. This hybridization triggers cutting of the mRNA in the double-stranded region, thus destroying its ability to be translated into a polypeptide. Introducing dsRNA corresponding to a particular gene thus knocks out the cell’s own expression of that gene in particular tissues and/or at a chosen time.

Double-stranded (ds) RNA can be used to interfere with gene expression in mammals (Wianny & Zernicka-Goetz, 2000, Nature Cell Biology 2: 70-75; incorporated herein by reference in its entirety). dsRNA is used as inhibitory RNA or RNAi of the function of EphA2 to produce a phenotype that is the same as that of a null mutant of EphA2 (Wianny & Zernicka-Goetz, 2000, Nature Cell Biology 2: 70-75).

5.5 Characterization And Demonstration Of Therapeutic Or Prophylactic Utility

Toxicity and efficacy of the prophylactic and/or therapeutic protocols of the instant invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Prophylactic and/or therapeutic agents that exhibit large therapeutic indices are preferred. While prophylactic and/or therapeutic agents that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such agents to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage of the prophylactic and/or therapeutic agents for use in humans. The dosage of such agents lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any agent used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in
animal models to achieve a circulating plasma concentration range that includes the IC\textsubscript{50} (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[00217] The anti-cancer activity of the therapies used in accordance with the present invention also can be determined by using various experimental animal models for the study of cancer such as the SCID mouse model or transgenic mice where a mouse EphA2 is replaced with the human EphA2, nude mice with human xenografts, animal models described in Section 6 infra, or any animal model (including hamsters, rabbits, etc.) known in the art and described in Relevance of Tumor Models for Anticancer Drug Development (1999, eds. Fiebig and Burger); Contributions to Oncology (1999, Karger); The Nude Mouse in Oncology Research (1991, eds. Boven and Winograd); and Anticancer Drug Development Guide (1997 ed. Teicher), herein incorporated by reference in their entireties.

5.5.1 Demonstration of Therapeutic or Prophylactic Utility

[00218] The protocols and compositions of the invention are preferably tested \textit{in vitro}, and then \textit{in vivo}, for the desired therapeutic or prophylactic activity, prior to use in humans. For example, \textit{in vitro} assays which can be used to determine whether administration of a specific therapeutic protocol is indicated, include \textit{in vitro} cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a protocol, and the effect of such protocol upon the tissue sample is observed, \textit{e.g.}, increased phosphorylation/degradation of EphA2, inhibition of or decrease in growth and/or colony formation in soft agar or tubular network formation in three-dimensional basement membrane or extracellular matrix preparations. A lower level of proliferation or survival of the contacted cells indicates that the therapeutic agent is effective to treat the condition in the patient. Alternatively, instead of culturing cells from a patient, therapeutic agents and methods may be screened using cells of a tumor or malignant cell line. Many assays standard in the art can be used to assess such survival and/or growth; for example, cell proliferation can be assayed by measuring 3H-thymidine incorporation, by direct cell count, by detecting changes in transcriptional activity of known genes such as proto-oncogenes (\textit{e.g.}, fos, myc) or cell cycle markers; cell viability can be assessed by trypan blue staining, differentiation can be assessed visually based on changes in morphology, increased phosphorylation/degradation of EphA2, decreased growth and/or colony
formation in soft agar or tubular network formation in three-dimensional basement membrane or extracellular matrix preparation, etc.

[00219] Compounds for use in therapy can be tested in suitable animal model systems prior to testing in humans, including but not limited to in rats, mice, chicken, cows, monkeys, rabbits, hamsters, etc., for example, the animal models described above. The compounds can then be used in the appropriate clinical trials.

[00220] Further, any assays known to those skilled in the art can be used to evaluate the prophylactic and/or therapeutic utility of the combinatorial therapies disclosed herein for treatment or prevention of cancer.

5.6 **Pharmaceutical Compositions**

[00221] The compositions of the invention include bulk drug compositions useful in the manufacture of pharmaceutical compositions (e.g., impure or non-sterile compositions) and pharmaceutical compositions (i.e., compositions that are suitable for administration to a subject or patient) which can be used in the preparation of unit dosage forms. Such compositions comprise a prophylactically or therapeutically effective amount of a prophylactic and/or therapeutic agent disclosed herein or a combination of those agents and a pharmaceutically acceptable carrier. Preferably, compositions of the invention comprise a prophylactically or therapeutically effective amount of one or more EphA2 antibodies of the invention and a pharmaceutically acceptable carrier or an agent that reduces EphA2 expression (e.g., antisense oligonucleotides) and a pharmaceutically acceptable carrier. In a further embodiment, the composition of the invention further comprises an additional therapeutic, e.g., anti-cancer, agent.

[00222] In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant (e.g., Freund’s adjuvant (complete and incomplete) or, more preferably, MF59C.1 adjuvant available from Chiron, Emeryville, CA), excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable
solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.

Generally, the ingredients of compositions of the invention are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compositions of the invention can be formulated as neutral or salt forms. Pharmacologically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

Various delivery systems are known and can be used to administer an agonistic monoclonal antibody of the invention or the combination of an agonistic monoclonal antibody of the invention and a prophylactic agent or therapeutic agent useful for preventing or treating cancer, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the antibody or antibody fragment, receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of administering a prophylactic or therapeutic agent of the invention include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural, and mucosal (e.g., intranasal, inhaled, and oral routes). In a specific embodiment, prophylactic or therapeutic agents of the invention are administered intramuscularly, intravenously, or subcutaneously. The prophylactic or therapeutic agents may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral
mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.

[00226] In a specific embodiment, it may be desirable to administer the prophylactic or therapeutic agents of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, by injection, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

International Publication Nos. WO 99/15154 and WO 99/20253. Examples of polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(N-vinyl pyrrolidone), poly(vinyl alcohol), polycrylicamide, poly(ethylene glycol), poly(lactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters. In a preferred embodiment, the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable. In yet another embodiment, a controlled or sustained release system can be placed in proximity of the prophylactic or therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

[00228] Controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more therapeutic agents of the invention. See, e.g., U.S. Patent No. 4,526,938; International Publication Nos. WO

5.6.1 Gene Therapy

[00229] In a specific embodiment, nucleic acids that reduce EphA2 expression (e.g., EphA2 antisense nucleic acids or EphA2 dsRNA) are administered to treat, prevent or manage cancer by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the antisense nucleic acids are produce and mediate a prophylactic or therapeutic effect.

[00230] Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.

[00232] In a preferred aspect, a composition of the invention comprises EphA2 nucleic acids that reduce EphA2 expression, said nucleic acids being part of an expression vector that expresses the nucleic acid in a suitable host. In particular, such nucleic acids have promoters, preferably heterologous promoters, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the nucleic acid that reduces EphA2 expression and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the nucleic acids that reduce EphA2 expression (Koller and Smithies, 1989, *PNAS* 86:8932; Zijlstra et al., 1989, *Nature* 342:435).
Delivery of the nucleic acids into a subject may be either direct, in which case the subject is directly exposed to the nucleic acid or nucleic acid-carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the subject. These two approaches are known, respectively, as in vivo or ex vivo gene therapy. In a specific embodiment, the nucleic acid sequences are directly administered in vivo. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, DuPont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429) (which can be used to target cell types specifically expressing the receptors), etc.

In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., International Publication Nos. WO 92/06180; WO 92/22635; W092/203 16; W093/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, 1989, PNAS 86:8932; and Zijlstra et al., 1989, Nature 342:435).

In a specific embodiment, viral vectors that contain the nucleic acid sequences that reduce EphA2 expression are used. For example, a retroviral vector can be used (see Miller et al., 1993, Meth. Enzymol. 217:581). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of the nucleic acid into a subject. More detail about retroviral vectors can be found in Boesen et al., 1994, Biotherapy 6:291-302, which describes the use of a retroviral vector to deliver the mdr 1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., 1994, J. Clin. Invest. 93:644-651; Klein et al., 1994, Blood 83:1467-1473; Salmons and Gunzberg, 1993,

Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, 1993, Current Opinion in Genetics Development 3:499 present a review of adenovirus-based gene therapy. Bout et al., 1994, Human Gene Therapy 5:3-10 demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., 1991, Science 252:431; Rosenfeld et al., 1992, Cell 68:143; Mastrangeli et al., 1993, J. Clin. Invest. 91:225; International Publication No. W094/12649; and Wang et al., 1995, Gene Therapy 2:775. In a preferred embodiment, adenovirus vectors are used.

Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a subject.

In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, 1993, Meth. Enzymol. 217:599; Cohen et al., 1993, Meth. Enzymol. 217:618) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.
[00239] The resulting recombinant cells can be delivered to a subject by various methods known in the art. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

5.6.2 **Formulations**

[00240] Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

[00241] Thus, the EphA2 agonistic antibodies of the invention or other anti-EphA2 agents (e.g., antisense and other nucleic acids) and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, parenteral or mucosal (such as buccal, vaginal, rectal, sublingual) administration. In a preferred embodiment, local or systemic parenteral administration is used.

[00242] For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

[00243] Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

[00244] For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.
For administration by inhalation, the prophylactic or therapeutic agents for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The prophylactic or therapeutic agents may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The prophylactic or therapeutic agents may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the prophylactic or therapeutic agents may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the prophylactic or therapeutic agents may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The invention also provides that a prophylactic or therapeutic agent is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity. In one embodiment, the prophylactic or therapeutic agent is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted, e.g., with water or saline to the appropriate concentration for administration to a subject.
In a preferred embodiment of the invention, the formulation and administration of various chemotherapeutic, biological/immunotherapeutic and hormonal therapeutic agents are known in the art and often described in the \textit{Physician's Desk Reference, 56th ed.} (2002). For instance, in certain specific embodiments of the invention, the therapeutic agents of the invention can be formulated and supplied as provided in Table 2.

In other embodiments of the invention, radiation therapy agents such as radioactive isotopes can be given orally as liquids in capsules or as a drink. Radioactive isotopes can also be formulated for intravenous injections. The skilled oncologist can determine the preferred formulation and route of administration.

In certain embodiments the agonistic monoclonal antibodies of the invention, are formulated at 1 mg/ml, 5 mg/ml, 10 mg/ml, and 25 mg/ml for intravenous injections and at 5 mg/ml, 10 mg/ml, and 80 mg/ml for repeated subcutaneous administration and intramuscular injection.

The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

5.6.3 Dosages

The amount of the composition of the invention which will be effective in the treatment, prevention or management of cancer can be determined by standard research techniques. For example, the dosage of the composition which will be effective in the treatment, prevention or management of cancer can be determined by administering the composition to an animal model such as, \textit{e.g.}, the animal models disclosed herein or known to those skilled in the art. In addition, \textit{in vitro} assays may optionally be employed to help identify optimal dosage ranges.

Selection of the preferred effective dose can be determined (\textit{e.g.}, via clinical trials) by a skilled artisan based upon the consideration of several factors which will be known to one of ordinary skill in the art. Such factors include the disease to be treated or prevented, the symptoms involved, the patient's body mass, the patient's immune status and other factors known by the skilled artisan to reflect the accuracy of administered pharmaceutical compositions.
The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the cancer, and should be decided according to the judgment of the practitioner and each patient’s circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient’s body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient’s body weight, more preferably 1 mg/kg to 10 mg/kg of the patient’s body weight. Generally, human and humanized antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible.

For other cancer therapeutic agents administered to a patient, the typical doses of various cancer therapeutics known in the art are provided in Table 2. Given the invention, certain preferred embodiments will encompass the administration of lower dosages in combination treatment regimens than dosages recommended for the administration of single agents.

The invention provides for any method of administering lower doses of known prophylactic or therapeutic agents than previously thought to be effective for the prevention, treatment, management or amelioration of cancer. Preferably, lower doses of known anti-cancer therapies are administered in combination with lower doses of agonistic monoclonal antibodies of the invention.

Kits

The invention provides a pharmaceutical pack or kit comprising one or more containers filled with an monoclonal antibody of the invention. Additionally, one or more other prophylactic or therapeutic agents useful for the treatment of a cancer can also be included in the pharmaceutical pack or kit. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
[00261] The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises one or more a monoclonal antibodies of the invention. In another embodiment, a kit further comprises one or more other prophylactic or therapeutic agents useful for the treatment of cancer, in one or more containers. Preferably the monoclonal antibody of the invention is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, Eph099B-233.152, or any of the antibodies listed in Table 6. In certain embodiments, the other prophylactic or therapeutic agent is a chemotherapeutic. In other embodiments, the prophylactic or therapeutic agent is a biological or hormonal therapeutic.

6. **EXAMPLES**

6.1 **Preparation of Monoclonal Antibodies**

Immunization and Fusion

[00262] Monoclonal antibodies against the extracellular domain of EphA2 were generated using the fusion protein EphA2-Fc. This fusion protein consisted of the extracellular domain of human EphA2 linked to human immunoglobulin to facilitate secretion of the fusion protein.

[00263] Two groups of 5 mice each (either Balb/c mice (group A) or SJL mice (group B)) were injected with 5 μg of EphA2-Fc in TiterMax Adjuvant (total volume 100μl) in the left metatarsal region at days 0 and 7. Mice were injected with 10 μg of EphA2-Fc in PBS (total volume 100μl) in the left metatarsal region at days 12 and 14. On day 15, the popliteal and inguinal lymph node cells from the left leg and groin were removed and somatically fused (using PEG) with P3XBcl-2-13 cells.

[00264] Hybridomas producing Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, and Eph099B-233.152 antibodies were isolated from fusions of lymph nodes from immunized SJL mice.

Antibody Screening

[00265] Supernatants from bulk culture hybridomas were screened for immunoreactivity against EphA2 (Table 6, column 4) using standard molecular biological techniques (e.g., ELISA immunoassay). Supernatants were further screened for the ability to inhibit an EphA2 monoclonal antibody (EA2; ATCC deposit no. PTA-4380; see co-pending US Patent Application Serial No. __, entitled “EphA2 Agonistic Monoclonal Antibodies and Methods of Use Thereof” filed May 12, 2003 as Attorney Docket No. 97
10271-107-999) from binding to EphA2. Briefly, the ability of labeled EA2 to bind EphA2-Fc was assayed by competitive ELISA in presence of either unlabeled EA2 or unlabeled Eph099B-208.261 (FIG. 1). Both antibodies could decrease the amount of labeled EA2 binding to EphA2-Fc with increasing concentrations of unlabeled antibody added. Additionally, many of the other antibodies could inhibit EA2 binding to EphA2 as well (Table 6, column 3).

6.2 EphA2 Monoclonal Antibodies Decrease Metastatic Properties of Tumor Cells

6.2.1 EphA2 Phosphorylation and Degradation

EphA2 antibodies promoted tyrosine phosphorylation and degradation of EphA2 in MDA-MB-231 cells. Monolayers of cells were incubated in the presence of EphA2 agonistic antibodies or control at 37°C. Cell lysates were then immunoprecipitated with an EphA2-specific antibody (D7, purchased from Upstate Biologicals, Inc., Lake Placid, NY and deposited with the American Type Tissue Collection on December 8, 2000, and assigned ATCC number PTA 2755), resolved by SDS-PAGE and subjected to western blot analysis with a phosphotyrosine-specific antibody (PY20 or 4G10, purchased from Upstate Biologicals, Inc., Lake Placid, NY). Eph099B-208.261, EA2 (FIGS. 2A-2B), and Eph099B-233.152 (FIG. 4A) increased EphA2 phosphorylation. Some membranes were stripped and re-probed with the EphA2-specific antibody used in the immunoprecipitation (D7) as a loading control (FIGS. 2C-2D). Additionally, other EphA2 antibodies of the invention were also found to increase EphA2 phosphorylation (Table 6, column 5) including Eph099B-102.147 and Eph099B-210.248 (data not shown).

Monolayers of MDA-MB-231 cells were incubated in the presence of EphA2 agonistic antibodies at 37°C. Cell lysates were then resolved by SDS-PAGE and subjected to western blot analysis with an EphA2-specific antibody (D7). Eph099B-208.261, EA2 (FIGS. 3A-3B), and Eph099B-233.152 (FIG. 4B) decreased EphA2 protein level. Some membranes were stripped and re-probed with a β-catenin-specific antibody as a loading control (FIGS. 3C-3D). Additionally, other EphA2 antibodies of the invention were also found to decrease EphA2 protein levels 4 hours and/or 24 hours after antibody treatment (Table 6, columns 6 and 7) including Eph099B-102.147 and Eph099B-210.248 (data not shown). Decreased EphA2 expression is due, in part, to deceased mRNA expression levels in response to EphA2 protein degradation caused by agonistic antibody binding (data not shown).
[00268] Western blot analyses and immunoprecipitations were performed as described previously (Zantek et al., 1999, *Cell Growth Diff.* 10:629-38, which is incorporated by reference in its entirety). Briefly, detergent extracts of cell monolayers were extracted in Tris-buffered saline containing 1% Triton X-100 (Sigma, St. Louis, MO).

After measuring protein concentrations (BioRad, Hercules, CA), 1.5 mg of cell lysate was immunoprecipitated, resolved by SDS-PAGE and transferred to nitrocellulose (PROTRAN™, Schleicher and Schuell, Keene, NH). Antibody binding was detected by enhanced chemiluminescence (Pierce, Rockford, IL) and autoradiography (Kodak X-OMAT; Rochester, NY).

6.2.2 Growth in Soft Agar

[00269] The ability of the antibodies of the invention to inhibit cancer cell formation in soft agar was assayed as described in Zelinski et al. (2001, *Cancer Res.* 61:2301-6). Briefly, cells were suspended in soft agar for 7 days at 37°C in the presence of purified antibody or control solution (PBS). Antibodies were administered at the time of suspension in both bottom and top agar solutions. Colony formation was scored microscopically using an Olympus CK-3 inverted phase-contrast microscope outfitted with a 40x objective. Clusters containing at least three cells were scored as a positive. Both Eph099B-208.261 and EA2 inhibited colony growth in soft agar (FIG. 5). Additionally, other antibodies of the invention can inhibit colony formation in soft agar (Table 6, column 9) including Eph099B-102.147 and Eph099B-210.248 (data not shown).

[00270] The ability of the antibodies of the invention to eliminate cancer cell colonies already formed in soft agar was assayed. Assay methods were similar to those described above except that antibodies were not added to the cancer cells until the third day of growth in soft agar. Some of the antibodies of the invention can kill cancer cells already growing in colonies in soft agar while other antibodies can slow or reduce cancer cell colony growth in soft agar (Table 6, column 10) including Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, and Eph099B-233.152 (data not shown).

6.2.3 Tubular Network Formation in MATRIGEL™

[00271] Tumor cell behavior within a three-dimensional microenvironment, such as MATRIGEL™, can reliably predict the differentiation state and aggressiveness of breast epithelial cells. Monolayer cultures of benign (MCF-10A) or malignant (MDA-MB-231) breast epithelial cells are incubated on MATRIGEL™ in the presence of EphA2 antibodies

99
(10 μg/ml) or control solution (PBS). The behavior of cells on MATRIGEL™ is analyzed as described in Zelinski et al. (2001, Cancer Res. 61:2301-6). Briefly, tissue culture dishes are coated with MATRIGEL™ (Collaborative Biomedical Products, Bedford, MA) at 37°C before adding 1 x 10⁵ MDA-MB-231 or MCF-10A cells previously incubated on ice for 1 hour with the EphA2 antibody or control solution (PBS). Cells are incubated on MATRIGEL™ for 24 hours at 37°C, and cell behavior is assessed using an Olympus IX-70 inverted light microscope. All images are recorded onto 35 mm film (T-Max-400. Kodak, Rochester, NY).

6.2.4 Growth in vivo

[00272] The ability of the antibodies of the invention to inhibit tumor cancer growth in vivo was assayed. Eph099B-233.152 can inhibit tumor cell growth in vivo and extend survival time of tumor-bearing mice. Briefly, 5x10⁶ MDA-MB-231 breast cancer cells were implanted subcutaneously into athymic mice. After the tumors had grown to an average volume of 100mm³, mice were administered 6mg/ml Eph099B-233.152 or PBS control intraperitoneally twice a week for 3 weeks. Tumor growth was assessed and expressed as a ratio of the tumor volume divided by initial tumor volume (100 mm³). After 30 days, mice administered Eph099B-233.152 had smaller tumors than mice administered PBS (FIG. 6A). Tumor growth was allowed to proceed until tumor volume reached 1000mm³. Survival of the mice was assessed by scoring the percent of mice living each day post treatment. A greater percentage of mice survived at each time point examined in the group administered Eph099B-233.152 (FIG. 6B). By day 36, all of the mice in the control group had died in contrast with only 70% of the mice admixture Eph099B-233.152.

[00273] Additionally, EA2 and Eph099B-208.261 can also inhibit tumor cell growth in vivo. 5x10⁶ MDA-MB-231 breast cancer cells were implanted orthotopically or subcutaneously and 5x10⁶ A549 lung cancer cells were implanted subcutaneously into athymic mice. After the tumors had grown to an average volume of 100mm³, mice were administered 6mg/kg of an EphA2 agonistic antibody or negative control (PBS or 1A7 antibody) intraperitoneally twice a week for 3 weeks. Animals were generally sacrificed at least two weeks after the last treatment or when tumors exceeded 2000 mm³. Tumor growth was assessed and expressed either as a ratio of the tumor volume divided by initial tumor volume (100 mm³) or as total tumor volume. Growth of MDA-MB-231 cells implanted orthotopically was inhibited by EA2 (FIG. 7A). Growth of MDA-MB-231 cells implanted subcutaneously was inhibited by EA2, Eph099B-208.261, and Eph099B-233.152
(FIG. 7B, D). Growth of A549 cells implanted subcutaneously was inhibited by EA2, or Eph099B-208.261 (FIG. 7C).

6.3 Estrogen Dependence in Breast Cancer Cells

[00274] Estrogen-sensitive breast cancer cells, MCF-7 cells, were transfected with and stably overexpressed human EphA2 (MCF-7EphA2) (pNeoMSV-EphA2 provided by Dr. T. Hunter, Scripps Institute). Western blot analyses confirmed the ectopic overexpression of EphA2 in transfected cells relative to matched controls (data not shown).

[00275] EphA2 overexpression increased malignant growth (FIGS. 8A-8B). Growth assays were conducted as follows. MCF-7neo (control cells) or MCF7EphA2 cells were seeded in 96-well plates. Cell growth was measured with Alamar blue (Biosource International, Camarillo, CA) following the manufacture’s suggestion. Colony formation in soft agar was performed as previously described (Zelinski et al., 2001, Cancer Res. 61:2301-6) and scored microscopically, defining clusters of at least three cells as a positive. The data represent the average of ten separate high-power microscopic fields from each sample and representative of at least three separate experiments. Error bars represent the standard error of the mean of at least three different experiments as determined using Microsoft Excel software.

[00276] Although MCF-7 control cells were largely unable to colonize soft agar (an average of 0.1 colony/field), MCF-7EphA2 cells formed larger and more numerous colonies (4.7 colonies/field; P < 0.01) that persisted for at least three weeks (FIG. 8A and data not shown). Despite increased colonization of soft agar, the growth of MCF-7EphA2 cells in monolayer culture did not differ from matched controls (FIG. 8B), thus indicating that the growth promoting activities of EphA2 were most apparent using experimental conditions that model anchorage-independent (malignant) cell growth.

[00277] Consistent with increased soft agar colonization, orthotopically implanted MCF-7EphA2 cells formed larger, more rapidly growing tumors \textit{in vivo}. Six to eight week-old athymic (nu/nu) mice were purchased from Harlan Sprague Dawley (Indianapolis, IN). When indicated, a controlled release estradiol pellet (0.72 mg 17\textbeta-estradiol, 60-day formulation) was injected subcutaneously via a sterile 14-gauge trocar 24 hours prior to tumor implantation and pellets were replaced every 60 days for those experiments spanning > 60 days in duration. 1x106 MCF-7neo or MCF7EphA2 cells were injected into the mammary fat pad under direct visualization. When indicated, tamoxifen (1 mg) was administered by oral gavage 6 days per week.
In the presence of supplemental estrogen (17β-estradiol purchased from Sigma), the MCF-7EphA2 cells demonstrated a two-fold increase in tumor volume relative to matched controls (FIG. 9A). EphA2-overexpressing tumors differed phenotypically from control tumors in that they were more vascular and locally invasive at the time of resection (data not shown). To confirm that these tumors expressed EphA2, whole cell lysates of resected tumors were subjected to western blot analyses with EphA2-specific antibodies (FIG. 9B). The membranes were then stripped and reprobed with β-catenin antibodies to verify equal sample loading. The relative amount of EphA2 was higher in tumor samples than in the input cells (prior to implantation), suggesting that tumors arose from cells with high levels of EphA2. Comparable findings with in vitro and in vivo models indicate that EphA2 overexpression results in a more aggressive phenotype.

Parallel studies were performed in the absence of exogenous estrogen. Experimental deprivation of estrogen amplified differences between the cellular behaviors of control and MCF-7EphA2 cells. While MCF-7EphA2 cells continued to colonize soft agar more efficiently than matched controls (FIG. 10A), these cells did grow in the absence of exogenous estrogen (FIG. 10B). In contrast, supplemental estrogen was required for monolayer growth of control cells (FIG. 10B). Additionally, MCF-7EphA2 cells retained tumorigenic potential in the absence of supplemental estrogen. While control MCF-7 cells rarely formed palpable tumors, the MCF-7EphA2 cells formed tumors that persisted for over 12 weeks (FIG. 10C and data not shown). Thus, both in vitro and in vivo assay systems confirm that EphA2 overexpression decreases the need for exogenous estrogen.

Sensitivity of MCF-7EphA2 cells to tamoxifen was measured. Tamoxifen (4-hydroxy tamoxifen purchased from Sigma) reduced soft agar colonization of control MCF-7 cells by at least 60%. The inhibitory actions of tamoxifen on MCF-7EphA2 cells were less pronounced (25% inhibition, FIG. 11A). Notably, excess estradiol overcame the inhibitory effects of tamoxifen, which provided additional evidence for the specificity of this finding (FIG. 11A). Similarly, the tumorigenic potential of MCF-7EphA2 cells was less sensitive to tamoxifen as compared with control (MCF-7neo) cells (FIG. 11B).

Since tamoxifen sensitivity often relates to estrogen receptor expression, estrogen receptor expression and activity was assayed in MCF-7EphA2. Western blot analyses revealed comparable levels of ERα and ERβ in control and MCF-7EphA2 cells (FIGS. 12A-12B) (ERα and ERβ antibodies were purchased from Chemicon, Temecula, CA). Moreover, comparable levels of estrogen receptor activity were detected in control
and MCF-7EphA2 cells and this enzymatic activity remained sensitive to tamoxifen (FIGS. 12E-12F). Estrogen receptor activity was measured using ERE-TK-CAT vector (which encodes a single ERE; a generous gift from Dr. Nakshatri, Indiana University School of Medicine) in the unstimulated state, after estradiol (10^{-6} M) stimulation and tamoxifen (10^{-6} M) inhibition. Cells were plated in phenol red free, charcoal stripped sera for 2 days and transfected with ERE-TK-CAT (5 μg) using calcium phosphate method. The β-galactosidase expression vector RSV/β-galactosidase (2 μg, Dr. Nakshatri’s gift) was cotransfected as a control. Fresh media including the appropriate selection drugs were added 24 hours after transfection. Cells were harvested after 24 hours and CAT activity was evaluated as described (Nakshatri et al., 1997, Mol. Cell. Biol. 17:3629-39). These results indicate that the estrogen receptor in MCF-7EphA2 cells is expressed and remains sensitive to tamoxifen, thus suggesting that the defect which renders MCF-7EphA2 less dependent on estrogen lies downstream of estrogen signaling.

Growth MCF-7EphA2 cells which had decreased EphA2 expression levels was assayed in soft agar. The EphA2 monoclonal antibody EA2 induced EphA2 activation and subsequent degradation. Decreased levels of EphA2 expression were observed within two hours of EA2 treatment and EphA2 remained undetectable for at least the following 24 hours (FIG. 13A). The soft agar colonization of control MCF-7 cells was sensitive to tamoxifen (FIG. 13C) and EA2 did not further alter this response (since these cells lack of endogenous EphA2). The MCF-7EphA2 cells were less sensitive to tamoxifen (25% inhibition by tamoxifen) as compared to the matched controls (75% inhibition by tamoxifen). Whereas EA2 decreased soft agar colonization (by 19%), the combination of EA2 and tamoxifen caused a much more dramatic (>80%) decrease in soft agar colonization. Thus, EA2 treatment restored a phenotype that was comparable to control MCF-7 cells. These findings suggest that antibody targeting of EphA2 can serve to re-sensitize the breast tumor cells to tamoxifen.

All statistical analyses were performed using Student’s t-test using Microsoft Excel (Seattle, WA), defining P≤0.05 as significant. In vivo tumor growth analyses were performed using GraphPad Software (San Diego, CA).

6.4 Expression of EphA2 in Prostatic Intraepithelial Neoplasia

EphA2 immunoreactivity distinguished neoplastic prostatic epithelial cells from their non-neoplastic counterparts. Ninety-three cases of radical retropubic prostatectomy were obtained from the surgical pathology files of Indiana University
Medical Center. Patients ranged in age from 44 to 77 years (mean = 63 years). Grading of the primary tumor from radical prostatectomy specimens was performed according to the Gleason system (Bostwick "Neoplasms of the prostate" in Bostwick and Eble, eds., 1997, *Urologic Surgical Pathology* St. Louis: Mosby page 343-422; Gleason and Mellinger, 1974, *J. Urol.* 111:58-64). The Gleason grade ranged from 4 to 10. Pathological stage was evaluated according to the 1997 TNM (tumor, lymph nodes, and metastasis) standard (Fleming et al., 1997, AJCC Cancer Staging Manual. Philadelphia: Raven and Lippincott). Pathological stages were T2a (n = 9 patients), T2b (n = 43), T3a (n = 27), T3b (n = 14). Thirteen patients had lymph node metastasis at the time of surgery.

Serial 5 μm-thick sections of formalin-fixed slices of radical prostatectomy specimens were used for immunofluorescent staining. Tissue blocks that contained the maximum amount of tumor and highest Gleason grade were selected. One representative slide from each case was analyzed. Slides were deparaffinized in xylene twice for 5 minutes and rehydrated through graded ethanol to distilled water. Antigen retrieval was carried out by heating sections in EDTA (pH 8.0) for 30 minutes. Endogenous peroxidase activity was inactivated by incubation in 3% H₂O₂ for 15 minutes. Non-specific binding sites were blocked using Protein Block (DAKO) for 20 minutes. Tissue sections were then incubated with a mouse monoclonal antibody against human EphA2 (IgG1, 1:100 dilution) overnight at room temperature, followed by biotinylated secondary antibody (DAKO corporation, Carpintera, CA) and peroxidase-labeled streptavidin, and 3,3-diaminobenzidine was used as the chromogen in the presence of hydrogen peroxide. Positive and negative controls were run in parallel with each batch.

The extent and intensity of staining were evaluated in benign epithelium, high-grade prostatic intraepithelial neoplasia (PIN) and adenocarcinoma from the same slide for each case. Microscopic fields with highest degree of immunoreactivity were chosen for analysis. At least 1000 cells were analyzed in each case. The percentage of cells exhibiting staining in each case was evaluated semiquantitatively on a 5% incremental scale ranging from 0 to 95%. A numeric intensity score is set from 0 to 3 (0, no staining; 1 weak staining; 2 moderate staining; and 3, strong staining) (Jiang et al., 2002, *Am. J. Pathol.* 160:667-71; Cheng et al., 1996, *Am. J. Pathol.* 148:1375-80).

The mean percentage of immunoreactive cells in benign epithelium, high-grade PIN and adenocarcinoma were compared using the Wilcoxon paired signed rank test. The intensity of staining for EphA2 in benign epithelium, high-grade PIN, and adenocarcinoma was compared using Cochran-Mantel-Haenszel tests for correlated ordered
categorical data. Pairwise comparisons were made if the ANOVA revealed significant differences. A p-value < 0.05 was considered significant, and all p-values were two-sided.

EphA2 immunoreactivity was observed in all cases of high-grade prostatic intraepithelial neoplasia (PIN) and cancers but not in benign epithelial cells. For example, EphA2 expression (both the mean percentage of immunoreactive cells and staining intensity) was increased in both high-grade PIN and cancers relative to benign epithelial cells (Tables 3 and 4). Similarly, EphA2 immunoreactivity (both the mean percentage of immunoreactive cells and staining intensity) was increased in prostatic carcinomas compared with high-grade PIN (Tables 3 and 4). This immunoreactivity was evident at the membrane and cytoplasm of the neoplastic epithelial cells (data not shown). In contrast, no EphA2 immunoreactivity was observed in tumor-proximal stromal cells. In the high-grade PIN group, 22% showed grade 1 staining intensity, 73% showed grade 2 staining intensity, and 5% showed grade 3 staining intensity (Table 3). In the adenocarcinoma group, 13% of cases showed grade 1 staining intensity, 50% showed grade 2 staining intensity, and 37% showed grade 3 staining intensity. In contrast, the normal epithelium group showed grade 1 stain in 66% of the cases, the remaining cases showed no immunoreactivity for EphA2 protein (grade 0 staining intensity) (Table 3). The mean percentage of EphA2 immunoreactive cells was 12% in the normal epithelial cells, 67% in the high-grade PIN, and 85% in the prostatic adenocarcinoma (Table 4).

Although high levels of EphA2 could distinguish neoplastic from benign prostatic epithelial cells, EphA2 did not correlate with other histologic and pathologic parameters of disease severity. For example, high levels of EphA2 were observed in most prostatic carcinomas and did not relate to Gleason grade, pathologic stage, lymph node metastasis, extraprostatic extension, surgical margins, vascular invasion, perineural invasion or the presence of other areas of the prostate with high-grade PIN (Table 5).
TABLE 3

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Staining Intensity Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Benign epithelium</td>
<td>31 (33%)</td>
</tr>
<tr>
<td>High-grade PIN(^{a})</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Adenocarcinoma(^{a,b})</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

\(^{a}\)Indicates percentage of staining intensity was statistically lower compared to that of the normal cells with a P-value = 0.0001 using a Wilcoxon paired signed rank test.

\(^{b}\)The staining intensity was significantly higher compared to high-grade PIN (P<0.01, Cochran-Mantel-Henszel test).

TABLE 4

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Mean % of Cells Staining ± SD</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Cells</td>
<td>12 ± 17</td>
<td>0 – 90</td>
</tr>
<tr>
<td>High-grade PIN</td>
<td>67 ± 18(^{a})</td>
<td>5 – 95</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>85 ± 12(^{a,b})</td>
<td>30 – 95</td>
</tr>
</tbody>
</table>

\(^{a}\)Indicates percentage of staining statistically lower compared to that of the normal cells with a P-value = 0.0001 using a Wilcoxon paired signed rank test.

\(^{b}\)The percentage of staining was statistically higher compared to high-grade PIN (P<0.01, ANOVA).
<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>% of Total Patients (n=93)</th>
<th>Mean % of Cells Staining w/EphA2 Antibody (+SD)</th>
<th>Mean EphA2 Antibody Staining Intensity (+SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Gleason Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>83±2</td>
<td>2.0±0.6</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>86±10</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>84±16</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>86±11</td>
<td>2.3±0.6</td>
</tr>
<tr>
<td>Secondary Gleason Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>82±16</td>
<td>2.3±0.5</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>85±15</td>
<td>2.1±0.6</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>85±9</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>88±8</td>
<td>2.4±0.8</td>
</tr>
<tr>
<td>Gleason Sum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><7</td>
<td>28</td>
<td>83±12</td>
<td>2.2±0.6</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>85±14</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>>7</td>
<td>30</td>
<td>87±10</td>
<td>2.4±0.7</td>
</tr>
<tr>
<td>T Classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>9</td>
<td>89±6</td>
<td>2.3±0.5</td>
</tr>
<tr>
<td>T2b</td>
<td>43</td>
<td>84±12</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>T3a</td>
<td>27</td>
<td>84±15</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>T3b</td>
<td>14</td>
<td>63±10</td>
<td>2.4±0.6</td>
</tr>
<tr>
<td>Lymph Node Metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>13</td>
<td>88±9</td>
<td>2.3±0.6</td>
</tr>
<tr>
<td>Negative</td>
<td>80</td>
<td>84±13</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>Extraprostatic Extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>53</td>
<td>86±11</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>Negative</td>
<td>40</td>
<td>84±14</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>Surgical Margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>50</td>
<td>86±11</td>
<td>2.1±0.6</td>
</tr>
<tr>
<td>Negative</td>
<td>43</td>
<td>84±13</td>
<td>2.4±0.7</td>
</tr>
<tr>
<td>Vascular Invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>30</td>
<td>85±11</td>
<td>2.1±0.8</td>
</tr>
<tr>
<td>Negative</td>
<td>63</td>
<td>86±13</td>
<td>2.3±0.6</td>
</tr>
<tr>
<td>Perineural Invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>82</td>
<td>82±15</td>
<td>2.4±0.5</td>
</tr>
<tr>
<td>Negative</td>
<td>11</td>
<td>85±12</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>High-grade PIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>89</td>
<td>85±12</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>Negative</td>
<td>4</td>
<td>85±9</td>
<td>2.0±0.8</td>
</tr>
</tbody>
</table>
6.5 Treatment Of Patients With Metastatic Cancer

A study is designed to assess pharmacokinetics and safety of monoclonal antibodies of the invention in patients with metastatic breast cancer. Cancer patients currently receive Taxol or Taxotere. Patients currently receiving treatment are permitted to continue these medications.

Patients are administered a single IV dose of a monoclonal antibody of the invention and then, beginning 4 weeks later, are analyzed following administration of repeated weekly IV doses at the same dose over a period of 12 weeks. The safety of treatment with the monoclonal antibody of the invention is assessed as well as potential changes in disease activity over 26 weeks of IV dosing. Different groups of patients are treated and evaluated similarly but receive doses of 1 mg/kg, 2 mg/kg, 4 mg/kg, or 8 mg/kg.

Monoclonal antibodies of the invention are formulated at 5 mg/ml and 10 mg/ml for IV injection. A formulation of 80 mg/ml is required for repeated subcutaneous administration. The monoclonal antibodies of the invention are also formulated at 100 mg/ml for administration for the purposes of the study.

Changes are measured or determined by the progression of tumor growth.

6.6 Decreased EphA2 Levels Using EphA2 Antisense Oligonucleotides

An antisense oligonucleotide-based approach that decreased EphA2 expression in tumor cells independent of EphA2 activation was developed. To decrease EphA2 protein levels, MDA-MB-231 breast carcinoma cells were transiently transfected with phosphorothioate-modified antisense oligonucleotides that corresponded to a sequence that was found to be unique to EphA2 as determined using a sequence evaluation of GenBank (5′-CCAGCAGTACCGCTTCTTGCCTGCGGGC-3′; SEQ ID NO:49). Inverted antisense oligonucleotides (5′-GCCGGTCCCCGTCTTACCACCATTGA-3′; SEQ ID NO:50) provided a control. The cells were transfected with oligonucleotides (2 μg/ml) using Lipofectamine PLUS Reagent (Life Technologies, Inc.) according to the manufacturer’s protocol. Twenty-four hours post-transfection, the cells were divided. Half of the cells were seeded into soft agar, and the remaining cells were extracted and subjected to western blot analysis.

Western blot analyses and immunoprecipitations were performed as described previously (Zantek et al., 1999, Cell Growth Diff. 10:629-38). Briefly, detergent extracts of cell monolayers were extracted in Tris-buffered saline containing 1% Triton X-100 (Sigma, St. Louis, MO). After measuring protein concentrations (BioRad, Hercules,
CA), 1.5 mg of cell lysate was immunoprecipitated, resolved by SDS-PAGE and transferred to nitrocellulose (PROTRAN™, Schleicher and Schuell, Keene, NH). EphA2 was detected with an EphA2-specific antibody (D7, purchased from Upstate Biologicals, Inc., Lake Placid, NY). To control for sample loading, the membranes were stripped and re-probed with paxillin antibodies (a gift from Dr. K. Burridge at the University of North Carolina). Antibody binding was detected by enhanced chemiluminescence (Pierce, Rockford, IL) and autoradiography (Kodak X-OMAT; Rochester, NY).

Western blot analyses confirmed that antisense oligonucleotides selectively decreased EphA2 expression in MDA-MB-231 cells whereas an inverted antisense control (IAS) did not (FIGS. 14A-14B).

MDA-MB-231 cells were suspended in soft agar. Colony formation in soft agar was performed as described in Zelinski et al. (2001, Cancer Res. 61:2301-6, which is incorporated by reference in its entirety). Antibodies or a control solution (PBS) was included in bottom and top agar solutions. Colony formation was scored microscopically using an Olympus CK-3 inverted phase-contrast microscope outfitted with a 40x objective. Clusters containing at least three cells were scored as a positive. The average number of colonies per high-powered field is shown. Ten separate high-power microscopic fields were averaged in each experiment, and the results shown are representative of at least three separate experiments.

EphA2 antisense oligonucleotides decreased soft agar colonization by at least 60% as compared to matched controls (FIG. 14C). Consistent results with EphA2 antibodies and antisense oligonucleotides thus indicate that decreased EphA2 expression is sufficient to decrease tumor cell growth.

6.7 Kinetic Analysis of EphA2 Antibodies

The surface plasmon resonance-based BIACORE™ assay was used to measure the K_{off} rates of the monoclonal antibodies of the invention. IgG present in the hybridoma supernatant was used for measurement. Antibodies with K_{off} rates of approximately less than 3×10^{-3} s$^{-1}$ have slow K_{off} rates. Antibodies with K_{off} rates of approximately 8×10^{4} s$^{-1}$ or less have very slow K_{off} rates. Antibodies with K_{off} rates of approximately 9×10^{5} s$^{-1}$ or less have ultra slow K_{off} rates.
Immobilization of EphA2

[00300] EphA2-Fc was immobilize to a surface on a CM5 sensorchip using a standard amine (70μl of a 1:1 mix of NHS/EDC) coupling chemistry. Briefly, a 400nM solution of EphA2-Fc in 10mM NaOAc, pH4, was then injected over the activated surface to a density of 1000-1100 RU's. Unused reactive esters were subsequently “capped” with a 70μl injection of 1M Et-NH2. Similarly, an activated and “capped” control surface was prepared on the same sensor chip without protein to serve as a reference surface.

Binding Experiments

[00301] A 250 μl injection of each of the EphA2 hybridoma supernatants was made over both the EphA2-Fc and control surfaces, and the binding responses were recorded. These supernatants were used undiluted. Following each injection, at least 10 min. of dissociation phase data was collected. Purified EphA2 monoclonal antibody EA2 was prepared to serve as a positive control (at 1μg, 5μg and 25μg per 250μl of growth medium).

A negative control monoclonal antibody that does not bind EphA2 was also prepared at 5μg/250μl growth medium. Control injections of growth medium across these surfaces were also made. Following each binding cycle, the EphA2-Fc surface was regenerated with a single 1 min. pulse (injection) of 1M NaCl-50mM NaOH.

Data Evaluation

[00302] The binding data was corrected by subtracting out both artifactual noise (blank medium injections) and non-specific binding (control surface), in a technique known as “double-referencing.” Thus the sensogram overlays represent “net” binding curves. Eph099B-208.261 and Eph099B-233.152 (see Table 6) have slower K_{off} rates than EA2 (FIG. 15). Additionally, other antibodies of the invention have slow K_{off} rates (Table 6, column 8) including Eph099B-102.147 and Eph099B-210.248 (data not shown).

[00303] Table 6 summarizes the characterization of EphA2 monoclonal antibodies as described herein.
<table>
<thead>
<tr>
<th>Clone</th>
<th>Subclone</th>
<th>Specificity</th>
<th>EphA2 Phosphorylation</th>
<th>EphA2 Degradation 4hrs</th>
<th>EphA2 Degradation 24 hrs</th>
<th>Off Rate</th>
<th>Colony Inhibition in Soft Agar</th>
<th>Colony Elimination in Soft Agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>moderate</td>
<td>nd</td>
<td>very slow</td>
<td>nd</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low-mod</td>
<td>nd</td>
<td>very slow</td>
<td>nd</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>slow</td>
<td>nd</td>
</tr>
<tr>
<td>B-Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>nd</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>Strong</td>
<td>strong</td>
<td>ultra slow</td>
<td>strong</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>weak</td>
<td>Strong</td>
<td>strong</td>
<td>nd</td>
<td>moderate-strong</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>nd</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>very slow</td>
<td>strong</td>
</tr>
<tr>
<td>203</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low-mod</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>none</td>
</tr>
<tr>
<td>208</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>moderate</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>strong</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Clone</td>
<td>Specificity</td>
<td>EphA2 Degradation 4hrs</td>
<td>EphA2 Degradation 24 hrs</td>
<td>Off Rate</td>
<td>Colony Inhibition in Soft Agar</td>
<td>Colony Elimination in Soft Agar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhibits EA2 Binding</td>
<td>Binds EphA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>nd</td>
<td>strong</td>
<td>no</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>nd</td>
<td>strong</td>
<td>moderate</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>nd</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>strong</td>
<td>no</td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>ultra slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>ultra slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>yes</td>
<td>yes</td>
<td>strong</td>
<td>strong</td>
<td>moderate</td>
<td>slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>very slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>very slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>strong</td>
<td>no</td>
<td>very slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>yes</td>
<td>yes</td>
<td>weak</td>
<td>strong</td>
<td>strong</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>very slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>no</td>
<td>yes</td>
<td>weak</td>
<td>moderate</td>
<td>no</td>
<td>slow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clone</td>
<td>Subclone</td>
<td>Specificity</td>
<td>EphA2 Phosphorylation</td>
<td>EphA2 Degradation 4hrs</td>
<td>EphA2 Degradation 24 hrs</td>
<td>Off Rate</td>
<td>Colony Inhibition in Soft Agar</td>
<td>Colony Elimination in Soft Agar</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhibits EA2 Binding</td>
<td>Binds EphA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>nd</td>
<td>strong</td>
</tr>
<tr>
<td>309</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>ultra slow</td>
<td>strong</td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>nd</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
</tr>
<tr>
<td>311</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>very slow</td>
<td>strong</td>
</tr>
<tr>
<td>312</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>low-moderate</td>
<td>nd</td>
<td>strong</td>
<td>nd</td>
</tr>
<tr>
<td>313</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>very slow</td>
<td>strong</td>
</tr>
<tr>
<td>314</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>ultra slow</td>
<td>strong</td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>ultra slow</td>
<td>strong</td>
</tr>
<tr>
<td>316</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>very slow</td>
<td>strong</td>
</tr>
<tr>
<td>317</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>slow</td>
<td>strong</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>nd</td>
<td>strong</td>
</tr>
<tr>
<td>402</td>
<td></td>
<td>nd</td>
<td>yes</td>
<td>nd</td>
<td>low</td>
<td>nd</td>
<td>nd</td>
<td>strong</td>
</tr>
<tr>
<td>404</td>
<td></td>
<td>nd</td>
<td>yes</td>
<td>yes</td>
<td>moderate</td>
<td>no</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>406</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>407</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>slow</td>
<td>nd</td>
</tr>
<tr>
<td>408</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>slow</td>
<td>nd</td>
</tr>
<tr>
<td>409</td>
<td></td>
<td>nd</td>
<td>yes</td>
<td>nd</td>
<td>no</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>410</td>
<td></td>
<td>no</td>
<td>yes</td>
<td>strong</td>
<td>moderate</td>
<td>no</td>
<td>fast</td>
<td>nd</td>
</tr>
</tbody>
</table>
6.8 Epitope Analysis of EphA2 Antibodies

The epitopes of EphA2 antibodies were characterized. Non-transformed MCF-10A cells or transformed MDA-MB-231 cells were incubated with 10 μg/ml Eph099B-233.152 or EA2 at 4°C for 30 min. prior to fixation in a 3% formalin solution and immunolabeling with fluorophore-conjugated anti-mouse IgG. EA2 preferentially binds EphA2 on transformed cells (FIG. 16D). In contrast, Eph099B-233.152 binds EphA2 expressed on both transformed and non-transformed cells (FIGS. 16A-16B). Treatment of non-transformed MCF-10A cells with 4mM EGTA for 20 min. dissociated the cells. EA2 bound EphA2 on the EGTA dissociated cells but not the untreated cells (FIGS. 17A-17B).

An equivalent experiment was performed using MCF-10A or MDA-MB-231 cells. The amount of EA2 binding to EphA2 was measured using flow cytometry (FIGS. 17C-17D). Cells were either treated by incubation in 4 mM EGTA for 10-15 minutes on ice (top panel) or were not treated with EGTA (middle panel) before incubation with 10 μg/ml EA2. Cells were then fixed with 3% formalin and labeled with fluorophore-labeled donkey anti-mouse IgG. Control cells were incubated only with secondary antibody (fluorophore-labeled donkey anti-mouse IgG) in the absence of primary antibody (EA2) (bottom panel). The samples were then evaluated using flow cytometry (Becton Dickinson FACStar Plus). EGTA treatment did not affect EA2 binding to transformed cells (FIG. 17D, top and middle panels). In contrast, EA2 binding to non-transformed cells was increased by incubation in EGTA (FIG. 17C, top and middle panels).

A microtiter plate was coated with 10 mg/ml Ephrin A1-Fc overnight at 4°C. A fusion protein consisting of the extracellular domain of EphA2 linked to human IgG1 constant region (EphA2-Fc) was incubated with and bound to the immobilized Ephrin A1-Fc. Biotinylated Ephrin A1-Fc, EA2, or Eph099B-233.152 was incubated with the EphA2-Ephrin A1-Fc complex and amount of binding was measured. Very little additional Ephrin A1-Fc bound the EphA2-Ephrin A1-Fc complex while, in contrast, considerable levels of EA2 and Eph099B-233.152 bound the EphA2-EphrinA1-Fc complex (FIG. 18A).

The EphA2-Ephrin A1-Fc complex was prepared as described above. Biotinylated EA2 (10 μg/ml) was then incubated with the complex for 30 min. Unlabeled competitor was incubated with EphA2-Ephrin A1-Fc-EA2 complex in the indicated amount. Unlabeled EA2 could displace the labeled EA2 at concentrations of 100 ng/ml or greater. Unlabeled Eph099B-233.152 and Ephrin A1-Fc were similar in their ability to displace labeled EA2 (FIG 18B).
7. **EQUIVALENTS**

[00308] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

[00309] All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.
MICROORGANISMS

Optional Sheet in connection with the microorganism referred to on page 67-68, lines 1-35; 1-18, of the description.

A. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet.

Name of depositary institution:
American Type Culture Collection

Address of depositary institution (including postal code and country):
10801 University Blvd.
Manassas, VA 20110-2209
US

Date of deposit: August 7, 2002
Accession Number: PTA-4572

B. ADDITIONAL INDICATIONS *(leave blank if not applicable)*
This information is continued on a separate attached sheet.

C. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE *(if the indications are not all designated States)*

D. SEPARATE FURNISHING OF INDICATIONS *(leave blank if not applicable)*

The indications listed below will be submitted to the International Bureau later *(Specify the general nature of the indications e.g., "Accession Number of Deposit")*

E. This sheet was received with the International application when filed (to be checked by the receiving Office)

[Signature]

(Authorized Officer)

☐ The date of receipt (from the applicant) by the International Bureau was

[Signature]

(Authorized Officer)

Form PCT/RO/134 (January 1981)
<table>
<thead>
<tr>
<th>Accession No.</th>
<th>Date of Deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA-4573</td>
<td>August 7, 2002</td>
</tr>
<tr>
<td>PTA-4574</td>
<td>August 7, 2002</td>
</tr>
<tr>
<td>PTA-</td>
<td>May 12, 2003</td>
</tr>
</tbody>
</table>

American Type Culture Collection
10801 University Blvd.,
Manassas, VA 20110-2209
US
We claim:

1. A method of treating cancer in a patient in need thereof, said method comprising administering to said patient a therapeutically effective amount of an EphA2 antibody that is an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{ s}^{-1}$.

2. The method of claim 1 wherein said administration increases EphA2 phosphorylation in a cancer cell relative to the level of EphA2 phosphorylation in an untreated cancer cell.

3. The method of claim 1 wherein said administration decreases EphA2 expression in a cancer cell relative to the level of EphA2 expression in an untreated cancer cell.

4. The method of claim 1 wherein said EphA2 antibody inhibits colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation.

5. The method of claim 1 wherein said EphA2 antibody decreases existing colony formation in soft agar or tubular network formation in a basement membrane or extracellular matrix preparation.

6. The method of claim 5 wherein said decrease occurs by apoptosis or necrosis.

7. The method of claim 1 wherein said EphA2 antibody binds EphA2 when expressed on a cell not in cell-cell contact.

8. The method of claim 1 wherein said EphA2 antibody binds EphA2 that is incapable of stable interactions with its ligand.
9. The method of claim 1 wherein said EphA2 antibody binds EphA2 that is not bound to its ligand.

10. The method of claim 1 wherein said EphA2 antibody binds EphA2 with a K_{off} of less than $3 \times 10^{-3} \text{s}^{-1}$.

11. The method of claim 1 wherein said cancer is of an epithelial cell origin.

12. The method of claim 1 wherein said cancer comprises cells that overexpress EphA2 relative to non-cancer cells having the tissue type of said cancer cells.

13. The method of claim 1 wherein said cancer is a cancer of the skin, lung, colon, breast, prostate, bladder or pancreas or is a renal cell carcinoma or melanoma.

14. The method of claim 1 wherein said cancer is a metastatic cancer.

15. The method of claim 1 wherein said EphA2 antibody is a monoclonal antibody.

16. The method of claim 1 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

17. The method of claim 1 wherein said EphA2 antibody competes for EphA2 binding with Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

18. The method of claim 1 said EphA2 antibody is humanized.

19. The method of claim 1 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152 that has been humanized.

20. The method of claim 1 wherein said EphA2 antibody is a human antibody.
21. The method of claim 1 comprising the administration of an anti-cancer therapy that is not an EphA2 antibody.

22. The method of claim 21, wherein said additional cancer therapy is selected from the group consisting of chemotherapy, biological therapy, immunotherapy, radiation therapy, hormonal therapy, and surgery.

23. The method of claim 22 wherein said biological therapy comprises administering an agent that decreases cell-fibronectin binding or fibronectin expression.

24. A pharmaceutical composition comprising a therapeutically effective amount of an EphA2 antibody that is an agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} less than 3×10^{-3} s$^{-1}$; and a pharmaceutically acceptable carrier.

25. The pharmaceutical composition of claim 24 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

26. The pharmaceutical composition of claim 24 wherein said EphA2 antibody competes for binding to EphA2 with Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

27. The pharmaceutical composition of claim 24 wherein said EphA2 antibody is a monoclonal antibody.

28. The pharmaceutical composition of claim 24 wherein said EphA2 antibody is humanized.

29. The pharmaceutical composition of claim 24 wherein said EphA2 antibody is a human antibody.
30. The pharmaceutical composition of claim 24 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152 that has been humanized.

31. The pharmaceutical composition of claim 24 comprising an anti-cancer agent that is not an EphA2 antibody.

32. The pharmaceutical composition of claim 31, wherein said anti-cancer agent is a chemotherapeutic agent, a radiation therapeutic agent, a hormonal therapeutic agent, a biological therapeutic, or immunotherapeutic agent.

33. An isolated antibody that specifically binds EphA2, which binding agonizes at least one activity of EphA2.

34. The isolated antibody of claim 33 wherein said activity of EphA2 is EphA2 phosphorylation or EphA2 degradation.

35. An isolated antibody that specifically binds EphA2, which binding inhibits a cancer cell phenotype.

36. The isolated antibody of claim 35 wherein said binding inhibits cancer cell colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation.

37. The isolated antibody of claim 35 wherein said binding reduces cancer cell colony formation in soft agar or tubular network formation in a three-dimensional basement membrane or extracellular matrix preparation.

38. The isolated antibody of claim 37 wherein said reduction is caused by necrosis or apoptosis of cancer cells.
39. An isolated antibody that specifically binds EphA2, which binding occurs only when EphA2 is not in a cell-cell contact or bound to EphrinA1 ligand.

40. An isolated antibody that specifically binds EphA2, which binding has a K_{off} less than 3×10^{-3} s$^{-1}$.

41. The isolated antibody of claim 40 wherein the K_{off} rate is less than 10^{-1} s$^{-1}$.

42. The isolated antibody of any one of claims 33, 35, 39, or 40 which is a monoclonal antibody.

43. The isolated antibody of any one of claims 33, 35, 39, or 40 wherein said antibody is humanized.

44. The isolated antibody of any one of claims 33, 35, 39, or 40 wherein said antibody is a human antibody.

45. The isolated antibody of any one of claims 33, 35, 39, or 40 wherein said antibody is a derivative.

46. The isolated antibody of claim 45 which has an increased $in \text{ vivo}$ half-life when compared to an antibody that is not a derivative.

47. An antibody that is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

48. A cell line which produces an antibody of any one of claims 33, 35, 39, 40, or 47.

49. An antibody that is produced by a hybridoma deposited with the American Type Culture Collection having accession number PTA-4572, PTA-4573, or PTA-4574.
50. A hybridoma deposited with the American Type Culture Collection having accession number PTA-4572, PTA-4573, or PTA-4574.

51. An EphA2 antibody comprising a variable light chain comprising the amino acid sequence of SEQ ID NO:1 and a variable heavy chain comprising the amino acid sequence of SEQ ID NO:5.

52. An antibody comprising a variable light chain comprising the amino acid sequence of SEQ ID NO:17 and a variable heavy chain comprising the amino acid sequence of SEQ ID NO:21.

53. An EphA2 antibody comprising a VL CDR1 comprising the amino acid sequence of SEQ ID NO:2; a VL CDR2 comprising the amino acid sequence of SEQ ID NO:3; a VL CDR3 comprising the amino acid sequence of SEQ ID NO:4; a VH CDR1 comprising the amino acid sequence of SEQ ID NO:6; a VH CDR2 comprising the amino acid sequence of SEQ ID NO:7; and a VH CDR3 comprising the amino acid sequence of SEQ ID NO:8, wherein said EphA2 antibody immunospecifically binds EphA2.

54. An EphA2 antibody comprising a VL CDR1 comprising the amino acid sequence of SEQ ID NO:18; a VL CDR2 comprising the amino acid sequence of SEQ ID NO:19; a VL CDR3 comprising the amino acid sequence of SEQ ID NO:20; a VH CDR1 comprising the amino acid sequence of SEQ ID NO:22; a VH CDR2 comprising the amino acid sequence of SEQ ID NO:23; and a VH CDR3 comprising the amino acid sequence of SEQ ID NO:24, wherein said EphA2 antibody immunospecifically binds EphA2.

55. The EphA2 antibody of claim 53 or 54 having one, two, three, four, or five mutations, said mutations being in one or more CDRs, wherein said EphA2 antibody immunospecifically binds EphA2.

56. The EphA2 antibody of claim 53 or 54 comprising a human heavy chain framework region and a human light chain framework region.
57. The EphA2 antibody of claim 56 having one, two, three, four, or five mutations, said mutations being in said a framework region, wherein said EphA2 antibody immunospecifically binds EphA2.

58. The EphA2 antibody of claim 53 or 54 comprising a constant region.

59. The EphA2 antibody of claim 56 comprising a constant region.

60. The EphA2 antibody of claim 58 wherein said constant region is human.

61. The EphA2 antibody of claim 59 wherein said constant region is human.

62. An isolated nucleic acid comprising a nucleotide sequence a encoding a light chain variable domain or a heavy chain variable domain of the EphA2 antibody of claim 53 or 54.

63. A vector comprising the nucleic acid of claim 62.

64. A host cell comprising the vector of claim 63.

65. A method of identifying an EphA2 agonistic antibody said method comprising:

a) contacting a cell expressing EphA2 with an antibody that specifically binds EphA2 under conditions appropriate for antibody-epitope binding; and

b) determining the phosphotyrosine content of the EphA2 in said cell;

wherein detecting an increase in the phosphotyrosine content of EphA2 in said cell relative to a cell expressing EphA2 not contacted by said antibody indicates that said antibody is an EphA2 agonistic antibody.
66. A method of identifying an EphA2 agonistic antibody, said method comprising:

a) contacting a cell expressing EphA2 with an antibody that specifically binds EphA2 under conditions appropriate for antibody-epitope binding; and

b) determining the expression level of EphA2 protein in said cell;

wherein detecting a decrease in the expression level of EphA2 protein in said cell relative to a cell expressing EphA2 not contacted by said antibody indicates that said antibody is an EphA2 agonistic antibody.

67. A method of identifying an EphA2 antibody that inhibits a cancer cell phenotype, said method comprising:

a) contacting a cell expressing EphA2, which cell is cultured in soft agar or a three-dimensional basement membrane or extracellular matrix preparation, with an antibody that specifically binds EphA2 under conditions appropriate for antibody-epitope binding; and

b) determining the ability of said cell to form colonies in soft agar or tubular network formation in said three-dimensional basement membrane or extracellular matrix preparation,

wherein detecting a decrease in the ability of said cell to form colonies or tubular networks relative to a cell expressing EphA2 not contacted by said antibody indicates that said antibody is an EphA2 antibody which inhibits a cancer cell phenotype.

68. A method of identifying an EphA2 antibody that kills cancer cells having a cancer cell phenotype, said method comprising:

a) contacting cancer cells expressing EphA2, which cancer cells have formed colonies in soft agar or a tubular network in a three-dimensional basement membrane or extracellular matrix preparation, with an antibody that specifically binds EphA2 under conditions appropriate for antibody-epitope binding; and
b) determining the reduction in said colonies or tubular network,

wherein detecting a reduction in said colonies or tubular network relative to colonies or tubular networks of cells expressing EphA2 not contacted by said antibody indicates that said antibody is an EphA2 antibody which kills cancer cells having a cancer cell phenotype.

69. A method of identifying an EphA2 antibody that preferentially binds an EphA2 epitope exposed on cancer cells, said method comprising:

a) contacting at two groups of cells expressing EphA2, wherein a first group of cells are non-cancer cells and a second group of cells are cancer cells; and

b) determining the ability of said antibody to bind EphA2,

wherein detecting antibody binding in said second group of cells but not in said first group of cells indicates that said antibody is an EphA2 antibody that preferentially binds an EphA2 epitope exposed on cancer cells.

70. The method of claim 69 wherein said determining uses immunofluorescence microscopy or flow cytometry.

71. A method of treating cancer in a patient in need thereof, said method comprising administering to said patient a therapeutically effective amount of an EphA2 antisense nucleic acid molecule.

72. The method of claim 71 wherein said antisense molecule comprises SEQ ID NO:49, or a fragment thereof.

73. A method of treating a cancer that is fully or partially refractory to a first treatment in a patient in need thereof, said method comprising administering to said patient a second treatment comprising administration of a therapeutically effective amount of an EphA2 antibody that is an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a \(K_{off} \) of less than \(3 \times 10^{-3} \) s\(^{-1}\).
74. The method of claim 73 wherein said first treatment is chemotherapy, hormonal therapy, biological therapy, or radiation therapy.

75. The method of claim 74 wherein said hormonal therapy comprises tamoxifen administration.

76. The method of claim 73 wherein said second treatment comprises administering chemotherapy, hormonal therapy, biological therapy, or radiation therapy.

77. The method of claim 73 wherein said first treatment is administered concurrently with said second treatment.

78. A method of treating a non-cancer hyperproliferative cell disease or disorder in a patient in need thereof, said method comprising administering to said patient a therapeutically effective amount of an EphA2 antibody that is an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$.

79. The method of claim 78 wherein said administration increases EphA2 phosphorylation in a non-cancer hyperproliferative cell relative to the level of EphA2 phosphorylation in an untreated non-cancer hyperproliferative cell.

80. The method of claim 78 wherein said administration decreases EphA2 expression in a non-cancer hyperproliferative cell relative to the level of EphA2 expression in an untreated non-cancer hyperproliferative cell.

81. The method of claim 78 wherein said non-cancer hyperproliferative cell is an epithelial cell.

82. The method of claim 78 wherein said patient has non-cancer hyperproliferative cells that overexpress EphA2 relative to non-cancer non-hyperproliferative cells having the same tissue type.
83. The method of claim 78 wherein said non-cancer hyperproliferative cell disease or disorder is asthma, psoriasis, inflammatory bowel disease, smooth muscle restenosis, endothelial restenosis, Crohn’s disease, or chronic obstructive pulmonary disease.

84. The method of claim 78 wherein said EphA2 antibody is a monoclonal antibody.

85. The method of claim 78 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

86. The method of claim 78 wherein said EphA2 antibody competes for EphA2 binding with Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

87. The method of claim 78 wherein said EphA2 antibody is humanized.

88. The method of claim 78 wherein said EphA2 antibody is Eph099B-102.147, Eph099B-208.261, Eph099B-210.248, or Eph099B-233.152.

89. The method of claim 78 wherein said EphA2 antibody is a human antibody.

90. A method of diagnosing, prognosing or monitoring the efficacy of therapy for cancer in a patient known to or suspected to have cancer, said method comprising:

a) contacting cells of said patient with an EphA2 antibody that is an EphA2 agonistic antibody, an EphA2 cancer cell phenotype inhibiting antibody, an exposed EphA2 epitope antibody, or an antibody that binds EphA2 with a K_{off} of less than 3×10^{-3} s$^{-1}$ under conditions appropriate for antibody-EphA2 binding; and

b) measuring EphA2 antibody binding to said cells,

wherein detecting a higher EphA2 antibody binding level than in a control indicates that the patient has cancer.
91. The method of claim 90 wherein said cells are from whole blood, sputum, urine, serum or fine needle aspirates of tumor cell tissue.

92. The method of claim 90 wherein said cells are in frozen or fixed tissue or cells from said patient.

93. The method of claim 90 wherein said detecting comprises imaging of said EphA2 antibody binding in said patient.

94. The method of claim 90 wherein said patient has metastatic cancer.

95. The method of claim 90 wherein said EphA2 antibody is an exposed EphA2 epitope antibody.
FIG. 9B
Time (hrs): 0 0.5 1 2 4 8 12 18 24

116 -

FIG. 13A

Time (hrs): 0 0.5 1 2 4 8 12 18 24

97 -

FIG. 13B
FIG. 13C
21/31

FIG. 14C

COLONIES/HPF

IAS

ANTISENSE
208 Variable Light Chain

caa att gtt ctc acc cag tct cca gca ctc atg tct gca tct cca ggg
Gln Ile Val Leu Thr Gln Ser Pro Ala Leu Met Ser Ala Ser Pro Gly
1 5 10 15

CDR1
gag aag gtc acc atg acc tgc agt gcc agc tca agt gta agt tac atg
Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

CDR2
tac tgg tac cag cag aag cca aga tcc tcc ccc aaa ccc tgg att tat
Tyr Trp Tyr Glu Glu Lys Pro Arg Ser Ser Pro Lys Pro Trp Ile Tyr
35 40 45

CDR3
cgc aca acc aac ctg gct tct gga gtc cct gct cgc ttc agt ggc agt
Leu Thr Thr Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
50 55 60

GGT GGT ACC TCT TCT CTC ACA ATC AGC AGC ATG GAG GCT GAA
Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

FIG. 19A
208 Variable heavy Chain

cag gtc caa ctg cag cag cct ggg gct gag ctg gta aag cct ggg gct 48
Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15

CDR1
tca gtg aag ttg tcc tgc aag gct tct ggct ac tct tt acc acc tgc 96
Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

CDR2
tgg atg cac tgg gtg aaa caa agg cct gga cca ggc ctt gag tgg att 144
Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

ggg atg att cat cct aat agt gag act aac tac aat gag aag ttc 192
Gly Met Ile His Pro Asn Ser Gly Ser Thr Asn Tyr Asn Glu Lys Phe
50 55 60

CDR3
aag agc aag gcc cca ctc act gta gcc cca aat tcc tcc acc aca gcc tac 240
Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

atg cga ctc agc agc cta ctg gag gag cct gtc tat tac tgt 288
Met Arg Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

FIG. 19B
233 Variable Light Chain

gat att gtg cta act cag tct cca gcc acc ctg tct gtg act cca gga 48
Asp Ile Val Leu Thr Glu Ser Pro Ala Thr Leu Ser Val Thr Pro Gly
1 5 10 15

 CDR1

gat agc gtc aat ctt tcc tgc agg gcc agc caa agt att agc aac aac 96
Asp Ser Val Asn Leu Ser Cys Arg Ala Ser Glu Ser Ile Ser Asn Asn
20 25 30

cattle cac tgg tat caa caa aaa tca cat gag tct cca agg ctt ctc atc 144
Leu His Trp Tyr Glu Glu Lys Ser His Glu Ser Pro Arg Leu Leu Ile
35 40 45

 CDR2

 aag tat gtg ttc cag tcc atc tct ggg atc ccc tcc agg ttc agt ggc
Lys Tyr Val Phe Glu Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly 192
50 55 60

ag tga tca ggg aca gat ttc act ctc act ctc aag aag agt gta gac 240
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Thr
65 70 75 80

 CDR3

gaa gat ttt gga atg tat ttc tgt cca cag agt aac agc tgg ccg ctc 288
Glu Asp Phe Gly Met Tyr Phe Cys Glu Glu Ser Asn Ser Trp Pro Leu
85 90 95

 acg ttc ggt gct ggg acc aag ctt gag ctg aaa 321
Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

FIG. 19C
233 Variable Heavy Chain

<table>
<thead>
<tr>
<th>gag</th>
<th>gtg</th>
<th>aag</th>
<th>ctg</th>
<th>gtg</th>
<th>gag</th>
<th>tct</th>
<th>gct</th>
<th>gta</th>
<th>cag</th>
<th>cct</th>
<th>ggg</th>
<th>ggt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Leu</td>
<td>Val</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Gln</td>
<td>Pro</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDR1

<table>
<thead>
<tr>
<th>tct</th>
<th>ctc</th>
<th>tct</th>
<th>tgt</th>
<th>gca</th>
<th>gct</th>
<th>tct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gga</th>
<th>ttc</th>
<th>acc</th>
<th>ttc</th>
<th>act</th>
<th>gat</th>
<th>tac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Thr</td>
<td>Phe</td>
<td>Thr</td>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CDR2

<table>
<thead>
<tr>
<th>tcc</th>
<th>atg</th>
<th>aac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tgg</td>
<td>Gtc</td>
<td>Cgc</td>
</tr>
<tr>
<td>Cag</td>
<td>Cct</td>
<td>Cca</td>
</tr>
<tr>
<td>Ggg</td>
<td>Aag</td>
<td>Gca</td>
</tr>
<tr>
<td>Ctt</td>
<td>Gag</td>
<td>Tgg</td>
</tr>
<tr>
<td>Ttg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Met</td>
<td>Asn</td>
</tr>
<tr>
<td>Trp</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Gin</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Trp</td>
</tr>
<tr>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggt</th>
<th>ttt</th>
<th>att</th>
<th>aga</th>
<th>aac</th>
<th>aaa</th>
<th>gct</th>
<th>aat</th>
<th>gat</th>
<th>tac</th>
<th>aca</th>
<th>aca</th>
<th>gag</th>
<th>tac</th>
<th>aat</th>
<th>gca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Ile</td>
<td>Arg</td>
<td>Asn</td>
<td>Lys</td>
<td>Ala</td>
<td>Asn</td>
<td>Asp</td>
<td>Thr</td>
<td>Thr</td>
<td>Glu</td>
<td>Tyr</td>
<td>Ser</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

CDR3

<table>
<thead>
<tr>
<th>tct</th>
<th>gtg</th>
<th>aag</th>
<th>ggt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cgg</td>
<td>Ttc</td>
<td>Acc</td>
<td>Atc</td>
</tr>
<tr>
<td>Tcc</td>
<td>Aga</td>
<td>Gta</td>
<td>Aat</td>
</tr>
<tr>
<td>Tcc</td>
<td>Caa</td>
<td>Aag</td>
<td>Gtc</td>
</tr>
<tr>
<td>Gcg</td>
<td>Atg</td>
<td>Gct</td>
<td>Gag</td>
</tr>
<tr>
<td>Gac</td>
<td>Agt</td>
<td>Gcc</td>
<td>Act</td>
</tr>
<tr>
<td>Tct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Asp</td>
<td>Asn</td>
</tr>
<tr>
<td>Ser</td>
<td>Gin</td>
<td>Ser</td>
<td>Ile</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ctc</th>
<th>tat</th>
<th>ctt</th>
<th>caa</th>
<th>atg</th>
<th>aat</th>
<th>gcc</th>
<th>ctt</th>
<th>aga</th>
<th>gct</th>
<th>gag</th>
<th>gac</th>
<th>agt</th>
<th>gcc</th>
<th>act</th>
<th>tat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gin</td>
<td>Met</td>
<td>Asn</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Tyr</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 19D
EA2 Variable Light Chain

gac atc aag atg acc cag tct cca tct tcc atg tat gca tct cta gga 48
Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly
1 5 10 15

CDR1

gag aga gtc act atc act tgc aag gcg agt cag gac att aat aac tat 96
Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Asn Asn Tyr
20 25 30

Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
35 40 45

CDR2

tta agc tgg ttc cag cag aaa cca ggg aaa tct cct aag acc ctg atc 144
Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
35 40 45

CDR3

gaa gat atg gga att tat tat tgt ctg aca tat gat gag ttt ccc tac 288
Glu Asp Met Gly Ile Tyr Tyr Cys Leu Lys Tyr Asp Glu Phe Pro Tyr
85 90 95

acg ttc gga ggg ggg acc aag ctg gaa ata aaa 321
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105

FIG. 19E
EA2 Variable Heavy Chain

gac gtt aag ctt gtt gag tac gct ggg gga gcc tta gtt aag cct gga ggg 48
Asp Val Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1
5 10 15

CDR1

tcc ctt aca ctc tgt gcc tct gga ttc act ttg act agt agc tat 96
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20
25 30

acc atg tct tgg gtt cgc cag act ccc gga aag agg ctt gag tgt gtc 144
Thr Met Ser Trp Val Arg Glu Thr Pro Glu Lys Arg Leu Glu Trp Val 35
40 45

CDR2

gca acc att agt agt ggt ggt act tac acc tac tat cca gac agt gtt 192
Ala Thr Ile Ser Ser Gly Gly Thr Tyr Thr Tyr Tyr Pro Asp Ser Val 50
55 60

aag ggc cga ttc acc atc tcc aga gcc aat gcc aag aac acc ctt tac 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65
70 75 80

cct gaa atg agc agt ctt ggg tgg gca gac gct atg tat tac tgt 288
Leu Glu Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85
90 95

CDR3

aga aga gaa cca ttc act tac tgg ggc cta ggc ggg act ctt gtc act 336
Thr Arg Glu Ala Ile Phe Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr 100
105 110

115

FIG.19F
SEQUENCE LISTING

MedImmune, Inc.
Kinch, Michael
Carles-Kinch, Kelly
Kiener, Peter
Langemann, Solomon

BphA2 Monoclonal Antibodies and Methods of Use Thereof

10271-097-228

60/379,322
2002-05-10
60/418,213
2002-10-14
60/418,213
2003-04-03
48

PatentIn version 3.2

1
106
PRT
Homo sapiens

1

Gln Ile Val Leu Thr Gln Ser Pro Ala Leu Met Ser Ala Ser Pro Gly
 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Val Ser Tyr Met
 20 25 30

Tyr Trp Tyr Gln Gln Lys Pro Arg Ser Ser Pro Lys Pro Trp Ile Tyr
 35 40 45

Leu Thr Thr Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
 50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
 65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr
 85 90 95

Phe Gly Ser Gly Thr Lys Leu Glu Ile Arg
 100 105
<210> 2
<211> 10
<212> PRT
<213> Homo sapiens

<400> 2
Ser Ala Ser Ser Ser Val Ser Tyr Met Tyr
1 5 10

<210> 3
<211> 7
<212> PRT
<213> Homo sapiens

<400> 3
Leu Thr Thr Asn Leu Ala Ser
1 5

<210> 4
<211> 9
<212> PRT
<213> Homo sapiens

<400> 4
Gln Gln Trp Ser Ser Asn Pro Phe Thr
1 5

<210> 5
<211> 118
<212> PRT
<213> Homo sapiens

<400> 5
Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Trp Met His Trp Val Lys Gln Arg Pro Gly Glu Gly Leu Glu Trp Ile
35 40 45

Gly Met Ile His Pro Asn Ser Gly Ser Thr Asn Tyr Asn Glu Lys Phe
50 55 60

Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Arg Leu Ser Ser Leu Thr Ser Leu Glu Asp Ser Ala Val Tyr Tyr Cys
85
90
Ala Arg Gly Gly Asn Met Val Gly Gly Tyr Trp Gly Gln Gly Thr
100
105
110
Thr Leu Thr Val Ser Ser
115

<210> 6
<211> 10
<212> PRT
<213> Homo sapiens

<400> 6
Gly Tyr Thr Phe Thr Ser Tyr Trp Met His
1
5
10

<210> 7
<211> 17
<212> PRT
<213> Homo sapiens

<400> 7
Met Ile His Pro Asn Ser Gly Ser Thr Asn Tyr Asn Glu Lys Phe Lys
1
5
10
15

Ser

<210> 8
<211> 9
<212> PRT
<213> Homo sapiens

<400> 8
Gly Gly Asn Met Val Gly Gly Gly Tyr
1
5

<210> 9
<211> 318
<212> DNA
<213> Homo sapiens

<400> 9
caaattgttc tccaccgatc tccagcactc atgtctgcat ctccagggga gaaggtcacc
atgacctgcg atgtcagctc aagtgtgaagtt tacatgtact ggtaccagca gaagcagcaaga
180
tcccccctgct caccgatc tttactacac aaccactcgg ctgcctgctgc
ttcagtgccg gttggctctg gacctctattc tctctcaca ctgcagcagcat ggaggctgaa
gagtgccag cttattactg cagcagtgct gatgtaaccc cattcactt ctgctgctggg
cacaaagttc aaataaga

10
27
DNA
Homo sapiens

10
ggcagctcaa gtgtaatgtta catgtac

11
21
DNA
Homo sapiens

11
ttcacaacca actcggcttc t

12
27
DNA
Homo sapiens

12
cagcagttga gtagtaaccc attcagc

13
354
DNA
Homo sapiens

13
caggtccacac tgcagcagcc tggggctgag cttgtaaagc ctgggcttcc atgtgaagttg
tcctgcaagg cttctggcta cactttcacc agctactgga tgcactgggt gaaacaaaaag
cctggaacag gccttgagtg gattgggatg attcatccta atagtggtag tactaactac
aatgagaaat tcaagagcaa ggcccagactg actgtagaca aatcctccag cacagcctac
atgcgaactca gcagcctgac atctggagac tctgcgggtct attactgtgc aagaggggggt
aacattgtac ggggggccta ctgggccccaa ggcaccactc tcagagtctt cc

14
30
DNA
Homo sapiens

14
ggcctcacttt tcaccagcta cttggatgcac
<table>
<thead>
<tr>
<th><210></th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>51</td>
</tr>
<tr>
<td><212></td>
<td>DNA</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
<tr>
<td><400></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>atgattcatac ctaatagtgg tagtactaacc tacaatgaga agttaaagag c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>30</td>
</tr>
<tr>
<td><212></td>
<td>DNA</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
<tr>
<td><400></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>agagggggta acatggtagg gggggctac</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>107</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
<tr>
<td><400></td>
<td>17</td>
</tr>
</tbody>
</table>

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Val Thr Pro Gly
1 5 10 15

Asp Ser Val Asn Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser Asn Asn
20 25 30

Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu Leu Ile
35 40 45

Lys Tyr Val Phe Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Thr
65 70 75 80

Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp Pro Leu
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

<table>
<thead>
<tr>
<th><210></th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>11</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
<tr>
<td><400></td>
<td>18</td>
</tr>
</tbody>
</table>
Arg Ala Ser Gln Ser Ile Ser Asn Asn Leu His
1 5 10

<210> 19
<211> 7
<212> PRT
<213> Homo sapiens

<400> 19

Tyr Val Phe Gln Ser Ile Ser
1 5

<210> 20
<211> 9
<212> PRT
<213> Homo sapiens

<400> 20

Gln Gln Ser Asn Ser Trp Pro Leu Thr
1 5

<210> 21
<211> 120
<212> PRT
<213> Homo sapiens

<400> 21

Glu Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10

Ser Leu Ser Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr Asp Tyr
20 25 30

Ser Met Asn Trp Val Arg Gln Pro Pro Gly Lys Ala Leu Glu Trp Leu
35 40 45

Gly Phe Ile Arg Asn Lys Ala Asn Asp Tyr Thr Thr Glu Tyr Ser Ala
50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Gln Ser Ile
65 70 75 80

Leu Tyr Leu Gln Met Asn Ala Leu Arg Ala Glu Asp Ser Ala Thr Tyr
85 90 95

Tyr Cys Val Arg Tyr Pro Arg Tyr His Ala Met Asp Ser Trp Gly Gln
100 105 110
Gly Thr Ser Val Thr Val Ser Ser
115 120

<PRT> 22
<PRT> 10
<PRT> PRT
<PRT> Homo sapiens
<PRT> 22

Gly Phe Thr Phe Thr Asp Tyr Ser Met Asn
1 5 10

<PRT> 23
<PRT> 19
<PRT> PRT
<PRT> Homo sapiens
<PRT> 23

Phe Ile Arg Asn Lys Ala Asn Asp Tyr Thr Thr Glu Tyr Ser Ala Ser
1 5 10 15

Val Lys Gly

<PRT> 24
<PRT> 9
<PRT> PRT
<PRT> Homo sapiens
<PRT> 24

Tyr Pro Arg Tyr His Ala Met Asp Ser
1 5

<PRT> 25
<PRT> 321
<PRT> DNA
<PRT> Homo sapiens
<PRT> 25

gatattgtgc taactcagtc tccagccacc ctgtctgtga ctccaggaga tagggtcaat 60
ctttcctgca gggccagcca aagtattagc aacaacctac actggtatca aaaaaaatca 120
catgagtctc caaggtctct catcaagtat gttttccagt ccattctctgg gatccctctcc 180
aggttcagtg gcaatgggttc agggacagat ttcatctctca gtatcaacag tgtggagact 240
gaagattttg gaatgtatat ctgtcaacag agtaacagct ggccgctcac gttaggtgct 300
gggaccaagc tggagctgaa a 321
<210> 26
<211> 27
<212> DNA
<213> Homo sapiens

<400> 26
agccaaagta ttgcaacaa cctacac 27

<210> 27
<211> 21
<212> DNA
<213> Homo sapiens

<400> 27
tagtgtttcc agtccatctc t 21

<210> 28
<211> 27
<212> DNA
<213> Homo sapiens

<400> 28
caacagagta acagctggcc gtcacag 27

<210> 29
<211> 360
<212> DNA
<213> Homo sapiens

<400> 29
gaggtgaagc tgtggagtc tggaggagcc ttgtacacg ctgaggggttc tctgagtc 60
tccgtgcag cttctgatt caccttctact gattactccaa tgaactgggt cccgccagcct 120
ccagggaggg cacttgagtg gtgggttttt attagaaaca aagctaatga ttacacaaca 180
gagtacagtg catctgtgaa ggttgggttc accatctccaa gagataattcc ccaagcactc 240
cctctctttc aatgaatgc cctgagagct gaggacagtg ccacattata cttgtaaga 300
taccctaggt atcatgtctat ggactcctgg ggtcaaggga cctcagtcac cgtctctcta 360

<210> 30
<211> 30
<212> DNA
<213> Homo sapiens

<400> 30
ggattcacct tcactgatta ctccatgaac 30

<210> 31
<211> 57
<212> DNA
<213> Homo sapiens

<400> 31
tttattagaa acaaaagctaa tgattacaca acagagtaca gtgcactctgt gaaggggt

<table>
<thead>
<tr>
<th><210></th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>27</td>
</tr>
<tr>
<td><212></td>
<td>DNA</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>taccctaggt atcatgctat ggactcc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>107</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>Homo Sapiens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

| Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Asn Asn Tyr |
| 20 | 25 |
| 25 | 30 |

| Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile |
| 35 | 40 |
| 40 | 45 |

| Tyr Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly |
| 50 | 55 |
| 55 | 60 |

| Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Tyr |
65	70
70	75
75	80

| Glu Asp Met Gly Ile Tyr Tyr Cys Leu Lys Tyr Asp Glu Phe Pro Tyr |
85	90
90	95
95	100

| Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys |
| 100 | 105|

<table>
<thead>
<tr>
<th><210></th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>11</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Ala Ser Gln Asp Ile Asn Asn Tyr Leu Ser</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>7</td>
</tr>
<tr>
<td><212></td>
<td>PRT</td>
</tr>
</tbody>
</table>
Homo Sapiens

Arg Ala Asn Arg Leu Val Asp
1 5

Leu Lys Tyr Asp Glu Phe Pro Tyr Thr
1 5

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Thr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val
35 40 45

Ala Thr Ile Ser Ser Gly Gly Thr Tyr Thr Tyr Tyr Pro Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Thr Arg Glu Ala Ile Phe Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ala

115
<213> Homo Sapiens

<400> 38

Gly Phe Thr Phe Ser Ser Tyr Thr Met Ser
1 5 10

<210> 39
<211> 17
<212> PRT
<213> Homo Sapiens

<400> 39

Thr Ile Ser Ser Gly Gly Thr Tyr Thr Tyr Tyr Pro Asp Ser Val Lys
1 5 10 15

Gly

<210> 40
<211> 6
<212> PRT
<213> Homo Sapiens

<400> 40

Glu Ala Ile Phe Thr Tyr
1 5

<210> 41
<211> 321
<212> DNA
<213> Homo sapiens

<400> 41

gacatcaaga tgcaccagtc tccatcttcc atgtatgcat ctctaggaga gagagtcact 60
atcaactgca aggcgatca ggacattaat aactatttta gctgttcca gcagaaacca 120
gggaaatctc ctaagacct gatctatcgt gcaacagat tggtagatgg ggtcccatca 180
aggttcaagt gcaatggatc tgggaagat tattctctca ccatcagcag ccctggagtat 240
gaatatatga gaatttattta ttgtctgaaa tatgatgagt ttccgtacac gtctgaggg 300
gggaccaagc tggaaataaa a 321

<210> 42
<211> 30
<212> DNA
<213> Homo sapiens

<400> 42
gcgagtcagg acattaataa cttatattaagc 30
<210> 43
<211> 21
<212> DNA
<213> Homo sapiens

<400> 43
cgtgcaaaca gattgtaga t 21

<210> 44
<211> 21
<212> DNA
<213> Homo sapiens

<400> 44
aatatgatg agtttccgta c 21

<210> 45
<211> 345
<212> DNA
<213> Homo sapiens

<400> 45
gacctgaagc tggtgagtc tgggggaggc ttatggaagc ctggagggtc cctgaaactc 60
tcctgtgcag cctcttgatt cactttcagt agctatacca tgttcttgggt tcgccagact 120
ccgagaaga ggctggagtg ggtcgcaacc attagtagtg gtggtagtta cacctactat 180
ccacagcttg tgaagggccg attcaccact cccagagaca atgccaagaa aaccctgtac 240
ctgcaaatga gcagctcggaa gtctgaggac acaagcccatgt attactgtac aagagaagct 300
atctttactt actgsggca aaggactctg gtcactgtct ctgca 345

<210> 46
<211> 30
<212> DNA
<213> Homo sapiens

<400> 46
ggattcactt tcagtagcta taccatgtct 30

<210> 47
<211> 51
<212> DNA
<213> Homo sapiens

<400> 47
accattagta gtggtgtac ttacacctac tatccagaca gttgtaaggg c 51

<210> 48
<211> 21
<212> DNA
<213> Homo sapiens
<400> 48
agaagactatcttactta c