Our invention relates to certain details of construction of a device for holding tools for display as set forth and claimed broadly in an application for patent filed by us, Serial Number 75,898, filed Dec. 17, 1925. The object of our present invention is to provide a tool-holding display device which will allow a screw-driver to be turned in the holder, and from which the bit or screw-driver blade cannot be readily withdrawn from the holder.

The device is mounted on a suitable base, in order that an intending purchaser may try the tool without removing it from the holder.

In the accompanying drawing:

Fig. 1 is a perspective view of our improved tool-holding device showing a ratchet screw-driver in position;

Fig. 2 is a vertical sectional view;

Fig. 3 is a plan view showing the bit of the screw-driver in section;

Fig. 4 is a detached perspective view of the holder, and;

Fig. 5 is a detached perspective view of the plug and split ring.

The base may be of any form desired, and mounted on the base is a tool-holding device 3, having a bottom portion 4 in which is a socket 5 for a plug 6, having a slot for the reception of the end of the screw-driver bit 7. At the upper end of the device 3 is a bearing 8 through which the bit 7 extends.

The device 3 has an extension 9 which projects into an opening 10 in the base 2. The extension has a screw-threaded hole to receive a screw 11, which passes through an opening in a washer 12 located in a recess in the underside of the base. By this means the tool-holder is firmly secured to the base.

Attached to the upright portion of the holding device is a spring 13, which extends through the opening 14 for the screw-driver bit. This spring is bent at its upper end and extends over the bearing, as shown in Fig. 2. The spring places sufficient pressure on the bit to allow the ratchet mechanism located in the shell 15 of the screw-driver 16 to operate the same as if the bit was engaging a wood screw.

A screw 17 extends into the opening 14 in the bearing in order to prevent the malicious withdrawal of the bit and screw-driver. The hole 14 in the bearing is the same width as the blade of the bit at its widest point, and in order to withdraw the bit, it must be turned so that its blade is at right angles to the spring, and as the screw 17 is at this point, the screw must be withdrawn from the opening before the bit can be removed.

The plug 6 has an annular groove therein to receive a split ring 18, which not only holds the plug in the socket 5 but places a certain amount of friction on the plug to aid the spring 13 in fractionally holding the bit to allow the ratchet mechanism to operate.

We claim:

1. The combination of a base; a tool-holding device secured to the base and having a bearing for a screw-driver bit having a broad end; a plug located in the bottom of the tool holding device having a slot therein into which the screw-driver bit extends; means for holding the plug fractionally in the tool holding device; a spring bearing against the bit; and a screw extending into the opening in the bearing for preventing withdrawal of the bit.

2. The combination in a tool holder of a base; a tool-holding device secured to the base; a plug located in the bottom of the tool-holding device; means for placing friction on the plug equal to the amount of friction placed on a screw when being driven into the material; and means for supporting a bit arranged to engage the plug, so that when power is exerted to turn the bit it will be resisted by the friction means on the plug.