
US007440888B2

(12) United States Patent (10) Patent No.: US 7,440,888 B2
Chen et a]. (45) Date of Patent: Oct. 21, 2008

(54) METHODS, SYSTEMS AND COMPUTER 7,152,222 B2 * 12/2006 Kumhyr et al. 717/107
PROGRAM PRODUCTS FOR NATIONAL 2002/0165885 A1 11/2002 Kumhyr et al.
LANGUAGE SUPPORT USING A 2003/0004703 A1* 1/2003 Prabhakar et al. 704/8
MULTI-LANGUAGE PROPERTY FILE 2003/0023590 A1 1/2003 Atkln

2003/0079051 A1 * 4/2003 Moses et al. 709/328

(75) Inventors: Yen-Fu Chen, Austin, TX (US); John 2003/0110469 A1 6/2003 Jackson
W Dunsmoir Round Rock TX (Us) 2003/0l26559 Al 7/2003 Fuhrmann

‘ ’ ’ _ ’ 2003/0l82l03 Al 9/2003 Atkin

Rick A. Hamilton, II, Charlottesville, 2003/0187633 A1 10/2003 Fail-Weather
VA (U S); James W- Seaman, Falls 2004/0122659 A1* 6/2004 Hourihane et al. 704/9
Church, VA (US) 2005/0044065 A1 * 2/2005 McArdle 707/3

2005/0267733 A1 * l2/2005 Hueber et al. 704/2

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS

Core Java Technologies Tech Tips, May 6, 2003, pp. l-9, http://java.
(*) Notice: Subject to any disclaimer, the term of this sun.com/developer/TechTips/txtarchive/2003/May03iGlenM.txt.

patent is extended or adjusted under 35 htm1~ _ _ _

U_S_C_ 154(1)) by 798 days_ Kuhn, Markus, UTF-8 and Unicode FAQ for UII1X/ILIIIUX, Jun. 4,
1999, pp. l-33, http://WWW.cl.cam.ac.uk/~mgk25/un1code.htrnl.

. O’Conner, John, “Java Internationalization: Localization With
(21) Appl' NO" 10/933’633 ResourceBundles,” Oct. 1998, pp. l-6, WWW.java.sun.com/devel
(22) Filed sep 2 2004 oper/technical/Articles/intl/ResourceBundles/.

. . ,

* cited by examiner
(65) Prior Publication Data _

Primary ExamineriDavid R. Hudspeth
Us 2006/0047499 A1 Mar- 2, 2006 Assistant ExamineriMattheW J Sked

(51) I t Cl (74) Attorney, Agent, or FirmiSchmeiser, Olsen & Watts;
n ' ' John R. Pivnichn
G06F 17/28 (2006.01) y
G06F 9/45 (2006.01) (57) ABSTRACT

(52) US. Cl. 704/8; 717/136; 704/2 ' ~ ~ ~ ~

(58) Field of Classi?cation Search None Nanonél language 511191001T for an apphcanon 1S Pr9v1ded by
See application ?le for Complete Search history recording translations of a text string in corresponding differ

ent languages in a single property ?le so as to alloW display of
(56) References Cited the translations in the property ?le. One of the translations of

US. PATENT DOCUMENTS

5,963,155 A * 10/1999 Cheng et a1. 341/90

5,974,256 A 10/1999 Matthews et al.
6,400,287 B1 6/2002 Ehrman
6,490,547 B1 12/2002 Atkin et a1.

Create property
?le with text

translations in
different

languages

l
Execute

application with
particular
locale

l
Select

translation from
property ?le
based on
locale

Incorporate
selected

translation in
execution of
applloatlon

@

the text string recorded in the property ?le is selected for use
by an application based on a locale associated With the execu
tion of the application and the selected one of the translations
is used in the execution of the application.

10 Claims, 6 Drawing Sheets

110

US. Patent 0a. 21, 2008 Sheet 1 of6 US 7,440,888 B2

t/O Data
Ports

16

Display Processor Memory
3_4 E @

Input
Devices spjiker

3-2- _

Data Processing System
E

Fig. 1

US. Patent Oct. 21, 2008

Processor
38

Sheet 2 of6 US 7,440,888 B2

Language Mum
Independent language
Application property
Q Q

Resource
Bundle Converter Bund'e

Q 6_5

Application Programs Data
5A Q

Operating l/O Device
System Drivers
2 E Memory

E

Fig. 2

US. Patent Oct. 21, 2008 Sheet 3 0f 6

Create property
file with text

translations in
different

languages

i
Execute

application with
particular
locale

l
Select

translation from
property ?le
based on

locale

Incorporate
selected

translation in
execution of
application

Fig. 3

US 7,440,888 B2

US. Patent Oct. 21, 2008

(Start l

corresponding
to locale

Key with
abel found’7

More labels?

YES

Parse property
file for key with
next higher

label in
hierarchy

Sheet 4 0f 6 US 7,440,888 B2

v 200

Load property

" 21o

Parse property
?le for key with

label

230

220 /
Select

YEs——> translation with
key and label

240

250

/ 260

Select default
translation for

key
4
i

End

FIG. 4

US. Patent Oct. 21, 2008 Sheet 5 of6 US 7,440,888 B2

(Start l
300

v / Load property
?le

" 310

Determine
range of
character
values for
locale

320
v

Parse property
> ?le for entries .

with key / 340

Select
translation

for key?
360

NO / Y

Select default
translation for

key

End

FIG. 5

US. Patent Oct. 21, 2008 Sheet 6 of6 US 7,440,888 B2

400

Obtain property ?les for /
NLS ResourceBundle

l 410
Incorporate table of

property ?le names into
keys in property file to
provide updated keys

with labels

i 420
Record updated keys

with labels and
translations in common
property ?le as UTF-8

bytestreams

FIG. 6

US 7,440,888 B2
1

METHODS, SYSTEMS AND COMPUTER
PROGRAM PRODUCTS FOR NATIONAL

LANGUAGE SUPPORT USINGA
MULTI-LANGUAGE PROPERTY FILE

FIELD OF THE INVENTION

The invention relates to data processing in general and,
more particularly, to national language support of programs.

BACKGROUND OF THE INVENTION

One issue in the development of applications for intema
tional distribution is the ability to support different languages.
Such support is often referred to as National Language Sup
port or NLS. One technique that may reduce development
time for applications is to provide a language independent
program or template that is then combined With language
speci?c information to provide the application in a speci?c
language. Such a technique may reduce overall development
time but may provide its oWn problems.
JAVA® (JAVA® is a trademark of SUN Microsystems)

programs conventionally handle multi-language labels and
graphics in Web pages by maintaining property ?les in the
“name-value” format. Each label is given a name using ASCII
(readable text), and then is associated With the appropriate
translation based on a given property ?le. This technique
permits one set of programs to be Written in a language
independent or neutral format. The speci?c “Locale” (NLS
speci?er) is then used to select the correct property ?le via
modi?ers such as ResourceBundles.
As discussed above, one technique used to provide NLS in

JAVA® applications is the ResourceBundle. Resource
Bundles appeared in Web technology in approximately 1999
in JAVA® version 1.1 . At that time, NLS Was not fully under
stood by developers, and as such, this implementation lacked
very basic functionality. In particular, it should not be pos
sible to specify an “encoding” for the data in a Resource
Bundle. The rules of the JAVA® standard dictate that this
must be the default ISO-8859-1 encoding (Which actually
means that the data is treated as 8-bit bytes Without any
encoding at all). This technique is functional for single byte
Western European languages, but it may have draWbacks
When applied to double byte languages, or even some single
byte languages such as Arabic, HebreW, and Tamil, among
others.

In order to overcome this limitation, the JAVA® recom
mendation, (via SUN), for these languages is to use the Uni
code hexadecimal standard, Where every Unicode character is
represented by six bytes of the form “\uxxxx”. This data is
then translated using the JAVA® pre-compiler code Where it
is converted into 16 bit Unicode.
A potential drawback related to this method may result

from the conversion of the translated text into an unreadable
format. This conversion process Would normally need to be
accomplished in a development lab as part of the build pro
cess of an application, because those not speci?cally skilled
in the art may ?nd it dif?cult to decipher the coding. This
technique, as such, is very in?exible and may require signi?
cant time and expense, not to mention development delays, if
any changes are required in any of these translated labels.

ResourceBundles, hoWever, are property ?les, Which alloW
them to be “discovered” through the CLASSPATH variable
de?nition and are very easily read and rendered into the
appropriate form. Additionally, ResourceBundles have excel
lent techniques for selecting default ?les, Where the speci?ed
NLS property ?le does not exist, or cannot be found. In

20

25

30

35

40

45

50

55

60

65

2
particular, the ResourceBundles may use a hierarchical selec
tion process based on ?le name of the property ?les.

Extensible Markup Language @(ML) has been used as an
alternative to ResourceBundles. XML may have one major
advantage over ResourceBundles in that “encoding” can be
speci?ed for each XML ?le, usually as “UTF-8”. This is
reasonable and feasible as long as the editor in use under
stands that “UTF-8” (for example, UnicEdit) data can be seen
in the natural font and can be edited in the appropriate lan
guage, and then saved as “UTF-8” formatted data. This tech
nique can overcome the problems associated With Resource
Bundles, Where the data, typically, must be rendered into an
unreadable “\uxxxx” format.
XML may, hoWever, have disadvantages in comparison to

ResourceBundles in that the format may be dif?cult for trans
lators to Work With. ResourceBundles have a very easy, intui
tive, format. XML also may require a signi?cantly greater
amount of JAVA® code to read, parse, and handle errors When
compared to ResourceBundles. There also is, typically, no
“Locale” and “default” implementation for selecting the cor
rect property ?le. Also, there is, typically, no automatic Way to
?nd an XML ?le through the CLASSPATH variable setting.

SUMMARY OF THE INVENTION

Certain embodiments of the present invention provide
methods, systems and computer program products for pro
viding national language support for an application, by
recording translations of a text string in corresponding differ
ent languages in a single property ?le so as to alloW display of
the translations in the property ?le. One of the translations of
the text string recorded in the property ?le is selected for use
by an application based on a locale associated With the execu
tion of the application and the selected one of the translations
is used in the execution of the application.

In further embodiments of the present invention, the trans
lations are recorded as UTF-8 bytestreams. Furthermore, the
application program may be a JAVA® program. Some
embodiments of the present invention further include con
verting the selected one of the translations recorded as a
UTF-8 bytestream to an ISO 8859-1 encoded string for use in
the execution of the application. In additional embodiments
of the present invention, the property ?le is edited With the
translations displayed in the native language.

In still further embodiments of the present invention, a key
value is associated With each translation. The key values
re?ect a locale associated With the language of the translation.
Selecting one of the translations may be provided by selecting
one of the translations having a key value that corresponds to
the locale associated With the execution of the application.
Selecting one of the translations could be provided by deter
mining locales associated With translations in different lan
guages based on the characters used in the translation and
selecting the translation based on the determined locale of the
translation.

In additional embodiments of the present invention, trans
lations in a plurality of property ?les are converted into a
single multi-language property ?le to provide the property
?le. The translations in the property ?les may be associated
With a corresponding key and the ?le names of the property
?les may include locale information. In such a case, convert
ing the translations may include appending the locale infor
mation from the ?le names onto key values in the correspond
ing property ?le to provide updated key values and appending
the translations and updated key values into the single multi
language property ?le. Alternatively, Where the translations in
the property ?les are associated With a corresponding key

US 7,440,888 B2
3

converting translations may include appending the key and
translations in the plurality of property ?les into the single
multi-language property ?le.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
suitable for use according to some embodiments of the
present invention.

FIG. 2 is a more detailed block diagram of a system for
providing national language support according to some
embodiments of the present invention.

FIG. 3 is a is a ?oWchart illustrating operations for provid
ing national language support according to some embodi
ments of the present invention.

FIG. 4 is a is a ?oWchart illustrating operations for provid
ing national language support according to further embodi
ments of the present invention.

FIG. 5 is a is a ?oWchart illustrating operations for provid
ing national language support according to further embodi
ments of the present invention.

FIG. 6 is a is a ?oWchart illustrating operations for provid
ing national language support according to further embodi
ments of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The invention noW Will be described more fully hereinafter
With reference to the accompanying draWings, in Which illus
trative embodiments of the invention are shoWn. This inven
tion may, hoWever, be embodied in many different forms and
should not be construed as limited to the embodiments set
forth herein; rather, these embodiments are provided so that
this disclosure Will be thorough and complete, and Will fully
convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout. As used
herein, the term “and/or” includes any and all combinations
of one or more of the associated listed items.

The terminology used herein is for the purpose of describ
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
Well, unless the context clearly indicates otherWise. It Will be
further understood that the terms “comprises” and/ or “com
prising,” When used in this speci?cation, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/ or groups thereof.

Unless otherWise de?ned, all terms (including technical
and scienti?c terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
Which this invention belongs. It Will be further understood
that terms, such as those de?ned in commonly used dictio
naries, should be interpreted as having a meaning that is
consistent With their meaning in the context of the relevant art
and Will not be interpreted in an idealiZed or overly formal
sense unless expressly so de?ned herein.
As Will be appreciated by one of skill in the art, the inven

tion may be embodied as methods, data processing systems,
and/ or computer program products. Accordingly, the present
invention may take the form of an entirely hardWare embodi
ment, an entirely softWare embodiment or an embodiment
combining softWare and hardWare aspects. Furthermore, the
present invention may take the form of a computer program
product on a computer-usable storage medium having com

20

25

30

35

40

45

50

55

60

65

4
puter-usable program code embodied in the medium. Any
suitable computer readable medium may be utiliZed includ
ing hard disks, CD-ROMs, optical storage devices, a trans
mission media such as those supporting the Internet or an
intranet, or magnetic storage devices.
Computer program code for carrying out operations of the

present invention may be Written in an object oriented pro
gramming language such as JAVA®, Smalltalk or C++. HoW
ever, the computer program code for carrying out operations
of the present invention may also be Written in conventional
procedural programming languages, such as the “C” pro
gramming language or in a visually oriented programming
environment, such as VisualBasic.
The program code may execute entirely on the user’ s com

puter, partly on the user’ s computer, as a stand-alone softWare
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer. In the latter
scenario, the remote computer may be connected to the user’ s
computer through a local area netWork (LAN) or a Wide area
netWork (WAN), or the connection may be made to an exter
nal computer (for example, through the Internet using an
Internet Service Provider).
The invention is described in part beloW With reference to

?oWchart illustrations and/or block diagrams of methods,
systems and/or computer program products according to
embodiments of the invention. It Will be understood that each
block of the illustrations, and combinations of blocks, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, Which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts speci?ed in the block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instruction means Which implement the func
tion/ act speci?ed in the block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions Which execute on the computer or other pro gram
mable apparatus provide steps for implementing the func
tions/acts speci?ed in the block or blocks.

Embodiments of the present invention Will noW be dis
cussed With respect to FIGS. 1 through 6.As described herein,
some embodiments of the present invention provide national
language support by providing a property ?le that includes
translations of text in different languages and that may be
displayed for editing in the natural font of the various lan
guages. In particular embodiments of the present invention,
the translations are recorded in the property ?le as UTF-8
bytestreams. The property ?le may be parsed based on a
locale of the data processing system executing the application
using the property ?le and the particular translation selected
based on the locale. The translations may be converted upon
extraction from the property ?le to the particular format
required by the application. By providing the translations in a
format that may be displayed in the natural font of the trans
lation language, the property ?les may be edited Without

US 7,440,888 B2
5

speci?c knowledge of the coding format in Which the trans
lations are stored and/ or utilized.

Referring noW to FIG. 1, a block diagram of data process
ing systems suitable for use in systems according to some
embodiments of the present invention Will be discussed. As
illustrated in FIG. 1, an exemplary embodiment of a data
processing system 30 typically includes input device(s) 32
such as a keyboard or keypad, a display 34, and a memory 36
that communicate With a processor 38. The data processing
system 30 may further include a speaker 44, and an I/ O data
port(s) 46 that also communicate With the processor 38. The
U0 data ports 46 can be used to transfer information betWeen
the data processing system 30 and another computer system
or a netWork. These components may be conventional com
ponents such as those used in many conventional data pro
cessing systems, Which may be con?gured to operate as
described herein.

FIG. 2 is a block diagram of data processing systems that
illustrate systems, methods, and/ or computer program prod
ucts in accordance With embodiments of the present inven
tion. The processor 38 communicates With the memory 36 via
an address/ data bus 48. The processor 38 can be any commer
cially available or custom processor, such as a microproces
sor. The memory 36 is representative of the overall hierarchy
of memory devices containing the softWare and data used to
implement the functionality of the data processing system 30.
The memory 36 can include, but is not limited to, the folloW
ing types of devices: cache, ROM, PROM, EPROM,
EEPROM, ?ash memory, SRAM and/or DRAM.
As shoWn in FIG. 2, the memory 36 may include several

categories of softWare and data used in the data processing
system 30: the operating system 52; the application programs
54; the input/output (I/O) device drivers 58; and the data 67.
As Will be appreciated by those of skill in the art, the operating
system 52 may be any operating system suitable for use With
a data processing system, such as OS/2, AIX or System390
from International Business Machines Corporation, Armonk,
N.Y., WindoWs95, WindoWs98, WindoWs2000 or Win
doWsXP from Microsoft Corporation, Redmond, Wash.,
Unix or Linux. The U0 device drivers 58 typically include
softWare routines accessed through the operating system 52
by the application programs 54 to communicate With devices
such as the I/O data port(s) 46 and certain memory 36 com
ponents. The application programs 54 are illustrative of the
programs that implement the various features of the data
processing system 30. Finally, the data 67 represents the static
and dynamic data used by the application programs 54, the
operating system 52, the I/O device drivers 58, and other
softWare programs that may reside in the memory 36.
As is further seen in FIG. 2, the application programs 54

may include at least one language independent application
62. As used herein, the term language independent applica
tion refers to any application that may provide a language
neutral representation and controls an executable sequence of
operations of a data processing system, either alone or in
conjunction With other programs, and that is combined With
language speci?c data to provide a language speci?c instance
of the application. Such applications may include, for
example, Web pages, servlets, applets or the like. In particular
embodiments of the present invention, the language indepen
dent application is a JAVA® application. The language inde
pendent application 62 uses the multi-language property ?le
to utiliZe different translations of text based on a locale asso
ciated With the execution of the language independent appli
cation 62. Thus, for example, the operating system 52 may
provide locale information that is accessible by the language
independent application 62. Techniques for determining a

20

25

30

35

40

45

50

55

60

65

6
locale associated With an executing instance of an application
program are Well knoWn to those of skill in the art and,
therefore, Will not be described in further detail herein.
Optionally a bundle converter application 64 may also be
provided. The bundle converter application 64 may convert
multiple property ?les With different language translations
into a single multi-language property ?le as described in
further detail herein.
The data portion 67 of memory 36, as shoWn in the embodi

ments illustrated in FIG. 2, may include multi-language prop
er‘ty data 63, for example, by loading a multi-language prop
er‘ty ?le into memory. Data from a resource bundle 65 that
includes multiple property ?les may also be loaded into
memory for use by the bundle converter application 64.

While embodiments of the present invention have been
illustrated in FIG. 2 With reference to a particular division
betWeen application programs, data and the like, the present
invention should not be construed as limited to the con?gu
ration of FIG. 2 but is intended to encompass any con?gura
tion capable of carrying out the operations described herein.

FIG. 3 illustrates operations for providing native language
support utiliZing a multi-language property ?le according to
some embodiments of the present invention. As seen in FIG.
3, a property ?le is created With text translations in different
languages (block 100). In certain embodiments of the present
invention, the text translations are recorded in the property
?le as bytestreams of a universal character set that is display
able in a natural font of the language represented by the
translated text, such as UTF-8 bytestreams. By recording the
translations in the property ?le in a character set that is dis
playable in the natural font of the language represented by the
translated text, the property ?le may be updated based on the
display of the translations in their natural font. Thus, speci?c
knoWledge of the digital representations of the characters
need not be knoWn to update the translations as they are
displayed in the natural font of the language of the transla
tions. In particular embodiments of the present invention, the
multi-language property ?le is a property ?le of a Resource
Bundle.

In certain embodiments of the present invention, the trans
lations for a key are recorded as UTF-8 byte streams Within a
property ?le of a ResourceBundle, rather than in the “\uxxxx”
format. Doing so may preserve the advantages of Resource
Bundles over XML as described above. Furthermore, the
property ?le may be easily handled, for example, by transla
tion centers, in their respective native languages. The trans
lation center can add the native language to the property ?le,
and then save the ?le as a UTF-8 ?le. The translation center
can then edit and change this ?le at any time, and there may be
no “build” process required to reformat and incorporate the
?les. Furthermore, the property ?le may be uncluttered by
XML statements and, therefore, may be easier to use and
maintain.
As is further illustrated in FIG. 3, a language independent

application, such as the language independent application 62,
is executed on a data processing system With a particular
locale associated With the execution of the application (block
1 10). The data from the property ?le is loaded, for example, to
provide the multi-language property data 63, and a translation
from the translations of different languages appropriate to the
locale is automatically selected from the multi-language
property data (block 120). The selected translation is auto
matically-incorporated into the execution of the application
to provide a locale speci?c executing instance of the applica
tion (block 130).

In some embodiments of the present invention, When the
translation text is read from memory it may need to be trans

US 7,440,888 B2
7

lated from the character set in Which it is stored in the property
?le to the format that is used by the application. For example,
if the translation text is recorded in the property ?le as UTF-8
and the application is a JAVA® application, the translation
text may need to be translated from UTF-8 to the 16 bit
Unicode format. Such a translation may, for example, be
accomplished by incorporating a translation statement into
the application When the multi-language property data is
accessed.
When the property ?le is a property ?le of a Resource

Bundle, ResourceBundle data values are held as bytes With
out encoding. When these values are read into memory,
JAVA® Will place them into Strings, in Which each byte
occupies the loWer 8 bits of a 16 bit Unicode character. If,
hoWever, the byte stream is UTF-8 format, then for any char
acter beyond the 7 bitASCII range, it Will take tWo or three 16
bit Unicode characters in memory to represent each UTF-8
character. To change the encoding of such a String into the
correct format, the String may be converted using the folloW
ing statement:

String neWSLringIneW String(oldString.getBytes
(“15088594”), “UTF8”);

If it is possible that the string may contain any data other than
7 bit ASCII, Whenever a String is retrieved from a Resource
Bundle, this statement may be executed in order to convert the
String. In some embodiments of the present invention, a test
could be performed to determine if the String contains data
other than 7 bit ASCII before executing the conversion state
ment to change the encoding of the String.

In some embodiments of the present invention, the trans
lations may be stored in the property ?le in the keyq/alue
format. In such a case, the key values may correspond to
labels in the language independent application and the value
may be used to replace the label When the application is
executed. The techniques used to select a speci?c string of
translation text for use by the application may depend on the
format of the keyq/alue information in the property ?le. For
example, in some embodiments, the key may be augmented
by a label corresponding to the locale associated With the
translation text. Such an augmentation may take the form of a
label similar to that utiliZed to distinguish betWeen NLS prop
erty ?les of a ResourceBundle. Thus, for example, entries in
the property ?le may take the form of key_locale. For
example, a key for a United States, English locale select
button may be “select_us_en” Whereas a key for the same
select button in Canadian French may be “select_fr_ca.”
Thus, the keys in the property ?le may be augmented to re?ect
the locale associated With the translations.

FIG. 4 illustrates operations for selecting a translation
value Where the key values include labels that indicate the
locale associated With the translation associated With the key
as described above. As illustrated in FIG. 4, the multi-lan
guage property ?le is loaded into memory (block 200) and
parsed for a key value pair With the desired key and a label
corresponding to the locale of the executing program (block
210). If an entry With the desired key and label are found
(block 220), the corresponding value is selected as the trans
lation for use by the application (block 230). If an entry With
the desired key and label are not found (block 220), it is
determined if additional keys With labels exist in the property
?le (block 240). For example, different versions of the same
key may have different locale labels associated With them in
a hierarchical manner. Thus, if the label “en_us” is not
present, the property ?le may contain a version of the key With
only the label “en” or a version of the key With no label. If
such additional keys With labels are present (block 240), the

20

25

30

35

40

45

50

55

60

65

8
property ?le is parsed to determine if a key With a next higher
label in the hierarchy is present (block 250). If such a key is
found (block 220), the corresponding value is selected as the
translation for use by the application (block 230). If such a
key is not found (block 220), the operations of blocks 240 and
250 are repeated until there are no more candidate keys With
labels for evaluation or until a key With a label in the hierarchy
is located. If no such key is located and there are no more
candidate keys With labels (block 240), a default translation
for the key may be selected for use by the application (block
260). The default translation may be a key With no label.

In the example provided above, the select key may have
four entries in the property ?le. The entries may include a
“select” entry, a “select_en” entry, a “select_en_us” entry and
a “select_en_uk” entry. If the locale of the user is the United
States and the language is English, the value corresponding to
the “select_en_us” entry Will be selected. HoWever, if the
locale is SWeden and the language is English, the property ?le
Would be parsed for an entry “select_en_se.” Upon failing to
locate such an entry, the property ?le Would be parsed for the
next higher entry in the hierarchy Which Would be
“select_en.” Since this entry exists, the value for “select_en”
Would be selected. Finally, if the locale indicates Israel and
the language is HebreW, the property ?le Would the parsed for
a “select” key With the label for HebreW and Israel and then
for HebreW and fail to locate such entries. Thus, the value
corresponding to the “select” entry With no label Would be
utiliZed as the default.
By incorporating the labels indicating the locale inforrna

tion into the keys of the property ?le, the information con
ventionally provided by the ?le names of different property
?les in a ResourceBundle may be incorporated into a single
?le. Furthermore, by using UTF-8 as the character set for
recording the key value pairs in the property ?le, the property
?le may be readily displayed and/or edited With the transla
tions appearing in their natural font.

In further embodiments of the present invention, the prop
erty ?le provides the different translations for text associated
With a key utiliZing the same key Without a label. Thus, for
example, the different translations for the text to be used With
the “select” key Will all be recorded as “select?ranslation.” In
such a case, the characters used in the translation portion of
the key value pair may be evaluated to determine the language
and the particular pair selected based on such a determination.
FIG. 5 is a ?owchart illustrating operations for such a format
of the property ?le according to some embodiments of the
present invention.
As illustrated in FIG. 5, the multi-language property ?le is

loaded into memory (block 300) and a range or list of char
acter values associated With the locale of the executing appli
cation is determined (block 310). In particular embodiments
of the present invention, the range or list of characters is the
range or list of characters in UTF-8 encoding that are utiliZed
by the language associated With the locale. Thus, for example,
the range of encoded values of Chinese characters in UTF-8
may be determined if the locale of the executing application
indicates that the language to be used is Chinese.
The data from the loaded property ?le is parsed to locate

entries that have a desired key value (block 320) and the value
of the translation is evaluated to determine if the characters in
the translation correspond to the range or list associated With
the locale (block 330). If the characters do correspond (block
330), the translation is selected for use by the application
(block 340). Optionally, the selected translation may be
cached into memory for subsequent use so that the parsing of
the loaded property ?le may be avoided if the translation is
subsequently used by the application. Such a caching of the

US 7,440,888 B2

results of the parsing may improve performance. The cached
translation data may, optionally, be stored in a portable for
mat, such as a name-value pair or XML, so that an adminis
trator of the multi-language property ?le and/or application
can con?gure the data for reuse.

If the characters do not correspond to the range or list
associated With the locale (block 330), it is determined if there
are more entries for the desired key value (block 330). If so,
then operations continue at block 320. If not, then a default
translation is selected for use by the application (block 360).
For example, if after evaluating all translations for a key value
none match the desired language, the English translation
could be used as the default.

FIG. 6 is a ?owchart illustrating operations for conversion
of an existing ResourceBundle having a plurality of property
?les to a single multi-language property ?le according to
some embodiments of the present invention. Such operations
may, for example, be carried out by the bundle converter
application 64. As seen in FIG. 6, the property ?les for a NLS
ResourceBundle are obtained (block 400) and the locale label
portion of the ?le names are incorporated into the keys in the
property ?les to provide updated key values (block 410). For
example, if the ?le name of a property ?le is “buttons_en_us.
property” then the key values in the property ?le Would have
the “en_us” portion of the ?le name appended to them. If a
key value in the property ?le is “select,” then the updated key
value Would be “select_en_us.” The updated key values and
translations are recorded in a single property ?le as UTF-8
bytestreams (block 420). The translations may then be
accessed as described above With reference to FIGS. 3 and 4.

Alternatively, if the format of translations discussed With
reference to FIG. 5 is utilized, the multiple property ?les of a
ResourceBundle may be combined into a single multi-lan
guage property ?le by appending the contents of each prop
erty ?le into a single ?le and saving the ?le in UTF-8 format.
In either case, the single multi-language property ?le may be
managed and updated in the natural font of the languages of
the translations as described above. Thus, in some embodi
ments of the present invention, existing ResourceBundles
may be utiliZed to develop the single multi-language property
?le.
Many alterations and modi?cations may be made by those

having ordinary skill in the art, given the bene?t of present
disclosure, Without departing from the spirit and scope of the
invention. Therefore, it must be understood that the illustrated
embodiments have been set forth only for the purposes of
example, and that it should not be taken as limiting the inven
tion as de?ned by the folloWing claims. The folloWing claims
are, therefore, to be read to include not only the combination
of elements Which are literally set forth but all equivalent
elements for performing substantially the same function in
substantially the same Way to obtain substantially the same
result. The claims are thus to be understood to include What is
speci?cally illustrated and described above, What is concep
tually equivalent, and also What incorporates the essential
idea of the invention.

The invention claimed is:
1. A method of providing national language support for an

application, said method being performed by execution of
softWare in a data processing system, said method compris
mg:

generating a multi-language property ?le by processing
each individual property ?le of a plurality of individual
property ?les, Wherein each individual property ?le
comprises a ?le name comprising a label appended to a
class and further comprises ?le content comprising a key
value and a translated text pertaining to the label,

20

25

30

35

40

45

50

55

60

65

10
Wherein the key value is a member of the class, Wherein
said processing each individual property ?le comprises
generating a translation and recording the generated
translation in the multi-language property ?le, Wherein
the generated translation comprises the translated text
and a key comprising the label appended to the key
value, Wherein the label is null, consists of a language
identi?er, or consists of the language identi?er and a
locale identi?er, and Wherein the translated text of each
said translation is formatted in a character set that is
displayable in a natural font of a language represented
by the translated text;

ascertaining, from an operating system of the data process
ing system, a language identi?er and a locale identi?er,
Wherein execution of a language independent applica
tion is con?gured to be performed in a locale identi?ed
by the ascertained locale identi?er and to display text in
accordance With a ?rst key value and in a language
identi?ed by the ascertained language identi?er;

executing the application in the locale identi?ed by the
ascertained locale identi?er;

during said executing the application, selecting from the
multi-language property ?le a translation Whose label
comprises a key value that matches the ?rst key value
and Whose label further comprises the ascertained lan
guage identi?er and the ascertained locale identi?er of
the executing application or Whose label comprises the
ascertained language identi?er but not the ascertained
locale identi?er of the executing application or Whose
label is null;

during said executing the application, displaying the trans
lated text of the selected translation in the language
identi?ed by the ascertained language identi?er.

2. The method of claim 1, Wherein the label of the selected
translation comprises the ascertained language identi?er and
the ascertained locale identi?er.

3. The method of claim 2, Wherein the class pertaining to
the selected translation is buttons, Wherein the key value is
select and pertains to a select button that is a member of the
class of buttons, Wherein the language identi?ed by the ascer
tained language identi?er is English, and Wherein the locale
identi?ed by the ascertained locale identi?er is the United
States.

4. The method of claim 1, Wherein the method determines
that no translation in the multi-language property ?le includes
a label that comprises the ascertained language identi?er and
the ascertained locale identi?er, and Wherein the label of the
selected translation comprises the ascertained language iden
ti?er but not the ascertained locale identi?er.

5. The method of claim 4, Wherein the class pertaining to
the selected translation is buttons, Wherein the key value is
select and pertains to a select button that is a member of the
class of buttons, Wherein the language identi?ed by the ascer
tained language identi?er is English, and Wherein the locale
identi?ed by the ascertained locale identi?er is SWeden.

6. The method of claim 1, Wherein the method determines
that no translation in the multi-language property ?le includes
a label that comprises the ascertained language identi?er or
the ascertained locale, and Wherein the label of the selected
translation is null.

7. The method of claim 6, Wherein the class pertaining to
the selected translation is buttons, Wherein the key value is
select and pertains to a select button that is a member of the
class of buttons, Wherein the language identi?ed by the ascer
tained language identi?er is HebreW, and Wherein the locale
identi?ed by the ascertained locale identi?er is the Israel.

US 7,440,888 B2
11

8. The method of claim 1, wherein said recording com
prises recording the generated translation in the multi-lan
guage property ?le as a UTF-8 bytestream, and Wherein the
method further comprises converting the translated text of the
selected translation from the UTF-8 bytestream to an ISO
8859-1 encoded string foruse during said executing the appli
cation.

9. A method of providing national language support for an
application, said method being performed by execution of
softWare in a data processing system, said method compris
mg:

generating a multi-language property ?le by processing
each individual property ?le of a plurality of individual
property ?les, Wherein each individual property ?le
comprises a ?le name and further comprises ?le content
comprising a key value and a translated text, Wherein the
key value is a member of a class, Wherein said process
ing each individual property ?le comprises generating a
translation and recording the generated translation in the
multi-language property ?le, Wherein the generated
translation comprises the translated text and a key com
prising a keyWord appended to the key value, and
Wherein the translated text of each said translation is
formatted in a character set that is displayable in a natu
ral font of a language represented by the translated text;

ascertaining, from an operating system of the data process
ing system, a locale identi?er and a list of characters of

20

25

12
a language associated With a locale identi?ed by the
ascertained locale identi?er, Wherein execution of a lan
guage independent application is con?gured to be per
formed in the locale and to display text in accordance
With a ?rst key value and in the language associated With
the locale;

executing the application in the locale;
during said executing the application, selecting from the

multi-language property ?le a translation Whose label
comprises a key value that matches the ?rst key value
and subsequently determining in response to the key
Word in the selected translation that the characters in the
translated text in the selected translation are Within the
ascertained list of characters of the language associated
With the locale;

during said executing the application, displaying the trans
lated text of the selected translation in the language
associated With the locale.

10. The method of claim 9, Wherein said recording com
prises recording the generated translation in the multi-lan
guage property ?le as a UTF-8 bytestream, and Wherein the
method further comprises converting the translated text of the
selected translation from the UTF-8 bytestream to an ISO
8859-1 encoded string foruse during said executing the appli
cation.

