

(12) UK Patent Application (19) GB (11) 2 098 024 A

(21) Application No 8113595
(22) Date of filing 1 May 1981
(43) Application published
10 Nov 1982
(51) INT CL³
H04R 1/34 1/30
(52) Domestic classification
H4J 30F 31H B
H4X 3C 3G
(56) Documents cited
None
(58) Field of search
H4J
H4X
(71) Applicant
Mario Cesati
Via de Vitalis 16,
Brescia,
Italy
(72) Inventor:
Mario Cesati
(74) Agents
E. N. Lewis and Taylor
144 New Walk,
Leicester LE1 7JA

(54) Horn loudspeakers

(57) A horn loudspeaker having a directional characteristic is made from a horn loudspeaker having a circular radiation characteristic. It comprises a horn provided with two opposite walls 24, 24' whose distance apart increases, according to a given law, with increasing distance from the axis X of the horn, which axis is also the axis of the loudspeaker diaphragm 110. In the direction where sound radiation is not desired the space between the walls 24, 24' is filled with sound absorbent material M, e.g. of cellular or fibrous type.

2098024

Fig. 1

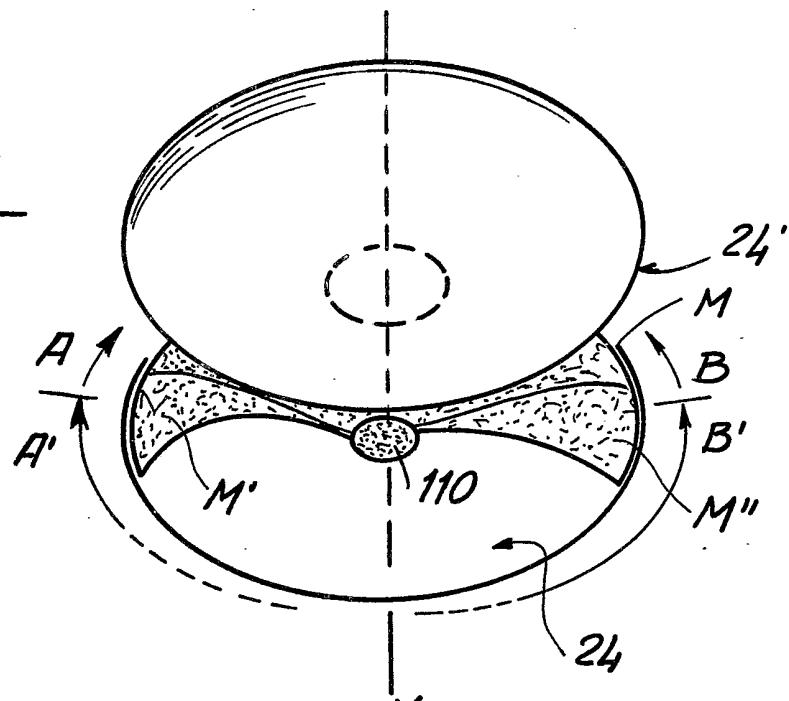


Fig. 2

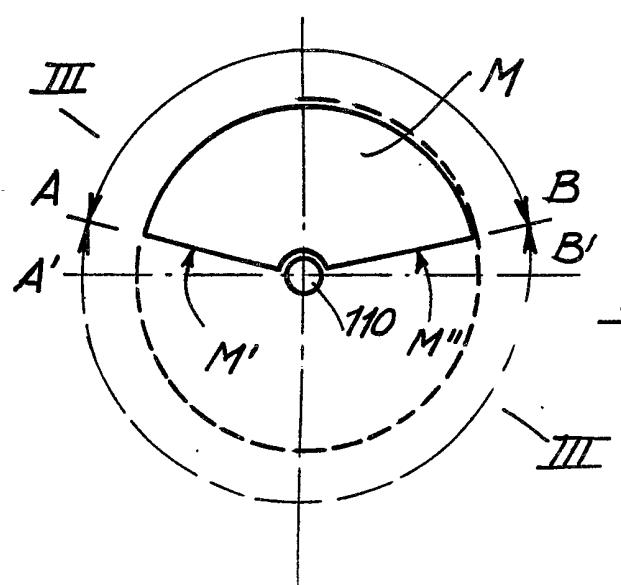
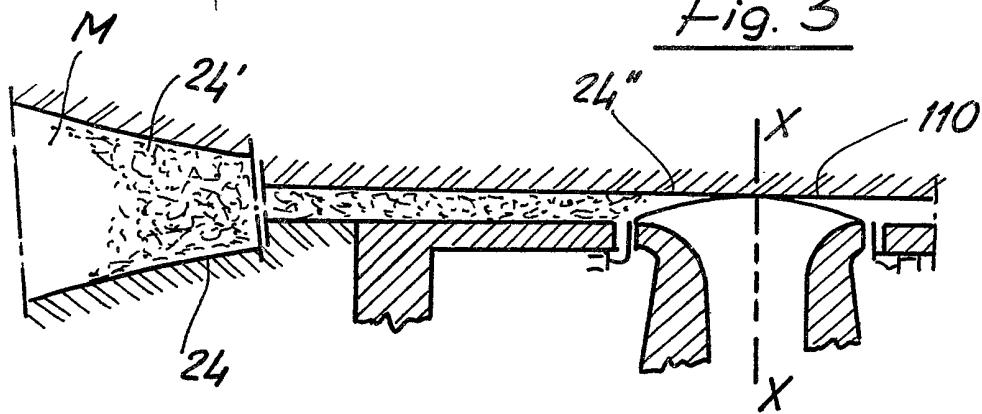



Fig. 3

SPECIFICATION

Loudspeakers

5 The present invention relates to improvements in and/or related to the horn loudspeakers, of the sectorial diffusion type, and to a method for industrially making said sectorial diffusion loudspeakers, as thereafter described.

10 Well known are the loudspeakers in general, as well as the so-called horn loudspeakers, which latter comprise a movable diaphragm effective to move in such a way as to reproduce the time variation of a signal driving said diaphragm (according to a known procedure and by known means), which diaphragm is located and operates at the mouth (the so-called throat) of a horn or a rigid duct of gradually increasing cross-section and ending with an opening or mouth leading to the atmosphere of the environment wherein the loudspeaker is installed and operates for diffusing or irradiating sounds.

Thus the horn is to be considered an acoustic transformer effective to transform the comparatively small area diaphragm into a large area diaphragm, thereby fitting to a comparatively heavy diaphragm the light medium or air. This definition is actually proper for the loudspeakers provided with the so-called "large throat" horns, provided with a throat having approximatively the same size as the diaphragm: on the other hand this condition may be only met, without interference losses, for the frequencies for which the wavelength is at least four times the size of the diaphragm.

This limitation does not occur for the so-called "narrow throat" horn loudspeakers, that is the so-called compression loudspeakers. In this case the horn is so designed that from the diaphragm the horn (or rigid duct or ducts of gradually increasing cross-section-for example exponentially increasing) is reached through the so-called compression chamber, effective to increase the average density of the medium (air) and being formed by the surface of the diaphragm itself and by an opposite wall located very close to said diaphragm and interrupted by openings for the passage of the horn. This passage occurs by means of channels the number, positions and size whereof are such as to nullify the higher order resonances in said compression chamber and due to the perturbations arising from the reflections generated by the surface of said chamber edge.

Well known are also loudspeakers predisposed for an essentially "circular" diffusion and for an essentially "sectorial diffusion". More specifically the former, also in the case of the "narrow throat" horn loudspeakers (which may also be provided with several horns associated with corresponding diaphragms) comprise a horn having a circular mouth opening on the contour of a revolution body, about an axis passing through the compression chamber. Also known are circular diffusion loudspeakers comprising an electroacoustic transducer loop as located about the axis of the loudspeaker structure. A main requirement of the circular diffusion loudspeakers is that the acoustic energy or power be transmitted and diffused to/through the medium or

environmental air in an even way and without deleterious interferences in any directions.

The Applicant, in its Italian Patent No 930,955 granted on October 2, 1972 (Patent Application No 70 25,696 filed on June 9, 1871) has already disclosed and illustrated an improved loudspeaker, in particular predisposed for an essentially circular diffusion, effective to provide a response curve being practically flat in the overall frequency range. Exemplary 75 embodiments of these improved loudspeakers, for essentially circular diffusion, have been fragmentarily illustrated in figs. 10a and 10b and more specifically in figs. 11a and 11b and they are described, with reference to the mentioned figures, in said 80 Italian Patent No 930,955, herein incorporated by reference.

According to the aforesaid Italian Patent of the same Applicant, the circular diffusion loudspeaker (it should be noted that also a sectorial diffusion has 85 been already provided for in said Italian Patent), comprised a diaphragm effective to operate in the compression chamber, against an opposite wall defining the starting portion of a horn circularly extending about an axis passing through the center 90 of said compression chamber. The progressive increasing of the horn cross-sections was in a plane perpendicularly to said axis or in a cone having a very large maximum opening and a corresponding axis.

95 These loudspeakers have been greatly satisfactory in operation, as confirmed both by the tests and the wide industrial acceptance, with respect both to the response curve which is essentially flat for the overall acoustic frequency range and to the evenness of 100 the circular diffusion in any directions about said axis.

Finally, there is also known that in the market are ever increasingly required by those skilled in the art the so-called "sectorial diffusion" loudspeakers, that 105 is those loudspeakers effective to diffuse or irradiate into a predetermined space sector, which sector is generally, though not critically included from 90° to 120° and even, in some cases, 180° and more.

Also known is the fact that a substantially even 110 diffusion through the overall acoustic frequency range, in the absence of interference phenomena, and through angles greater than 120° is hard to be obtained, from the constructional, designing, testing point of view and with respect to the making of the 115 loudspeakers.

A mainly sectorial diffusion or irradiation is advantageous for example for assuring a high fidelity irradiation and reception of music which is generally irradiated from a point offset with respect to the listeners. The acoustic characteristics can be for example seriously damaged by the perturbing echoes and reflections from the walls which are nearer to the 120 loudspeakers or loudspeaker.

Several techniques are known for producing the 125 sectorial diffusion loudspeakers. As thereinafore stated loudspeakers have been designed comprising a plurality of transducers (or diaphragms) and horns, as differently oriented. Typically one may affect the geometry and average orientation of the walls of the 130 horn or horns, but, in general, the asymmetrical dis-

tribution of these walls, originating with sharp deviations from the compression chamber, causes interference phenomena or other deleterious factors which impair the evenness of listening, through the 5 overall acoustic frequency range.

Owing to the fact that, as it will be thereinafter illustrated, the instant improvement is critically based on the applications of the teachings and technical solutions according to the thereinabove mentioned 10 Italian Patent No 930,955, the circular diffusion loudspeakers, said diffusion being in a plane or large opening cone, of said Italian Patent will be thereinafter indicated by the term "improved circular diffusion loudspeaker".

15 Essentially, according to the present invention, there is applied the unforeseeable outcome (being experimentally confirmed) that an improved circular diffusion loudspeaker may be qualitatively transformed into a sectorial diffusion loudspeaker by at 20 least partially neutralizing the sector of the horn whereof, oriented in the directions in which the diffusion is not desired or has to be attenuated, by using an acoustically dissipating and absorbing or deadening material, in which the irradiated acoustic 25 power or energy, as irradiated by the compression chamber, is absorbed.

30 Preferably said deadening and absorbing material occupies all of the space included, in said directions, between the walls of the horn and has corresponding absorption characteristics for the acoustic power even at the limiting portions of the occupied sector.

Said material may also be different, while providing the same acoustic deadening and neutralizing characteristics.

35 Preferably said material can be of the cellular or fibrous type (formed from individually non rigid fibers).

40 Preferably a sponge or fibrous mass is employed, such as Kapok, cotton, wool, silk, and so on and related waste of either natural or synthetic fibres, of polyurethane foam or the like.

45 Furthermore the occupied space can be partially or completely neutralized, from the acoustic point of view, by a different-density material (for example made of less packaged fibers) at points located at different distances from the compression chamber, in order to assure a progressively increasing absorption, to the full one, at the different distances from the electroacoustic transducer.

50 Thus the method according to the present invention broadly consists of providing a circular diffusion loudspeaker, of the thereinabove indicated type, and as thereinafter defined again, which loudspeaker comprises a horn evenly located about an axis

55 (either plane or conic) passing through the compression chamber at least partially neutralizing, from the acoustic point of view, the channel formed by said horn, in the directions in which the diffusion has to be attenuated or suppressed, by sectorially adding an 60 acoustically deadening or absorbing material and effective to neutralize said diffusion, in such a way as to obtain the desired attenuation or suppression of said diffusion, in said directions.

The provision of said deadening material, under 65 the thereinafter indicated conditions, and according

to the desired nature, consistency, absorbing properties is effective to give the desired attenuation or sectorial suppression of the acoustic diffusion through the environment. Thereinafter there will be indicated some possibilities for the selective production of these effects.

The method obviously affords important complementary advantages involving the making of the improved sectorial horn according to the present 75 invention.

Obviously the sectorily diffusion properties of the loudspeaker depend on the angular width or amplitude and the orientation of the sectors occupied by the insulating material. Accordingly, by maintaining 80 the standardization of the production of the loudspeaker, originally provided for the circular diffusion, the fitting whereof to the desired sectorial diffusion simply requires the provision and applying of a sound deadening and absorbing mass having the 85 desired angular extension and orienting.

For example the mass may be modularly predisposed in small-angular width sectors, effective to be individually shaped, for example by pressing in a suitable mold, and the loudspeakers can be predisposed, according to the user needs, by inserting into 90 the perimetrical portion or sector to be at least partially neutralized of the horn, the desired number of these modular articles of manufacture. If it is desired, it is possible to provide loudspeakers having a plurality of sectors, as angularly spaced and differently oriented, in which the starting diffusion performance is attenuated or suppressed.

The aforesaid and other characteristics of the invention will become more apparent from the following detailed description of a possible embodiment whereof, with reference to the schematic drawing, where:

fig. 1 is a perspective view of the improved sectorial loudspeaker according to the present invention, 100 as substantially produced by using a circular diffusion loudspeaker, as improved according to the thereinabove mentioned Italian Patent No 930,955;

fig. 2 illustrates the sound deadening mass of the 105 loudspeaker of fig. 1 by a cross-section taken according to a plane perpendicular to the axis whereof, and

fig. 3 illustrates a cross-section of the improved 110 sectorial loudspeaker, taken through the slanted plane indicated at III-III in fig. 2, the structure and transducer of the loudspeaker corresponding to those fragmentarily illustrated in fig. 11 A of the 115 thereinabove mentioned Italian Patent.

With reference to the drawing figures and briefly recalling to mind the disclosure of the cited Italian Patent, and as it is exemplary illustrated in fig. 3, the 120 loudspeaker as originally predisposed for an even circular diffusion or irradiation in any directions, comprises a known magnetodynamic unit, including a diaphragm 110 (for convenience there are used those same number references as used in the

125 aforesaid fig. 11A of the cited Italian Patent) operating in opposition to an opposite wall 24", or an opposite diaphragm, thereby forming with the latter a duct as defined between opposite progressively diverging walls 24 and 24', the distance whereof 130 increase according to a law well known in the art.

As disclosed in the cited Italian Patent, the geometric progression at the several cross-sections of the central portion of this duct (forming the compression chamber) is obtained by the bending of the sole diaphragm 110.

Thus, within the limits of this structure, that is without considering the following disclosure, the loudspeaker of fig. 3 is effective to circularly irradiate in any directions about its axis x-x, with the qualitative characteristic of supplying a substantially flat response curve through the overall acoustic frequency range, being a high quality loudspeaker.

According to the present invention, it has been found that it is possible to produce, by a technologically simple procedure and starting from a circular diffusion loudspeaker, sectorial diffusion loudspeakers, for the desired angular width or widths, by sectorily reducing the diffusion or irradiation of said circular diffusion loudspeakers.

As it is schematically illustrated in the figures, this is obtained by arranging in the radially diverging channel between the opposite walls 24 and 24' of the circular horn a mass M of a selectively sound deadening or adsorbing material, in which there is at least partially absorbed the acoustic power or energy generated by the diaphragm 11C or the electroacoustic transducer.

In the practice, as it is shown in figs. 1 and 2, and assuming that it is desired to produce a loudspeaker effective to irradiate exclusively (or at least with a good approximation) into the sector A'-B', the mass M will be located in such a way as to completely or partially neutralize the space included between the diverging walls 24 and 24'' about the diaphragm 110, also occupying the immediately overlying space, that is the compression chamber originating the sound or acoustic pulses. Thus the sound pulses irradiating from said compression chamber in any directions included in the sector A-B will be absorbed by the mass M, while those irradiating in any directions including in the sector A'-B' continue undisturbed through the corresponding sector of the horn and they are sectorily diffused.

It has been experimentally found and verified that the selectively limited diffusion of the sector A'-B' preserves its quality characteristics, practically through the overall extension of the sector occupied by the mass M.

It has been further experimentally found and verified that the angular limits of the thus obtained sectorial diffusion are advantageously cleanly or sharply defined, that is the intensity and quality of the diffusion is nullified in an advantageous sharp way at the limiting portions of said sectors, preferably provided that the faces M' and M'' defining the sector of the mass M, and which are accordingly turned towards the interspace between the opposite walls 20 and 24' of the horn, are in turn well sound deadening or absorbing and practically impervious to the sound or acoustic waves.

From the above description and the examination of the accompanying drawing it should be evident that it is possible to produce sectorial diffusion loudspeakers for any desired extension or amplitude.

As thereinabove said the improved loudspeaker can be made by using modular sectors of the mass M, the number and mutual positions whereof can be selected at will, to meet the user requirements,

70 depending on the extension and location of the loudspeaker in the room wherein it has to be installed. Furthermore, it is easy and economic to fit an improved loudspeaker, already predisposed for a predetermined condition of sectorial diffusion to 75 other different conditions, by replacing the sound deadening mass M and/or the modular sectors jointly or individually forming said mass.

Accordingly it should be evident that the improvement according to the present invention can 80 be carried out by adopting several variations and modifications of constructional nature, without departing from the scope of the present invention, as defined in one or more of the following claims.

CLAIMS

85 1. A method for producing sectorial diffusion loudspeakers, of high quality and sectorily predetermined diffusion, characterized by the transforming, in order to operate under predetermined sectorial diffusion conditions, of a horn loudspeaker 90 predisposed for the circular diffusion, comprising a horn provided with opposite walls the distances whereof increase according to predetermined laws, circularly ending with a mouth oriented through 360° about the structure axis passing through the electroacoustic transducer of said loudspeaker, into a sectorial diffusion loudspeaker in one or more predetermined sectors about said axis, said transforming being carried out, at least partially, by neutralizing the space between said opposite walls by means 100 of a sound deadening material, in the sector or sectors angularly comprising the directions in which the diffusion has to be attenuated or prevented, in such a way the power irradiated from the compression chamber acoustically associated with the diaphragm 105 of said transducer is at least partially absorbed in said directions.

2. A method for producing sectorial diffusion loudspeakers according to Claim 1, characterized by said transforming into a sectorial diffusion loudspeaker of a circular diffusion loudspeaker this latter being structurally and operatively essentially of the type disclosed in the Italian Patent No 930,955.

3. A method according to Claims 1 and/or 2, characterized in that said transforming is carried out 115 by saturating the originally circular horn of said circular diffusion loudspeaker by said acoustically or neutralizing (absorbing) material through the overall space encompassing the compression chamber and included, in the directions in which the diffusion has 120 to be attenuated or suppressed, between the opposite walls of said originally circular horn.

4. A method, according to one or more of Claims 1 to 3, characterized by the use, as said acoustically neutralizing or sound deadening material, of a fibrous material formed by an individually not rigid fiber agglomerate.

5. A method according to Claim 4, characterized in that said material consists of a natural or synthetic fiber agglomerate having good sound power 130 deadening characteristics.

6. A method, according to Claims 3 to 5, characterized in that said absorbing or deadening agglomerate has a varying density (acoustic rigidity) at different radial distances from the structure axis of said 5 circular diffusion loudspeaker, as transformed.

7. A method, according to Claim 6, characterized in that the density of said deadening or absorbing agglomerate increases according to the distance from said axis.

10 8. An improved loudspeaker, of the sectorial diffusion type, produced by a method according to any preceding claims, characterized in that it comprises a structure including an electroacoustic transducer provided with a diaphragm operating in a compression 15 chamber essentially located on the axis of said structure, a horn having two opposite walls the distances whereof increase, according to a known law, in any directions about said axis, and a material bulk effective to absorb at least a portion of the acoustic 20 power as irradiated in said compression chamber, located in the space comprising said compression chamber and included between said horn opposite walls, in the directions in which the sound diffusion has to be attenuated or suppressed.

25 9. An improved loudspeaker according to Claim 8, characterized in that said material is a fibrous material made of individually not rigid fibers.

10. An improved loudspeaker according to Claims 8 and/or 9, characterized in that the density of 30 said material bulk or mass increases from the points whereof near to said electroacoustic transducer to the points whereof near to the contour of said horn, thereby this latter is made sectorily attenuating or sound deadening.

35 11. An improved loudspeaker according to one or more of Claims 8 to 10, characterized in that the mass of said sound deadening material is formed by a plurality of modular sectors located in the directions in which the diffusion is not desired or has to 40 be attenuated.

12. Improvements in and/or related to the horn 45 loudspeaker, of the sectorial diffusion type, and method for making said sectorial diffusion loudspeakers, according to any preceding Claims and as broadly described with reference to the accompanying drawings.