US008239566B2

a2 United States Patent 10) Patent No.: US 8,239,566 B2
Fromm et al. (45) Date of Patent: Aug. 7,2012

(54) NON-SATURATING FAIRNESS PROTOCOL 6,091,709 A * 7/2000 Harrisonetal. 370/235
AND METHOD FOR NACKING SYSTEMS 7,206,593 B1* 4/2007 Yarkosky et al. 455/517
2003/0103527 Al* 6/2003 Beser 370/468

. . . . 2003/0135639 Al* 7/2003 Marejka et al. ... 709/232

(75) Inventors: Eric C.Fromm, Eau Claire, W1 (US); 2005/0041597 AL* 2/2005 Wang etal. ... 370252
Gregory M. Thorson, Altoona, W1 (US) 2005/0086439 Al* 4/2005 Kaczynski .. 711/151

(73) Assignee: Silicon Graphics International, Corp.,
Fremont, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1197 days.

(21) Appl. No.: 12/039,048

(22) TFiled: Feb. 28, 2008

(65) Prior Publication Data
US 2009/0222821 Al Sep. 3, 2009

(51) Imt.ClL
GO6F 15/16 (2006.01)
GO6F 15/167 (2006.01)
(52) uUsS.ClL ... 709/235; 709/223; 709/225; 709/232
(58) Field of Classification Search 709/223-226,
709/232-235, 240
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,897,833 A * 1/1990 Kentetal.ccccouevene 370/447
5,276,899 A * 1/1994 Nechescccccevvvvene 709/240

Requesting Agent

[-102

Transaction Request

2007/0005768 Al* 1/2007 Wonetal. ... 709/225
2007/0143290 Al* 6/2007 Fujimotoetal. 707/9
2007/0263650 Al* 11/2007 Subramaniaetal. 370/412
2012/0030326 Al* 2/2012 Cassidyetal. 709/223

* cited by examiner

Primary Examiner — Brendan Higa

(74) Attorney, Agent, or Firm — Sunstein Kann Murphy &
Timbers LLP

(57) ABSTRACT

Processing transaction requests in a shared memory multi-
processor computer network is described. A transaction
request is received at a servicing agent from a requesting
agent. The transaction request includes a request priority
associated with a transaction urgency generated by the
requesting agent. The servicing agent provides an assigned
priority to the transaction request based on the request prior-
ity, and then compares the assigned priority to an existing
service level at the servicing agent to determine whether to
complete or reject the transaction request. A reply message
from the servicing agent to the requesting agent is generated
to indicate whether the transaction request was completed or
rejected, and to provide reply fairness state data for rejected
transaction requests.

30 Claims, 3 Drawing Sheets

101 \ Servicing Agent
()

Send initial transaction request with\
request priority = 0, not registered. j

Completion Reply

Receive transaction request.
Assign service priority level

C Receive Completion \

reply - transaction done f

Receive rejection reply with retry

NACK Reply

and determine servicing
action. Send reply message

indicating completion or
rejecting with reply fairness

fairness state data w/ specified delay.
Send retry transaction request echoing
Reply Priority and Registration flags

Retry Transaction Request

state data-delay
specification, registration
flags, reply priority.

from reply message. Y,

US 8,239,566 B2

Sheet 1 of 3

Aug. 7,2012

U.S. Patent

-

\-

J

<

I O

\ -obessaw AjdaJ woly

‘Aluond Aldal ‘sbeyy
uonensibal ‘uonesyyoads

sbey) uonensiboy pue Auoud Ajdey
Buloyos 1s8nbai uonoesue Anal puss
‘Aejap pauoads /m eiep 91e]S ssaulie)

1senbay uonoesuel | Anoy

Aejop-eiep ajeis
ssaulie) Aidal yum Bunoslal
10 uona|dwod Buneosipul
abessaw A|dal puag "uonoe

Aldey YOVN Anai1 yum Aidas uonoslal anieoay

auop uonoesuel; - A|da.

Bupines aulwis)ap pue
[oA9] Aiond ao1a1es ubissy
"J1senbal uonoesuel) aAI8d8Yy
<

Aldey uonajdwo) uons|dwo) sA1ed8Y

\ ‘paJalsibal jou ‘g = Aluond 1sanbal

\

weby buiales ,(LOL

1senbay uonoesuel | /£_>> 1senbau uonoesue |eniul pusg

Zol |\ by Bunsanboy

US 8,239,566 B2

Sheet 2 of 3

Aug. 7,2012

U.S. Patent

90¢

¢ DIA

c0e

xn\ Aldey

S0¢
21607 9181S Ssaule

/0¢C
Buissanold ao1A1eg

|

¥0¢
10SS800.14-91d 1senbay

Buinpayos Anay

> €0¢
Buissasoud Alday pue

uonelauar) 1senbay

A

waby Buninies

/(101

A

A 4

10¢
Bunpoes | Aousbin uonoesuel |

No—.\

wdby Bunsenbay

US 8,239,566 B2

Sheet 3 of 3

Aug. 7,2012

U.S. Patent

Bej4 Buiby puadsng

ug

mno

asegawil |
oioads
Aouabin

XN

[0:2lies

T soadg polad asegawl |

20¢
slajunon)

LTI

L

L0g €0€

——— — ————— — — —— —— — ———

A

sosegawl | polod sasegawli |
Buiby | °seqawi] mey pajeosald

lajeiausn)
asegawl |
mey

r soadg Buljeosald aseqawl |

uoneauar) aseqgawl | bulby uonoesuel| LoD

—— e — — — — — — — — — — — — — —

US 8,239,566 B2

1
NON-SATURATING FAIRNESS PROTOCOL
AND METHOD FOR NACKING SYSTEMS

FIELD OF THE INVENTION

The present invention relates to computer network
resources, and more specifically to allocation of such
resources between competing network entities.

BACKGROUND ART

In multi-processor computer systems, tasks between the
processors can be divided between the available processors
and network resources. Shared address memory systems let
the processors access common system memory. Local cache
memory can also provide fast access to data for local process-
ing tasks. The cache typically keeps copies of data from
memory local to a number of other processor nodes.

As multi-processor systems get larger, the number of trans-
action requests from requesting agents to servicing agents
also increases, and the system can become congested with
message and data traffic. Larger systems can also suffer from
request starvation when the length of time for servicing the
transaction requests grows too long. There can also be prob-
lems with servicing requests “fairly” so as to optimize system
performance.

A request priority system can assign priorities to transac-
tion requests. This may also include a mechanism to deal with
excessive negative acknowledgements (NACKs) from the
servicing agents indicating that specific transaction requests
cannot yet be serviced. In response to a NACK, a requesting
agent may re-transmit another request for the service. The
request priority may be a step function based on the number of
NACKs received.

Such systems can tend to produce an excessive number of
NACKed requests, which result in requests being re-injected
back into the system. And previous such schemes did not
ultimately guarantee starvation avoidance because conditions
could arise where many contending requests have a saturated
priority and thus all fairness of service ordering between them
is lost. In addition, there was no persistence of fairness related
state at the servicing agent between successive servicing
actions—the service level was reset at the beginning of each
servicing action and a new service level was determined to be
the highest priority of any request rejected while that servic-
ing action was under way—the target cache line was busy.
Further, prior systems did not have nor need provisions for
ensuring the forward progress of probe actions (required for
managing system-wide data coherency) which contend for
access to the processor domain or to intermediate shared
resources (proxy agents). Nor did they deal with congestion
related issues. Prior schemes had yet another problem—they
relied on retry counts for determining request priority. This
policy tended to promote more rapid accumulation of priority
for requests originating from nearby requesting agents and
was thus not an objective means of determining relative pri-
ority between contending requests.

SUMMARY OF THE INVENTION

Method of Processing Transaction Requests

Embodiments of the present invention are directed to a
method of processing transaction requests in a shared
memory multi-processor computer network. A transaction
request is received at a servicing agent from a requesting
agent. The transaction request includes a request priority
associated with a transaction urgency determined by the

20

25

30

35

40

45

50

55

60

65

2

requesting agent. The servicing agent provides an assigned
priority to the transaction request based on the request prior-
ity, and then compares the assigned priority to an existing
service level at the servicing agent to determine whether to
complete or reject the transaction request. A reply message
from the servicing agent to the requesting agent is generated
to indicate whether the transaction request was completed or
rejected, and to provide reply fairness state data for rejected
transaction requests.

For example, the reply fairness state data may include a
retry delay specification for delaying generation of a retry
transaction request for later performance of the rejected trans-
action request. Specifically, the retry delay specification may
reflect a difference between the assigned priority of the trans-
action request and the existing service level when the reply
message was generated. In addition, the retry delay specifi-
cation may be shorter when the assigned priority of the
rejected transaction request is higher.

Further specific embodiments maintain contention-related
statistics concerning outstanding transaction requests for
each assigned priority, and based on the contention-related
statistics, the service level is determined. The contention-
related statistics are continuously updated as transaction
requests are completed or rejected in order to dynamically
adjust the service level and other aspects of fairness related
behavior. Embodiments may also register a transaction
request associated with the contention-related statistics, and
include registration information in the reply fairness state
data to be echoed back to the servicing agent in a subsequent
retry transaction request. In specific embodiments, the trans-
action request may be checked for registration information
echoed from a previous transaction reply so as to avoid re-
registering the transaction request a second time. Previous
transaction request registrations and associated contention-
related statistics may periodically be invalidated so that
incoming registered transaction requests are subject to re-
registering regardless of prior registration state so as to pro-
vide resilient operation accounting for dropping of registered
transaction requests. This may involve distinguishing a trans-
action request registered prior to the current registration
period from a transaction request registered during the cur-
rent registration period. Accordingly, the reply fairness state
data may include a registration period flag that reflects the
registration period of the transaction request. In addition or
alternatively, the transaction request may include a do not
register flag instructing the servicing agent to not register the
transaction request because the requesting agent might not
retry the transaction request if rejected by the servicing agent.

Specific embodiments may also set the assigned priority to
be less than the request priority so as to avoid priority satu-
ration. The transaction urgency at the requesting agent may be
a function of age reflecting time elapsed since initiating the
original transaction request, and the reply fairness state data
may include a direction to the requesting agent to freeze the
transaction urgency (additional accumulation of transaction
urgency) for a given transaction request so as to avoid subse-
quent priority saturation. The retry transaction request may
include a priority upgrade requested flag identifying when the
previous assigned priority for that transaction request is lower
than its transaction urgency.

System for Processing Transaction Requests

Embodiments of the present invention also include a sys-
tem for processing transaction requests in a shared memory
multi-processor computer network. A request pre-processor
in a servicing agent receives a transaction request from a
requesting agent. The transaction request includes a request
priority associated with a transaction urgency level deter-

US 8,239,566 B2

3

mined by the requesting agent. The transaction request is
provided an assigned priority determined by the servicing
agent based on the request priority. A service processing
module compares the assigned priority to an existing service
level to determine whether to complete or reject the transac-
tion request, and generates a reply message to the requesting
agent. A fairness state logic within the service processing
module responds to a transaction request having an assigned
priority below the service level by rejecting the transaction
request, and includes reply fairness state data in the rejection
reply message.

In further specific embodiments, a contention-related sta-
tistics module maintains contention-related statistics con-
cerning outstanding transaction requests for each assigned
priority, and the existing service level may be determined
based on the contention-related statistics. The fairness state
logic may include in the reply fairness state data a retry delay
specification for delaying generation of a retry transaction
request for later performance of the rejected transaction
request. For example, the retry delay specification may reflect
a difference between the assigned priority of the transaction
request and the existing service level when the reply message
was generated. In addition or alternatively, the retry delay
specification may be shorter when the assigned priority of the
rejected transaction request is higher.

A specific embodiment may also include a registration
module for registering a transaction request associated with
the contention-related statistics, wherein the reply fairness
state data includes registration information to be echoed back
to the servicing agent in a subsequent retry transaction
request. The registration module may check the transaction
request for registration information from a previous transac-
tion request so as to avoid re-registering the transaction
request a second time. The registration module also may
periodically invalidate all previous transaction request regis-
trations and associated contention-related statistics so that
incoming registered transaction requests are subject to re-
registering regardless of prior registration state so as to pro-
vide resilient operation accounting for dropping of registered
transaction requests. Further, the registration module may
distinguish a transaction request registered prior to the cur-
rent registration period from a transaction request registered
during the current registration period, and the fairness state
logic may include in the reply fairness state data a registration
period flag that reflects the registration period of the transac-
tion request.

In specific embodiments, the transaction request may
include a do not register flag instructing the registration mod-
ule to not register the transaction request because the request-
ing agent might not retry the transaction request if rejected by
the servicing agent. The request pre-processor may assign the
assigned priority to be less than the request priority so as to
avoid priority saturation. The transaction urgency at the
requesting agent may be a function of age reflecting time
elapsed since initiating the original transaction request. The
fairness state logic may include in the reply fairness state data
a direction to the requesting agent to freeze accumulation of
the transaction urgency for a given transaction request so as to
avoid priority saturation. The fairness state logic may include
in the reply fairness state data a reply priority to be echoed in
a corresponding retry transaction request so that the servicing
agent is not required to maintain that information itself. The
retry transaction request may include a priority upgrade
requested flag identifying when the previous assigned prior-
ity for that transaction request is lower than its transaction
urgency.

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates operation of an embodiment of the
present invention.

FIG. 2 provides further detail regarding partitioning of
fairness-related functionality in embodiments of the present
invention.

FIG. 3 illustrates aspects of a transaction aging time as may
be used in various embodiments.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Definitions. As used in this description and the accompa-
nying claims, Appendix 1 at the end of the Detailed Descrip-
tion sets forth the meanings of the terms listed therein, unless
the context otherwise requires.

Embodiments of the present invention are directed to a
fairness protocol for shared memory multi-processor com-
puter networks. FIG. 1 illustrates operation in which a Ser-
vicing Agent 101 receives a transaction request over the net-
work from a Requesting Agent 102 (one of multiple such
Servicing Agents and transaction requests associated with
operation of the network). The initial transaction request is
for a service from the Servicing Agent 101 and includes an
associated request priority based on the initial transaction
urgency at the Requesting Agent 102, which in the first
instance may typically be set to 0. The Servicing Agent 101
then provides to the transaction request an assigned priority
that is based on the request priority in the incoming message
and other factors such as how busy it is and how many other
contending transaction requests it needs to address. Based on
the assigned priority that it assigns to the transaction request,
the Servicing Agent 101 determines whether to complete or
reject the request. If the requested action is performed, the
Servicing Agent 101 sends a completion reply message back
to the Requesting Agent 102. If the request is not performed,
the Servicing Agent 101 rejects the transaction request and
sends the Requesting Agent 102 a rejection message (e.g., a
NACK message) which includes reply fairness state data so
that Requesting Agent 102 can try again later.

For example, in one specific embodiment, the reply fair-
ness state data includes a reply priority and a retry delay
specification for rescheduling the transaction request. The
retry delay specification may specifically reflect a difference
between the reply priority and the service level existing at the
Servicing Agent 102 when the reply message is generated. In
a further such embodiment, the retry delay specification may
be shorter when the assigned priority is higher. Reply priority
may be provided by the Servicing Agent 101 in the reply
fairness state data to be echoed in a corresponding retry
transaction request so that the Servicing Agent 101 need not
track and maintain such information itself. In one specific
embodiment, a priority upgrade requested flag can be used in
a retry transaction request to identify when the reply priority
set by the Servicing Agent 101 is lower than the current
age-based transaction urgency of that transaction request
within the Requesting Agent 102. Moreover, the reply fair-
ness state data can be used as a mechanism for avoiding
priority saturation by suspending the priority aging process—
“priority freezing”—providing a guarantee of eventual for-
ward progress. [fthe Requesting Agent 102 determines that it
needs higher priority servicing (e.g., according to its transac-
tion urgency), it will assert a priority upgrade flag in a subse-
quent transaction request, which may or may not be granted
by the Service Agent depending on if a priority freeze is in
effect.

US 8,239,566 B2

5

This approach to fairness handling at the Servicing Agent
101 addresses a number of service issues related to system
performance and forward progress in the face of contention
for shared system resources. These issues include without
limitation starvation avoidance (forward progress), fairness
of service delivery, wasted or under utilized resources, and
collateral performance penalties on unrelated processes.
Only modest amounts of state and signaling are needed for the
Servicing Agent 101 and the Requesting Agent 102 to coor-
dinate fairness related behavior for transaction requests. In
addition, transaction urgency accumulation is age-related so
that the transaction urgency of a transaction request is a
function of time elapsed from the original transaction request.
Moreover, the service level does not retreat to a lower value if
the Servicing Agent 101 has registered transaction requests
still pending at an assigned priority corresponding to the
existing service level. Persistent service level tracking
reduces opportunities for mis-ordered servicing of contend-
ing transaction requests. Retry scheduling is improved
because processing of rejection reply messages at the
Requesting Agent 102 can be incrementally delayed (e.g., by
the scheduling delay specification) which reduces unproduc-
tive traffic associated with less urgent (ultimately rejected)
transaction request attempts, thereby facilitating the rapid
servicing of older contending transaction requests.

FIG. 2 shows partitioning of fairness-related functionality
where Requesting Agent 102 tracks an internal value of trans-
action urgency 201 which is initially used as the request
priority in an initial outgoing transaction request. Incoming
rejection replies are intercepted by retry scheduler 202 before
being delivered to request generation and reply processing
block 203. This delays generation of retry transaction
requests to the network and reduces congestion at Servicing
Agent 101 and in the network generally. The amount of delay
to be applied to a given retry action is specified in the rejection
reply message returned by Servicing Agent 101. Retry sched-
uling 202 can be thought of as basically a black box that
receives incoming rejection reply messages with a delay
specification, and forwards delayed rejection reply messages
after the required amount of delay has elapsed. An outgoing
retry transaction request message request from the generation
and reply processing block 203 echoes the assigned reply
priority provided by the rejection message. If the reply prior-
ity is less than the transaction urgency 201, then an upgrade
request flag may also be set.

AtServicing Agent 101, an incoming transaction request is
received by request pre-processing block 204, which pro-
vides to the transaction request an assigned priority deter-
mined based on the request priority and various other factors.
Service processing logic 207 compares the assigned priority
to the existing service level in the fairness-specific logic 205
that maintains service level or other fairness state information
(e.g., starvation control buffers (SCBs) discussed further
below) in order to determine whether to complete or reject the
transaction request. Incoming transaction requests that are
accepted for service are passed along by the service process-
ing logic 207 for servicing by the request resource. Transac-
tion requests having an assigned priority less than the service
level in the fairness-specific logic 205 are rejected. In addi-
tion, the fairness state is updated according to the information
in the transaction request message. Reply multiplexer 206
generates a reply message back to the Requesting Agent 102
indicating either that the transaction request was completed,
or that it was rejected and providing fairness state data for
retrying the transaction request.

When Requesting Agent 102 issues a transaction request
message, specific embodiments may insert various supple-

20

25

30

35

40

45

50

55

60

65

6

mental information into the message header, including infor-
mation related to rejection and rescheduling. Similarly, when
a reply message issues, auxiliary information may be taken
from the incoming transaction request message to be inserted
in the reply message by reply multiplexer 206. That informa-
tion may be used, for example, to update the service level
(state of the starvation control buffer, SCB) and to format the
fairness related content of the outgoing reply message head-
ers.

Requesting agent 102 may track the age of each of its
transaction requests. As shown in FIG. 3, a specific embodi-
ment may use a 4-bit transaction aging timer 301 which is
updated with each tick of a global (chip-wide) aging timebase
302. The aging timebase 302 for each transaction urgency
value 303 may be specified separately with different frequen-
cies (e.g., from 50 MHz down to 0.1 Hz). The transaction
urgency value 303 can increment to the next level as the
transaction aging timer 301 rolls over to begin the next aging
period. The aging timer 301 and transaction urgency value
303 may be specifically implemented as adjacent fields of a
7-bit counter 304. When an initial transaction request first
issues, it may be assigned a tracking resource of some sort,
which may include the transaction aging timer 301 and trans-
action urgency value 303. These may all be initially reset as
the Requesting Agent 102 first initiates messaging for that
transaction and an appropriately initialized request message
issues. From that point on, the aging timer 301 accumulates
age continuously.

Servicing Agent 102 attempts to provide fair access to its
resources in the face of heavy contention and so may imple-
ment at least one general access starvation control buffer
(SCB). In some cases (e.g., for servicing memory directed
requests), multiple serial access SCBs may be used to mini-
mize the collateral impact of contention for a given target
resource on transaction requests targeting other unrelated
resources (e.g., for different memory addresses). Serial
access SCBs can be implemented as an allocated pool of
shared resources, and an arbitration SCB may be useful to
manage fair sharing access to the pool of serial access SCBs.
Each SCB entry may maintain a registration count of regis-
tered transaction requests rejected for each service level
above zero. A preempt service flag may be associated with
each count indicating when requests at a lower assigned pri-
ority must be preemptively rejected. The preempt service flag
is set and clear according to the current value of the associated
registration count and preemption configuration registers In
addition, serial access SCBs may also include an “SCB-
allocated” flag for allocation management and an address tag
to identify the target to which it is allocated.

A set of programmable control and status registers (CSRs)
may be associated with the SCB structures which initialize
and tune various operation parameters such as:

Registration Color—used to distinguish between old
(stale) registrations and fresh ones. (Generally con-
trolled by hardware action).

Registration Count High and Low Preemption levels—
defines when to set and clear the preempt service flags.

Priority Freezing Point—defines a threshold of service
levels below which a priority freeze is applied.

Suspend Aging Threshold—defines a threshold below
which aging is suspended.

The notion of a service level is implicit in the use of preempt
service flags. For example, the service level may be defined to
be that associated with the highest priority preempt service
flag that is currently asserting. So if preempt service flags for

US 8,239,566 B2

7

priorities 2, 4, and 5 are currently asserting, then the service
level is at 5 and all requests at priority 4 and lower will be
rejected.
Regardless of SCB type, SCB related logic typically pro-
vides various services such as:
Tracks the number of contending transaction requests that
did not receive service at each assigned priority above O.

Identifies which arriving transaction requests will be pre-
emptively rejected for fairness and forward progress
related reasons

Controls the accumulation of assigned priority associated

with incoming transaction requests in order to avoid the
deleterious effects of priority saturation

Controls the retry rate of contending transaction requests

based on incoming assigned priority and current
assigned priority.

When an incoming transaction request arrives at Servicing
Agent 101, it is tested against various rejection criteria. For
example, there may be fairness related criteria which may
reject the request if the transaction request is not registered
and if at the time only registered transactions are being ser-
viced (because critical fairness related resources are fully
subscribed—congestion). Or the current service level may be
higher than the assigned priority of the current transaction
request. There may also be resource availability related cri-
teria, which can reject a transaction request when no allocat-
able servicing resource, transaction buffer, or similar is avail-
able or if the target end point is otherwise not available, for
example, is in a coherence protocol related (busy) state.

Servicing Agent 101 may take various specific fairness
related actions, including, for example, to register or de-
register a transaction request, upgrade the assigned priority of
a transaction request, freeze the assigned priority of a trans-
action request, or force a re-registration. An unregistered
transaction request is typically registered at the assigned pri-
ority that will be returned in the outgoing rejection reply; in
addition, a registration count associated with that assigned
priority will be incremented. A registration can be preempted
if the target registration count is maxed out or if new regis-
trations are disallowed due to congestion (SCB’s not avail-
able). Registration for a successfully serviced transaction
request is closed out and that transaction request is de-regis-
tered (the registration count associated with the serviced
transaction request priority is decremented).

The assigned priority for any transaction request (whether
ornotitis registered) can be upgraded by one level (e.g., in the
assigned priority of a rejection message) if the priority
upgrade flag was asserted in an incoming transaction request
message. An upgrade for a transaction request is denied when
a priority freeze is in effect. An upgrade for a registered
transaction request can also be disallowed if the registration
count of the target priority is maxed out. And an upgrade for
a registered transaction request may also need a de-registra-
tion action in which the registration count for the current
request priority is decremented. A priority freeze may be
asserted based on programmable service level values and
applied against individual transaction requests depending on
their priority, whether they are already registered or not, and
if so, what type of registration.

Fairness registration can ensure eventual service for a
transaction request. But registration may not be an absolute
requirement for gaining service. Under normal circumstances
of no contention, and even when there is some moderate
contention, an un-registered transaction request may gain
service simply if its assigned priority is high enough.

Without preempt service flags the assigned priority might
be based on a fixed threshold value of the registration counts.

20

25

30

35

40

45

50

55

60

65

8

For example, a threshold of 1 (an otherwise unlikely choice)
would mean that the assigned priority is the highest one for
which its registration count is non-zero. With preempt service
flags, a different threshold can be set for each individual
assigned priority, and a hysteresis effect can be added by
having different high and low preempt service flag thresholds.
In addition, preempt service flags may be useful for managing
new registrations—an unregistered transaction request may
be registered only if the preempt service flag at the target
registration priority is not asserted.

It is useful to consider situations where a retrying transac-
tion request is contending for a resource that is not the final
target endpoint, and thus it may subsequently have to contend
for service at one or more intermediate Servicing Agents (i.e.,
proxy agents). When it is initially serviced at a non-endpoint
agent, an incoming transaction request is essentially con-
verted into an outgoing request targeting a resource at a next
Servicing Agent in the chain. To continue the aging process
and thus sustain overall guarantees of forward progress, this
intermediate outgoing transaction request should therefore
carry the already accumulated assigned priority of the asso-
ciated incoming transaction request. The registration indica-
tion in the outgoing transaction request header should be
cleared initially so that the transaction request can be regis-
tered for appropriately urgent service at the next Servicing
Agent as necessary. Thus the aging process and the accumu-
lation of assigned priority can continue unabated to final
completion of the transaction request without resetting at the
intermediate steps along the way (in other words, adding does
not start all over again at each intermediate agent).

Requesting Agent 102 may ask for a priority upgrade
whenever an assigned priority is below the associated trans-
action urgency for a given transaction request. This may be
done by asserting the priority upgrade flag in the next retry
transaction request issued by Requesting Agent 102. Nor-
mally, when that transaction request is received by Servicing
Agent 101, it will increment the assigned priority it received
by one, and return that value as the assigned priority in the
subsequent rejection reply. However, the request for a priority
upgrade will be ignored at Servicing Agent 101 if a priority
freeze is in effect (e.g., based on current service levels) or if
the transaction request has been registered but the upgrade is
disallowed due to a saturated registration counter at the
upgraded assigned priority.

Two values may be specified via priority threshold CSRs.
One is the assigned priority threshold at which priority freez-
ing is in effect. The other is the assigned priority threshold at
which transaction aging is suspended. When the current
assigned priority is higher than a specified threshold value,
the behavior associated with that threshold is tentatively
enabled. The behavior (priority freeze or aging suspension)
may only actually be applied to transaction requests whose
incoming request assigned priority is at or below the current
assigned priority.

Re-registration can be forced by toggling the current reg-
istration color flag in a registration control CSR. This may
occur automatically as the current registration period (tracked
in the registration timer) expires. Subsequently, incoming
transaction requests registered in the old color must be re-
registered in the new color if they can not be immediately
serviced—the old registration is ignored.

Embodiments of the invention may be implemented in any
conventional computer programming language. For example,
preferred embodiments may be implemented in a procedural
programming language (e.g., “C”) or an object oriented pro-
gramming language (e.g., “C++”, Python). Alternative
embodiments of the invention may be implemented as pre-

US 8,239,566 B2

9

programmed hardware elements, other related components,
or as a combination of hardware and software components.

Embodiments can be implemented as a computer program
product for use with a computer system. Such implementa-
tion may include a series of computer instructions fixed either
on a tangible medium, such as a computer readable medium
(e.g., a diskette, CD-ROM, ROM, or fixed disk) or transmit-
table to a computer system, via a modem or other interface
device, such as a communications adapter connected to a
network over amedium. The medium may be either a tangible
medium (e.g., optical or analog communications lines) or a
medium implemented with wireless techniques (e.g., micro-
wave, infrared or other transmission techniques). The series
of computer instructions embodies all or part of the function-
ality previously described herein with respect to the system.
Those skilled in the art should appreciate that such computer
instructions can be written in a number of programming lan-
guages for use with many computer architectures or operating
systems. Furthermore, such instructions may be stored in any
memory device, such as semiconductor, magnetic, optical or
other memory devices, and may be transmitted using any
communications technology, such as optical, infrared, micro-
wave, or other transmission technologies. It is expected that
such a computer program product may be distributed as a
removable medium with accompanying printed or electronic
documentation (e.g., shrink wrapped software), preloaded
with a computer system (e.g., on system ROM or fixed disk),
or distributed from a server or electronic bulletin board over
the network (e.g., the Internet or World Wide Web). Of course,
some embodiments of the invention may be implemented as a
combination of both software (e.g., a computer program
product) and hardware. Still other embodiments of the inven-
tion are implemented as entirely hardware, or entirely soft-
ware (e.g., a computer program product).

Although various exemplary embodiments of the invention
have been disclosed, it should be apparent to those skilled in
the art that various changes and modifications can be made
which will achieve some of the advantages of the invention
without departing from the true scope of the invention.

APPENDIX 1

Service Completion Reply—A network message signaling
that a transaction request has been satisfied.

Service Rejection Reply—A network message signaling
that a transaction request has been rejected (usually a NACK
message).

Transaction Request—The overall network request/reply/
retry messaging activity involved in producing an initial Ser-
vice Completion Reply.

Requesting Agent—An entity that initiates transaction
requests

Request Resource—Dedicated state at the Requesting
Agent used to track the progress of a given transaction
request.

Servicing Agent—An entity that services transaction
requests.

Servicing Resource—Dedicated state at the Servicing
Agent used to track the progress of a given transaction
request.

Transaction Urgency—An age-based value representing
time elapsed since a transaction request issued at the Request-
ing Agent. For example, the Request Priority delivered in a
transaction request may be derived from the age-based Trans-
action Urgency.

Request Priority—A value determined at the Servicing
Agent representing the level of servicing priority assigned to

20

25

30

35

40

45

50

55

60

65

10

the associated transaction request. This may be derived from
but not necessarily equal to Transaction Urgency.

Reply Priority—A Servicing Agent dictates the next value
of the Request Priority by providing it in network NACK
messages as the Reply Priority.

Priority Upgrade—If the priority of a transaction request
corresponds to a higher priority than that returned in a NACK
message, the next request message for that transaction request
may carry an indication of that fact (an asserted Priority
Upgrade flag). The Servicing Agent will then adjust Regis-
tration Counts and resulting Reply Priority accordingly.

Service Starvation—Lack of forward progress due to con-
tinuous rejection of transaction requests.

Priority Saturation—The maximum possible priority
value. Once priority reaches this value for multiple contend-
ing transaction requests, no further distinction of priority
between those transaction requests is possible.

Sustained Saturation—If priority is allowed to accumulate
as contention for resources and network congestion rise, it
may be possible under certain circumstances to reach a state
where younger transaction requests reach priority saturation
at a rate that is equal to or exceeds the rate at which such
transaction requests can be serviced. In those cases, it is then
possible that some transaction requests will not receive ser-
vice before the Requesting Agent times out.

Priority Freeze—The temporary suspension of priority
upgrades. A means to avoid sustained priority saturation The
Servicing Agent simply returns an unmodified copy of the
Request Priority in the resulting NACK reply message when
a Priority Freeze is in effect.

Transaction Registration—A transaction request that can-
not be serviced immediately is “registered” at the Servicing
Agent according to its priority. That agent then takes steps to
ensure that a subsequent request retry will eventually gain
access. Note that registration is NOT a prerequisite for gain-
ing service. It is actually more a means to collect statistics
used to adjust various parameters of operation in order to
promote fairness and reduce the likelihood of starvation.
However, under extreme conditions when starvation is appar-
ent, transaction registration does provide an absolute guaran-
tee of eventual service.

Registration Count—The act of registering a transaction
request at the Servicing Agent involves incrementing a
counter at a value related to the priority carried in the request
message. Later, when the registered transaction request is
successfully serviced, that counter will be correspondingly
decremented.

Registration Type—When multiple types of contention are
individually managed via separate types of Starvation Con-
trol Buffers (SCBs), the Registration Type distinguishes
between them:

Not Registered at all.

Registered in an General Access SCB.

Registered in an Serial Access SCB.

Registered in an Arbitration SCB.

This value is supplied along with other registration indica-
tions in reply messages generated by the Servicing Agent and
subsequently copied into retry request messages by the
Requesting Agent.

Registration Color—There are two Registration Colors,
red and black. They provide the means to distinguish between
stale registrations and fresh registrations. A Servicing Agent
will periodically switch colors and re-register transaction
requests using the new registration color. A transaction
request registered in the non-current color is considered to be

US 8,239,566 B2

11

not registered at all. This adds a degree of robustness to the
UV registration paradigm in the face of lost or dropped mes-
sages.

Registration Period—The duration of time successive
alternations of the Registration Color at the Servicing Agent.
On the order of hundreds of milliseconds to multiple seconds.

Service Level—A value tracked at the Servicing Agent
representing the minimum priority that an incoming transac-
tion request must have in order to be considered for service.

Preempt service flag—Associated with a given Registra-
tion Count, a Preempt service flag asserts when the corre-
sponding count reaches a specified high threshold and de-
asserts when it drops back down to a separately specified low
threshold. Used for two distinct purposes:

Determining the current Service Level

Determining whether an unregistered transaction request

will be registered, and if so, at what priority.

Fairness Tracking Resource—Transaction registration
state and logic used to arbitrate between transaction requests
contending for the same servicing resources; e.g., Starvation
Control Buffers (SCBs).

General Contention for a Resource—General contention
for access where servicing resources are limited. Multiple
concurrent transaction requests may be serviced through
those resources at any point in time. Contention is managed
via a single General Access SCB.

Target Specific Contention for Serialized Access—Con-
tention related to isolating the effects of contention for access
to one target from unrelated accesses to other targets which
happen to funnel through a common point of access. Only one
access is active to that specific target at any point in time. In
general, contention is arbitrated on a per-address basis and
multiple Serial Access SCBs are made available to facilitate
the desired isolation. The Servicing Agent might reserve a
Servicing Resource for each currently allocated Serial Access
SCB so that transaction requests registered in a Serial Access
SCB are never rejected due to lack of Servicing Resources.

General Contention for Registration in a Serial Access
SCB—When apool of Serial Access SCBs is implemented at
the Servicing Agent, separate means are provided to arbitrate
fairly for access to those resources as well. When a transac-
tion request is rejected due to target specific contention, it
needs to be registered in a Serial Access SCB. If that is not
possible due to lack of allocatable SCBs or because of a freeze
on new Serial Access registrations, a rejected transaction
request will be instead registered in a separate, dedicated
Arbitration SCB. The Arbitration SCB is used to gain access
to the services provided by the Serial Access SCBs while a
Serial Access SCB provides an arbitration service to gain
access to a specific endpoint resource.

Priority and Urgency Propagation—When an incoming
transaction request message produces one or more outgoing
request messages, the priority of the incoming transaction
request must be propagated into the outgoing messages. This
ensures that all activity related to the eventual completion of
the original transaction request vies for prerequisite services
with an appropriate degree of urgency. Note that intermediate
agents that must propagate priority must also initiate a match-
ing aging process so that urgency accumulation and can con-
tinue unabated.

Scheduling Delay—The Servicing Agent will calculate an
amount of time that should elapse before the Requesting
Agent attempts to retry a rejected request. This value is sup-
plied to the Requesting Agent in the supplemental field of a
NACK reply message header.

Suspended Aging—An optional behavior allows the Ser-
vicing Agent to freeze not just Urgency Upgrades, but the

15

20

25

30

35

40

45

50

55

60

65

12

aging process itself This is accomplished via the Suspend
Aging flag set by the Servicing Agent in the NACK reply
supplemental field. The Requesting Agent updates its local
copy of this flag for a given transaction with each associated
NACK reply which is then used to gate assertion of the Aging
Timer time base input. The Servicing Agent will assert this
flag for any NACKed reply based on the current Service
Level, the Reply Priority of the NACK, and the Suspend
Aging Threshold CSR value.

What is claimed is:

1. A method of processing transaction requests in a shared
memory multi-processor computer network, the method
comprising:

receiving a transaction request at a servicing agent from a

requesting agent, the transaction request including a pri-
ority request associated with a transaction urgency
determined by the requesting agent;

providing to the transaction request an assigned priority

determined by the servicing agent based on the request
priority;

comparing the assigned priority to an existing service level

at the servicing agent to determine whether to complete
or reject the transaction request; and

generating a reply message from the servicing agent to the

requesting agent:

i. indicating whether the transaction request was com-

pleted or rejected, and

ii. providing reply fairness state data for rejected transac-

tion requests, wherein the reply fairness state data
includes a retry delay specification for delaying genera-
tion of a retry transaction request for later performance
of the rejected transaction request.

2. A method according to claim 1, further comprising:

maintaining contention-related statistics concerning out-

standing transaction requests for each assigned priority;
determining the service level based on the contention-re-
lated statistics; and

continuously updating the contention-related statistics as

transaction requests are completed or rejected in order to
dynamically adjust the service level.

3. A method according to claim 1, wherein the retry delay
specification reflects a difference between the assigned pri-
ority of the transaction request and the existing service level
when the reply message was generated.

4. A method according to claim 1, wherein the retry delay
specification is shorter when the assigned priority of the
rejected transaction request is higher.

5. A method according to claim 2, further comprising:

registering a transaction request associated with the con-

tention-related statistics; and

including registration information in the reply fairness

state data to be echoed back to the servicing agent in a
subsequent retry transaction request.

6. A method according to claim 5, wherein registering a
transaction request includes checking the transaction request
for registration information from a previous transaction
request so as to avoid re-registering the transaction request a
second time.

7. A method according to claim 6, further comprising:

periodically invalidating all previous transaction request

registrations and associated contention-related statistics
so that incoming registered transaction requests are sub-
ject to re-registering regardless of prior registration state
so as to provide resilient operation accounting for drop-
ping of registered transaction requests.

8. A method according to claim 7, wherein periodically
invalidating all previous transaction request registrations and

US 8,239,566 B2

13

associated contention-related statistics includes distinguish-
ing a transaction request registered prior to the current regis-
tration period from a transaction request registered during the
current registration period.

9. A method according to claim 8, wherein the reply fair-
ness state data includes a registration period flag that reflects
the registration period of the transaction request.

10. A method according to claim 5, wherein the transaction
request includes a do notregister flag instructing the servicing
agent to not register the transaction request because the
requesting agent might not retry the transaction request if
rejected by the servicing agent.

11. A method according to claim 1, wherein the assigned
priority may be assigned to be less than the request priority so
as to avoid priority saturation.

12. A method according to claim 1, wherein the transaction
urgency at the requesting agent is a function of age reflecting
time elapsed since initiating the original transaction request.

13. A method according to claim 12, wherein the reply
fairness state data includes a direction to the requesting agent
to freeze the transaction urgency for a given transaction
request so as to avoid subsequent priority saturation.

14. A method according to claim 1, wherein the reply
fairness state data includes a reply priority to be echoed in a
corresponding retry transaction request so that the serving
agent is not required to maintain that information itself.

15. A method according to claim 14, wherein the retry
transaction request includes a priority upgrade requested flag
identifying when the previous assigned priority for that trans-
action request is lower than its transaction urgency.

16. A system for processing transaction requests in a shared
memory multi-processor computer network, the system com-
prising:

a request pre-processor, comprising at least one physical

processor, in a servicing agent for:

1. receiving a transaction request from a requesting agent,
the transaction request including a request priority asso-
ciated with a transaction urgency determined by the
requesting agent, and

ii. providing to the transaction request an assigned priority
determined by the servicing agent based on the request
priority;

a service processing code for:

i. comparing the assigned priority to an existing service
level at the servicing agent to determine whether to
complete or reject the transaction request, and

il. generating a reply message to the requesting agent; and

a fairness state logic within the servicing processing code
for:

i. responding to a transaction request having an assigned
priority below the service level by rejecting the transac-
tion request, and

il. including reply fairness state data in the rejection reply
message, wherein the fairness state logic includes in the
reply fairness state data a retry delay specification for
delaying generation of a retry transaction request for
later performance of the rejected transaction request.

17. A system according to claim 16, further comprising:

acontention-related statistics code for maintaining conten-
tion-related statistics concerning outstanding transac-

20

25

30

35

40

45

50

60

14

tion requests for each assigned priority, wherein the
existing service level is determined based on the conten-
tion-related statistics.
18. A system according to claim 16, wherein the retry delay
specification reflects a difference between the assigned pri-
ority of the transaction request and the existing service level
when the reply message was generated.
19. A system according to claim 16, wherein the retry delay
specification is shorter when the assigned priority of the
rejected transaction request is higher.
20. A system according to claim 17, further comprising:
a registration code for registering a transaction request
associated with the contention-related statistics;

wherein the reply fairness state data includes registration
information to be echoed back to the servicing agent in
a subsequent retry transaction request.

21. A system according to claim 20, wherein the registra-
tion code further checks the transaction request for registra-
tion information from a previous transaction request so as to
avoid re-registering the transaction request a second time.

22. A system according to claim 21, wherein the registra-
tion code further periodically invalidates all previous trans-
action request registrations and associated contention-related
statistics so that incoming registered transaction requests are
subject to re-registering regardless of prior registration state
s0 as to provide resilient operation accounting for dropping of
registered transaction requests.

23. A system according to claim 22, wherein the registra-
tion code distinguishes a transaction request registered prior
to the current registration period from a transaction request
registered during the current registration period.

24. A system according to claim 23, wherein the fairness
state logic includes in the reply fairness state data a registra-
tion period flag that reflects the registration period of the
transaction request.

25. A system according to claim 20, wherein the transac-
tion request includes a do not register flag instructing the
registration code not to register the transaction request
because the requesting agent might not retry the transaction
request if rejected by the servicing agent.

26. A system according to claim 16, wherein the request
pre-processor may provide the assigned priority to be less
than the request priority so as to avoid priority saturation.

27. A system according to claim 16, wherein the transac-
tion urgency at the requesting agent is a function of age
reflecting time elapsed since initiating the original transaction
request.

28. A system according to claim 27, wherein the fairness
state logic includes in the reply fairness state data a direction
to the requesting agent to freeze the transaction urgency accu-
mulation for a given transaction request so as to avoid priority
saturation.

29. A system according to claim 16, wherein the fairness
state logic includes in the reply fairness state data a reply
priority to be echoed in a corresponding retry transaction
request so that the servicing agent is not required to maintain
that information itself.

30. A system according to claim 29, wherein the retry
transaction request includes a priority upgrade requested flag
identifying when the previous assigned priority for that trans-
action request is lower than its transaction urgency.

#* #* #* #* #*

