
(19) United States
US 2002O154645A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0154645 A1
Hu et al. (43) Pub. Date: Oct. 24, 2002

(54) SYSTEM FOR BYPASSING ASERVER TO
ACHIEVE HIGHER THROUGHPUT
BETWEEN DATA NETWORKAND DATA
STORAGE SYSTEM

(57) ABSTRACT

A networked system is described in which the majority of
data bypass the server(s). This design improves the end-to
end performance of network access by achieving higher

(76) Inventors: Lee Chuan Hu, Yorba Linda, CA (US); throughput between the network and Storage System,
Jordi Ros, Irvine, CA (US); Calvin improving reliability of the System, yet retaining the Secu
Shen, Irvine, CA (US); Roger Thorpe, rity, flexibility, and Services that a Server-based System
Irvine, CA (US); Wei Kang Tsai, provides. The apparatus that provides this improvement
Irvine, CA (US) consists of a network interface, Server computer interface,

C d Add and Storage interface. It also has a Switching element and a
orrespondence CSS high-layer protocol decoding and control unit. Incoming
SERIES OLSON & BEAR LLP traffic (either from the network or storage System) is decoded
FOURTEENTH FLOOR and compared against a routing table. If there is a matching
IRVINE EN 91.614 (US entry, it will be routed, according to the information to the

9 (US) network, the Storage interface, or Sent to the Server for
further processing (default). The routing table entries are set

(21) Appl. No.: 10/172,853 up by the Server based on the nature of the applications when
ppl. No.: 9 an application or user request initially comes in. Subse

22) Filled: ... 13, 2002 quently, barring any changes or errors, there will be no data
(22) File Jun. 13, exchange between the server and the device (although, a

Related U.S. Application Data control message may still flow between them). There may
also be a Speed matching function between the network and

(63) Continuation of application No. 09/631,849, filed on Storage, load balancing function for Servers, and flow control
Aug. 3, 2000. Continuation of application No. for priority and QoS purposes. Because the majority of data
09/501,189, filed on Feb. 10, 2000. traffic will bypass the bus and the operating system (OS) of

the server(s), the reliability and throughput can also be
Publication Classification Significantly improved. Therefore, for a given capacity of a

Server, much more data traffic can be handled. Certain
(51) Int. Cl. .. H04L 12/28 improvements concerning one particular embodiment of the
(52) U.S. Cl. .. 370/401; 370/412 invention are also disclosed.

--T-N IIIT-S IN I.-- tcp?ip y- Http FS a v

--- --

f
Network - Data Menory & storage

------ ---

y
st

A Top-Level Logical Diagram for the Data-Driven Multi-Processor Pipelined
Model

Patent Application Publication Oct. 24, 2002 Sheet 1 of 14 US 2002/0154645 A1

Figure 1 - A Top-Level logical Diagram for the Data-Driven Multi-Processor Pipelined
Model

Patent Application Publication Oct. 24, 2002 Sheet 2 of 14 US 2002/0154645 A1

PAYLoAdsUFFers

Figure 2 - A Top-Level Hardware Diagram for the Data-Driven Multi-Processor Pipelined
Model

Patent Application Publication Oct. 24, 2002 Sheet 3 of 14 US 2002/0154645 A1

(to & from)
Network

SCS Oisk

- - - - - - -- as as a m -- a- - - - se -- a-- r - - - - - - - a

Packet CBSocket FSRequest Buffer Cache
Descriptor (706) (708– ES (711) - - - - -

(703) tBlock
- tFS

(709) : DD(712)

TwP
Board

SCS

DD(713) :
- - thp L

-- - (707) i -----
xFS
(710) Block

(704) : DD(714)

Ethernet : - Tri- c. - - - - -
!------' -------' --------------i

-

PC Bus to access Host

Host for
non-HTP
traffic 718

Virtual Disk
(719)

OS SCS
DD (720)

arry far
- - - - - - - - - -

TCPIP
(723)

t-protocol

HTTP Application
(727) (724)

Server
t

Figure 3 - Software Structure for the Preferred Embodiment for the Data-Driven Multi
Processor Pipelined Model

Patent Application Publication Oct. 24, 2002 Sheet 4 of 14 US 2002/0154645 A1

tSCS MODUL

Host for non-HTTP
raffic

(812)
TCB x Oueue (843)

(841)
Oueue X Queue Y

(844)

DRVER

(803)

NiC Rx Queue (801)

NETWORK

Figure 4 - The Data Queues and Processes in the Preferred Embodiment of the Data
Driven Multi-Processor Pipelined Model.

Patent Application Publication Oct. 24, 2002 Sheet 5 of 14 US 2002/0154645 A1

client TWIP hOSt

Figure 5 - The Traffic Detour To Host For Method 2 For File System Consistency Between the
Bypass Board and the Host.

Patent Application Publication Oct. 24, 2002 Sheet 6 of 14 US 2002/0154645 A1

buffer cache - allocates cache
page for a block #

9biggk: Buffer bigf

Figure 6 - Buffer Cache relation with File System and FS Device Driver

Patent Application Publication Oct. 24, 2002 Sheet 7 of 14 US 2002/0154645 A1

File Sytem

Retx layer Application

Figure 7 - TCP Retransmission Stack

Patent Application Publication Oct. 24, 2002 Sheet 8 of 14 US 2002/0154645 A1

3-way network server bypass device

routing control
(CU) 100

switching element Storage A
(SE) 10 (or SAN) 10

Figure 3 Top i.evei Function Diagrari

Patent Application Publication Oct. 24, 2002 Sheet 9 of 14 US 2002/0154645 A1

Decoding/control/routing
(CU) 205

Switching
201

Conversion
22

Memory pool and
management 260

Control unit
230

Storage (or
SAN) interface

250
Seryer interface

240

prow - C - - - - - - - - Y - - - Figure y diutri-ji CiC Diagi a

Patent Application Publication Oct. 24, 2002 Sheet 10 of 14 US 2002/0154645 A1

Ethcret Interface
310

y

Ethernet packet
decoding 3ll

IP? TCP decoding
32

http header parsing f
decoding33

Switching control
34

Ethcrnet
Conversion 320

TCP/IP Conversion
32

Adding http header
Awarh 322

Control unit
300

Buffer and Buffer
Management 301

SCSI Enterface
350

3-way Switching Element
303 Router Control

316

Set yer PC
interface 340

Figure 0. An Example of Ethernet, SCS1 and PCI Interfaces for http Applications

Patent Application Publication Oct. 24, 2002 Sheet 11 of 14 US 2002/0154645 A1

Ethernet decoding 410

IP/TCP decoding 412

http header decoding 414

send to storage?
4 if

Yes

to storage interface
440

No

server process (AAA) 48

Storage-bound?
A2)

server process the data
450 - N

Start of thread?
A72

Yes

Setup RT on the device 424

proccss the request 426

storage data fetch 428

server waiting for "completion” 430

Figure il Traffic Flow from Network to Storage and Server

Patent Application Publication Oct. 24, 2002 Sheet 12 of 14 US 2002/0154645 A1

Traffic from Storage

Yes

server control?
SO

No scnd to server 540

network traffic No

(per RT) 512

"normal" server process 530 Yes

Addhttp header 514

TCP/IP Conversion 56

end-of-response?
58

Yes

send Ethernet Interface 520

signal server "end of thread”524

Figure 2 Traffic Flow from Storage to Network and Server

Patent Application Publication Oct. 24, 2002 Sheet 13 of 14 US 2002/0154645 A1

... Tcr ad - a has a hill payload

Figure 3 Information interested in a Packet

Expanded Routing Table (ERT)

SrcID Dest D Session D : Outgoing PottID EEEEEEEEEE
Al B N2 Non-real-time 3 1

2 local

segrpent size (x base)

Figure 4 Example of Expanded Routing Table

Patent Application Publication Oct. 24, 2002 Sheet 14 of 14 US 2002/0154645 A1

user request81 a

decoding/parsing,812

server process da3 fetching frere
184 storageS)6

authorized?&S

for Yard dista to network
interists&2O

Figure 15: An Example of Concurrently Pipelined
Network User Request for web Access

US 2002/0154645 A1

SYSTEM FOR BYPASSING ASERVER TO
ACHIEVE HIGHER THROUGHPUT BETWEEN
DATA NETWORKAND DATA STORAGE SYSTEM

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention relates to computer net
works, client/server based computing, and data storage (or
Storage network). More particularly, this invention relates to
network management, performance enhancement and reli
ability improvement for network data access through Serv
CS.

0003 2. Prior Art
0004. The following definitions will be useful in discuss
ing the prior art in this field, and how the present invention
overcomes the limitations of the prior art:

0005) “Server": a computer system that controls
data acceSS and data flow.

0006 “Server-oriented”: Refers to data that requires
Significant computation or processing, that usually is
carried out by a server CPU. The examples are
network user login processes going through autho
rization, authentication and accounting (AAA).

0007 “Storage-oriented: Simple storage access
Such as disk read and/or write is considered Storage
oriented. Most operations are data fetching and
transport without the involvement of CPU. OPEG
and MPEG file transport are examples of storage
oriented data.

0008. In the current server-based Internet infrastructure,
for an end user to access data from a remote website, the
following Sequence of events will occur: First, the request
packets from the user host have to travel to the remote
network access point via the wide area network, through the
network gateway at the remote web system, and then (after
authorization) to a server in the web system. Second, the
Server Sends a command to the Storage device for the data,
the requested data travels from the device back to the Server,
and traverses the reverse path back to the user host. In this
end-to-end Set-up, the Server is situated between the data
Sources and the user and is often the limiting element of the
entire data access operation. Such a configuration has caused
Servers to become a major bottleneck between the clients (or
network end users) and their requested data. Both data and
control traffic must pass through the Servers: the request and
control traffic must travel to the servers and then to the
Storage devices. The requested data must then return to the
server before they are forwarded through the network to the
clients.

0009 Most network systems are constructed with this
architecture, with Server clustering and load-balanced Server
farms being the two most common variations. The main
advantages of current Systems are their flexibility and Secu
rity, since they allow the servers to control all the traffic
flows. However, this architecture also comes with a number
of disadvantages: Server System bus contention (in many
cases, a PCI bus), server OS inefficiency (specifically
including unreliable and costly interrupt handling), and
multiple data copying. Each of these causes different prob
lems.

Oct. 24, 2002

0010 Server system bus contention causes two problems
for networks. Since each peripheral component must con
tend for the bus usage without any guarantee of bandwidth
latency and time of usage, the user data throughput varies,
and the latency for data transfer cannot be bounded.
0011. The server OS inefficiency puts a heavy toil on the
network throughput. In particular, an interrupt causes two
context Switching operations on a Server. Context Switching
is an OS process in which the operating System Suspends its
current activity, Saves the information required to resume the
activity later and Shifts to execute a new process. Once the
new process is completed or Suspended, a Second context
Switching occurs during which the OS recovers its previous
State and resumes processing. Each context Switch repre
sents an undesirable loss of effective CPU utilization for the
task and network throughput. For example, a Server handles
thousands of requests and data Switches at high Speed.
Further, heavy loading and extensive context-Switching can
cause a Server to crash. A Small loSS of data can cause TCP
to retransmit, and retransmissions will cause more interrupts
which in turn may cause more OS crashes. The OS interrupt
induced Stability problem is very acute in a web hosting
system where millions of hits can be received within a short
period of time.
0012 Multiple data copying is a problem (also known as
“double copy') for normal server operations. According to
the current architecture, data received from the Storage (or
network) have to be copied to the host memory before they
are forwarded to the network (or storage). Depending on the
design of the storage/network interface and the OS, data
could be copied more than two times between their reception
and departure at the Server, despite the fact that the Server
CPU does not perform many meaningful functions other
than verifying data integrity. Multiple data-copying problem
represents a very wasteful usage of the CPU resources.
When this is coupled with the OS inefficiency, it also
represents a significant degradation of QoS (Quality of
Service) for the data transfer.
0013 The current solutions to the above-mentioned prob
lems have involved two different approaches: improving the
network performance and improving the Storage perfor

CC.

0014 From the storage approach, SAN (Storage Area
Network) and NAS (Network Attached Storage) represent
large current efforts. Another Solution is to replace the Server
bus with a serial I/O architecture (the InfiniBand architec
ture, which is under development).
0015. An NAS is a storage device with an added thin
network layer So the Storage can be connected to a network
directly. It bypasses Servers, So Server bottlenecks may be
non-existent for NAS systems. (We do not consider a
Storage-dedicated Server as NAS.) The major disadvantages
are the lack of the flexibility that servers have, (and the
overhead associated with the network layer(s) (if it is too
thick)). An NAS can be used in secured environments like
an internal LAN or SAN. Authorization, account, and
authentication (AAA) and firewall are unlikely to be per
formed by an NAS, since an overly complicated function
may not be implemented due to the cost. Furthermore, it is
not easy to upgrade Software or protocols under the limited
design of interfaces for NAS.
0016 SAN is an architecture for storage systems with the
advantages of flexibility and scalability. While NAS is

US 2002/0154645 A1

limited due to its thin network interface, SAN defines an
environment dedicated to Storage without worrying about
Security or other heterogeneous design concerns. ESSen
tially, Storage devices in SAN can be viewed as a special
kind of NAS, e.g. hard disks with Fibre Channel interfaces.
Servers (which are more versatile) are still needed to con
nect the Storage devices to the network. Therefore, the Server
bottleneck is still present. Furthermore, access control and
other Server functions are not specified in SAN Systems, So
other components must be added for full functionality.
0.017. From the network approach, two techniques have
been devised: Web Switching and Intelligent Network Inter
face. Among the goals of Web Switching is load balancing
servers in a web hosting system. While web switching has
many platforms, the basic approach is to capture the IP
packets and use the information they contain in the layerS 4
through 7 to Switch the traffic to the most suitable servers,
thus keeping the Servers with balanced load. This approach
does not address the problems of multiple data copying and
server system bus contention. The server OS inefficiency
problem is only indirectly addressed.
0.018. In the Intelligent Network Interface approach,
functionalities are added to the NIC (Network Interface
Card) that reduce server interrupts by batch processing. This
approach does not address the Server System bus contention
problem directly, and as a result, the latency of data transfer
is still unbounded and data transfer throughput is still not
guaranteed. In addition, this approach only reduces Switch
ing overhead but does not address the multiple data-copying
problem.

BRIEF SUMMARY OF THE INVENTION

0.019 Objects of the invention include the following:

0020) 1. To increase the network and storage access
performance and throughput.

0021 2. To reduce traffic delay and loss between
network(s) and storage due to server congestion or to
bound the latency for real-time streamings (QoS
improvement).

0022. 3. To increase server and network system,
availability, reliability and reduce Server System fail
ures by reducing the traffic going through the Server
bus, OS and CPU.

0023 4. To maintain the flexibility of a server-based
System (VS. a network attached storage or NAS).

0024 5. To be scalable and reduce the total system
COSt.

0.025 In sum, the invention aims to provide highest levels
of server-based Reliability, Availability and Scalability
(RAS) for a network system and highest levels of QoS for
the end users.

0026. These and other objects of the invention are
achieved in the following Solution Strategies:

0027 1. Throughput improvement by the data
driven multi-processor pipelined model.

0028 2. File system consistency between the bypass
board and the host.

Oct. 24, 2002

0029) 3. HTTP synchronization between the bypass
board and the host.

0030 4. Caching on the bypass board.

0031 5. Storage-based TCP retransmission on the
bypass board.

0032. In a networked system, an apparatus is introduced
that causes the majority of data to bypass the Server(s). This
design improves the end-to-end performance of network
acceSS by achieving higher throughput between the network
and Storage System, improving reliability of the System, yet
retaining the Security, flexibility, and Services that a Server
based System provides. The apparatus that provides this
improvement logically consists of a network interface,
Server computer interface, and Storage interface. It also has
a Switching element and a high-layer protocol decoding and
control unit. Incoming traffic (either from the network or
Storage System) is decoded and compared against a routing
table. If there is a matching entry, it will be routed, according
to the information, to the network, the Storage interface, or
sent to the server for further processing (default). The
routing table entries are set up by the Server based on the
nature of the applications when an application or user
request initially comes in. Subsequently, barring any
changes or errors, there will be no data eXchange between
the server and the device (although, a control message may
still flow between them). There may also be a speed match
ing function between the network and Storage, load balanc
ing functions for Servers, and flow control for priority and
QoS purposes. Because the majority of data traffic will
bypass the bus and the operating System (OS) of the Serv
er(s), the reliability and throughput can be significantly
improved. Therefore, for a given capacity of a Server, much
more data traffic can be handled, thus making the System
more Scalable.

BRIEF DESCRIPTION OF THE DRAWINGS

0033 FIG. 1 is a top-level logical diagram for the
data-driven multi-processor pipelined model.
0034 FIG. 2 is a top-level hardware diagram for the
data-driven multi-processor pipelined model.
0035 FIG. 3 describes the software structure for the
preferred embodiment for the data-driven multi-processor
pipelined model.
0036 FIG. 4 describes the data queues and processes in
the preferred embodiment of the data-driven multi-processor
pipelined model.
0037 FIG. 5 describes the traffic detour to host for
Method 2 for file system consistency between the bypass
board and the host.

0038 FIG. 6 describes the buffer cache relation with the
file system and FS device driver.
0039)
Stack.

0040 FIG. 8 is top-level diagram for the relation
between the device and Server and Storage.
0041 FIG. 9 is general function blocks inside the device
with three logical interfaces, namely network, Server and
Storage.

FIG. 7 is the diagram of the TCP retransmission

US 2002/0154645 A1

0.042 FIG. 10 gives an example of major detailed func
tions performed to achieve claimed improvements.
0043 FIGS. 11 and 12 are flow charts for data flow from
network to Storage or Vice-versa.
0044 FIG. 13 is a depiction of information decoded in
various layers of protocols.
004.5 FIG. 14 shows an example of the Expanded Rout
ing Table (ERT) with assumed contents.
0.046 FIG. 15 is an example of pipelining process to
maximize the performance.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0047 The preferred embodiment of the invention is illus
trated in FIGS. 1-15, and described in the text that follows.
Although the invention has been most Specifically illustrated
with particular preferred embodiments, it should be under
stood that the invention concerns the principles by which
Such embodiments may be constructed and operated, and is
by no means limited to the Specific configurations shown.
0.048. In one embodiment, a three-way network server
bypass device has two main function blocks (100 and 101)
as shown in FIG. 8. Based-on decoded high layer protocol
information, the control unit, CU (100) decides to switch the
data to the Server or to the Storage through Switching element
(SE, 101). The device may be physically inside the server
housing, but may also be Supplied as an external unit.
0049. The present invention improves performance and
reliability of network data access with the flexibility of a
Server-based System. It avoids multiple data-copying in a
Server System, where all the traffic in one direction has to be
copied at least twice (and to interrupt the Server System at
least twice) along the data path from the network to the
Storage or the other way around. The invention lets the
majority of traffic bypass the Server System bus, operating
system (OS) and CPU or any other involvement with the
Server. It can also Support quality of Service (QoS) like
prioritized traffic Streams for real-time applications with
Video and audio, with bounded delay. Lastly, in a multiple
Server System, it can provide load balancing and flow control
combining with the CPU/bus/OS bypassing to optimize the
overall System performance and improve fault-tolerance.
0050. The above-mentioned improvements are achieved
by decoding high-layer protocol(s) in real-time and using the
information to direct the traffic flow between network inter
faces, storage System (or SAN), and server(s), Depending on
the nature of the application (in part or in whole), the traffic
can be categorized as Server-oriented, which will be sent to
Sender System, or storage-oriented (data retrieving), which
will be transferred between the network and storage directly
without the servers (CPU, OS and Bus) involvement. As
Internet and web applications become more prevalent, the
resulting ever increasing traffic will tend to be Storage
oriented. The invention dynamically identifies such traffic as
Storage-oriented and allowS Such traffic to bypass Server
(bus, OS and CPU).
0051. The example application presented describes a
Single packet or a Stream of packets with a particular purpose
(e.g. user request for a web page.) Therefore, Such a request
reply pair Session may consist of Several Sub-applications.

Oct. 24, 2002

For instance, a user-initiated request may have to go through
log-in and authorization processes that should be handled by
Server(s). This is a server-oriented process. But after a
request is authorized, the transfer of data from the Storage to
the user can bypass the Server and be sent directly to the user
through the network interface; it is Storage-oriented. Fur
thermore, the log-in and authorization can be a different type
of application from the main Session. For example, a request
may not be real-time time in nature, while the data transfer
could be an isochronous video or audio Stream like the case
of “video-on-demand.”

0052 Simplified examples of application categorizing
include:

0053 1. Authorized real-time data transfer between
a network interface and a storage interface.

0054 2. Authorized non-real-time data transfer
between a network interface and a storage interface.

0055 3. Server-oriented traffic. For example, a new
request to access a web page or user log-in from the
network or Storage System control between the Server
and Storage System.

0056 4. All other traffic defaults to the server (e.g.,
local traffic between server and storage).

0057 Traffic types (1) and (2) will be routed to respective
network or storage interfaces (e.g. from Storage to network
or vice-versa.) while (3) and (4) will be sent to server(s). The
decoding process is to look into necessary protocol (layers)
and to categorize incoming traffic (from where and for
what). Then, the decoded header information (IP address,
port ID, Sequence number, etc.) is used as an index to the
routing table for a match. A matched entry means the direct
connection between network and Storage has been "autho
rized.

0058 Exemplary decoded header information is shown
in FIG. 13. For example, the HTTP header is in the payload
of TCP, which in turn is in the IP packet. The decoding
process is to look into the HTTP headers for the nature of
data (GET, POST, DELETE, etc, and maybe application
payload length.)
0059. The data content then is divided into segments of
integral multiples of a fixed base, a process that we call
“base-multiple segmentation” (BMS) technology. For
example, a base of y bytes, Say 2. Kbytes, is chosen, and all
data Streams or files are Segmented into chunks of integral
multiples of 2. Kbytes, like 2, 4, or 8Kbytes (padding it for
the last chunk if it is not an exact integral multiple of 2
Kbytes), with an upper limit of, say, 40Kbytes (20 times y).
The maximum size is chosen based-on the requirement of
isochronous real-time traffic and the Switching Speed, Such
that it will still meet the tightest real-time needs while the
Switching element Serves the largest Segments. The advan
tages of BMS are that it is easier to pipeline multiple data
streams or files yet still has the flexibility of variable
Segment size, which reduces overhead (in Setup and headers)
and improves performance of the device. The BMS tech
nique described above can be used to advantage not only
with the apparatus of the preferred embodiment, but in
general data Switching applications as well.
0060 Once the nature of the traffic is determined, by
consulting the Expanded Routing Table (ERT) (with more

US 2002/0154645 A1

information than a regular routing table), as shown in FIG.
14, a proper Switching path can be Selected to forward the
traffic with proper QoS measurement. For instance, higher
priority traffic can be given more bandwidth and/or lower
delay. The forwarded traffic to the network will then be
processed with the proper protocol format conversion for
transmission with all the necessary error checking and/or
correction.

0061 Asynchronization scheme is employed to interlock
the decoding and Switching processes. Multiple incoming
data streams are queued for decoding and parsing (e.g. at
application layer with HTTP) to decided which path to
forward the data. Synchronization is necessary between
different phases of a request-reply Session. For example, a
reply to a request from a network user must be forwarded to
the user after the authorization (or log-in) process. While the
Server is running the authorization process, the Storage data
fetching can be handled concurrently to Speed up the pro
ceSS. By the time a request is granted, the data may be ready
or getting ready for transmission; otherwise, if it is denied,
the transmission is aborted. These concurrently pipelined
processes are illustrated in FIG. 15.
0062) The invention uses a high-layer or cross-layered
(cross protocol layers) Switching architecture, because the
traffic pattern is significantly influenced by the upper layer
applications while the transport unit or packet format is
mostly determined by the low layer protocols. For instance,
web applications determine the size and nature of the
transfer (e.g. text-only, still pictures and/or video clips) in
the headers of application layer. Low layer protocols decide
the size(s) of the packets at various network or System
Segments and the way to handle them (e.g. fixed size packet
VS. Variable size, packet size, delay tolerance and flow
control methods such as window-based flow control). By
using upper layer information to help direct the low layer
Storage data transport, the benefits can be significant. For
example, for Streaming applications, data transport is
Streamed instead of Switched packet-by-packet, thus achiev
ing higher throughput).
0.063. In networking, end-to-end user experience depends
on the network bandwidth (transport), server response time
and Storage access time. Among these factors, Server con
gestion and the associated cost to handle the ever-growing
network traffic are the major concerns and uncertainties for
delivering QoS. By doing real-time high layer protocol
decoding and parsing, and Switching the majority of traffic
to bypass the server with delay bound, the overall system
performance and QoS can be improved greatly.
0064.) Functional Description of Main Components:
0065 Switching Element:
0.066 The Switching element provides a data path for
three-way Switching (although it can have more than three
physical connections) to and from the network, Storage and
server function units (CPU), through their respective inter
faces with bounded delay. The Switching element may be a
fully-connected crossbar, memory-based Switching, shared
medium or other Switching construct. The Switching element
has the capability of Switching data traffic between any two
(or more) of the interconnected interfaces. It is controlled by
the control unit (CU) through a routing table that is set by
Server and on-board control based-on user request informa
tion.

Oct. 24, 2002

0067 Decoding and Control Unit (CU):
0068 Decoding:
0069 Based-on the targeted protocol layer(s), the decod
ing block(s) will look into parts of the packet payload to
parse higher layer header and/or content information to be
used in making routing decisions in real-time. The informa
tion will be compared with a routing table entry for a
potential match. The purpose of using higher protocol layer
information is to direct and optimize the traffic flow
(throughput, utilization, delay, losses, etc.) for performance
and reliability improvement. In FIG. 10, only an HTTP/html
application is given as an example. Other applications like
ftp and RTSP/RTP can also be implemented.

0070 Control:
0071 Based on the decoded information and the routing
table content, a control Signal is Sent to the Switching
element (SE). The SE will set up a circuitry moving the data
or packet(s) to the proper outgoing interface(s) through the
Switching element. Data or packets can be moved either
individually and/or in batch (streaming), depending on the
relations among them. It also controls routing table update,
format conversions (which format to use) and other house
keeping tasks.

0072 Scheduler and Flow Control:
0073 While multiple concurrent streams waiting to be
routed, the Scheduler decides the order of execution based
on the priority and QoS information in the routing table.
Some flow control mechanisms can also be exercised for the
network interface and/or Storage interface for further
improvement of performance.

0.074 Router:
0075. The router keeps a routing table, Switching status
and history and certain Statistics, and controls the path
traversed by the packets. The content in the routing table is
provided by the server, based on storage controller (or SAN
interface), and/or decoded packet information.
0076. The Switching and routing elements may be of a
predetermined latency, and the routing table may include
routing information (which port to route), the priority, delay,
Sensitivity and nature of the applications, and other contents
for QoS measurement.

0.077 Buffering, Format Conversion and Medium Inter
faces:

0078 Buffering:
0079 Basically, there are two kinds of buffers in the
device. One is to buffer two asynchronized parts between the
network, Storage and Server interfaces. The other Serves as
a waiting Space for decoding higher layer protocols. In other
words, the latter is to Synchronize the decoding process and
the Switching process. The decoding time is pre-determined
by design, So that the buffer Size requirement can be calcu
lated. A common pool of memory may be shared to Save
memory. This requires buffer management to dynamically
allocate the memory for all pending threads/Sessions.
0080 Format Conversions:
0081. There are several formats with respect to different
interfaces and layers of protocols. These decodings and

US 2002/0154645 A1

conversions have to be done in the device and involve
multiple protocol layers. Examples of decoding and format
conversions are HTTP, RTSP, ftp, IP/TCP/UDP, Ethernet,
SCSI, Fibre Channel, and/or PCI interfaces.

0082) Medium Interfaces:
0.083. In this description, there are three types of logical
medium interfaces: the network, Storage and server(s). In
actual implementation, various physical interfaces are poS
Sible, e.g., multiple network interfaces or Storage interfaces
or multiple Servers. Buffers are used to Synchronize trans
mission between interfaces. An example of implementation
may be Ethernet, ATM or SONET for network interface,
SCSI, Fibre Channel, PCI, InfiniBand, or other system I/O
technology.
0084. There may also be a speed matching function
between the network and Storage, load balancing functions
for Servers, and flow control for priority and QoS purposes.
Such Speed matching function may be effectuated through
buffering. Such load balancing may be executed between or
among any homogeneous interfaces in the device, and is
effected based on message exchange comprising feedback
information from the targeted device or other means well
known in the art.

0085) Description/Example:
0.086 FIG. 10 describes an implementation with Ethernet
interface (310) for networking, PCI (340) for server and
SCSI (350) for storage.
0087 Storage to Network Traffic Bypass:
0088 An incoming user/client request is received from
Ethernet interface (310) and decoded at different layers from
the Ethernet format (311) and IP/TCP (312) format. Then
HTTP header is parsed against the Expanded Routing Table
residing in the Router (313, 314 and 315). If a match is
found, the Subsequent data (until the end of the HTTP
payload; perhaps an html file) will be forwarded per the
router; otherwise, the HTTP payload will be sent to the
Server for further processing (the default route). A routing
table match indicates an established (authorized) connec
tion. For example, if the data is Sent to Storage, it may be an
authorized WRITE to the storage. The data routed to the
Server can either be an initial request for acceSS or Server
oriented traffic. The Server may process the request with a
log-in (if applicable) using an authentication, authorization,
and accounting (AAA) process. The Software on the server
will communicate with the device for all necessary Setup
(e.g. routing table and file System for the storage) through
the Router Control (316) and Scheduler (in 315) and then
pass the control to the device and notify the Storage to start
a response to that request with a given file ID (or name) for
the file system through the control path. The file system then
can issue commands to SCSI Interface (350) to fetch the
data. When the response data in html format comes back
from Storage, it will be correlated to an established connec
tion in the ERT (315) for proper path (314). Then an HTTP
header will be added (322). TCP/IP protocol conversion is
carried out on the device (321 and 320). Finally, the data will
be packed in Ethernet packets and Sent out through the
Ethernet Interface (310). The transfer from the storage to the
network through the device for this connection will continue
until it is completed or the device is notified by the server or
Storage to stop sending under certain events (e.g. error or

Oct. 24, 2002

user jumping to another web page). A pool of memory is
used to dynamically control the traffic and buffer asynchro
nous flows. Control Unit (300) coordinates all the activities.
FIG. 12 shows the flow chart of the data flow.

0089 Higher layer traffic information (e.g. HTTP or even
html) is used to optimize the performance. For instance, a
Single initial web acceSS request from the network is for
warded to the Server. Once the Server decides the access is
legitimate, it sets up both the CU and storage control (or
through the CU). Subsequent traffic (responses) will bypass
the server and be directly forwarded to the network interface
for further transfer. But a new request from a user will be
directed to Server for processing. This may include the case
of accessing a new web page or area or from different
applications (windows). Also, based on the nature of traffic
(html vs. real-time video clip for example), differentiated
Services can be provided. Further, Streaming based on the
content can improve even non-real-time applications.
0090 The default traffic path is through the server(s). For
cases like initial user login, Storage access error, or inter
rupted web page access, the Server(s) would take over the
control. Signaling is used to communicate between the
Server and the device. For the majority of data transfer,
however, the server(s) is not in the data path So bus con
tention, OS involvement (interrupt) and CPU loading are
Significantly reduced. The traffic reduction through the
server is very significant while the flexibility of having
Server(s) handling unusual cases is maintained in the design,
as contrasted with the NAS approach.
0091 Network to Storage Traffic Bypass:
0092. The device is bidirectional. To write to storage,
once granted access, the server sets up the router (315)
mechanism and the Subsequent incoming traffic from net
work for the same Session will bypass the Server through the
decoding processes (310,311, 312, and 313). The decoded
high layer information is parsed against the routing table (in
315). Proper connection to either server or storage can then
be established by the Switching Element (303). If it is
through the Server, the data will go through the Server bus
and the OS for proper processing. Otherwise, a direct
connection will be set up to route data (say, html files) to
Storage through the file System (to handle file format),
drivers (to handle Storage controller interface, e.g. SCSI) and
storage controller. The traffic through server and through SE
is synchronized by the Scheduler (31b) and Memory Pool
(301) before it is sent to SCSI Interface (350). This process
is shown in FIG. 11.

0093. In both of the traffic directions, the storage and the
network interfaces will carry out the proper protocol and
format conversions with necessary buffering as shown in
FIGS. 11 and 12.

0094) Other Features:
0095 Because the decoding time and Switching time can
be pre-determined, the delay for a packet going through the
device is bounded. Further, for the same reason, the potential
loSS of packets can be reduced. A priority mechanism can be
implemented to Support different QoS requirements in the
Router and Scheduler (315 and 300). In the case of multiple
Servers and/or Storage and network devices, a load balancing
and flow control mechanism can be applied based-on appli
cation tasks.

US 2002/0154645 A1

0096. The server's role is supervisory, and is not involved
in the byte-by-byte transfer. The CPU, operating system and
Server bus(es) are not in the normal path of the data transfer
in either direction (from network to storage or from Storage
to network.) This invention represents a change from inter
rupt-based server and OS to Switching-based networking
architecture.

0097 Performance improvements provided by the inven
tion include:

0098 1. Higher throughput: a significant (or major
ity) portion of traffic will directly go through the
Switching device, So data throughput can be dramati
cally improved while the Server bus and operating
System (OS) are bypassed.

0099 2. Less delay: the server and bus contention
and OS interrupt handling are out of the data path,
through the Switching element.

0100 3. Real-time applications: bounded latency
guarantees real-time applications due to the Switch
ing nature of the design.

0101 4. Better reliability: less traffic going through
Server means leSS potential for Server caused packet
loss and malfunctions (server crashes). With added
traffic control mechanism in the device, a shield can
be implemented to protect server(s) from overload
ing and potential malfunctions.

0102 5. Flexibility and versatility: due to the archi
tecture, the device is still very flexible by having
Server-oriented or computation intensive Services
immediately available to the applications, e.g. autho
rizing, Security check, data mining, and data Syn
chronization.

0103 6. Priority of services: higher layer(s) infor
mation can be server loading should further improve
the QoS to high priority and regular traffic.

0104 7. Scalability: multiple devices can be used
within a Single Server or a single device among
multiple Servers to Support large-scale applications.

0105 The type of server(s), operating system(s), net
work(s), Storage System(s) or the speeds of the networks are
not essential to the invention. Various interfaces can be
designed. The three-way Switching is a logical concept. In an
actual implementation, the System can involve multiple
networks and/or Storage networks, e.g. a four-way Switching
among an ATM, Ethernet and storage area network (SAN)
interfaces. The basic idea is a high layer or cross-(protocol)
layered Switching mechanism among heterogeneous (net
work) systems with embedded real-time protocol conversion
to bypass the server(s) as much as possible. In addition, if
multiple Servers are involved, a load balancing Scheme can
improve the overall System performance further.
0106 Certain Improvements
0107 The following additional definitions will be useful
in discussing certain improvements in connection with the
invention discussed above:

0.108 “Bypass Board': an enhancement board
designed to reduce average CPU load when installed
into an existing host Server. It achieves this in two

Oct. 24, 2002

ways: (1) Reduction in the processing of specific
traffic, and (2) Reduction in I/O bus transactions.

0109) “TWIP (Three-Way Internet Port) Board”:
The preferred embodiment of the Bypass Board. The
TWIP Board (or simply referred to as TWIP) is a
peripheral interface board that plugs into a PCI
Socket, replacing at least one existing SCSI disk
controller and one NIC board. The host's existing
hard drive is then plugged into the TWIP along with
a 1 Gbit Switched Ethernet connection. Host-side
drivers that permit visibility of the SCSI disk and
network connection from all existing applications
will also accompany the TWIP board.

0110. In this embodiment, the traffic to be bypassed is
assumed to be HTTP traffic. However, other types of traffic
(such as FTP, RTP and etc.) are possible. The FTP capability
can be used, among other thing, to Support an efficient
backup of the Storage device concurrent with, for example,
production HTTP operation, thereby avoiding downtime
dedicated to backup.
0111. The drawings are described in detail below with
respect to the five Specific Solutions Strategies Set forth
above.

0112 Throughput Improvement by the Data-Driven
Multi-Processor Pipelined Model
0113. The design of TWIP is based on a data-driven
multi-processor pipelined model as shown in FIG. 1. In a
data-driven multi-processor pipelined model, tasks are
assigned to Specific processors whose actions are triggered
by the arrival of input data. Upon completion of the required
processing, each processor puts the output data into the input
queues of the processor for the next tasks to be performed on
the output data. The operations of the processors are asyn
chronously executed and the processing of the data form
multistage pipelines. The payload data are not copied or
moved once they are loaded into the payload buffers until
they are finally Sent out. Each processor, along with the
input/output queues, only operates on the labels associated
with the payload data. The labels could be the pointers or
headers of the payload data. All inter-processor communi
cations involve labels but not the payload.
0114. There are many advantages of this model. Among
them is the Savings in the label processing as compared to
payload processing. For example, most Ethernet packets are
of the size 1.5 KB at the most, the average header/pointer is
20 bytes; this would result in 75:1 ratio in bus and memory
traffic, and a saving of 75 fold.
0115 From the hardware perspective, this model is
depicted in FIG. 2. As shown in FIG. 2, the payload data do
not even go through any of the processors. The traffic
between the payload buffers and the host can also involve
labels if the application program (which could be modified)
on the host does not need to process the payload data.
0116 FIG.3 shows the software structure for the TWIP
preferred embodiment. The functional relationship among
the Software modules is described below.

0117 The Network Interface Card (NIC, 701) receives
data from the network. The NIC Device Driver (NICDD,
702) fetches the data from the buffer on NIC (701). The NIC
DD (702) checks to see if the traffic is non-HTTP (the traffic

US 2002/0154645 A1

not to be handled by TWIP). If so (702) redirects the traffic
to the Host (718) through Ethernet DD (704) using DMA
(DMA1), else (702) directs the traffic to the TCP/IP proces
sor (705) through packet descriptor module (703). The
TCP/IP processor (705) passes HTTP payload labels to
TWIP HTTP engine (707) through a socket (TCB Socket,
706). The TWIPHTTP engine (HTTP707) parses the HTTP
payload and decides to use one of the two file Subsystems,
(709 or 710) and then issues file system requests to (709) or
(710) through the buffer cache (708).
0118 Both file subsystems (tFS, 709) and (xFS, 710)
request data from the buffer cache module (711). If the data
is not cached in (711) and the request comes from Subsystem
tFS (709), (711) will ask the TWIP block device driver
(tRlock DD, 712) to fetch the data. If the data is not cached
in the buffer cache (711) and the request comes from
subsystem XFS (710), (711) will ask another TWIP block
device driver (xBlock DD, 714) to fetch the data.
0119) The tBlock DD (712) asks tSCSI DD (713) to fetch
data from the SCSI disk (716) using DMA5 and the xBlock
DD (714) asks tVirtual DD (715) to fetch data from the
virtual disk (719) from the host using DMA2.
0120 Both the non-HTTP traffic host (718), which
handles all non-HTTP traffic, and the virtual disk for the
HTTP traffic (719), which handles all HTTP traffic that
TWIP cannot handle, are on the server computer. The
non-HTTP host consists of TWIP Host DD (722), Host
TCP/IP engine (723) and Host non-HTTP application pro
gram (724). When a request is forwarded from the NICDD
(702), it is transferred to (722) by DMA1. The TWIP host
DDI (722) communicates with a network protocol, assumed
to be TCP/IP (723), to provide services for the non-HTTP
application (724).
0121 The Virtual Disk (719) simulates a virtual disk to
TWIP and it handles the HTTP traffic that cannot be handled
by TWIP. The virtual disk (719) consists of TWIP Host DD
II (725), t-protocol engine (726), and the Host HTTP appli
cation program, assumed to be Apache, (727). The Virtual
Disk (719) serves as a disk to TWIP for dynamic web
content. The HTTP application program (727) is used to
generate the dynamic web content data. Once the data is
generated, t-protocol (726) will create a virtual disk envi
ronment for XFS (710) so that (710) may load the dynamic
web content data for different requests as files from the
virtual disk (719).
0122) When an application, including both non-HTTP
and HTTP programs, needs to access the SCSI disk, it asks
the Host File System (721) and the Host SCSI DD (720) to
complete the disk access request.
0123 The following are the definitions of all of the items
listed in FIG. 3 for clarification.

0.124 NIC (701)-Network Interface Card is a piece
of hardware that is used by the server to communi
cate to the network.

0125 NIC DD (702)-Network Interface Card
Device Driver is a piece of software that knows how
to interact with NIC (701) to obtain data from the
network and to Send data to the network.

0126 Packet Descriptor (703)-Packet Descriptor
Module is used to provide data structures and inter
faces for TCP/IP (705) and NICDD (702) for them
to communicate.

Oct. 24, 2002

0127 Ethernet DD (704)-Ethernet Device Driver
is used to forward Ethernet packets to the host when
the Ethernet packets are used by non-HTTP appli
cation.

0128) TCP/IP (705)–On board TCP/IP is used to
handle all HTTP related TCP/IP traffics.

0129. TCBSocket (706)—TCBSocket is a commu
nication gateway between TCP/IP (705) and thTTP
(707).

0130 THTTP (707) THTTP is an on board HTTP
protocol. THTTP consists of simple HTTP functions
in order to process simple HTTP requests.

0131 FSRequest (708)—FSRequest modules pro
vides data structures and interfaces for thTTP to
communicate with the file system module (709 and
710).

0132 TFS (709) TFS is a file system that under
Stands the file System format that was used to parti
tion the SCSI disk (716). (e.g. EXT2, NTFS)

0133) XFS (710)-XFS is a file system that under
stands the virtual file system format on the Virtual
Disk (719).

0134) Buffer Cache (711)-Buffer Cache helps low
ering down the disk access by provide caching
algorithm.

0135 TBlock DD (712) TBlock Device Driver is
one part of the block device driver used to encapsu
late the underlying SCSI device drivers (713).

0136 TSCSI DD (713) TSCSI Device Driver will
retrieve data from the SCSI Disk (716) and present
to TBlock Device Driver (712) in the format of
“Block' defined by block device driver.

0137 XBlock DD (714)-XBlock Device Driver is
one part of the block device driver used to encapsu
late the underlying Virtual disk device drivers (715)

0138 TVirtual DD (715) TVirtual Device Driver
will retrieve data from the Virtual Disk (719) and
present to XBlock Device Driver (714) in the format
of “Block” defined by block device driver.

0139 SCSI Disk (716)–SCSI Disk contains data
for the web server.

0140 TSCSI DD to Host (717) TSCSI Device
Driver to Host is used to provide a tunnel for the OS
SCSI DD (720) to access tSCSI DD (713) to retrieve
data from SCSI Disk (716)

0141) Host for non-HTTP traffic (718)—This is an
abstraction on the host that consists of TWIP Host
DD I (722), TCP/IP (723) and non-HTTP Applica
tion (724). This abstraction represents the processing
of non-HTTP traffics from the network. (NOTE: any
non-HTTP traffics including the ones that does not
use TCP/IP) The middle layer protocol (723) may
change depending on the application, but the idea
should be similar.

0142 Virtual Disk (719)-Virtual Disk is an
abstraction that consists of TWIP Host DD II (725),
t-protocol (726) and HTTP Application (727). This

US 2002/0154645 A1

abstraction provides TWIP a “virtual disk” so that for
all HTTP traffic, including the ones that TWIP can
handle or not, will be treated as if they can be
handled. Each request that is forwarded to the host is
a "file' in “virtual disk”. The content of the file is
created on the fly and will be presented to TWIP as
if the file is a static file.

0143 OS SCSI DD (720)-OS SCSI Device Driver
is used to provide the interfaces to the server FS
(721) for SCSI disk access for the server computer.

0144) FS (721) This File System is on the server
computer and is defined by the OS that the server is
running with.

0145 TWIP Host DD I (722) TWIP Host Device
Driver I is used to control the data transfer using
DMA between TWIPNIC Device Driver (702) and
Server TCP/IP (723).

0146 TCP/IP (723) The host TCP/IP is used only
for non-HTTP Applications.

0147 Non-HTTP Application (724)-Any applica
tion protocols that is not Hypertext Transfer Proto
col. (e.g. FTP, Telnet)

014.8 TWIP Host DD II (725) TWIP Host Device
Driver II is used to control the data transfer using
DMA between tVirtual DD (715) and t-protocol
(726).

0149 t-Protocol (726)—t-Protocol is used to inter
cept the data from HTTP applications (727) to TCP/
IP so that these data can be send out to the network
using TWIPTCP/IP (705).

0150 HTTP Application (727)—Any application
protocols that is Hypertext Transfer Protocol. (e.g.
Apache)

0151. From the perspective of queues and processes, the
TWIP operations are depicted in FIG. 4. A brief description
of this queue-and-process architecture is provided below.
0152 The NIC Device Driver processor (802) constantly
grabs packets from the Network Interface Card's receiving
buffer (801). The NICDD processor (802) first makes sure
that the packet is a fragmented IP packet. If so, (802) will put
the packet in the IP receiving queue (806) that will be
handled by the TCP/IP processor (807) on TWIP. If the
packet is not fragmented, the NICDD processor (802) will
determine if the packet is an HTTP packet. If so, (802) puts
it in the IP receiving queue (806), else (802) puts the packet
in the queue (803) that will be transferred to the server
through Ethernet Device Driver (840).
0153 TWIP TOP/IP processor (807) constantly grabs
packets from (806) to process. After processing the packet
(e.g. de-fragmentation), (807) can determine if the packet
belongs to HTTP traffic.
0154) For non-HTTP traffic, (807) will forward the
packet to the server by putting it in the IP Forward queue
(808). The t-Eth Device Driver (840) then combines the
packets in IP Forward queue (808) and the packets in the
queue (803) and then put the packets in Queue X (841). For
HTTP traffic, (807) will hand the HTTP payload portion of
the packet to thTTP (813) through TCB receiving queue

Oct. 24, 2002

(811). As we can see, the traffic has been divided into two
paths: non-HTTP and HTTP traffic.

0155 For the non-HTTP path, The Ethernet Device
Driver module DMA the data over to the receiving ring
(851) on the server. The TCP/IP (853) on the server will
process the packet in the receiving ring (851) and present the
application layer data to the non-HTTP applications (854).
Normally these non-HTTP applications (854) will issue file
system calls. If so, the file system processor (856) will
communicate with the OS SCSI device driver processor
(866) on the server to obtain data from the SCSI Disk (831).
0156 The OS SCSI device driver (866) must communi
cate with TWIP's device driver (tPS DD, 829) to obtain data
from the SCSI Disk (831). To do so, (866) forwards the
requests issued by the server file system (856) to the on
board queue (835) using DMA (834). TFS device driver
(829) will read requests from the queue (835) and access the
SCSI Disk (831) to retrieve data from the disk, tRS device
driver processor (830) will then take the data from the disk
and put it in the queue (832) which will be DMA (833) over
to the server queue (867). The server SCSI device driver
(865) already anticipates for the data to come back in queue
(867). Once the data comes back, (865) wakes up the
processors that are waiting for this piece of data, which is the
file system processor (857). Finally, (854) will obtain data
from the file system processor (857) and then send it to the
network using the server TCP/IP protocol (852). The server
TCP/IP protocol (852) puts the data in the transmission ring
(850). The data in the ring (850) will then be forwarded by
DMA over to TWIP in Queue Y (844). Once the data is ready
in the queue (844), the NIC Device Driver processor (804)
will take the data in the queue (844) and put it into the NIC
transmission Queue (805), which is then sent out to the
network.

O157 The other path is the HTTP path. For the HTTP
path, the thTTP processor (813) will grab the HTTP payload
that was put in TCB transmission queue by TWIPTCP/IP
processor (807). The thTTP processor (813) will process
this payload and determine if HTTP request data can be
found on SCSI Disk (831) or Virtual Disk. If on SCSI disk,
thTTP processor (813) will use tRS (821) otherwise it will
use XFS (819). Once again, XFS (819) is a file system
processor that will understand the format of a Virtual Disk,
which is an abstraction for handling dynamic content
requests. This abstraction provides thTTP processor (813)
an effect as if thTTP always deals with static content
requests.

0158 To obtain data from SCSI Disk (831), thTTP(813)
must issue file System requests to file System request queue
(816) because tRS processor (821) will continue to look for
requests to process from the queue (816). Once (821)
processes the file System request, it will try to access the disk
through buffer cache. Buffer cache gives tS (822) the buffer
handler to the area that the requested data will be positioned
in the memory when comes from the disk. If the requested
data is not in the buffer cache, then buffer cache will queue
up in (825) where the request will be processed by tPS
device driver processor (829). When the data comes back
from the SCSI Disk (831), the tES device driver (830) will
put the data in the location (826) that was associated with the
buffer handler. Finally, tRS (822) will notify, through the
queue (818), thTTP processor (814) that the data is ready.

US 2002/0154645 A1

0159). If thTTP (813) needs to obtain data from Virtual
Disk, it must also go through buffer cache (823) as described
in the case of tRS (821) to communicate with the device
driver (xFSDD, 827). The XFS device driver (827) will look
for request in the queue (823). When XFS device driver (828)
retrieves data from Virtual Disk, it puts the data in the
location (824) that is associated with buffer handler. Finally
XFS (820) will notify, through the queue (817), thTTP
processor (814) that the data is ready.
0160 THTTP (814) will put the data coming from both
(818) and (817) on the TCB transmission queue (812),
which will be taken by TWIPTCP/IP (809) and processed
into a packet. (809) will put the packet in the IP transmission
queue which is then transferred to the network through NIC
device driver (804) and NIC transmission queue (805).
0161). In the Virtual Disk, XFS device driver (827) issues
request through the queue (862) to T-Protocol (860). T-Pro
tocol processor (861) provides data structures that make XFS
(820) behave as if it is interacting with a disk. The server
HTTP application (864) will process the request from queue
(862) and create HTTP payload that is presented as the data
of a static file from Virtual Disk. The data is then put on the
queue (863). The detail of how HTTP Application (864) uses
the file system (856) parallels the prior discussion of how the
non-HTTP Application accesses the file system (856).
0162 The following are the definitions of all of the items
listed in FIG. 4 for clarification.

0163 NIC DD (802), (804) This is a Network
Interface Device Driver processor for receiving
(802) and transmitting (804).

0164) NICTx Queue (805)/ Rx Queue (801) This
is the NIC queue for transmitting (805) and receiving
(801).

0165 (803) This is a queue that holds the non
HTTP traffic that is determined by NICDD (802)

0166 TCP/IP (809),(807) TWIPTCP/IP for trans
mitting (809) and receiving (807)

0167 IPTx Queue (810)/RX Queue (806)—This is
the IP queue for transmitting (810) and receiving
(801).

0168 IP Fw Queue (808) This is the forward
queue for non-HTTP traffic that is determined by
TCP/IP (807)

0169 TCB Tx Queue (812)/RX Queue (811) This
is the Socket queue for transmitting (812) and receiv
ing (811). This is the communication portal between
tHTTP module and TCP/IP module.

0170 THTTP (814), (813) TWTP HTTP proces
sor for transmitting (814) and receiving (813)

0171 Fs request queue (816), (818)-file system
request queues for tRS, both transmitting (816) and
receiving (818).

0172 Fs request queue (817), (819)-file system
request queues for XFS, both transmitting (817) and
receiving (815)

0173 TFS (821), (822)—tFS is the file system pro
cessors that understands the file System format on
SCSI Disk (831), both transmitting (822) and receiv
ing (821).

Oct. 24, 2002

0174) XFS (820), (819)–XFS is the file system
processors that understands the file System format on
Virtual Disk, both transmitting (819) and receiving
(820).

0175 (825), (826)—Transmitting queue (825) and
receiving queue (826) are used for the device driver
request to retrieve data from SCSI Disk (831).

0176 (824), (823)-Transmitting queue (823) and
receiving queue (824) are used for the device driver
request to retrieve data from Virtual Disk.

0177) tS DD (829), (830)–tRS device driver pro
cessors, transmitting (829) and receiving (830), that
is used to retrieve data from SCSI Disk.

0178 XFS DD (828), (827)–XFS device driver pro
cessors, transmitting (828) and receiving (827), that
is used to retrieve data from Virtual Disk.

0179 SCSI Disk (831)–SCSI Disk that is format
ted using the format that is Supported by tPS. (e.g.
EXT2, NTFS).

0180 (835), (832)—Transmitting queue (832) and
receiving queue (835) are used to store the file
system request from the OS SCSI device driver
processor (866).

0181. DMAX (834) (842), DMAY (833) (843)–
These four DMA processor uses the DMA channels
to transfer data between TWIP and the server.

0182 Queue X (841). This queue is used to queue
up all non-HTTP requests from the network.

0183) t-ETH DD-t-Eth device driver processor
grabs data from IPFw queue (808) and (803) and put
it into one queue (841)

0184 Queue Y (844) This queue is used to store
all the data from the host that needs to be send out as
Ethernet packets.

0185 RX Ring (851) and Tx Ring (850) These are
the queues that Stores both the transmitting packet
and receiving packet that are non-HTTP from the
networks.

0186 TCP/IP (853), (852) These are the transmit
ting (852) and receiving (853) host TCP/IP proces
SOS.

0187. Non-HTTP Application (854)-Any applica
tion protocols that is not Hypertext Transfer Proto
col. (e.g. FTP, Telnet)

0188 Other App (855) This is used as an example
that there are other applications other than the HTTP
application and non-HTTP application that uses file
system (856). Someone who access through the
terminal may start these applications.

0189 FS (856), (857) These are the receiving
(856) and transmitting (857) file system processors
on the Server.

0.190 T-Protocol (861), (860) These are the
receiving (860) and transmitting (861) t-protocol
processors that is used to communicate with the

US 2002/0154645 A1

HTTP Application (864) to obtain return payload and
then provides XFS (820) with an virtual file system.

0191 (863), (862)- These two queue are used for
store transmitting (863) and receiving (862) data
between host and TWIP.

0192 HTTP Application (864)-Any application
protocols that is Hypertext Transfer Protocol. (e.g.
Apache)

0193 SCSI device driver (865) and (866)- These
two SCSI device driver processors, receiving (866)
and transmitting (865) are used to issue SCSI request
to TWIP file system device driver in order to com
plete the request from the host file system (856).

0194 (868), (867) These two are the queues that
transfer SCSI disk commands and SCSI disk data
between host and TWIP.

0195 File System Consistency Between the Bypass
Board and the Host

0196) A TWIP file system data consistency problem
arises when TWIP issues a read to storage before or after the
host initiates a write to the same file. This could lead to
inconsistent data fetched by TWIP. Fundamentally this is
caused by dual Storage accesses without Synchronization.
0197) There are two solutions to the problem. To reduce
overhead and unnecessary inter-locking, this method could
be applied only when large files are being read.

0198 In the first method, TWIP sends the filename to the
host before TWIP Http engine issues a file read. The host
TWIP device driver generates a fake fileopen(Filename) to
block any potential host write to the same file. Then the host
TWIP device driver sends a write block ack back signal
back to TWIP. If on the other hand, the host fails to open the
file for read, meaning that the host may be writing to the
same file and TWIP read request should be held back, no
write block ackback is to be issued, and the process should
retry to open the file later. Once TWIP receives the write
block ack, TWIP starts reading the file. When TWIP

finishes the read, it sends the Signal write block clear to the
host, and the host TWIP device driver then does a fileclose
(Filename).
0199. This method relies on the host OS to enforce file
(storage) access Synchronization. It works much the same
way all applications run on the host-they have to register
with the host OS before proceeding. The registration pro
ceSS, however, can be pipelined. Once a file read request is
sent to the host, the TWIP file system does not have to wait
for response. It can proceed to process the next connection.
After the host acknowledges the request (registration), the
TWIP file system will go back to read the file.
0200. In the second method, the host write request is
intercepted by the TWIP host device driver. The TWIP host
device driver then generates a write request (w req). Then
TWIP completes all outstanding read requests and sends
back a write acknowledgement (w ack) to the host and
routes all future read requests to the host. Upon receiving the
signal wack at the host, the TWIP host device driver
releases the hold on the original write requests and proceeds
to write (thick vertical line on host in FIG. 5). Once the host
finishes all outstanding write operations, the TWIP device

10
Oct. 24, 2002

driver detects this and sends write-release (w rel) to TWIP.
When TWIP receives w_rel it resumes the bypass function
if it can handle the new incoming requests.
0201 One disadvantage of this approach is that a write
blocks any read from TWIP no matter if the write is targeting
at a current read or not (global blocking). One advantage of
this approach is that it is transparent to clients and graceful
transfers the traffic from TWIP to host. The global blocking
may not be significant if host write does not happen often.
0202) HTTP Synchronization Between the Bypass Board
and the Host

0203 The bypass board creates a second data path to
concurrently and asynchronously handle HTTP traffic,
within a single TCP connection. This may cause the data
arriving at the client within the same connection to be out of
order.

0204. There exist many ways to solve the problem. The
Solution approach described here assumes that no modifi
cation of the host HTTP application program on the host is
allowed. A key to the problem is to find the end of the
response economically (in term of computation power). An
obvious solution is to parse the responses to match HTTP
request lengths against the HTTP size fields. This solution
may work in Some Scenarios but it is likely to be very costly
due the parsing process (for every byte of data). Further, in
Some cases the size field of HTTP file may not be available.
0205 The following is a method to quickly signal the end
of an HTTP response.

0206 1. A table keeping track of all outstanding
requests within a connection is set up.

0207 2. If a request to the host HTTP server is
followed by a request through TWIP (bypass)
according to the table, TWIP inserts a fake request
(or a trace command) to the host HTTP server.

0208. 3. After the host HTTP server processes the
first request, it responses to the Second (fake) request
Without accessing the storage (e.g., a trace com
mand) and produces a given pattern signal.

0209 4. The arrival of the given pattern signals the
end of the response for the original request.

0210 5. TWIP then releases the response from
bypass operation.

0211 Since TWIP has the control over the pattern to
catch, a hardware assisted parsing can be implemented to
further Speed the process.
0212 Caching on the Bypass Board
0213 Caching is useful to speed up data access for
frequently accessed files. TWIP will come with a buffer
cache (711). The cache effect is achieved by maintaining a
usage table. When a file is loaded into the data memory, it
is also logged in the usage table with a time Stamp. The time
Stamp is updated every time a file is used. When memory is
nearly full, the table is searched to delete those files which
have not been used for longest time first by comparing the
time Stamps.
0214 FIG. 6 depicts the relationship among the buffer
cache, the TWIP file system, and the TWIP file system
device driver.

US 2002/0154645 A1

0215. The buffer cache allocates buffer pages for blocks
of data on the disk. Each page corresponds to a block on the
disk. After the buffer cache allocates the memory, it asso
ciates this memory space with a buffer handler. This buffer
handler Serves as a key to the file System for accessing the
data.

0216) Given a block number and a device ID, the buffer
cache locates the associated buffer handler. If the file system
request a data that already exists in the buffer cache, the
buffer cache will return a buffer handler that is associated
with the existing buffer page without accessing the disk. If
the data does not exist in the buffer cache, the buffer cache
will allocate a free buffer page according to an optimized
algorithm. The free buffer page is associated with the request
block number and the device id using the buffer handler. A
request to the file system device driver will be issued to
retrieve data from the disk to the buffer page. Finally, the
associated buffer handler will be passed to the file system.
0217 Storage-Based TCP Retransmission on the Bypass
Board

0218. The following discussion concerns storage-based
TCP retransmission, meaning that the retransmission uses
storage as the buffer for the transmitted data yet to be
acknowledged. This kind of retransmission Scheme is espe
cially useful for high-speed WAN situations where the
requirement for retransmission buffer Size is huge, causing
in-memory buffering to be unpractical.
0219 TCP Retransmission Layer
0220. In general, there are three approaches to the
retransmission problem as the following:

0221 1. The whole packet is kept in the memory.
0222 2. The whole packet is removed from the
memory and instead enough information is Stored in
the memory to recover the packet.

0223) 3. Only a part of the packet is in the memory
and the rest is removed. Enough information is
Stored in the memory to recover the removed part of
the packet.

0224 Current TCP/IP stacks use approach (1). This
patent proposes two new methodologies based on
approaches (2) and (3).
0225. Approach 2: Removing the Whole Packet
0226. In general, in order to retransmit a packet two types
of information are needed: (a) information about the file that
the packet is transmitting and (b) information about the
packet itself. This information can be Saved on a per-packet
basis within a connection.

0227 Information about the file that needs to be retrans
mitted can consist of an ID label that uniquely identifies the
file (e.g. in a Linux platform the inode ID would be a good
candidate). Also, the offset within the file can be saved. This
offset could be derived from the sequence number of the
packet to be retransmitted.
0228 Information about the packet should include those
header fields that are Supposed to be dynamic on a per
packet basis within a connection. For example, it is not
mandatory to keep information about the IP addresses for the
packet Since this information does not change within the

Oct. 24, 2002

packets belonging to the same connection. Instead, this
information can be retrieved from the connection Structure
when rebuilding the packet.
0229 Approach 3: Removing Some Parts of the Packet
0230. A packet consists of different parts. Because recon
Struction of Some parts may be easier than others, a hybrid
approach where not the whole packet is removed from
memory could be useful. In general, the preferred parts to be
removed are those parts of the packet that occupy a large
amount of memory and that at the same time are easy to
reconStruct.

0231. This approach intents to maximize the ratio
memory freed per packet/complexity of packet recon
Struction. As the headers occupy a Small percentage of the
packet (usually <10%) and require a bigger effort for their
reconstruction, in this approach the headers are kept in
memory. As the body of a file that is transmitted in the
packets occupies a big percentage of the packets and
requires relatively Small effort for its reconstruction, the
payload (the file body) is removed. Therefore, this approach
keeps two types of data:

0232 (a) Information about the file that needs to be
recovered. This can consist of an ID label that
uniquely identifies the file (e.g. in a Linux platform
the inode ID would be a good candidate). Also, the
offset within the file can be saved. This offset could
be derived from the Sequence number of the packet
to be retransmitted.

0233 (b) The headers of the packets.
0234. In order to maintain the layering properties of the
TCP/IP stack, the proposed TCP retransmission scheme can
be implemented adding an extra layer to the Stack. The
actual code in this case is not inserted in the same TCP
module but as an extra module. This approach requires the
definition of interfaces between retransmission layer
TCP and retransmission layer-File System). The proto
col stack is depicted in FIG. 7.
0235. The data consistency problem can also arise for the
TCP retransmission Scheme. If the data to be retransmitted
is modified by the host while waiting to be retransmitted,
inconsistent contents will result at the client Site.

0236 A simple Solution is to make an image copy of the
entire file on a Swap file on the hard disk, when it is first open
for transmission. In order to reduce overhead, only large files
greater than a specific threshold will be copied. If the file is
requested to be retransmitted in part, the image copy on the
Swap file is to be used, Solving the inconsistency problem.
0237. It is apparent from the foregoing that the present
invention achieves the Specified objectives of higher levels
of RAS and throughput between the network and Storage
System, while retaining the Security, flexibility, and Services
normally associated with Server-based Systems, as well as
the other objectives outlined herein. While the currently
preferred embodiment of the invention has been described in
detail, it will be apparent to those skilled in the art that the
principles of the invention are readily adaptable to imple
mentations, System configurations and protocols other than
those mentioned herein without departing from the Scope
and Spirit of the invention, as defined in the following
claims.

US 2002/0154645 A1

What is claimed is:
1. An apparatus for interconnecting at least one data

network, at least one Storage device, and at least one server,
comprising:

a) a network interface;
b) a storage interface; and
c) a server interface;
wherein Said apparatus can transfer data between any two

of Said at least one data network, Said at least one
Storage device and Said at least one Server.

2. The apparatus as described in claim 1, wherein Said
data comprises audio or Video real time Streaming traffic.

3. The apparatus as described in claim 1, wherein Said
network interface is Selected from the group essentially
consisting of an Ethernet, ATM, or Sonet network or any
other Standard-based or proprietary network.

4. The apparatus as described in claim 1, wherein Said
Storage interface is Selected from the group essentially
consisting of a single disk, a raid System or a Storage Area
Network.

5. The apparatus as described in claim 1, wherein Said
Server interface is a Single Server interface or a server cluster
interface.

6. The apparatus as described in claim 1, wherein Said
Server is accessed through interfaces including peripheral
component interconnect (PCI) or InfiniBand or other so
called system I/O.

Oct. 24, 2002

7. The apparatus as described in claim 1, wherein Said
apparatus is located within the same physical housing as Said
SCWC.

8. The apparatus as described in claim 1, wherein Said
apparatus is physically housed Separately from Said Server.

9. The apparatus as described in claim 1, further com
prising a Switching element.

10. The apparatus as described in claim 9, wherein said
Switching element has predetermined latency.

11. The apparatus as described in claim 1, wherein Said
apparatus further comprises a routing element having a
routing table.

12. The apparatus as described in claim 9, wherein Said
Switching element which may be a fully-connected crossbar,
memory-based Switching shared medium, or other Switching
COnStruct.

13. The apparatus as described in claim 11, wherein Said
routing table comprises information from the group essen
tially consisting of port to route mapping, priority, delay
Sensitivity, nature of the applications, and information for
Quality of Service measurement.

14. A method of using a Switch, employing base multiple
segmentation (BMS), whereby data flow is subdivided into
Segments which are each an integral multiple of a fixed base
Segment size.

