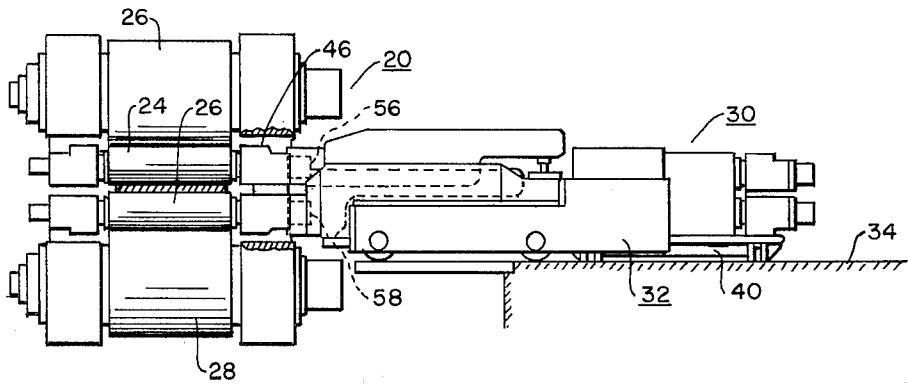


[54] MILL ROLL CHANGING SYSTEM
INCLUDING A ROLL BUGGY
[75] Inventor: Andrew J. Petros, Oakdale, Pa.
[73] Assignee: Mesta Machine Company,
Pittsburgh, Pa.
[22] Filed: Dec. 28, 1973
[21] Appl. No.: 429,345

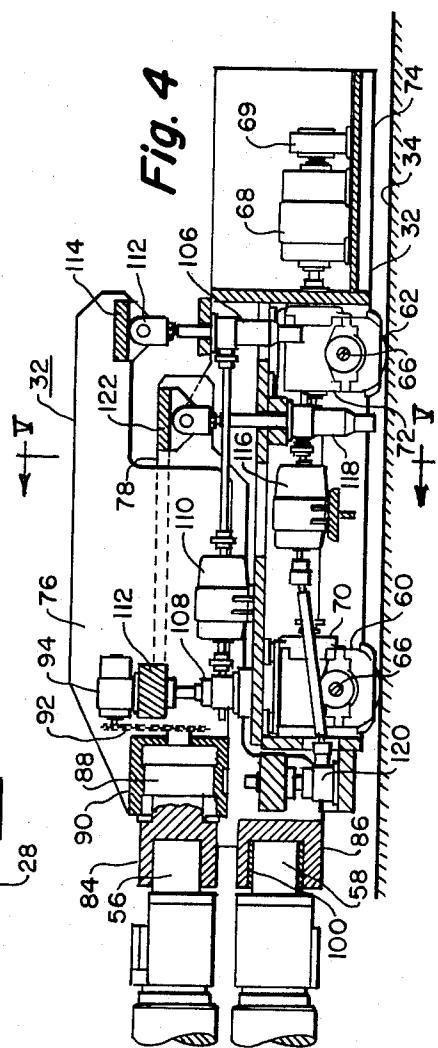
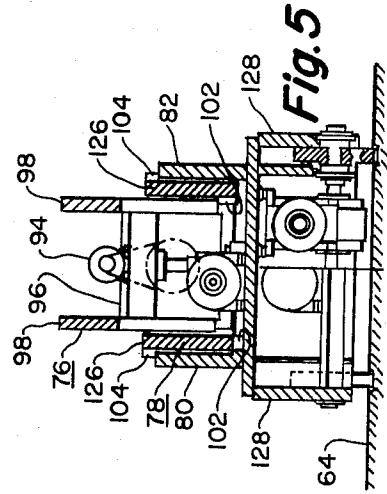
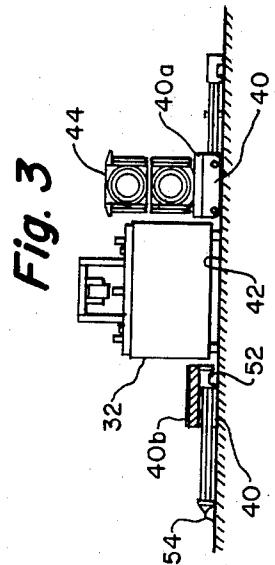
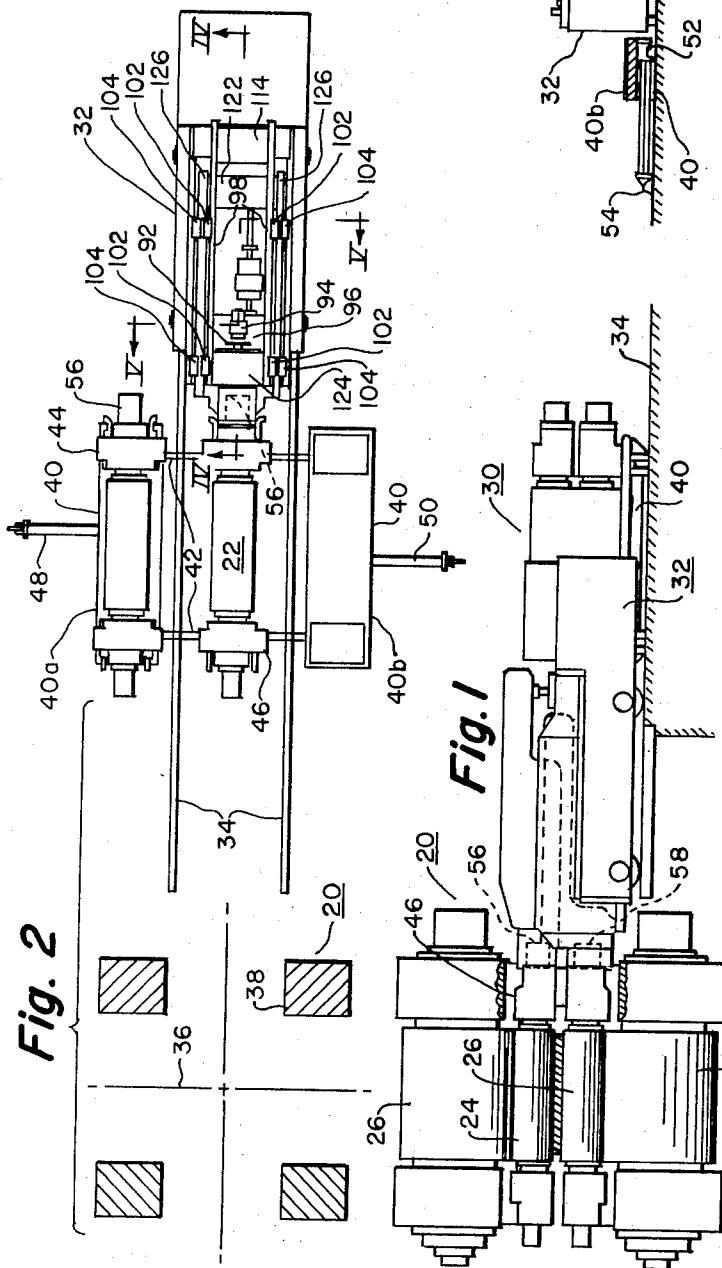
[52] U.S. Cl. 72/239
[51] Int. Cl. B21b 31/10
[58] Field of Search. 72/239, 238

[56] References Cited
UNITED STATES PATENTS


3,323,345 6/1967 Lyle et al. 72/239
3,559,441 2/1971 Lemper et al. 72/239
3,698,226 10/1972 Eibe 72/239

Primary Examiner—Milton S. Mehr
Attorney, Agent, or Firm—Donn J. Smith

[57] ABSTRACT





A buggy for changing mill rolls and the like comprises first and second supports mounted thereon. Each of said supports terminates in a roll neck socket adjacent a front or mill end of said buggy, with each of said sockets being shaped to closely receive a roll neck of an associated one of said mill rolls and to support said roll in cantilevered fashion. An arrangement is provided for advancing and withdrawing said buggy relative to said mill for insertion and withdrawal of said rolls when so cantilevered. In another embodiment, the buggy includes at least one such support mounted thereon and optionally with an arrangement for elevating the support relative to the buggy.

11 Claims, 5 Drawing Figures

PATENTED FEB 18 1975

3.866,455

MILL ROLL CHANGING SYSTEM INCLUDING A ROLL BUGGY

Certain aspects of the present invention are related to the invention of my copending, coassigned application entitled Mill Roll Changing System Including A Cantilevered Roll Assembly filed concurrently herewith, Ser. No. 429,344.

The present invention relates to a system for inserting and withdrawing the rolls of a rolling mill and more particularly to a system of the character described employing improved buggy and porter devices.

Although the invention is described in conjunction with four-high mill stand of a cold mill, it will be apparent as this description proceeds that the invention can be readily designed for a hot mill and for other types of rolling mills. Thus, each installation of the invention involves specific differences in size, space, availability, etc. The invention is particularly advantageous in ready adaptability to existing rolling mills, as only a very limited amount of foundation change is required.

Known forms of roll changing systems suffer from one or more disadvantages and difficulties of operation. The original manual system, of course, involves considerable mill down-time, attendant loss of production, and personnel hazard. Changing the rolls of more than one or two mill stands at a time was virtually impossible owing to equipment and personnel limitations. Many of these known systems require extensive foundation changes, and installation as a practical manner was effectively limited to newly constructed rolling mills. In other roll changing systems, owing to mechanical complexity and area requirements, only one or a limited number of mill stands could be serviced. These and other roll changing systems necessitated many obstructions at or in the mill floor area adjacent the mill stands with attendant tripping and other personnel hazards.

The roll changing system of the present invention is admirably and unexpectedly designed to reduce undue mechanical complexity and to facilitate maintenance. The present system can be installed in conjunction with existing rolling mills without extensive and costly mill shutdowns. Roll changing equipment according to the invention can be installed wherever desirable, in conjunction with each stand of a rolling mill so that any or all of such stands can be changed simultaneously. Handling of the work rolls by a crane is eliminated, along with roll damage frequently caused by this and other known handling techniques. In many applications, my novel roll changing system can be employed in addition to transfer the mill rolls to and from the roll shop. The only alteration required in the rolling mill proper is provision of conventional means for holding the roll chocks in line during handling.

I accomplish these and other desirable ends of the invention and overcome the disadvantages of the prior art by providing a buggy for changing mill rolls and the like, said buggy comprising first and second support mounted thereon, each of said supports terminating in a roll neck socket adjacent a front or mill end of said buggy, each of said sockets being shaped to closely receive a roll neck of an associated one of said rolls and to support said mill roll in cantilevered fashion, and means for advancing and withdrawing said buggy from said mill for insertion and withdrawal of said mill rolls when so cantilevered.

I also desirably provide a similar roll changing buggy wherein means are provided for elevating at least one of said supports so that the distance between said roll neck sockets can be varied to accommodate faced mill rolls having differing facial diameters.

I also desirably provide a changing system for a rolling mill or the like, said system comprising a self propelled buggy, at least two transfer cars, first rail means for said buggy and extending transversely of a pass line 10 of said rolling mill, second rail means for said transfer cars and extending generally parallel to said pass line, said first rail means being generally aligned with a roll inserting and withdrawing window of a mill stand forming part of said rolling mill, means for propelling said buggy along said first rail means and for propelling said transfer cars along said second rail means, and roll supporting means on said buggy shaped for engagement with a roll neck or at least one of said mill rolls for supporting said one mill roll in cantilevered fashion, said 15 transfer cars being shaped for passage beneath said one mill roll when so supported on said buggy, and elevating means coupled to said supporting means for raising and lowering said one mill roll relative to said transfer cars.

I also desirably provide a similar roll changing system wherein a second roll support is provided and elevating mechanism is provided for said second roll support so that varying distances between said roll necks can be accommodated and so that said pair of rolls can be raised and lowered as an assembly relative to said transfer cars.

I also desirably provide a buggy for changing mill roll and the like, said buggy comprising a support movably mounted thereon, said support terminating in a roll neck socket adjacent a front or mill end of said buggy and shaped to closely receive a roll neck of an associated one of said mill rolls for supporting the mill roll in cantilevered fashion, and means for advancing and withdrawing said buggy from said mill for insertion and withdrawal of said mill roll when so cantilevered.

I am aware of a number of roll changing systems, typified for example by the U.S. Pat. Nos. to

45	Stover et al.	3,451,244
	Simmonds	3,611,779
	Sevenich et al.	3,695,080
	Eibe	3,698,226

50 None of these Patents nor any combination thereof discloses the novel features of the invention as pointed out above.

During the foregoing discussion, various objects, features and advantages of the invention have been set forth. These and other objects, features and advantages of the invention together with structural details thereof will be elaborated upon during the forthcoming description of certain presently preferred embodiments of the invention and presently preferred methods of practicing the same.

60 In the accompanying drawings I have shown certain presently preferred embodiments of the invention and have illustrated certain presently preferred methods of practicing the same, wherein:

65 FIG. 1 is a side elevational view of mill rolls as positioned within a typical four-high mill stand of a rolling mill, together with the roll changing apparatus of the invention;

FIG. 2 is in general a top plan view of the roll changing apparatus substantially as shown in FIG. 1 but showing the apparatus supporting work rolls withdrawn from the mill stand;

FIG. 3 is a rear elevational view of the roll changing apparatus as shown in FIG. 1;

FIG. 4 is an enlarged longitudinally sectioned view of the roll changing apparatus as shown in FIG. 2 and taken along reference line IV—IV thereof; and

FIG. 5 is the cross sectional view of the roll changing apparatus shown in FIG. 2 but taken along reference line V—V thereof;

With reference now to the drawings in greater detail an exemplary form of the invention shown therein is manipulatable with respect to a mill stand portions of which are denoted by the reference number 20 (FIGS. 1 & 2). Typically, the mill stand 20 is of the four-high variety and includes work rolls 22, 24 and back up roll 26, 28.

The roll changing system or apparatus 30 proper includes a self-propelled buggy 32 which is driven along a pair of rails or tracks 34. The tracks 34 as better shown in FIG. 2 extend transversely of the mill stand 20 and its pass line 36 as evident from a comparison of FIGS. 1 and 2 the motorized buggy 32 is driven between the positions evident in FIGS. 1 and 2 respectively in order to engage the work rolls 22, 24 for withdrawal thereof (FIG. 1) and thereafter to move the work roll assembly as a unit through and from the mill stand window 38 (FIG. 2) rearwardly to one of the side shifting transfer cars 40 (FIGS. 1-3). The transfer cars 40 are structured for movement along a pair of rails or tracks 42 which extend generally parallel of the rolling mill and its pass line 36 or transversely of the buggy track 34 (FIGS. 2 and 3).

A pair of the transfer cars 40 desirably are provided such that one of the cars for example car 40a supports a replacement work roll assembly 44 at a position laterally and out of the way of the roll changing buggy 32, and its track 34 while the buggy is withdrawn to the rear or away from the mill stand 20 and carries with it a used roll assembly 46. At the position of the roll changing buggy 32 and of the used roll assembly 46, as shown in FIG. 2, the vacant transfer car 40b can be moved to a position between the buggy rails 34 (or to the right, as viewed in FIG. 3) and thus directly beneath the used roll assembly 46 so that the latter can be lowered directly onto the empty transfer car 40b.

In the illustrated form of the invention, the transfer cars 40a, 40b are moved along their rails or tracks 42 by suitable traction means, in this example piston and cylinder arrangements 48, 50 respectively. Desirably the cylinders 48, 50 are somewhat off set relative to the center lines of the transfer cars 40 (FIG. 2) so as to accommodate in side by side relation similar cylinders for transfer cars (not shown) are of adjacent mill stands. As evident from FIG. 3 the cars 40 are arched or otherwise constructed so that the adjacent end portions of the cylinders 48, 50 extend beneath the platform structure of the transfer cars 40 for connection at 52 (FIG. 3) or the far side of the transfer car relative to the floor anchor 54 of the cylinder. This accommodates a cylinder of longer stroke without sacrifice of floor space.

When the transfer car 40b has been loaded as aforesaid it is then withdrawn to the position thereof shown in FIG. 2 together with the used roll assembly 46 so that the other transfer car 40a and the replacement roll as-

sembly 44 can in turn be moved between the buggy rails 34 for engagement of the replacement roll assembly 44 by the buggy 32 and subsequent insertion through window 38 and into the mill stand 20.

In order to facilitate the aforementioned withdrawal and insertional operations relative to the work roll assemblies 44, 46 and the loading and unloading of these roll assemblies relative to the transfer cars 40a, 40b, the work roll assemblies desirably are engaged and supported in cantilevered fashion by the buggy 32. Transportation of the mill rolls in cantilevered fashion poses a number of problems. Firstly, the work roll necks 52, 54 must be securely engaged by the cantilevering structure of the buggy 32. Secondly, the buggy 32 and its roll supporting components must be structured such that the used work roll assembly 46 can be accurately withdrawn in a linear fashion from the mill stand window 38 without damage to the roll assembly 46 or to adjacent and sometimes closely spaced components of the mill stand 20. Thirdly, the buggy 32 must be configured such that the roll engaging component can be accurately raised and lowered under the weight and torque loadings imposed thereon by the cantilevered work roll assembly 44 or 46. Finally, at least one of the roll engaging members of the buggy 32 must be adjustable horizontally and vertically relative to the other roll engaging member in order to accommodate work rolls of differing facial diameters and the inevitable vertical displacement of the adjacent ends of the roll necks 56, 58.

One arrangement for thus transporting and cantilevering the work roll assemblies 44, 46 during the respective roll changing operations, is shown in FIG. 1-3 but is illustrated in greater detail in FIGS. 4 and 5. The overall structure of the self-propelled, roll-changing buggy 32, including the aforementioned cantilevering components, will now be described in greater detail. As evident from the Figures the buggy 32 is heavily constructed and includes a pair of railway trucks 60, 62 for engagement with the buggy rails 34, which if desired can be machined into the mill floor structure 64 as evident from FIG. 5. In the illustrated embodiment, the trucks 60, 62 including their axles 66 are rotated together by suitable driving mechanism including in this example electric motor 68 and a speed reducer 70 or 72 coupled to each of the axles 66 and to the motor 68. Power is thus applied to both sets of railway trucks 60, 62 in this example of the invention.

Desirably the relatively heavy drive motor 68 and tachometer 69 are housed in a rearward extension 74 of the buggy 32 to aid (along with the rather heavy construction of the buggy itself) in counterbalance the considerable weight of the cantilevered work roll assembly 44 or 46.

In order to support the work roll assembly in cantilever fashion on the buggy 32 a pair of cantilevering and elevatable supports 76, 78 are provided respectively for the upper and lower work rolls of the work roll assembly (FIGS. 4 & 5). The supports 76, 78 are spacedly and slidably mounted on the buggy 32. In furtherance of this purpose a pair of relatively rigid upright stabilizing plates 80, 82 are spaced outwardly of the roll supports 76, 78 as evident from FIGS. 2 and 5 of the drawings. Each of the cantilevering roll supports 76, 78 terminates at its forward or mill end in a roll neck receiving socket 84 or 86, respectively. To compensate for slight vertical misalignments of the roll necks 56, 58 of

the work rolls, one of the roll neck sockets, for example the socket 84, includes a screw driven shank 88 mounted in a second and larger socket 90 therefor also mounted on the upper roll support 76. The screw mechanism 88 is driven by transmission denoted generally by reference character 92 and a suitable drive, for example electric motor 94 typically mounted on platform 96 extending between vertical plates 98 of the upper roll support 76. The upper roll neck socket 84 thus can be adjusted horizontally of the buggy 32 and of the lower roll neck socket 86. Desirably the roll neck sockets 84, 86 are sized for insertion of the largest anticipated roll neck 56, 58, and where smaller roll necks are encountered, a suitable liner such as that denoted at 100 can be inserted in one or both of the sockets 84, 86.

The upper and lower roll supports 76, 78 are guided in their elevating movements (effected by elevating mechanisms presently to be described) by pairs of guideway plates denoted generally at 102, 104 and secured in this example respectively to inner and outer surfaces of the lower support vertical plates 126. The guide plates 102, 104 cooperate with complementary guide ways formed on the juxtaposed surfaces of the stabilizing plates 80, 82 and on the upper support vertical plates 98. Thus the upper and lower cantilevering supports 76, 78 are precisely guided in their elevating movements with respect to the buggy 32 and to one another.

The upper cantilevering structure or support 76 is elevated by a pair of gear housings 106, 108 to which a suitable drive means for example electric motor 110 is coupled. The gear housings which in this example each include a worm and worm gear are connected through their output shafts and clevis joints 112 to the forward platform 96 (mentioned previously) of the upper framework 76 and a rearward platform 114 likewise extending between the vertical plates 98 of the upper support 76.

The lower elevating support 78 is provided with a similar elevating mechanism including electric motor 116, gear mechanisms 118, 120 which are similarly coupled to platforms 122, 124 extending between the aforementioned vertical plates 126 of the lower elevating framework 78. As evident from FIG. 4 the various elevating mechanisms for the upper and lower supports 76, 78 are mounted on platform structures extending between the stabilizing plates 80, 82 or between the outer housing plates 128 of the buggy 32, as evident from FIGS. 4 and 5.

With the arrangement just described, the elevating and cantilevering supports 76, 78 and the roll neck sockets 84, 86 respectively can be positioned precisely to receive the roll necks 56, 58 in respective of the facial diameters of the work rolls, within the structural limits of the buggy components. This is essential as work rolls of differing diameters frequently are substituted during a given shift or turn. In addition, the elevating feature of the cantilevering supports 76, 78 permit the buggy roll sockets 84, 86 to be adjusted to the precise elevation of the total work roll assembly 44 or 46 depending upon the height of the transfer car 40 in the case of the roll assembly 44 or upon the diameter of the lower back up roll 28 and/or the size of elevation of other related components of the mill stand 20.

From the foregoing it will be seen that a novel and efficient Mill Roll Changing System Including a Roll

Buggy has been described herein. The descriptive and illustrative materials employed herein are utilized for purposes of exemplifying the invention and not in limitation thereof. Accordingly, numerous modifications of the invention will occur to those skilled in the art without departing from the spirit and scope of the invention. Moreover, it is to be understood that certain features of the invention can be used to advantage without a corresponding use of other features thereof.

10 I claim:

1. A buggy for changing mill rolls and the like, said buggy comprising first and second supports mounted thereon, each of said supports terminating in a roll neck socket adjacent a front or mill end of said buggy, each of said sockets being shaped to closely receive a roll neck of an associated one of said mill rolls and to support said mill roll in cantilevered fashion, means on said buggy for elevating at least one of said supports with respect to said buggy and to the other of said supports so that the distance between said roll neck sockets can be varied, and means for advancing and withdrawing said buggy from said mill for insertion and withdrawal of said mill rolls when so cantilevered.

20 2. The combination according to claim 1 wherein additional means are provided for similarly elevating said other support.

25 3. The combination according to claim 2 including upstanding complementary stabilizing plates rigidly secured to said supports and to said buggy respectively in juxtaposition to one another.

30 4. The combination according to claim 1 wherein means are provided for longitudinally advancing and withdrawing one of said roll neck sockets relative to the other so that said sockets can accommodate vertical misalignments of said roll necks.

35 5. The combination according to claim 1 wherein said buggy is self-propelled and at least part of the driving mechanism therefor extends rearwardly of the buggy proper to aid in counterbalancing a mill roll carried in cantilevered fashion by said buggy.

40 6. The combination according to claim 5 including stabilizing plates secured respectively to said supports and to said buggy in juxtaposition to one another, said plates stabilizing said one support during elevation thereof and both of said supports against rotation with respect to said buggy.

45 7. A buggy for changing mill rolls and the like, said buggy comprising first and second supports mounted thereon, each of said supports terminating in a roll neck socket adjacent a front or mill end of said buggy, each of said sockets being shaped to closely receive a roll neck of an associated one of said mill rolls and to support said mill roll in cantilevered fashion, and means for advancing and withdrawing said buggy from said mill for insertion and withdrawal of said mill rolls when so cantilevered, means for elevating each of said supports relative to said buggy and to one another so that the distance between said roll neck sockets can be varied to accommodate face mill rolls having differing

50 8. A changing system for the mill rolls of a rolling mill or the like, said system comprising a self propelled buggy, at least two transfer cars, first rail means for said

55 60 65

buggy and extending transversely of a pass line of said rolling mill, second rail means for said transfer cars and extending generally parallel to said pass line, said first rail means being generally aligned with a roll inserting and withdrawing window of a mill stand forming a part of said rolling mill, means for propelling said buggy along said first rail means and for propelling said transfer cars along said second rail means, and a pair of roll supports on said buggy shaped for engagement with the roll necks of a pair of said mill rolls for supporting said mill rolls in cantilevered fashion, said transfer cars being shaped for passage beneath said one mill roll when so supported on said buggy, and elevating means coupled to said roll supports for elevating said mill rolls and said supports relative to one another and to said buggy and to said transfer cars and for accommodating varying the center line distances between said mill rolls during such elevation.

9. The combination according to claim 8 including juxtaposed plate members rigidly secured to said supports and to said buggy for stabilizing individual elevat-

ing movements of said supports with respect to one another and to said buggy and transfer cars.

10. A buggy for changing mill rolls and the like, said buggy comprising a support movably mounted thereon, said support terminating in a roll neck socket adjacent a front or mill end of said buggy and shaped to closely receive a roll neck of an associated one of said mill rolls for supporting the mill roll in cantilevered fashion, means for elevating said support with respect to said buggy, said support including an upstanding plate, complementary guideway means formed between said support plate and a juxtaposed stabilizing plate rigidly secured to said buggy, and means for advancing and withdrawing said buggy from said mill for insertion and withdrawal of said mill roll when so cantilevered.

11. The combination according to claim 1 including upstanding complementary stabilizing plates rigidly secured in juxtaposition to said one support and to said buggy respectively.

* * * * *

25

30

35

40

45

50

55

60

65