

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
26 February 2009 (26.02.2009)

PCT

(10) International Publication Number
WO 2009/024644 A1

(51) International Patent Classification:

B21B 37/44 (2006.01) **B21B 37/74** (2006.01)
B21B 45/02 (2006.01)

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/FI2008/050394

(22) International Filing Date: 27 June 2008 (27.06.2008)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

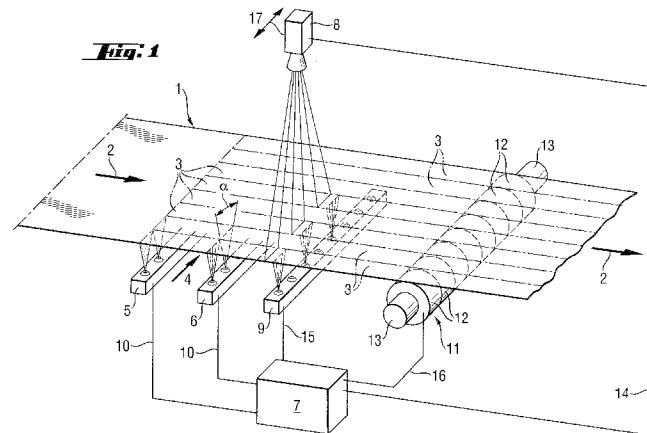
20070622 17 August 2007 (17.08.2007) FI

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **SÖDERLUND, Stephan** [SE/SE]; Ståltappargatan 8, S-64431 Torshälla (SE).

(74) Agent: **OUTOKUMPU OYJ, LEGAL AFFAIRS AND IPR**; P.O. Box 27, FI-02201 Espoo (FI).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report

(54) Title: METHOD AND EQUIPMENT OF FLATNESS CONTROL IN COOLING A STAINLESS STEEL STRIP

(57) **Abstract:** The invention relates to a method and equipment for controlling flatness of a stainless steel strip in connection with cooling after annealing in a finishing line. The strip (1) is first in the direction of the strip movement (2) cooled feeding at least one cooling medium through at least one group of feeding devices (5, 6) located transversally to the direction of the strip movement for the whole width of the strip (1), the amount of the cooling medium being adjusted utilizing the recorded and predetermined data (7) of desired temperature of the strip for flatness, the temperature of the strip is then determined (8) and after the temperature determination a further step of cooling is carried out feeding at least one cooling medium through at least one group of feeding devices (9) located transversally to the direction of the strip movement (2), when the determined value of temperature is different from the predetermined value of temperature, before the flatness is controlled using a control device (11) containing a plurality of flatness control units (12) and locating transversally to the direction of the strip movement (2).

WO 2009/024644 A1

METHOD AND EQUIPMENT FOR FLATNESS CONTROL IN COOLING A STAINLESS STEEL STRIP

The present invention relates to a method and an equipment to control flatness 5 in connection with cooling after annealing in a finishing line of a stainless steel strip.

When producing a thin metal strip, such as a thin stainless steel strip, the material for the strip is first hot-rolled to a thickness of 3 mm and then cold-10 rolled in order to further reduce the thickness. The cold rolling is carried out in several passes through one cold-rolling mill or in several subsequent cold-rolling mills. Cold rolling increases the mechanical strength of the stainless steel, particularly austenitic stainless steel, which mechanical strength is itself desirable for many applications. However, the strips also become practically 15 impossible to work, e.g. to bend, stamp, emboss. It is therefore to anneal the strips upon completion of the cold-rolling process, by heating the strips to a temperature above the recrystallization temperature of the steel, i.e. to a temperature above 1050 °C. The strip is then cooled in a cooling box. When heating the strip in the annealing furnace, oxides form on the sides of the strip, 20 partially in the form of oxide scale. The cooled strip is descaled for instance in a shot-blasting machine and then pickled in a pickling bath. After pickling the terminating cold rolling is then achieved as skin-pass rolling. The strip from skin-pass rolling can be used for instance in welding tube manufacturing. Alternatively, the strip from skin-pass rolling can further be treated in an 25 annealing furnace in order to achieve the individual and desired properties for use of the strip in many applications.

When treating the strip in separate stages the flatness of the strip shall control in order to have a good quality for the strip product. The EP patent application 30 1153673 relates to a metal plate flatness controlling method and device by preventing waviness from occurring at the edge portions of a plate or sheet when it is cooled to the room temperature after completing hot rolling. The

method controls the flatness of the metal sheet or plate by homogenizing the surface temperature distribution of the metal sheet or plate through measuring the surface temperatures of the metal sheet or plate at the edge portions and the centre portion across its width between two rolling stands of a tandem 5 finishing mill or at the entry to and/or exit from a reversing finishing mill or after completing hot rolling or after hot levelling and the cooling the metal sheet or plate after completing the finishing rolling. The object of the EP patent application 1153673 is to lead heat onto the surface of the metal sheet or plate in order to maintain a uniform temperature crosswise to the metal sheet or plate 10 before lowering of the temperature during rolling.

The JP patent application 2002-045907 describes a method and a device for controlling flatness of a metal sheet. The surface temperature of the metal sheet is measured between finishing mills of a hot tandem mill or on the outlet of a 15 tandem mill as well as the residual stress of thermal stress, which is generated at the normal temperature, is estimated based on the surface temperature and the residual stress imparted in the width direction with the finishing mill is controlled so that wave shapes are not generated by that residual stress. The object of the JP patent application 2002-045907 is to achieve a flat metal sheet 20 before lowering of the temperature during rolling.

The method and the device described in the JP patent application 2002-045908 is different from the methods and devices of the EP patent application 1153673 and JP patent application 2002-045907 described above that the object of this 25 JP patent application 2002-045908 is to straighten the unflatness, followed from the previous process steps, during hot rolling of thick plates or sheets made of iron, aluminium or titanium using as a cooling medium only water.

The flatness control based on the temperature measurement described in the 30 above mentioned prior art publications, JP patent applications 2002-045907 and 2002-045908 as well as the EP patent application 1153673, relates to the methods to keep the surface temperature distribution of the material before to

be rolled in finishing rolling, such as skin-pass rolling, stable in order that a good and uniform rolling result for the flatness is achieved.

The object of the present invention is to create an improved method and equipment in order to control flatness for a thin metal strip through determining the temperature of a thin metal strip during cooling when the thin metal strip is annealed in a finishing line. The essential features of the present invention are enlisted in the appended claims.

- 10 In accordance with the present invention a hot thin stainless steel strip from the finishing annealing treatment is conducted through the cooling area, the temperature determination area and the flatness control. The cooling area contains at least two groups of feeding devices for the cooling medium or media, such as nozzles, which are located in an essentially transversal position
- 15 to the direction of the strip movement so that the cooling effect of one group is extended essentially in the whole area of the strip width. The temperature determination area contains a temperature determination device, which is advantageously located above the stainless steel strip. The temperature determination device is also located so that at least one group of the nozzles is
- 20 located after the temperature determination device in the direction of the strip movement. The flatness control contains a device, which controls the flatness in the separate areas in the transversal direction of the strip to the direction of the strip movement. The flatness control device is located after the cooling area in the direction of the strip movement and the flatness control device is further
- 25 located advantageously beneath the strip.

The feeding devices for the cooling medium or media, the temperature determination device and the flatness control device are electrically connected with a central processing unit, such as a computer, which controls the operation of the cooling and flatness control of the invention. The central processing unit also records the data received from the temperature determination device and the flatness control device. The central processing unit utilizes this

predetermined and recorded data in the operation control of the feeding devices for the cooling medium or media in the cooling area.

The nozzles, which are used for feeding cooling medium or media to the 5 stainless steel strip in accordance with the invention, are mechanically connected to the source of the cooling medium or to the sources of the cooling media. At least one group of the nozzles located in an essentially transversal position to the direction of the strip movement is located beneath the strip to be cooled. The cooling medium is advantageously water, which is fed onto the strip 10 through the nozzles located beneath the strip. However, the cooling medium is partly also gas, inert gas like nitrogen or argon, and gas is fed onto the strip at least through the nozzles located beyond the strip.

The flatness control according to the invention is carried out using a roll-type 15 control device. This roll-type control device contains a rotatable shaft and the flatness control units are contiguously mounted around the shaft so that the flatness control units are extended at least in the whole area of the strip width. The width of each flatness control unit in the transversal direction of the strip to the direction of the strip movement is preferably essentially the same. The 20 flatness control is divided into zones, which widths represent the widths of the flatness control units. The flatness control units rotate within the rotatable shaft so that the flatness control units have a continuous mechanical contact with the strip.

25 The temperature determination device is advantageously a thermoscanner, which is installed movable transversally to the direction of the strip movement and which essentially continuously scans the surface of the strip in order to determine the surface temperature of the stainless steel strip. The thermoscanner operates so that the thermoscanner determines the surface 30 temperature of the strip in zones in the transversal direction of the strip to the direction of the strip movement. The widths of the zones for the temperature

determination are essentially similar in widths to the zones of the flatness control.

The groups of nozzles in an essentially transversal position to the direction of
5 the strip movement and used for feeding the cooling medium or media onto the surface of the stainless steel strip are located in the width to the strip so that each flatness control zone is provided with one nozzle, and one group of nozzles covers the whole width of the strip. The nozzle is designed so that each nozzle forms an essentially wedge-shaped shower of the cooling medium or
10 media onto that zone whereto the nozzle is directed. Thus each nozzle in one group covers with the cooling medium essentially only one zone on the strip.

When the method and equipment of the invention is in the operation, the hot strip is first precooled in the cooling area wherein by means of a plurality of
15 groups of nozzles inert gas is blasted onto the surface of the strip. In the precooling area at least one group of nozzles is advantageously installed for blasting water as cooling medium on the surface of the strip to be cooled. Then the thermosscanner determines the temperature in separate zones of the strip and the value of the temperature determination in each zone is compared with
20 the data recorded in the central processing unit for the flatness of the strip.

When the value of the temperature is essentially different from the predetermined desired value of flatness, the strip is further cooled blasting water through at least one group of nozzles onto the surface of the strip before the flatness control. The value of the flatness control is recorded in the central
25 processing unit and the data is used for adjusting the nozzles at least in the precooling area in order to achieve the desired temperature for the prospective flatness of the whole width of the strip.

The method and equipment of the invention is particularly suitable for the strip
30 which thickness is below 1 millimeter. When desired flatness is achieved within the invention, the speed of the strip in the finishing line is increased and therefore the capacity of the finishing line is also greater.

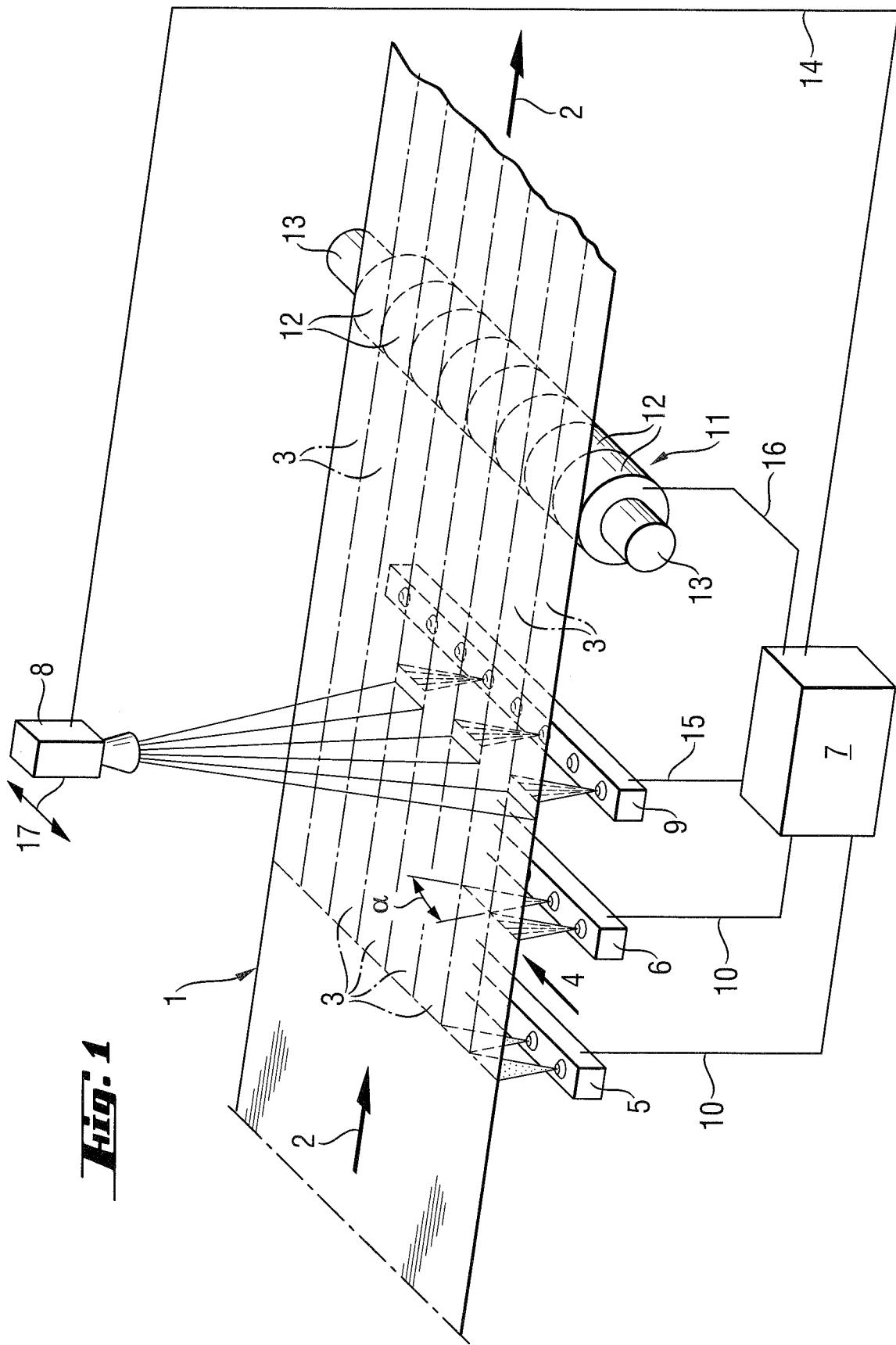
The present invention is described in more details in the following referring to the drawings wherein

Fig. 1 illustrates one preferred embodiment of the invention in schematical manner as a beyond view in lancing position,
5

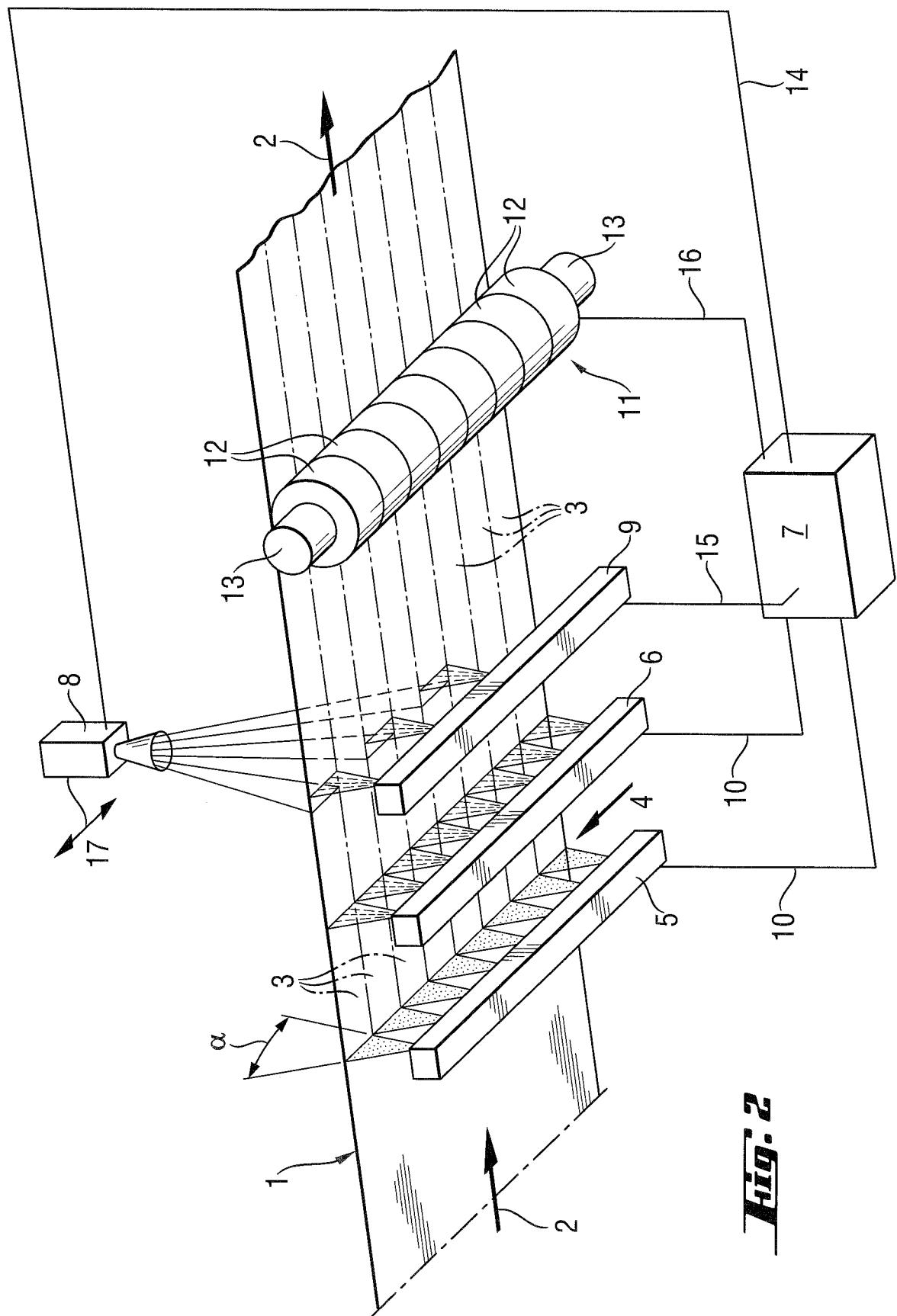
Fig. 2 illustrates the embodiment of Fig. 1 in schematical manner seen in glancing underarm position.

In accordance with Figs. 1 - 2 the hot strip 1 to be cooled is moving to the 10 direction, which is illustrated by the arrow 2. The strip 1 is by an illustration manner divided into zones 3. The strip 1 goes first through a precooling area 4, which contains groups of nozzles 5 and 6. The nozzles 5 and 6 are mechanically connected with sources of cooling media (not illustrated), and the groups nozzles 5 and 6 are in individual manner, nozzle by nozzle, electrically 15 connected 10 to a central processing unit, a computer 7. The groups of nozzles 5 and 6 are located in a transversal position to the movement direction 2 of the strip 1 in such a way that cooling medium is blasted through one nozzle 5 and 6 in the group to one zone 3 of the strip 1. The nozzles 5 and 6 are constructed so that the cooling media forms a wedge-shaped blast as illustrated in the 20 drawings. The nozzles 5 and 6 are located to the strip 1 so that each nozzle 5 and 6 has the peak angle (α) for the wedge-shaped blast between 20 and 30 degrees. The cooling medium fed through nozzles 5 is gas and fed through nozzles 6 the cooling medium is water. The amount of cooling media is adjusted 25 for each separate nozzle 5 and 6 utilizing the predetermined values recorded in the computer 7.

After moving through the precooling area 4 the temperature of the separate zones 3 of the strip 1 is determined with a thermosscanner 8, which is electrically connected 14 with the computer 7. The determined temperature values from the 30 separate zones 3 are recorded into the computer 7, and these new determined temperature values are compared with the predetermined and desired temperature values in each separate zone 3 in the computer 7. When the


determined and predetermined desired values of the temperature are different from each other, the group of nozzles 9 having a nozzle for each zone 3, located in a transversal position and after the thermosscanner 8 installed movable transversally shown by the arrow 17 to the movement direction 2 of the 5 strip 1, is utilized to even the differences in the temperature values. The group of nozzles 9 is electrically connected 15 with the computer 7 so that each nozzle 9 is adjusted in individual manner, nozzle by nozzle, to blast water as cooling medium onto the strip 1, when the blast is necessary because of the difference between the predetermined and determined temperature values. The 10 strip 1 is further moved to the flatness control 11. The flatness of the strip 1 is determined utilizing flatness control units 12, which are installed around a rotatable shaft 13 of the flatness control 11. The flatness control units 12 are unit by unit electrically connected 16 with the computer 7 and the flatness control values determined by each unit 12 are recorded in the computer 7. The 15 flatness control units 12 have the same width as the zones 3 which are illustrated in longitudinal direction to the strip 1.

CLAIMS


1. Method for controlling flatness of a stainless steel strip in connection with cooling after annealing in a finishing line, **characterized** in that the strip (1) is first in the direction of the strip movement (2) cooled feeding at least one cooling medium through at least one group of feeding devices (5,6) located transversally to the direction of the strip movement for the whole width of the strip (1), the amount of the cooling medium being adjusted utilizing the recorded and predetermined data (7) of desired temperature of the strip for flatness, the temperature of the strip is then determined (8) and after the temperature determination a further step of cooling is carried out feeding at least one cooling medium through at least one group of feeding devices (9) located transversally to the direction of the strip movement (2), when the determined value of temperature is different from the predetermined value of temperature, before the flatness is controlled using a control device (11) containing a plurality of flatness control units (12) and locating transversally to the direction of the strip movement (2).
2. Method according to the claim 1, **characterized** in that the temperature is determined utilizing a thermosscanner (8), which is movable transversally (17) to the direction of the strip movement (2), and using the thermosscanner (8) the temperature is determined in longitudinal zones (3) of the strip and which zones (3) are defined by the width of the flatness control units (12).
3. Method according to the claims 1 or 2, **characterized** in that the group of feeding devices (5,6,9) for the cooling medium are individually adjusted in amounts of cooling medium using the predetermined and respectively determined data.
4. Method according to the claims 1, 2 or 3, **characterized** in that the cooling medium is wedge-shaped blasted through the nozzles (5,6,9) onto the strip.

5. Method according to the claim 4, **characterized** in that the peak angle (α) for the wedge-shaped blasting for the groups of nozzles (5,6,9) is between 20 and 30 degrees.
- 5 6. Equipment for controlling flatness of a stainless steel strip in connection with cooling after annealing in a finishing line, **characterized** in that by means of the flatness control units (12) of the flatness control device (11) the width of the strip (1) is defined in longitudinal zones (3) in utilization for determining the temperature (8) of the strip and in utilization for locating the feeding devices 10 (5,6,9) for the cooling media in the cooling areas before and after the temperature determination (8).
7. Equipment according to the claim 6, **characterized** in that the feeding devices (5,6,9) for the cooling media are located in the whole width of the strip 15 (1) transversally to the direction of the strip movement (2).
8. Equipment according to the claim 6 or 7, **characterized** in that at least one group of feeding devices (9) is located after the temperature determination.
- 20 9. Equipment according to the claim 6, 7 or 8, **characterized** in that at least the feeding devices (6,9) for using as cooling medium water are located beneath the strip (1).
10. Equipment according to any of the claims 6 - 9, **characterized** in that the 25 thermoscanner (8) is utilized for the temperature determination.
11. Equipment according to any of the claims 6 - 10, **characterized** in that the feeding devices for cooling media (5,6,9), the device (8) for the temperature determination and the flatness control units (12) are electrically connected 30 (10,14,15,16) with a central processing unit (7).

1 / 2

2 / 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI2008/050394

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8: B21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

FI, SE, NO, DK

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4392367 A (BALD WILFRIED) 12 July 1983 (12.07.1983), abstract; column 2, line 18 – column 3, line 56; column 4, line 5 – column 6, line 45; Figure 3	1 - 11
A	US 5212975 A (GINZBURG VLADIMIR B) 25 May 1993 (25.05.1993)	1 - 11
A	US 4596615 A (MATSUZAKI KATSUSHIGE et al.) 24 June 1986 (24.06.1986)	1 - 11
A	JP 2003293030 A (NIPPON STEEL CORP) 15 October 2003 (15.10.2003)	1 - 11
A	EP 1153673 A1 (NIPPON STEEL CORP et al.) 14 November 2001 (14.11.2001)	1 - 11
A	JP 2001137943 A (NIPPON STEEL CORP et al.) 22 May 2001 (22.05.2001)	1 - 11
A	JP 2002045907 A (NITTETSU PLANT DESIGNING CORP et al.) 12 February 2002 (12.02.2002)	1 - 11

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 19 September 2008 (19.09.2008)	Date of mailing of the international search report 08 October 2008 (08.10.2008)
Name and mailing address of the ISA/FI National Board of Patents and Registration of Finland P.O. Box 1160, FI-00101 HELSINKI, Finland Facsimile No. +358 9 6939 5328	Authorized officer Teppo Fält Telephone No. +358 9 6939 500

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI2008/050394

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2002045908 A (NITTETSU PLANT DESIGNING CORP et al.) 12 February 2002 (12.02.2002)	1 - 11

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No. PCT/FI2008/050394
--

Patent document cited in search report	Publication date	Patent family members(s)	Publication date
US 4392367 A	12/07/1983	FR 2460727 A1 GB 2051641 A JP 56056706 A IT 1150025 B DE 2927769 A1	30/01/1981 21/01/1981 18/05/1981 10/12/1986 05/02/1981
US 5212975 A	25/05/1993	MX 9206095 A1 JP 6198314 A EP 0542640 A1 CA 2081230 A1	01/08/1993 19/07/1994 19/05/1993 25/04/1993
US 4596615 A	24/06/1986	ZA 8501254 A EP 0153688 A1 JP 60174833 A	30/10/1985 04/09/1985 09/09/1985
JP 2003293030 A	15/10/2003	None	
EP 1153673 A1	14/11/2001	US 6615633 B1 MX PA01007250 A WO 0136122 A1 CN 1336853 A AU 1414301 A AU 760833B B2 JP 2001239312 A JP 2001137943 A	09/09/2003 06/06/2003 25/05/2001 20/02/2002 30/05/2001 22/05/2003 04/09/2001 22/05/2001
JP 2001137943 A	22/05/2001	US 6615633 B1 MX PA01007250 A WO 0136122 A1 EP 1153673 A1 CN 1336853 A AU 1414301 A AU 760833B B2	09/09/2003 06/06/2003 25/05/2001 14/11/2001 20/02/2002 30/05/2001 22/05/2003
JP 2002045907 A	12/02/2002	None	

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/FI2008/050394

Patent document cited in search report	Publication date	Patent family members(s)	Publication date
JP 2002045908 A	12/02/2002	None	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI2008/050394

CLASSIFICATION OF SUBJECT MATTER

Int.Cl.

B21B 37/44 (2006.01)

B21B 45/02 (2006.01)

B21B 37/74 (2006.01)